
Finding extremal elements in liar
games

BSc Thesis

Author: Bertalan Borsos

Supervisor: Dömötör Pálvölgyi

Eötvös Loránd Tudományegyetem
Természettudományi Kar

Budapest, 2015

I would like to thank Dömötör Pálvölgyi for his insightful comments, his patience
and for his thoroughness with which he proofread my work over and over again. Without
his restless work this Thesis would not have been able to come half the way it did.

Contents

1 Introduction 1

2 Logarithmic search 4
2.1 Using logarithmic search to find a specific element of a set with one lie

permitted . 4

3 Finding extremal elements with no lies using comparisons 5
3.1 Comparisons . 5
3.2 Runtime . 6
3.3 Introducing two new concepts . 6
3.4 Search algorithms . 7
3.5 The weakness of the intuitive solution for extremal element search 8
3.6 Double tournament search . 8

4 Maximum search with k lies 9
4.1 Differences from the original model . 9
4.2 The battleship analogy . 9
4.3 Runtime . 10

5 Finding the minimum and the maximum with k lies 11
5.1 Potential function βk . 12
5.2 Upper bound for k = 1 . 12
5.3 Algorithm for arbitrary k . 14
5.4 Lower bound for k = 0 . 19
5.5 Lower bounds for k > 0 . 21

1 Introduction

Liar games first became an important subject of research when algorithmic problem
solving rose to prominence in the 20th century. The possibility of having a computer
ask the questions and interpret the answer opens up a new dimension considering the
speed at which modern computing machines can function. But first, a couple of words
about the models we are going to analyze.

The most basic one is a simple search. There are two players in the game, the
Questioner and the Responder. They previously agree on a set of objects from which
the Responder picks one and the Questioner’s job is to find out which one it was. This
set of objects is usually referred to as the search space. There are several different
perspectives in this but the main one usually is how fast the Questioner can find the
chosen element. And by how fast we mean the number of questions required in the worst
case. For instance, going one by one through the elements of the search space is not an
effective method as if the object we are looking for comes up last, we require n queries,
where n is the number of elements in our set. It is easy to see that the problem can be
solved in dlog ne questions using binary search. This process revolves around narrowing
the options to half in every step by dividing the search space into two partitions with
relatively the same number of elements in each then asking whether the one we are
looking for is an element of the first partition. Regardless of the answer we rule out
about half of the possibilities.

But what if some of the answers are erroneous? Or if the questions we are
permitted to ask have certain limitations? Or if we do not need to find only one element?
These are some of the factors defining the model we are working with. For example
the popular game 20 Questions has answers limited to a simple “Yes” or “No”. The
notion of representing this with binary code comes very naturally. However, no lies
were permitted at all. The concept of the Responder lying gains importance for its
applications in information theory. In the time when telecommunication utilizes radio
waves it is very much possible that due to some environmental effect the information
transmitted is corrupted, or at least part of it is. If we presume a maximum amount of
information (i.e., number of bits) can be corrupted, finding an efficient way of decoding
a message is equivalent to finding the right element of the set of possible words with lies,
where lies represent the corrupted bits. In some other models every bit has a chance, a
probability of arriving to the receiver corrupted. In this case solving the problem is only
possible with a certain probability. The smaller the chance the algorithm’s solution is
wrong the better it is considered.

There is also the option of having to find more than one element. To give an
example to this one too, let us introduce another simple model. The search space is going
to be human faces, each with unique features. We have a photograph of someone and we
want to find the person who resembles them the most and another one who resembles
them the least of all possibilities in our search space. Let vκ be the characteristic vector
for the person κ in our search space. This means that every coordinate of this vector
represents a human visual feature and every coordinate of the vector is 1 if said person
possesses the actual feature and 0 if they do not. For instance if we are only looking
at the gender, color of eyes and color of hair, then someone who has the same eye and

1

hair color as the person we are looking for but not matching in gender would have a

characteristic vector of

0
1
1

. Then let us define s(vi) as the sum of the coordinates

of vi. Now finding the maximal and minimal element of the possible s(vi) values also
solves our original problem of finding the most and least resembling person.

Along with the type of permitted questions, number of lies and properties of
the search space we also categorize different models as adaptive or not adaptive. The
difference basically is whether the answers of the Responder can have an effect on the
next question we are going to ask. If our questions depend on the answers received so
far we say that our model is adaptive as it adapts its approach based on information
already obtained. In case of a non-adaptive search the entire series of questions to be
asked can be input right at the start even before we receive the first answer. In case
of an adaptive one we evaluate the answer to the first question and calculate the next
one trying to figure out what would be the optimal thing to ask in light of the answer
to the previous question. Then we repeat this in every step. If we have the option to
search adaptively, it is almost always the better solution, as for instance in case of our
task being having to find the biggest number out of n numbers, if we first ask whether
a particular one is the biggest and the answer is yes, adaptive search algorithms stop
right away as they have completed the task. A non adaptive process however, would
continue to execute all queries and then when it is finished evaluate and find that the
solution was actually transparent after the first question. However adaptivity is not
black and white. We can define k-batch models, meaning that at a time a fixed number
k questions are asked, the Questioner receives the answer to those, has time to evaluate
the results and then asks k more question. With this definition a totally adaptive search
can be considered a 1-batch game.

A popular example of this difference is often brought up with e-error correcting
codes and their decoding. An e-error correcting code is a set of binary sequences with
fixed maximum length in which we can always restore a message sent through a noisy
channel if we presume that at most e bits can be corrupted in every word. A code is
e-error correcting if and only if the minimum Hamming distance of its words is 2e+1. If
there is no feedback we consider decoding a message a nonadaptive search problem. We
can however define a noiseless, delayless feedback channel through which the receiver
can send information back to the sender. This message arrives immediately and has
no chance of being corrupted. This defines the same problem with the component of
adaption as the sender receives information on every bit before sending the next.

It is also possible to apply other types of regulations to the questions. For in-
stance, if we forbid asking the same question more than one time. Or, in case of a totally
ordered set, we only allow a binary question regarding the relation of two elements. Or
maybe both. Of course this in some cases can make it impossible to find the maximum
element of a set of numbers for instance, if we use a comparison based search process. If
the two biggest numbers are compared and a lie is allowed, when we compare these two
and the answer is false we are not going to be able to decide between the two. What
can we say then?

In the following pages we are going to build up and discuss different liar game

2

models, starting from scratch and introducing multiple object finding methods, the
concept of optimal algorithms for these tasks, lies and their limitations and a couple of
questions that arise on the way. Unless otherwise noted, we presume adaptivity and no
extra regulations for the questions.

3

2 Logarithmic search

If we have a finite set of elements and we want to find exactly one of them, the most
used algorithm for this is logarithmic search. As described in the introduction it follows
a simple thought process. We want to eliminate the most possibilities in every step, so
we split the search space in half and ask the question: which half the target element
is in. This is also a yes/no question so it is allowed when there are strict regulations
regarding the queries. The runtime of this method is dlog ne as it halves the search
space in every iteration.

Remark 1. There is a strong connection between searching for a particular element in
a set, and searching for a number amongst a set of integers if the set contains a finite
number of elements. We can arbitrarily label the elements of the set with integers from
1 to n, where n is the number of elements in our set. In this case finding the label of
an element is equivalent to finding the element itself, as the connection is basically a
bijection. This simplifies any guessing game over a finite set to the same game with
numbers.

Remark 2. If our set is finite and ordered we can label its elements with numbers from
1 to n, where n is the number of elements in the set. Then the run of a logarithmic
search algorithm can be simulated with the questions regarding the different digits of
the binary representation of this number. We are going to use these observations later
on. Logarithmic search is often referred to as binary search, possibly because of this
connection.

2.1 Using logarithmic search to find a specific element of a set
with one lie permitted

In this section we introduce the concept of lies, what they represent and how we can deal
with them. At this point it is no secret that the models we are working with operate on
the Questioner using binary questions.

Definition 3 (Lie). When the Responder gives an erroneous answer we are going to
refer to this answer as a lie. If in a series of questions we are able to find all lies, we can
reduce our problem to a simple search problem.

Theorem 4. If a finite set of arbitrary elements is given and the Responder selects one
at will, the Questioner can find this element using less than dlog ne+dlog (dlog ne+1)e+1
questions, if the Responder is giving at most one erroneous answer.

Proof. We are going to use the concept described in Remark 2. Let us say we have a
finite search space S consisting of arbitrary elements. The Responder selects t ∈ S. We
associate every element in S with an integer as described above and run logarithmic
search on these numbers using the digit questions. So far we have used exactly as many
questions as many digits these numbers have, which is dlog ne at most, where n is the
number of elements in S. The answer to one of these could be false. Here we add one
more question: did you lie yet? The answer to that is either yes or no. However, if the

4

answer is no, it must be true as if it was false it would mean the Responder did indeed
lie and then lied again denying it. But we only allowed one lie. This means all answers
were correct and we have reached our goal using dlog ne + 1 queries. If the answer is
yes, we have two options. Either the first series of queries was answered right and we
are being lied to right now or there was a false answer in the original search. In this
case if we find the erroneous bit we find the solution because we change that bit to 1 if
it was 0 or to 0 if it was 1 and the element associated with the new label number is the
one selected by the Responder. In order to do that let us define S̄ := {bi | i ∈ {1, .., n}},
where bi represents the answer of the Responder to the ith question. Then we add one
more element to S̄, the “did you lie” question. The task at hand is nothing else but
finding one selected element (the erroneous answer) of a set of dlog ne + 1 elements.
Naturally instead of asking one by one for every bi whether it was erroneous, we can
run logarithmic search. This in case of a set of dlog ne+ 1 elements has a runtime of at
most dlog (dlog ne+ 1)e questions. As dlog ne is an integer, dlog ne+ 1 also is, meaning
the second ceiling sign is redundant. Combining this with the original search yields
dlog ne+ dlog (dlog ne+ 1)e+ 1 questions in the worst case.

Remark 5. In fact, although the present version is easier to see, a method exists
with a slightly better runtime than this one. More importantly it is also able to deal
with nonadaptive problems. It is called Hamming code and it is widely considered a
cornerstone in the theory of k-error correcting codes. However, this is not a subject of
this current work.

3 Finding extremal elements with no lies using com-

parisons

Definition 6 (Extremal elements). In a finite set of real numbers we will refer to the
minimum and the maximum as extremal elements.

3.1 Comparisons

So far the problems we have touched on had very little regulations regarding the ques-
tions the Questioner was permitted to ask. Even limiting them to be yes/no questions
was not that strict as someone looking for a specific element had the liberty to ask
questions like “is this element in this particular subset?”. Or even more bluntly “is it
this element?”. From now on we will focus on models where the only legal question is
a comparison. The Questioner provides two different elements of the search space and
the Responder tells which one is bigger. For this to make any sense of course we need
to define an ordering relation on the elements of the search space. From this point on
we are going to assume that there is a relation defined for every search space S meaning
that for every x, y ∈ S either x ≤ y or x ≥ y is true. The ordering is not necessarily
strict as finding one of the maximal elements is enough but it is, obviously, necessarily
transitive as this property is pivotal to most of the algorithms being used here. It is
intuitive that if we are able to find the maximum of a set of elements some way, using

5

the same algorithm n times gives us the entire ordering. In practice however there are
less straightforward but more efficient methods for solving this problem.

Remark 7. Considering that allowing the relation not to be strict does not really make
a difference as in this case finding one of the maximal elements is sufficient and finding
one of these maximal elements is exactly as hard as finding the single maximum in case
of strict ordering we can assume, for the sake of simplicity, that for every two elements
either x < y or x > y is true. We are going to use this assumption from now on.

3.2 Runtime

This time we are looking at the maximum search problem with comparisons but without
lies. There are a number of methods for finding the maximal or minimal element of any
totally ordered set using questions restricted only to a simple comparison of two elements
to which the answer is binary: either the first one is greater than the last one or the other
way around. An efficient algorithm can solve this problem using n− 1 comparisons.

Theorem 8. Any algorithm designed to find the maximum (or minimum) of a set of
totally ordered elements via comparisons requires n− 1 comparisons.

To be able to prove this, two new definitions are required.

3.3 Introducing two new concepts

To be able to deal with certain situations easier we define two notions that might prove
useful in following sections as well.

Definition 9 (Evil Adversary). In the analysis of algorithms usually the goal is to find
the runtime in the worst case scenario rather than the best one. The Evil Adversary is
the symbol of everything going wrong for the user, or in our case the Questioner. This
allows the Responder not only to give the least desirable answer for us but to change the
maximum element at will during the run of the algorithm if it does not conflict with the
answers given earlier. This is an efficient way of simulating the worst, most unlucky run
of the algorithm in order to see if it still completes the task necessary and how badly
does it effect complexity.

Definition 10 (Comparison Graph). In case of a set with a high number of elements
it can be extremely difficult to keep track of every comparison used in the search. This
is likely to get even more messy when lies are also possible. A comparison graph is a
simple representation of the run of a comparison based search algorithm. The vertices
of comparison graph V represent the elements of the search space. At the start of the
run there are no edges. After every comparison we add an edge connecting the two
vertices symbolizing the two elements being compared then we direct the edge towards
the “winner”.

Remark 11. As we have assumed that the ordering relation is strict, the Comparison
Graph for any algorithm dealing with a simple search problem without lies is likewise
assumed an acyclic digraph. If there was a cycle of k edges in the Graph, k − 1 of its
edges would determine the direction of the kth edge thus rendering it redundant to ask.

6

Let us use the ideas described above to prove Theorem 8.

Proof of Theorem 8. Indirectly presume that we have found the maximum element in
less than n− 1 comparisons. This means that Comparison Graph G has less than n− 1
edges at the end of the algorithm. This means that the graph is necessarily disconnected.
The algorithm has found maximum element v, thus v ≥ u ∀ u ∈ G. Now let us choose
a different component of G than what v is in. This component G′ has a local maximum
element v′ for sure, as the search space was a totally ordered set. Then we can have the
Evil Adversary change the relation of v and v′ to v < v′. As there are no edges between
G and G′ this change does not conflict with any previous comparisons, but v is not the
maximum.

3.4 Search algorithms

Now that we know the problem can not be solved using less than n − 1 comparisons,
let us present two processes that actually complete this task using that many queries.
Probably the most instinctive idea is to search for the maximum linearly. We start from
one of the elements and start comparing it with the others. As long as it is greater
than the other elements, we keep it but as soon as we find an element greater than the
current one, we select this new “temporary maximum” and continue with comparing
it with the ones unused before. Obviously when we run out of untouched elements,
the temporary maximum is the actual maximum. Also, the Comparison Graph of this
method is a directed tree with the maximum having out-degree zero, meaning that based
on Theorem 8 it is also optimal runtime-wise.

Another approach to build a tree for a comparison graph is to start from the
lowest level. We create pairs of the elements at random and compare them. The
“loosers” obviously can not be maximal as there already is at least one other element
higher in the ordering. The “winners”, a set of n

2
elements are paired again and this

iteration continues until we have selected the maximum. The number of comparisons

required for this is n
2

for the lowest level,
n
2

2
= n

4
for the next and so forth yielding

n
2∑
i=1

n
2i

= n− 1. This process is called tournament search.

Remark 12. Although methods for finding the maximum element usually use n − 1
comparisons the real importance of having multiple ways for this lies in the sorting
algorithms based on them. A sorting algorithm does not only find the maximum, it
finds the exact ordering of the set. There are a lot of sorting algorithms such as bubble
sort, insertion sort, selection sort, heap sort, quick sort and many more. They differ in
their runtime and when they are usually used in practice. For instance, selection sort is
based on the linear search described earlier and has a runtime of O(n2) and is almost
never used in reality. Heap sort however, is based on tournament search and is very
often an optimal method with a runtime of O(n log n).

7

3.5 The weakness of the intuitive solution for extremal element
search

It is trivial that if we are able to find the maximum number of a set with an algorithm,
finding the minimum can be done with the same algorithm if we negate every element
then run the maximum search. However this usually runs into redundant comparisons.
Let us introduce an example.

Example 1. Let the search space be S := {1, 2, 3, 4}. We use linear search, only in the
wrong order. We compare 4 and 3, then 4 and 2, then 4 and 1. We have found that
the maximum is 4. Now we negate the elements and do the same search. −4 < −3,
−3 < −2, −2 < −1. The conclusion is that 1 is the minimum. But we would have been
able to use the results of the first search to achieve the same result in half the time. In
fact every single comparison in the second run of the maximum search was useless, as
we already had the relation of these elements from search number one.

Now we approach the same problem with tournament search. We compare 1 and 2,
3 and 4. Then we compare the winners 2 and 4 and we successfully found the maximum.
Negating the elements and running the same search for the minimum comes next. −1 >
−2, −3 > −4, −1 > −3. Once again we find that two out of three comparisons were
redundant.

3.6 Double tournament search

Now we provide a method to find the minimum and the maximum using less than
d3
2
ne − 2 comparisons. We are going to refer to this method as double tournament

search. The name comes from the nature of comparisons used in it. We first pair the
elements randomly. Using bn

2
c comparisons we get a set of n

2
elements, the winners and

a set of the same size, the losers. Obviously, none of the winners can be the minimum
as there is at least one element smaller than him, the one we just compared it with.
Likewise none of the losers can be the maximum. The comparisons we are going to use
to find the maximum are going to be amongst the winners only, just as the comparisons
required to find the minimum will only consider losers. In this case though all we have to
do is find the maximum of two sets of dn

2
e or bn

2
c elements, which according to Theorem

8 uses dn
2
e − 1 comparisons at most even when considering the possible odd one out in

case of n being an odd number. This adds up to 2(dn
2
e − 1) + dn

2
e = d3

2
ne − 2.

Corollary 13. The problem of extremal element search without lies can be solved using
d3
2
ne − 2 comparisons.

Remark 14. The algorithm also serves as a proof for this upper bound. In fact, d3
2
ne−2

is also a lower bound. We are going to prove this in a later section.

Remark 15. An idea emerging at this point is whether checking for an element and
trying to prove it is maximal or proving of every other element that they can not be
the maximum is faster. When we consider lies this notion is going to become vital for
designing algorithms.

8

4 Maximum search with k lies

4.1 Differences from the original model

So let us suppose there might be one erroneous answer given by the Responder. Intro-
ducing lies in a comparison based search effects the Comparison Graph in a way that
might seem inconvenient at first but has a really niche use. With erroneous answers
possible the Comparison Graph might now contain directed cycles.

Theorem 16. If the Comparison Graph contains a directed cycle, at least one of its
edges is erroneous.

Proof. Suppose every one of its edges is true. This means x1 < x2 < ... < xk < x1 also
holds for the elements of the search space forming the cycle. But then x1 < x1 is also
true based on the transitive property of the relation. However, we have presumed our
relation being strict in Remark 7.

Remark 17. The Questioner is able to use this to find lies. The shorter the cycle the
easier it is to find the lie, as the lie can be found for instance by asking every question in
it until one of the comparisons result in an edge with the opposite direction it originally
had. These two edges can not be true at the same time because of Remark 7. Forcing
a directed cycle is a tool the Questioner can use to find lies as fast as possible. We are
going to use this later on.

Consistency Property. The Adversary never lies. This also means no cycles are
possible.

We are going to assume this Property several times from now on.

The corresponding theorems are always true even with the possibility of cycles but
we are going to presume the Consistency Property for sake of simplicity, meaning the
Comparison Graphs do not contain cycles. Since in every model we are analyzing n > k
by a pretty big margin, from now on we are going to assume as a rule of thumb that
the Adversary never lies. This is something we are going to use multiple times in future
proofs. Regardless of the number of lies allowed the Evil Adversary is not going to
want to contradict his answers by creating directed cycles. If he does, the Questioner
can simply disregard all edges of the cycle and proceed knowing k − 1 further lies are
possible including both the edges already present and questions yet to be asked. The
fact that this actually helps the Questioner is not trivial and will be proved each time
for the current problem.

4.2 The battleship analogy

The battleship analogy is simply a way of describing the inverse approach to maximum
finding. The intuitive thought is that when we want to find the maximum element,
we have to compare it with every other element, not necessarily directly but using
the transitive property of the ordering relation we have defined. This might work well

9

without lies but with the introduction of potentially erroneous information it runs into
a problem. If we imagine the Comparison Graph for a search like this even if we find the
maximum it might be a false result. For instance if we use tournament search and the
first comparison was wrong right away we have sentenced the actual maximum to losers
and we are not going to find it ever again using the algorithm as we have presumed it
not being maximal and we are not even going to compare it with anything. The point
of this analogy is to imagine the elements of the search space as battleships floating on
top of the sea. Comparisons are cannonballs fired from one ship to another. In case a
query yields xi > xj, xj takes a hit. A ship sinks if it takes too many hits. But what is
too many? Well, if we allow k number of lies and a ship has taken k + 1 hits it cannot
be the maximum, as even if k of the k + 1 answers were erroneous, there is at least one
true answer meaning there is at least one element higher than xj. Now let us introduce
this concept a bit more formally.

Definition 18 (Potential function α′k). For every vertex v of Comparison Graph G,
α′k(v) equals to k + 1 minus the in-degree of v.

Remark 19. Actually, α′k(v) is exactly the number of comparisons v has to lose in order
to prove it can not be maximal. We can imagine that as a counter starting from the
number of possible lies plus one. At the start every element has α′k of k + 1 and this
decreases by one every time v loses a comparison. If v has k + 1 losses and k lies are
allowed then based on the pigeonhole principle at least one of them was true so v did
indeed lose at least one comparison, thus it can not be the maximum as there is at least
one element bigger than v. This also means any vertex v with α′k(v) = 0 or lower can
not be the maximum.

Remark 20. By the definition of α′k it is possible it takes negative values throughout
the run of the search. Whenever the α′k value of a vertex reaches 0 its further decrease
does not hold any useful information for us. For the sake of simplicity we can use an
alternate potential with a minimum of 0.

Definition 21 (Potential function αk). Just for clarity reasons we define αk(v) =
max{α′k(v), 0} for every element of the search space.

Lemma 22. If there is one element v left with αk(v) 6= 0, it is the maximum.

Remark 23. In the case of no lies allowed, α0(v) = 1 for every vertex in the Comparison
Graph at the beginning. As the search progresses every time we compare two elements
the loser has α0(v) = 0 immediately. This fits into the process of both linear and
tournament searches very well. In case of one lie allowed α1(v) = 2 for every v ∈ G.
Then our task is to find a method of comparisons that eventually leaves only one u ∈ G
with α1(u) 6= 0.

4.3 Runtime

The main difficulty here is dealing with a possibly high number of lies. Even using Com-
parison Graphs and/or other data structures does not simplify the problem enough. If

10

one was to use the α function described above, the possibility of using more comparisons
than necessary is inevitable if we do not utilize the information that can be deduced
from the transitive property of the relation. We do however have a number of upper
and lower bounds.

Theorem 24. Finding the maximum is always possible using (k + 1)(n − 1) + k com-
parisons

Remark 25. All that is required for this is to use a maximum search algorithm, any
efficient one with a runtime of n− 1 comparisons, and modify it so that every time two
items are compared, we compare them until we get the same answer k + 1 times.

Theorem 26 (Ravikumar et al, [8]). Finding the maximum element of a finite totally
ordered set with k lies permitted can not be done using less than (k+ 1)(n− 1) compar-
isons.

Proof. Suppose we have less than (k + 1)(n − 1) comparisons. This is equivalent to a
Comparison Graph of n points with the sum of in-degrees being less than f(k+1)(n−1).
Because of the Consisteny Property we also assume the Graph is acyclic. This means
that based on the pigeonhole principle there are at least two elements with in-degree ≤ k.
There is an Adversary’s Strategy in which one is the maximum and one in which the
other one is, meaning the Questioner could not have found the maximum as whichever
of the two he chooses, the Adversary can manipulate the ordering so that the other one
was the maximum.

This result can also be improved using case by case analysis.

Theorem 27 (Ravikumar et al, [8]). Finding the maximum element of a finite totally
ordered set with k lies permitted can not be done using less than (k + 1)(n − 1) + k
comparisons.

5 Finding the minimum and the maximum with k

lies

Similarly to the matters discussed above we will analyze the optimal algorithms for
finding the maximum and the minimum. We have previously taken a look at parallel
extremal element finding and searching with a fixed number of lies. Now we combine
these two and define our model as follows.

There is a given finite set of elements, with a total ordering relation defined on it.
The Questioner is allowed to ask an unlimited number of questions but every question
must be whether element v of the search space is bigger than u or vice versa. There
is a fixed number k known by the Questioner and the Responder prior to the search.
At most k times the Responder is allowed to give an erroneous answer. We call this an
adaptive problem or a 1-batch problem as the Questioner can alter his strategy based on
the answer in every step, every bit actually. The goal of the Questioner is to find both
the minimal and the maximal element of this set using the least possible comparisons.
As usual we will consider the worst possible case for the Questioner as defined by the
notion of the Evil Adversary described in Definition 9.

11

5.1 Potential function βk

The battleship analogy can be extended to this problem. As we have discussed before,
it is usually easier to eliminate possible extremal elements than to prove of a randomly
chosen element that it is the maximum or the minimum. This is especially true for mod-
els with a higher number of lies allowed. To make this process easier we will introduce
a potential based on αk.

Definition 28 (Potential function βk). The concept is very similar to the one used in
the maximum search, only now we need to keep track of both extremes. In order to do
that we define our double value potential function as follows. We say that if our original
Comparison Graph was V , let V ′ stand for the reverse Comparison Graph in which
every edge is redirected to the opposite direction. For every v′ ∈ V ′, v′ has in-degree
equal to the out-degree of v and out-degree equal to the in-degree of v. It is basically
just the extension of the thought we have used before with negating numbers to find
the minimum using a maximum search algorithm. Based on this, αk is a tool for finding
elements that can not be maximal in V ′, thus can not be minimal in V . Now we say
for every v in the search space βk(v) = (αk(v), αk(v

′)). In other words the βk values of
any element of the search space are the number of comparisons it has to lose to prove
it can not be the maximum and the number of comparisons it has to win to prove it is
not the minimum, given of course k erroneous answers are allowed.

Claim 29. If βk(v) = (0, 0), v can not be an extremal element.

Theorem 30. If there are exactly two elements with βk(v) 6= (0, 0), they are the extremal
elements. Furthermore, if for both either the number of wins or the number of losses is
k, we can tell exactly which one is the maximum and which one is the minimum.

5.2 Upper bound for k = 1

Theorem 31 (Gerbner et al, [2]). If we presume one erroneous answer is possible, we
can find the minimum and the maximum element using d87

32
ne+ 12 comparisons.

To prove this we need to provide a Questioner’s Strategy of comparisons that
lets him find both the maximum and the minimum of a set no matter what the Evil
Adversary opts to answer. This however can prove difficult sometimes. Let us introduce
some ideas that might be useful in proving both upper and lower bounds.

Remark 32. A comparison graph may contain true answers if and only if it is acyclic.
If there is a directed cycle, one of its edges is necessarily false as described in the Proof
of Theorem 16. If we find a directed cycle, we can simply disregard all of its edges and
continue the search. We can be sure that amongst every other comparison, including
already existing edges in the Comparison Graph and forthcoming ones, there might be
k − 1 lies at most.

Remark 33. In order to prove any lower bound, we have to provide a Questioner’s
Strategy solving the problem, no matter the Responder’s Strategy.

12

Remark 34. In order to prove any upper bound, we have to provide an Adversary’s
Strategy so that no matter what the Questioner asks, there are multiple possibilities
still remaining after the given number of questions.

Based on this we now provide a way that allows the Questioner to find the ex-
tremal elements in d87

32
ne+12. For the sake of simplicity, from now on we omit all ceiling

signs.

Proof of Theorem 31. The idea is pretty simple. We will try to create pairs of the
elements with matching β1 values. At the beginning β1(v) = (2, 2) for every v ∈ V . We
create a matching and use the results to partition the elements into two sets, Vw, the
winners and Vl, the losers. This so far was n

2
comparisons. Every element in Vw has

β1 = (2, 1) and every element in Vl has β1 = (1, 2). Now in the second round we split the
elements in Vw into two using a maximum matching and n

4
comparisons. That provides

us with Vw,w and Vw,l with β1 values of (2, 0) and (1, 1) respectively. Similarly with
another n

8
comparisons we can split Vw,l into Vw,l,w and Vw,l,l with β1 values of (1, 0) and

(0, 1). Now take the elements in Vl that were paired with the teams in Vw,l,l. We denote
this subset of Vl by Vl+. We now create a matching in Vl so that every element in Vl+ is
paired with another element from Vl+. These n

4
comparisons yield another two subsets,

Vl,l and Vl,w with β1 values of (0, 2) and (1, 1). Here we note that | Vl+∩Vl,w |= n
16

. Now
we use a fifth matching in Vl,w that is an extension of a matching of Vl+ ∩ Vl,w. After
another n

8
comparisons we have Vl,w,l and Vl,w,w with (0, 1) and (1, 0). Now we compare

the elements of Vl,w,w ∩ Vl+ with their first round, original opponents. Note that those
comparisons went in favor of the elements in Vw, this is the reason they are now in Vw.

From this point we consider two options. The first one is if all the comparisons go
exactly the same way as the first time. This means that now all the teams involved in this
last, sixth round of matching now have β1 of (0, 0), so are ruled out as extremal elements.
This means that after n

2
+ n

4
+ n

8
+ n

4
+ n

8
+ n

32
= 41

32
n comparisons we have n

16
elements with

(0, 0), n
4

each of (2, 0) and (0, 2), and 7
32
n of (0, 1) and (1, 0). The number of elements

in our search space is not necessarily a power of 2, so we must address this issue as well,
as there can be an additional element for every possible β1 value. In order to reach our
position described in Theorem 30 we need 2(n

4
+ n

4
) + 1(7

32
n + 7

32
n) + 14 = 46

32
n + 14

comparisons. Now with clever pairing, electing elements with β1 of (0, 0) not to play
and pairing (2, 0) and (0, 2) teams with each other respectively yields the total number
of comparisons used in this algorithm, 46

32
n+ 12 + 41

32
n = 87

32
n+ 12.

Now let us consider what would have happened if the repeated comparisons would
have yielded parallel edges with not matching direction. Note that this obviously means
one of them is erroneous, so there can only be one of these double edges, as we have
presumed at most 1 erroneous answer. Now we can use Remark 32. We simply delete
both edges, not knowing which one was the real result. We lose two edges but gain a
lot more. For every v ∈ V , where β1(v) = (x, y) let β1(v) = (x− 1, y − 1). This means
that after the 41

32
n comparisons we have every element with (0, 0), (1, 0) or (0, 1), with

the exception of one possible (1, 1) element in case n was odd. This means we can finish
the search with at most n queries afterwards yielding 73

32
n comparisons.

Reflecting on the final lines of the proof above, we can note that the Evil Adver-

13

sary would never contradict his answers in the sixth round as it leads to the Questioner
reaching his goal faster. This branch of the proof could have been left out if we presumed
the Consistency Property.

5.3 Algorithm for arbitrary k

Now we describe a generic algorithm that can be used for any k. As an algorithm can be
defined as a Questioner’s strategy, the goal is the same as with k = 1. Find the minimum
and the maximum with k lies possible using comparisons only. The method described
here can be implemented for arbitrary k, but its runtime is not going to be optimal.
We are going to look at the required number of queries later, now let us describe the
process itself.

Definition 35 (β Class Matching Algorithm). Very similarly to the algorithm used
for the one lie case, the generic method relies on pairing elements with the same βk
values. If k lies are allowed at the beginning of the search βk(v) = (k + 1, k + 1) holds
for every v ∈ V . These values decrease every time the out-degree or the in-degree of v
increases. Based on Theorem 30, the condition we have to reach is every element having
βk = (0, 0), except for two, one of which must have at least one βk value of 0. In this
case we know those are the extremal elements. If we reach this point, we are finished so
we are going to refer to this condition as the win condition.

Note that every time we pair two elements with (a, b) together, where a, b 6= 0,
after the comparison we will have one with (a− 1, b) and the other one with (a, b− 1).
Now we start the algorithm by creating a maximum matching of the search space, then
continue with creating pairs of equal βk. When all the elements have (0, i) or (0, j),
where i, j ∈ {1, ..., k+ 1}, all that changes when pairing equal βk value elements is that
the one possible outcome of the comparison is one of the elements retaining its βk value
and for the other it changes from (0, i) to (0, i− 1) or from (i, 0) to (i− 1, 0).

Using these steps we are going to reach the win condition in a finite number
of comparisons, as

∑
v∈V

βk(v)1 + βk(v)2 decreases strictly in every step if we do not

use (0, 0) elements in comparisons. The process also ensures that there is always at
least one element with positive number of losses still required and another one with
positive number of wins required to prove they can not the maximum and the minimum
respectively.

Remark 36. This process relies solely on the βk function, without using any additional
information that could be attained from the Comparison Graph. This also implies that
the problem could probably be solved using less comparisons in most cases.

We have seen that the β Class Matching Algorithm ends in a finite number of
steps, but how many steps does it actually take to find the extremal elements with this
method? To evaluate this, we first introduce C(n, k).

Definition 37 (C(n, k)). C(n, k) denotes the minimum number of comparisons required
to reach the win condition described in the definition of the β Class Matching Algorithm
if we presume that a maximum number of k lies are possible and our search space consists
of n elements.

14

Claim 38. C(n, k) comparisons are also enough to find the maximum and the minimum
in the liar game model we have been working with. This is a direct result of Theorem
30.

At this point it would be suitable to have a function, c, that for every v ∈
V , denotes the number of queries the Questioner needs to have v reach (0, 0), thus
eliminating it from the race for extremity. This notion is a bit too wacky to be the
definition of a function, as it can not be ensured that this value is finite for every v ∈ V .
In fact, the extremal elements will never reach (0, 0), no matter the number of queries.
If they ever reached (0, 0), it would mean they are not extremal, which is an obvious
contradiction. For this reason we take a different approach.

Definition 39 (c(v)). We define symmetric potential function c : N × N → R so that
c(v) = c(βk(v)). For any l ∈ N, c(0, l) = c(l, 0) = l. All other values are defined by the
recursive equation 2c(j, l) = c(j − 1, l) + c(j, l − 1) + 1.

The recursion in Definition 39 symbolizes the connection between the elements of
the search space. If the Questioner compares two elements and they have matching βk
values, which they should of course when using the matching algorithm we described in
Definition 35, after the comparison of two elements of (j, l), we get one (j−1, l) and one
(j, l−1). The plus one comes from the fact that we need that one comparison in order to
reduce the βk values to lower class ones. Now we make the following two observations.

Claim 40. If we compare two elements v, u ∈ V , so that βk(v) = βk(u) 6= (0, 0), the sum∑
w∈V

c(w) decreases by exactly one in every step, because of the recursion defining c(v).

On the other hand using the pigeonhole principle, as long as we have at least (k + 1)2

elements with βk 6= (0, 0) we can always create such pairings. This means that the win
condition can be reached in c(k + 1, k + 1)n+ Θk(1) comparisons.

Claim 41. It is also easy to see that whenever two elements are compared with βk (j, l)
and (m, p), the two possibilities for βk value change are as follows. Either we have
(j, (l − 1)+) and ((m − 1)+, p) or ((j − 1)+, l) and (m, (p − 1)+), where x+ stands for
max{0, x}. Obviously in any Adversary’s Strategy, the Adversary’s goal is to have the
sum

∑
w∈V

c(w) decrease by the smallest possible amount. Similarly to Claim 40, if we add

the decrease for the two possible outcomes of the comparison,
∑
w∈V

c(w) decreases by 2.

This means that for one of the outcomes of every comparison the sum decreases by at
most 1. The Adversary will answer every query to give minimum information, meaning
the sum will decrease by 1 at most in a step. This gives C(n, k) ≥ c(k + 1, k + 1)n −
c(k + 1, 0)− c(k + 1, k + 1) ≥ c(k + 1, k + 1)n− 3k − 3.

At this point it is pretty clear that finding c(l, l) for arbitrary l is pivotal in reach-
ing our final goal of this section, evaluating C(n, k). There are two different approaches
to this problem. One is using dynamic programming to obtain c(l, l). As the recursion
holds for any two integers, 2c(l, l) = c(l − 1, l) + c(l, l − 1) + 1. This process involves
calculating c(x, y) for every x, y ∈ N, where x, y < l. This should pose little problem
to a computer, however we only really need the values of c(l, l), so finding an explicit

15

form for this makes things a lot easier. Let us start with dynamic programming. The
following piece of C++ code evaluates the c(j, l) values for j, l ∈ {1, ..., 10} and prints
them.

Example 2.

#include <iostream>

#include <vector>

using namespace std;

int main()

{

double c [20][20] = { }; //Array

for (int i=0; i<=9; i++) //Updating initial values

{

c[0][i]=i;

c[i][0]=i;

}

for (int k=2; k<=18; k++) //Using the recursion

{

for(int j=1; j<=k-1; j++)

{

c[k-j][j]=((c[k-j-1][j]+c[k-j][j-1]+1)/2);

}

}

for (int i=0; i<=9; i++) //Displaying values

{

for (int j=0; j<=i; j++)

{

cout << "c(" << i << "," << j << "): " << c[i][j] <<" " ;

}

cout << endl;

}

return 0;

}

Using this algorithm we can obtain c(l, l) values up to a pretty big l. The recursion
could also have been implemented with a recursive function call, but in order to find
c(l, j) for arbitrary l and j, even the recursion needs to find most of the lower class c
values. Given this we present the table of numbers we have just found.

16

c(*, 0) c(*, 1) c(*, 2) c(*, 3) c(*, 4) c(*, 5) c(*, 6) c(*, 7) c(*, 8) c(*, 9)
c(0, *) 0 1 2 3 4 5 6 7 8 9
c(1, *) 1 1.5 2.25 3.125 4.0625 5.03125 6.01562 7.00781 8.00391 9.00195
c(2, *) 2 2.25 2.75 3.4375 4.25 5.14062 6.071812 7.04297 8.02344 9.0127
c(3, *) 3 3.125 3.4375 3.9375 4.59375 5.36719 6.22266 7.13281 8.07812 9.04541
c(4, *) 4 4.0625 4.25 4.59375 5.09375 5.73047 6.47656 7.30469 8.19141 9.11841
c(5, *) 5 5.03125 5.14062 5.36719 5.73047 6.23047 6.85352 7.5791 8.38525 9.25183
c(6, *) 6 6.01562 6.07812 6.22266 6.47656 6.85352 7.35352 7.96631 8.67578 9.46381
c(7, *) 7 7.00781 7.04297 7.13281 7.30469 7.5791 7.96631 8.46631 9.07104 9.76743
c(8, *) 8 8.00391 8.02344 8.07812 8.19141 8.38525 8.67578 9.07104 9.57104 10.1962
c(0, *) 9 9.00195 9.0127 9.04541 9.11841 9.25183 9.46381 9.76743 10.1962 10.6692

As c(l, j) = c(j, l) ∀j, l ∈ N, the table is diagonally symmetric. Although all values
are listed, all we really need is the diagonal elements. Now we make some observations
considering earlier results.

Remark 42. The c(l, l) results give us an upper bound for the comparisons required
to find the minimum and the maximum with k lies, as the upper bound for the number
of comparisons required for reaching the win condition, denoted by C(n, k) is in strong
correlation with c(l, l) because of Claims 40 and 41. This gives us that using the β
Class Matching Algorithm we can find the extremal elements with 1 lie in less than
2.75n + Θk(1). We have, however, proved earlier in Proof 31, that this can be done in
(2.75− 1

32
)n+Θk(1) comparisons. This also suggests that for arbitrary k, c(k, k)n+Θk(1)

comparisons are enough to find both extremal elements in every case but this upper
bound is not tight, rather the same task would be possible using less comparisons. Here
we note, that the β Class Matching Algorithm does not use additional information of
the Comparison Graph, only the function values and as we have seen in the algorithm
described in the Proof of Theorem 31. However, the Comparison Graph could be used
to obtain the same result faster. One of the ways for this that we already have touched
on earlier in Remark 17, is forcing cycles, where the Responder either contradicts his
answers or lets the Questioner receive more information with a single question than
necessary.

Although dynamic programming gives a fast and easy way to find c(l, l) for a
smaller k, it might take a long time to compute for a bigger number. Finding an
explicit form for any c(l, j) can prove difficult but as we have noted before we only
really need identical values of the function.

Definition 43 (c′(v)). Let c′(v) = c′(βk(v)) = c′(x, y) = 2x+yc(x, y) − (a + b)2a+b−1.
This transforms the recursion to a form that is a much easier to handle.

c′(x, y) = c′(x− 1, y) + c′(x, y − 1).

The starting values are defined by

c′(z, 0) = c′(0, z) = z2z−1.

This resembles a binomial recursion, unfortunately with different starting values.
We can still use the binomial theorem to define the following equation for c′.

17

Claim 44. For every x, y > 0 c′(x, y) =
x∑
i=1

c′(i, 0)
(
x−i+y−1
y−1

)
+

x∑
j=1

c′(0, j)
(
y−1+x−j
x−1

)
.

This formula can be used to determine c′(l, l).

Claim 45. For every l ∈ N, c′(l, l) = 2
l∑

i=1

c′(i, 0)
(
2l−i−1
l−1

)
=

l∑
i=1

i2i
(
2l−i−1
l−1

)
.

This can be simplified very neatly using the definition of
(
n
k

)
and the following

lemma.

Lemma 46.
l∑

i=1

i2i
(
2l−i−1
l−1

)
= l
(
2l
l

)
.

Proof.

2
l∑

i=1

i2i−1
(

2l − i− 1

l − 1

)
= 2

l∑
i=1

(
2l − i− 1

l − 1

)
·
i∑

j=0

i

(
i− 1

j

)
= 2

l∑
i=1

(
2l − i− 1

l − 1

)
·
i∑

j=0

j

(
i

j

)
.

As from the property of binomial coefficients

2i−1 =
i∑

j=0

(
i− 1

j

)
.

We now have

2
l∑

i=1

(
2l − i− 1

l − 1

)
·

i∑
j=0

j

(
i

j

)
= 2

l∑
j=1

j
l∑
i=j

(
i

j

)(
2l − i− 1

l − 1

)
.

The inner part of this counts the number of binary sequences of length 2l, with l + j
coordinates of 1. (Each part of the sum counts the ones where the (j + 1)th 1 comes at
the (i+ 1)st position. This gives us

l∑
i=j

(
i

j

)(
2l − i− 1

l − 1

)
=

(
2l

j + l

)
.

After a couple more steps of algebraic transformation we have

2
l∑

j=1

j

l∑
i=j

(
i

j

)(
2l − i− 1

l − 1

)
= 2

l∑
j=1

j

(
2l

j + l

)
=

= 2
l∑

j=1

(k + j)

(
2l

j + l

)
− 2

l∑
j=1

l

(
2l

j + l

)
=

= 4l
l∑

j=1

(
2l − 1

l + j − 1

)
− 2l

l∑
j=1

(
2l

j + l

)
= 2(l22l−1 − (l22l−1 − 1

2
l

(
2l

l

)
)) = l

(
2l

l

)
.

18

This also means that c′(l, l) = l
(
2l
l

)
, ∀l ∈ N. This is a direct result of the Lemma

above.

Corollary 47. Using this and how we originally defined c′(x, y), we get c(l, l) = l +
c′(l, l)/22l = l(1 +

(
2l
l

)
/22l). Now we are able to use this to find C(n, k).

Theorem 48 (Gerbner et al, [2]). C(n, k) = (k + 1)(1 +
(
2(k+1)
k+1

)
2−2(k+1))n + Θk(1) =

(k + Θ(
√
k))n+ Θk(1).

Proof. After having found the explicit form of c(k, k), all we need to do is use this
with Claims 40 and 41. The substitutions give c(k + 1, k + 1) − 3k − 3 ≤ C(n, k) ≤
c(k+1, k+1)+Θk(1). This leads to C(n, k) = (k+1)(1+

(
2(k+1)
k+1

)
2−2(k+1))n+Θk(1).

Corollary 49. It is clear that C(n, k) being an upper bound for the runtime of the
β Class Matching Algorithm is also an upper bound for the number of comparisons the
Questioner needs to find the minimum and the maximum. As we have touched on earlier,
these bounds are usually not tight as the additional information in the Comparison Graph
is left unused.

5.4 Lower bound for k = 0

Earlier we have seen that in case no answer can be erroneous, d3
2
ne− 2 comparisons are

sufficient for finding the extremal elements. The algorithmic proof of this described a
method, a preplanned way of choosing questions for the Questioner showed a process
that completes this task using no more than d3

2
ne − 2 comparisons. We called this

algorithm Double Tournament Search. Now we present a lower bound for the same task
that actually shows that d3

2
ne − 2 comparisons are also necessary in the worst case.

Theorem 50 (Pohl, [7]). Finding the minimum and the maximum of a totally ordered
set of n elements can not be done in less than d3

2
ne − 2 comparisons in the worst case.

Proof. We are going to prove the theorem with an approach very similar to βk. In this
particular case no lies are allowed, so we are using β0. This also means that for every
v ∈ V , β values are initialized as (1, 1), any element losing a comparison can not be
maximal and any element winning a comparison can not be minimal since every result
is presumed true. This gives us four subsets in the search space. Vw denotes the set
of elements that already came out on top in at least one comparison. They can not
be minimal but can still be maximal. Likewise Vl contains elements with at least one
loss. They can not be the maximum but still can be the minimum. Vw,l holds elements
that have ruled themselves out as extremal elements by winning and losing at least
one comparison. V− is the set of elements that have not yet partaken in a comparison.
Here we note that these partitions are actually the β0 classes of the vertex set of the
Comparison Graph. We presume that at the start of the search we have no information.
This means every element has (1, 1), | V− |= n, with all the other three subsets being
empty. The problem is solved when | Vw,l |= n − 2. From here we proceed with case
by case analysis on how the elements move between the subsets. There are 10 possible
comparisons considering the subsets if V .

19

1. Vw ↔ Vw

| Vw |=| Vw | −1, | Vw,l |=| Vw,l | +1

2. Vw ↔ Vl

Partitions remain unchanged or | Vw |=| Vw | −1, | Vl |=| Vl | −1, | Vw,l |=| Vw,l |
+2

3. Vw ↔ Vw,l

Partitions remain unchanged or | Vw |=| Vw | −1, | Vw,l |=| Vw,l | +1

4. Vw ↔ V−

| V− |=| V− | −1, | Vw,l |=| Vw,l | +1 or

| V− |=| V− | −1, | Vl |=| Vl | +1

5. Vl ↔ Vl

| Vl |=| Vl | −1, | Vw,l |=| Vw,l | +1

6. Vl ↔ Vw,l

Partitions remain unchanged or | Vl |=| Vl | −1, | Vw,l |=| Vw,l | +1

7. Vl ↔ V−

| V− |=| V− | −1, | Vw,l |=| Vw,l | +1 or

| V− |=| V− | −1, | Vw |=| Vw | +1

8. Vw,l ↔ Vw,l

Partitions remain unchanged

9. Vw,l ↔ V−

| V− |=| V− | −1, | Vl |=| Vl | +1 or

| V− |=| V− | −1, | Vw |=| Vw | +1

10. V− ↔ V−

| Vw |=| Vw | −1, | Vl |=| Vl | −1, | Vw,l |=| Vw,l | +2

If there is at least one element in V− it can be the maximum or the minimum, so as long
as there are elements left in V−, we are not done. Similarly, if Vw and/or Vl contains
more than one element those can still be optimal in that extreme. Thus as described
earlier we focus on the potential decrease of

∑
v∈V

c(v) and denote an outcome of the

comparisons listed above as favorable if this decrease is higher. c(v) is the function
defined in Definition 39. For sake of simplicity we declare its values used here: c(0, 0) =
0, c(0, 1) = c(1, 0) = 1, c(1, 1) = 1.5. Here we note that using only comparisons of
type 1, 5 and 10 (and one extra 7 or 4 in case n is odd) we can achieve our goal using
n − 2 + (n/2) comparisons. A special case of this is described in Corollary 13. Also

20

the Questioner now is never going to ask a question of type 2, 3, 6 or 8 as the Evil
Adversary would manipulate the elements so that the less favorable result occurs every
time and the Questioner gains no information whatsoever. To prove the lower bound
what we need to do now is to show that comparison types 4, 7 and 9 can not improve
the bound. Now consider the following. After i comparisons the set is partitioned so
that (| Vw |, | Vl |, | Vw,l |, | V− |) = (a, b, c, d), but the relation between the elements of
V− and Vl is unknown since V− elements did not take part in any comparison. So it is
possible that every element in V− is greater than any element in Vl, and a comparison
between these two partitions would always yield the less favorable first alternative. It is
also possible that x < y holds true for any x ∈ Vl, y ∈ Vw and once again a comparison
between Vw and Vl would yield the less favorable first alternative for a result. This implies
that for an arbitrary state of (| Vw |, | Vl |, | Vw,l |, | V− |), the number of comparisons
required to find the minimum and the maximum is | Vw | + | Vl | +d3

2
| V− |e − 2. For

the presumed starting state of (0, 0, 0, n) this gives us exactly d3
2
ne−2 comparisons.

Remark 51. The proof above used a case by case analysis between β classes of the
search space. The partitions Vw, Vl, Vw,l and V− actually stand for the elements with β0
of (1, 0), (0, 1), (0, 0) and (1, 1) respectively. This indicates that proving lower bounds
with an analogous method to the one used for k = 0 would be possible for k > 0 as well.
This, however would require analyzing a quickly increasing number of cases.

5.5 Lower bounds for k > 0

We have previously seen that obtaining the maximum (or minimum) alone requires at
least (k + 1)n − 1 queries in the worst case. Theorem 50 also shows that finding the
extremal elements without lies might require d3

2
en − 2 comparisons. We continue by

presenting results for k > 0.

Theorem 52 (Gerbner et al, [2]). Finding the minimum and maximum of a totally
ordered set of n elements if one lie is allowed is not possible using less than d87

32
ne − 3

comparisons in the worst case.

The best known lower bounds for this problem for a higher k are usually of the
form (k + 1 + ck)n −D, where D is a reasonably small constant. Indeed we have seen
that c0 = 0.5 and c1 = 23

32
with D staying a single digit number for k = 0, 1. Although

k ≥ 2 is still a subject of research, we do have an estimate of ck.

Theorem 53 (Aigner, [1]). For ∀ k ∈ N, ck = Ω(2−5k/4).

For a while it was conjectured that for every k, there is an algorithm that solves
this problem using (k + 1 + ε)n comparisons. This was disproved in recent studies and
instead the following was proved.

Theorem 54 (Pálvölgyi, [5]). Finding the minimum and the maximum in this model
with k lies allowed requires at least (k + 1.5)n+ Θ(k) comparisons.

21

References

[1] M. Aigner, Finding the minimum and the maximum, Discrete Applied Mathematics
74 (1997), 1-12

[2] D. Gerbner, D. Pálvölgyi, B. Patkós, G. Wiener, Finding the biggest and smallest
element with one lie, Discrete Applied Mathematics, 158, 9 (2010) 988–995

[3] M. Hoffmann, J. Matousek, Y. Okamoto, P. Zumstein, Minimum and maximum
against k lies, http://arxiv.org/abs/1002.0562

[4] T. K. Moon, Error correction coding, John Wiley and sons, (2005)

[5] D. Pálvölgyi, Lower bounds for finding the maximum and minimum elements with
k lies, Acta Univ. Sapientiae, Informatica, 3, 2 (2011) 224–229

[6] A. Pelc, Searching games with errors - Fifty years of coping with liars, Theoretical
Computer Science, 270 (2002)

[7] I. Pohl, A sorting problem and its complexity, Communications of the ACM 15
(1972), 462-464

[8] B. Ravikumar, K. Ganesan, K. B. Lakshmanan, On selecting the largest ekenebt ub
spite of erroneous information, STACS (1987), 88-99

22

