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Chapter 1

Introduction

Modern �nancial markets o�er a wide range of derivative products besides traditional

assets such as bonds and equities. These instruments are traded in over-the-counter mar-

kets by investment banks to hedge funds, commercial banks and government entities.

Investment banks hire mathematicians called strategists who are responsible for the pric-

ing and risk management of these products mainly using tools from statistics, probability

theory and stochastic calculus. This rapidly growing new branch of mathematics is often

referred to as quantitative �nance.

The pricing of American style contingent claims has been one of the most popular

research topics for the last decades. The objective, particularly for an American option,

is to determine the optimal exercise strategy that maximizes the payo�. This in fact

is a challenging task given the stochastic nature of the underlying. As a result of the

extreme development of information technology, simulation methods are gaining grounds

in derivative pricing as well. LSM algorithm introduced by Longsta� and Schwartz is

the most well known and widely used Monte Carlo method for calculating American

option prices. LSM deals with the problem of re-simulation and provides a �exible and

computationally tractable model for pricing. However, it does not consider the embedded

foresight bias, which is a product of the backward nature of the calculation along with

the Monte Carlo error of simulation.

My goal is to introduce a model based on LSM algorithm, that possesses all the good

qualities of the original method and also addresses the problem of the look ahead bias.

In the second chapter, I will review the basic �nancial de�nitions and the well known

result of Black and Scholes on European option pricing, followed by a brief summary of

modeling and pricing di�culties of American options. The third chapter begins with the

presentation of the modeling framework and LSM algorithm. After a profound analysis of

the least squares regression method I will attempt to study the impact of the look ahead,

which causes the algorithm to be super-optimal. In the fourth chapter, motivated by

Fries's concept, I develop a new six-step analytic approach to approximate the conditional
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expectation of continuation which also eliminates the foresight bias. Subsequently, I will

present su�cient testing that justi�es the accuracy of the new method, after which I

conclude with areas of further research.
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Chapter 2

Valuing options

I am going to start with a brief introduction to the most important de�nitions and

concepts which are crucial to understand in the topic of derivative pricing. Quantita-

tive �nance is a relatively new branch of mathematics that is fundamentally based on

probability theory, statistics and �nance and it is mainly applied in the �eld of modeling

stochastic processes and uncertainty in a �nancial market environment. This chapter

summarizes the essential basics which are used in later chapters and strongly relies on

the work of Hull [2011].

A �nancial derivative instrument de�nes a contract between two parties for future

transactions of securities, assets or payments. Particularly an option speci�es a deal

on an asset at a reference price. The buyer of the option purchases the right, but not

the obligation, to engage in the transaction, but once the option is exercised the seller

of the contingent claim is obligated to ful�ll the transaction. Based on the common

characteristics of di�erent type of payo� functions of the options, they are referred to

as European, American, binary or barrier; just to name a few of the prevalent naming

conventions.

2.1 European options

A European option provides the right but not the obligation, to buy or sell one unit

of the underlying at a predetermined date at a reference price. This one exercise date

is referred to as maturity, the underlying is generally a stock and the reference price is

called the strike. Whether the option conveys the right to sell or to buy, it is refereed to

as:

� European call option: provides the opportunity to buy one unit of the underlying at

maturity, thus it's payo� function is (S(T )−K)+ and it's value at time t is denoted

by C(S, t, T,K)
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� European put option: provides the opportunity to sell one unit of the underlying at

maturity, thus it's payo� function is (K−S(T ))+ and it's value at time t is denoted

by P (S, t, T,K)

where S(t) is the underlying asset's spot price at t, T is the time of maturity and K is

the strike. Call and put options with the same maturity and strike are in close relation

on liquid markets, this is represented by the put-call parity equation:

P (S, t, T,K) = C(S, t, T,K) +K ·B(t, T )− S(t) (2.1.1)

where B(t, T ) is the value of the bond at time t that matures at T . Furthermore, if the

bond interest rate r, is assumed to be constant, then the above relationship simpli�es to:

P (S, t, T,K) = C(S, t, T,K) +K · e−r(T−t) − S(t)

2.2 Valuing European options

Assume that the stock price dynamics is summarized by the following stochastic dif-

ferential equation:

dS(t) = µ · S(t)dt+ σ · S(t)dW (t) (2.2.1)

which is equivalent to the stock price following a geometric Brownian motion:

S(t) = S(0) · exp
[
(µ− σ2

2
)t+ σW (t)

]
(2.2.2)

where µ is the long term return, the drift term of the stock price and σ is the volatility

of the underlying. Uncertainty is modeled by the increments of the standard Brownian

motion.

A trading strategy in �nance is a set of rules determining when to buy or sell in-

struments on the market. For instance, a delta neutral strategy aims to reduce the risk

associated with the price movements of the underlying stock by maintaining 0 delta for

the total portfolio. Delta is the measure of how the price of the derivative, particularly

the option price changes as a result of a change in the price of the underlying. Mathe-

matically speaking it equals to the partial derivative of the option's value with respect

to the price of the underlying stock. Thus, such portfolio typically consists of an option

and the underlying stock such that the positive and negative deltas o�set; consequently,

the portfolio value is unchanged by small price changes of the underlying. Since the delta

hedge portfolio is risk-less, Black and Scholes [1973] argued that the rate of return of this

strategy has to equal to the risk free rate otherwise this would provide an opportunity
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for a risk free pro�t or equivalently arbitrage. With the aid of Ito [1951] lemma this lead

them to the well know partial di�erential equation published in 1973 referred to as the

Black-Scholes equation:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.2.3)

where V , the value of the derivative, has two arguments: time t and spot price of the

underlying S(t). Equation (2.2.3) holds true for any European style derivative whose

payo� only depends on the value of the underlying at maturity, where S(t) follows (2.2.2),

i.e. it is a geometric Brownian motion, with constant drift and volatility. The value of a

European option on a non-dividend paying stock is obtained by solving the above partial

di�erential equation with the appropriate boundary conditions, speci�cally V (T, S) =

C(S, T, T,K) = (S(T ) − K)+ for a call or (K − S(T ))+ for a put. Hence, the Black-

Scholes formula for a European call option value is:

C(S, t, T,K) = Φ(d1)S(t)− Φ(d2)Ke−r(T−t) (2.2.4)

where Φ(·) is the cumulative distributive function of the standard normal distribution

and d1 and d2 are:

d1 =
ln(S(t)K ) + (r + σ2

2 )(T − t)
σ
√
T − t

d2 =
ln(S(t)K ) + (r − σ2

2 )(T − t)
σ
√
T − t = d1 − σ

√
T − t

Then, I just simply use the put-call parity to derive the value of a European put option:

P (S, t, T,K) = C(S, t, T,K) +K · e−r(T−t) − S(t) =

Φ(−d2)Ke−r(T−t) − Φ(−d1)S(t)

Consequently, based on the Black-Scholes model with constant drift and volatility, it is

possible to derive an analytic and closed formula for calculating simple European option

prices.

2.3 American options

An American style option de�nes a contract between two parties for a future trans-

action on an asset at a reference price. An American call or put option provides the

right, but not the obligation, to buy or sell one unit of the underlying any time before

or at maturity at a predetermined strike. Hence, as opposed to a European style option,

American options have continuous exercise feature. This makes a distinct di�erence in
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the valuing process of these type of derivatives. The objective of my thesis is to provide

a feasible unbiased and transparent model for pricing American style options that is also

computationally tractable.

Since the Black-Scholes formula strongly relies on the assumption that there is one

and only one predetermined exercise date, hence it is not feasible for valuing American

options. Furthermore, there is no analytic formula for pricing options with continuous

callable feature. The binomial option pricing model (BOPM) and simulation are the two

most well known and widely used methods for pricing. In practice BOPM becomes less

practical once options have several sources of uncertainty and complex features; however,

it is a feasible approach for pricing if the risk-free interest rate r and volatility σ are

assumed to be constants over time. Even though, the run time of the algorithm is O(2n),

I am going to use the BOPM option price as one of the reference values for evaluating the

convergence and accurateness of later introduced methods. On the other hand, Monte

Carlo option pricing model has a number of advantages to traditional methods such as

simplicity and �exibility, thus it is becoming more and more popular for valuing American

style contingent claims.

Simulation methods start with identifying the underlying's dynamics. Let me assume

that the stock price follows dynamics (2.2.1) of the Black-Scholes model. dS(t) = µ ·
S(t)dt+σ·S(t)dW (t) is under the real world physical measure. First fundamental theorem

of asset pricing from Shreve [2004] states that a discrete market is arbitrage free if and

only if there exists at least one risk neutral measure Q that is equivalent to the physical

measure. Risk neutral or martingale measure is the measure under which the discounted

underlying stock price process is a martingale. No arbitrage pricing theory states that

the true value of an asset is the expectation of the sum of all future discounted cash �ows

generated by the asset with respect to the Q risk neutral measure. Shreve [2004] shows

how to change from the real world measure to Q using Girsanov's theorem. The dynamics

of the underlying under the risk neutral measure is:

dS(t) = r · S(t)dt+ σ · S(t)dW̃ (t) (2.3.1)

where W̃ (t) denotes the Brownian motion under the martingale measure Q. This is

particularly convenient because for the discounted stock price dynamics which is:

dS̃(t) = e−rt · dS(t)

it follows that:

dS̃(t) = σ · S̃(t)dW̃ (t) (2.3.2)

consequently, S̃(t) is of course a martingale. From here on, I assume that the existence

of an equivalent risk neutral measure Q and that all dynamics are given under this

probability measure. Once the dynamics of the underlying is �xed, its is possible to
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use Monte Carlo simulation to generate a �nite number of realizations of the stock price

process. The American option price is then computed by the best possible stopping

strategy that maximizes the payo� over all exercise policies. To get an accurate estimate

of the continuation value or in other words the option value on a particular path at time

t, the underlying's price process should be re-simulated using all the available information

at that future trading event, such as the spot price of the underlying, which is of course

di�erent from the initial value. The chart below illustrates this concept.
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Figure 2.3.1: Brute Force re-simulation

However, this concept leads to exponential number of simulations which is computa-

tionally intractable; consequently, a di�erent method has to be used to value American

style options. The remainder of the paper is organized as follows. In chapter 3, I am going

to introduce a well known approach that addresses the problem of re-simulation. LSM

algorithm uses one set of Monte Carlo simulation to estimate the option value; however,

this simplicity results in an embedded foresight that causes the algorithm to be biased.

In chapter 4, I am going to introduce, analyze and test a new analytic method for bias

correction. After pointing out areas of further research, I �nish my thesis with concluding

remarks.
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Chapter 3

Analysis of LSM algorithm

Valuing American Options by Simulation: A Simple Least-Squares Method (LSM)

was published by Longsta� and Schwartz [2001]. They present a simple yet powerful al-

gorithm to provide a path-wise approximation of the optimal exercise rule. The objective

is to price an American-style derivative security by maximizing its random cash-�ows oc-

curring in a �nite time frame. This simulation approach has many advantages compared

to alternative valuing methods. First, simulation allows the underlying to follow more

complex stochastic process such as geometric Brownian motion, jump di�usion or Levy

process. Second, the method provides the �exibility to use multiple factors or regressors

to determine the value of the option. Third, the algorithm can easily handle complex

payo�s and path dependent derivatives and it can also be used for sensitivity tests for

risk management purposes. Last, simulation is well suited for parallel computing, thus

makes it computationally attractive as well.

3.1 Modeling framework

Let (Ω,F ,P) be a complete probability space, where Ω is the set of all possible re-

alizations of the stochastic stock price process on the �nite time horizon of [0, T ]. Let

F(t) be the σ−algebra �ltration generated by the di�erent events until time t and F de-

notes the �nal stage of information F(T), where F(0) ⊆ F(1) ⊆ . . . ⊆ F(t) ⊆ . . . ⊆ F(T).

Furthermore P is the probability measure de�ned on ω elements of Ω. Based on the no-

arbitrage pricing theory I assume the existence of an equivalent martingale measure Q.
The algorithm is suitable for derivatives with payo�s that are elements of the space of

square-integrable or �nite-variance functions of L2(Ω,F ,Q). Consequently, LSM is feasi-

ble to price most derivatives with callable or cancel-able features; however, from here on I

am going to restrict my attention to American put and call options. The objective of the

algorithm is to approximate the optimal path-wise stopping rule that maximizes the value

of the American option. For modeling and implementational purposes, I assume that the
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option is only exercisable at N discrete times 0 = t0 < t1 < t2 < . . . < tN = T , this

might seems like a Bermudian setup, but selecting N large enough makes this approach

suitable to value continuously exercisable American options as well.

At the �nal exercise date, the strategy of the buyer is straightforward, either exercise

the option if it is in-the-money which means positive intrinsic value or allow it to expire if

out-of-money which implies no intrinsic value. Prior to expiry, at each tj exercise date the

investor has to decide whether or not to exercise the option. This is done by comparing the

immediate exercise value, known at tj , with the expected value of continuation, which is

the sum of discounted future cash �ows, and then exercise if immediate exercise is equal or

more valuable. Therefore, it is fundamental to have an accurate estimate of the expected

value of continuation, which is of course a random variable at tk. No-arbitrage principle

for derivative pricing states, that the value of continuation is given by the expectation

of all future discounted cash �ows with respect to the equivalent risk-neutral pricing

measure Q. Let CF (ω, tj ; tk, T ) denote the di�erent future cash �ows generated by the

security by following the optimal stopping rule at the di�erent tj exercise times, where

tk < tj ≤ tN = T , and conditional on that the option is not exercised at or before tk.

Consequently, the path-wise value of the option assuming that it can only be exercised

after tk or equivalently, the value of continuation at tk is given by:

F (ω; tk) = EQ

 N∑
j=k+1

exp(−
tjˆ

tk

r(ω, s)ds) · CF (ω, tj ; tk, T )|F(tk)

 (3.1.1)

where r(ω, t) is the risk-less discount rate and the expectation conditioned on F(tk),

the set of information obtained until tk, with respect to the risk-neutral measure. Let

me note that in the speci�c case of American options, at most there is one none zero

CF (ω, tj ; tk, T ) value, where tk < tj ≤ tN = T for any tk, this is because the option is

only callable once over its lifespan. The price of the American option is then calculated

by averaging F (ω, 0) over all ω paths. In the following section, I will introduce a well

known theoretical result that justi�es this approach.

3.2 Snell-envelope

Let τtk denote all stopping times, where each ζ ∈ τtk is an element of {tk, tk+1, . . . , tN}.
The following standard result is from Bensoussan [1984] and Karatzas [1988]:

3.2.1 Theorem(Snell-envelope): Let t0 < t1 < . . . < tk < . . . < tN be a set of

discrete trading events, X(tk) denote the value of an American option's immediate payo�

at time tk and Z(tk) be a discrete stochastic process, where Z(tN ) = X(tN ) and for

∀tk < tN , Z(tk) is de�ned recursively such that:

Z(tk) = max [X(tk), E (Z(tk+1)|F(tk))]
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Furthermore, let νtk denote the following stopping rule:

νtk = min [tj ≥ tk : X(tj) = Z(tj)]

Then the following the propositions hold true:

1. νtk ∈ τtk

2. Z(tk) = E (X(νtk)|F(tk)) = supζ∈τtkE (X(ζ)|F(tk))

3. E(X(νtk)) = E(Z(tk)) = supζ∈τtkE(X(ζ))

Practically, νtk maximizes the option value conditioned on the fact that it is not exercised

before tk, based on the no-arbitrage paradigm, Z(tk) equals to the value of the option

at time tk. For t0 = 0 special case of the above theorem, E(X(ν0)) = E(Z(0)) =

supζ∈τ0E(X(ζ)). This means that ν0 is the optimal stopping rule, which maximizes the

value of the American option out of all stopping rules on {t1, . . . , tN}. Furthermore; based

on νtk 's de�nition the optimal exercise policy is the �rst time when X(tk) = Z(tk) or

equivalently the �rst time when X(tk) ≥ E (Z(tk+1)|F(tk)), in other words the option

has to be exercised the �rst time when the immediate exercise is equal or greater than

the conditional expectation of continuation.

3.3 LSM algorithm

LSM algorithm uses the cross-sectional information in the simulated paths to approx-

imate the conditional expectation function. This is carried out by regressing the sum of

all future discounted cash �ows on a set of basis functions of relevant state variables. The

�tted value of this regression is an accurate estimate of the conditional expectation func-

tion, which provides the path-wise continuation value. Thus, it can be used to compute

the optimal stopping strategy which is the objective of the algorithm.

If the conditional expectation function is an element of the L2(Ω,F ,Q) square-integrable

functions, then since L2 is a Hilbert space, it has a countable orthonormal basis and thus

F (ω, tk) the conditional expectation function can be represented as the linear combina-

tion of the basis, a countable set of F(tk)-measurable functions. Typical types of basis

functions include the Laguerre, Hermite, Legrendre, Chebysew and Jacobi polynomials.

In practice often times it is necessary to use several indicators to su�ciently describe the

current state of a more complex derivative, hence multiple number of state variables are

needed for the approximation. For sake of simplicity let me assume, a two dimensional

setup, where x and z are the state variables, then the set of basis functions should include
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terms in each variable and cross products of them as well. As a result of this speci�cation,

F (ω, tk) can be represented as:

F (ω, tk) =

∞∑
i=0

βiBi(x, z)

where Bi denotes the di�erent basis functions and βi coe�cients are constants, this is of

course path dependent as it is indicated on the left hand side, x and z are also functions

of ω as they may di�er from path to path. Assuming that the underlying follows a

Markov process, hence past realizations are irrelevant towards determining the future

path of the asset; therefore, the spot price alone is a su�cient state variable for American

options. In addition, Judd [1998] showed that the number of basis functions need not grow

exponentially, in fact numerical tests suggest increasing their number only polynomially

with the dimension of the problem is su�cient to obtain convergence even in higher degree

cases. Furthermore, in practice even simple powers of state variables give accurate results.

Thus, Bi(x) = xi is a possible choice of basis functions, specifying the following �tted

value :

F̂M (ω, tk) = β̂01 + β̂1x+ β̂2x
2 + . . .+ β̂M−1x

M−1 (3.3.1)

where M denotes the number of basis functions. Given the backwards nature of the

algorithm, at any given tk time, the expectation of CF (ω, tj ; tk, T ) is known for each

path. F (ω, tk) is then estimated by regressing the discounted values of CF (ω, tj ; tk, T )

on the set of basis functions, hence ultimately by FM (ω, tN−1). Since for out of the

money paths it is never optimal to exercise the option, no exercise decision has to be

made; consequently, LSM only uses in-the-money paths for the regression. This limits

the region over which the conditional expectation function has to be determined, thus

yielding more accurate results with even fewer number of basis functions. Since the values

of basis functions are independently and identically distributed across all paths, the result

of White [1984] states that the �tted value of the projection F̂M (ω, tk) converges in mean

square and in probability to FM (ω, tk) if the number of in-the-money paths go to in�nity.

Furthermore, Amemiya [1985] implies that F̂M (ω, tk) is the best linear unbiased estimator

of FM (ω, tk) based on the mean-squared metric.

The algorithm works as follows: once the conditional expectation function at time

tN−1 is determined, it is straightforward to determine the optimal stopping strategy for

all the in-the-money paths as well, simply stopping at each ω path, where the immediate

exercise is equal or greater than the �tted value of continuation F̂M (ω, tk). Now that

the cash �ows for tN−1 are determined, after appropriate discounting, these values can

be regressed on a set of basis functions of state variables of time tN−2, this provides an

accurate estimate of the continuation function at tN−2, repeating this procedure until the

stopping rule for all exercise times over all paths are determined. The American option

value is then calculated by �nding the �rst stopping time on each path and discounting

14



the indicated cash �ow back to time zero and then taking the average over all ω paths.

3.4 Convergence results

This part presents two results from Longsta� and Schwartz [2001] on the theoretical

convergence of the algorithm; however, the best test of the performance of the algorithm

is in practice with realistic number of paths and basis functions.

3.4.1 Theorem: For any �nite choice of M , N and β ∈ RM×N representing the

coe�cients for the M basis functions at each of the N exercise dates, let LSM(ω,M,N)

denote the discounted cash �ow resulting from following the LSM rule of exercising when

the immediate exercise value is positive and greater than or equal to F̂M (ω, tk) as de�ned

by β. Then the following inequality holds almost surely:

V (x) ≥ lim
n→∞

1

n

n∑
i=1

LSM(ωi,M,N)

where ωi denotes the ith trajectory. V (x) represents the true value of the American

option, this is calculated with the stopping rule that maximizes V (x) out of all stopping

rules. Heuristically this result means that if the number of paths go to in�nity, the

American option value implied by LSM algorithm is less than or equal to that implied

by the optimal stopping rule. This provides an objective criterion for convergence and

it is particularly useful since it provides guidance for determining the number of basis

functions, increase M until the value implied by LSM increases.

3.4.2 Theorem: Assume that the value of an American option depends on a single

variable x with support on (0,∞) which follows a Markov process. Assume further that

the option can only be exercised at time t1 and t2, and that the conditional expectation

function F (ω, t1) is absolutely continuous and

∞̂

0

e−xF 2(ω, t1)dx <∞

∞̂

0

e−xF 2
x (ω, t1)dx <∞

Then for any ε > 0, there exists an M <∞ such that:

lim
n→∞

P

[
|V (x)− 1

n

n∑
i=1

LSM(ωi,M,N)| > ε

]
= 0

The intuition for this result is that by selecting M large enough and letting n → ∞,

LSM results in a value for the American option within ε of the true value if only two trad-

ing events are assumed. Thus, for this particular set up LSM converges to any desired
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accuracy since ε is arbitrary. The fundamental reason behind is that the convergence of

FM (ω, t1) to F (ω, t1) is uniform on (0,∞) when the above integral conditions are met.

This bounds the maximum error in estimating the conditional expectation and conse-

quently the maximum pricing error as well. From a technical perspective, the number

of basis functions needed to obtain a desired level of accuracy need not go to in�nity

as n → ∞. Even though, this result is a one dimensional setup, similar result can be

achieved for higher dimensional problems by meeting the uniform convergence condition.

3.5 Least squares regression

Least squares regression method is a approach used to approximate the solution of

overdetermined systems such as
∑M
j=1Xijβj = yi for each i = 1, . . . , n where n > M .

This is done by determining the best-�tting curve to the set of points by minimizing the

sum of the squares of the o�sets. The o�set r, commonly referred to as residual is the

di�erence between the observed sample and the �tted value of the regression, so in matrix

form it is:

Xβ̂ + r = y (3.5.1)

where β̂ contains the �tted values determined by the regression. This projection value is

of course generally di�erent from the theoretical solution of the overdetermined system,

thus the following holds true

Xβ + ε = y (3.5.2)

where ε is the unobservable error, the di�erence between the sample and the theoretical,

unknown solution of the system. To clarify on the notation β is the vector of the unknown

theoretical parameters whereas β̂ is the vector of the �tted parameters, furthermore let

me introduce the following notation, let Y = Xβ and Ŷ = Xβ̂.

Generally the method starts with obtaining a set data points such as (xi, yi), i =

1, . . . , n, where xi is an independent variable and yi is the dependent variable, this is

done by observation. In the case of LSM xi is equivalent to the spot price on the ith

trajectory. Suppose (3.3.1) is the set of basis functions being used, then x is the second

column of the X matrix, which is di�erent for each tk trading event. On the other hand,

yi is the corresponding discounted cash �ow value at tk+1, conditioned on the fact that

the option is not exercised at or before tk, which equals to e−r(tj−tk) ·CF (ω, tj ; tk, T ), the

discounted intrinsic value of the �rst indicated exercise time after tk. These �gures are of

course known at tk, thus they are observable. The earlier introduced F̂M (ω, tk) regressor

function's coe�cients, theM adjustable parameters determined by the regression are held

in the β̂ vector. The objective is to �nd the F̂M (ω, tk) curve de�ned by β̂, that minimizes

the sum of the squared residuals, speci�cally:

R
.
=

n∑
i=1

r2i =

n∑
i=1

(yi − F̂M (ω, tk))2 → min (3.5.3)
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The minimum is found by setting the gradient to zero.

∂R

∂βj
= 2 ·

n∑
i=1

ri
∂ri
∂βj

= 0

for each j = 1, . . . ,M . The objective is that β̂ minimizes R, hence the coe�cients of β̂

has to be chosen as follows. Since the value of the residuals are ri = yi−
∑M
j=1 β̂jXij , for

the derivatives it follows that:
∂ri

∂β̂j
= −Xij

thus the equation becomes:

2 ·
n∑
i=1

(
yi −

M∑
k=1

β̂kXik

)
(−Xik) = 0

Rearranging the equation, we obtain:

n∑
i=1

M∑
k=1

XijXikβ̂j =

n∑
i=1

Xijyi

Which is equivalent with the following matrix notation:

(XTX)β̂ = XT y

Thus, the β̂ solution that minimizes (3.5.3) is:

β̂ = (XTX)−1XT y (3.5.4)

The linear regression model is summarized by y = Xβ+ε, where ε is unknown random er-

ror that follows a normal distribution. Furthermore each εi, εj (i 6= j) pair is independent

and identically distributed with the following property:

ε ∼ N(0, σ2I) (3.5.5)

Since the errors are unobservable, their analysis must be done indirectly using residuals:

r = y −Xβ̂ = y −X(XTX)−1XT y

Let V denote the X(XTX)−1XT matrix and I am going to use the y = Xβ + ε substitu-

tion:

r = y − V y = (I − V )y = (I − V ) (Xβ + ε) =

Xβ −X(XTX)−1XTXβ + (I − V )ε = Xβ −Xβ + (I − V )ε = (I − V )ε
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Consequently, the relationship between the errors and residuals only depend on V , usually

referred to as the hat matrix, this is summarized by the following:

r = (I − V )ε (3.5.6)

ri = εi −
n∑
j=1

vijεj

The hat matrix is symmetric and idempotent, these special properties simply follow from

linear algebraic transformations.

V T = (X(XTX)−1XT )T = X(XTX)−1XT = V

V 2 = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = V

When calculating the distribution of the residuals from the distribution of the errors,

the matrix transformation does not change the distribution family. Thus the residuals,

similarly to the ε errors, will also follow a normal distribution. Using (3.5.6) to determine

the speci�c distribution properties, the expected value is E(r) = (I − V )E(ε) = 0 and

the variance is calculated using V 's symmetry and idempotency:

var(r) = (I − V )σ2(I − V )T = σ2(I − V )(I − V ) = σ2(I − V − V + V 2) = σ2(I − V )

As a result, the distribution of r is:

r ∼ N(0, σ2(I − V )) (3.5.7)

Furthermore, it is possible to show that the expected value of ri is:

E(ri) = E(εi −
n∑
j=1

vijεj) = E(εi)−
n∑
j=1

vijE(εj) = 0

Since εi is independent from εj if i 6= j, for the variance of ri is holds that:

E(ri − Eri)2 = E(r2i ) = E(εi −
n∑
j=1

vijεj)
2 = E(ε2i − 2εi

n∑
j=1

vijεj +

n∑
j=1

v2ijε
2
j ) =

E(ε2i − 2viiε
2
i +

n∑
j=1

v2ijε
2
j ) = E(ε2i )− 2viiE(ε2i ) +

n∑
j=1

v2ijE(ε2j ) =

σ2 − 2viiσ
2 +

n∑
j=1

v2ijσ
2 = σ2(1− 2vii +

n∑
j=1

v2ij) (3.5.8)

Using the symmetry and idempotency of V , it follows that vii =
∑n
j=1 vijvji =

∑n
j=1 v

2
ij ,

18



substituting this into (3.5.8):

σ2(1− 2vii + vii) = σ2(1− vii)

Summarizing the above calculations, the residuals follow a normal distribution and the

variance of each individual ri is:

var(ri) = σ2(1− vii) (3.5.9)

Now that the variance of the residuals are known, hence it is possible to examine the

variance of the �tted values. Using the de�nition of the residuals (3.5.1) and errors

(3.5.2):

var
(
Ŷi

)
= var(yi − ri) = var(Yi + εi − ri)

Since Yi is a theoretical constant, it's variance is zero:

var(Ŷi) = var(εi − ri) = var(εi) + var(ri)− 2cov(εi, ri) =

σ2 + σ2(1− vii)− 2E (εiri − E(εi)E(ri)) = σ2 + σ2(1− vii)− 2E(εiri)

Using the earlier proved relationship (3.5.6) between the errors and the residuals and the

fact that the expected value of the cross product of the di�erent εi and εj variables are

zero, since if i 6= j then these random variables are independent, it follows:

σ2 + σ2(1− vii)− 2E

εi(εi − n∑
j=1

vijεj)

 = σ2 + σ2(1− vii)− 2E(ε2i − viiε2i ) =

σ2 + σ2(1− vii)− 2σ2(1− vii) = viiσ
2

Hence, the variance of the �tted value is:

var(Ŷi) = viiσ
2 (3.5.10)

Since vii ranges on [0, 1] then if vii is small, the variance of the �tted value is small and

the variance of the residual is large and vice versa. Consequently, better understanding

of the hat matrix V and especially the magnitude of the diagonal elements is essential

to evaluate the accuracy of the regression. For this purpose, Cook and Weisberg [1982]

suggest to divide X into the sum of two projections such that X = (X1, X2), where X1

is an n× q matrix and its rank is q. Furthermore, let U be X1(XT
1 X1)−1XT

1 and let X∗2
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equal to (I − U)X2, the component of X2 that is orthogonal to X1. In this setup:

T ∗ = X∗2 (X∗T2 X∗2 )−1X∗T2 = (I − U)X2(XT
2 (I − U)X2)−1XT

2 (I − U)

is the operator that projects onto the subspace of X2 and thus V can be calculated as:

V = U + T ∗ (3.5.11)

The �rst column of the X matrix in LSM is the 0 degree polynomial of the chosen kind

or equivalently constant 1. Consequently, to make practical use of the above calculations,

let X1 be a vector of ones, hence from (3.5.11) it follows that

V = 1/n+X∗2 (X∗T2 X∗2 )−1X∗T2

where 1 denotes the vector of ones and thus for vii:

vii =
1

n
+ xTi (X∗T2 X∗2 )−1xi

where xTi is the ith row of X∗2 . Let µ1 ≥ µ2 ≥ . . . ≥ µn denote the eigenvalues of

X∗T2 X∗2 and let p1, . . . , pn denote the corresponding eigenvectors. Cook and Weisberg

[1980] previously showed that, assuming the intercept is included in the model, then

using the spectral decomposition of the corrected cross product matrix, for vii it follows:

vii =
1

n
+

p∑
l=1

(
pTl xi√
µl

)2

Further letting θli denote the angle between pl and xi, then

cos(θli) =
pTl xi

(xTi xi)
1/2

Thus, for vii:

vii =
1

n
+ xTi xi

p∑
l=1

cos2(θli)

µl

Hence, vii is large if:

1. xTi xi is large, which is equivalent with, xi is well removed from the bulk of the cases

or

2. xi has similar direction as an eigenvector corresponding to a small eigenvalue of

X∗T2 X∗2 .
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From this it follows that �tted values at remote places will have relatively large variances

whereas the corresponding residuals will have small variances. This is intuitively justi-

�able since at remote places the number of samples are much lower, thus the regression

will �t these points better, resulting in small residual variances for these cases. However,

this implies that these �tted points will have relatively larger errors compared to the bulk

of the cases.

3.6 The bias of LSM

Let me apply the results of the previous section for LSM algorithm for the speci�c

case of valuing an American call option. Since the discounted stock price process is a

martingale under the equivalent risk natural measure Q, cases remote in the factor space

correspond to the paths where the underlying obtains relatively large or small values. Let

me examine an extreme path that realizes one of the largest values at maturity.
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Figure 3.6.1: Extreme path

The bold black line indicates the strike whereas the bold blue curve is a possible

selection for an exercise strategy, namely exercise the �rst time when the stock price hits

the curve. Since LSM works backwards, as the algorithm starts it immediately obtains

the huge payo� value of exercise at maturity. In the hypothetical case of the above

example, the blue path is well removed from the bulk of the cases, hence the regression

will have relatively small variance and will �t the independent observed variable very

well. Hence, the approximation of the conditional expectation will be biased as this

extreme case dominates the region, resulting the algorithm to bene�t from unavailable

information in a real life setup. Thus in general, working backwards, on these extreme

paths the algorithm will always suggest to keep going and not to exercise the option
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since the conditional expectation of the future cash �ows are larger than the value of

current exercise. For example, the �rst time the above extreme path hits the exercise

boundary, there are no other paths in the (110, 170] range so the regression will indicate

much higher payo� for continuation based on the future path of this particular realization.

Consequently, the exercise strategy implied by LSM is biased by the look ahead of the

algorithm. This problem does not arise in the bulk of the cases since there are su�cient

number of paths to average out individual properties typically belonging to one particular

realization of the underlying. As a result of this foresight bias, for �nite number of paths,

LSM results in a value greater than the true value of the American option.

The chart below plots the American option value determined by LSM as a function

of the number of paths used in the simulation, whereas the yellow shaded area is the

variance of the simulation. The downward sloping curve implies that as the number

of paths increases the above described bias decreases making the value of the option

calculated by the algorithm decrease as well. For detailed information on the parameters

of the simulations presented, please refer to the Appendix.

Figure 3.6.2: LSM American option value

There are a number of di�erent solutions to this problem. One alternative approach

is to simulate a set of paths to determine the optimal stopping rule and then to use

this strategy on an independent set of new paths. Thus, eliminating all extra biased

information from the stopping rule. In practice this and slight modi�cations of this

method is the most widely used approach to eliminate the look ahead of the algorithm.

The chart below shows the same numerical test as above for the independent path method.

Here the curve is upward sloping, the fundamental behind this phenomenon is that the

stopping rule, studied on an independent set of realizations, gets more and more accurate

and relevant as the number of paths increases. In addition to the fact that Monte Carlo

simulation method also yields more reliable results as the number of paths increases and
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variance decreases.

Figure 3.6.3: Independent paths method option value

From a theoretical point of view another approach is increasing the number of paths

to in�nity. This will ease the problem because even at remote places there are going to be

enough number of samples to have an unbiased estimate of the conditional expectation

function of continuation. Even though, this approach is obviously not feasible due to

computational limitations, testing the algorithm for increasing number of paths does

justify the conjecture regarding the bias of the algorithm. As the below chart shows the

implied price by LSM algorithm and independent path method and also compares these

with the benchmark option value. Both LSM and independent path method converges to

the theoretical option price and the errors are well within the variance of the simulation.

The yellow shaded area is the variance of the independent path method.

Figure 3.6.4: Convergence of the methods
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Monte Carlo simulation is very time and memory consuming, thus in practice one

tries to avoid Monte Carlo method for very large number of paths and re-simulation as

much as possible. In the following chapter, I am going to introduce an analytic approach

to correct this foresight of the algorithm.
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Chapter 4

Analytic bias correction

In this chapter I am going to introduce a third alternative approach to generating two

independent set of paths and Brute-Force algorithm to determine the unbiased American

option price. The analytic bias correction method is an extension of LSM algorithm and

similarly to the approach introduced by Fries [2005], it begins with determining a closed

form of the actual bias of the model. Using this formula it is possible to analytically clean

the inherited foresight bias from the conditional expectation function. Once the investor

uses this numerically corrected value for comparison to create the exercise decision, the

resulting stopping rule and the implied American option price will be bias-free as well.

Let me start with �rst determining the bias term.

4.1 How biased is it?

LSM algorithm uses least squares regression model at each trading event to approxi-

mate the expected value of continuation. For �nite number of paths this value is di�erent

from the theoretical estimate of continuation. With the aid of the distributional proper-

ties of the residuals and the errors it is possible to calculate an unbiased approximation of

the current value of the option. The degree of the foresight is di�erent from path to path;

consequently, the aim is to derive the bias on each trajectory. In this chapter, according

to the previous notations the lower index for Si, Yi, Ŷi, yi, ri and εi will denote the value

on a particular ωi trajectory or equivalently the corresponding ith row of the following

vectors S, Y , Ŷ , y, r and ε respectively. Speci�cally for a put option at a given and set

time tk, the objective, as Fries [2005] suggests, is to path-wise determine the following:

E
(
max((K − Si)+, Yi)|F(tk)

)
(4.1.1)

The objective is to �nd out how much di�erent is the value implied by (4.1.1) from Ŷi,

which is the approximation used by LSM algorithm. The relationship between Yi and Ŷi

is summarized by:
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Yi = yi − εi = Ŷi + ri − εi

Since ri − εi will prove to be a crucially important, let me adopt the following notation:

ei = ri − εi

Thus, for (4.1.1) it follows:

E
(
max((K − Si)+, Ŷi + ei)|F(tk)

)
= E

(
max((K − Si)+ − Ŷi, ei)|F(tk)

)
+ Ŷi (4.1.2)

Let me further assume that the distribution of e, the di�erence of two normally distributed

variable, is:

ei ∼ N(0, δ2i )

Si and Ŷi are known constants at tk since they are F(tk)-measurable functions, thus

(4.1.2) is the expectation of the maximum of a constant and a normally distributed

random variable. Hence, after normalizing, the well known properties of the standard

normal random variables are applicable:

δi · E
(
max(

(K − Si)+ − Ŷi
δi

, e0)

)
+ Ŷi

where e0 is now a standard normal random variable, hence using the de�nition of the

expected value, the above further equals to:

δi ·
ˆ ∞
−∞

max(
(K − Si)+ − Ŷi

δi
, x)ϕ(x)dx+ Ŷi =

δi ·
ˆ (K−Si)

+−Ŷi
δi

−∞

(K − Si)+ − Ŷi
δi

ϕ(x)dx+ δi ·
ˆ ∞

(K−Si)+−Ŷi
δi

xϕ(x)dx+ Ŷi

Since δi along with Si and Ŷi are all constants at tk because once again they are F(tk)-

measurable functions:

(
(K − Si)+ − Ŷi

)
·
ˆ (K−Si)

+−Ŷi
δi

−∞
ϕ(x)dx+ δi ·

ˆ ∞
(K−Si)+−Ŷi

δi

xϕ(x)dx+ Ŷi

Using the well known property of the standard normal distribution, such that −xϕ(x) =
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ϕ′(x):

(
(K − Si)+ − Ŷi

)
·
ˆ (K−Si)

+−Ŷi
δi

−∞
ϕ(x)dx− δi ·

ˆ ∞
(K−Si)+−Ŷi

δi

ϕ′(x)dx+ Ŷi =

(
(K − Si)+ − Ŷi

)
· Φ
(

(K − Si)+ − Ŷi
δi

)
+ δi · ϕ

(
(K − Si)+ − Ŷi

δi

)
+ Ŷi

Consequently, the di�erence between the unbiased estimated value of the put option and

the approximation of the regression at time tk is summarized by:

bi
.
=
(

(K − Si)+ − Ŷi
)
· Φ
(

(K − Si)+ − Ŷi
δi

)
+ δi · ϕ

(
(K − Si)+ − Ŷi

δi

)
(4.1.3)

Let me refer to expression (4.1.3) as the bias term bi, which is the additional information

or in other words the look ahead obtained by the algorithm. Furthermore, let b denote the

bias vector. As all variables of the bias term are F(tk)-measurable, at any given tk it is

possible to determine the exact value of the foresight. Thus, the conditional expectation

cleaned with the bias term is a computable and fair estimate of the theoretical value of

the option at tk.

4.2 Process of analytic bias correction

At every trading event, the value of continuation is estimated with the least squares

method of LSM, thus the analytic foresight removal has to be applied before each decision

making, so that the �nal option value is a fair, unbiased estimate of the real value of the

instrument. Consequently, the bias term has to be calculated at each trading event.

For a particular tk time, on a given ωi trajectory K, Si and Ŷi are known, but the

distributional properties of ei and particularly var(ei) = δ2i are not trivial outputs of the

model. However, it is possible to derive them once the distribution of ri and εi are known.

Using the results of the previous sections, now I introduce a new six-step approach that

calculates the bias term and determines a new exercise policy. Since εi is unobservable,

the intuition is to start with the residuals. The analytic bias removal is summarized by

the following six-step process:

1. At any given tk, a realization of Ŷ the expected value of continuation is calculated

by regressing y, the known, discounted cash �ow value at tk+1 on a given set of

basis functions. Hence, a realization of the r residual random vector is computable

such as:

r = y − Ŷ
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2. Once the residual vector is known, using the relationship between errors and residu-

als makes it possible to compute the realization of the error vector. The hat matrix

V is calculated as a sub-process of the regression; consequently, it is known, hence

based on (3.5.6), the error vector is:

ε = (I − V )−1 · r

3. Since εi and εj are independent and identically distributed if i 6= j, the sample

variance serves as an adequate approximation of σ2 the variance of εi for ∀i ∈
1, . . . , n. This is calculated as:

σ2 ≈
∑n
i=1 (εi − E(εi))

2

n
=

∑n
i=1(εi)

2

n

4. The bias term bi is a function of δi which is the variance of ei = ri − εi, this is
calculated very similarly to the variance of Ŷi:

var(ei) = var(ri − εi) = var(ri) + var(εi)− 2cov(ri, εi)

Now the variance of εi and ri are known and using the same arguments as for Ŷi,

the above is:

σ2 + σ2(1− vii)− 2E (riεi − E(ri)E(εi)) = σ2 + σ2(1− vii)− 2E(riεi) =

σ2 + σ2(1− vii)− 2E

εi(εi − n∑
j=1

vijεj)

 = σ2 + σ2(1− vii) + 2E(ε2i − viiε2i ) =

σ2 + σ2(1− vii)− 2σ2(1− vii) = viiσ
2

Consequently, the variance of ei is computed as:

δ2i = var(ei) = viiσ
2

5. Now all the building blocks of the bias term are calculated, hence bi is computable

as follows:

(
(K − Si)+ − Ŷi

)
· Φ
(

(K − Si)+ − Ŷi
δi

)
+ δi · ϕ

(
(K − Si)+ − Ŷi

δi

)

6. The investor's new decision is based on the newly calculated bias free estimate

of continuation. The strategy is to exercise the option if it is in the money and

(K − Si)+ the current exercise value is greater than or equal to Ŷi + bi the bias

free estimate of continuation and not to exercise every other case. As a result for
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in-the-money paths at tk, the exercise strategy is summarized by:exercise if (K − Si)+ ≥ Ŷi + bi

no exercise else

4.3 The bias term

In order to better understand the concept of analytic bias removal, in this chapter I

am going to examine the bias term bi. Since Si and Ŷi are known at a given time tk, it

makes sense to look at bi as a function of the standard deviation δi. Using the result for

var(ei) of the previous section, for δi it follows that:

δi =
√
viiσ2 =

√
viiσ

This further justi�es the approach to view bi as a function of δi, since σ is constant and

vii describes the ith trajectory's properties relative to the rest of the paths, meaning that

bi(δi) does carry information about the look ahead on the particular path. Let me note

that if (K − Si)+ < Ŷi at a given time tk then it is not optimal to exercise regardless

the size of the corresponding bias bi. Consequently, I assume that
(

(K − Si)+ − Ŷi
)
is a

non-negative constant. The bias term consists of two parts:

1. The �rst part is
(

(K − Si)+ − Ŷi
)
·Φ
(

(K−Si)+−Ŷi
δi

)
. It converges to its supremum of(

(K − Si)+ − Ŷi
)
as δi goes to zero and it converges to its in�mum of

((K−Si)+−Ŷi)
2

as δi goes to in�nity.
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Figure 4.3.1: The �rst part of the bias term
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2. The second part is δi · ϕ
(

(K−Si)+−Ŷi
δi

)
. It converges to its supremum of +∞ as δi

goes to in�nity and it converges to its in�mum of 0 as δi goes to zero.
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Figure 4.3.2: The second part of the bias term

The bias term itself converges to its supremum of +∞ as δi goes to in�nity and it converges

to its in�mum of
(

(K − Si)+ − Ŷi
)
as δi goes to zero.
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Figure 4.3.3: The bias term as a function of δ

This has two very important implications. First, as δi goes to 0, Ŷi + bi the true value

of the option is Ŷi + (K − Si)+ − Ŷi = (K − Si)+. The intuition here is that as δi goes

to zero the volatility of the stock needs to go to zero as well, meaning that the stochastic

nature of the underlying is eliminated, thus it equals to its intrinsic value. Second, the

bias term bi is an increasing function of δi, or equivalently the greater the value of vii,

30



the greater the bias term. Once again, vii is large if the trajectory is far removed from

the bulk of the cases, or in other words if it is biased. This implies that bi is large if

the trajectory is biased and small otherwise. Using bias free estimation of the stopping

policy, the condition for exercise is:

(K − Si)+ ≥ Ŷi + bi

this will less likely to hold on biased, extreme paths because the bias bi is large since

vii is big as well on these trajectories, hence implying no exercise. Given the backward

nature of LSM, this will delay the exercise, meaning that the investor will only exercise

at an earlier point in time, when the underlying's spot price is lower and thus the extra

premium of the foresight bias is eliminated from the price of the American option.

4.4 Implementation of the new approach

I was using Matlab R2010a for implementing and testing LSM algorithm and the

analytic bias correction method. The program starts with identifying the initial values

for the simulation along with preallocation of the variables used in the code. For simplicity,

I assumed 0% interest rate and chose the volatility parameter σ to be 0.2. The initial

value of the stock is 100 and there are 50 trading events in a 1 year time frame:

1 tic %starting a timer

2 r = 0; %interest rate

3 volatility = .2; %volatility

4 s_0 = 100; %price of the underlying at time 0

5 strike = 100; %strike

6 numberofpaths = 5000; %number of paths

7 N = 50; %number of exercise times

8

9 %preallocation of the below vectors and matrices

10 cashflow = zeros(numberofpaths,1);

11 residual = zeros(numberofpaths,1);

12 error = zeros(numberofpaths,1);

13 residualvar = zeros(numberofpaths,1);

14 errorvar = zeros(numberofpaths,1);

15 X = zeros(numberofpaths,3);

16 W = zeros(numberofpaths,N);

After initialization, for tractability purposes a seed is speci�ed for the random number

generation, this means that the program will generate the same random numbers, hence

di�erent algorithms are comparable since they can run on the same random paths. Monte

Carlo simulation is done by evaluating the formula of the Geometric Brownian motion s_t
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using the randomly generated normal variables stored in the vector increments. Each

row of the matrix W is one trajectory generated by the simulation:

1 randn('seed',0) %to use seed 0

2 t=1:N; %N exercise events

3 time=t/N; %normalising the time frame to 1 year

4 s_t(:,1)=s_0*ones(numberofpaths,1);

5 dt=1/N;

6

7 for i=1:N;

8 increments = randn(numberofpaths,1);

9 s_t(:,i+1) = s_t(:,i) .* exp((r−.5 * volatility^2) * dt + volatility ...

* sqrt(dt) * increments);

10 W(:,i+1) = s_t(:,i+1);

11 end

12 W(:,1)=[];

The algorithm starts with identifying the intrinsic value at maturity on each path, par-

ticularly for a put this is done by the following. Let me note that since European options

are only exercisable at maturity, this information alone is su�cient to approximate the

European option value, this is stored in the variable european_value.

1 for i=1:numberofpaths

2 if W(i,N)<strike

3 cashflow(i) = (strike − W(i,N)) * exp(−r/N);
4 else

5 cashflow(i) = 0;

6 end

7 end

8

9 european_value = sum(cashflow(1:numberofpaths))/numberofpaths;

Now that the exercise policy at maturity is known, the implementation of the recursion

part of LSM is next. Working backwards for each j = N − 1, . . . , 1, in other words at

each trading event, variable index stores the indices of all the in-the-money paths. The

spot price on these trajectories are used to evaluate the regressor function and these

�gures are stored in the rows of the matrix X. This is then used to calculate the variable

conditionalexp which is the regression value, the approximation of continuation.

1 for j = N−1:−1:1
2 index = find(strike − W(:,j) > 0); %

3 X = [ones(size(index)) W(index,j) W(index,j).^2]; %

4 B = (X'*X)\X'*cashflow(index); %B = inv(X'*X)*X'*cashflow(index);

5 conditionalexp = X * B;
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Up until this point the algorithm is same for LSM and the new method. The following

section will calculate the bias term based on the six steps introduced in Section 4.2. The

only di�culty might arise is the calculation of the error term ε = (I−V )−1 ·r, the problem
is that (I − V )−1 might be badly scaled or close to be singular. Therefore, instead of

using the built in inverse function of Matlab, I used the Taylor series to calculate the

inverse, speci�cally it is known that:

1

1− x = 1 + x+ x2 + . . . for |x| < 1

This also holds true for matrices, numerical tests suggested that even I+V gives accurate

results for the inverse of I − V .

1 %bias correction

2 V = X / (X'*X) * X'; %V = X*inv(X'*X)*X';

3 residual = cashflow(index) − conditionalexp;

4 error = (eye(size(index,1)) + V) * residual; %inv(I−V)*r
5 errorvar = sum(error.^2) / size(index,1);

6 delta = sqrt(diag(V) .* errorvar);

7 b1 = (max(strike − W(index,j),0) − conditionalexp) .* ...

normcdf((max(strike − W(index,j),0) − conditionalexp) ./ delta)

8 b2 = delta .* normpdf((max(strike − W(index,j),0) − conditionalexp) ...

./ delta);

9 bias = b1 + b2;

Now that the bias term is known, it is possible to derive the stopping policy by:

1 for i = 1:size(index,1)

2 if conditionalexp(i) + bias(i) <= strike − W(index(i),j)

3 cashflow(index(i)) = (strike − W(index(i),j));

4 end

5 end

6 end

7

8 cashflow = cashflow * exp(−r/N);
9 toc

10 american_value = sum(cashflow(1:numberofpaths))/numberofpaths;

At last, the value of the American option is calculated with analytic foresight bias cor-

rection method and it is stored in the variable american_value. In case the conditional

expectation is not cleaned from the look ahead bias, the exercise policy is reduced to:
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1 for i = 1:size(index,1)

2 if conditionalexp(i) <= strike − W(index(i),j)

3 cashflow(index(i)) = (strike − W(index(i),j));

4 end

5 end

6 end

Hence, the algorithm simpli�es to the original method introduced by Longsta� and

Schwartz.

4.5 Testing of the new approach

In this section I am going to compare the three introduced methods, namely the

original LSM, the independent path algorithm and the analytic bias correction method.

The main objective is to see if the price calculated by the analytic bias correction method

is in the optimal range. Since LSM algorithm always results in a value greater than the

theoretical price and on the other hand the independent path method is known to be

suboptimal, it is a natural requirement for the new method to compute option prices in

this optimal range. In the chart below, the y − axis represents the value of the option

whereas the x− axis shows the number of paths.
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Figure 4.5.1: Analytic bias correction test 1

The value determined by the new method is clearly in the optimal range and it seems

to �uctuate a lot less then the other two methods. The next chart shows the same test;

however, this time four basis functions are used instead of three.
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Figure 4.5.2: Analytic bias correction test 2

The last test for the optimal range uses three basis functions; however, this time

variance of the underlying is 0.4 instead of 0.2 as in the previous two examples.
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Figure 4.5.3: Analytic bias correction test 3

The option prices generated by the analytic bias correction method are in the optimal

range for all the test cases.

4.6 Areas of further research

The new method possesses the most important qualities required from any American

style contingent claim pricing model. Since it is fundamentally based on LSM algorithm,

it is �exible and easy to implement because it only consists of six simple additional

steps. Moreover, it does address the look ahead bias of the original algorithm, hence it

derives a more reliable estimate of the real American option value. Even though, the
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analytic bias removal method uses large matrices, for instance the hat matrix V , it is still

computationally tractable; however, simulations with large number of paths might be very

time and memory consuming. One possible solution to avoid dealing with large matrices is

to divide the in-the-money paths into buckets and then calculate the bias in these various

buckets. Since the number of elements of V is the square of the number of in-the-money

paths, using the bucket method will substantially reduce the size of the matrices used to

calculate the bias. Broadie and Glasserman [2004] propose a new idea called policy �xing,

meaning that the investor only considers exercising if the immediate payo� is greater than

a threshold. A natural choice for this threshold is the current European option price of

the underlying security. Using this approach reduces the range over which bias has to be

calculated. In addition, I conjecture that buckets close to strike or alternatively close to

the threshold will tend to be very low biased since they are not removed from the bulk of

the cases; consequently, calculating the bias term might be avoided for these particular

bins altogether. These methods further trim the size of matrix V , resulting the algorithm

to be time-wise competitive as well, even for simulations with higher number of paths.

The analytic bias correction method is now proved to be a reliable algorithm for

pricing of American call and put options. Further areas of research include testings on

derivatives with di�erent and possibly more complex payo�s.
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Chapter 5

Conclusion

One of the most popular areas of quantitative �nance is the ongoing struggle to de-

termine the optimal exercise strategy used for the pricing of American style contingent

claims. Deriving the best exercise policy is the common goal of investors, hedge funds

and investment banks to ultimately maximize their pro�t. Monte Carlo simulation meth-

ods are more and more popular in derivative pricing as a result of rapid development of

computational e�ciency and stochastic calculus. LSM algorithm introduced by Longsta�

and Schwartz is a simple yet powerful method for valuing American options. The goal of

my thesis was to gain a deep understanding of the algorithm itself along with its strengths

and weaknesses and then to address the issue of the embedded foresight bias.

The fundamental incentive was to examine the underlying least squares regression

model and furthermore to derive the distributional properties of residuals and theoreti-

cal errors. A sound understanding of these principles enabled me to reveal an unbiased

approximation of the theoretical conditional expectation value of continuation. Conse-

quently, I introduced a six-step methodology for path-wise calculation of the bias term,

a new approach for eliminating the foresight of the original algorithm. The analytic bias

removal method ful�lls all the natural requirements one might have towards any Amer-

ican option pricing algorithm and upon further testings it proved to be a reliable and

accurate new model.
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Appendix A

Implementations

Implementation 1:

LSM algorithm:

1 clear all

2 tic r = 0; %interest rate

3 volatility = .2; %volatility

4 s_0 = 100; %price of the underlying at time 0

5 strike = 100;

6 numberofpaths = 1000000;

7 testnum=100;

8 N = 50; %number of the standard normals ~ number of trading events

9

10 european_value = zeros(1,testnum);

11 american_value = zeros(2,testnum);

12 cashflow = zeros(numberofpaths,1);

13

14 randn('seed',100) %to use seed 100

15

16 for g = 1:testnum

17 t = 1:N;

18 time = t/N;

19 W(:,1) = s_0*ones(numberofpaths,1);

20 dt = 1/N;

21 for i=1:N;

22 disp = randn(numberofpaths,1); %increments

23 W(:,i+1) = W(:,i) .* exp((r − 0.5 * volatility^2) * dt + ...

volatility * sqrt(dt) * disp);

24 end

25 W(:,1) = [];

26

27 for i = 1:numberofpaths

28 if W(i,N) < strike
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29 cashflow(i) = (strike − W(i,N)) * exp(−r * dt);

30 else

31 cashflow(i) = 0;

32 end

33 end

34

35 european_value(g) = sum(cashflow(1:numberofpaths)) / numberofpaths;

36

37 for j = N−1:−1:1
38 index = find(strike−W(:,j) > 0);

39 X = [ones(size(index)) W(index,j) W(index,j).^2];

40 B = inv(X'*X) * X' * cashflow(index);

41 conditionalexp = X * B;

42

43 for i=1:size(index,1)

44 if conditionalexp(i) <= strike − W(index(i),j)

45 cashflow(index(i)) = (strike − W(index(i),j));

46 end

47 end

48 cashflow = cashflow * exp(−r * dt);

49 end

50 american_value(:,g) = [mean(cashflow) std(cashflow)/sqrt(numberofpaths)];

51 toc

52 end

53 american_value' european_value(:);

54 mean(american_value')

Implementation 2:

Independent path method:

1 clear all

2 tic r = 0; %interest rate

3 volatility = .2; %volatility

4 s_0 = 100; %price of the underlying at time 0

5 strike = 100;

6 numberofpaths = 5000;

7 N = 50; %number of the standard normals ~ number of trading events

8 testnum = 100;

9

10 american_value = zeros(2,testnum);

11 randn('seed',100) %to use seed 100

12

13 for g = 1:testnum

14 t = 1:N;

15 time = t/N;

16 cashflow = zeros(numberofpaths,1);

17 cashflowS = zeros(numberofpaths,1);

18 W = zeros(numberofpaths,N);

19 WS = zeros(numberofpaths,N);
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20

21 W(:,1) = s_0 * ones(numberofpaths,1);

22 dt = 1 / N;

23 for i = 1:N;

24 disp = randn(numberofpaths,1); %increments

25 W(:,i+1) = W(:,i) .* exp((r − 0.5 * volatility^2) * dt + ...

volatility * sqrt(dt) * disp);

26 end

27 W(:,1) = [];

28

29 for i = 1:numberofpaths

30 if W(i,N) < strike

31 cashflow(i) = (strike − W(i,N)) * exp(−r * dt);

32 else

33 cashflow(i) = 0;

34 end

35 end

36

37 european_value = sum(cashflow(1:numberofpaths))/numberofpaths;

38

39 WS(:,1) = s_0 * ones(numberofpaths,1);

40 dt = 1/N;

41 for i = 1:N;

42 disp = randn(numberofpaths,1); %increments

43 WS(:,i+1) = WS(:,i) .* exp((r − 0.5 * volatility^2) * dt + ...

volatility * sqrt(dt) * disp);

44 end

45 WS(:,1) = [];

46

47 for i = 1:numberofpaths

48 if WS(i,N) < strike

49 cashflowS(i) = (strike − WS(i,N)) * exp(−r * dt);

50 else

51 cashflowS(i) = 0;

52 end

53 end

54

55 european_valueS = sum(cashflowS(1:numberofpaths))/numberofpaths;

56

57 for j = N−1:−1:1
58 index = find(strike − W(:,j) > 0);

59 X = [ones(size(index)) W(index,j) W(index,j).^2];

60 B = inv(X'*X) * X' * cashflow(index);

61 conditionalexp = X * B;

62

63 for i = 1:size(index,1)

64 if conditionalexp(i) <= strike − W(index(i),j)

65 cashflow(index(i)) = (strike − W(index(i),j));

66 end

67 end
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68

69 indexS = find(strike − WS(:,j) > 0);

70 XS = [ones(size(indexS)) WS(indexS,j) WS(indexS,j).^2];

71 conditionalexpS = XS * B;

72

73 for i = 1:size(indexS,1)

74 if conditionalexpS(i) <= strike − WS(indexS(i),j)

75 cashflowS(indexS(i)) = (strike − WS(indexS(i),j));

76 end

77 end

78 cashflow = cashflow * exp(−r * dt);

79 cashflowS = cashflowS * exp(−r * dt);

80 end

81 american_value(:,g) = [mean(cashflowS) ...

std(cashflowS)/sqrt(numberofpaths)];

82 toc

83 end

84

85 american_value'

86 european_valueS(:); mean(american_value')

Implementation 3:

BOPM model:

1 clear all

2 r = 0; %interest rate

3 volatility = 0.2; %volatility

4 T = 1; %length of the period

5 s_0 = 100; %price of the underlying at time 0

6 strike = 100;

7 N = 50; %number of trading events

8

9 dt = T / N;

10 nudt = (r − 0.5 * volatility^2) * dt;

11 dx = sqrt(volatility^2 * dt + nudt^2);

12 pu = 0.5 + 0.5 * nudt / dx;

13 pd = 0.5 − 0.5 * nudt / dx;

14

15 S = s_0 * exp(([0:N] * 2 − N) * dx);

16 V = max(strike − S,0);

17 for tt = N:−1:1
18 Vup = V([2:tt+1]);

19 Vdown = V([1:tt]);

20 V = max(max(strike − s_0 * exp(([0:tt−1] * 2 − (tt − 1)) * ...

dx),0),exp(−r * dt) * (pu * Vup + pd * Vdown));

21 end

22

23 value=V
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Appendix B

Figures

Figure 3.6.1:

Parameter of the simulation are:

1 r = 0; %interest rate

2 volatility = .2; %volatility

3 s_0 = 100; %price of the underlying at time 0

4 strike = 110; %the strike is 100

5 numberofpaths = 11;

6 N = 50; %number of the standard normals ~ number of trading events

7 randn('seed',0) %used seed 0 to generate these paths

The equation of the exercise boundary is: f(x) = 2 ·
√
N − x+ 110

Figure 3.6.2:

Shows the average of the means and variance of 100 re-simulations of LSM algorithm

with the below parameters:

1 r = 0; %interest rate

2 volatility = .2; %volatility

3 s_0 = 100; %price of the underlying at time 0

4 strike = 100; %the strike is 100

5 N = 50; %number of the standard normals ~ number of trading events

6 randn('seed',100) %used seed 100 to generate these paths

42



Figure 3.6.3:

Shows the average of the means and variance of 100 re-simulations of independent

path method with the below parameters:

1 r = 0; %interest rate

2 volatility = .2; %volatility

3 s_0 = 100; %price of the underlying at time 0

4 strike = 100; %the strike is 100

5 N = 50; %number of the standard normals ~ number of trading events

6 randn('seed',100) %used seed 100 to generate these paths

Let me further note that half of the indicated number of paths were used to create the

stopping rule and the remaining half were used to calculate the option price.

Figure 3.6.4:

Shows the average of the means and variance of 100 re-simulations of LSM algorithm

and independent path method with the below parameters:

1 r = 0; %interest rate

2 volatility = .2; %volatility

3 s_0 = 100; %price of the underlying at time 0

4 strike = 100; %the strike is 100

5 N = 50; %number of the standard normals ~ number of trading events

6 randn('seed',100) %used seed 100 to generate these paths

Let me further note that for the independent path method half of the indicated number of

paths were used to create the stopping rule and the remaining half were used to calculate

the option price.

Figure 4.5.1:

Shows the average of the means 100 re-simulations of LSM algorithm, analytic bias

correction method and independent path method with the below parameters:

1 r = 0; %interest rate

2 volatility = .2; %volatility

3 s_0 = 100; %price of the underlying at time 0

4 strike = 100; %the strike is 100

5 N = 50; %number of the standard normals ~ number of trading events

6 randn('seed',100) %used seed 100 to generate these paths

Let me further note that for the independent path method half of the indicated number of

paths were used to create the stopping rule and the remaining half were used to calculate

the option price.
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Figure 4.5.2:

Shows the average of the means 100 re-simulations of LSM algorithm, analytic bias

correction method and independent path method with the same parameters as �gure 9,

but 4 basis functions were used instead of 3.

Figure 4.5.3:

Shows the average of the means 100 re-simulations of LSM algorithm, analytic bias

correction method and independent path method with the below parameters:

1 r = 0; %interest rate

2 volatility = .4; %volatility

3 s_0 = 100; %price of the underlying at time 0

4 strike = 100; %the strike is 100

5 N = 50; %number of the standard normals ~ number of trading events

6 randn('seed',100) %used seed 100 to generate these paths

Let me further note that for the independent path method half of the indicated number of

paths were used to create the stopping rule and the remaining half were used to calculate

the option price.
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