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1 Introduction

One of the most recent and most serious problems in the modern world is the aging

of its population. Given that unpredictable longevity risk is present as the medical

treatments are improving, governments and �nancial sectors like insurance companies,

investment banks and pension providers, are put under pressure. As people get more

and more conscious, they intend to buy annuities to �nance their retirement. However

pricing these, not enough attention was paid on the evaluation of future mortality

impacts. Nevertheless the majority of these products o�er long-term guarantees which

lock-in future mortality and therefore behave like an option on mortality.

Motivation of this diploma thesis was to develop a strategy applied to the Hungarian

mortality table − that allows us to price mortality-contingent claims. We treat the

underlying life annuity as a defaultable coupon-bearing bond, where the default occurs

at the exogenous time of death. Article [6] introduces a method to price options based

on two underlying stochastic variables, future interest rates and future mortality rates.

It was highly important to us to create a simple, consistent model, which can be

used in real life. Usability is de�ned as to be deployable in an existing company and to

be presentable to the management of this company.

Our data was a series of Hungarian mortality tables and the actual yearly discount

rates. As we want to hedge mortality improvement risk it is crucial to examine the

development, not only for the past, but to give a forecast for the future. It is compre-

hensible that the calculation of precise future mortality rates is not possible, forasmuch

as the amount of data is too small − it contains only 60 some years − to be e�ectively

used in a practical model. In our case, this does not appear to be a problem, due to our

aim to present a way of option pricing and not to provide precise future mortality esti-

mates. Interested readers can �nd more information on Hungarian mortality projection

in [1]. We propose to handle this challenge by presenting the Azbel-model, which gives

a satisfactory solution for this issue. This assumption is based on [5].

As it has been mentioned, we attempt to focus on the option price calculation.

Therefore we have to face the problem, that the distribution of the contingent claim

is unknown to us. Accordingly no explicit formula exist. In order to provide the

consistency of this calculation, we revert to Monte Carlo simulation. Mathematically

this involves the simulation of future mortality rates, which are applied to make further

calculation.

To calculate our option price using these data we can take the general formula

presented in [6]. This is based on the thesis, that an option on an annuity can be
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considered as equivalent to a basket of options on pure endowments if given conditions

are satis�ed. Obviously these conditions have to be veri�ed to our data �rst.

Now, after having calculated the option price, and before drawing premature con-

clusions it is reasonable to make a sensitivity analysis, to determine how �sensitive� our

model is to changes in the underlying parameters. If the model behaves as expected

from real world observations, it gives some indication that the parameter values re�ect,

at least partially the �real world�.

To achieve this goal we are �rst going to discuss the basics of classical option pricing

framework in section 2. The third section links the classical �nancial options to the

mortality based contingent claims. Application to the Hungarian mortality data and

the sensitivity analysis can be found in section 4 as well as the conclusion of this thesis.
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2 Option pricing theory

2.1 The option:

An option contract gives the buyer the right to purchase/sell an underlying asset for

a strike price. The price of an option corresponds to the di�erence between the strike

price and the value of the underlying asset (commonly a stock, a bond, a currency,

etc.), or zero.

Option types:

� call option (right to purchase): gives the holder the right to purchase the under-

lying asset, while the option writer commits to sale.

� put option (right to sell): gives the holder the right sale the underlying asset,

while the option writer commits to buy.

Main option styles:

� European-option: In case of an European-option the right may only be exercised

at the maturity date.

� American-option: In case of an American-option the right may be exercised at any

time up until the maturity date. The value of this option, due to the possibility of

early exercise, is greater than or equal to the value of the European-type option.

2.2 Option pricing

Arbitrage:

Arbitrage means taking advantage of price di�erences between various markets with-

out taking any risk (�free lunch�). For example the immediate sale of a security or a

foreign currency on another market, than having bought on, using the exchange rate

di�erences. The existence of �arbitrage guards� ensures, that the price of an asset will

not deviate signi�cantly from the reasonable over a long period. The price modelling

of derivatives should therefore assume arbitrage free market conditions.

Option pricing:

The challenge in option pricing is to determine the value of the option in a given

instant (for example T=0). It is obvious, that the purchaser can make riskfree pro�t,
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if they down have to pay an �entrance fee� for the opportunity to exercise the option at

maturity. On the other hand, if this price is too high, and the value of the underlying

asset is likely to stay close to the strike price, no rational market participant would

buy the option for this price. The option price is the amount of money which would be

accepted of both sides.

The option price shall be determined in an objective manner, without dependence

on the risk bearing propensity of market participants. In our case, risk means mortality,

which is clearly independent from an individuals attitude of bearing risk.

Our aim is to price an option, which gives a now x year old individual the right to

purchase an annuity option in k years from now, based on current mortality knowledge,

paying 1 unit a year, assuming the individual is alive then.

Replicating portfolio:

One of the possible techniques of pricing an option, is to price a replicating portfolio.

This is a portfolio of assets whose value is equal to the value of a liability portfolio under

today's market conditions.

price of the option = price of a basket of risky and risk-free assets, which has the

same pay-o� at maturity as the option

For an extended discussion about options and option pricing , we refer to [7] and [8].
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3 Pricing of mortality based contingent claims

3.1 Replicating with deterministic interest in discrete time

For an introduction of a method pricing options based on two underlying stochastic

variables, future interest rates and future mortality rates we refer to article [6]. For

the interpretation of parameters and basic assumptions please see [6]. We presuppose

deterministic interest rates.

The main objective of this section is to link the classical �nancial options to the

mortality based contingent claims. Therefore a simple example is shown containing two

di�erent approaches showing how a purchaser can replicate such an option, or on the

other side how the insurer can hedge it.

In this instance we consider underlying n year pure endowment contracts as funda-

mental assets. These pure endowment contracts, denoted by En, pay 1 unit at time n

if the purchaser is then alive, and pay zero if this is not the case.

Our ultimate objective is to price an option on an annuity based on current mortality

knowledge, paying 1 unit a year, assuming the individual is alive then. Such an option

can be considered as a basket of options on pure endowments. Naturally under some

circumstances − like opposite movements in interest and mortality − it could happen,

that some pure endowment options would be in the money at expiry, and some would

not. Therefore the annuity option price could be overvalued by the sum of option

prices for all these pure endowments. Nevertheless, the assumption that the option

holder exercises either all or none of the pure endowment options allows us to consider

annuity options to have the same price as the sum of option prices of a basket of pure

endowments.

3.1.1 General notation

Before getting to the example, it is necessary to make some basic indications.

First we introduce the variable px(k, n) (k ≤ n), which denotes the probability that

an currently x year old individual will survive to time n conditional upon surviving to

time k. This Fk measurable random variable is, for the riskfree probability measure Q,

given by the following formula:

px(k, n) = px(k, k + 1)EQ [px(k + 1, n) | Fk] ∀k < n (1)

where Fk is a �ltration on a set Ω denoting the information �ow. This in our case,

where probabilities are constants, and expectation signs can be removed, reduces to a
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standard identity shown in section 4.

We presuppose the independence of interest rates − D(k, n), and survival rates −
px(r, s), for all k ≤ n, r ≤ s. We thus obtain the formula for the price of our pure

endowment contract purchased by an individual currently aged x, paying 1 unit at time

n being alive then, conditional upon surviving to time k:

Λx(k, n) = D(k, n) px(k, n) ∀k ≤ n, (2)

which is also an Fk measurable random variable. The outcome formula (1) and (2) and

the independence is,

Λx(k, n) = Λx(k, k + 1)EQ[Λx(k + 1, n) | Fk] ∀k < n. (3)

The call option on a pure endowment which may be exercised at time k, and pays 1 unit

at time n, if the now x year old holder is then alive, is denoted by Cx(k, n | Λ), where

Λ is the strike price. To gain further insight into pricing this, consider the following

example.

3.1.2 Example

At time 0 an individual, now age 32, would like to receive a single payment of 1 unit

at age 75 being alive then. This is a two period pure endowment, with a �rst interval of

30 years, form the age of 32-62, and a second one of 13 years, from the age of 62− 75.

Suppose this person purchases this endowment contract from an insurance company,

which is assuming mortality as follows.

The probability that this person will live to the age of 62 is known, and given

by: p32(0, 30) = 0.7. However the probability that this person will live to age 75,

conditional upon reaching age 62, could depend on random events. Suppose that there

are two states of nature that could materialize. In case of a medical breakthrough the

survival probability will increase to the value of p
(1)
32 (30, 43) = 0.7, otherwise it will have

a lower value of p
(2)
32 (30, 43) = 0.5. We suppose, that the insurer is e�ectively assigning

equal chance to each possibility, which leads to:EQ [p32(30, 43)] = 0.6.

From now on we assume zero interest rate for simplicity. Hence the purchase price

using Eq. (2), can be calculated:

Λ32(0, 30) = (0.7)(0.6) = 0.42
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Option replication by the purchaser

For instance the now 32-year-old individual could consider to wait, and purchase the

pure endowment contract at the age of 62, if they are then alive. This makes sense,

because so they can avoid to waste the contract price in case of an premature death. The

cost of the contract will be therefore higher, depending on which state of nature = we

mentioned above = occurs. The new price is either Λ
(1)
32 (30, 43) = 0.7 or Λ

(2)
32 (30, 43) =

0.5, instead of 0.42.

Now suppose that the insurer o�ers them the option, which ensures that the pur-

chaser can acquire the desired pure endowment contract for a �xed price, based on

current mortality knowledge. The strike price of this option is in our case 0.6.

This means, that if the mortality improvement occurs, they will exercise the option

and purchase the contract for 0.6 instead of 0.7. If this is not the case they will not

exercise the option and pay the prevailing price of 0.5. So the intrinsic value of the

option is either 0.1, or 0.

Our main objective is to calculate the price of this option, denoted by C60(1, 2 | 0.6).

As it has been mentioned in section 2., one of the possible techniques, is to price a

replicating portfolio.

In sake of clarity let our option, described above, be denoted by P .

We will show that the value of this option will be the time zero cost of a portfolio

which consists of 0.5 units of a 43 year pure endowment connected with a short-sale of

0.25 units of a 30 year pure endowment, as they are equivalent. Expressed as a formula

this looks as follows:

P = 0.5E43 − 0.25E30 (4)

To prove this, suppose an individual holds the portfolio and is alive at time 1.

As they have sold short a 1 year pure endowment on their own life, and are alive at

time 1, they must pay 0.25 to discharge the liability.

As we have seen above, reaching the age 62, two possible scenarios exist, either an

expected medical breakthrough materializes, or not. In the �rst case they can purchase

the remaining 0.5 units of income for 1
2
· Λ(1)

32 (30, 43) = 1
2
· 0.7 = 0.35, making a total

outlay of 0.6. In the latter case this cost is lower, 1
2
·Λ(2)

32 (30, 43) = 1
2
·0.5 = 0.25, making

a total outlay of 0.5. As it can be seen, this replicates the option.

The time zero cost of this portfolio, and therefore the price of the option is

0.5 · Λ32(0, 43)− 0.25 · Λ32(0, 30) = (0.5)(0.42)− 0.25(0.7) = 0.4.

In practice, this is not yet operational, for as much it is not possible to sell short an
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pure endowment on ones life. This problem can be solved in the following manner.

Let us consider a 1 year, 1 unit zero-coupon bond, denoted by Bn. This is a bond

without periodic interest payments. It can be purchased for a price lower than its face

value, with the face value repaid at maturity.

Moreover we need a life insurance contract, denoted by In, paying 1 unit at time n

if the individual dies prior to time n. This is at deterministic interest equivalent to a

n year term insurance policy paying the price of a zero-coupon bond maturing at time

n, provided that the individual dies within n years. Now, as the di�erence of a 1 unit

zero-coupon bond and a life insurance contract is a contingent asset which pays 1 unit

if and only if the individual is alive at the end of n years, the following equation holds:

En = Bn − In (5)

Observe, that a short position of E30 is equivalent with a long position in I30 −B30,

which is simply an insured loan.

P = 0.5E43 + 0.25(B30 − I30) (6)

The basic strategy in this case is therefore to borrow money at the age of 32 and

additionally buy an insurance policy, which pays o� the loan, if they die prior 62.

Suppose the individual borrows 0.25 on a 30 year loan, this makes with the option price

a total cash-�ow of 0.29. Thus the price of this policy is:

0.25 · q32(0, 30) = 0.25 · (1− p32(0, 30)) = 0.25 · (1− 0.7) = 0.8

This leaves a proceeds of 0.21, enough to purchase a 0.5 unit pure endowment contract

paying 0.5 at age 75. If the individual is alive at age 62, they can pay o� the loan, and

depending on which state of nature occurs buy the remaining 0.5 units of income for

{0.35 or 0.25}, spending a total of {0.6 or 0.5}

Option hedging by the issuer

In the second part of the example, to gain insight in every aspect of the problem,

we look at matters from the point of view of the insurer. It is obvious, that the risk for

the insurer is represented by possible mortality improvements in the pure endowments

they have sold. It follows from Eq. (5), that insurers can hedge against these option,

9



by selling a ratio of H units of insurance for each 1 unit of option described in the �rst

part of the example.

It is intuitively obvious that in our example the hedge parameter isH = 1
2
. Therefore

0.5 units of a 43 year life insurance hedge the risks of selling P . This results in a portfolio

−P − 0.5I2 (assuming zero interest rates) and by substituting this and (5) in formula

(4), this equals:

-P − 0.5I2 = −0.5E2 − 0.25(B1 − I1)-0.5I2 = -0.5B2 − 0.25E1

By eliminating the term E2 we have hedged the risk arising from the unpredictable

mortality in the second interval.

Note that these contracts are not on the same lives. Nevertheless, the small sample

risk is hedged in the usual way, by selling a su�ciently large number of contracts.

General formulas Assuming zero interest rate, a general formula can be given for

the hedge parameter:

H =


Λ
(1)
32 (30,43)-Λ

Λ
(1)
32 (30,43)−Λ

(2)
32 (30,43)

if Λ
(2)
32 (30, 43) ≤ L ≤ Λ

(1)
32 (30, 43)

1 if Λ < Λ
(2)
32 (30, 43)

0 if Λ > Λ
(1)
32 (30, 43)

(7)

(H = 0 if Λ > Λ
(1)
32 (30, 43) − This condition is not possible in our present example)

and the option portfolio:

P = H [E43 − Λ
(2)
32 (30, 43)E30]. (8)

The call option price arises from taking expectations:

C32(30, 43|Λ) = H [Λ32(0, 30)− Λ
(2)
32 (30, 43)Λ32(0, 30)]. (9)

Writing down Eq. (3) for this case

Λ32(0, 43) = Λ32(0, 30)EQ[Λ32(30, 43)],

and substituting H, the price of the call option is given by:

C32(30, 43|Λ) =

(
EQ[Λ32(30, 43)]-Λ

(2)
32 (30, 43)

Λ
(1)
32 (30, 43)− Λ

(2)
32 (30, 43)

)
Λ32(0, 30) (Λ

(1)
32 (30, 43) − Λ). (10)
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3.2 General formula for the option in discrete time

As we want to price mortality-contingent claims, based on the Hungarian mortality

table, we need a general formula for the option to purchase at time 0, with a present

age of x, paying 1 unit from the age of k, each year until death. The basic idea is to

price this option as the sum of pure endowments with a maturity date n, n = k + 1...T

(T denotes the end point = the age when population dies out).

As mentioned before an option on an annuity, cannot in general be considered as

equivalent to a basket of options on pure endowments.

For this purpose some conditions have to be met. The n-th contract covers the option

for purchasing a pure endowment contract with maturity date n at time k. Let the strike

price be denoted by Kn. This can naturally be exercised, if Kn ≤ Λ(k, n), ergo the

strike price is smaller than the pure endowment price is at time k. The annuity option

K =
∑T

n=k+1 Kn will obviously being exercised if and only if K ≤
∑T

n=k+1 Λ(k, n).

In practice this would be performed the other way around, the price of the annuity

contract would be given. In this case the question occurs whether there is a series of

Kn, summing to K, that either all or none of the individual pure endowments will be

exercised. If this is achievable, the pricing of annuity options can be substituted with

the pricing of pure endowment options.

To derive conditions for the assumption to hold is simpler soluble in case of a

�nite number of outcomes. Let us �x k, and suppose the annuity beginning at time

k + 1, further s possible states of nature. Now Λi(k, n) denotes the price of an pure

endowment option acquired at time k, paying one unit at time n if the individual is

alive then, supposing outcome i. On the other hand, the price of the annuity option

is indicated by ai(k). Therefore our goal to be achieved is described by the following

equation:

ai(k) =
T∑

n=k+1

Λi(k, n)

Supposing, that

i ≤ j if Λi(k, n) ≤ Λj(k, n)

for all n = k + 1, ..., T , gives a partially order on possible outcomes.
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3.2.1 Theorem

The price of an annuity option with exercise date k can be determined by pricing

pure endowment options

m

∀ i ≤ j, ∀n = k + 1, ..., T Λi(k, n) ≤ Λj(k, n)

Proof.

=⇒First suppose a linear ordering.

Let i be the minimal subscript such that ai(k) ≥ K, and then choose Kn so that

Kn ≤ Λi(k, n) ∀ n = k + 1...T and
∑T

k=1 Kn = K.

Observe that in the case of an index j, so that

aj(k) ≥ K ⇒ j ≥ i

In this instance the annuity option will be exercised as well as all pure endowment

options will.

Otherwise, if j is such an index, that

aj(k) < K ⇒ j < i

In this instance the annuity option wont be exercised and so will none of the pure

endowment options. �

⇐=

Conversely let us consider the antithesis that the ordering is not linear. Mathematically

this means, that

∃ i, j,m, n, such that Λi(k, n) > Λj(k, n), and Λj(k,m) > Λi(k,m)

Suppose that ai(k) ≤ aj(k), and letK = ai(k). LetKn be a series of strike prices of pure

endowment options, which we are assuming to satisfy the condition, K =
∑T

n=k+1 Kn.

Observe that both the options payable at time m and n would be exercised for both

outcomes, if

Km ≤ Λi(k,m),
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and

Kn ≤ Λj(k, n) < Λi(k, n).

Now, taking our assumptions in account, it follows that:∑
r

Kr =
T∑

r=n+1

Λi(k, r)⇒
∑

r 6=n,m

Kr >
∑

r 6=n,m

Λi(k, r)

and therefore we conclude that the antithesis is wrong, as at least one pure endowment

option for times di�erent from m, n will not be exercised in outcome i. �

3.2.2 Formula for the option price

The pure endowment is in our case a contract purchased at time k, paying 1 unit

at time n if the individual is alive then, for a strike price of Λ. The price is given by

Cx( k, n | Λ) = EQ

[
k∏

i=1

Λx(i− 1, i) · |Λ(k, n)− Λ|+

]

this will just be the expected value of the with interest and mortality discounted dif-

ference between the market price and the strike price at maturity (if positive).

This in our case, where probabilities are constants, and expectation signs can be

removed, reduces to

Cx( k, n | Λ) =
k∏

i=1

Λx(i− 1, i) · |Λ(k, n)− Λ|+ (11)

Now if the above given conditions are satis�ed we can indeed reduce the pricing of

annuity options, and calculate the sum of pure endowment option prices instead. This

results in the general formula for an annuity option to be purchased at time 0, at an

present age of x, paying 1 unit from the age of k each year until death. Our notation

is P x(k|Λ), given by the following formula:

P x( k |Λ) =
T∑

n=k+1

Cx( k, n|Λ) =
T∑

n=k+1

k∏
i=1

Λx(i− 1, i) · |Λ(k, n)− Λ|+ (12)
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4 Application to Hungarian mortality table

4.1 Forecast the development of the given mortality table

After having discussed underlying theories it is time to develop a strategy − applied

to the Hungarian mortality table − that allows us to price mortality-contingent claims.

We treat the underlying life annuity as a defaultable coupon-bearing bond, where the

default occurs at the exogenous time of death.

Our data is a series of Hungarian mortality tables (1949-2006) and the actual yearly

discount rates.

We suppose that at time 0 an individual, now age 32, would like to receive a payment

of 1 unit from the age of 62 each year until death. As we want to price mortality

improvement risk it is crucial to examine the development of mortality and give a

forecast for the future.

Our �rst step is to project mortality to the following 60 years. For sake of simplicity

it is suitable to apply the Azbel-model. Our reasoning is as follows:

1. An alternative method would be to project mortality rates for each age and each

year. This means a data of approximately 100 ages · 60 years, which is far too

much to make this possible.

2. Therefore we decided to �t a parametric model. This can be done, because we

are not interested in precise data, but in the development of mortality. Now the

goal is to choose a model which is readily interpretable and easy to deal with.

3. The obvious choice could be the to use the well known Gompertz-Makeham-model,

but the Azbel-model is in most cases as good and even simpler than this.

4.1.1 The Azbel-model

Azbel construed a mortality law that can successfully describe the behaviour of

di�erent death rates like human and med�y mortality curves. The basic assumption

of his proposal is that at least one Gompertz region exists in the death rate, which

means the existence of a predominantly exponential region in the mortality curve. The

mortality qx(t) at age x and time t, can be written as

qx(t) = −Nx+1(t + 1)−Nx(t)

Nx(t)
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where Nx(t) is the number of individuals alive with age x at time t. Azbel considered

time as a continuous variable, and assumed that qx(t) is an exponential function of

time. Than following the assertion that every death rate has its Gompertz region,

where the logarithm of mortality rate is close to its linear regression he deduced the

following equation: lnqx = a + bx, where a and b are parameters to be determined by

�tting the mortality curves of demographic data. Each curve provides a pair (a, b).

Azbel studied the demographic data of Japanese and Swedish population extensively

for reasons of having a low premature mortality. He showed that the points determined

by a and b follow a straight line and so can be related by a = lnA=bX. With this

the Azbel-formula of death rates is: qx = Ab exp[b(x−X)], where A, b and X are the

parameters. [1]

Although this formula is substantially simpler than the Gompertz-Makeham model,

a further improvement was made in [5].

The reparametrization T = X − ln(Ab)/b leads to a supplemental simpli�cation.

The result is a two parametric equation

qx = exp(b(x− T )), (13)

with b the shape parameter and T the end point (the age when population dies out).

Using the idea of applying a loglinear regression-type estimator, given the fact that

lnqx = b(x − T ) , we performed a simple linear regression with the logarithm of qx as

the dependent and the age as independent variable. How these regression coe�cients

can be calculated and used to obtain the parameters of the model in order to calculate

projected mortality rates, can be seen after the veri�cation of the model.

4.1.2 The veri�cation of the model

To get a feeling about the suitability of the Azbel-model we have to refer to [5].

Using the two so-called A/E and ERL statistics and �tting di�erent models to

the ages 60-90, the article brings to light essential similarity in goodness-of-�t. As it

can be read, the weighted �t with expected remaining lifetime and the simple loglinear

regression turned out to give very similar results, while the weighted loglinear regression

is slightly worse than the above ones. It furthermore can be seen that the Azbel-model

with a loglinear regression-type estimator is reasonable.
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4.1.3 Calculation of mortality development

To carry through a loglinear regression on qx means, that after having taken the

logarithm of every component of our table we need to preform a linear regression. Let

our new data be yzix = logqzix where x is the age and z the vector of calendar years

z = [1949...2006]. As we believe q to have a loglinear y will have a linear relationship,

which is governed by the familiar equation yi ∼ aix + bi, where x is still the vector of

ages. Now the linear regression will be applied in order to determine the two parameters

ai and bi. In practice given a set of data (xj, y
zi
j ) with n data points, ai and bi can be

re�ected by the following formula:

a =
cov(x, y)

D2(x)
=

n
∑

(xjyj)−
∑

xj

∑
yj

n
∑

(xj
2)− (

∑
xj)2

b = ȳ − ax̄ =

∑
yj − a

∑
xj

n

Now we can estimate the future development of the mortality table. As it is not our

aim to give an exact forecast of mortality rates, but to forecast the option price, the

well-known Lee-Carter method can be applied.

Our ai and bi coe�cients, determind by the linear regression, can be expressed by

following approximation:

ai ∼ Ai + B

bi ∼ Ci + D

The coe�cients A,B,C,D are given through the following formulas:

z = vector of calendar years

A =
cov(z, a)

D2(z)
, B = ā− Az̄, C =

cov(z, b)

D2(z)
, D = b̄− Cz̄

Forecasted mortality rates can now be calculated with the Azbel model using Eq. (13).

qix :=

 e(Ai+B)x+(Ci+D) if e(Ai+B)x+(Ci+D) < 1

1 if e(Ai+B)x+(Ci+D) > 1
x = 0. . . 100, i = 2007. . . 2066
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Fig. 4. Forecast of expected remaining lifetime at the age of 32 (female case)

Fig. 5. Forecast of expected remaining lifetime at the age of 32 (male case)
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4.2 Calculation of life expectancy

To get an impression how mortality changed over the years it is reasonable to cal-

culate and plot the expected remaining lifetime for some selected ages. The mortality

rate qx denotes the probability of dying in the next year after having reached the year

x.

px = 1− qx

qx = P (X < x + 1 | X ≥ x)

px = P (X ≥ x + 1 | X ≥ x)

The probability of reaching a certain age, lx, is given by the formula below:

lx = P (X ≥ x) = P (X ≥ x | X ≥ x− 1)P (X ≥ x− 1) = px−1lx−1

Assuming that l0 = 1, lx can be expressed by survival probabilities:

lx =
x−1∏
i=0

pi

The life expectancy at birth for an individual:

E(X) =
T=100∑
i=0

iP (X = i) =
T=100∑
i=0

P (X ≥ i) =
T=100∑
i=0

li,

where T is the last duration at which members of the particular cohort will be living.

4.3 Calculation of expected remaining lifetime

To get the expected remaining lifetime of an individual with the present age of x,

we need a variable to express the probability of reaching a certain age assuming to be

alive at the given age. Let this be lxn and it is given by the following formula:

lxx+k+1 = P (X ≥ x + k + 1 | X ≥ x)

= P (X ≥ x + k + 1 | X ≥ x + k)P (X ≥ x + k | X ≥ x) = px+kl
x
x+k

lxx = 1

lxx+k+1 =
x+k∏
i=x

pi
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Now the expected remaining lifetime of an individual with the present age of x can be

calculated:

E(X − x | X ≥ x) =
T=100∑
i=x

P (X≥i) =
T=100∑
i=x

lxi

Fig. 6. Expected remaining lifetime at the age of 62 (female case)

Fig. 7. Expected remaining lifetime at the age of 62 (male case)
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4.4 Calculation of expected remaining lifetime using our fore-

cast

We have seen how the expected remaining lifetime for a certain age is calculated

with our given mortality table. For more proper results we have to take mortality

changes into account, this means to de�ne a generation mortality table for our forecast.

In our case it would be interesting to know how long an individual lives after reaching

the age of 62. This is described by following formulas:

� Let qrn be the forecasted mortality for the age n given by our regression for the

year r.

� qrn = q2006
n , when n ≤ 62

� qrn = q2006+x
62+x , when n = 62 + x

Now lr,62
n , which is our regression variable to express the probability of reaching age n

(n ≥ 62) assuming to be alive at 62, is given by the following formula.

lr,62
62+k+1 =

62+k∏
i=62

pri

To get the expected remaining lifetime of an individual with the present age of 62

E(X − 62 | X ≥ 62) =
T=100∑
i=62

lr,62
i =

13.1 Male

18.2 Female

4.5 Simulation

As mentioned in the beginning, our main aim is to price the option. In this case we

have to face the problem that the distribution of qx is unknown to us, so there is no

explicit formula. In order to provide the consistent calculation of the option price, we

revert to Monte Carlo simulation.

4.5.1 The Monte Carlo simulation

Monte Carlo simulation means in our case to simulate future mortality rates. For

this purpose we have to randomize our regression. As we do not know the distribution

of qx, the �rst logical step is to calculate the distribution of our regression coe�cients

a and b. Presuming they are normally distributed, we can calculate the expected value

and variance, and generate random numbers asand bs, where s stands for simulation.
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4.5.2 The veri�cation of normality

To use a normal distribution has two main reasons

1. consistency with article [5],

2. even when a distribution may not be exactly normal, it may still be convenient to

assume that a normal distribution is a good approximation, as it is considered to

be the most �basic� continuous probability distribution. In addition it is not only

a well-known but an accepted method, and so practicable in insurance market

which might be in the interest of a companies management.

Before presuming the normality of our regression coe�cients a and b, we should apply

a Quantile-Quantile plot (Q-Q plot). This is an exploratory graphical tool, in which

the quantiles of two statistical variables are plot against each other to compare their

distributions. The observed values of two features are sorted in ascending order and

are combined into pairs to be carried into a coordinate system. Resulting points ly-

ing approximately on the line y = x, indicate a similar basic distribution of the two

compared characters.

In our case we take our regression coe�cients a and b, having used for the creation

of random numbers, and sort the components in ascending order. The same is done to

asand bs being the randomly created vectors. Now for instance a point(x, y) diagram

can be used, which plots one of the quantiles of the second distribution against the

same quantile of the �rst distribution. Results are showing satisfactory pictures.

Fig. 8. Q-Q plot of a and as (female case) Fig. 9. Q-Q plot of b and bs (female case)
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Fig. 10. Q-Q plot of a and as (male case) Fig. 11. Q-Q plot of b and bs (male case)

4.5.3 Simulation of mortality rates

As shown in subsection 4.1 we can calculate qsx for every simulated asand bs in the

same way.

z = vector of calendar years

As =
cov(z, as)

D2(z)
, Bs = ās − Asz̄, Cs =

cov(z, bs)

D2(z)
, Ds = b̄s − Csz̄

qix : =

 e(Asi+Bs)x+(Csi+Ds) if e(Asi+Bs)x+(Csi+Ds) < 1

1 if e(Asi+Bs)x+(Csi+Ds) > 1

x = 0. . . 100, i = 2007. . . 2066

Now we have simulated this qsx a 1000 times both in female and male cases.
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Fig. 12. Average of simulated mortality rates (female case)

Fig. 13. Average of simulated mortality rates (male case)

4.5.4 Simulation of option price

Assuming that the Theorem (3.2.1) holds, annuity options can be priced by pure

endowment options, so in this case we can use the general formula (12) to calculate the

simulated option prices for every qsx. Taking the average of these we will receive the

option price.

We �rst have to calculate survival probabilities:

psx = 1− qsx
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Now follows the calculation of the probability that an individual in our cohort - who is

currently aged x - will survive to time n conditional upon surviving to time k.

As mentioned in section 3. now, where probabilities are constants, the expectation

sign can be removed. Therefore the formula number (1) can be written as follows:

psx(k, n) =
n−1∏
i=k

psx(i, i + 1) =
n−1∏
i=k

psx+i

The next step is to calculate the market price of our pure endowment contract using

Eq. (2)

L
s
x(k, n) = D(k, n) psx(k, n)

L
s
x(i− 1, i) = D(i− 1, i) psx+i i = 1...k

Simulated option prices can be calculated using Eq. (11) and (12):

Csl
x (k, n|Λ) =

k∏
i=1

Λsl(i− 1, i) · |Λsl
x (k, n)− Λ|+

P sl
x (k|Λ) =

N=100∑
n=k+1

Csl
x (k, n|Λ)

Our option price will be the average of all simulated option prices.

P x(k|Λ) =

∑1000
l=1 P sl

x (k|Λ)

1000

To verify Theorem (3.2.1), we have to calculate the price of a pure endowment option

basket. This will be the same as the annuity option price if conditions are satis�ed.

Ksl
32(30 | Λ) =

N=100∑
n=31

(
k∏

i=1

Λsl(i− 1, i)max(Λsl
32(30, n)− Λ, 0)

)

Now we have to compare each Kslwith
∑100

n=31 Λsl(30, n), to prove that:

Ksl ≤
100∑
n=31

Λsl(30, n)
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As this holds for our data, the option price can be calculated:

P 32(30|Λ) =

P 32(30|0.6306) = 0, 399 Male

P 32(30|0.8381) = 0, 118 Female

4.6 Sensitivity Analysis

Now, after having calculated the option price, it is reasonable to make a sensitivity

analysis, to determine how �sensitive� our model is to changes in the underlying pa-

rameters. By doing series of tests setting di�erent parameter values we can see how

a change in the parameter causes an alteration in the value of interest. If the model

behaves as expected from real world observations, it gives some indication that the

parameter values re�ect, at least in part, the reality.

What we are interested in is the change in option price if circumstances vary. Our

parameters are mortality, discount rates, and the age we may exercise the option:

� To illustrate mortality change we have to take the given percentage of every

simulated mortality rate.

� Di�erences in discount rates can be treated in the same way.

� The age of exercise is a little bit more di�cult, because it has to be simulated for

each case.

After calculating all cases and veri�cation of Theorem (3.2.1) is performed in each,

we get a 3-dimensional datatable. As this is not possible to plot we can split it in 3

di�erent 2-dimensional datatables.

As we used future mortality and interest rates for discounting, we are anticipating,

that the option price will change in the same direction as these two parameters do.

For a better understanding let us see it from another perspective: growth of mor-

tality has the e�ect, that expected remaining lifetime decreases. This results in more

money to be disbursed each year, which means a higher risk. The impacts on price of

alteration in age of exercise can be explained in the same way, except that the expected

remaining lifetime decreases exponentially with aging. Fig. 12 and �g. 13 reveal that

male mortality grows more exponential than female mortality does.
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Our expectations are met, as the price of the option grows in both parameters both in

female as in male case.
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The price of the option grows in both parameters in female case, as this is not the
case when a male individual purchases the option at 75 years, we have to look after
the purposes. Before drawing any conclusions let us have a look at our third pair of
parameters.
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Like in the female cases above everything looks �ne.
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It can be seen, that alteration of mortality and discount rates cause no problem.

The real reason is the third parameter. As mentioned, when the age of exercise is

high = now 75 = expected remaining lifetime is very low as it decreases exponentially

with aging. This has an e�ect on the male case because of the strong exponentiality of

mortality rates.

5 Conclusion

We have proposed a model for pricing options on future mortality (and interest)

rates. These options currently exist in the market, but very little has been written

on how they should be priced or be reserved against. These options `pay o�' if life

annuity (pure endowment) prices end up at a higher than some pre-speci�ed strike

price, at the time the contract was issued. We have presented a discrete time model

and after having demonstrated how to hedge these options using pure endowments,

default free bonds and life insurance contracts, we applied these knowledges to the

Hungarian mortality table. Our results showed that 3,3% in case of male and 1% in

case of female, respectively, of the annuity price is the price of this embedded option.

In case of male, as it was expected, this amount is quite substantial and is likely to

draw attention of annuity providers to further investigate mortality contingent claims.

An even more realistic case could be examined such as stochastic interest rate and

continuous time.
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7 Appendices

7.1 Forecast of the development of the hungarian mortality ta-

ble

Calculation of the option price, in the female case, with age 62 to purchase, with

sensitivity analysis, for this age

qx ←read.csv2("C:/femalemort.csv")

# read male mortality rates

px←1-qx

# survival rates

7.1.1 Loglinear regression

lnqx←log(qx)

z←seq(1,58)

a←rep(0,58)

for(i in 1:58) a[i]←cov(x,lnqx[,i])/var(x,x)

b←rep(0,58)

for(i in 1:58) b[i]←mean(lnqx[,i])-a[i]* mean(x)

A←cov(z,a)/var(z,z)

B←mean(a)-A*mean(z)

C←cov(z,b)/var(z,z)

D←mean(b)-C*mean(z)

e← matrix(0, nrow=101, ncol=60)

qx←cbind(qx,e)

for(i in 1:101) for(j in 59:118) if (exp((A*j+B)*x[i]+(C*j+D))>1) qx[i,j]=1

+ else qx[i,j]=exp((A*j+B)*x[i]+(C*j+D))

7.1.2 Generation mortality table

rp62← rep(0,38)

for(i in 1:38) rp62[i]← 1-qx[62+i,57+i]

# survival probabilities

rl62← rep(0,38)

rl62[1]← 1

for(i in 2:38) rl62[i]← prod(rp62[1:i-1])
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# probability of reaching age i assuming to be alive at 62

ERL62← sum(rl62[])

# expected remaining lifetime at 62

7.1.3 Monte Carlo simulation

qxs← matrix(0, nrow=101, ncol=1000)

# initial matrix to �ll up with simulated mortality rates

for(i in 1:63) for(j in 1:1000) qxs[i,j]← qx[i,58]

# qrn = q2006
n , when n ≤ 62

z← seq(1,57)

ma← rep(0,57)

for(i in 1:57) ma[i]← mean(a[1:(i+1)])

mb← rep(0,57)

for(i in 1:57) mb[i]← mean(b[1:(i+1)])

# expected value

s11← rep(0,57)

for(i in 1:57) s11[i]← cov(a[1: (i+1)], a[1: (i+1)])

s12<- rep(0,57)

for(i in 1:57) s12[i]← cov(a[1: (i+1)], b[1: (i+1)])

s21<- rep(0,57)

for(i in 1:57) s21[i]← cov(b[1: (i+1)], a[1: (i+1)])

s22<- rep(0,57)

for(i in 1:57) s22[i]← cov(b[1: (i+1)], b[1: (i+1)])

# kovariance matrix

k← 1

while (k<1001)

{

y1← rnorm(57,0,1)

y2← rnorm(57,0,1)

as← rep(0,57)

for(i in 1:57) as[i]← s11[i]*y1[i]+s12[i]*y2[i]+ma[i]

bs<- rep(0,57)

for(i in 1:57) bs[i]← s21[i]*y1[i]+s22[i]*y2[i]+mb[i]
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As← cov(z,as)/var(z,z)

Bs← mean(as)-A*mean(z)

Cs← cov(z,bs)/var(z,z)

Ds← mean(bs)-C*mean(z)

for(i in 64:101) if (exp((As*(i+2)+Bs)*x[i]+(Cs*(i+2) +Ds))>1) qxs[i,k]=1

+ else qxs[i,k]=exp((As*(i+2) +Bs)*x[i]+(Cs*(i+2) +Ds))

k← k+1

}

7.1.4 Sensitivity analysis

Dr ← read.csv2("C:/discrates.csv")

# read discount rates

z← seq(2006,2125)

# z=vector of calendar years

Dx← Dr[1:38,1]

s1← c(0.7,0.9,1,1.1,1.3)

# factors that change mortality rates

s2← c(0.97,0.99,1,1.01,1.03)

# factors that change discount rates

V← matrix(0,nrow=5,ncol=5)

# matrix for proof of theorem

P← matrix(0,nrow=5,ncol=5)

# option price in di�erent cases

for (n in 1:5) {

qxsn←s1[n]*qxs

qxn←s1[n]*qx

for (l in 1:5) {

Dxl←s2[l]*Dx

pxkn← matrix(0, nrow=38, ncol=1000)

# initial matrix to �ll up with p32(30, n) values

for(i in 1:38) for(j in 1:1000)

pxkn[i,j]←prod(1-qxsn[63:(i+61),j])

# p32(30, n) =
∏n−1

i=30 p32+i, n = 31...68
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lambda←matrix(0, nrow=38, ncol=1000)

# initial matrix to �ll up with Λ32(30, n) values

for(i in 1:38) for(j in 1:1000) lambda[i,j]←Dxl[i]*pxkn[i,j]

#L32(30, n) = D(30, n) p32(30, n)n = 31...68

Lambda←prod(1-qxn[33:62,58])

# strike price Λ =
∏61

i=32 p
58
i

maxl←matrix(0, nrow=38, ncol=1000)

for(i in 1:38) for(j in 1:1000)

maxl[i,j]<-max(lambda[i,j]-Lambda,0)

#max(Λ32(30, n)− Λ, 0)n = 31...68

Cx← matrix(0, nrow=38, ncol=1000)

for(i in 1:38) for(j in 1:1000) Cx[i,j]←Lambda*maxl[i,j]

#C32(30, n|Λ) =
∏30

i=1 Λ(i− 1, i)max(Λ32(30, n)− Λ, 0), n = 31...68

C←rep(0,1000)

for(j in 1:1000) C[j]←sum(Cx[,j])

V1←lambda-Cx

# proof of theorem

for(i in 1:38) for(j in 1:1000) if(V1[i,j]<0) V1[i,j]←1 else V1[i,j]←0

V[n,l]←sum(V1[])

P[n,l]←mean(C[])

}

}

P

#option price in 25 di�erent cases
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