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Introduction

The starting point of this work is a proof of Lovász he gave for Edmonds’ disjoint branchings

theorem in [20]. Apart from the fact that his approach gives a great tool to simplify existing proofs

it also suggests new results in subjects seemed to be examined once and for all. In this work we

give some new applications of his technique. We deal with the problem of packing and covering

of specified subgraphs in directed graphs, particulary when these subgraphs are arborescences,

branchings, bibranchings, or directed cuts. In [25] Schrijver gave a monumental overview of the

known results.

Chapter 1 is divided into three sections. In the first one we offer a brief survey of Edmonds’

theorems and a recent generalization presented by Kamiyama, Katoh and Takizawa in [18]. This

extension will be referred to as the Japanese arborescences theorem. Though the original proof of

the theorem follows the main steps of Lovász it is a bit circuitous. We provide a new proof that

completely relies on Lovász’s proof and is simpler in many ways than the original. We also study

an interesting special case which points to the fact that we can easily bump into hopelessly hard

questions.

The second section of the chapter presents a nice application of Edmonds’ strong theorem. This

short digression leads us to planar graphs, more precisely to the so-called Schnyder labellings of

triangular graphs. This notion was introduced by Schnyder in [24] and plays an important role in

graph drawing problems, especially when we would like to embed a planar graph to a grid of size

as small as possible. Many algorithms have been suggested to compute such a labelling in linear

time. We propose a new algorithm that is simpler than the present ones. The section is closed

with Schnyder’s beautiful approach to construct compact embeddings with the help of barycentric

representations.

The final section deals with coverings. It was observed in [13] that Vidyasankar’s theorem can

be derived from Edmonds’ weak theorem, hence it can be considered as the covering variant of

Edmonds’ result. This observation motivated us to find such a variant of the Japanese arbores-

cences theorem, too. Kamiyama and Katoh also study this question in [19] but from the viewpoint

of algorithm, while we prove a theorem which is the direct analogue of Vidyasankar’s.
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INTRODUCTION vi

Chapter 2 deals with more general covering questions. Theorems of Szegő and Frank show that

there is a strong connection between the problem of covering special set-functions with digraphs

and packing branchings or arborescences. In [6] Frank characterized those digraphs whose arc-set

can be partitioned into k subsets such that each part covers a fixed intersecting family defined on

the ground-set of nodes. Later Szegő improved this result to the case of k different intersecting

families that also satisfy the so-called linking property. The first part of the chapter summarizes

these results. As Edmonds’ disjoint branchings theorem can be derived from Szegő’s theorem the

question offers itself that whether the Japanese arborescences theorem can be deduced similarly.

However, the construction of families satisfying both the intersecting- and the linking property

presents difficulty. Hence we invoke the notion of bi-sets, a structure introduced by Frank and

Jordán in [8]. Bi-sets have been used successfully in node-connectivity augmentation problems and

prove to be the remedy of our difficulties. We reformulate Szegő’s theorem to bi-set families and

give an equivalent form using T-intersecting families. As an immediate application of our extension,

we show that it generalizes the Japanese arborescences theorem. The revelation of this connection

is one of the main results of this work.

In the remaining part of the chapter we give a new proof for the extension of Vidyasankar’s

theorem and also show how the above mentioned results can be extended to directed hypergraphs

-also called dypergraphs. We use a technique which was introduced in [9] and allows us to led back

the problems concerning dypergraphs to simple digraphs by trimming dyperedges.

In Chapter 3 we turn to bibranchings, another well examined type of special subgraphs that

can be considered as a generalization of branchings. Schrijver characterized the maximal number

of disjoint bibranchings using an interesting coloring-type result. We present a slight extension of

his theorem to intersecting families by combining Szegő’s theorem with Schrijver’s supermodular

colorings.

As Edmonds’ weak theorem can be derived from Schrijver’s disjoint bibranchings theorem it

would be natural to find a result about bibranchings corresponding to Edmonds’ strong theorem.

Surprisingly such a generalization does not exist. We show that we get NP-complete problems even

in the case of bipartite graphs. However, some special case can be handled thanks to a conjecture

of Evans about partial latin squares.

Chapter 4 presents a new approach to the Lucchesi-Younger theorem which is a central result

in the theory of connectors. We fully reduce the problem to matroid intersection with the help of

the Gröflin-Hoffman theorem [16]. The idea of using weighted matroid intersection was introduced

by Frank and Tardos in [10] where they used it to find a minimum-length directed cut k-cover.

However, the meaning of the dual solution was not read out. In [25] Schrijver studied the same

question and also gave a proof based on this idea. Our approach still differs from the previous ones

as it strictly refers to Gröflin and Hoffman’s theorem.
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The work closes with a collection of unsolved questions related to the above mentioned problems.

We consider them for future research.



Preliminaries

Throughout the work we use the following notation. In a graph G = (V,E), for a subset X ⊆ V

we denote by ∆(X) the set of edges going between X and V − X. If X contains at least two

nodes then the degree d(X) of X is equal to |∆(X)|. For single nodes this definition changes to

the number of edges ending in v where the loops at v are counted twice. The set of edges having

both ends in X is denoted by I(X), while E(X) is the set of edges having at least one end in X.

Furthermore, i(X) = |I(X)| and e(X) = |E(X)|. For X, Y ⊆ V we denote by d(X, Y ) the number

of edges going between X and Y . When we would like to indicate the graph on which the given

function is defined we put its name in subscript.

In a digraph D = (V,A), for a subset X ⊆ V the in-degree %(X) denotes the number of arcs

entering X. The set of these arcs is ∆−(X). Similarly, the out-degree δ(X) denotes the number of

arcs leaving X and their set is ∆+(X). One of the most important properties of the in-degree and

out-degree functions is their submodularity:

%(X) + %(Y ) ≥ %(X ∩ Y ) + %(X ∪ Y )

and

δ(X) + δ(Y ) ≥ δ(X ∩ Y ) + δ(X ∪ Y )

for each X, Y ⊆ V . The functions i(X), e(X) and the sets I(X), E(X) are defined in the same way

as in the undirected case.

A subgraph of a graph or digraph H = (V, F ) is obtained by deleting some nodes and edges of

H. If only nodes are deleted, then we call the arising subgraph induced by X where X is the set

of remaining nodes. The underlying graph G = (V,E) of a digraph D = (V,A) is obtained from D

by discarding the orientation of the arcs.

For simplicity we often use the signs −,+ for the difference and union of two sets. Also, if

H = (V, F ) is a graph or a digraph then the subgraph obtained by deleting a subset F
′

of edges

or a subset V
′
of nodes is denoted by H − E

′
and H − V

′
.

viii



Chapter 1

Branchings and arborescences

1.1 Packing branchings

The problem of packing arborescences can be considered as a special case of packing common

bases of two matroids. The first question concerning this area was proposed by Edmonds. Since

then his classical work became the starting point of several minimax results.

1.1.1 Edmonds’ theorems

A directed tree is called an arborescence rooted at r if each node is reachable from r. A branching

with root set R is a collection of |R| edge-disjoint arborescences where R is the set of roots of the

arborescences.

Let D = (V + r, A) be a digraph. For U ⊆ V with δ(U) = 0 we call ∆−(U) an r-cut. Edmonds

gave in [3] the following characterization of the existence of disjoint spanning-arborescences with

the same root r:

Theorem 1.1.1 (Edmonds’ weak theorem, 1973). Let D = (V,A) be a digraph and let r ∈ V .

Then the maximum number of disjoint spanning r-arborescences is equal to the minimum size of

an r-cut.

A simple proof of the theorem was given by Lovász in 1976 [20] . His elegant approach also

proved to be useful in generalizing Edmonds’ result. In Chapter 2 we present several applications

of Lovász’s proof technique.

Edmonds actually proved a more general result by characterizing the existence of disjoint

branchings with prescribed root sets:

Theorem 1.1.2 (Edmonds’ strong theorem, 1973). Let D = (V,A) be a digraph and let R1, ..., Rk ⊆

V be root sets. There exist k disjoint branchings of root sets R1, ..., Rk, respectively, if and only if

%(X) ≥ p(X) for each ∅ 6= X ⊆ V where p(X) denotes the number of Ri’s disjoint from X.

1
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The theorem can be proved by applying Lovász’s technique. It is interesting to reformulate

Theorem 1.1.2 in an equivalent form [12]:

Theorem 1.1.3. Let D
′

= (V + r, A) be a digraph, F1, ..., Fk be k disjoint r-arborescences and

let D denote the subgraph of D
′
consisting of edges not used by the Fi’s. The arborescences can be

completed to k disjoint spanning r-arborescences if and only if %D(U) ≥ p(U) for each ∅ 6= U ⊆ V

where p(U) denotes the number of Fi’s disjoint from U .

1.1.2 Japanese arborescences theorem

Recently, in [18] N. Kamiyama, N. Katoh, and A. Takizawa proved yet another generalization

of Edmonds’ strong theorem. Since possibly not all of the nodes are reachable from a given root

they broke with the concept of spanning arborescences and gave the following theorem:

Theorem 1.1.4 (Kamiyama-Katoh-Takizawa, 2008). Let D = (V,A) be a digraph and R =

{r1, ..., rk} be a set of roots. Let Si denote the set of nodes reachable from ri. There exist disjoint

arborescences (S1, A1), ..., (Sk, Ak) rooted at r1, ..., rk, respectively, if and only if %(X) ≥ p(X) for

each X ⊆ V where p(X) denotes the number of ri’s such that ri /∈ X and Si ∩X 6= ∅.

It is remarkable that the proof of the theorem is also based on Lovász’s proof but it is more

complicated because p is not supermodular in this case. The theorem can be reformulated in terms

of arborescences already given:

Theorem 1.1.5. Let D
′

= (V,A) be a directed graph and {r1, ..., rk} ⊆ V be a set of specified

nodes. Let Si denote the set of nodes reachable from ri. Assume that disjoint arborescences F1, ..., Fk

are already given such that Fi is rooted at ri. Let D denote the subgraph of D
′
consisting of edges

not used by the Fi’s. The arborescences can be extended to disjoint arborescences such that Fi spans

Si if and only if %
′
(U) ≥ p

′
(U) for each U ⊆ V where %

′
(U) denotes the number of arcs entering

U not used by the Fi’s, and p
′
(U) = |{i : Si ∩ U 6= ∅, V (Fi) ∩ U = ∅|}.

We will refer to this theorem as the Japanese arborescences theorem. In Chapter 2 we give a

common extension of this result and a theorem of Szegő on covering intersecting families. Although

it is simpler to derive Theorem 1.1.4 from our extension, now we give a direct proof just to present

the difficulties that the lack of supermodularity causes:

Proof. If Fi spans Si for each i then we are done. In other case there exists an Fi we would

like to extend. Let F1 be such an arborescence. There exists an arc e leaving V1 = V (F1) since

%
′
(V − V1) ≥ p

′
(V − V1), and the right-hand side is positive because of S1. We call a nonempty

subset X of V tight, if %
′
(X) = p

′
(X) and V1 ∩X 6= ∅. If e does not enter any tight set then we

can add it to F1 and we are done by induction. In other case e enters a tight set.
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Let M be a minimal tight set. Our first observation is that there is an arc from M ∩ V1 to

M − V1. Otherwise

%
′
(M − V1) = %

′
(M)−

−→
d

′
(V −M,M ∩ V1),

where
−→
d

′
(X, Y ) denotes the number of arcs from X to Y not used by the arborescences. At the

same time

p
′
(M − V1) =

= p
′
(M) + |{i ∈ {1, ..., k} : Si ∩ (M − V1) 6= ∅, Fi ∩ (M − V1) = ∅, Fi ∩ (M ∩ V1) 6= ∅}|−

−|{i ∈ {1, ..., k} : Si ∩ (M − V1) = ∅, Si ∩M 6= ∅, Fi ∩M = ∅}|.

The second member of the sum is greater than 1 because for i = 1 the proper conditions hold.

Since we need

p
′
(M − V1) ≤ %

′
(M − V1)

hence

J = {j : Sj ∩ (M − V1) = ∅, Sj ∩M 6= ∅, Fj ∩M = ∅} 6= ∅

holds. Let R denote the set of vertices v ∈ V − (M ∩ V1) wherefrom M − V1 is reachable in the

directed graph. Then R 6= V − (M ∩ V1) as for each j ∈ J we know that sj /∈ R. It can be seen

easily from the definition of R that

|J | ≤ p
′
(R ∪ (M ∩ V1)) ≤ %

′
(R ∪ (M ∩ V1)) =

=
−→
d

′
(V −R,M ∩ V1) ≤

−→
d

′
(V −M,M ∩ V1).

From these inequalities we get

%
′
(M − V1) ≤ %

′
(M)− |J | = p

′
(M)− |J | <

< p
′
(M)− |J |+ 1 ≤ p

′
(M − V1),

a contradiction.

According to the above, there is an edge f from M ∩ V1 to M − V1. We will show that f does

not enter any tight set so it can be added to F1 and we are done. The following lemma is an easy

observation about p
′
that proved by counting cases:

Lemma 1.1.1. Let X, Y be subsets of V such that X ∩ Y 6= ∅. Let

d∩(X, Y ) = |{i ∈ {1, ..., k} : Fi ∩X 6= ∅, Fi ∩ Y 6= ∅, Fi ∩X ∩ Y = ∅}|

and

d∪(X, Y ) = |{i ∈ {1, ..., k} : Si ∩X 6= ∅, Si ∩Y 6= ∅, Si ∩X ∩Y = ∅, Fi ∩X = ∅ or Fi ∩Y = ∅}|.

Then

p
′
(X) + p

′
(Y ) = p

′
(X ∪ Y ) + p

′
(X ∩ Y ) + d∪(X, Y )− d∩(X, Y ).
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Assume that f enters a tight set. Let X be a minimal tight set entered by f . We claim that

d∪(M,X) = 0. If not, then there is a subscript j ∈ {1, ..., k} such that Sj ∩ M 6= ∅, Sj ∩ X 6=

∅, Sj ∩M ∩X = ∅, and Fj ∩M = ∅ or Fj ∩X = ∅. We can assume that Fj ∩M = ∅. We will show

that M − Sj would be a smaller tight set contradicting to the minimality of M .

First of all, δ
′
(Sj) = 0 implies that (M − Sj) ∩ V1 6= ∅ because the tail of f can not be in Sj .

Also by this property of Sj

%
′
(M − Sj) = %

′
(M)−

−→
d

′
(V −M,M ∩ Sj).

At the same time

p
′
(M − Sj) =

= p
′
(M) + |{i ∈ {1, ..., k} : Si ∩ (M − Sj) 6= ∅, Fi ∩ (M − Sj) = ∅, Fi ∩ (M ∩ Sj) 6= ∅}|−

−|{i ∈ {1, ..., k} : Si ∩ (M − Sj) = ∅, Si ∩M 6= ∅, Fi ∩M = ∅}|.

Let R denote the set of vertices v ∈ V − (M ∩ Sj) wherefrom M − Sj is reachable in the directed

graph. Then R 6= V − (M ∩ Sj) as sj /∈ R. Let

J = {l : Sl ∩ (M − Sj) = ∅, Sl ∩M 6= ∅, Fl ∩M = ∅} 6= ∅.

It can be seen easily from the definition of R that

|J | ≤ p
′
(R ∪ (M ∩ Sj)) ≤ %

′
(R ∪ (M ∩ Sj)) =

=
−→
d

′
(V −R,M ∩ Sj) ≤

−→
d

′
(V −M,M ∩ Sj).

From these inequalities we get

%
′
(M − Sj) = %

′
(M)−

−→
d

′
(V −M,M ∩ Sj) ≤ p

′
(M)− |J | ≤ p

′
(M − Sj),

contradicting to the minimality of M . Moreover, if M ∩ X ∩ V1 = ∅, then d∩(M,X) ≥ 1 as S1

increases d∩(M,X). By Lemma 1.1.1

p
′
(M) + p

′
(X) = %

′
(M ∪X) + %

′
(M ∩X) ≥

≥ p
′
(M ∪X) + p

′
(M ∩X) > p

′
(M) + p

′
(X),

a contradiction. Hence M ∩X ∩ V1 6= ∅, so M ∩X ⊂ M is a tight set, a contradiction.

1.1.3 A special case

Let D = (V,A) be a digraph whose node set is partitioned into a root-set R = {r1, ..., rt} and a

terminal set T . Suppose that no edge of D enters any node of R. Let m : R → Z+ be a function and

let k = m(R). When can we find k disjoint arborescences in D so that m(r) of them are rooted at

r and spanning T + r for each r ∈ R? At first sight one could think that Edmonds’ strong theorem
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would give the answer. But the truth is that Edmonds’ theorem only can be applied when mi = 1

for each i. Though the Japanese arborescences theorem could be used to characterize the existence

of such arborescences, we will return to this problem in Chapter 2 when we give a generalization

of Theorem 1.1.4.

Becoming enthusiastic about the new way of seeing things, another question comes up imme-

diately. It is known that if D = (V,A) is a digraph then we can characterize the existence of k

spanning arborescences rooted at distinct nodes. Now let D be a digraph like above. When can we

find k distinct nodes ri1 , ..., rik
∈ R so that there exist k disjoint arborescences in D from which

exactly one is rooted at rij
and spanning V + rij

? Actually, this problem is NP-complete!

To prove this, let DT be the digraph induced by T . Suppose that %DT
(v) = k − 2 for each

v ∈ T and %DT
(Z) ≥ k − 1 for each Z ⊂ T, |Z| ≥ 2. We can easily construct a digraph with these

properties, for example, let n be even and take the same directed Hamilton cycle on n nodes k− 2

times. Let v1, ..., vn denote the nodes around this cycle. If we give the arcs vivi+ n
2

to the graph for

each i = 1, ..., n then the arising digraph satisfies the conditions. Let Ri = {v ∈ T : riv ∈ ∆+(ri)}

and suppose that |Ri| ≥ 2 holds for each i. Edmonds’ strong theorem implies that for a choice

of ri’s the requested arborescences exist if and only if %(Z) ≥ p(Z) for each Z ⊆ V where p(Z)

denotes the number of Ri’s disjoint from Z. For a Z with |Z| ≥ 2 the inequality holds automatically

because of the structure of D. So we only have to care about the sets containing a single node.

That means that our aim is to cover the set V with k sets from {R1, ..., Rt}. This is a variant of

the set-covering problem, which is NP-complete.

1.2 Planar graphs

We call a graph G planar if it can be drawn so that the edges only meet in nodes. A plane

graph is an abstract graph with a given embedding in the plane. This embedding is a straight line

embedding if the edges are represented by straight line segments. A triangular graph is a maximal

plane graph with at least three nodes (Figure 1.1). The nodes and edges on the exterior face of G

are called exterior nodes and edges. We can define interior nodes and edges similarly.

The problem of embedding graphs compactly is related to the drawing of graphs on finite

display devices. Fáry showed [5] that each plane graph has straight line embeddings, and many

algorithms were suggested to construct one. Most of these algorithms had several drawbacks as they

concentrate on the node-positions only, and do not care about the size of the output embedding.

So embeddings were at hand, but their view on a terminal was impossible because of their huge

size.

Embedding a planar graph on the n by m grid means that the nodes have integer valued

coordinates in the range 0 ≤ v1 ≤ n and 0 ≤ v2 ≤ m. In [22] Rosenstiehl and Tarjan asked whether

or not every planar graph of size n has a straight line embedding on a grid of side length bounded



1.2. Planar graphs 6

by nk for some fixed k. Fraysseix, Pach and Pollack showed [14] that every plane graph with n

vertices has such an embedding on the 2n− 4 by n− 2 grid and provided an O(n) space, O(nlogn)

time algorithm to effect this embedding. Schnyder improved this bound to n− 2 by n− 2 by using

Schnyder-labellings. His interesting approach provides embeddings in which the vertex-coordinates

have a purely combinatorial meaning [24].

1.2.1 3-orientations of triangular graphs

Let us show another application of Edmonds’ strong theorem. While studying the embeddings

of planar graphs on grids of "small" size, Schnyder observed the following. Let G = (V,E) be a

triangular graph with exterior nodes r1,, r2, and r3. After dropping out the exterior edges of G

the remaining edges can be oriented in such a way that the arising directed graph is the union of

three arborescences F1, F2, and F3 where Fi is rooted at ri and spans V − {ri+1, ri+2} (indeces

are modulo 3). In fact every orientation of the interior edges such that %(ri) = 0 for i = 1, 2, 3

and %(v) = 3 for other nodes (Figure 1.2), have this decomposition property, as we will show by

using Edmonds’ strong theorem. The orientations satisfying these in-degree conditions are called

3-orientations. First of all we need the following lemma:

Lemma 1.2.1. Let G be a triangular graph with exterior nodes r1, r2, r3. There is an orientation

of the interior edges such that %(ri) = 0 for i = 1, 2, 3 and %(v) = 3 for other nodes.

We will use a corollary of Hakimi’s theorem about orientations with upper bounds on the

indegrees [17]. Originally Hakimi considered lower bounds, but we need the following form:

Theorem 1.2.1 (Hakimi, 1965). Let G = (V,E) be an undirected graph and let g : V → Z+. Then

G has an orientation D = (V,A) with %(v) ≤ g(v) for each v ∈ V if and only if i(Z) ≤ g(Z) for

each Z ⊆ V , where g(Z) denotes
∑
v∈Z

g(v).

An easy consequence of the theorem is:

Corollary 1.2.1. Let G = (V,E) be an undirected graph and let g : V → Z+. Then G has an

orientation D = (V,A) with %(v) = g(v) for each v ∈ V if and only if g(V ) = |E| and i(Z) ≤ g(Z)

for each Z ⊆ V .

Proof of Lemma 1.2.1. Let G = (V + r1 + r2 + r3, E) be a triangular graph with exterior nodes

r1, r2, r3 and with exterior edges dropped out. According to Corollary 1.2.1, we only have to show

that |E| = 3n − 9 and iE(Z) ≤ 3(|Z| − |{r1, r2, r3} ∩ Z|). By the fact that a triangular graph

with n nodes has 3n− 6 edges the equality is clear since the exterior edges are dropped out. The

inequalities can be proved as follows:

(a) |{r1, r2, r3} ∩ Z| = 0, 1 or 2: Z induces a planar graph with at most 3|Z| − 6 edges, so the

inequality holds in all cases.
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(b) |{r1, r2, r3} ∩ Z| = 3: Z induces a planar graph. Adding the edges r1r2, r2r3, r3r1 to this graph

we get a planar graph again with at most 3|Z| − 6 edges. Hence iE(Z) is at most 3|Z| − 9.

Figure 1.1: A triangular graph G with 7 nodes Figure 1.2: A 3-orientation of G

Now we show that any orientation given by Lemma 1.2.1 has the decomposition property

described earlier:

Theorem 1.2.2. Let G = (V + r1 + r2 + r3, E) be a triangular graph with exterior nodes r1, r2, r3

and with exterior edges dropped out. Orientate the interior edges in such a way that %(ri) = 0 for

i = 1, 2, 3 and %(v) = 3 for v ∈ V . Let D0 = (V + r1 + r2 + r3, A0) denote the arising directed

graph. Then A0 can be partitioned into subsets A1, A2, A3 such that Ai is an arborescence rooted

at ri and spanning V + ri.

Proof. Let Ri denote the neighbors of ri and let D = (V,A) be the subgraph of D0 induced by V .

Then, by Edmonds’ strong theorem, we have to show that %D(X) ≥ pD(X) for each ∅ 6= X ⊆ V

where pD(X) denotes the number of Ri’s disjoint from X. We have the following cases:

(a) pD(X) = 0: The inequality obviously holds.

(b) pD(X) = 1: Assume that X ∩R1 6= ∅ and X ∩R2 6= ∅. Notice that X
′
= X + r1 + r2 induces

a subgraph in D0 in which each v ∈ X has in-degree 3 as R3 ∩X = ∅. Then

3|X| = 3|X
′
| − 6 =

∑
v∈X′

%D0(v) = %D0(X
′
) + iD0(X

′
) = %D(X) + iD0(X

′
) ≤

≤ %D(X) + 3|X
′
| − 7 = %D(X) + 3|X| − 1.

The inequality iD0(X
′
) ≤ 3|X ′ | − 7 holds since giving the arc r1r2 to the subgraph induced

by X
′
in D0 we also get a planar graph. Hence %(X) ≥ 1, and we are done.

(c) pD(X) = 2: Assume that X ∩ R1 6= ∅. Let X
′
= X + r1. Notice that X

′
= X + r1 induces a

subgraph in D0 in which each v ∈ X has in-degree 3 as Ri ∩X = ∅ for i = 2, 3. Then

3|X| = 3|X
′
| − 3 =

∑
v∈X′

%D0(v) = %D0(X
′
) + iD0(X

′
) = %D(X) + iD0(X

′
) ≤
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≤ %D(X) + 3|X
′
| − 6 = %D(X) + 3|X| − 3.

Hence %(X) ≥ 2, and we are done.

(d) pD(X) = 3: X induces a planar subgraph in D, so 3|X| =
∑
v∈X

%D(v) = %D(X) + i(X) ≤

%(X) + 3|X| − 6, hence %(X) ≥ 1 clearly holds.

Theorem 1.2.2 also follows from the existence of Schnyder-labellings. In the following section we

present a new algorithm to construct such labellings and hence give a new proof of the Theorem.

1.2.2 Schnyder labellings

Let G = (V,E) be a triangular graph. A realizer or Schnyder labelling is a 3-orientation of G

plus a coloring of the interior edges with three colors, such that

1. every interior node has one incoming edge in each color,

2. the colors of the incoming edges appear always in counterclockwise order at every interior

node,

3. outgoing edges of one color appear exactly between the incoming edges of the two remaining

colors.

Schnyder showed that each triangular graph has a Schnyder labelling, and also presented an

algorithm to construct such labellings in linear time. This observation proved to be useful in

applications concerning planar graph drawings. The base of his algorithm is an operation called

contraction. An edge e is contractible if it is incident to an exterior and an interior node and these

nodes have exactly two common neighbors. It is part of his work [24] that in every triangular

graph there exists such a contractible edge. It is easy to see that after contraction the graph

remains triangular, hence everything is at hand for induction. We can contract edges until we

get a single triangle and then expand the edges again in reverse order, while taking care of the

colors and directions to the reappearing edges. A great summary and some interesting result on

Schnyder labellings can be found in [2]. We present an algorithm here which is not based on

edge contractions. While Schnyder’s algorithm assigns colors and orientations simultaneously, our

algorithm starts with an arbitrary 3-orientation and only colors the arcs properly.

We start with a triangular graph G = (V + rR + rB + rG, E) where rR, rB , rG are the exterior

nodes in counterclockwise order, and take an arbitrary 3-orientation of G provided by Lemma

1.2.1. The arising digraph will be denoted by D. Our algorithm will assign colors to the arcs -

say RED, BLUE and GREEN - where the colors also have a cyclic order: BLUE comes after

RED, GREEN after BLUE, and RED after GREEN . The algorithm is really simple: we build
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up arborescences FR, FB and FG rooted at the exterior nodes where Fi denotes the arborescence

rooted at ri. Initially let Fi = ri. Firstly we assign the color RED to the outgoing edges from rR

and give them to FR. Then we take an interior node v reached by one of these RED arcs. We know

that v has in-degree 3, and one of the three incoming edges is RED. So we color the outgoing

edges appearing exactly between the two remaining incoming edges to RED, give them to FR, and

iterate the procedure until there is no arc we can color. After that we apply the same to rB with

color BLUE, and finally to rG with color GREEN .

Figure 1.3: The labelling belonging to the 3-orientation presented on Figure 1.2

To prove that our algorithm really provides a Schnyder labelling we have to show that the steps

are well-defined, which means that at each step we only have to color uncolored edges. We also

have to prove that the coloring arising from the algorithm has the properties described above.

Claim 1.2.1. The steps are well-defined as each edge gets at most one color.

Proof. The only problem could be that we arrive to an interior node v and one of the arcs lying

between the two other incoming edges is already colored. But this is a contradiction, since at

any interior node an outgoing edge can be colored only if the proper incoming edge is already

colored.

Claim 1.2.1 implies that the Fi’s are edge disjoint subgraphs. Our next observation is:

Claim 1.2.2. Fi is an arborescence rooted at ri for i ∈ {R,B,G}.

Proof. We prove this for i = R, the other two cases are similar. It is clearly enough to show that

the underlying graph of FR does not contain a cycle. Suppose to the contrary that the claim does

not hold, and let C be the first cycle that arises while the algorithm is building up FR (if more

than one such cycle exist then let C be one of them). Obviously, just before C appears FR was

an arborescence. Hence we have two cases: C is a directed cycle or the union of two internally

node-disjoint directed path. Let H be the subgraph of D induced by C and its interior. We will get

a contradiction by double-counting the arcs in H. Let c = |C| and let t and l denote the number

of nodes and arcs in H. We know that H is triangular except the outer face which is bounded by
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C. With an extra node and c additional edges we can triangulate the outer face, hence

l = 3(t + 1)− 6− c = 3t− c− 3.

If C is a directed cycle then our algorithm yields %H(v) = 3 for each node in H − C, %H(v) = 2

for each v ∈ C except at most one v ∈ C, for which %H(v) ≥ 1. But that would mean

l ≥ 3t− c− 1,

a contradiction. If C is the union of two paths the proof is similar, the only difference is that we

get l ≥ 3t− c− 2, which is still a contradiction.

Notice that we still know nothing about the node-set of Fi, whether it spans V + ri or not.

Actually this will be true:

Claim 1.2.3. Fi spans V + ri for i ∈ {R,B,G}.

Proof. The node-set of Fi can not be bigger as the exterior nodes have in-degree 0. So we only

have to show that each interior node is reachable from ri in Fi. Let v be an interior node. As D is a

3-orientation of G, %(v) = 3. We take one of the incoming edges at v and go backward on it. If we

arrive to another interior node then it also has three incoming edges and the edge we came on lays

between two of them. We continue our way backward on the third one. This hall procedure can

be considered as the reverse of our algorithm. Clearly, we only can get stuck in an exterior node.

Furthermore, we arrive to different exterior nodes if at the first step we choose different incoming

edges to go on backward. Hence v is in Fi for each i ∈ {R,B,G}.

According to the claims above every interior node has one incoming edge in each color. The

algorithm assures that outgoing edges of one color appear exactly between the incoming edges of

the two remaining colors. It only remains to show that colors of the incoming edges appear always

in counterclockwise order at every interior node.

Claim 1.2.4. Let v ∈ V be an interior node and let Pi(v) denote the unique directed path in Fi

from ri to v for each i ∈ {R,B,G}. Then any two of these paths are node-disjoint apart from v.

Proof. Assume that PR(v) and PB(v) has some common nodes different from v. Let u be the first

such node on the paths seen from v. The parts of PR(v) and PB(v) lying between u and v form a

cycle C. With the same argument as in Claim 1.2.2 we get a contradiction by double-counting the

edges in the subgraph induced by C and its interior.

Form Claim 1.2.4 it easily follows that incoming edges appear in counterclockwise order at

every interior node. Otherwise there would be a v ∈ V for which the order is RED, GREEN

and BLUE, but then two of the paths Pi(V ) should have a common node different from v, a

contradiction.
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Hence our algorithm works and really gives a Schnyder labelling. The fact that every 3-oriented

triangular graph has the decomposition property described in Section 1.2.1 now clearly follows

from the foregoing (without using Edmonds’ theorem). Indeed, the arborescences FR, FB and FG

-provided by the algorithm- define such a decomposition.

Notes 1.2.1. Claim 1.2.4 is interesting: the unique paths in the arborescences to an interior node

are not just edge- but also node-disjoint! It is easy to show that this condition holds for every

Schnyder-labellings.

1.2.3 Embedding planar graphs on the grid

Schnyder used these labellings to construct straight line embeddings on the n−2 by n−2 grid. A

weak barycentric representation of a graph G is an injective function v ∈ V (G) → (v1, v2, v3) ∈ R3

with the following two properties:

1. v1 + v2 + v3 = 1 for all nodes v,

2. for each edge uv and each node w 6= u, v, there is some k ∈ {1, 2, 3} such that (uk, uk+1) <lex

(wk, wk+1) and (vk, vk+1) <lex (wk, wk+1).

The following lemma shows the importance of weak barycentric representations:

Lemma 1.2.2. Let v ∈ V (G) → (v1, v2, v3) be a weak barycentric representation of a graph G.

Then given any three noncolinear points α, β and γ, the mapping f : v ∈ V (G) → v1α + v2β + v3γ

is a straight line embedding of G in the plane spanned by α, β and γ.

Proof. It is easy to see that f is injective, since α, β and γ are noncolinear. Moreover, for an edge

uv and a node w 6= u, v the condition (uk, uk+1) <lex (wk, wk+1) and (vk, vk+1) <lex (wk, wk+1)

must hold for some k, hence the point f(w) does not lie on the segment f(u)f(v).

If xy and uv are disjoint edges, then there exist indices i, j, k, l ∈ {1, 2, 3} such that

(xi, xi+1) >lex (ui, ui+1), (vi, vi+1),

(yj , yj+1) >lex (uj , uj+1), (vj , vj+1),

(uk, uk+1) > (xk, xk+1), (yk, yk+1),

(vl, vl+1) > (xl, xl+1), (yl, yl+1).

These inequalities clearly imply {i, j} ∩ {k, l} = ∅. As i, j, k, l ∈ {1, 2, 3} there holds i = j or k = l.

Therefore the segments f(x)f(y) and f(u)f(v) are separated by a straight line parallel to αβ, αγ

or βγ, hence do not intersect.
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Lemma 1.2.2 implies that only planar graphs can have weak barycentric representations. Fur-

thermore, if such a representation of G is given then straight line embeddings of G can be con-

structed easily. Schnyder’s idea was to find a "nice" weak barycentric representation of planar

graphs with the help of Schnyder labellings.

Let G be a triangular graph with a Schnyder labelling provided by our algorithm described

in the previous section. In Claim 1.2.4 we showed that for each interior node v ∈ V the paths

PR(v), PB(v) and PG(v) are pairwise node-disjoint apart from v. However, it can be showed that

this condition holds for any Schnyder labellings. Therefore, PR(v), PB(v) and PG(v) divide G in

three regions denoted by RR(v), RB(v) and RG(v) where Ri(v) denotes the closed region opposite

to the root of Fi. From now we use indices 1, 2 and 3 instead of R,B and G, respectively. From

the definition of Schnyder labellings it easily follows that:

Lemma 1.2.3. For any two distinct interior nodes u and v

u ∈ Ri(v) ⇒ Ri(u) ⊂ Ri(v)

holds. The inclusion is proper.

Proof. Suppose that u ∈ R3(v) and u does not lie on the boundary of r3(v) (the other case is

similar). Let x denote the first node of P1(u) that belongs to the boundary of R3(v). From the

definition of Schnyder labellings it follows that x /∈ P2(v), hence x ∈ P1(v)− v. Similarly, the first

node y of P2(u) belonging to the boundary of R3(v) must lie on P2(v)− v. Hence R3(u) ⊂ R3(v),

and the inclusion is proper as v ∈ R3(v)−R3(u).

For an interior node v of G let vi = |Ri(v)| − |Pi−1(v)| -so vi denotes the number of nodes in

region Ri(v) from which the path Pi−1(v) has been removed. For the root r of Fi we extend this

definition by setting ri = n− 2, ri+1 = 1, ri+2 = 0. Then we get v1 + v2 + v3 = n− 1 for each node

and 0 ≤ v1, v2, v3 ≤ n− 2 (with 1 ≤ v1, v2, v3 ≤ n− 3 for interior nodes).

Lemma 1.2.4. Let u and b be distinct nodes of G. If v is an interior node and u ∈ Ri(v) there

holds (ui, ui+1) <lex (vi, vi+1).

Proof. Firstly we show that the implication u ∈ Rk(v) − Pk−1(v) ⇒ uk < vk holds. If u is an

exterior node then uk = 0 while vk ≥ 0. In other case the inequality follows from Lemma 1.2.3.

If u ∈ Ri(v) then Lemma 1.2.3 implies ui ≤ vi. We have two cases: if u /∈ Pi−1(v) then ui < vi,

else u ∈ Pi−1(v) thus u ∈ Ri+1(v) − Pi(v) and ui+1 < vi+1, by the previous observation with

k = i + 1.

The function f : v ∈ V (G) → (v1, v2, v3) is clearly injective. In addition, the following lemma

holds:

Lemma 1.2.5. The function v ∈ V (G) → 1
n−1 (v1, v2, v3) is a weak barycentric representation of

G.
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Proof. The first condition of the definition of barycentric representations is clearly satisfied. Let

uv be an edge and w 6= u, v. If w is an exterior node, the root of Fi, then wi = n − 1 > ui, vi.

Else, w is an interior node and u, v ∈ Ri(w) for some i. By Lemma 1.2.3 this implies wi > ui, vi

again.

By applying Lemma 1.2.2 with choice α = (n−1, 0), β = (0, n−1), γ = (0, 0) we get Schnyder’s

theorem:

Theorem 1.2.3. The mapping v ∈ V (G) → (v1, v2) is a straight line embedding of G on the n− 2

by n− 2 grid.

Figure 1.4: An embedding of G on the 5 by 5 grid

The embeddings induced by this beautiful approach have many advantages, such as nice sepa-

ration properties. For example, it follows from the foregoing, that:

Theorem 1.2.4. Let λ1, λ2, λ3 be three pairwise non parallel straight line in the plane. Then each

plane graph has a straight line embedding in which any two disjoint edges are separated by a straight

line parallel to λ1, λ2 or λ3.

1.3 Covering by arborescences

The problem of covering the edge-set of a graph by subgraphs with specified properties have

been extensively studied because of its practical applications such as vehicle routing problems, fire

station location problems or evacuation planning problems.
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1.3.1 Vidyasankar’s theorem

Let D = (V,A) be a digraph and r ∈ V . It is a natural question that when can A be covered

by k r-rooted arborescences. Vidyasankar proved the following theorem, which can be considered

as the covering analogue of Edmonds’ strong theorem. For a subset U ⊆ V let H(U) denote the

set of the heads of the arcs entering U . We call H(U) the door of U .

Theorem 1.3.1 (Vidyasankar, 1978). Let D = (V + r, A) be a digraph with %(r) = 0 and k be a

positive integer. Then A can be covered by k r-arborescences if and only if

(i) %(v) ≤ k

for each v ∈ V and

(ii)
∑

v∈H(U)

(k − %(v)) ≥ k − %(U),

for each ∅ 6= U ⊆ (V − r).

It has been showed in [13] that Vidyasankar’s theorem can be derived from Edmonds’ weak

theorem. With the help of this observation we give an extension of Theorem 1.3.1 by using the

Japanese arborescences theorem. In [19] Kamiyama and Katoh also studied this question from

algorithmic aspects. Our result is the following:

Theorem 1.3.2. Let D = (V,A) be a digraph and {r1, ..., rk} = R ⊆ V a set of specified nodes. Let

Si denote the set of nodes reachable from ri. There exist arborescences F1, ..., Fk rooted at r1, ..., rk,

respectively, and covering A if and only if

(i) %(v) ≤ p(v)

for each v ∈ V and

(ii) p(U)− %(U) ≤
∑

[p(v)− %(v) : v ∈ H(U)]

for each ∅ 6= U ⊆ V , where H(U) denotes the door of U and p(U) = |{i ∈ {1, ..., k} : Si ∩ U 6=

∅, ri /∈ U}|.

Proof. Assume that F1, ..., Fk are proper arborescences. We can suppose that Fi spans Si for each

i ∈ {1, ..., k}. If v /∈ R then each arborescence can only contain one arc from ∆−(v), while if v ∈ R

then those arborescences that are rooted at v contains no arcs from ∆−(v). From the definition of

p one can see that (i) is necessary.

Necessity of (ii) can be seen as follows. For each e ∈ A let z
′
(e) denote the number of arbores-

cences that contain the arc e. Let z(e) = z
′
(e) − 1. Then for each e ∈ A : z(e) ≥ 0. Moreover,

since the arborescences cover A: %z(U)+ %(U) ≥ p(U) for each ∅ 6= U ⊆ V and %z(v)+ %(v) = p(v)

for each v ∈ V . Hence for each ∅ 6= U ⊆ V :

p(U)− %(U) ≤ %z(U) ≤
∑

[%z(v) : v ∈ H(U)] =
∑

[p(v)− %(v) : v ∈ H(U)].
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To see sufficiency, we extend D as follows. For each v ∈ V we give a copy of v denoted by

v′ to D. Moreover, we give p(v) parallel arcs from v to v
′
, p(v) − %(v) parallel arcs from v

′
to v,

and finally p(v) parallel arcs from u to v
′
for each uv ∈ A. Let D

′
denote the directed graph thus

arising.

If there exist F
′

1, ..., F
′

k disjoint arborescences in D
′

such that F
′

i is rooted at ri and F
′

i is

spanning Si ∪ S
′

i (where S
′

i denotes the copy of Si), then these arborescences cover A. Hence

restricting them to the arcs of the original graph D we obtain k proper arborescences covering A.

In other case, by Theorem 1.1.4 there is a subset U of V ∪V
′
such that pD′ (U) > %D′ (U) where

pD′ (U) = |{i ∈ {1, ..., k} : (Si ∪ S
′

i) ∩ U 6= ∅, ri /∈ U}|. From now % and p denote the functions

defined in the original graph while %D′ and pD′ denote the new ones. We define the following

subsets of U :

X = {v ∈ V : v ∈ U},

Y = {v ∈ V : v
′

/∈ U} (⊆ X),

and

Z = {v
′
∈ U : v /∈ U} (⊆ U −X).

Using these definitions we get

pD′ (U) ≤ p(X) +
∑

[p(v) : v
′
∈ Z].

On the other hand

%D′ (U) ≥ %(X) +
∑

[p(v)− %(v) : v ∈ Y ] +
∑

[p(v) : v ∈ H(X)− Y ] +
∑

[p(v) : v
′
∈ Z].

The explanation of the second sum is that if v ∈ H(X) − Y then v
′ ∈ U also holds. Moreover,

there exists u /∈ U such that uv ∈ A -since v is in the door- and so there are p(v) arcs from u to v
′
.

From these inequalities we get

p(X) > %(X) +
∑

[p(v)− %(v) : v ∈ Y ] +
∑

[p(v) : v ∈ H(X)− Y ] ≥

≥ %(X) +
∑

[p(v)− %(v) : v ∈ H(X)],

which contradicts (ii).

In Chapter 2 we give another proof of this theorem using a more general result on covering

positively intersecting set functions.



Chapter 2

Covering set-functions

2.1 Intersecting families

In this section we describe the problem of covering intersecting families. In some ways this

problem can be considered as a generalization of coverings by arborescences. We call a family

F ⊆ 2V of sets intersecting if

X, Y ∈ F , X ∩ Y 6= ∅ ⇒ X ∩ Y, X ∪ Y ∈ F

holds. We say that D = (V, F ) covers F if %F (X) ≥ 1 holds for each X ∈ F where %F (X) denotes

the number of arcs in F entering X.

2.1.1 An extension of Szegő’s theorem

Frank observed in [6] that, by using Lovász’s proof technique, Edmonds’ weak theorem can be

extended as follows:

Theorem 2.1.1 (Frank, 1979). Let D = (V,A) be a digraph and F ⊆ 2V an intersecting family.

Then A can be partitioned into k coverings of F if and only if %(Z) ≥ k for each Z ∈ F .

By choosing F = 2V−r − {∅} one obtains Edmonds’ theorem. Also on the ground of Lovász’s

approach Szegő gave a common generalization of Edmonds’ strong theorem and Theorem 2.1.1 in

[23]:

Theorem 2.1.2 (Szegő, 2001). Let F1, ...,Fk be intersecting families with the following linking

property:

X ∈ Fi, Y ∈ Fj , X ∩ Y 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj .

Then A can be partitioned into A1, ..., Ak such that Ai covers Fi if and only if %(X) ≥ p(X) for

each X ⊆ V where p(X) denotes the number of Fi’s containing X.

16
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The proof is based on the observation that the mixed intersecting property implies that p is

positively intersecting supermodular and hence Lovász’s approach works again. It is easy to see

that with the choice F1 = ... = Fk = F we get Theorem 2.1.1, while choosing Fi = 2V−Ri − {∅}

gives Theorem 1.1.2.

Now we give a slight generalization of Szegő’s theorem using bi-sets. The idea of bi-sets

was firstly introduced by Frank and Jordán [8]. They successfully used this framework in node-

connectivity augmentation problems.

We call a pair X = (XO, XI) a bi-set if XI ⊆ XO ⊆ V . For X = (XO, XI), Y = (YO, YI) let:

X ∩ Y = (XO ∩ YO, XI ∩ YI),

X ∪ Y = (XO ∪ YO, XI ∪ YI),

X − Y = (XO − YO, XI − YI).

We say that X ⊆ Y if XI ⊆ YI and XO ⊆ YO. An arc e enters X if e enters both XO and XI .

Now we prove the following theorem that can be considered as the extension of Szegő’s theorem

to bi-set-systems:

Theorem 2.1.3 (Covering bi-set families). Let F1, ...,Fk be families of bi-sets on the ground set

V with the intersecting- and linking properties, i.e.,

X, Y ∈ Fi, XI ∩ YI 6= ∅ ⇒ X ∩ Y, X ∪ Y ∈ Fi

for each i ∈ {1, ..., k} and

X ∈ Fi, Y ∈ Fj , XI ∩ YI 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj .

The edge set of a digraph D = (V,A) can be partitioned into A1, ..., Ak such that Ai covers Fi if

and only if (∗) %(X) ≥ p(X) for each bi-set X where p(X) denotes the number of Fi’s containing

X.

The proof will use the following lemma which is an easy corollary of the linking property:

Lemma 2.1.1. If X ∈ Fi and Y ∈ Fj for some i and j and XI ∩ YI 6= ∅ then p(X) + p(Y ) ≤

p(X ∩Y )+p(X ∪Y ). Moreover, equality holds if and only if X ∩Y ∈ Fi implies that X or Y ∈ Fi.

Proof of the theorem. The necessity is clear. We prove sufficiency by induction on
∑

i |Fi|. If the

sum is 0 then there is nothing to prove. If the sum is greater than 0 then Fi is not empty for some

i. We can assume that i = 1.

Let F be a maximal member of F1. By (∗) there is an arc e ∈ A entering F . Let F ′

1 be the

collection of bi-sets Z ∈ F1 not covered by e. We claim that F ′

1 is intersecting and the linking

property holds for F ′

1,F2, ...,Fk.

The first statement is obvious. Suppose that the linking property does not hold. Then there

exist X ∈ Fi and Y ∈ Fj for some i and j that XI ∩ YI∩ 6= ∅ but X ∩ Y /∈ Fi ∩ Fj . Hence, by
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the linking property, X ∈ F ′

1, Y ∈ Fj for some (j 6= 1) and X ∩ Y ∈ F1 − F
′

1. But that implies

F ∪X ∈ F1 contradicting the maximality of F .

We call a bi-set X tight if %(X) = p(X) > 0 and X /∈ F1. If e does not enter any tight bi-set

then we are done by induction. Otherwise let M be a minimal tight bi-set. Then M − F can not

be empty otherwise M ⊆ F and so M ∈ F1 because of the linking property. But M is tight, thus

M /∈ F1, a contradiction. There exists an arc f from M − F to M ∩ F because of the linking

property and (∗). We claim that f does not enter any tight bi-set. Assume that f enters a tight

bi-set N . By (∗)

p(M) + p(N) = %(M) + %(N) ≥ %(M ∪N) + %(M ∩N) ≥

≥ p(M ∪N) + p(M ∩N).

By Lemma 2.1.1 equality holds everywhere so M ∩N is a tight bi-set contradicting the minimality

of M .

Theorem 2.1.3 actually can be reformulated in terms of T-intersecting families. Let F be a

family on the ground-set V and let T ⊆ V . We call F T-intersecting if X, Y ∈ F , X ∩ Y ∩ T 6=

∅ ⇒ X ∩ Y, X ∪ Y ∈ F holds. The inking property can be modified in a similar way.

The reformulated theorem is the following:

Theorem 2.1.4 (Covering T-intersecting families). Let D = (V,A) be a directed graph and T ⊆ V

be a specified subset of V such that each arc has its head in T . Let F1, ...,Fk be T-intersecting

families on the ground-set V with the linking property:

X ∈ Fi, Y ∈ Fj , X ∩ Y ∩ T 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj .

There exists a partition A1, ..., Ak of A such that Ai covers Fi if and only if %(U) ≥ p(U) for each

U ⊆ V , where p(U) denotes the number of Fi’s containing U .

Now we show the equivalence of Theorem 2.1.3 and Theorem 2.1.4:

Proposition 2.1.1. The (i) Theorem 2.1.3 and (ii) Theorem 2.1.4 are equivalent.

Proof. Among the proof we use the notation p
′
, %

′
when bi-sets and p, % when sets are studied.

(i) ⇒ (ii)

Let F1, ...,Fk be T-intersecting families. We define the bi-set families F ′

i = {(U,U ∩ T ) :

U ∈ Fi}. It is easy to see that the bi-set families F ′

1, ...,F
′

k are intersecting and satisfy the link-

ing property. Hence there exists A
′

1, ..., A
′

k partitioning A such that A
′

i covers F ′

i if and only if

p
′
(X) ≤ %

′
(X) for each bi-set X, where p

′
(X) denotes the number of F ′

i ’s containing X. If U ⊆ V

then p(U) = p
′
(Ũ) holds where ŨO = U and ŨI = U ∩ T . Moreover, %(U) = %

′
(Ũ) since each arc

has its head in T . If A
′

i covers F ′

i then Ai = A
′

i covers Fi, so we are done.
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(ii) ⇒ (i)

Let F ′

1, ...,F
′

k be bi-set families and define D
′
as follows. We take a copy v

′
for each v ∈ V . For

every e = uv ∈ A we give uv
′

to D
′
. Finally we get a bipartite directed graph D

′
= (V ∪ V

′
, A

′
)

with arcs directed from V to V
′
. Take Fi = {X ′

I ∪XO : X ∈ F ′

i} where X
′

I = {v′
: v ∈ XI}. Let

T = V
′
. Obviously, Fi is a T-intersecting family for each i ∈ {1, ..., k}. Moreover, each e ∈ A

′
has

its head in T . By (ii), A
′
can be partitioned into subsets A

′

1, ..., A
′

k so that A
′

i covers Fi if and only

if p(U) ≤ %D′ (U) holds for all U ⊆ (V ∪V
′
), where p(U) denotes the number of Fi’s containing U .

But p
′
(Ũ) = p(U) holds for each Ũ ∈ Fi

′ where U = (ŨO − ŨI) ∪ Ũ
′

I . Moreover, %
′
(Ũ) = %D′ (U)

by the construction of D
′
. If A

′

i covers Fi then Ai = {uv ∈ A : uv
′ ∈ A

′

i} covers F ′

i , so we are

done.

Notes 2.1.1. In Section 1.1.3 we proposed the following problem. Let D = (V,A) be a digraph

whose node set is partitioned into a root-set R = {r1, ..., rt} and a terminal set T . Suppose that

no edge of D enters any node of R. Let m : R → Z+ be a function and let k = m(R). When can

we find k disjoint arborescences in D so that m(r) of them are rooted at r and spanning T + r for

each r ∈ R?

Let p(X) =
∑

[mi : ri /∈ X] if X ∩ T 6= ∅, and p(X) = 0 in other cases. Let Fj
i = {Z : ZO ⊆

V − ri, ZO ∩ T 6= ∅, ZI = ZO ∩ V } be bi-set families for i ∈ {1, ..., t} and j ∈ {1, ...,mi}. One

can easily check that these families are intersecting and satisfy the linking property. It also easy to

see that there exist arborescences with the required properties if and only if A can be partitioned

into subsets Aj
i for i ∈ {1, ..., t}, j ∈ {1, ...,mi}) so that Aj

i covers Fj
i . By Theorem 2.1.3, this

can be done if and only if %(Z) ≥ p
′
(Z) for each bi-set Z where p

′
(Z) denotes the number of Fj

i ’s

containing Z. But the structure of D implies p
′
(Z) = p(ZO) and %(Z) = %(ZO). Hence

%(Z) ≥ p
′
(Z) for every bi-set Z ⇔ %(X) ≥ p(X) for every X ⊆ V ,

which is exactly the necessary and sufficient condition that Theorem 1.1.4 would give. So this

simple but interesting special case can be easily handled with Theorem 2.1.3 -without using atoms

or even the Japanese arborescences theorem.

2.1.2 Proof of Japanese arborescences theorem

In the previous section we presented an extension of Szegő’s theorem to bi-set families. A con-

spicuous parallelism between Theorem 2.1.3 and Theorem 1.1.4 is that both results are extensions

of Edmonds’ disjoint branchings theorem and also both proofs use Lovász’s technique [23],[18].

Hence the question naturally emerge: whether there is a common generalization or any connection

between them? In the followings we will show that the theorem of Kamiyama, Katoh and Takizawa

is actually a consequence of our theorem about bi-set families.
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Theorem 2.1.5 (Kamiyama-Katoh-Takizawa, 2008). Let D = (V,A) be a digraph and a R =

{r1, ..., rk} set of roots. Let Si denote the set of nodes reachable from ri. There exist disjoint

arborescences (S1, A1), ..., (Sk, Ak) rooted at r1, ..., rk, respectively, if and only if %(X) ≥ p(X) for

each X ⊆ V where p(X) denotes the number of ri’s for which ri /∈ X and Si ∩X 6= ∅.

Proof. Necessity being trivial, we prove sufficiency. It can be seen easily that ∪k
i=1Si = V can be

supposed. We will define proper F1, ...,Fk bi-set families on the ground-set V × V and show that

if a subset of arcs Ai ⊆ A covers Fi, then Ai includes an arborecence Fi rooted at ri such that Fi

spans Si.

The sets S1, ..., Sk define a partition of V into atoms in which two nodes u and v belong to the

same atom if there is no Si with |{u, v} ∩ Si| = 1. Since δ(Si) = 0 the atoms arising from Si can

be arranged in a topological order in which there is no edge from an atom to an earlier one. So we

can take for each i an order S1
i , ..., Ski

i of the atoms arising from Si for that there is no arc from

Sj1
i to Sj2

i if j1 > j2.

These atoms also could be defined as follows: we call a subset X ⊆ V separable if there exists

an i ∈ {1, ..., k} such that X ∩Si 6= ∅ and X−Si 6= ∅. If there is no such i we call X non-separable.

Then the maximal non-separable subsets are just the atoms.

Let F1, ...,Fk be defined as follows:

Fi = {(XO, XI) : ∅ 6= XI ⊆ Si − {ri}, XI is non-separable, XO −XI ⊆ V − Si}.

It is easy to see that the bi-set families defined above satisfy the conditions of Theorem 2.1.3,

namely:

Claim 2.1.1. The Fi’s are intersecting bi-set families, and also satisfy the linking property.

So we can apply Theorem 2.1.3 to the bi-set families F1, ...,Fk. Hence A can be partitioned

into subsets A1, ..., Ak such that Ai covers Fi if and only if p
′
(Z) ≤ %(Z) holds for each bi-sets Z

where p
′
(Z) denotes the number of Fi’s containing Z.

Our next observation is the following:

Claim 2.1.2. If %(X) ≥ p(X) for all X ⊆ V , then %(Z) ≥ p
′
(Z) also holds for each bi-set Z,

where p(X) is the same as in the theorem.

Proof. Let Z be a bi-set and {i1, ..., it} be the set of subscripts such that Z ∈ Fi. Then by Menger’s

theorem there is t edge-disjoint directed path from the set {ri1 , ..., rit
} to ZI . But these paths can

not leave the set Si1 ∪ ...∪Sit
because %(Si) = 0 for each i. Hence there are t arcs entering ZI such

that each of them also enters the bi-set Z.

Hence there exists a proper partition of A. So what remains is to prove that each Ai includes

an arborescence rooted at ri which spans Si. The next claim ensures this:

Claim 2.1.3. If Ai ⊆ A covers Fi then it includes an arborescence Fi rooted at ri that spans Si.
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Proof. Suppose to the contrary that there is an i ∈ {1, ..., k} violating the claim. Assume that

i = 1. Let T1 denote the set of nodes in S1 not reachable from r1 in A1. Then %A1(T1) = 0. Let t

be the smallest subscript for which T1 ∩ St
1 is not empty and ZI = T1 ∩ St

1, ZO = ZI ∪ (V − S1).

Then Z ∈ F1, but %A1(Z) = 0. Indeed, no arc can enter this bi-set neither from V − S1 since

(V − S1) ⊆ ZO, nor from T1 because of the topological order. That means that no arc covers Z in

A1, a contradiction.

Since Theorem 2.1.3 generalizes the theorem of Kamiyama, Katoh and Takizawa and it also

extends Szegő’s theorem, it can be considered as a generalization of all previous theorems about

packings. The atomic structure described above also proved to be useful in other applications.

With the help of this model we give a new proof of Theorem 1.3.2 and also extend the Japanese

arborescences theorem to hypergraphs.

2.2 Positively intersecting supermodular bi-set functions

So far, we dealt with problems concerning covering special families of sets. By way of digression

now we turn to the problem of coverings of bi-set functions. For a digraph D = (V,A) and a

bi-set Z we define the door of Z similarly to the case of traditional sets: H(Z) = {v ∈ ZI :

there is an arc uv ∈ A with u ∈ V − ZO}.

2.2.1 In-degree constraints

Let g : V → Z+ be a function on V . We use the notation βg(Z) =
∑

[g(v) : v ∈ H(Z)] for each

bi-set Z. Frank studied the problem of in-degree constrained coverings of positively intersecting

supermodular bi-set functions and proved the following theorem in [13]:

Theorem 2.2.1 (In-degree constraints). Let D = (V,A) be a digraph and g : V → Z+ a function

on its node set. Let p be a positively intersecting supermodular bi-set function. There exists an

integer-valued function x : A → Z+ covering p so that %x(v) ≤ g(v) for every node v ∈ V if and

only if

p(Z) ≤ βg(Z)

holds for every bi-set Z.

The proof of the theorem is based on the following lemma:

Lemma 2.2.1. βg is a fully submodular bi-set function, that is, βg(X) + βg(Y ) ≥ βg(X ∩ Y ) +

β(X ∪ Y ). If equality holds for bi-sets X and Y , then g(v) > 0 and v ∈ H(X) ∩ H(Y ) imply

v ∈ H(X ∪ Y ).
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Notes 2.2.1. A natural question is that what happens if in Theorem 2.2.1 we change the in-degree

to out-degree constraints. Surprisingly, we get NP-complete problems even in the special case of

sets [13]. Let D = (V,A) be a digraph and s ∈ V . Define p as follows: p(X) = 1 for ∅ 6= X ⊆ V − s

and p(X) = 0 in other case. Let g ≡ 1. If x is an integer vector so that δx(v) ≤ 1 for each v ∈ V

and %x(Z) ≥ 1 for each ∅ 6= Z ⊆ V , then x is the incidence vector of the arc set of a spanning

s-arborescence (V, F ) in which each node has out-degree at most 1. Hence F is a Hamilton path

starting at s. However, deciding the existence of a Hamilton path is NP-complete.

2.2.2 Vidyasankar’s theorem revisited

At first Frank formulated Theorem 2.2.1 to positively intersecting set functions and showed

that Vidyasankar’s theorem is a special case of this simpler variant [13]. As a common application

of Frank’s result and the atomic structure described in the proof of Theorem 2.1.5 we give a new

proof of Theorem 1.3.2:

Theorem 2.2.2. Let D = (V,A) be a digraph and {r1, ..., rk} = R ⊆ V a set of specified nodes. Let

Si denote the set of nodes reachable from ri. There exist arborescences F1, ..., Fk rooted at r1, ..., rk

respectively, and covering A if and only if

(i) %(v) ≤ p(v)

for each v ∈ V and

(ii) p(U)− %(U) ≤
∑

[p(v)− %(v) : v ∈ H(U)]

for each ∅ 6= U ⊆ V , where H(U) denotes the door of U and p(U) = |{i ∈ {1, ..., k} : Si ∩ U 6=

∅, ri /∈ U}.

Proof. Necessity as earlier, we prove sufficiency. Let F1, ...,Fk be defined as follows:

Fi = {(XO, XI) : ∅ 6= XI ⊆ Si − {ri}, XI is non-separable, XO −XI ⊆ V − Si}.

We already showed that these bi-set families are intersecting and satisfy the so called linking

property. Let p
′

2(Z) = |{i : Z ∈ Fi}| for each bi-set Z. Then Lemma 2.1.1 and the submodularity

of the in-degree function imply that p2(Z) = p
′

2(Z)−%(Z) is a positively intersecting supermodular

bi-set function. Let g(v) = p(v)− %(v) where p is the same as in the theorem.

At first we show that if (i) and (ii) holds then p2 and g satisfy the inequality in Theorem

2.2.1, and so there exists a proper integer vector x. Let Z be a bi-set. We call ZD = ZO − ZI

the difference-set of the bi-set. If Z /∈ Fi for each i then the inequality is clearly holds since the

left-hand side is 0, and the right-hand side is always non-negative by (i). So assume that Z ∈ Fi for

some i. The most significant point of the proof is the following observation: taking Z
′
= (Z

′

O, Z
′

I)

instead of Z, where Z
′

I = ZI and

Z
′

D =
⋃

(Si : ZI ⊆ Si, Si ∩ ZD 6= ∅)−
( ⋃

(Si : ZI 6⊆ Si) ∪
⋃

(Si : ZI ⊆ Si, ZD ∩ Si = ∅)
)
,
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would not decrease the left-hand side and would not increase the right-hand side of the inequality.

Hence if it holds for Z
′
then it also holds for Z.

So we can assume that Z has a structure described above. Let
−→
d (X, Y ) denote the number of

arcs going from X to Y . The special structure of Z implies the followings:

p
′

2(Z) = p(ZI)− p(ZD)− |{i : ri ∈ ZD}|,

p(ZI) = p(ZI ∪ ZD) + |{i : ri ∈ ZD}|,

%(Z) = %(ZI)−
−→
d (ZD, ZI).

Furthermore:

%(ZD) = 0,

from what

H(ZD) = ∅

clearly holds, so

H(ZI ∪ ZD) = H(Z),

and
−→
d (ZD, ZI) = %(ZI) + %(ZD)− %(ZI ∪ ZD).

By these observations and (ii):

p2(Z) = p
′

2(Z)− %(Z) = p(ZI)− p(ZD)− |{i : ri ∈ ZD}| − %(ZI) +
−→
d (ZD, ZI) =

= p(ZI ∪ ZD) + |{i : ri ∈ ZD}| − p(ZD)− |{i : ri ∈ ZD}|+ %(ZD)− %(ZI ∪ ZD) ≤

≤
∑

[p(v)− %(v) : v ∈ H(ZI ∪ ZD)]− p(ZD) ≤
∑

[p(v)− %(v) : v ∈ H(Z)],

the required inequality holds. Hence Theorem 2.2.1 implies that there exists an integer vector

so that %x(Z) ≥ p2(Z) for every bi-set Z and %x(v) = p(v) − %(v) for each v ∈ V . Extend D

with x(e) copies of each e ∈ A and let D+ denote the digraph arising. In D+ each node v has

in-degree exactly p(v) and every bi-set Z has in-degree at least p2(Z). Thus, by Theorem 1.1.4,

we can choose F1, ..., Fk arc-disjoint arborescences in D+ so that Fi is rooted at ri and spans Si.

Furthermore, these arborescences give a partition of the arc-set of D+ because of %D+(v) = p(v).

So the corresponding arborescences in D are suffice for the purpose.
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2.3 Hypergraphs

One way to extend the notion of graphs is the following. Let V be a set of nodes. The pair

H = (V, E) is called a hypergraph if E is a family of subsets of V . The members of E are called

hyperedges. Note that each hyperedge may occur in more than one copy. When each hyperedge

contains two nodes we are back at undirected graphs. The degree dH(X) of a bi-set X is the number

of hyperedges intersecting both XI and V −XO. One can easily check that dH is submodular on

bi-sets:

dH(X) + dH(Y ) ≥ dH(X ∩ Y ) + dH(X ∪ Y )

for each bi-sets X and Y .

Digraphs can also be extended to hypergraphs in various ways. We present one which allows us

to generalize the previous results to hypergraphs. Let V be the set of nodes again. By a dyperedge

we mean a pair (X, v) where X is a subset of V and v ∈ X. We call v the head of X. A dypergraph

is a pair D = (V,D) where D is a set of dyperedges. We say that a dyperedge (X, v) enters a bi-set

Z if v ∈ ZI and X − ZO 6= ∅; and leaves a bi-set Z if v ∈ V − ZO and X ∩ ZI 6= ∅. Hence the

in-degree and out-degree functions of a dypergraph can be defined easily. By easy case checking

we get that the in-degree function on bi-sets is submodular. Moreover:

Lemma 2.3.1.

%D(X) + %D(Y ) = %D(X ∩ Y ) + %D(X ∪ Y ) + dD(X, Y ),

where dD(X, Y ) denotes the number of dyperedges (Z, v) for which

v ∈ XI ∪ YI , Z ⊆ XO ∪ YO, (XO − YO) ∩ Z 6= ∅, (YO −XO) ∩ Z 6= ∅.

2.3.1 Trimming dyperedges

The following extension of Edmonds’ weak theorem was noticed in [9]:

Theorem 2.3.1. Suppose every dyperedge of the dypergraph D = (V,D) has at least two elements.

Let r be a given root node. Then D can be decomposed into k disjoint spanning rooted k-edge-

connected dypergraphs if and only if

(i) %D(X) ≥ k

for every non-empty X ⊆ V − r.

Proof. Necessity being trivial, we prove sufficiency by induction on
∑

[|Z|−2 : Z ∈ D]. If the sum

is zero, then the dypergraph is actually a digraph and by Theorem 1.1.1 we are done. Suppose that

there exists a dyperedge (Z, z) with |Z| ≥ 3. Let u and v be two elements of Z − z. We call a set

X ⊆ V − r tight if %D(X) = k. If after replacing Z by Z − u inequality (i) still holds then we are

done by induction. In other case there is a tight set X for which u /∈ X and Z − u ⊆ X. Similarly

for v, we may assume that there is a tight set Y for which v /∈ Y and Z − v ⊆ Y .
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But then the hyperedge Z shows that dD(X, Y ) ≥ 1, and hence by Lemma 2.3.1 and (i):

k + k = %D(X) + %D(Y ) = %D(X ∩ Y ) + %D(X ∪ Y ) + dD(X, Y ) ≥ k + k + 1, contradiction.

So the problem can be traced back to Edmonds’ theorem by trimming the hyperedges one by

one until we get a directed graph. It is remarkable that the same approach works in the case of

Edmonds’ strong theorem. We use this technique to extend Theorem 2.1.3 -and so Theorem 1.1.4-

to dypergraphs.

2.3.2 Covering bi-set families by dypergraphs

At first sight one could think that the Japanese arborescences theorem could be extended to

dypergraphs in the same way as in the previous section -without using bi-sets. That approach in

fact would not work because the function p appearing in Theorem 1.1.4 is not supermodular at all.

However, using bi-sets will solve this problem. Firstly we prove the extension of Szegő’s theorem

to dypergraphs:

Theorem 2.3.2 (Covering bi-set families by dypergraphs). Suppose every dyperedge of the dyper-

graph D = (V,D) has at least two elements. Let F1, ...,Fk be intersecting bi-set families with the

linking property. Then D can be partitioned into subsets D1, ...,Dk such that Di covers Fi if and

only if (i) %D(X) ≥ p(X) for each bi-set X where p(X) denotes the number of Fi’s containing X.

Proof. Necessity can be seen easily. We prove sufficiency by induction on
∑

[|Z|−2 : Z ∈ D]. If the

sum is zero, then the dypergraph is actually a digraph and by Theorem 2.1.2 we are done. Suppose

that there exists a dyperedge (Z, z) with |Z| ≥ 3. Let u and v be two elements of Z−z. We call a bi-

set X tight if %D(X) = p(X) > 0. If after replacing Z by Z−u inequality (i) still holds then we are

done by induction. In other case there is a tight bi-set X for which u /∈ XO, Z −u ⊆ XO, z ∈ XI .

Similarly for v, we may assume that there is a tight bi-set Y for which v /∈ YO, Z−v ⊆ YO, z ∈ YI .

But then the hyperedge Z shows that dD(X, Y ) ≥ 1. We already saw that p is a positively

intersecting supermodular bi-set function. By this, Lemma 2.3.1 and (i): p(X) + p(Y ) = %D(X) +

%D(Y ) = %D(X ∩ Y ) + %D(X ∪ Y ) + dD(X, Y ) ≥ p(X ∩ Y ) + p(X ∪ Y ) + 1, a contradiction.

We only mention here the corresponding version of Theorem [18]:

Theorem 2.3.3. Suppose every dyperedge of the dypergraph D = (V,D) has at least two elements.

Let R = {r1, ..., rk} be a set of roots and Si the set of nodes reachable from ri. Then the dypergraph

D includes disjoint dypergraphs D1 = (S1,D1), ..., Dk = (Sk,Dk) such that Di is rooted-connected

with root ri and spans Si if and only if %D(X) ≥ p(X) for each X ⊆ V where p(X) denotes the

number of ri’s for which ri /∈ X and Si ∩X 6= ∅.

The theorem can be proved easily by using the trimming method and the positively intersecting

supermodular function p defined by the bi-set families as seen in 2.1.5.
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Bibranchings

Let D = (V,A) be a directed graph and let V be partitioned into classes R and S. An R − S

bibranching is a set B of arcs such that in the graph (V,B), each node in S is reachable from R,

and each node in R reaches S. The concept of bibranching can be considered as a generalization

of branchings, and give rise to similar min-max relations and polyhedral characterizations.

3.1 Schrijvers’s disjoint bibranchings theorem

In [25] Schrijver gave a min-max characterization of the number of R − S bibranchings in a

directed graph D = (V,A), where {R,S} is a partition of V . We call a set of arcs C to be an R−S

bicut if C = ∆+(U) for some nonempty proper subset U of V satisfying U ⊆ S or S ⊆ U . Schrijver

showed the following:

Theorem 3.1.1 (Schrijver’s disjoint bibranchings theorem). Let D = (V,A) be a directed graph

and let V be partitioned into sets R and S. Then the maximum number of disjoint R−S bibranchings

is equal to the minimumsize of an R− S bicut.

Let D = (V + r, A) be a digraph and let R = r and S = V . Then Theorem 3.1.1 implies

Edmonds’ weak theorem. Schrijver gave two proof of his result: one of them is based on an exchange

property of branchings, the other uses Edmonds’ disjoint branchings theorem and a coloring-

type theorem of Schrijver [26] on supermodular functions. Our extension is based on the second

approach.

Schrijver proved the following theorem:

Theorem 3.1.2 (Supermodular colorings). Let C1 and C2 be intersecting families on the ground-

set S, let g1 : C1 → Z and g2 : C2 → Z be intersecting supermodular, and let k ∈ Z+ with k ≥ 1.

Then S can be partitioned into classes L1, ..., Lk such that

gi(U) ≤ |
{
j ∈ {1, ..., k} : Lj ∩ U 6= ∅

}
|

26
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for each i = 1, 2 and each U ∈ Ci if and only if

gi(U) ≤ min{k, |U |}

for each i = 1, 2 and each U ∈ Ci.

This theorem also implies edge-coloring theorems for bipartite graphs, such as Kőnig’s theorem.

Let G = (V1, V2;E) be a bipartite graph, and let Ci = {∆+(v) : v ∈ Vi} for i = 1, 2. By choosing

gi(∆+(v)) = |∆+(v)|, Theorem 3.1.2 reduces to Kőnig’s theorem.

3.2 Covering by bibranchings

First of all, we need a lemma which is an easy consequence of Theorem 2.1.2:

Lemma 3.2.1. Let D = (V +r, A) be a directed graph and F1, ...,Fk be intersecting families on the

ground-set V . Assume that A1, ..., Ak is a subpartition of ∆+(r). Then A1, ..., Ak can be extended

to a partition of A such that Ai covers Fi if and only if p
′
(U) ≤ %

′
(U), where

p
′
(U) = |{i ∈ {1, ..., k} : U ∈ Fi, Ai does not cover U}|,

and %
′
(U) denotes the in-degree of U in A− ∪iAi.

Proof. Let F ′

i = {U ∈ Fi : Ai does not cover U}. It is easy to see that F ′

1, ...,F
′

k are intersecting

families. The linking property also holds, since A1, ..., Ak only contain arcs from ∆+(r), and there

is no set F ∈ ∪iFi that contains r. So Szegő’s theorem, on the families F ′

1, ...,F
′

k, implies the

theorem.

Earlier we observed that Edmonds’ disjoint branchings theorem is based on the problem of

covering intersecting families. This observation suggests the followings. Let F be a family on the

ground-set S, and let F ′
be a family on the ground-set R. A subset B of arcs covers F ∪F ′

if for

each X ∈ F there is an arc e ∈ B entering X, and for each Y ∈ F ′
there is an arc e ∈ B leaving

Y . By mixing Szegő’s theorem and supermodular colorings we get:

Theorem 3.2.1. Let D = (V,A) be a digraph and let V be partitioned into sets R and S. Let

F and F ′
be intersecting set-systems on the ground-sets S and R, respectively. Then A can be

partitioned into sets A1, ..., Ak such that Ai covers F ∪ F ′
if and only if

%(X) ≥ k

for each X ∈ F and

δ(Y ) ≥ k

for each Y ∈ F ′
.
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Proof. Necessity being trivial, we prove sufficiency. Let H = ∆+(R), and define the following

collections of subsets of H:

C1 = {∆−
H(U) : U ∈ F}, C2 = {∆+

H(U) : U ∈ F
′
}.

From the intersecting property of F and F ′
follows that C1 and C2 are intersecting families on H.

Let gi : Ci → Z for i ∈ {1, 2} be defined as follows:

g1(B) = max{k − %A[S](U) : U ∈ F , B = ∆−
H(U)}

for B ∈ C1 and

g2(B) = max{k − δA[R](U) : U ∈ F
′
, B = ∆+

H(U)}

for B ∈ C2.

The submodularity of the in-degree and out-degree functions implies that g1 and g2 are inter-

secting supermodular functions. If g1(B) = k − %A[S](U) for some U ∈ F then

g1(B) = k − %A[S](U) ≤ %A(U)− %A[S](U) = %H(U) = |B|.

Similarly, if g2(B) = k − δA[R](U) for some U ∈ F ′
then

g2(B) = k − δA[R](U) ≤ δA(U)− δA[R](U) = δH(U) = |B|.

Moreover, gi(B) ≤ k for i = 1, 2 and B ∈ Ci, so we can use Schrijver’s supermodular colorings

theorem. Then, by Theorem 3.1.2, H can be partitioned into subsets H1, ...,Hk such that

U ∈ F ⇒ U is entered by at least k − %A[S](U) of the classes Hi,

and if

U ∈ F ′ ⇒ U is left by at least k − δA[R](U) of the classes Hi.

Lemma 3.2.1 implies that A[S] can be partitioned into subsets B1, ..., Bk such that Bi covers

all F ∈ F not covered by Hi. Similarly, A[R] can be partitioned into subsets B
′

1, ..., B
′

k such that

B
′

i covers all F ∈ F ′
not covered by Hi. Hence each F ∈ F is entered by at least one arc in Bi∪Hi

and each F ∈ F ′
is left by at least one arc in B

′

i ∪Hi. Then Ai = Bi ∪Hi ∪B
′

i for i ∈ {1, ..., k} is

a partition of A into subsets such that Ai covers F ∪ F ′
, and we are done.

3.3 Latin squares

In some ways Schrijver’s disjoint bibranchings theorem can be considered as the extension

of Edmonds’ weak theorem to bibranchings. Hence it is a natural idea to study Edmonds’ strong

theorem, whether it can be extended in a similar way. Such an extension should answer the question,



3.3. Latin squares 29

that given a digraph D = (V,A), a partition {R,S} of V , and subsets A1, ..., Ak of A then when

can we extend these arc-sets to disjoint R− S bibranchings in D. We will show that this problem

is NP-hard, even in the special case of bipartite graphs.

3.3.1 Edge-colorings

Let D = (V1, V2;A) be a complete bipartite graph with edges directed from V1 to V2 and

|V1| = |V2| = n. Hence a V1 − V2 bibranching is a set B of arcs such that max{%B(v), δB(v)} > 0

for each v ∈ V1 ∪ V2, which is equivalent with dB(v) > 0 for each v in the underlying graph.

Hence we can work with a bipartite graph G = (V1, V2;E) and call a subset B of edges a V1 − V2

bibranching if dB(v) > 0 holds for each node.

Assume now that for each i a subset Ai ⊆ E is already given (where Ai = ∅ is also allowed),

and we would like to extend these edge-sets to disjoint V1−V2 bibranchings. Obviously, a sufficient

condition is that each Ai must be a matching. So the problem can be reduced to the following:

given a complete bipartite graph Kn,n with a partial edge coloring with n colors, and we have

to color the remaining edges as to get an n-edge coloring of Kn,n. In this form the problem is

NP-hard. However, there are some special cases when we can still answer the question.

3.3.2 Evans’ conjecture

The example above showes that extending Edmonds’ strong theorem to bibranchings is hopeless.

The previous problem can be reformulated in terms of latin squares. A partial latin square of side

n is an n × n matrix in which each cell is empty or filled with one of {1, ..., n}, and no number

occurs twice in any row or column. It is a (complete) latin square if all cells are filled. In 1960

Evans conjectured that a partial latin square of order n with at most n− 1 cells occupied can be

completed [4]. The conjecture was independently confirmed by Häggkvist [15] for n ≥ 1111, by

Smetaniuk [27] for all n, and by Andersen and Hilton [1] for all n. In fact Andersen and Hilton

proved the stronger statement that n cells can be preassigned except in certain cases which can be

specified:

Theorem 3.3.1 (Andersen and Hilton, 1983). A partial edge coloring ϕ of at most n edges of

Kn,n can be extended to an n-edge coloring of Kn,n except the following two cases:

(a) For some uncolored edge xy there are n colored edges of different coors, each one incident with

x or y.

(b) For some node x and some color i, the color i is not incident to x, but it is incident to all

vertices y for which xy is uncolored.

It follows from the foregoing that we can answer the proposed question about bipartite graphs

when
n∑

i=1

|Ai| ≤ n.



Chapter 4

Directed cuts and matroid

intersection

Let D = (V,A) be a directed graph. We call a subset C of arcs a directed cut if C = ∆−(U) for

some nonempty proper subset U of V such that ∆+(U) = ∅. A dijoin is a set of arcs intersecting

each directed cut. It is easy to see that contracting the arcs of a dijoin makes the graph strongly

connected.

Lucchesi and Younger showed [21] that the minimum size of a dijoin is equal to the maximum

number of disjoint directed cuts. This theorem is a central result of the theory of dijoins and has

been originally conjectured by Robertson and by Younger. Lucchesi, Karzanov, and Frank showed

that a minimum-sized dijoin and a maximum packing of directed cuts can be found in polynomial

time. Later Frank gave a strongly polynomial-time algorithm for finding a minimum-size dijoin [7].

In [10] Frank and Tardos reduced the problem of finding a minimum-length directed cut k-cover

to weighted matroid intersection and so a strongly polynomial-time algorithm were at hand. But

the reduction of the problem to matroid intersection did not give back the theorem itself, because

the meaning of the dual solution was not read out.

In the followings we show how the meaning of the dual solution can be read out and so give a

new proof for the theorem using matroid intersection.

4.1 Finding dijoin algorithmically

Let D = (V,A) be a directed graph. The problem of finding a dijoin can be solved with the

matroid intersection algorithm as follows [11]. We put two new nodes on each arc e = uv ∈ A: let

ev be the head-node and eu be the tail-node of the arc. The set of new nodes will be denoted by

S. Let P = {Z ⊆ V : ∆+(Z) = ∅} and for all Z ∈ P let

F (Z) = {ev : e = uv ∈ A, v ∈ Z} ∪ {eu : e = uv ∈ A, u ∈ Z}.

30
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Then the family F = {F (Z) : Z ∈ P} is crossing. We define the function p : F → Z as follows:

p(∅) = 0, p(S) = |A|

and

p(X) = i(Z) + 1

if X = F (Z) for some Z ∈ P such that Z 6= ∅, S. The p we get is a crossing-supermodular function

on a crossing family. Hence the family

B = {B ⊆ S : |B| = p(S), |B ∩X| ≥ p(X) ∀X ∈ F}

is the collection of the bases of a matroid M1. We also know that B 6= ∅ since it contains the

set of the head-nodes. Let M2 be the partition-matroid on the ground-set S in which F ∈ M2 is

independent if and only if F ∩ {ev, eu} ≤ 1 for each e = uv ∈ A.

Clearly, if C ⊆ A is a cut cover then the head-nodes of C and the tail-nodes of A − C form a

common base of the two matroids, and conversely, if B is a common base of M1 and M2 then the

arcs with head-nodes in B form a cut cover. If we put weights 1 on the head-nodes and weights

0 on the tail-nodes, then the weighted matroid intersection algorithm finds a dijoin with minimal

weight.

4.2 Gröflin-Hoffman theorem

The bases of a matroid can be defined by intersecting submodular functions, but in applications

we often meet supermodular functions. However, a proper intersecting supermodular function

defines the generators of a matroid as follows (see in [11]).

Let p : 2S → Z ∪ {−∞} be an intersecting supermodular function such that p(∅) = 0 and

p(X) ≤ |X| for each X ⊆ S. Let

Gp = {Z ⊆ S : |Z ∩X| ≥ p(X) ∀X ⊆ S}.

By p(S) ≤ |S| we get Gp 6= ∅ as S ∈ Gp. The following theorem holds:

Theorem 4.2.1. Gp forms the generator-system of a matroid Mp. The co-rank of the matroid is

max
{ ∑

i

p(Xi) : {X1, ..., Xk} is a subpartition of S
}
.

The co-rank function of the matroid is also determined by p:

Theorem 4.2.2. The co-rank function of the matroid Mp is

tp(Z) = max
{ ∑

i

p(Xi)− | ∪i Xi − Z| : {X1, ..., Xk} is a subpartition of S
}
.
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Gröflin and Hoffman gave the following interesting application of the weighted matroid inter-

section theorem in [16]. This theorem will be the base of our proof:

Theorem 4.2.3 (Gröflin and Hoffman, 1981). Let M1 and M2 be matroids on the ground-set S

having a common base. Then for each R ⊆ S:

min
{
|R ∩B| : B is a common base

}
= max

{ t∑
i=1

[k − r12(S −Ri)]
}
,

where the maximum is taken over all partitions {R1, ..., Rt} of R, r12(T ) denotes the cardinality of

the maximal common independent set lying in T , and k is the rank of the matroids.

By Edmonds’ matroid intersection theorem

r12(T ) = min
X⊆T

{r1(X) + r2(T −X)}.

So the previous equality can be reformulated as follows:

min
{
|R ∩B| : B is a common base

}
= max

{ t∑
i=1

[k − (r1(Xi) + r2(Yi))]
}
,

where {R1, ..., Rt} is a partition of R, and {Ri, Xi, Yi} is a partition of S for each i ∈ {1, ..., t}.

4.3 Lucchesi-Younger theorem

Now we turn to the proof of the Lucchesi-Younger theorem:

Theorem 4.3.1 (Lucchesi-Younger, 1978). Let D = (V,A) be a digraph. The minimum size of a

dijoin is equal to the maximum number of disjoint directed cuts.

Proof. We use the matroids described in Section 4.1, so we put two new nodes eu and ev on each

e = uv ∈ A and denote the set of new nodes by S. Let P = {Z ⊆ V : ∆+(Z) = ∅} and for all

Z ∈ P let

F (Z) = {ev : e = uv ∈ A, v ∈ Z} ∪ {eu : e = uv ∈ A, u ∈ Z}.

We define M1 as a partition-matroid on S in which F ⊆ S is independent if and only if F ∩

{ev, eu} ≤ 1 for each e = uv ∈ A. The function p will be defined in a slightly different way than

previously. Let p(∅) = 0 and p(X) = i(Z) + σ(Z) if X = F (Z) for some ∅ 6= Z ∈ P, where σ(Z)

denotes the number of components in D − Z. Hence p(S) = |A|. Furthermore, p is an intersecting

supermodular function on an intersecting set-system. We extend p to 2S as follows: if p(X) is not

yet defined for some X ⊆ S, let p(X) = −∞. Then p is intersecting supermodular on 2S . By

Theorem 4.2.1, p determines the generator-set of a matroid M2.

From now R denotes the set of the head-nodes in S. It is easy to see that applying the Gröflin-

Hoffman theorem to M1 and M2 the minimum on the left-hand side is exactly the minimum size
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of a dijoin. Our aim is to show that the maximum on the right-hand side is at most the maximum

number of disjoint directed cuts which would prove the Theorem since the direction min ≥ max is

clear.

Our first observation is the following:

Claim 4.3.1. For each e = uv ∈ A such that ev /∈ Ri we can assume that both eu, ev ∈ Xi or both

eu, ev /∈ Xi.

Proof. Suppose that

t∑
i=1

[k − (r1(Xi) + r2(Yi))] =
t∑

i=1

[|A| − r1(Xi)− r2(Yi)]

attains the maximum on the sets R1, ..., Rt; X1, ..., Xt; Y1, ..., Yt, where {R1, ..., Rt} is a partition

of R and {Ri, Xi, Yi} is a partition of S for each i.

Assume that ev ∈ Xi but eu /∈ Xi for some e = uv ∈ A. Giving eu to Xi would not increase

r1(Xi) while r2(Yi) could only decrease. Hence the sum would surely not decrease. The other case

when eu ∈ Xi but ev /∈ Xi can be handled similarly.

By Claim 4.3.1, we only have to study the cases when the Xi’s have this important property.

With the help of this observation the maximum on the right hand side can be expressed as follows:

max
{ t∑

i=1

[|A| − r1(Xi)− r2(Yi)]
}

=

= max
{ t∑

i=1

[|A| − |Xi|
2

− (|A| − t2(S − Yi)]
}

=

= max
{ t∑

i=1

t2(Ri ∪Xi)−
|Xi|
2

}
.

We exchange the co-rank function to the formula given by Theorem 4.2.2 and we get:

max
{ t∑

i=1

[
[

ki∑
j=1

p(Zi
j)− |(∪jZ

i
j)− (Ri ∪Xi)| ]− |Xi|

2
]}

,

where the maximum is taken over all partitions {R1, ..., Rt} of R, Xi ⊆ S −Ri with the structure

described in Claim 4.3.1 and all subpartitions {Zi
1, ..., Z

i
ki
} of S.

From now we scrutinize this expression. We say that a directed cut C ⊆ A enters a set X ⊆ S

if ev ∈ X for each e ∈ C.

Claim 4.3.2. If Ri is fixed then the maximum of the sum

[
[

ki∑
j=1

p(Zi
j)− |(∪jZ

i
j)− (Ri ∪Xi)| ]− |Xi|

2
]

is at most the maximum number of disjoint directed cuts entering Ri.
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Proof. Assume that Xi and {Zi
j}

ki
j=1 attains the maximum. Obviously, p(Zi

j) 6= −∞ since in other

case the sum is −∞. Hence, by the definition of p, Zi
j = F (HZi

j
) for some HZi

j
⊆ V such that

δ(HZi
j
) = 0, which also means that p(Zi

j) = i(HZi
j
) + σ(HZi

j
).

Now we show that there is no edge e = uv ∈ I(HZi
j
) such that eu, ev /∈ Ri ∪Xi. In other case

we could strictly increase the sum by giving eu and ev to Xi , a contradiction. The directed cut

∆−(HZi
j
) can be partitioned into σ(HZi

j
) disjoint directed cuts. Let Ci

j denote the set of cuts from

these not entering Ri.

Let e1, ..., em be an order of the arcs such that {e = uv ∈ A : eu, ev ∈ Xi} = {e1, ..., e |Xi|
2
} and

{e = uv ∈ A : ev ∈ Ri} = {em−|Ri|+1, ..., em}. We assign the node eu ∈ ∪j(Zi
j)−Ri to each edge

uv = e ∈ I(Zi
j). Moreover, we assign the node ev ∈ ∪j(Zi

j)−Ri to each C ∈ Ci
j where e is the first

arc in the order for which e ∈ C (we do these for all j). The main observation of the proof is the

following: as {Zi
j}

ki
j=1 is a subpartition, this assignment is an injection which means that we use

each node from S at most once. Moreover, for each e = uv with eu, ev ∈ Xi at most one of eu and

ev is used. But the existence of this injection means that

[
[

ki∑
j=1

p(Zi
j)− |(∪jZ

i
j)− (Ri ∪Xi)| ]− |Xi|

2
]

=

=
[
[

ki∑
j=1

[i(HZi
j
) + σ(HZi

j
)]− |(∪jZ

i
j)− (Ri ∪Xi)| ]− |Xi|

2
]
≤

≤
ki∑

j=1

[σ(HZi
j
)− |Ci

j |].

The right-hand side of this inequality is clearly lower or equal to the maximum number of disjoint

directed cuts entering Ri, which proves the Claim.

Claim 4.3.2 means that we can take the partition R1, ..., Rk of R anyhow, the maximum on the

right-hand side of the Gröflin-Hoffman theorem will be never larger than the maximum number of

disjoint directed cuts such that each of them enters an Ri. Hence the maximum is clearly at most

the maximum number of disjoint directed cuts, and we are done.



Conclusions

We close this work with some questions more or less related to this area. Some of them are well

known open problems, others came up in connection with this work and just show new horizons

that maybe could be interesting. We would like to examine these questions in the near future.

The theory of packing and covering seemed to be closed for a long time. The Japanese arbores-

cences theorem infused life into this area and raised several questions. The extension of Szegő’s

theorem is a beautiful application of bi-sets and also proves that this structure hides great po-

tentialities. As it plays an important role in node-connectivity augmentations, an aim is to find

other problems where this technique can be used successfully. Such a question offers itself from

the generalization of Szegő’s theorem. This extension shows that covering bi-set families satisfying

the intersecting- and linking properties is equal to covering a special positively intersecting super-

modular bi-set function. What is the necessary and sufficient condition of covering an arbitrary

supermodular bi-set function? If the graph is undirected, when can it be oriented as to cover a

fixed supermodular bi-set function?

Another question arises when we would like to reformulate the Japanese theorem to undirected

graphs. Let G = (V,E) be an undirected graph and let R1, ..., Rk be subsets of V . When can we

find disjoint trees F1, ..., Fk such that Fi spans Ri? However, this question can be answered using

matroids: let Mi be the matroid on the ground set E within a set E
′

of edges is independent if

and only if E
′
is a forest and E

′ ⊆ I(Ri). Then the requested arborescences exist if and only if the

sum of these matroids has rank
k∑

i=1

[|Ri| − 1]. Hence we can answer the question but the solution

is really complicated. It would be interesting to find a simpler characterization.

Kriesell proposed the following conjecture in [9]. Let G = (V,E) be a graph and T ⊆ V . Is it

true that if G is 2k-edge-connected in T , then G contains k edge-disjoint Steiner trees for T? If

G is 3k-edge-connected and V − T is stable then the conjecture holds. What can we say in other

cases?

Chapter 4 deals with dijoins. The Lucchesi-Younger theorem also has an algorithmic proof from

which the structure of disjoint directed cuts can be read out. It seems to us that this can also be

done from our approach, since the sum we get by combining the Gröflin-Hoffman theorem with

Edmonds’ matroid intersection tells a lot about this structure.
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