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Chapter 1

Introduction

An investor that enters into a �nancial transactions is faced to various risks, like
market risk, credit risk, liquidity risk or operational risk. Market risk is the risk of
value change in a �nancial asset due to changes in market variables, e.g. interest
rates, exchange rates, equity prices, and commodity prices. Credit risk can be
de�ned as the risk of a �nancial loss due to changes in the credit quality of market
participants. This includes both losses due to defaults and losses caused by changes
in credit quality. Liquidity risk is the risk that a given security or asset cannot
be bought or sold quickly enough to prevent or minimize a loss. The boundaries
of these three risk categories are not always clearly de�ned, nor do they form an
exhaustive list of the full range of possible risks a�ecting a �nancial institution.

1.1 Types of Credit Risk

The most common type of credit risk is default risk, which occurs when a company
or an individual is unable or unwilling to make the required payments on their
debt obligations. This also includes that the borrower or debtor can not repay on
schedule or in full. In a banking context, by far the oldest risk type to be regulated
is default risk. For most banks, loans are the largest and most obvious source of
default risk, however, banks face credit risk in other various �nancial instruments,
including interbank transactions, foreign exchange transactions, futures, swaps,
options.

For �rms, default is normally triggered by a failure of the �rm to meet its debt
servicing obligations, which usually leads to the �rm's reorganisation or liquida-
tion. Thus default is considered a rare event, which can cause large �nancial losses
to security holders. With some �exible thinking, this type of credit risk can be ex-
tended to sovereign bonds issued by countries with a non-negligible risk of default.
Many countries have faced this sovereign risk in the late-2000s global recession.

Counterparty risk is also a sub-class of credit risk and usually is a result of trad-
ing activities. Counterparty risk is the risk of default by the counterparty in many
forms of contracts, often over-the-counter (OTC) contracts. OTC contracts, such
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2 CHAPTER 1. INTRODUCTION

as interest rate swaps, are unfunded bilateral contract, and if one party defaults,
it may expose the other party to signi�cant �nancial losses.

With loans or bonds, the exposure is easy to determine, it is the outstanding
amount that the counterparty has yet to repay. The counterparty risk is mea-
sured as the replacement cost of the position if the counterparty defaults prior
to transaction, plus the estimated future loss if the counterparty defaults on its
obligations.

Counterparty credit risk has become one of the biggest issues and challenges
in the global �nancial crisis. A famous example is the case of AIG, which sold
credit default swaps to counterparties who wanted default protection, usaly on
CDO tranches. In September 2008 AIG required a federal bailout because it did
not have the �nancial strength to support its many CDS commitments as the crisis
progressed.

Another important issue in credit risk management is the estimation of credit
risk correlation. Understanding how corporate defaults are correlated is partic-
ularly important for the risk management of portfolios of corporate debt. For
example, banks determine their capital requirements on the basis of default cor-
relation models. If defaults are more heavily clustered in time than envisioned in
these default risk models, then signi�cantly greater capital might be required in
order to survive default losses, especially in times of distress.

An understanding of the sources and degree of default clustering is also crucial
for the rating and risk analysis of derivatives that are heavily exposed to corre-
lations in credit risk, such as collateralized debt obligations (CDOs) and options
on portfolios of default swaps. This is especially true given the rapid growth of
structured credit products in the �nancial markets.

Several explanations have been explored, why corporate defaults cluster. First,
�rms may be exposed to common risk factors whose movements cause correlated
changes in default probabilities. Second, default may be �contagious,� in other
words a default event may induce other corporate failures. Third, learning from
default may generate default correlation. For example, the default of one �rm may
reveal some systematic irregularities that could be present in other �rms, what
increases default probabilities for other �rms.

1.2 Measurement and Management

The central issue of �nancial risk management has been market risk, since a �rm's
business is constantly a�ected by this risk. Therefore a lot of methods have been
developed to measure and reduce market risk. In 1974 Robert Merton has noted
that the Black Scholes option pricing formula can be used to evaluate the credit
risk of a corporation's debt. Since then the the �eld of credit risk research has
seen many theoretical developments. Most of this research has concentrated on
the pricing of corporate and sovereign defaultable bonds as the basis of credit risk
pricing.

Credit risk can be modeled with di�erent approaches. The literature distin-
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guishes between methods that use (historical) accounting information to asses or
forecast the credit risk of a �rm, and methods that use market prices of assets to
model credit risk.

Accounting based models like credit rating, rely purely on accounting data in
estimating the default probability. The advantages of these models are that they
can take several factors into account at the same time and that they are very easy
to use. However, this models do not provide an up-to-date indication of credit
risk, since they are not frequently updated. In the recent credit crisis we saw the
consequences of this: the sudden changes in �nancial conditions of �rms were not
yet re�ected in the �rm's credit rating. Firms that used credit ratings as the only
source of credit risk information were thereby unable to make a correct assessment
of their counterparty's credit risk and incurred high losses.

Market price methods are developed to take the sudden nature of default events
into account. There are two primary types of market price methods in the litera-
ture: reduced form models and structural models.

Structural models are based on the option pricing theories developed by Mer-
ton. In these models when the asset value of the �rm falls below a certain threshold,
the �rm fails to meet its obligations to the debt holders, thus triggering a default
event.

Unlike structural models, intensity models specify neither �rm value processes
nor default boundaries explicitly. The credit risk is speci�ed by the occurrence of
default and the recovery rate. The �rst is modeled as a stochastic event whose
arrival rate is governed by a given intensity. The intensities are typically ob-
tained from market prices of defaultable instruments, such as bonds and credit
default swaps. These models are �exible and computationally fast but they are
less grounded in economic theory than the structural models. Recovery rates are
usually assumed to be constant.



Chapter 2

Structural Models

In this chapter we review some models for measuring credit risk based on the
structural approach and also discuss the empirical evidence in the literature on
the performance of structural models of credit risk.

A model of default is known as a structural or �rm-value model when it at-
tempts to explain the mechanism by which default takes place. Structural models
have their origins in the framework of Merton [59], which has been the key foun-
dation of corporate debt pricing. Under these structural models, all the relevant
credit risk elements, including default, are a function of the structural characteris-
tics of the �rm, like asset volatility and leverage. The main advantage of structural
models is that they provide an intuitive picture, and an endogenous explanation
for default.

Structural models can be divided depending on, how they explain the mech-
anism of default. In the Merton model default can occur only at the maturity
of the dept. First passage model are based on the assumptions, that the default
occurs when the asset value drops below a barrier, allowing default to occur at
any time. The boundary can be either endogenous or exogenous. The former can
be considered to be a safety covenant while the latter can result from the equity
holder's option to default, as in Geske [42]. The recent theoretical models on
structural credit risk allow the equityholder's to default strategically or examine
optimal leverage using a �rst-passage model.

2.1 The Merton model

The literature on structural models for credit risk starts with the paper of Merton
[59] and it is based on the option pricing theory developed by Black & Scholes [9].
Many extensions of this model have been developed over the years, but Merton's
original model is still popular with practitioners in credit risk analysis.

Merton considers a �rm whose asset value follows some stochastic process Vt.
The �rm �nances itself by equity (i.e. by issuing shares) and by debt. In Merton's
model debt has a very simple structure: it consists of one single debt obligation or

4
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zero-coupon bond with face value D and maturity T . In practice a debt maturity
T is chosen such that all debts are mapped into a zero-coupon bond. Let Et and
Dt denote the time t value of equity and debt. According the capital structure
given by the balance sheet relationship the value of the �rm's assets is simply the
sum of these, i.e. Vt = Et + Dt, 0 ≤ t ≤ T. Default occurs if the �rm misses
a payment to its debt holders, which in the Merton model can occur only at the
maturity of the bond. At maturity T we have to distinguish between two cases.

• VT ≥ D: the �rm's asset value exceeds the face value of the dept. In this
case the debt holders receives D, the share holders receive the residual value
ET = VT −D, and there is no default.

• VT < D: the �rm's asset value is less than the face value of the debt. In
this case the �rm defaults and the share holders hand over the �rm's con-
trol to the bondholders, who distribute the �rm's capital among themselves.
Shareholders pay and receive nothing, so we have DT = VT , ET = 0.

Summarizing, we have the relations:

ET = max(VT −D, 0) = (VT −D)+,

DT = min(VT , D) = D − (D − VT )
+,

(2.1)

and thus the �rm's equity can be seen as a a call option on the �rm's assets, with
the strike price D and the maturity T .
Merton made the following assumptions to develop his model:

• There are no transaction costs, bankruptcy costs or taxes.

• The risk-free interest rate r is constant and known. Therefore, the price at
time t of the unit default-free zero-coupon bond with maturity T is easily
seen to be B(t, T ) = e−r(T−t).

• Assets are traded and trading takes place continuously in time with no re-
strictions on short selling.

• The �rm's asset-value process Vt is independent of the debt levelD and under
the real-world probability measure P the process Vt follows a di�usion model
of the form

dVt = µV Vtdt+ σV VtdWt (2.2)

where µV ∈ R is the expected return on the �rm's assets and σV > 0 is the
asset's return volatility and Wt is a standard Brownian motion under the
real-world measure.

According to (2.1), the �rm's equity corresponds to a European call on Vt with
exercise price D and maturity T . Thus the value of equity is simply given by the
Black and Scholes option pricing model:

Et = CBS(Vt, r, σV , D, T − t) = VtΦ(d+)−De−r(T−t)Φ(d−) (2.3)
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where Φ(·) denotes the N(0, 1) cumulative distribution function, with the quanti-
ties d+ and d− given by:

d+ =
ln(Vt/D) + (r + 1

2σ
2
V )(T − t)

σV
√
T − t

, (2.4)

d− = d+ − σV
√
T − t. (2.5)

Under this framework, a credit default at time T is triggered by the event that
shareholder's call option matures out-of-money. Equation (2.2) implies that VT =
V0 exp((µV − 1

2σ
2
V )T + σV WT ), and thus the �rm's default probability under the

real-world probability measure is:

P(VT ≤ D) = P(lnVT ≤ lnD) = Φ

(
ln(D/V0)− (µv − 1

2σ
2
V )T

σ2
V

√
T

)
= Φ(−d−).

It is easy to see that the default probability is increasing in D, decreasing in V0

and µV and for V0 > D increasing in σV , which is in line with economic intuition.
Next we turn to the valuation of the risky debt issued by the �rm. According

to (2.1) we have

Dt = De−r(T−t) − PBS(Vt, r, σV , D, T − t),

where PBS(Vt, r, σV , D, T − t) denotes the Black-Scholes price of a European put
option on Vt. It is known that

PBS(Vt, r, σV , D, T − t) = De−r(T−t)Φ(−d−)− VtΦ(−d+).

Combining this with the last equation, we get that

Dt = VtΦ(−d+) +De−r(T−t)Φ(d−).

The Term Structure of Credit Spreads

It is natural to consider yields instead of prices when trying to compare the the
values of risky and riskless debt. Credit spread compensates for exposure to credit
risk, and it is de�ned as the di�erence between the (promised) yield on the risky
bond and the yield on riskless bonds.

Let rDt denote the continuously compounded yield on the �rm's dept at time
t < T , so that

Dt = De−rDt (T−t).

From this equality follows, that

rDt = − lnDt − lnD

T − t
.
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For t < T the credit spread st is de�ned as the excess return over the risk-free
rate, st = rDt − rt. In Merton's model, we have

st = −
ln
(
Φ(d−) + Vt/De−r(T−t)Φ(−d+)

)
T − t

> 0 (2.6)

The term structure of credit spreads refers to a plot of spreads against the
time to maturity. By varying T − t in (2.6), we obtain the term structure of credit
spreads implied by the Merton model. From the de�nition of d+ and d−, this term
structure depends only on four variables: (i) the volatility of �rm value σV , (ii) the
risk-free rate r , (iii) the current leverage of the �rm L = D/Vt , and, of course,
(iv) the time to maturity T − t. To better understand implications of this model,
we examine the term structure of credit spreads:

• A medium-leverage company has a humped-shape credit spread term struc-
ture. The very short-term spreads are low as the company currently has just
enough assets to cover debts. Spread then rises quickly since asset value �uc-
tuations could easily result in insu�cient assets. At very long maturities the
credit spread starts to decrease, since the spread is determined by the value
of an European put option. The maximum payo� from the put at maturity
is D, which has a present value of PV(D), so PV (D) is an upper bound for
the value of the put at any point, and as T → ∞, PV (D) → 0.

• A low-leverage company has a �at credit spread term structure with ini-
tial spreads close to zero since default is an unlikely event. Spread slowly
increases with debt maturity, re�ecting that there is su�cient time for the
�rm value to drop below the value of debt. Then it starts to decrease at the
long end.

• A high-leverage company has a downward-sloping credit spread term struc-
ture which starts very high and decreases for longer maturities as more time
is allowed for the company's assets to grow higher and cover liabilities.

• For �xed T the spreads decline as risk-free rates increase. The reason for
this was noted earlier: the spread is determined by the value of a put option
on the �rm's assets, and put option values are negatively related to interest
rates.

• For any �xed maturity, an increase in �rm volatility increases spreads. Since
increasing volatility means future �rm values become more spread out. Debt
holders, whose payo�s are maximised, cannot get additional bene�t from the
higher �rm values but stand to lose from the lower �rm values. Thus, the
higher volatility lowers debt value, and transfers value from debt holders to
equity holders.
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Implementation

The description in the previous section makes the Merton model appear easy to
implement in practice. However, there are two problems to be addressed before
the model can be applied to real-world �rms:

• The current value of the company's assets Vt and its volatility σV are unob-
servable.

• The model assumes that the �rm has a single issue of zero-coupon debt
outstanding. Real-world debt structures are more complex.

We discuss each of these problems below. The procedures we highlight here are
those commonly used in practice to resolve these problems. One popular way of
estimating Vt and σV is using the approach suggested by Jones et al. [52], which
allows us to solve for credit spread when T − t, D and r are given. If the �rm is
publicly traded, it has observable equity prices, and the volatility of equity prices
σE may also be estimated from the data.

The Black-Scholes-Merton equation (2.3) is expressing the value of a �rm's
equity as a function of Vt and σV . Since equity prices are observable, we have one
equation in the two unknowns Vt and σV . To be able to solve for these quantities,
we need a second equation. For this Jones assumes that the equity price Et also
follows a geometric Brownian motion, ie.

dEt = µEEtdt+ σEEtdZt (2.7)

where µE is the expected continuously compounded return on Et, σE is the volatil-
ity of equity value and Zt is a standard Wiener process.

By using Ito's Lemma, we can also represent the process for equity as:

dEt =

(
∂Et

∂Vt
µV Vt +

∂Et

∂t
+

1

2

∂2Et

∂V 2
t

σ2
V V

2

)
dt+

∂Et

∂Vt
σV VtdWt (2.8)

Since the di�usion terms in the equity process in (2.7) and (2.8) are equal, we can
write,

EtσE =
∂Et

∂V t
VtσV .

Under the Merton model's assumptions, it can be shown that ∂Et
∂Vt

= Φ(d+)
using Black-Scholes results on call option delta. So, the volatilities of the �rm and
its equity are related by

σE =
Vt

Et
σV Φ(d+), (2.9)

where d+ is de�ned in equation (2.4).
With (2.3) and (2.9) we have the required two equations in the two variables

Vt and σV , and the two unobservable quantities may be identi�ed.
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The second problem with the Merton model is that it assumes a too simplis-
tic capital structure. Capital structures in practice are far more complex than
assumed by the model. There are usually many issues of debt outstanding, with
varied coupons, maturities, and subordination structures. From an implementation
standpoint, this presents us with two alternatives:

• Simplify reality to make it �t within the existing model.

• Extend the theoretical structure of the model to enable it to handle more
complex debt structures.

There are many ways one could simplify reality. One, for example, is to take
a zero-coupon bond that has the same duration as the given debt structure. An
alternative, that is used in the popular KMV model is to take a zero-coupon having
a maturity of one year and a face value that is the sum of (i) the face value of all
short-term (less than one year) dept, and (ii) half the face value of all longer-term
liabilities. This approach is based on the observation that, in practice, default
tends to occur when the market value of the �rm's assets drops below a critical
point that typically lies below the book value of all liabilities but above the book
value of short-term liabilities. Of course, mapping all debts into a single zero-
coupon bond is not always feasible, but both empirical evidences as well as the
popularity of the KMV approaches suggests, that this simpli�cation of the dept
structure works well in practice.

It has been shown that the second solution can also be applied using a structural
approach. Robert Geske [42] was the �rst to relax the simplistic capital structure
assumption made in Merton. He models company debt as a risky coupon bond, this
model allows for the simultaneous existence of multiple debt issues that can di�er
in the size of coupons, maturity, and other dimensions such as seniority. Geske
assumes that the company only faces default on payment dates, what matches
the realistic assumption that without the pressure of payment, companies wont
default.

The �rst assumption is that the equity owners are not allowed to sell the �rm's
assets to pay the debt. In other words they have to �nance the debt by issuing
new equity or by paying �out of their own pockets�. In this simple model, there is
no di�erence between the two options.

Lets assume that there are n di�erent debt payment dates, and at each of
these payment dates t1, t2, . . . , tn = T a respective payment of D1, D2, . . . Dn is
due. Just like in Merton's model, equity receives no dividend payment, only a
terminal payment at maturity, max(VT −Dn, 0). The value of equity at t can be
calculated using a recursive procedure starting at time T , and working backwards
to t.

If t is between tn−1 and tn and the �rm is still alive, we can value the only re-
maining dept paymentDn simply using the Merton model, soEt = CBS(Vt, Dn, tn−
t)

If t is between tn−2 and tn−1 we think of equity owners as they decide an instant
before tn−1 whether to make the payment at date tn−1 for the right to continue
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ownership of the �rm, or allow the �rm to default.
If the equity holders choose to pay the dept it will leave them with equity

worth CBS(Vtn−1 , Dn, tn − tn−1) and hence it is optimal to pay Dn−1 if Dn−1 <
CBS(Vtn−1 , Dn, tn − tn−1). If this is not true, they will choose to default and debt
holders take over the �rm. Applying this line of reasoning leads to the following
recursion when pricing equity.

The value of equity immediately before the ith debt payment is

Et−i
=

{
Et+i

−Di if Vti > V̂ti

0, if Vti ≤ V̂ti

(2.10)

where Et+i
denotes the value of equity immediately after the ith coupon payment

and V̂ti is the value for which the equity is worth Di right after the coupon has
been paid at date ti.

Since the �rm has no payout between ti−1 and ti the equity value immediately
after dept payment Di−1 is computed as the risk neutral expectation of the values
in the next period, that is Et+i−1

= E(e−r(ti−ti−1)Et−i
|Fti−1).

With each additional payment, the resulting solution for equity value has a a
closed-form representation but an increasingly complex one. If there are n pay-
ments, the closed-form expression involves n-dimensional multivariate normal in-
tegrals, what cannot be computed analytically.

Pricing risky debt in the extended model is conceptually not di�cult but is
technically more complex than in the Merton model.The model requires precise
and complete information on the actual debt structure and the process to identify
the unobservable variables using equity data gets signi�cantly more complicated
than in the Merton model.

One solution to this added complication was described in Delianedis and Geske
[24]. Delianedis and Geske collapse the �rm's capital structure into two debt
buckets, a short-term debt bucket and a long-term debt bucket. Since there are
two possible default time, useful information can be obtained by comparing the
short-term and long-term default probabilities.

2.2 The KMV model

The KMV model, which probably is one of the most famous industry model for
valuing default probability, is a development of the Merton model. It was developed
by KMV (a private company named after its founders Kealhofer, Mc Quown and
Vasicek) in the 1990s and which is now maintained by Moody's KMV. The model
uses a three-step procedure to calculate an Expected Default Frequency (EDF)
credit measure for publicly-traded �rms as described in Crosbie and Bohn ([21]).
Just like the Merton model this method also takes the information contained in
the �rm's stock price and balance sheet as primitive.

The �rst step in KMV's model is to identify the market value of the �rm's
asset Vt, and its volatility σV , by implementing an iterative procedure.
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Recall, that the market value and the volatility of the �rm's assets can be cal-
culated by solving (2.3) and (2.9) as showed before. However most of the empirical
studies argue that the relationship between σE and σV from (2.9) holds only in-
stantaneously and the solution is quite sensitive to the change in assets value, also
there is no simple way to measure precisely σE from market data. To solve the
problem, an iterative procedure was introduced.

The value of equity, Et is directly observable and (2.3) forms a one-to-one
relationship between the asset value and the equity price, so we can back out Vt

from the equity pricing equation if the asset volatility is known. Let g(·;σV ) denote
the equity pricing equation, that is Et = g(Vt;σV ). Since this function is invertible
at any given asset volatility, we can express Vt = g−1(Et, σV ), and this inversion
can be easily performed numerically.

Assume that we have observed a series of equity prices E0, E1, . . . , En at regular
time points. The KMV two-step iterative algorithm begins with an arbitrary value
of the asset volatility and repeats the two steps until achieving convergence. The
two steps going from the m-th to (m+ 1)-th iteration are:

• Compute the implied asset value time series V0(σ̂
m), V1(σ̂

m), . . . , Vn(σ̂
m) cor-

responding to the observed equity value data set E0, E1, . . . , En. where
Vi(σ̂

m) = g−1(Ei, σ̂
m).

• Estimate σ̂m+1 by assuming that V0(σ̂
m), V1(σ̂

m), . . . , Vn(σ̂
m) follows a Geo-

metric Brownian Motion. First we compute the implied asset returnsRm
0 , . . . , Rm

n

where Rm
i = ln(Vi(σ̂

(m))/Vi−1(σ̂
(m))). Then we update the asset volatility

as follows:

R
m

=
1

n

n∑
k=1

Rm
k

(
σ̂m+1

)2
=

1

nh

n∑
k=1

(
Rm

k −R
m)2

where h is the length of time, measured in years, between two observations, the
division by h is to state the parameter values on a per annum basis.

Crosbie & Bohn argue that �if the future distribution of the asset value were
known, the default probability would simply be the likelihood that the �nal asset
value was below the default point.� However, in practice, distribution of the asset
value is di�cult to measure, the usual assumptions of normal or lognormal distri-
bution of asset return and the simplifying assumptions about the capital structure
don't hold. For all these reasons, KMV implements an intermediate phase before
computing the probabilities of default.

So, as the second step, KMV computes the so-called distance to default (DD) as
the number of standard deviations between the asset value, and a critical threshold,
the �default point�. It can be calculated as

DDt =
Vt −DP

σV Vt
.
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The idea of putting in standard deviation terms is to enable inter-�rm compar-
isons. This latter task wold be more di�cult in percentage. For example, suppose
�rm A has to make a 75% drop in value before it is in default, while �rm B had to
make only a 50% drop. Does this mean �rm A is more likely to default that �rm
B? Not necessarily, since �rm A may be more volatile, making a 75% drop in its
value more likely than a 50% drop in B's value. Thus, conversion into volatility
terms is necessary for a meaningful comparison.

KMV has observed that �rms default when the asset value reaches a level
somewhere between the value of total liabilities and the value of short-term debt,
so they set the default point to equal the short term debt plus 50% of the long
term debt.

The last step consists of mapping the DD to the actual probabilities of default
over a speci�ed period of time, usually 1 year. These probabilities are called EDF,
for Expected Default Frequencies.

In the KMV model it is assumed that �rms with equal DD have equal default
probabilities, ie. EDF = f(DD), where f(·) is determined empirically, using
a database of historical default events. KMV estimates for every horizon the
proportion of �rms with DD in a given small range that defaulted within the
given horizon. This proportion is the empirically estimated EDF. As one would
expect, the empirically estimated EDF is a decreasing function; its precise form is
proprietary to Moody's KMV.

EDFs have proved to be a useful leading indicator of default, or at least of
the degradation of the creditworthiness of issuers. When the �nancial situation
of a company starts to deteriorate, EDFs tend to shoot up quickly. EDFs are not
biased by periods of high or low defaults, but distant-to-default can be observed to
decrease during recession, and increase during periods of prosperity, so it appears
that these di�erences are captured by the distance-to-default measure.

Detailed information about actual implementation and calibration procedures
is hard to obtain and such procedures are likely to change as the model is developed
further.

2.3 First Passage Models

First Passage Models extend the Merton model to the case when the �rm may
default at any time. In these �rst-passage models a �rm defaults when the �rm's
value process Vt drops for the �rst time below either a deterministic or a random
barrier. If we are at time t and default has not been triggered yet, then the time
of default τ is given by

τ = inf
{
s ≥ t : Vs ≤ Ks

}
.

In most models the value of the �rm's assets follow a di�usion process, while
di�erent authors make di�erent assumptions about the threshold level. The liter-
ature mainly distinguish between exogenous barriers that are de�ned outside the
model, and endogenous barriers de�ned within the model.
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If one is looking for closed-form valuation formula for corporate bonds, the
challenge is to appropriately specify the lower threshold. In general, the type of
boundary that we are interested in, are those that give closed-form solutions of the
distribution of the �rst passage times. These models usually bring us back to the
case of Brownian motion hitting a linear boundary.

Suppose now that a Yt process follows a Brownian motion with the standard
deviation σ > 0 and drift ν ∈ R speci�cally:

Yt = y0 + νt+ σWt, ∀t ∈ R, (2.11)

where (Wt) is a Wiener process under the measure Q. Let τ stand for the �rst
passage time to zero by the process Yt, that is, τ = inf{t ≥ 0 : Yt ≤ 0}. Then for
any t < s, we have on the set {τ > t}

Q{τ ≤ s|Ft} = Φ

(
−Yt − ν(s− t)

σ
√
s− t

)
+ e−2νσ−2YtΦ

(
−Yt + ν(s− t)

σ
√
s− t

)
, (2.12)

where Φ is the standard normal cumulative distribution function, for proof see
Bielecki and Rutkowski [12].

Black and Cox Model

The �rst paper witch extends Merton's research in this directions was written by
Black and Cox [10]. They assume that the �rm's stockholders receive continuous
dividend payment, which is proportional to the current asset value. In their model,
they assume that under the risk-neutral measure the value of asset follows the
process

dVt = Vt(r − κ)dt+ VtσV dWt.

where the constant κ ≥ 0 represents the payout ratio.
Similarly as in Merton's model, the debt consists of one zero-coupon bond with

face value D at maturity T , and the short-term interest rate r is assumed to be
constant.

In the original approach of Black and Cox, the default occurs at the �rst time
that the �rm's asset value drops below a certain time dependent barrier Kt, what
represents the point at which bond safety covenants cause default. Safety covenants
provide the bondholders with the right to liquidate the �rm if it is doing poorly
according to a set standard. For the choice of the barrier, observe that if Kt > D
then bondholders are always completely covered, which is certainly unrealistic.
On the other hand, one should clearly have KT ≤ D for a consistent de�nition of
default.

The default barrier chosen by Black and Cox is an exponentially rising function
over time K(t) = Ke−γ(T−t), where 0 < K ≤ D is an exogenously given constant.
A particular case of the threshold speci�cation is setting γ = r and K = D , to
ensures that the payo� to the bondholder at the default time is the face value of
debt, discounted at a risk-free rate.
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Otherwise, default can take place at debt's maturity, depending on whether
VT < D or not. This means that even though the default may not have occurred
premature it may occur when the bond is due. Formally, the default time equals
τ = τ̂ ∧ τ , where the early default time τ̂ equals

τ̂ = inf
{
0 ≤ t < T : Vt ≤ Kt

}
and τ stands for Merton's default time, that is

τ = T1{VT<D} +∞1{VT≥D}.

Note that since Vt = V0 exp((r−κ)t− 1
2σ

2t+σWt), the default time τ̂ is given
as

τ̂ = inf
{
0 ≤ t ≤ T : log V0 + ((r − κ)− 1

2
σ2)t+ σWt ≤ logK − γ(T − t)

}
= inf

{
0 ≤ t ≤ T : σWt + (r − κ− 1

2
σ2 − γ)t ≤ logK − log V0 − γT

}
, (2.13)

i.e. the �rst passage time to the default barrier can now be reduced to the �rst
passage time of a Brownian motion with drift.

The value of the defaultable bond at time t prior to default is a sum of the
recovery value of the bond if the boundary is hit before maturity ,and the value of
the payment at maturity if the bond didn't default before it, Dt = Db

t +Dm
t .

In the event of default, the pay-o� for debt holders is V (τ) = K(τ) at the time
of default, and the fair recovery value is

Db
t = EQ

(
Ke−γ(T−τ̂)e−r(τ̂−t)

1{t<τ̂<T}
∣∣Ft

)
= Kert−γT

∫ T

t
e(γ−r)sdQ{τ̂ < s|Ft}

what can be computed by using the conditional probability law of the �rst passage
time (2.12) and (2.13).

The remaining term can be written as

Dm
t = EQ

(
e−r(T−t)(VT − (VT −D)+)1{τ̂>T}|Ft

)
.

Hence we need to be able to value the di�erence of barrier call options, one with
zero strike, and the technique is available from the results on down-and-out barrier
options. Down-and-out options are a type of knock-out barrier option that ceases
to exist when the price of the underlying security hits a speci�c barrier price level.
If the price of the underlying does not reach the barrier level, the investor has the
right to exercise their European call or put option at the exercise price speci�ed
in the contract.

The credit spread resulting from the Black and Cox model will always be higher
than that coming out of the Merton model. Since in the Black and Cox model
the �rm can default at any point in the life of the dept, not only at the dept's
expiration date. So the probability of default is always greater then in the Merton
model, meaning investors should ask for a higher credit spread as compensation of
this extra risk.
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Stochastic Interest Rate Models

In addition to the Black-Cox exponential barrier model, Kim, Ramaswamy, and
Sundaresan [53] and Longsta� and Schwartz [58] propose �at default barrier models
with random interest rates. These models are an improvement over the Black-Cox
model, since it is possible to include interest rate risk in them.

Kim, Ramaswamy, and Sundaresan assume the �rm's value follows

dVt = (µ− κ)Vtdt+ VtσV dWt,

where κVt is the net cash out�ow. For the interest rate process they use the CIR
term structure model

drt = (a− brt)dt+ σr
√
rtdŴt

where Wt and Ŵt are correlated Brownian motions with the instantaneous corre-
lation ρdt.

Furthermore, the �rm's dept consists of a single bond with continuous coupon
payment of C and a promised �nal payment of D. Also the stockholders are
prohibited from selling the assets of the �rm to pay dividends.

In this model the bondholders have priority and if the �rm's cash �ows are
unable to cover its coupon payment the �rm is forced into bankruptcy. Thus the
default barrier is an endogenously given constant C/κ. At this level, the total net
cash �ow per unit time will be just su�cient to pay the contractual coupon.

If the boundary is not reached during the lifetime of the bond, the �nal payout
is min(VT , D), so default may occur also at maturity. If, on the other hand,
the boundary is reached, then the bond holders receive the recovery payment
immediately, what is min(Vt, (1 − ω)B̂(t, T )) where ω is an exogenous writedown
rate and B̂(t, T ) is the price of an equivalent treasury bond.

Given all the assumptions in their paper, Kim, Ramaswamy, and Sundaresan
solve the resulting PDE numerically for noncallable and callable bonds, �nding
that the introduction of stochastic interest rates leads to higher, more realistic
credit spreads than predicted by models with deterministic interest rates. How-
ever, they also report that in their examples, spreads are fairly insensitive to the
level of interest rate risk or to it's correlation with �rm value.

The Longsta� and Schwartz [58] model is similar to the Kim, Ramaswamy
and Sundaresan model in the sense that it considers both the default risk and the
interest rate risk to price the corporate debt. A major di�erence however, is that
the short-term interest rate is assumed to follow a Vasicek model, that is:

drt = (α− βrt)dt+ σrdŴt, (2.14)

and the asset value of the �rm follows

dVt = Vt(rtdt+ σV dWt),

under the martingale measure Q, where the instantaneous correlated between Wt

and Ŵt is ρdt.
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The default event is triggered if the value process hits an exogenously given
constant barrier K before maturity. Longsta� and Schwartz argue that �the ratio
of Vt to K, rather than the actual value of K, that plays the major role in our
analysis, allowing a more general speci�cation for K simply makes the model more
complex without providing additional insight into the valuation of risky debt.�
Some researcher criticize this default de�nition and argue that when the corporate
bond reaches maturity the �rm can be in a solvent position but with no su�cient
assets to pay the face value of the bond at maturity.

In this model default occurs for all debt contracts simultaneously and recovery
payment is paid out to the dept holders at maturity. Every bond holder receives
(1 − ω) times the face value of the bond, where the writedown rate ω is a �xed
constant. This means that the bond pays out (1 − ω)D1{τ≤T} + D1{τ>T} at its
maturity time T .

The model allows ω to di�er across the various bond issues and classes of
securities, which is equivalent to allowing the violation of the absolute priority
rule.

As a result,the price of a defaultable zero-coupon bond at time t is

Dt = EQT

(
De−

∫ T
t rsds(1− ω1{τ≤T})|Ft

)
= DB(t, T )

(
1− ωQT

(
τ ≤ T |Ft

))
.

where B(t, T ) represents the price of the unite default-free zero-coupon bond whit
maturity T and QT is the forward martingale measure associated with B(t, T ).

In order to evaluate this expected value, the probability distribution of the
�rst passage time to a constant barrier is needed. To the best of my knowledge, a
closed form solution for the probability distribution of the �rst passage time of this
process is not known yet. Longsta� and Schwartz draw a quasi-explicit valuation
formula trough the approximation of the default time's distribution,that allows
them to analyse the qualitative behavior of the corporate bond.

For example, they �nd that the correlation between the �rm's assets and the
interest rate has a signi�cant e�ect on the properties of the credit spread.

The main drawback of the Longsha�-Swartz model is the complex parameter
calibration of the numerous parameters for the bond equation and that the interest
rates is not arbitrage-free in the Vasicek model.

Main implication of these valuation frameworks is that the correlation between
credit spread and interest rate is negative. The reason for this is that an increase
in the interest rate increases the drift of the risk-neutral process for �rm value. As
a consequence, �rm value drifts away at a faster rate from the default boundary K
and makes risk-neutral default probability lower. This implication suggests that
interest-rate sensitivity of credit spread depends on how strong is the correlation
between assets return and changes in the interest rate.

These results provide strong evidence that both default risk and interest rate
risk are necessary components for a valuation model for corporate debt.
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Stochastic Default Barrier Models

In order to overcome the limitation of an exogenous �at barrier models, like the
absence of closed-form solution, many author relax their default barriers to be
stochastic. In most of these models, the stochastic default boundaries result from
the assumption of stochastic interest rate.

Nielsen at al. [61] examine a model with endogenously speci�ed stochastic
barrier and random interest rate. They assume that the asset value process follows
the same generalised Wiener process as in the Black and Cox model, and the
interest rate process follows the Itô process

drt = µrdt+ σrdWt.

The recovery rate is an exogenously set fraction of an equivalent default-free bond.
They interpret the exogenously given continuous stochastic barrier vt used in

their model as the representation of the market value of the �rm's all liabilities.
Notice that the default time τ can be given as

τ = inf{0 < t < T : Vt < vt} = inf{0 < t < T : Lt < 0}

where Lt = ln(Vt/vt) is the solvency ratio, representing the �rm's credit quality.
Nielsen at al. show that under some speci�c assumptions on the dynamics of the
stochastic barrier the solvency ratio follows a generalized Brownian motion under
the forward measure. So the �rst passage time law (2.11) can be directly applied
to determinate the distribution of the default times. Under the same assumptions
they also give an explicit expression for the value of the defaultable zero-coupon
bond.

Briys and de Varenne [13] propose yet another default triggering and pay out
rule. They note, that some model at default allows the payment to bondhold-
ers to be greater then the �rms value, like in the Black-Cox , Kim-Ramaswamy-
Sundaresan model and the model of Nielsen at al. In this models the recovery
upon default is independent of the value of the asset. On the other hand, in the
model of Longsta� and Schwartz it is possible that the �rm is �threshold solvent�
at maturity but it isn't able to repay the face value of the bond. Briys and de
Varenne try to correct these problems by specifying the default threshold and re-
covery rate such that the �rm can not pay more than its assets are worth. Their
model is a special case of the Black and Cox model with stochastic interest rate.

The interest rate follows the generalized Vasicek model

drt = a(t)(b(t)− rt)dt+ σ(t)dŴt,

where a, b, σ : [0, T ] → R are deterministic functions. The �rm value evolves
according to the following stochastic processes under the martingal measure

dVt = rtVtdt+ σV Vt

(
ρdW̃t +

√
1− ρ2dŴt

)
where Ŵt and W̃t are independent Brownian motions.
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The default boundary is given by a safety covenant, that allows bondholders
to trigger early bankruptcy, K(t) = αDB(t, T ) where D is the face value of the
corporate bond and 0 ≤ α ≤ 1 is some �xed value. In other words, the default
barrier is the discounted face value of the bond scaled down by α, therefor the
bondholders will never receive a payo� higher than that of a risk-free bond. Of
course the closer α is to 0, the less protective is the safety covenant. Default is
triggered at maturity if the asset value at time T is less then the dept value D.

If default occurs at maturity, then an exogenously speci�ed fraction of the
asset value is paid out, β1VT where 0 ≤ β1 ≤ 1. If on the other hand the default
threshold is reached before maturity then a fraction of the threshold value is paid
out β2K(τ), 0 ≤ β2 ≤ 1 is also an exogenous fraction. Consequently, the bond's
pay out at maturity can bee represented as:

D(T, T ) = VT1τ>T + β1VT1τ=T + β2αD1τ<T .

If β1 = β2 = 1, the strict priority rule applies, since only the bondholders
receive a a default payment, i.e. there is no bargaining process between the equity
holders and the asset holders. In reality, though, the strict priority rule often does
not apply.

By applying change of numeraire and change of time techniques they derive a
closed-form solution for a corporate discount bond. Since this model accounts for
interest rate risk, default risk, and deviations from the absolute priority rule, this
model is capable of producing quite diverse shapes for the term structure of yield
spreads. They also present a numerical analysis of the credit spreads, and report
generally larger spreads than those obtained using Merton's approach.

Term structures modeled with �rst passage models are often downward sloping
for long maturities, while these are increasing in the marketplace.

Collin-Dufresne, Goldstein ?? introduce a dynamic capital structural for �rms
in their structural model to overcome this problem. They incorporated the market
observation that �rms issue more debt when their leverage ratio Dt/Vt drops below
a target level and tend to wait with replacing this debt when the leverage ratio
is above target. In this model the interest rate is constant and the asset value
under the risk-neutra follows a geometric Brownian motion just like in the previous
models

dVt/Vt = (rt − δ)dt+ σvdWv

with δ payout rate and σv asset volatility
The default threshold changes dynamically over time, ie. the dynamics of the

log-default threshold kt is modeled as

kt = κl(ln vt − ν(·)− kt)dt.

where κl is the mean-reversion rate, ν is a bu�er parameter for the distance of
log-asset value to log-debt value vt = lnVt.
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This dynamic captures �rms tendency to issue debt when their leverage ratio
falls below some target, and are more hesitant to replace maturing debt when their
leverage ratio is above that target.

The log-leverage is de�ned as lt = kt − vt, and from Ito's lemma we get that

dlt = κl(θl(·)− lt)dt+ σvdWv

where θl =
δ+σ2

v/2−r
κd

− ν
Default is triggered when θt reaches zero for the �rst time.
The model has no closed for solution or bond pricing but CDG implemented

an e�cient numerical technic to computing the relevant default probabilities and
thus bond prices.

2.4 Optimal Capital Structure

Leland [54] and Leland & Toft [55] introduced the concept of endogenous bankruptcy
in their studies to explore how a �rm best capitalizes itself. These two models have
been served as benchmark models in the optimal capital structure literature. Their
stationary debt structures and time-independent settings have been widely adopted
in the literature.

In particular, �rm assets are assumed to follow a geometric Brownian motion
under the risk-neutral measure

dVt = (r − δ)Vtdt+ σVtdWt,

where δ > 0 represents a constant fraction of the asset value available for distribu-
tion to debt and equity holders, and r is the riskless interest rate, which is assumed
to be constant in this model.

Leland considers a �rm that has a perpetual bond outstanding. Perpetual
bonds have no maturity date but pay a constant coupon rate C until termina-
tion. The reason for using a perpetual coupon debt setup is to construct a time
independent stationary debt structure and for ease of solving the optimal leverage
problem.

The owners willingness to issue debt comes from a tax advantage, which is
represented as an additional cash �ow of θC dollars per unit of time , where θ ≥ 0
is the tax rate. However, to prevent the �rm from using only debt �nancing, there
must be a disadvantage the model. This disadvantage is the bankruptcy costs
α ∈ [0, 1), given as a fraction of �rm value, that is lost to a third party if default
occurs.

The equity owners are responsible for paying the coupon �ow to the bond
holders. However, the equity owners have the right to determinate a level of asset,
denoted as K, below which they stop making dividend payments and liquidate
the �rm. In liquidation, the equity owners get nothing and the debt holders get
(1− α)K. Thus the default time τ equals τ = inf{t > 0 : Vt ≤ K}.

Leland furthermore assumes, that any amount not covered by dividend payout
and the tax advantages of debt, �rm �nances by issuing new equity. And it is
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known from Black and Cox [10] that any such asset's value must satisfy the partial
di�erential equation

1

2
σ2V 2FV V (V, t) + rV FV (V, t)− rF (V, t) + vFt(V, t) + C = 0,

where F (V, t) denotes the value of a claim, that continuously pays a nonnegative
coupon, C when the �rm is solvent.

Leland's model only uses securities with no time-dependency, i.e. they pay-
ments depend only on the default timing, witch only depends on the asset value.
In these case F (V ) has to satisfy the ODE:

1

2
σ2V 2FV V (V ) + rV FV (V )− rF (V ) + C = 0, (2.15)

for witch The general solution is known to be

F (V ) = A0 +A1V +A2V
−γ

where γ = 2r/σ2 and the constants A0, A1 and A2 are determined by boundary
conditions.

First, consider the case where in addition to the coupon rate C the default
boundary K is also known. Let D(V,C) denote the value of debt for V > K
and since it is independent of time it must solve the ODE (2.15) and hence has a
general solution, with boundary conditions:

D(V,C) = (1− α)K at V = K

D(V,C) → C/r as V → ∞

We immediately �nd that

A1 = 0, A0 =
C

r
, A2 =

(
(1− α)K − C

r

)
Kγ

Hence

D(V,C) =
C

r

(
1−

(
V

K

)−γ)
+ (1− α)

(
V

K

)−γ

Here the term ( VK )−γ has the interpretation of being the present value of a claim,
paying 1 dollar at the stochastic time τ when default occurs. So, the value of risky
debt equals a weighted average of the value of a risk-free perpetual bond (C/r)
and the fraction of recovery bond holders can obtain in case of bankruptcy.

To prove this, let p(V ) a denote the value of a security that pays no coupon but
at bankruptcy pay 1 dollar As this security satis�es the ODE (2.15) with C = 0.
The boundary conditions are

p(V ) = (1− α)K at V = K

p(V ) → 0 as V → ∞
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and so we obtained that p(V ) = ( VK )−γ .
Similarly it can be proven that q(V ) = 1

r (1 − p(V )), where q(V ) denotes the
value of a security that pays a constant unite coupon as long as the �rm is solvent.
Notice that p(V ) is a strictly convex, decreasing function of V , while q(V ) is
increasing and strictly concave in V .

The total value of the �rm after recapitalization is then given as

v(V0,K,C) = V0 + θCq(V0)− αKp(V0) = V0 + θC
1

r
(1− (

V0

K
)−γ)− αK(

V

K
)−γ(2.16)

And since there is only debt and equity, we have

E(V0,K,C) = v(V0,K,C)−D(V0,K,C)

= V0 − (1− θ)Cq(V0)−Kp(V0) (2.17)

for V0 > K and E(V0,K,C) = 0 otherwise.

One can now address the big question: What values of C and K maximize the
total �rm value at time t = 0?

A good way to think about the model is to imagine that at time t = 0 the
owners of the debt-free �rm with value V0 decide to issue debt. By doing this, the
owners seek to maximizes the total value v(V0,K,C). The total �rm value changes
with the change of leverage due to the presence of tax bene�ts and bankruptcy
costs. Notice that the total �rm value v(V0,K,C) raises by lowering the default
bound K.

After the �rm has issued its debt, equity owners optimize equity value by
determining the default levelK, below which they stop making dividend payments.
Rational equity holders choose the default point K high enough to make sure that
E(Vt,K,C) isn't negative if Vt > K , and low enough that the equity value is equal
to zero at the default boundary.

If K < (1− θ)C/r then E(V,C) is strictly convex in V and so the solution for
the optimization problem is at the point where:

∂E(V )

∂V

∣∣∣∣
V=K

= 0

This is called the smooth pasting condition, and is solved for K = K∗(C), where

K∗(C) =
γ(1− β)C

r(1 + γ)

At the initial debt issue, when the owners set the coupon level they take into
account that the equity holders will choose the default point K∗(C) optimally.
Hence, plugging K∗(C) and C into (2.16) gives the total �rm value for a given
level of coupons. Finally, to �nd the optimal coupon level, the total �rm value has
to be maximized as a function of C. This can be done by di�erentiating equation
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v(V0,K ∗ (C), C) with respect to C, and solving for the optimal coupon by setting
the derivative equal to zero. By solving this equation one �nds

C∗ = V0
r(1 + γ)

γ(1− τ)

(
(1 + γ)τ + α(1− τ)γ

τ

)−1/γ

.

The optimal leverage and the default barrier are explicitly linked to taxes, asset
volatility, bankruptcy costs, risk-free interest rate, what leads to important di�er-
ences from previous models. In addition, the default barrier K∗ is independent of
time and the current asset value, what con�rms the assumption of the constant
bankruptcy level. The default falls with increases in asset volatility and tax rate,
and decreases as the risk-free interest rate, r rises.

The lower the volatility, the higher is the optimal leverage ratio , and also the
maximal possible �rm value. However the model predicts unreasonably high lever-
age ratio (e.g., 80%) compared to historical averages. Furthermore, unreasonably
large bankruptcy costs as high as 50% is required to lower the optimal leverage to
more realistic levels.

The model of Leland and Toft [55] relaxes the extreme assumption of a per-
petual debt, while keeping the stationary debt structure. To do this, they assume
that the �rm continuously sells a constant amount of new debt, always replacing
the maturing bonds. This setting allows them to analyze the in�uence of debt
maturity on the optimal leverage.

In this model each individual bond is issued at par value, with constant princi-
pal p and with time T to maturity. Bonds pay a constant coupon rate c, implying
the total coupon to be paid is C = cT. So,the total amount of principal outstand-
ing is always P = pT and the total debt service is equal to C+p. Moreover, in case
of default a fraction of asset value α is lost and the bondholders with di�erent ma-
turities receive the same fraction of assets (1−α)

T . Finally, as in the Leland model,
coupon payment gets a tax advantage, and default is triggered by shareholders,
when the �rm value falls to an endogenously determined value.

They �nd that the optimal leverage and default barrier is independent of time,
but depends on the debt maturity T , for any given values of total bond principal
P and coupon rate C. This is an important di�erence between Leland and Toft
model and �ow-based bankruptcy models, in which they imply that the default
barrier is independent of debt maturity.

The Leland and Toft model implicates that the default barrier and the optimal
leverage increases with debt maturity. Moreover, for any maturity, the optimal
leverage ratio falls, when �rm's risk and bankruptcy costs increase.

They also investigate why �rms issue short term debt, when longer-term debt
generates higher �rm value. They �nd that short-term debt reduces the asset
substitution agency problem. The asset substitution problem refers to the e�ect
that equity holders will try to transfer value from debt to equity by increasing the
riskiness of the �rm's activities. This potential behavior of equity holders is incor-
porated into the cost of issuing debt. Leland and Toft �nd that while short-term
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debt does not lower tax bene�ts of debt it can balance against agency costs. This
is a consequence of short-term debt holders needing less protection, and so demand
lower coupon rates and thus equity holders will also bene�t.

In most models considered so far, if there is not enough asset to pay bond
holders their contractual amount, they take over the �rm and equity holders get
nothing. However, in practice, the violation of the absolute priority rule is com-
mon, i.e. we see cases where debt contracts are renegotiated in times of �nancial
distress. Structural models can demonstrate the violation of absolute priority rule
by incorporating di�erent default boundaries, but can not explain why debt holders
are willing to reduce their claims. Therefore, subsequent studies attempt to model
dept renegotiation and analyse the cause of the absolute priority rule deviation
and its impact on yield spread and capital structure.

In these models a negotiation process between debt and equity holders is as-
sumed. The negotiation can result in a lower debt payment than promised to
prevent the �rm from default.

Anderson and Sundaresan [6] propose a discrete time model where the �rm
can be liquidated only at a cost. Liquidations are typically very costly when one
takes into account direct and indirect costs associated with it. This supplies the
motivation for renegotiation and strategic dept service. They assume that at each
time point the �rm generates a cash �ow proportional to its asset value and equity
holders have to make a coupon payment. Even if this cash �ow is big enough to
cover the coupon payment, equity holders may only pay a reduced strategic debt
service.

They use the threat of bankruptcy to its fullest and never o�er more than what
is necessary to keep bond holders indi�erent between liquidation and continuation,
in this case dept holders are assumed to choose continuation. If the generated
cash �ow is not su�cient to make this payment, the bond holders liquidate the
�rm and receive the promised coupon and principal if there is enough asset after
liquidation, otherwise they receive the asset value less the liquidation costs. Hence
even in liquidation there could be something left for equity holders.

Anderson and Sundaresan show that accounting for liquidation costs leads
much higher credit spreads, even with moderate liquidation costs. In addition, it
generates deviations from the absolute priority rule.

Fan and Sundaresan [37] develop a continuous-time model that extends Ander-
son and Sundaresan approach along several dimensions. The main extension is the
inclusion of a tax advantage of debt, what gives bargaining power to debt holders
too.

They consider two cases when the �rm's asset value falls below an endogenously
determined boundary: Debt-equity swap and strategic debt service. Both case can
be seen as a distressed exchange where the absolute priority rule is violated to
avoid costly liquidation.

In the case of debt-equity swap, debt holders exchange their original debt
contract for equity. Here, the �rm after the exchange becomes an all-equity �rm
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and the future tax bene�ts are lost. The parties will bargain over the �rm value,
and the sharing rule is determined as an equilibrium of a Nash bargaining game,
and its optimal value depends on the relative bargaining power assigned to the
equity holders. In this framework, stronger equity holders bargaining power and
higher liquidation costs implies higher default triggering barrier.

In strategic debt service, when the reorganization boundary is reached, borrow-
ers stop making the contractual coupon payment and o�er a strategic debt service
until the �rm's asset value goes back above the boundary again. During this period
the tax bene�ts are lost, but the �rm will not lose its potential future tax bene�ts
and the present value of these tax bene�ts is included in the bargaining process.
This results in debt holders getting less proportion of the �rm, but both parties
will be better. Since costly liquidation can be avoided, which can be shared by the
two parties.

Both the reorganization boundary and the optimal strategic debt servicing
upon default are determined endogenously. Fan and Sundaresan show that this
strategic debt servicing is decreasing with higher equity holders bargaining power
and larger liquidation costs. The role of the liquidation costs derives from the
fact that higher liquidation costs generate a stronger incentive for debt-holders to
participate in the bargaining game.

Furthermore, by introducing the possibility of renegotiating the debt contract,
the default can occur at positive equity value. This is in contrast to the Leland
model in that the default occurs when the equity value reaches zero.

In summary, the Fan and Sundaresan model shows that debt renegotiation
encourages early default and increases credit spreads on corporate debt, given
that shareholders can renegotiate in distress. The basic di�erence between the two
bargaining formulations is that, in the case of debt-equity swap the parties bargain
over the value of the �rm's assets, while in the second case, the parties bargain
over the whole �rm value, that is asset value plus future tax bene�ts.

2.5 Comments on Structural Models

The empirical literature on structural models investigate the explanatory power
of credit risk models in predicting default risk or credit spreads. Comparison of
results from di�erent studies is quite di�cult for a number of reasons. First of all,
these studies are performed on di�erent types of data, either CDS or bond data
is used, and also the frequency of observations varies across studies. Results are
also a�ected by choices about parameter estimation, or type of regression used
in analysis. In addition, when comparing results, a di�erence should be made
between whether analysis is performed using levels or changes in variables.

Jones, Mason, and Rosenfeld [52] provide the �rst empirical test of a structural
models, comparing bond prices predicted by the Merton model with the observed
prices. Results were not encouraging, predicted prices were 4.50% too low on
average, and errors were largest for speculative-grade �rms. Ogden [62] conducts
a similar study, �nding that the Merton model underpredicts by 104 basis points
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on average.
Two decades later Eom et al. [33] test the ability of �ve structural models

to predict the yield spread, using a sample of bond prices from �rms with sim-
ple capital structures. Their main �nding is that on average, the Merton and
Geske models far underestimate the corporate bond spread, in accordance with
the previous literature. However, the Longsta� and Schwartz, Leland and Toft
and Collin-Dufresne and Goldstein models overestimate spreads for risky bonds
(high volatility and leverage) while they underestimate the spreads for less risky
bonds.

Structural models are also examined indirectly using regression analysis that
links individual bond yield spreads with certain structural model variables.

For instance, Collin-Dufresne et al. [18] investigate the determinants of credit
spread changes. They analyze the impact of traditional structural model inputs on
bond yield spreads. They �nd that these factors are statistically signi�cant, but
explain only about 25 percent of the observed credit spread changes. In addition,
the results show that the residuals are highly correlated and that they are mostly
driven by a single common factor.

Campbell and Taksler [15] studied the sensitivity of credit spread to equity
volatility. They conclude that �rm speci�c equity volatility is an important de-
terminant of the bond spread, and that the economic e�ects of volatility is large.
Cremers, Driessen, Maenhout, and Weinbaum [17] give support to this result and
argue that option implied volatility contains useful information that is di�erent
from historical volatility.

Huang and Huang [47] use a variety of structural models to examine how
much of the historically observed yield spreads can be explained by implied de-
fault probabilities. The structural models studied include Longsta� and Schwartz
with stochastic interest rate, Leland and Toft for endogenous default boundary,
Anderson and Sundaresan, for strategic default, and Collin-Dufresne and Gold-
stein for mean reverting leverage ratio. The main �nding of Huang and Huang
is that existing structural models generate lower spreads than the corresponding
market spreads when calibrated to match historical default and recovery rates.
This gap between observed and model-implied credit spreads is known in the lit-
erature as the credit spread puzzle. In other words the credit spread puzzle refers
to the failure of structural models in explaining yield spreads and default rates
simultaneously.

One possible implication of the credit spread puzzle is that perhaps the unex-
plained portion of bond yield spreads is due to some non-credit factors. Growing
evidence shows that multiple �rm characteristics and economic conditions are im-
portant determinants of corporate credit spread. Most studies agree that liquidity
risk could help explain a certain amount of this component. However, the mag-
nitude of the impact di�ers amongst studies due to di�erences in data sets and
liquidity measures.

Many studies used data on CDS spreads instate of bond spreads to test credit
risk models, since CDS spreads are generally considered to be a purer measure of
credit risk.
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Ericsson et al. [34] investigate the relationship between theoretical determi-
nants of credit risk and actual CDS spreads. Finding that the explanatory power
of �rm leverage, volatility and the riskless interest rate for levels and di�erences in
CDS spreads is 60% and 23%, respectively. The authors perform principal compo-
nents analysis on the residuals, �nding only weak evidence for a residual common
factor.

Longsta�, Mithal, and Neis [57] use CDS data to estimate direct measures of
default and nondefault components in corporate bond yields. Their results show
that the nondefault component in the credit spreads is time varying and strongly
linked to measures of bond-speci�c liquidity.

Das, Hanouna [22] also observe that CDS spreads are less a�ected by liquidity
and other non-credit risk related factors than bond spreads. However, they show
that CDS spreads are negatively related to the equity liquidity of the reference
entity.

Summarizing the results of these studies, there is broad agreement that struc-
tural models can explain only fraction of actual credit spreads through variables
such as leverage, �rm value and interest rates. Equity-speci�c factors such as
changes in the stock price, the stock return and implied volatility have additional
explanatory power for both bond spreads and CDS premia.

The literature suggests that a large proportion of credit spreads could not be
attributed to default risk factors. Most studies agree on that liquidity and tax
di�erential could help explain a certain amount of this component, however, the
magnitude of the impact di�ers amongst studies.

Structural models seem to �t to CDS spreads better than corporate bond
spreads but they still cannot fully explain CDS spreads and capture the time
series behavior of the CDS term structure.

Structural models have many advantages. First, they o�er a intuitive approach
to model default, assuming that default is the result of the �rm's assets value falling
too low. Furthermore most of the structural models links the valuation and hedging
of defaultable claims to more traditional corporate �nance models as the valuation
and hedging of exotic options in the standard default-free setup.

They usually provide closed-from expressions of corporate debt, and shows how
the outputs of the model is a function of leverage, asset volatility, taxes, bankruptcy
costs, risk-free interest rate, payout rates, and other important variables. Thus
structural models can be used to investigate how debt values (and therefore yield
spreads) changes with these variables.

This strength, the dependence on fundamental variables, is also one of the
models' biggest weaknesses. Often it is hard to de�ne a meaningful asset value
process, let alone observe it continuously. It can be very hard to calibrate a �rm's
value process to market prices, and for some issuers, like sovereign debt, it can't
be done at all. Also the assumption that the total value of the �rm's assets is a
tradeable security is unrealistic.

Structural models are also computationally burdensome. For instance, the
pricing of a defaultable zero-coupon bond is as di�cult as pricing an option. Just
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adding coupons transforms the problem into the equivalent of pricing a compound
option. If one were to price any subordinated debt one may have to price all of
the more senior debts of the �rm. This obviously becomes quickly unfeasible.

Another major weakness of structural models is the so-called �predictability
of defaults.� Generally, structural models consider continuous di�usion processes
for the �rm's asset value and complete information about asset value and default
threshold. The knowledge of the distance of default and the fact that the asset
value follows a continuous di�usion process makes default a predictable event, i.e.
default does not come as a surprise. This makes the models generate short-term
credit spreads close to zero. In contrast, it is observed in the market that even
short-term credit spreads are bounded from below incorporating the possibility of
an unexpected default. This characteristics of the structural models also imply
predictability of recovery, because in case of default the bondholders get the re-
maining value of the �rm, which is precisely the value of the default threshold at
default.

Essentially, three solutions have been proposed in the literature to this prob-
lem. The �rst method, developed by Du�e and Lando, assumes that bond in-
vestors cannot observe the asset process directly, instead, they receive imperfect
information at selected times. The second method assumes the default barrier
is stochastic. This is to account for the incomplete knowledge of all the �rm's
payment obligations. The third method incorporates randomly occurring jumps
into the �rm's asset value process. Under this jump-di�usion process default could
occur expectedly from steady declines in the �rm's value, or unexpectedly from
a sudden drop in the �rm's value. These jumps are due to new information like
release of unexpected �nancial results, the detection of fraud, or a market crash.
The usual assumption for the recovery rate is that it is a proportion of the remain-
ing assets after default. Thus using a jump-di�usion process for the asset value
one can naturally incorporate the randomness of recovery rates.

Consequently, structural models are not used where rapid and accurate pricing
of defaultable securities is needed. Instead, this type of models are well-suited
for the analysis of questions of optimal investment and �nancing decisions, or the
relative powers of shareholders and creditors. It is therefore a useful tool in the
analysis of counterparty risk for banks and a useful tool in the risk analysis of
portfolios of securities. Corporate analysts might also use structural models as a
tool for analyzing the best way to structure the debt and equity of a company.

Finally, some researchers argue that the past poor performance of structural
models may come from the estimation approaches traditionally used in the em-
pirical studies and we have seen some innovative methods aiming for solving this
estimation problem.
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Reduced Form Models

Reduced form models, also known as hazard rate models or intensity-based models
form an approach to default complementary to the structural models. In structural
models, default was directly linked to the value of the �rm, and in the simplest
versions, default times are predictable in the �ltration available to traders. This
makes the models generate short-term credit spreads close to zero. In contrast, it
is observed in the market that even short-term credit spreads are bounded from
below incorporating the possibility of an unexpected default. Reduced form models
make the assumption that default is always a surprise, that is, a totally inaccessible
stopping time. The �rm value is not modeled, but rather attention is focussed on
the instantaneous conditional probability of default.

Reduced form modelling makes a key simplifying assumption on the relation
between the timing of defaults, encoded in the �ltrationH and the market �ltration
F . Essentially, one assumes that the fact of a default or not at a given time t has
no impact on the evolution of the market �ltration beyond t.

3.1 Hazard Rate Approach

Let's begin with the simple case where the market �ltration is generated only by
a riskless asset, with deterministic interest rate r(s). Default occurs at time τ ,
where τ is assumed to be a positive random variable with density f, constructed
on a probability space (Ω,F ,G,P). In this case the information �ow available to
an agent reduces to the observations of the random time which models the default
event. Let Ht denote the right-continuous increasing process Ht = 1{t≥τ} and by
(Ht)t≥0 its natural �ltration, what is generated by the sets τ ≤ s for s ≤ t. This
is the smallest �ltration which makes τ a stopping time.

Let F denote the cumulative distribution function of τ , de�ned as F (t) =
P(τ ≤ t) =

∫ t
0 f(s)ds. It is assumed that F (t) < 1 for any t < T , where T is the

maturity date. Otherwise there exists t0 < T such that F (t0) = 1, and default
occurs almost surely before t0.

28
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Let us introduce the hazard function of default de�ned by

Γ(t) = − ln(1− F (t))

and its derivative γ(t) = f(t)
1−F (t) , called the hazard rate. Note that Γ is increasing

with time, and that

P(τ > t) = 1− F (t) = e−Γ(t) = exp(−
∫ t

0
γ(s)ds)

In case τ is de�ned as the �rst jump of an inhomogeneous Poisson process with
deterministic intensity λ(t)t≥0, then the the density function of τ is

f(t) = P(τ ∈ dt)/dt = λ(t) exp(−
∫ t

0
λ(s)ds) = λ(t)e−Λ(t)

where Λ(t) =
∫ t
0 λ(s) ds and P(τ ≤ t) = F (t) = 1−eΛ(t) hence the hazard function

is equal to the compensator of the Poisson process, i.e. Λ(t) = Γ(t).
Conversely, if τ is a random time with density f , setting Λ(t) = − ln(1−F (t))

allows us to think at τ as the �rst jump time of an inhomogeneous Poisson process
with the derivative of Λ as intensity.

The hazard rate can be interpreted as the instantaneous probability of default,
i.e. it is the probability of that the default occurs in a small interval dt given that
the default did not occur before time t

lim
h→0

1

h
P
(
τ ∈ (t, t+ h]

∣∣τ > t
)
=

f(t)

1− F (t)
= γ(t) (3.1)

Let D(t, T ) denote the value of a defaultable zero-coupon bond with maturity T ,
which pays one unit at time T if default has not yet occurred, and pays of R < 1
units at time τ if τ ≤ T .

The price of this defaultable zero-coupon bond at time t before default is

D(t, T ) = E
(
B(t, T )1{T<τ} +RB(t, τ)1{τ≤T}

∣∣Ht

)
=

P(T < τ)

P(t < τ)
B(t, T ) +

P(T < τ)

P(t < τ)
R

∫ T

t
B(s, T )dF (s)

where B(t, T ) denotes the value of the default-free bond zero-coupon at time t.
If F is di�erentiable, the function γ = Γ′ satis�es f(t) = γ(t)e−Γ(t), and so

D(t, T ) =
e−Γ(T )

e−Γ(t)
B(t, T ) +

1

e−Γ(t)
R

∫ T

t
B(t, s)γ(s)e−Γ(s)ds

= s(t, T )B(t, T ) +R

∫ T

t
γ(s)s(s, T )B(s, T )ds

where the functions s(t, T ) = e−Γ(T )

e−Γ(t) = P(τ > T |τ > t) is the survival probabilities
from time t to time T , where 0 ≤ t ≤ T .
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The �rst term represents the price of the defaultable zero-coupon bond with
no recovery at default, what can be formulated as

D0(t, T ) = exp

(
−
∫ T

t
γ(s) + r(s)ds

)
.

This result is important because it tells us that the default intensity γ(t) plays
the same role as interest rates. This property will allow us to taking into account
the possibility of default through the inclusion of the hazard rate in the discount
rate and view default intensities as credit spreads. However, γ(t) is independent of
all default free market quantities and represents an external source of randomness
that makes these models unrealistic.

The integral in the second term makes reference to the fact that default can
happen at any time between t and T. The pre-default value of the defaultable
zero-coupon is

D(t, T ) = D0(t, T ) +R

∫ T

t
γ(s)D0(s, T )ds

Equivalent Martingale Measure

In order to study the completeness of the �nancial market, we �rst need to de�ne
the tradeable assets. If the market consists only of the risk-free zero-coupon bond,
there exists in�nitely many equivalent martingale measure's. The discounted asset
prices are constant, hence the set Q of equivalent martingale measures is the set
of probabilities equivalent to the historical one.

The range of prices is de�ned as the set of prices which do not induce arbitrage
opportunities. For a defaultable zero-coupon bond with a constant rebate R paid
at maturity if default happens, the range of prices is equal to the set

{ EQ

(
B(0, T )1{T<τ} +RB(0, T )1{τ≤T}

)
, Q ∈ Q }

This set is exactly the interval ]RB(0, T ), B(0, T )[ . Since, in the set Q, one can
select a sequence of probabilities Qn which converge weakly to the Dirac measure
of that the default appears at time 0 or never. Obviously, this range is too large
to be e�cient.

If defaultable zero-coupon bonds with zero recovery are traded in the mar-
ket at price D∗(t, T ), which belongs to the interval ] 0, B(t, T )[ , then under any
risk-neutral probability Q, the process B(0, t)D∗(t, T ) is a martingale. So the
equivalent martingale measure Q∗ chosen by the market, is such that

B(0, t)D∗(t, T ) = EQ∗(B(0, T )1{τ<T}|Ht) = B(0, T ) exp
(
−
∫ T

t
γ∗(s) ds

)
Therefore, we can characterize the cumulative distribution function of τ under Q∗

from the market prices of the defaultable zero-coupon bonds as Q∗(τ > T |τ >
t) = D∗(t, T )/B(t, T ). Of course, this probability may di�er from the historical
probability.
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It is obvious that if D∗(t, T ) belongs to the range of viable prices ]0, B(0, T )[ ,
the process γ∗ is strictly positive, and the converse holds true too. The value of∫ T
t γ∗(s) ds is known for any T ≥ t as soon as there are defaultable zero-coupon
bonds for each maturity, and the unique risk-neutral intensity can be obtained
from the prices of defaultable zero-coupon bond as

γ∗(T ) =
∂

∂T
ln

D∗(t, T )

B(t, T )
.

There are two reasons why the calculations for extracting default probabilities
from bond prices are, in practice, usually more complicated than this. First, the
recovery rates are usually non-zero. Second, most corporate bonds are not zero-
coupon bonds. When the recovery rate is non-zero, it is necessary to make an
assumption about the claim made by bondholders in the event of default. Jarrow
and Turnbull (1995) and Hull and White (1995) assume that the claim equals the
no-default value of the bond. Du�e and Singleton (1997) assume that the claim
is equal to the value of the bond immediately prior to default.

3.2 The Hull and White Model

Hull and White (2000) provides one of the most famous hazard function models to
value credit default swaps. It starts out by estimating the risk-neutral probability
of the reference entity defaulting at di�erent times. The prices of bonds issued by
the reference entity provide the main source of data for this estimation. By using
the estimated risk-neutral default probabilities and making an assumption about
the claim amount, they provide an approach for valuation of a credit default swap.

Hull and White formulated their results in terms of f(t) the default probability
density, rather than the hazard rate. The hazard rate, γ(t), is de�ned so that
γ(t)∆t is the probability of default between times t and t + ∆t as seen at time t
assuming no default between time zero and time t, while f(t)∆t is the probability
of default between times t and t + ∆t as seen at time zero. The two measures
provide the same information about the default probability environment and they
are related by

f(t) = γ(t)e−
∫ t
0 γ(s)ds.

It is assumed that all the bonds have the same seniority in the event of default by
the reference entity and that the expected recovery rate is independent of time. So
the expected value of recovery rate is independent of both j and t, let R denote
this expected value.

The model uses a set of N bonds of the reference entity with the maturity of
the ith bond being ti, with t1 < t2 < t3 < . . . < tN . It then estimates the risk-
neutral default probability density function f(t) of the company assuming that f(t)
is constant and equal to f(ti) for ti−1 <≤ t < ti.

The model assumes that the only reason for a corporate bond sells for less than
a similar treasury bond is the possibility of default. Accordingly, the di�erence
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between bond prices is equivalent to the present value of the cost of default of the
reference entity. It follows that:

Dj −Bj =

j∑
i=1

f(ti)βij

where Bj is the price of the jth bond today, Dj is the price of a Treasury bond
promising the same cash �ow as the jth bond. Furthermore, βij represents the
present value of the loss from a default on the jth bond between ti−1 and ti relative
to the value of a corresponding risk-free bond and is set to

βij =

∫ ti

ti−1
v(t)[Fj(t)− R̂Cj(t)]dt

where v(t) is the present value of $1 certainly received at time t, Fj(t) is the forward
price of the jth risk-free bond at time t and if there is the jth bond defaults at
time t the bondholder makes a recovery at rate R̂ on a claim Cj(t).

Because interest rates are deterministic, Fj(t) is equal to the price of the jth
non-defaultable bond at time t.

This equation allows the f(tj)'s to be determined inductively:

f(tj) =
Dj −Bj −

∑j−1
i=1 f(ti)βij

βjj

The two sets of zero-coupon bond prices can be bootstrapped from corporate
coupon bond prices and treasury coupon bond prices.

To value a CDS with a $1 notional principal, it is assumed that default events,
Treasury interest rates, and recovery rates are mutually independent. It is also
assumed that in the event of default the claim is the face value plus accrued
interest.

This means that the payo� from a typical CDS is

1− R̂[1 +A(t)] = 1− R̂ −A(t)R̂

where R̂ is the expected recovery rate, and A(t) is the accrued interest on the
reference obligation at time t as a percent of its face value. The present value of
the expected payo� from the CDS is∫ T

0
[1− R̂−A(t)R̂]f(t)v(t)dt

Total payments per year made by the protection buyer w last until a credit
event or the end of the contract at time T , whichever is sooner. In the case of no
default during the lifetime of the CDS, the present value of the payments is wu(T ),
where u(T ) is the present value of payments at the rate of $1 per year on payment
dates between time zero and time t. In the case of default at time t(t < T ), the
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present value of the payments is w[u(t)+e(t)], where e(t) is the present value of an
accrual payment at time t The expected present value of the payments is, therefore:

w

∫ T

0
f(t)[u(t) + e(t)]dt+ wπu(T )

where π denotes the risk-neutral probability of no credit event during the life of
the swap. It can be calculated from f(t) as follows

π = 1−
∫ t

0
f(t)dt

The value of the credit default swap to the buyer is the present value of the
expected payo� minus the present value of the payments made by the buyer:∫ T

0
[1− R̂−A(t)R̂]q(t)v(t)dt− w

∫ T

0
q(t)[u(t) + e(t)]dt+ wπu(T )

if when entering the contract neither of both parties makes a cash payment.
The one parameter necessary for valuing a credit default swap that cannot be

observed directly in the market is the expected recovery rate. It is assume that
the same recovery rate can be used for estimating the default probability densities
and for calculating the payo�. As the expected recovery rate increases, estimates
of the probability of default increase and payo�s decrease. Hull and White show
that the overall impact of the recovery rate assumption on the value of a credit
default swap is fairly small when the expected recovery rate is in the 0% to 50%
range.

Since the value of the CDS to both parties has to be zero at inception, the
value of w that makes the last expression zero is

s =

∫ T
0 [1− R̂−A(t)R̂]q(t)v(t)dt∫ T

0 q(t)[u(t) + e(t)]dt+ wπu(T )
(3.2)

where the variable s is referred to as the credit default swap spread and represents
the value of total payments by year as a share of the notional principal of the CDS.

The presented valuation approaches is based on the assumption that interest
rates, default probabilities, and recovery rates are independent. These assumptions
are unlikely to be perfectly true in practice. However, Hull and White hypothesize
that the e�ect is small. The model's attractiveness as a reduced form approach is
that it can be implemented based on observable market data.

Hull and White (2000) in their paper also present approximate no-arbitrage
pricing approach. Skipping most of the derivation, we give a brief review of this
valuation approaches.

Put very simple, a portfolio consisting of a CDS and an underlying bond of the
same obligor both having maturity T should be risk-free. It should, therefore, have
the same payo� as a treasury bond with maturity T . Assuming for simplicity that
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the treasury curve is �at and that interest rates are constant, a simple no-arbitrage
argument then results in the spread

s∗ = maturity-T corporate bond yield - maturity-T treasury bond yield,

which will typically overestimate the true spread s. However, there is a way to
close most of the gap between s∗ and s. Let A∗(t) represent the time-t accrued
interest as a percentage of the face value on a T-year par yield bond that is issued
at time zero by the reference entity with the same payment dates as the swap. Hull
and White refer to this bond as the underlying par yield corporate bond. As an
approximation, use a(t) as the average value for A(t) under the integral in Equation
3.2 and analogously de�ne a∗(t) as the average value for A∗(t), 0 < t < T. This
yields an approximate formula for s, where

s =
s ∗ (1−R− aR

(1−R)(1 + a∗)

In their paper, Hull and White come to the conclusion that this approximate
valuation ends up with results only di�ering marginally from the intensity model
spread (Equation 3.2). This would constitute a quick and simple method for the
applied valuation of CDSs. Hence, we address both, respective model performance
as compared to the market as well as relative pricing performance of the two Hull-
White approaches.

Arora Bohn and Zhu (2005) empirically compare three credit-risk model. These
models are the Merton model, the Vasicek-Kealhofer (VK) model, and the Hull-
White (HW) model. The used data set consists of bond data for each models
implementation combined with data on actual CDS spreads used to test each
models predicted prices.

They test test the ability of each model to predict spreads in the credit default
swap (CDS) market as an indication of each models strength. The VK model
tends to do the best across the full sample and relative sub-samples and the HW
model approach is not too far behind in terms of accuracy ratio. In cases They �nd
that the quality and quantity of data make a di�erence for the HW model, many
traded issuers will not be well modeled in this way unless they issue more traded
debt. This results demonstrate that with proper calibration of default models,
both equities and bonds can be e�ective sources for information about impending
defaults.

3.3 Intensity Rate Approach

In the previous section introduced hazard function only changes with time t. In
real modeling situations there are other factors that a�ect the default probability
of a �rm. Hence we want to be able to build models in which we can condition on
a more general information set Ft, where Ft contains information on the survival
up to time t and the hazard process λt is predictable with respect to the �ltration
Ft.
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This description of intensity models will focus only on the construction using
Cox processes, while this is not the most general setting, it is by far the most
convenient to work with in practical pricing problems.

A Cox process is a generalization of the Poisson process in which the intensity
is allowed to be time-varying and stochastic, but in such a way that if we condition
on a particular realization λ( · , ω) of the intensity, the jump process becomes an
inhomogeneous Poisson process with intensity λ(t, ω). The process is sometimes
called doubly stochastic due to the stochastic nature of the jump component and
the stochasticity in the probability of jumping, i.e. in the intensity.

Although this setting is very natural, it excludes several plausible situations.
For example, the process Ht cannot be adapted to the market information, so
default can't be triggered directly by any of the driving processes, as is the case
with structural models.

In the following part a formal description is given on how the Cox process can
be modeled, it is a very useful tool when performing calculations and simulations
of reduced form models.

First, let us recall that one way of simulating the �rst jump of an inhomoge-
neous Poisson process is to use the connection between a standard homogeneous
Poisson process and a inhomogeneous Poisson process. The �rst jump time of
a standard Poisson process, denoted θ, has an exponential distribution of rate
one, i.e. P(θ ≥ t) = exp(−t). One can de�ne τ the �rst jumping time of the
inhomogeneous Poisson process Nt as

τ = inf{ t ≥ 0 :

∫ t

0
λ(s) ds ≥ θ } = inf{ t ≥ 0 : Λ(s) ≥ θ } (3.3)

Hence the simulation of the �rst jump of an inhomogeneous Poisson process can
be done trough generating exponential variables and taking Λ−1 of the generated
time instants.

From now on we assume that a probability space (Ω,G,P) is given, where Ω
is the set of possible states of the economic world, and P is the physical or real
probability measure. A process Xt = (X1

t , . . . , X
d
t ) with values in Rd is de�ned

on the probability space, that represents d economy-wide variables. These state
variables may include interest rates on riskless debt, stock prices, credit ratings
and other variables deemed relevant for determining the likelihood of default. Let
(Ft)t≥0 denote the "market �ltration" generated by Xt, i.e. Ft = σ{Xs : 0 ≤ s ≤
t}. And let the intensity rate λ t be a positive and right continuous Ft-adapted
stochastic process.

We also assume that on the probability space (Ω,G,P) there exists a random
variable θ independent of F∞, following the exponential law P(θ > t) = e−t. The
�rst jump time of a Cox process τ is de�ned as the �rst time when the increasing
process Λt =

∫ t
0 λs ds is above the random level θ, i.e.

τ = inf{ t ≥ 0 :

∫ t

0
λs ds ≥ θ } = inf{t ≥ 0 : Λs ≥ θ}.
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Note that this is an exact analogue to equation (3.3) with a random intensity
replacing the deterministic intensity function.

In analogy with Poisson processes, the distribution function of τ can be given
as

P(τ > t ) = P(Λt < θ) = P(

∫ t

0
λs ds < θ)

= E
(
P(

∫ t

0
λs ds < θ | Ft)

)
= E( e−

∫ t
0 λs ds ), (3.4)

where we used the the independence assumption and the Ft-measurability of λs

for s ≤ t.

Pricing Formulas

This section provides a useful tool for showing the general expressions for the price
of the derivatives.

As before let Ht = 1{τ≤t} denote the right continuous default processes and
Ht = σ{Hs : s ≤ t} the �ltration generated by it. We introduce the �ltration
Gt = Ft ∨ Ht, that is, the enlarged �ltration generated by the market �ltration
and the default time. The following proposition gives the basic analytical tool to
�reduce� default related computations from the full �ltration Gt to the default free
computations in the market �ltration (Ft)t≥0.

Lemma 3.3.1. Let X be an integrable random variable, then

E(1{τ>t}X|Gt) = 1{τ>t}
E(X1{τ>t}|Ft)

E(1{τ>t}|Ft)

Proof. It is easy to describe the events which belong to the Gt σ-�eld on the set

{τ > t}. Indeed, if G ∈ Gt, then G∩{τ > t} = B∩{τ > t} for some event B ∈ Ft.

Therefore any Gt-measurable random variable X satis�es 1{τ>t}X = 1{τ>t}x ,

where x is an Ft-measurable random variable. Taking conditional expectation

with respect to Ft of both members, we deduce x =
E(X1{τ>t}|Gt)

E(1{τ>t}|Gt)
.

We now compute the expected value of a a predictable process at time τ .

Lemma 3.3.2. If ht is an (Ft)t≥0-predictable and bounded stochastic process then

E(hτ |Ft) = E

(∫ ∞

0
hsλse

−Λsds

∣∣∣∣Ft

)
and

E(hτ |Gt) = E

(∫ ∞

t
hsλse

Λt−Λsds

∣∣∣∣Ft

)
1{t<τ} + hτ1{τ≤t}
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Proof. Let ht = 1]v,w](t)Bv where Bv ∈ Fv be an elementary predictable process.

Then

E
(
hτ
∣∣Ft

)
= E

(
1]v,w](τ)Bv

∣∣∣∣Ft

)
= E

(
E
(
1]v,w](τ)Bv

∣∣F∞
)∣∣∣∣Ft

)

= E

(
BvP(v < τ ≤ w)

∣∣F∞)

∣∣∣∣Ft

)
= E

(
Bv(e

−Λv − e−Λw)

∣∣∣∣Ft

)
It follows that

E
(
hτ
∣∣Ft

)
= E

(
Bv

∫ w

v
λse

−Λsdu

∣∣∣∣Ft

)
= E

(∫ ∞

0
hsλse

−Λsds

∣∣∣∣Ft

)
and the second result is derived from the monotone class theorem.

Lemma 3.3.3. Let X be an F∞-measurable random variable. Then

E(X|Gt) = E(X|Ft)

Proof. To prove that E(X|Gt) = E(X|Ft), it su�ces to check that

E(Bh(t ∧ τ)X) = E(Bth(t ∧ τ)E(X|Ft))

for any Bt ∈ Ft and h = 1[0,a]. For t ≤ a, the equality is obvious. For t > a, we

have

E(Bt1{τ≤a}E(X|Ft)) = E(BtE(X|Ft)E(1{τ≤a}|F∞)) =

E(BtE(X|Ft)E(1{τ≤a}|Ft)) = E(XBtE(1{τ≤a}|Ft)) = E(XBt1{τ≤a})

With these technical results in place, we are ready to extend the scope of the
model setup. In default modeling we will be concerned with pricing cash �ows
which in one way or another are tied to the random variable τ .

If X is an integrable FT -measurable random variable we note that

P(X1{τ>T}|Gt) = 1{τ>t}E(X1{τ>T}|Gt)

so using Lemma 3.3.1 gives us

E(X1{τ>T}|Gt) = 1{τ>t}
E(X1{τ>T}|Ft)

E(1{τ>t}|Ft)

Now,

E(X1{τ>T}|Ft) = E(XE(1{τ>T}|FT )|Ft) = E
(
Xe−

∫ T
0 λsds

∣∣Ft

)
= e−

∫ t
0 λsdsE

(
Xe−

∫ T
t λsds

∣∣Ft

)
= E(1{τ>t}|Ft)E

(
Xe−

∫ T
t λsds

∣∣Ft

)
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and therefore,

E(X1{τ>T}|Gt) = 1{τ>t}E(Xe−
∫ T
t λsds|Ft).

This corollary of Lemma 3.3.1 admits an interesting interpretation. If we con-
sider a a defaultable claim with a promised payment of XT at time T and an actual
payment of XT1{τ>T} at time T , then its value at time t is

E
(
e−

∫ T
t rsdsXT1{τ>T}

∣∣Gt

)
= 1{τ>t}E

(
XT e

−
∫ T
0 rs+λsds

∣∣Ft

)
, (3.5)

i.e. the default intensity λ t can be interpreted as a spread. This simple example
shows that the framework obviously holds promise for getting analytically tractable
prices of defaultable claims. However, we are not dealing with a risk neutral
probability. In the case where the market is assumed to be complete, that means
in particular that a defaultable zero-coupon is traded (or duplicable). Then, for
pricing purpose, the intensity has to be evaluated under the risk-neutral probability
given by the market.

Two more �building blocks� can be priced using this framework, and with these
blocks we have a very �exible collection of tools.

Credit insurance products can be thought of as products that pay a stochastic
amount at the time of default. Let the amount paid at time τ be Yτ where Yt is a
process adapted to the market �ltration (Ft)t≥0. The expected payo� for insurance
over the period [t, T ] computed at time t is found by using Lemma 3.3.2:

E
(
e−

∫ τ
t rsdsYτ1{t<τ≤T}

∣∣Gt

)
= 1{t<τ}E

( ∫ T

t
Ysλse

−
∫ s
t ru+λududs

∣∣Ft

)
(3.6)

Second, consider a claim paying Zt continuously until default or until the ma-
turity date T in the case of no default. Then this claim's value with maturity T
at time t is

E
( ∫ T

t
Zs1{τ>s}e

−
∫ s
t rududs

∣∣Gt

)
= 1{τ>t}E

( ∫ T

t
Zse

−
∫ s
t ru+λududs

∣∣Ft

)
(3.7)

Observe that in all three cases the claim's value is a Gt-expectation, the reduc-
tion from Gt to Ft we see here is the essential property why the whole modelling
approach is called also reduced form modelling.

Credit spread and Recovery Assumptions

In credit risk valuation methodology, two quantities are crucial. The �rst is the
probability of default and the second is the recovery rate in the event of default.
Recovery rates refer to how we model the value that a debt instrument has left,
after default. Three main speci�cations have been used in the literature for the
recovery rate parametrization:

Recovery of Market Value �xes a recovery rate equal to an exogenous fraction
of the market value of the bond just before default. A contingent claim is said to
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have a recovery of market value at a default time τ if the amount recovered in the
event of default is equal to

Rτ = (1− Lτ )V (τ−, T )

where V (τ−, T ) is the market price of the claim just before default and Lτ is the
expected loss rate conditional on the information available up to time τ . This
measures the change in market value at the time of default, and has economic
meaning since Lτ is the loss in value associated with default.

Du�e and Singleton [30] show that with this recovery assumption, a defaultable
bond can be priced as if it was a default-free zero-coupon bond, by replacing the
usual short-term interest rate process rt with a default-adjusted short rate process
πt = rt + λtLt.

The advantage of this approach is that that, if λtLt does not depend on the
value of the defaultable bond, we can apply well known term structure processes
to model πt instead of rt to price defaultable debt.

One of the main drawbacks of this approach is that since λtLt appears multi-
plied in πt, in order to be able to estimate λt and Lt separately, we would need to
have available a collection of bonds that share some, but not all default character-
istics, or derivative securities whose payo�s depend, in di�erent ways, on λt and
Lt.

This identi�cation problem is the reason why most of the empirical work which
tries to estimate the default intensity process from defaultable bond data uses an
exogenously given constant Lt = L for all t.

Recovery of Face Value considers that, at default, the bond holders of a given
seniority receive a �xed fraction of face value, irrespective of the coupon level or
maturity. This is the closest we come to legal practice, and it is also the mea-
sure typically used in rating-agency studies. One only needs a post-default market
price to estimate the quantity and this allows to estimate recovery value based on
statistics provided by rating agencies such as Moody's. In mathematical terms,
the formula for a bond price is not quite as pretty as in the case of recovery of
market value, since we have to compute an integral of the form (3.6).

Recovery of Treasury assumes that, at default, a bond would have a market
value equal to an exogenously speci�ed fraction of an otherwise equivalent default-
free bond. This could be seen as a more sophisticated approach than recovery of
face value, since it at least tries to correct for the fact that amounts of principal
with long maturity should be discounted more than principal payments with short
maturity. An advantage of the recovery of treasury approach is that it permits
(at least with an assumption of independence between the short rate rt and the
default intensityλt) an immediate expression for implied survival rates.

With doubly stochastic default times the risk neutral hazard-rate process λt and
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the credit spread

c(t, T ) = − 1

T − t
(lnB(t, T )− lnD(t, T ))

of defaultable bonds are closely related. Analytic results for the instantaneous
credit spread are most easily derived given by

c(t, t) = lim
T→t

c(t, T ) =
∂

∂T

∣∣∣∣
T=t

(lnB(t, T )− lnD(t, T )).

Assuming that τ > t , so that B(t, t) = D(t, t) = 1, one gets that

∂

∂T

∣∣∣∣
T=t

lnB(t, T ) =
∂

∂T

∣∣∣∣
T=t

B(t, T ),

and similarly for D(t, T ). In the case of the default-free bound

− ∂

∂T

∣∣∣∣
T=t

B(t, T ) = rt

and to compute the derivative for the defaultable bound we need to distinguish
between the di�erent recovery models.

Under recovery of market value, we know from Du�e and Singleton [30] that a
defaultable bond can be priced as a default-free bond, by replacing the short-term
rate with πt = rt + λtLt. Exchanging expectation and di�erentiation,

− ∂

∂T

∣∣∣∣
T=t

D(t, T ) = E

(
∂

∂T

∣∣∣∣
T=t

e−
∫ T
t rs+Lsλsds

∣∣∣∣Ft

)
= rt + Ltλt

So the instantaneous credit spread equals the product of hazard rate and percent-
age loss given default, i.e. c(t, t) = tλt, what is quite intuitive from an economic
point of view.

Under recovery of face value , D(t, T ) is given by the sum of the price of the
vulnerable claim (3.7) with Zt = 1 and the recovery payment given by (3.6) where
Yτ = (1− L)τ . The derivative of the recovery payment at T = t is equal to

∂

∂T

∣∣∣∣
T=t

E

(∫ T

t
λs(1− Ls)e

−
∫ s
t ru+λududs

∣∣∣∣Ft

)
= λt(1− Lt)

Hence,

− ∂

∂T

∣∣∣∣
T=t

D(t, T ) = rt + λt − λt(1− Lt) = rt + Ltλt,

so that c(t, t) is again equal to Ltλt.
An analogous computation shows that we also have c(t, t) = δtλt under recovery

of treasury. However, for T − t > 0 the credit spread corresponding to the di�erent
recovery models di�ers.
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One could say that one recovery assumption can always be expressed in terms
of another, and therefore they are all equivalent. But the most used credit pric-
ing models treat recovery rate either as a constant parameter or as a stochastic
variable independent from the default intensity. And since reduced form models
are not able to separately estimate (using only bond data) the parts of the spread
coming from the default risk λt and from the loss given default Lt, it matters for
model �tting which recovery rate we keep constant.

Risk-neutral and Physical Measures

We now turn our attention to reduced form models under a riskneutral measure.
Given a reduced form model under the physical measure P, it does not necessarily
follow that the model will be of reduced form under the riskneutral measure Q.
The doubly stochastic assumption needs to be independently stated for P and Q.
Moreover, the intensities λQ

t and λP
t themselves can depend di�erently on the state

variables of the model, and may also have di�erent likelihoods for each path. Even
in the situation where λQ

t = λP
t we can still have that

P(τ > T |Gt) = 1{τ>t}P
(
e
∫ T
0 λsds

∣∣Ft

)
is di�erent from

Q(τ > T |Gt) = 1{τ>t}Q
(
e
∫ T
0 λsds

∣∣Ft

)
.

If Q is equivalent to P on (Ω,F), then according the Radon-Nikodym theorem
there is the density process

ρt =
dQ

dP

∣∣∣∣
Ft

t ∈ [0, T ],

and we assume that log ρt is locally bounded.
Then there are predictable processes θ : [0, T ]×Ω → R, and η : [0, T ]×Ω → R,

such that under Q:

WQ
t = Wt −

∫ t

0
θsds

is a Gt-Brownian motion and

Mt = Ht − λtηt = Ht − λQ
t ds

is a Gt-martingale, where Wt is a Gt-Brownian motion and Ht is the counting
process determining the default time.

Hence we still de�ne the default event as the �rst jump of the counting process
Ht, but the the intensities under Q have changed by a (stochastic) factor ηt. All
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the previous de�nitions and examples, including the doubly stochastic assumption
have risk-neutral analogues in terms of the risk-neutral intensity λQ

t . In particular,

Q(τ > t|Gs) = 1{τ>s}Q
(
e
∫ t
0 λQ

u du
∣∣Fs

)
.

so the survival probability expressions we just derived for intensity models apply
for risk-neutral probabilities as well.

The credit risk premium, de�ned to be the ratio ηt = λQ
t /λ

P
t is an object

of interest when comparing risk neutral and statistical estimates of the default
intensity.

Understanding this relationship is important, as it enables market participants
to use information on historical default probabilities in pricing credit-risky securi-
ties, and conversely to use prices of defaultable bonds or market quotes for credit
default swaps as additional input in determining historical default probabilities.

3.4 Pricing with Doubly Stochastic Default Times

The aim of this section is to develop some tools in the modelling of intensity
processes, in order to apply our pricing building blocks obtained in the last section.
We need e�ective ways to evaluate the conditional expectations on the right-hand
side of equations (3.5), (3.6) and (3.7).

In most reduced-form models default is modelled by a doubly stochastic random
time, rt and λt are modelled as functions of some d-dimensional process Xt =
(X1,t, . . . , Xd,t). Here Xt is some d-dimensional Markovian process representing
economic factors, and thus the natural background �ltration is given by Ft =
σ{Xs : s ≤ t}

Hence, rt+λ t is of the form φ(Xt) for some function φ : Rd → R and we have
to compute conditional expectations of the form

E
(
e−

∫ T
t φ(Xs) ds g(XT )

∣∣Gt

)
(3.8)

for some function g : Rd → R
+, to get the time t value of some claim depending on

the �rm's default. Since Xt is a Markovian process, this conditional expectation
can be expressed as a function of time and current value of the state variable
H(t,Xt).

Many ways exist to parameterize the intensity model but a useful way can be
to specify φ(x) = a0+a1x1+ . . .+adxd and g(x) = b0+ b1x1+ . . .+ bdxd as a�ne
functions of the state variable. One then say that the model is a�ne if for t < T
the the function H(t,Xt) can be expressed in closed form by

H(t,Xt) = exp(α(t, T ) + θ(t, T ) ·Xt), (3.9)

for some coe�cient functions α(t, T ), θ1(t, T ), . . . , θd(t, T ).

It was shown by Du�e and Singleton [30] that in the case where Xt is an a�ne
jump-di�usion process then the function H(t,Xt) can be expressed in closed form
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by for some coe�cients α(t, T ), θ1(t, T ), . . . , θd(t, T ) also given in closed form
functions of the model parameters.

The Xt process is called an a�ne jump di�usion, if it is given by

dXj, t = κj ( θj −Xj, t ) dt+ σj
√

Xj, t dWj, t + dqj, t

for j = 1, . . . , d, where Wj, t is an Ft-Brownian motion. κj and θj represent the
mean reversion rate and reversion level of the process, and σj is a constant a�ecting
the volatility of the process. qj, t is a pure jump process, independent of Wj, t

process, whose jump times are independent Poisson processes with constant jump
intensity γj , and jump sizes are exponentially distributed with constant mean µj .
Jump times and jump sizes are also independent.

Examples of a�ne processes

One of the simple examples of a�ne processes is the Ornstein-Uhlenbeck process or
the Vasicek model. this is a one dimensional model where λt = κ(θ−λt)dt+σdWt.
As usual, the parameters κ and θ represent the long-term average and the rate of
mean reversion for λt, while σ is a volatility coe�cient. One problem of this ap-
proach is that the Ornstein-Uhlenbeck process takes also negative values. A simple
solution is to take the modulus of the process, i.e., to re�ect the above SDE on the
origin.

As our next example of an a�ne model, let us consider the one factor model
where the intensity process λt following a CIR dynamics

dλt = κ(θ − λt)dt+ σ
√

λtdWt

for positive constants κ, θ and σ satisfying the condition 4κθ > σ2.
Borrowing from the interest rate models, we have that survival probabilities in

the CIR intensity model have the form

P(τ > t|Gs) = 1{τ>s} exp(A(s, t) +B(s, t)Ẋs)

where

A(t, s) =
κθ

σ2
log

2γ exp
(
(κ+ γ)(t− s)/2

)
2γ + (κ+ γ) exp

(
(t− s)γ

)
− 1

B(t, s) =
2(1− exp

(
(t− s)γ

)
)

2γ + (κ+ γ) exp
(
(t− s)γ

)
− 1

and γ2 = κ2 + γ2.
It is interesting to notice from this formula that survival probabilities increase

if we increase the volatility parameter, while keeping all other parameters �xed. In
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other words, forward default rates decrease as the volatility in the intensity process
increases.

The e�ects of volatility on survival probabilities and forward rates are compen-
sated, on the other hand, by the rate of mean reversion. Higher values of k mean
that λt stays close to its long-term average θ. This has the e�ect of bringing the
forward rate close to a long-term level as well. Conversely, smaller values of κ ac-
centuate the impact of the volatility in λt, leading to higher survival probabilities
and smaller forward rates.

A simple class of multivariate a�ne processes is obtained by letting Xt =
(X1t, . . . , Xdt), for independent a�ne coordinate processes X1t, . . . , Xdt). The in-
dependence assumption implies that we can break the calculation (3.9) down as a
product of terms of the same form as (3.9), but for the one-dimensional coordinate
processes.

Making rt and λt dependent on a set of common stochastic factors Xt one can
introduce randomness and correlation in the processes of rt and λt. Moreover,
our pricing building blocks examined in the previous section are special cases of
expressions (3.8), so if we use a�ne processes for the common factors Xt we get
closed form solutions for the building blocks.

Several versions of modelling rt and λt in this framework can be found in the
literature, di�ering from each other in their choices of the state variables and the
processes they follow.

When modelling the joint behavior of interest rates and default intensities, the
two obvious strategies for incorporating dependence are to use correlated Brownian
motions as drivers of the processes or to have an intensity function depend on the
interest rate. To illustrate the two approaches in their simplest form, the choice is
between correlation through the noise term,

drt = κr(θr − rt)dt+ σr
√
rtdWr,t

dλt = κλ(θλ − λt)dt+ σλ
√

λtdWλ, t

dWr,t dWλ, t = ρdt

or the intensity is a function of the spot rate of interest like in Jarrow and Yildirim
[50],

drt = κr(θr − rt)dt+ σrdWr,t

λ t = α(t) + βrt

where α(t) > 0 is a deterministic function of time, and β is a constant.
Brigo and Mercurio [14] show that ρ has a negligible impact on CDS prices

(within the bid-ask spread), thus allowing to calibrate separately interest rates
and credit models, even if ρ ̸= 0.
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3.5 Comments on Reduced Form Models

Reduced-form models are characterized by �exibility in their functional form, what
is both a strength and a weakness.

This �exibility, is an advantage that a model can be well �tted to some collec-
tion of credit spreads. And the analogy with default-free term structure models
makes the reduced-form models with doubly stochastic default times relatively
easy to apply.

Also, Jarrow and Protter [?] argue that reduced-form models are more appro-
priate in an information theoretic context. They point out that while structural
models assume complete information, they in fact su�er a lack of information
concerning default points and expected recovery. Furthermore, modeler only has
as much information as the market, making the reduced form models seem more
realistic.

Unfortunately, this �exibility in functional form may result in a model with
strong in-sample �tting properties, but poor out-of-sample predictive ability. Since
this type of models are less grounded in the economics the default process, in
interpreting the results some care is required. In particular, one must bear in mind
that in these models the default intensity does not explicitly take into account the
structure of a �rm's outstanding risky debt. This can lead to nonsensical results.

Empirical evidence concerning reduced-form models is rather limited. Using
the Du�e and Singleton framework, Du�ee [28] �nds that these models have dif-
�culty in explaining the observed term structure of credit spreads across �rms of
di�erent credit risk qualities. In particular, such models have di�culty generating
both relatively �at yield spreads when �rms have low credit risk and steeper yield
spreads when �rms have higher credit risk.

To combine the advantages of structural-form models - a clear economic mech-
anism behind the default process - and the ones of reduced-form models - unpre-
dictability of default - can be done by modeling the evolution of �rm value as a
jump-di�usion process.



Chapter 4

Numerical Experiments and

Discussions

A valuation model for defaultable claims consists of three components, the model
for the default time, the model for the magnitude of default, and the interest
rate model that characterizes the dynamics of the risk-free term structure. The
fundamental di�erence between the structural and the reduced-form approach lies
in how the models specify the timing risk of default.

As we have seen the two approaches imply a signi�cantly di�erent default
timing. The default is predictable in the structural case, but it becomes a purely
random event in reduced-form models. This is most obvious for short-term default
probabilities. They are predicted to decline to zero as the maturity goes to zero
in the �rst case, while they remain positive also for very short maturities for the
second case.

In order to focus on this discriminative modeling of the default time we use
an intensity model with structural interpretation. In particular, the state variable
is chosen to be the log-leverage process of the �rm, and its dynamic is modeled
as in Collin-Dufresne,Goldstein. We are simply applying these models, assuming
that each of them should match actual historical defaults. Although the models
are �exible in all parameters, we assume that �rms of di�erent ratings di�er only
in terms of asset volatility and leverage for which data by ratings is available.

To explore these questions, we need to calibrate our models to a reasonable
set of parameters. For each credit rating we use historical default rates from the
Moody's 1983-2008 global default rate report to calibrate our models to.

All our models use constant interest rate, so we set r = 6%, this is close to the
historical average treasury rates during 1983-2008. Following Huang and Huang,
we assume a constant payout rate for the asset, using δv = 3% for all rating
categories.

46
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Leland Model

As a starting point we use these base case estimates of parameters to estimate
the optimal asset volatility and leverage in the Leland model for di�erent credit
ratings.

The structural models ar known to �t only for longer longer maturities, so we
calibrate only for long time cumulative defaults. So, the model was calibrated
to match the target initial leverage and the cumulative default probability of 5-10
years. The tax redemption and the bankruptcy cost are set to be τ = 15%, α = 30%
just like it is recommended in Leland's original work. The results can be seen in
table 4. In the �rst two rows are the leverage an volatility estimates of Huang and
Huang , and the last two columns show our results.

Table 4.1: Parameter estimates for Leland's model

Rating
The base case from HH Implied

Leverage ratio Asset Vol. Leverage Asset Vol.

Aaa 13.08 34.06 37.57 23.63

Aa 21.18 29.23 30.07 27.41

A 31.98 25.25 31.45 27.37

Baa 43.28 25.05 38.14 31.65

Ba 53.53 36.00 45.52 44.49

B 65.70 52.33 63.58 57.83

Our estimates aren't that far away from the HH estimates. The most relevant
di�erences can be found in higher rating classes, where we overestimate the leverage
and under estimate the volatility compared to the results of HH. The main cause for
this might be the fact that HH also used equity premium data in their estimation
process. But even using the volatility estimates proposed by HH the implied
leverage for investment grade bonds is higher then in the base case, suggesting
that the model with our setting overestimates the optimal leverage for these �rms.

A few other conclusions can be reached based on our results. First, the mod-
elled default probabilities are under-predicted for short maturities for all rating
categories, as it is expected from a structural mode. This can be seen in Figure
?? For investment grade bonds the long term default probabilities are highly over
predicted by the �tted model and the di�erence between predicted and historical
default probabilities increase with time. Second, this over-prediction cumulative
defaults for long time periods signi�cantly decreases for junk bonds. This is line
with the empirical results of the literature, ie. that the Leland model works well
for credit pricing only for longer maturities and for lower bond rating.

Log-leverage Models

As the next step, we we will ask whether our results will be signi�cantly di�erent
when we use di�erent approaches to model default, and how good are the di�erent
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models in capturing the default probabilities across rating categories.
For this we going to use the Collin-Dufresne and Goldstein (CDG) structural

model and a closely related intensity model. The CDG model assumes a dynamic
capital structure, where the �rms log-leverage ratio follows a mean reverting pro-
cess. This way the �rm adjusts its outstanding debt in response to �rm value
change, to obtain a target leverage ratio. Thus, when the �rm value increases the
�rm will issue more debt, and when the �rm value decreases the owners of the
�rm will wait with issuing new debt, to keep its leverage ratio on target. In the
intensity model the economical state variable is the same as the mean reverting
log-leverage process in the CDG model.

First we calibrate the CDG model to the cumulative defaults using our param-
eters and leverage rate estimates form the last section. . But before that, we need
to set the value of two more parameters, namely the mean-reversion coe�cient
kappall = 0.16, and the bu�er parameter ν = 0.06, these numbers are similar to
those chosen in CDG.

Table 4.2: Parameter estimates for the CDG model

Rating
The base case from HH Implied Asset Volatility

Leverage

ratio

Asset Vol. for base case for 60%

of lever-

age

Aaa 13.08 34.06 24.24 26.38

Aa 21.18 29.23 22.28 24.85

A 31.98 25.25 21.16 24.32

Baa 43.28 25.05 21.24 25.29

Ba 53.53 36.00 24.93 31.10

B 65.70 52.33 26.68 36.17

The results in Table 4 show that, our asset volatility estimate in the CDGmodel
are similar to the results in the base case. The U shape is present in our results
too but not so signi�cantly and we under predict the base case in all categories.
If we decrease the leverage with 40% our result for volatility are more in line with
the base case. This might be due to the higher default probability driven by the
assumption that �rms may increase their debt outstanding.

The two structural models of credit risk have generated very similar default
probabilities, despite the fact that these models made very di�erent assumptions
on default mechanism. Their predicted credit risk premia do not di�er much once
each of them is calibrated to match the same historical default loss experience.
The result can be seen in �gure .

To analyze the impact of the di�erent input parameters on the two models
default prediction we take our initial initial input parameters and and set them to
their 50% and 150%, to asses their impact on the modelling results.

In the CDG model, we note that if the mean-reverting rate κ is getting large,
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then the �rm returns to its log-leverag faster, decreasing the probability of default.
Eventually the �rm becomes risk free as κ gets close to 1. Raising the bu�er
parameter ν has the same e�ect on the default probabilities but with a much
smaller e�ect. These changes a�ect lower credit ratings more, since these �rm
have higher leverage meaning that according the model are much closer to the
default boundary. The e�ect of the initial leverage rate change is in line whit
this logic, the changing of the initial leverage has the same e�ect across rating
categories, since with raising the laverage all �rs get closer to the default with the
same proportion.

Finally, the non-negative parameter qsigv controls the e�ect of the stochastic
part of a Brownian motion which can be positive or negative and it represents
the external market risk. We expect that when σv increases, the better capital-
structured companies have larger distance to the default boundary while worse
capital-structured companies have shorter gap. Thus the impact of increasing σv
a�ects �rm's default probability in lower categories better.

Now that we have estimated the input parameters for the CDG model we
can calibrate the intensity model using the asset volatility and leverage estimates
from the previous part. Calibrating the two models to the same data allows as
to investigate how much of these behaviors have the intensity modell inherited,
and asses the sensitivity of the models for the common parameters across di�erent
rating categories.

Using our estimates for asset volatility and initial leverage estimates from the
previous section we can estimate the two hazard rate parameters a and c. The
results can be found in �gure ??.

It's easy to see that the �tted value of c and a is decreasing as the credit rating
increases. This means that the default probabilities generated by the intensity
model depend more and more on the constant term a and less on the economical
factors. In other word this setting is able to �t default probabilities for higher
ratings but the �tted intensities are almost constants. This can be seen from
the sensitivity tests, where changing the CDG model parameters has almost no
e�ect. This problem prevails in lower rating if c is chosen to low compared a. An
example case for this can be �nd in �gure =??. This restriction could make �tting
this model cumbersome, and an over �tted model could lead to falls conclusions
if a and c is �tted together with other parameters of the model. One solution for
this could be to set the value of a for a reasonable constant for di�erent rating
categories.

In our brief study we found that our simple parameter estimation methodology
did not provide appropriate parameter values for estimating default rates. A more
advanced calibration methodology should be used that also includes bond, stock,
and balance sheet information data. On the other hand, after a more throughout
calibration, it would be interesting to examine the credit spreads generated by our
last models.

In this study we made various assumptions that limit the opportunities and
performance of the selected credit risk models. Most of our model inputs were con-
stant , but they might di�er across credit ratings. Therefore we should determine
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actual values with our model and make adjustments to modeled CDS spreads if
modeled and quoted spreads di�er.
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Figure A.1: Predicted cumulative default probabilities for the �tted Lelan model,

compared to historical data.
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Figure A.2: Predicted cumulative default probabilities for the �tted CDG model,

compared to historical data.
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Figure A.4: Sensitivity of the CDG model for parameter σv
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Figure A.5: Sensitivity of the intensity model, for parameter σv



54 APPENDIX A. FIGURES

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25
Rating:A

L
0
 = 0.192

L
0
 = 0.288

L
0
 = 0.0959

historical

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5
Rating:Baa

L
0
 = 0.26

L
0
 = 0.39

L
0
 = 0.13

historical

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8
Rating:Ba

L
0
 = 0.321

L
0
 = 0.482

L
0
 = 0.161

historical

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Rating:B

L
0
 = 0.394

L
0
 = 0.591

L
0
 = 0.197

historical

Figure A.6: Sensitivity of the CDG model for the initial leverage
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Figure A.7: Sensitivity of the intensity model for the initial leverage
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Figure A.8: Sensitivity of the CDG model for the interest rate
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Figure A.9: Sensitivity of the intensity model for the interest rate
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Figure A.10: Sensitivity of the CDG model for the pay out rate
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Figure A.11: Sensitivity of the intensity model for the pay out rate
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Figure A.12: Sensitivity of the CDG model for parameter νl
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Figure A.13: Sensitivity of the intensity model for parameter νl
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Figure A.14: Sensitivity of the CDG model for parameter κl
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Figure A.15: Sensitivity of the intensity model for parameter κl
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Figure A.16: Sensitivity of the intensity model for parameter a
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Figure A.17: Sensitivity of the intensity model for parameter c
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