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1 Introduction

The motivation of the thesis Given a measure space (Ω,A ,µ) and a function f from Ω to a

Banach space X two questions naturally arise:

• How can we define the measurability of functions like f ?

• If the notion of measurability is defined how could we integrate a measurable function?

These questions can be answered in various ways as many integration concepts have been stud-

ied [SY05] for such Banach space valued functions.

The aim of the thesis The primary aim of this thesis is to give an introduction to the two

best known of them, namely to Pettis and Bochner integration. In Section 2 and Section 3 we

address these questions.

After having finished building these integration theories and proving some of their basic

properties, we will be able to generalize some measure theoretic tools yielding the notion of

vector measure (Section 4), i.e., a measure having Banach space valued range and the Lp space

of Bochner integrable functions.

Our goal in Section 5, with these new theories in hand, is to reformulate the following

two fundamental theorems of measure theory by means of vector measures (together with their

variations) and Banach space valued Lp spaces.

Theorem 1.1 (Radon–Nikodym). Let µ and λ be two finite measures such that µ� λ. Then

there exists a measurable function f : Ω→ [0,∞] such that

µ(A) =
∫

A
f dλ (A ∈ A).

Theorem 1.2 (Riesz). Let L be a continuous functional of L1(Ω,A ,µ). Then there exists a

function g ∈ L∞(Ω,A ,µ) such that

L( f ) =
∫

Ω

f gdµ ( f ∈ L1(Ω,A ,µ)).

The main result of the thesis (Theorem 5.2) will show that their vector valued counterparts

are closely related to each other. In spite of the fact that both the Radon–Nikodym and the Riesz

representation theorem are generally true for an arbitrary, finite measure space their vector

valued extensions may fail to be true in some Banach spaces. This justifies the necessity to

introduce the Radon–Nikodym property which is possessed by those Banach spaces where the

Radon–Nikodym theorem holds for vector measures.

In the end, some examples and counterexamples of Banach spaces with and without the

Radon–Nikodym property are present.
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Appendix A outlines some modes of convergence developed in Banach spaces and then

states some valuable theorems we can exploit when we characterize the integrability of Banach

space valued functions.

Notation Throughout this thesis, Ω denotes an arbitrary set and (Ω,A ,µ) a measure space.

Unless otherwise stated µ is a finite measure. X will be a Banach space endowed with the norm

‖ · ‖. We often emphasize which norm is meant, e.g. the norm of an operator T is denoted by

‖T‖op. X ∗ means the dual space of a Banach space X . An element in X ∗, that is, a continuous

linear functional, is usually denoted by x∗. Given a vector x ∈ X , the value of the functional x∗

at x is x∗(x).

In this work, we consider various kinds of integrals, however we do not assign different

symbols to them. If f is some integrable function we denote its Bochner, Pettis, etc. integrals

with respect to a measure µ on a measurable set A by
∫

A f dµ . The type of the integral will

always be clear from the context.

If f : Ω → X is a function, the notation ‖ f (ω)‖ should be understood as a real valued

function ω 7→ ‖ f (ω)‖.
The symbol

w
lim
n→∞

stands for weak limits and K for either R or C.

We use the symbol � to indicate the end of proofs and � for theorems presented without

proof.
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2 Measurability of Banach space valued functions

2.1 Simple functions and measurability

A function f : Ω→ X is said to be a simple function or a µ-simple function if it is of the form

f (ω) =
k∑

i=1

χAi(ω)xi (xi ∈ X )

for some k ∈ N and disjoint measurable sets Ai ∈ A such that µ(Ai)< ∞ (i = 1,2, . . . ,k).

We say that the function f : Ω→ X is (strongly) µ-measurable if there exists a sequence

of simple functions ( fn)n∈N such that fn(ω)→ f (ω) for µ-almost every ω ∈Ω.

It immediately follows that every simple function is measurable. However, we postpone giv-

ing an example of a nontrivial measurable function until we get familiar with a more convenient

condition for strong measurablity.

Note 2.1. From now on, we omit the prefix µ when the measure is obvious.

An obvious generalization of simple functions is countably valued functions. These func-

tions are of the form

f (ω) =
∞∑

i=1

χAi(ω)xi (xi ∈ X )

for some disjoint, measurable sets Ai ∈ A such that µ(Ai)< ∞ (i ∈ N).

Proposition 2.2. Let f : Ω→ X be a countably valued function. Then f is measurable.

Proof. Let us consider the decomposition
∑

∞

i=1 χAixi of f . Now, we define simple functions

fn :=
∑n

i=1 χAixi. Clearly, the fn are simple functions, and fn(ω)→ f (ω) for all ω ∈Ω.

We will see that in case of σ-finite measures, the notion of measurability can be defined via

countably valued functions.

Proposition 2.3. If f : Ω→ X is a measurable function then ‖ f (ω)‖ : Ω→ R is also measur-

able.

Proof. By definition, f has a corresponding sequence of measurable simple functions ( fn)n∈N

such that f (ω) = lim
n→∞

fn(ω) for µ-almost every ω ∈ Ω. The functions ω 7→ ‖ fn(ω)‖ are sim-

ple real valued functions. We can use the triangle inequality to obtain |‖ fn(ω)‖−‖ f (ω)‖| 6
‖ fn(ω)− f (ω)‖, thus we have lim

n→∞
‖ fn(ω)‖= ‖ f (ω)‖.

We define another type of measurability for Banach space valued functions. A function

f : Ω→X is called weakly µ-measurable if for each functional x∗ ∈X ∗ the function x∗( f ) : Ω→
R is measurable. The relationship between the two properties is established in Pettis’ measura-

bility theorem, which we will prove later.
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Note 2.4. The usual facts about measurable functions under finite sums, scalar multiples and al-

most everywhere limits are satisfied, that is, if f ,g are measurable functions, c ∈R and (hn)n∈N

is a sequence of measurable functions converging µ-almost everywhere to h then

• ( f +g)(ω)

• c ·g(ω)

• h(ω) := lim
n→∞

hn(ω)

are also measurable functions.

Even Egorov’s theorem is still valid.

Theorem 2.5 (Egorov). Let (Ω,A ,µ) be a finite measure space. Assume that f : Ω→ X is

a measurable function and ( fn)n∈N : Ω→ X is a sequence of measurable functions such that

fn(ω)→ f (ω) for µ-almost every ω ∈ Ω. Then, for any ε > 0 we can find a measurable set

A ∈ A with µ(Ac)< ε such that fn converges to f uniformly on A.

Proof. By the assumptions, there exists a set E with µ(E) = 0 such that fn converges to f on

Ω\E. For every m,n> 1 let

Am,n :=
⋂
k>n

{ω ∈Ω\E : ‖ fk(ω)− f (ω)‖6 1/m}.

Applying Proposition 2.3 to the measurable function fk− f , it is clear that x 7→ ‖ fk(ω)− f (ω)‖
is measurable, and we know that the sets of form {ω ∈ Ω \E : ‖ fk(ω)− f (ω)‖ 6 1/m} are

measurable. Finally, Am,n is an intersection of measurable sets, and thus is measurable itself.

It is obvious that Am,n ⊂ Am,n+1 and
⋃

∞

n=1 Am,n = Ω \E as well as
⋂

n∈NΩ \Am,n = Ω \⋃
n∈NAm,n = E for all m > 1, therefore we have lim

n∈N
µ(Ω \Am,n) = 0. Thus, for any ε > 0,

and each m we can find an index N(m) such that µ
(
Ω\Am,N(m)

)
< ε/2m. If we set A to⋂

∞

m=1 Am,N(m), then

Ω\
∞⋂

m=1

Am,N(m) = Ω\A =
∞⋃

m=1

(
Ω\Am,N(m)

)
,

and

µ(Ω\A) = µ

(
∞⋃

m=1

(
Ω\Am,N(m)

))
<

∞∑
m=1

ε

2m = ε.

Now, for any x∈A and n>N(m), we have ‖ fn(x)− f (x)‖< 1/m, which is exactly the definition

of the uniform convergence on A.

The following two subsections are devoted to studying the relation between weak and strong

measurability. We grasp their nature through a topological trait, namely separability. A Banach

space X is called separable if it contains a countable dense set, i.e. a set D whose closure D

satisfies D = X .
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2.2 A framework for a counterexample: a nonseparable Hilbert space

In this subsection, we construct a nonseparable Hilbert space which will be a useful tool to

compare weak and strong measurability. After that, we give an example of a weakly measurable

function which, as it turns out later, fails to be strongly measurable.

To construct this Hilbert space, let Ω be an arbitrary uncountable set, and we use the usual

L2 space with the measure space (Ω,P (Ω),µ) where the µ is the counting measure on P (Ω),

i.e.,

µ(A) :=

{
|A|, if A is finite

∞, otherwise
(A ∈ P (Ω)).

Now, our space L2(Ω,P (Ω),µ) consists of all measurable functions f : Ω → R with finite

Lebesgue integral
∫

Ω
| f (ω)|2 dµ. Clearly, this is a subset of the countably valued functions

with
∑

ω∈Ω
| f (ω)|2 < ∞, and forms a real vector space.

We have to define an inner product on L2(Ω,P (Ω),µ). If f ,g ∈ L2(Ω,P (Ω),µ), the inner

product 〈 f ,g〉 of these functions will be
∑

ω∈Ω
f (ω)g(ω). It can be shown, with the help of

the Cauchy–Schwarz inequality, that 〈·, ·〉 is indeed an inner product:
∑

ω∈Ω
| f (ω)g(ω)| 6(∑

ω∈Ω
| f (ω)|2

)1/2 (∑
ω∈Ω
|g(ω)|2

)1/2
< ∞. The remaining inner product axioms are obvious.

We can see that this inner product induces the usual L2 norm denoted by ‖ · ‖2, thus the Riesz–

Fischer theorem can be applied to see that our inner product space is in fact complete with this

norm, and therefore is a Hilbert space.

Now, we consider the one-point characteristic functions of L2(Ω,P (Ω),µ), that is, the set

{χ{ω} : ω ∈Ω}. The distance between any two such functions is
√

2. To see this, let ω1,ω2 be

two distinct elements in Ω and calculate

‖χ{ω1}−χ{ω2}‖
2
2 =

∑
ω∈Ω

(
(χ{ω1}−χ{ω2})(χ{ω1}−χ{ω2})

)
= 2.

We will show that L2(Ω,P (Ω),µ) cannot contain a countable dense set.

Lemma 2.6. The space L2(Ω,P (Ω),µ) is not separable.

Proof. Consider the open balls with center point χ{ω} and radius
√

2/2. The intersection of any

two such distinct open balls is empty. Therefore, if D were a dense subset of Ω then each open

ball would contain at least one distinct element from D. Since the number of such open balls is

uncountable, the set D would be also uncountable.

Example 2.7 (a weakly measurable function). We define a function f : Ω→ L2(Ω,P (Ω),µ)

with f (ω) := χ{ω}(·). Let x∗ be a functional in L2(Ω,P (Ω),µ)∗. By the Riesz representa-

tion theorem, we can find an element fx∗ ∈ L2(Ω,P (Ω),µ) such that x∗( f (ω)) = 〈 fx∗, f (ω)〉=
〈 fx∗,χ{ω}〉= fx∗(ω) which is a measurable function, and thus we proved that f is weakly mea-

surable.

5



2.3 The relationship between strong and weak measurability

This subsection reveals that the two measurability notions coincide in separable Banach spaces.

At first, we will see how the assumptions on f can be weakened, using the Hahn–Banach

theorem, to keep ω 7→ ‖ f (ω)‖ measurable. Before this, we introduce almost everywhere sep-
arable valued functions having separable image in X on the subset Ω\E where E denotes an

appropriate set of measure zero.

Lemma 2.8. Let f : Ω→ X be a weakly measurable and almost everywhere separable valued

function. Then ω 7→ ‖ f (ω)‖ is measurable.

Proof. Let E be a set of measure zero such that f (Ω\E) is separable and let D := {dn : n ∈N}
be a countable dense set in it. We define, with the help of the Hahn–Banach theorem, a sequence

(x∗n)n∈N of continuous functionals in X ∗ such that x∗n(dn) = ‖dn‖ and ‖x∗n‖op = 1.

Now, we prove that for any x ∈ f (Ω\E), sup
n∈N
|x∗n(x)| = ‖x‖. Since each x∗n has an operator

norm of 1, we can see that |x∗n(x)| 6 ‖x‖ for all n ∈ N, thus ‖x‖ is an upper bound. The

following calculation shows that ‖x‖ is the smallest: |x∗n(x)| = |x∗n(x− dn)+ x∗n(dn)| 6 |x∗n(x−
dn)|+‖dn‖6 ‖x−dn‖+‖dn‖. By the density of D, there is a subsequence in D which converges

to x, and so for any ε > 0 there exists an integer N such that ||x∗N(x)|−‖x‖|< ε, it follows that

‖x‖− ε < |x∗N(x)|6 ‖x‖.
Therefore sup

n∈N
|x∗n( f (ω))| = ‖ f (ω)‖ for all ω ∈ Ω\E. By the weak measurability of f , the

functions ω 7→ x∗n( f (ω)) are measurable and sup
n∈N
|x∗n( f (ω))|= ‖ f (ω)‖ is also measurable.

We end this section with the proof of Pettis’ measurability theorem.

Theorem 2.9 (Pettis’ measurability theorem). Let (Ω,A ,µ) be a σ-finite measure space. A

function f : Ω→ X is measurable if and only if it is

(a) weakly measurable and

(b) almost everywhere separable valued.

Proof. Only for finite measures. The usual arguments extend it to the σ-finite case.

To prove the necessity assume that f : Ω→ X is a measurable function and let ( fn)n∈N be a

sequence of simple functions and E a set of measure zero such that fn→ f on Ω\E.

Necessity of (a). Let x∗ ∈ X ∗ be a continuous linear functional. By the linearity of x∗, the

function x∗( fn) : X → R is also simple and x∗( fn)→ x∗( f ) as n→ ∞.

Necessity of (b). Every simple function fn has a countable range thus
⋃

n∈N fn(Ω)⊃ f (Ω\
E) is countable too and therefore separable.

Sufficiency. Let {dn : n ∈ N} be a dense set in f (Ω \E) for some measurable set E with

µ(E) = 0. Our hypotheses on f enable us to use Lemma 2.8 to obtain the measurability of
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‖ f (ω)−dn‖ for all n> 1. Given ε > 0, we can construct measurable sets

En := {ω ∈Ω\E : ‖ f (ω)−dn‖< ε},

and by the density of the dn, we can see that
⋃

n∈NEn = Ω\E. Set Fn to En \
⋃n−1

k=1 Ek. The Fn

are measurable with µ(Fn)< ∞, disjoint, and
⋃

n∈NFn = Ω\E holds. Therefore

fε(ω) :=

{
dn, ω ∈ Fn (n ∈ N)
0, ω ∈ E.

is a well defined, countably valued function, and ‖ f (ω)− fε(ω)‖ < ε for all ω ∈ Ω \E. Now,

Proposition 2.2 completes the proof.

We list here some useful corollaries of the this theorem.

Corollary 2.10. Let (Ω,A ,µ) be a measure space. If f : Ω→ X is measurable then f is weakly

measurable and almost everywhere separable valued.

Proof. The ”necessity part” of the proof does not use the σ-finiteness of (Ω,A ,µ).

Corollary 2.11. Let (Ω,A ,µ) be a σ-finite measure space and X a separable Banach space. A

function f : Ω→ X is measurable if and only if it is weakly measurable.

Note 2.12. A possible example of a separable Banach space is the space C([0,1],‖ · ‖∞) of

all real valued continuous functions on the unit interval [0,1] with the supremum norm. This

follows from the Stone–Weierstrass theorem.

Corollary 2.13. Let (Ω,A ,µ) be a σ-finite measure space. A function f : Ω→ X is measurable

if and only if it is the limit almost everywhere of a sequence of countably valued functions.

Corollary 2.14. Let (Ω,A ,µ) be a σ-finite measure space. A function f : Ω→ X is measur-

able if and only if it is the uniform limit almost everywhere of a sequence of countably valued

functions.

The usefulness of the following corollary arises from the fact that we later can characterize

the integrability of a strongly measurable function through its ”countably valued part” h.

Corollary 2.15. Let µ be a σ-finite measure. If f : Ω→ X is measurable then for any ε > 0

there is a function g : Ω→ X with ‖g(ω)‖< ε (µ-almost every ω ∈Ω) and a countably valued

function h : Ω→ X such that f (ω) = g(ω)+h(ω) for µ-almost every ω ∈Ω.

Proof. We just recall the proof of Theorem 2.9 and consider the function fε. We showed that

‖ f (ω)− fε(ω)‖ < ε for all ω ∈ Ω \ E. Since fε is countably valued then it is measurable

(Proposition 2.2) thus f − fε is measurable and bounded.

Let g(ω) := f (ω)− fε(ω) and h(ω) := fε(ω), and the proof is complete.
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Exploiting Corollary 2.10 we can demonstrate that being weakly measurable is indeed a

weaker property than being strongly measurable.

Example 2.16 (The function f in Example 2.7 is not strongly measurable.). To show that, we

use Corollary 2.10. To obtain a contradiction, suppose that f is measurable, then f (Ω) is a

separable subset of Ω since ∅ is the only set of measure zero. However, we showed (Lemma

2.6) that f (Ω) = {χ{ω} : ω ∈Ω} cannot be a separable subset of Ω.

Example 2.17 (a strongly measurable function I). Let Ω be the unit interval and f : Ω →
C([0,1],‖ · ‖∞) given by f (ω) := t 7→ ω · t. If x∗ ∈ C[0,1]∗ then x∗(t 7→ ω · t) = ω · x∗(t 7→
t) =Cx∗ ·ω where Cx∗ is some constant depending only on x∗. Therefore

ω 7→ x∗( f (ω)) = ω 7→Cx∗ ·ω (x∗ ∈C[0,1]∗)

is continuous and thus we proved that f is weakly measurable. Since C([0,1],‖ · ‖∞) is separa-

ble, f is in fact measurable (Corollary 2.11).

Example 2.18 (a strongly measurable function II). Let Ω be as above and f : Ω→C([0,1],‖ ·
‖∞) defined by f (ω) := t 7→ sin(ω · t). We know that the map t 7→ sin(t) is Lipschitz continuous

since for all t1, t2 ∈Ω, we have

|sin(t1)− sin(t2)|6 |t1− t2|.

The following proves that f is also Lipschitz continuous:

‖ f (ω1)− f (ω2)‖∞ = sup
t∈[0,1]

{|sin(ω1 · t)− sin(ω2 · t)|}6 |ω1−ω2|.

Now, let x∗ be a continuous functional in C([0,1],‖ · ‖∞)
∗, then the map ω 7→ x∗( f (ω)) is a

composition of continuous functions and therefore is measurable. We proved that f is weakly

measurable and the separability of C([0,1],‖ · ‖∞) implies its measurability (again, Corollary

2.11).

As a closing remark, we would like to generalize the idea introduced in the previous exam-

ple.

Proposition 2.19. Let Ω ⊂ R be a compact set and f : Ω→ X a continuous function. Then f

is measurable.

Proof. We prove that f is weakly measurable and separable valued, thus f is measurable by

Theorem 2.9.

Since f is continuous, for any ε > 0 and ω0 ∈Ω there exists a δ > 0 such that |ω−ω0|< δ

implies

‖ f (ω)− f (ω0)‖< ε.
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If we take an arbitrary functional x∗ ∈ X ∗ it follows that

|x∗( f (ω))− x∗( f (ω0))|= |x∗( f (ω)− f (ω0))|6

‖x∗‖op‖ f (ω)− f (ω0)‖6 ε‖x∗‖op

proving the weak measurability of f .

The second assertion was that f is separable valued. This follows from the fact that the

continuous image of a compact set is compact and compactness implies separability.

References The proof of Proposition 2.3 is from [SY05] Proposition 1.1.3. Subsection 2.2

is based on [BN00] 9.4 A nonseparable Hilbert space. The idea of Example 2.7 came from

[DU77] Example 5. The proof of Egorov theorem (2.5) is taken over from [DS88] III.6.11., 12

Theorem, but I added some further explanations. The proof of Pettis’ measurability theorem

(2.9) is based on [DU77] II. Theorem 2 and [DMP03] Theorem 3.10.3, an important step of the

proof is moved to a separate lemma (2.8) [Coh13] E.10 (Lemma).

3 Bochner and Pettis integration

3.1 The Bochner integral

We define the Bochner integral of a simple function f : Ω→ X to be∫
Ω

f dµ :=
k∑

i=1

µ(Ai)xi.

When A is a measurable subset of Ω the integral
∫

A f dµ is defined in the obvious way, that

is, ∫
A

f dµ :=
k∑

i=1

µ(Ai∩A)xi.

The following lemma verifies the consistency of the Bochner integral’s definition in the

sense that different simple function representations of f will give the same integral.

Lemma 3.1. The Bochner integral is well defined for simple functions.

Proof. Assume that our simple function f has two representations, that is,

f =
n∑

i=1

χAixi =

m∑
j=1

χB jy j.

We can assume that xi 6= 0 (i = 1,2, . . . ,n) and yi 6= 0 ( j = 1,2, . . . ,m) since the sums do not

change by deleting these terms. In this case, it follows that we have
n⋃

i=1

Ai =

m⋃
j=1

B j.

9



Observe that the relation µ(Ai∩B j)y j = µ(Ai∩B j)xi holds for (i= 1,2, . . . ,n) and ( j = 1,2, . . . ,m).

If Ai ∩B j = ∅ it is obvious since µ(Ai ∩B j) = 0, otherwise ω ∈ Ai and ω ∈ B j implies that

f (ω) = xi = y j. Since both the sets Ai and B j are disjoint, it follows that Ai∩B j is also disjoint.

Note that Ai =
⋃m

j=1(Ai∩B j) (i = 1,2, . . . ,n). Therefore, by additivity of µ, we have∫
Ω

n∑
i=1

χAixi dµ =

n∑
i=1

µ(Ai)xi =
m∑

j=1

n∑
i=1

µ(Ai∩B j)xi =

m∑
j=1

n∑
i=1

µ(Ai∩B j)y j =

m∑
j=1

µ(B j)y j =

∫
Ω

m∑
j=1

χB jy j dµ

as claimed.

It follows from definition that if f ,g are simple functions and c ∈ R then
∫

Ω
( f + c ·g)dµ =∫

Ω
f dµ+ c ·

∫
Ω

gdµ, thus the Bochner integral defines a linear map on the space of measurable

functions.

Proposition 3.2. Let f ,g : Ω→ X be simple functions, then∥∥∥∥∫
Ω

f dµ
∥∥∥∥6 ∫

Ω

‖ f (ω)‖dµ and
∥∥∥∥∫

Ω

f dµ−
∫

Ω

gdµ
∥∥∥∥6 ∫

Ω

‖ f (ω)−g(ω)‖dµ .

Proof. By Lemma 3.1, we may assume that f is represented as a simple function with disjoint

sets A1,A2, . . . ,Ak and coefficients x1,x2, . . . ,xk. Then∥∥∥∥∫
Ω

f dµ
∥∥∥∥=

∥∥∥∥∥
k∑

i=1

µ(Ai)xi

∥∥∥∥∥6
k∑

i=1

µ(Ai)‖xi‖=
∫

Ω

‖ f (ω)‖dµ .

The second inequality follows from the first one since f −g is measurable and
∫

Ω
is linear.

A measurable function f : Ω→ X is called Bochner integrable if there exists a sequence

of simple functions ( fn)n∈N such that
∫

Ω
‖ fn(ω)− f (ω)‖dµ→ 0. The Bochner integral of f

is defined with the limit ∫
Ω

f dµ := lim
n→∞

∫
Ω

fn dµ .

We proved that the Bochner integral is well defined for simple functions. We are now faced with

a similar problem, that is, we need to show that the integral
∫

Ω
f dµ exists and is independent of

the sequences of simple functions ( fn)n∈N with the limit function f .

Lemma 3.3. The Bochner integral is well defined for the Bochner integrable functions.

Proof. Existence. Let f be a Bochner integrable function and ( fn)n∈N be its defining se-

quence. We need to show that
∫

Ω
fn dµ converges as n → ∞. It is sufficient to show that
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(
∫

Ω
fn dµ)n∈N is a Cauchy sequence in X , that is, for any ε > 0 there exists an index N such

that
∥∥∫

Ω
fn dµ−

∫
Ω

fm dµ
∥∥< ε for all n,m> N. We use Proposition 3.2 to estimate the integral∥∥∥∥∫
Ω

fn dµ−
∫

Ω

fm dµ
∥∥∥∥6 ∫

Ω

‖ fn(ω)− fm(ω)‖dµ =∫
Ω

‖ fn(ω)− f (ω)+ f (ω)− fm(ω)‖dµ6∫
Ω

‖ fn(ω)− f (ω)‖dµ+
∫

Ω

‖ f (ω)− fm(ω)‖dµ .

For ε/2, choose an index N such that
∫

Ω
‖ fn(ω)− f (ω)‖dµ < ε/2 for all n> N. Then∥∥∥∥∫

Ω

fn dµ−
∫

Ω

fm dµ
∥∥∥∥< ε

2
+

ε

2
= ε

for all n,m> N.

Uniqueness. Let ( fn)n∈N and (gn)n∈N be two defining sequences. We will prove that∥∥∥∥∫
Ω

fn dµ−
∫

Ω

gn dµ
∥∥∥∥→ 0

as n→ ∞. We again use Proposition 3.2:
∥∥∫

Ω
fn dµ−

∫
Ω

gn dµ
∥∥ 6 ∫

Ω
‖ fn(ω)− gn(ω)‖dµ 6∫

Ω
‖ fn(ω)− f (ω)+ f (ω)−gn(ω)‖dµ6

∫
Ω
(‖ fn(ω)− f (ω)‖+‖ f (ω)−gn(ω)‖)dµ→ 0 as n→

∞.

The following theorem plays a central role in our further study as it gives a necessary and

sufficient condition, through the Lebesgue integral, for being Bochner integrable.

Theorem 3.4 (Bochner). A measurable function f : Ω→ X is Bochner integrable if and only if∫
Ω
‖ f (ω)‖dµ < ∞.

Proof. Necessity. Assume that f is Bochner integrable and let ( fn)n∈N be its defining sequence,

then
∫

Ω
‖ f (ω)‖dµ =

∫
Ω
‖ f (ω)− fn(ω)+ fn(ω)‖dµ6

∫
Ω
‖ f (ω)− fn(ω)‖dµ+

∫
Ω
‖ fn(ω)‖dµ <

∞ for a sufficiently large n.

Sufficiency. Since f is measurable, we have a sequence of simple functions ( fn)n∈N such

that fn→ f almost everywhere. It follows that |‖ fn(ω)‖−‖ f (ω)‖|6 ‖ fn(ω)− f (ω)‖→ 0, that

is, ‖ fn(ω)‖ → ‖ f (ω)‖ for almost all ω ∈ Ω. We define a sequence of simple functions gn as

follows:

gn(ω) :=

{
fn(ω), if ‖ fn(ω)‖6 2‖ f (ω)‖
0, otherwise.

The sequence (gn)n∈N converges to f for µ-almost every ω∈Ω, and ‖ f (ω)−gn(ω)‖6 3‖ f (ω)‖
for all ω ∈ Ω and all n ∈ N. By Lebesgue’s Dominated Convergence Theorem, we have

lim
n→∞

∫
Ω
‖ f (ω)−gn(ω)‖dµ = 0 since

∫
Ω

3‖ f (ω)‖dµ < ∞.
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In the this section we dealt with the foundations of the Bochner integral. As we have seen so

far, the construction of the Bochner integral is a kind of generalization of the Lebesgue integral.

The proofs also reflect this similarity, they mostly used the same arguments as for Lebesgue

integrals, essentially replacing the absolute values with norms.

3.2 Some important properties of the Bochner integral

Our investigations now turn to the basic properties of the Bochner integral.

Proposition 3.5. Let f : Ω→ X be a Bochner integrable function then∥∥∥∥∫
Ω

f dµ
∥∥∥∥6 ∫

Ω

‖ f (ω)‖dµ .

Proof. By definition
∥∥∫

Ω
f dµ
∥∥= ∥∥∥ lim

n→∞

∫
Ω

fn(ω)dµ
∥∥∥ where the ( fn)n∈N are appropriate simple

functions. For simple functions the inequality is true (Proposition 3.2), thus we have∥∥∥∥ lim
n→∞

∫
Ω

fn(ω)dµ
∥∥∥∥= lim

n→∞

∥∥∥∥∫
Ω

fn dµ
∥∥∥∥6 lim

n→∞

∫
Ω

‖ fn(ω)‖dµ =

∫
Ω

‖ f (ω)‖dµ

as claimed.

The following two propositions express that the Bochner integral of a measurable function

possesses somewhat similar properties to measures. This remark later allows us to generalize

the notion of measure.

Proposition 3.6. Let f : Ω→ X be a Bochner integrable function, then lim
µ(A)→0

∫
A f dµ = 0.

Proof. It is sufficient to show that ‖ lim
µ(A)→0

∫
Ω

f dµ‖= 0. For Lebesgue integrals the proposition

is true. By Proposition 3.5, we have lim
µ(A)→0

∥∥∫
Ω

f dµ
∥∥6 lim

µ(A)→0

∫
Ω
‖ f (ω)‖dµ = 0, and the proof

is completed.

Proposition 3.7. Let f : Ω→ X be a Bochner integrable function and µ a σ-finite measure. Let

(An)n∈N be a sequence of disjoint measurable sets and A :=
∞⋃

n=1
An, then

∫
A

f dµ =

∞∑
n=1

∫
An

f dµ ,

and the sum is absolutely convergent.

Proof. If one of the sets An had infinite measure then we could use the σ-finiteness of µ to

decompose it into a union of finitely measurable sets. Therefore, there is no loss of generality

in assuming that each An has finite measure.
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From the Lebesgue version of this proposition and using the Bochner theorem (3.4), we

know that
∞∑

n=1

∥∥∥∥∫
An

f dµ
∥∥∥∥6 ∞∑

n=1

∫
An

‖ f (ω)‖dµ =

∫
A
‖ f (ω)‖dµ < ∞,

thus the sum absolutely converges. To prove the limit note that if A and B are disjoint measurable

sets then
∫

A∪B f dµ =
∫

A f dµ+
∫

B f dµ, thus for every m ∈ N, we have∥∥∥∥∥
∫

A
f dµ−

m∑
n=1

∫
An

f dµ

∥∥∥∥∥=
∥∥∥∥∥∥
∫

∞⋃
n=m+1

An

f dµ

∥∥∥∥∥∥ .
Setting Bm to

⋃
∞

n=m An (m ∈ N) yields a sequence with Bm+1 ⊂ Bm and
⋂

∞

m=1 Bm = ∅,

therefore µ(Bm)→ 0 as m→ ∞. By Proposition 3.6, we can conclude that

lim
m→∞

∥∥∥∥∥∥
∫

∞⋃
n=m+1

An

f dµ

∥∥∥∥∥∥= 0,

which completes the proof.

We have seen that if f is measurable then it can be decomposed into a bounded g and a

countably additive function h(ω) =
∑

∞

i=1 χAi(ω)xi. The next theorem says that the absolute

convergence of
∑

∞

i=1 µ(Ai)xi is a necessary and sufficient condition for being Bochner inte-

grable. Later, it turns out that if the sum
∑

∞

i=1 µ(Ai)xi is just unconditionally convergent then

we are still able to integrate f in some weaker sense.

Theorem 3.8. Let f : Ω→ X be a measurable function with the decomposition f (ω) = g(ω)+

h(ω) introduced in Corollary 2.15 where h(ω) :=
∑

∞

i=1 χAi(ω)xi. Then f is Bochner integrable

if and only if
∑

∞

i=1 µ(Ai)xi is absolutely convergent. Moreover, in case of absolute convergence,

we have
∫

Ω
f dµ =

∫
Ω

gdµ+
∑

∞

i=1 µ(Ai)xi.

Proof. It is obvious that the sequence of simple functions hn(ω) :=
∑n

i=1 χAi(ω)xi pointwise

converges to h. We need to prove that h is Bochner integrable, that is,
∫

Ω
‖h(ω)‖dµ < ∞

(Bochner theorem 3.4).

Due to the fact that Ai (i ∈ N) are disjoint we have ‖hn(ω)‖ =
∑n

i=1 χAi(ω)‖xi‖ for all

ω ∈ Ω. We can then apply the Beppo Levi theorem since ‖hn(ω)‖ : Ω→ R is measurable and

06 ‖hn(ω)‖6 ‖hn+1(ω)‖ for all ω ∈Ω and n ∈ N. Then∫
Ω

‖h(ω)‖dµ = lim
n→∞

∫
Ω

‖hn(ω)‖dµ = lim
n→∞

n∑
i=1

µ(Ai)‖xi‖

and lim
n→∞

∑n
i=1 µ(Ai)‖xi‖< ∞ if and only if

∑
∞

i=1 µ(Ai)xi is absolutely convergent.

Finally, assume that h is Bochner integrable, then∫
Ω

hdµ = lim
n→∞

∫
Ω

hn dµ = lim
n→∞

n∑
i=1

µ(Ai)xi =

∞∑
i=1

µ(Ai)xi,

13



and we know that g is bounded and thus Bochner integrable, so we have∫
Ω

f dµ =

∫
Ω

(g+h)dµ =

∫
Ω

gdµ+
∞∑

i=1

µ(Ai)xi.

The proof is complete.

The classical dominated convergence theorem remains valid for Bochner integrals.

Theorem 3.9 (Dominated Convergence Theorem). Let fn : Ω→ X be a sequence of measur-

able functions. Suppose that fn(ω)→ f (ω) for µ-almost every ω ∈ Ω, and that there exists a

Lebesgue integrable function g : Ω→ R such that ‖ fn(ω)‖ 6 g(ω) for µ-almost every ω ∈ Ω

(n ∈ N). Then f is Bochner integrable, and
∫

Ω
fn dµ→

∫
Ω

f dµ.

Proof. By Theorem 3.4, the fn are Bochner integrable. We need that ‖ f (ω)‖ is also bounded

by g: ‖ f (ω)‖ = ‖ f (ω)− fn(ω)+ fn(ω)‖ 6 ‖ f (ω)− fn(ω)‖+ g(ω) for all n ∈ N, now taking

the limit n→∞ gives us ‖ f (ω)‖6 g(ω). Again, Theorem 3.4 implies the Bochner integrability

of f .

We can apply the classical version of this theorem since ‖ fn(ω)− f (ω)‖ 6 2g(ω), and by

Proposition 3.5, we have∥∥∥∥∫
Ω

fn dµ−
∫

Ω

f dµ
∥∥∥∥6 ∫

Ω

‖ fn(ω)− f (ω)‖dµ→ 0

as n→ ∞.

3.3 A theorem of Hille and its consequences

We examine how Bochner integrable functions behave when we compose them with closed

operators. Two important consequences are also studied.

Throughout this part, let (X1,‖·‖X1),(X2,‖·‖X2) be Banach spaces and L : X1⊃ domL→X2

be any linear operator.

A short note on closed operators

An operator L is a closed operator if its graph, i.e., graphL := {(x,L(x)) : x ∈ domL} is a

closed subset of X1⊕X2.

Notice that we emphasized that domL can be an arbitrary linear subspace in X1. This makes

sense when we look at the following theorem.

Theorem 3.10 (Closed graph theorem). Let L : X1 → X2 be a linear operator defined every-

where on X1. Then L is continuous if and only if it is closed. �

14



Note that one direction of the proof is easy since continuity unconditionally implies closed-

ness. The second note is on the spaces X1⊕X2 and domL. It is known that X1⊕X2 is also a

Banach space with the norm ‖(x1,x2)‖ := ‖x1‖X1 + ‖x2‖X2 (x1 ∈ X1,x2 ∈ X2). By definition,

domL is a linear subspace of X1, and we can define a norm on it, namely the graph norm
‖x‖g := ‖x‖X1 +‖L(x)‖X2 .

Proposition 3.11. If L is a closed operator, then domL is a Banach space with respect to the

graph norm.

Proof. To see that the graph norm turns domL into a Banach space, let (xn)n∈N ⊂ domL be a

Cauchy sequence, that is, for any ε > 0 there exists an integer N such that

‖xn− xn‖X1 +‖L(xn− xm)‖X2 < ε

for all n,m > N. Thus xn has a limit in X1, similarly L(xn) has a limit in X2, therefore the

sequence (xn,L(xn)) ⊂ graphL converges in X1⊕ X2 which implies that the limit is also in

graphL.

Further noteworthy observations are that L is continuous on (domL,‖ · ‖g) since ‖L(x)‖
6 ‖x‖+‖L(x)‖, and graphL is a closed subspace of X1⊕X2 and thus is a Banach space.

We should tell something about the integration of a function f : Ω→ X1⊕X2. Let f1 : Ω→
X1, f2 : Ω→ X2 be the two components of f , that is, f (ω) = ( f1(ω), f2(ω)), and assume that

f1, f2 are Bochner integrable functions, and let f ′n, f ′′m be their defining sequences. Then f is

Bochner integrable since ∫
Ω

‖( f1(ω)− f ′n(ω), f2(ω)− f ′′m(ω))‖dµ =∫
Ω

‖ f1(ω)− f ′n(ω)‖dµ+
∫

Ω

‖ f2(ω)− f ′′m(ω)‖dµ < ∞.

If f ′ : Ω→ X1 and f ′′ : Ω→ X2 are two simple functions then the decomposition of ( f ′, f ′′)

( f ′(ω), f ′′(ω)) =

(
n∑

i=1

χAi(ω)xi,0

)
+

(
0,

m∑
i=1

χBi(ω)yi

)
(xi,yi) ∈ X1×X2

shows us that
∫

Ω
( f ′, f ′′)dµ = (

∫
Ω

f ′ dµ ,
∫

Ω
f ′′ dµ). We proved the following fact:

Proposition 3.12. Let f : Ω → X1 ⊕ X2 be a function with Bochner integrable components

f1 : Ω→ X1 and f2 : Ω→ X2. Then f is Bochner integrable and
∫

Ω
f dµ =

(∫
Ω

f1 dµ ,
∫

Ω
f2 dµ

)
.

Now, we are able to give a quite simple proof of the Hille theorem.
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Theorem 3.13 (Hille). Let X1,X2 be Banach spaces and L : X1→ X2 a closed linear operator.

If f : Ω→ domL and L( f (ω)) are Bochner integrable functions then

L
(∫

Ω

f (ω)dµ
)
=

∫
Ω

L( f (ω))dµ .

Proof. Let us define a function g : Ω→ graphL through g(ω) := ( f (ω),L( f (ω)). By Proposi-

tion 3.12, g is Bochner integrable and its integral is∫
Ω

g(ω)dµ =

(∫
Ω

f (ω)dµ ,
∫

Ω

L( f (ω))dµ
)
∈ graphL,

which means that L
(∫

Ω
f (ω)dµ

)
=
∫

Ω
L( f (ω))dµ.

In the Hille theorem, we assumed L( f (ω)) to be a Bochner integrable function, however,

if L is a continuous linear operator then it is a simple matter to check that L( f (ω)) is Bochner

integrable: ‖L( f (ω))‖6 ‖L‖op‖ f (ω)‖ and it follows that ‖L‖op
∫

Ω
‖ f (ω)‖dµ < ∞.

Corollary 3.14. Let X be Banach space and L a continuous linear operator on X . If f : Ω→ X
is Bochner integrable then

L
(∫

Ω

f (ω)dµ
)
=

∫
Ω

L( f (ω))dµ .

Corollary 3.15. Let f ,g : Ω→ X be two Bochner integrable functions such that∫
A

f dµ =

∫
A

gdµ (A ∈ A).

Then f (ω) = g(ω) for µ-almost every ω ∈Ω.

Proof. Since f and g are almost everywhere separable valued by Theorem 2.9, we can recall the

proof of Lemma 2.8. It follows that there exists a sequence (x∗n)n∈N of continuous functionals

such that

‖ f (ω)−g(ω)‖= sup
n∈N
|x∗n( f (ω))− x∗n(g(ω))|

for µ-almost every ω ∈Ω.

Now, we use Corollary 3.14 for the Bochner integrable functions f and g. It follows that for

all n ∈ N, we have ∫
A

x∗n( f (ω))dµ =

∫
A

x∗n(g(ω))dµ (A ∈ A).

The similar proposition for Lebesgue integrals implies that x∗n( f (ω)) = x∗n(g(ω)) for all ω ∈
Ω\Bn where Bn is a set of measure zero.

Let us consider the set B :=
⋃

n∈NBn. It is obvious that µ(B) = 0 and for all n ∈ N and

ω ∈Ω\B, we have

|x∗n( f (ω))− x∗n(g(ω))|= 0,
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that is,

‖ f (ω)−g(ω)‖= 0 (ω ∈Ω\B),

hence f (ω) = g(ω) µ-almost everywhere.

Note 3.16 (Bochner space). It is clear from the construction that if f and g are Bochner inte-

grable functions and c ∈K then so are f +c ·g, that is, the Bochner integrable functions form a

vector space.

This vector space can be endowed with a norm which we will call Bochner norm. This

norm comes naturally in a view of Lp spaces. Let Lp(X ;Ω,A ,µ) (1 6 p 6 ∞) denote the

normed space of equivalence classes of Bochner integrable f : Ω→ X functions which agree

almost everywhere (in the light of Corollary 3.15, this definition remains valid in this context

too) such that ‖ f‖Lp < ∞ where

‖ f‖Lp :=

{ (∫
Ω
‖ f (ω)‖p dµ

) 1
p , 16 p < ∞

esssupΩ ‖ f (ω)‖= inf{C > 0 : ‖ f (ω)‖6C µ-a.e.}, p = ∞.

We note without proof that the space Lp(X ;Ω,A ,µ) is a Banach space (16 p6 ∞). Moreover,

if H is a Hilbert space then so is L2(H ;Ω,A ,µ) with the inner product

〈 f ,g〉L2 :=
∫

Ω

〈 f (ω),g(ω)〉H dµ .

3.4 The Pettis integral

In this part, we introduce a new integration concept for Banach spaces, namely the Pettis in-

tegral. This new integral is weaker than the Bochner integral in the sense that every Bochner

integrable function is Pettis integrable and the values of the integrals agree. The term ”weak”

is commonly used in conjunction with Pettis integrals referring the underlying topology where

this integration is built. That is why the Pettis integral is often mentioned as ”weak integral”

while the Bochner integral is called ”strong integral”.

A weakly measurable function f : Ω→ X is said to be scalarly integrable if for any x∗ ∈
X ∗ the scalar valued function ω 7→ x∗( f (ω)) is in L1(Ω,A ,µ). A scalarly integrable function

f : Ω→ X is Pettis integrable if there exists a vector x ∈ X such that

x∗(x) =
∫

Ω

x∗( f (ω))dµ

for every functional x∗ ∈ X ∗. Then the value of the Pettis integral is defined to be x.

Before we present the Pettis theory, we consider an integration concept for which scalar

integrability is a sufficient condition.
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Lemma 3.17 (Dunford). Assume that f is scalarly integrable. Then there exists an element

x∗∗ ∈ X ∗∗ satisfying

x∗∗(x∗) =
∫

Ω

x∗( f (ω))dµ

for all x∗ ∈ X ∗.

The functional x∗∗ in the second dual space X ∗∗ is called the Dunford integral of f .

Proof. Observe that the operator T : X ∗→L1(Ω,A ,µ) given by T (x∗)(ω) := x∗( f (ω)) is closed.

Then the Closed graph theorem (3.10) states that T is continuous. Therefore∣∣∣∣∫
Ω

T (x∗)(ω)dµ
∣∣∣∣= ∣∣∣∣∫

Ω

x∗( f (ω))dµ
∣∣∣∣6 ∫

Ω

|x∗( f (ω))|dµ = ‖T (x∗)‖L1 6 ‖T‖op‖x∗‖op,

that is, the map x∗∗(x∗) :=
∫

Ω
x∗( f (ω))dµ is bounded, hence x∗∗ ∈ X ∗∗.

Proposition 3.18. The Pettis integral is well defined.

Proof. Assume that x1 ∈ X and x2 ∈ X both satisfy the requirements of the Pettis integrability.

Then

x∗(x1)− x∗(x2) = x∗(x1− x2) = 0

holds for all functionals x∗ ∈ X ∗ thus x1− x2 must be 0.

We can take advantage of the Dunford integral and give a sufficient condition for Pettis inte-

grability in spaces which admit an isometric isomorphism J : X → X ∗∗ through the evaluation
map J(x)(x∗) := x∗(x) (x ∈ X ,x∗ ∈ X ∗). Such spaces are called reflexive.

Lemma 3.19. Let X be a reflexive Banach space. Then a scalarly integrable function is Pettis

integrable.

Proof. Since X is reflexive, the map J : X → X ∗∗ defined by the evaluation map J(x)(x∗) :=

x∗(x) (x∗ ∈ X ∗) is an isomorphism. Let x∗∗ be the Dunford integral of f (Lemma 3.17) then

J−1(x∗∗) =: x will be the Pettis integral of f since x∗∗(x∗) = x∗(x) for all x∗ ∈ X ∗.

Proposition 3.20. If f : Ω→ X is Bochner integrable then it is Pettis integrable.

Proof. Let x be the Bochner integral of f , that is, x :=
∫

Ω
f dµ. By Corollary 3.14, we have

x∗(x) =
∫

Ω
x∗( f (ω))dµ for all x∗ ∈ X ∗.

If f is some integrable function we can define its indefinite integral by

ν f (A) :=
∫

A
f dµ (A ∈ A).

Another interpretation of Proposition 3.7 and Proposition 3.6 would be the following: if f is

Bochner integrable then ν f is a countably additive set function and ν f (∅) = 0. In what follows,

we investigate whether the Pettis integral inherits this good property.
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It is clear that if f is a Pettis integrable function with Pettis integral x and A ∈ A is a set of

measure zero then
∫

A f dµ = 0 since the Lebesgue integral x∗(x) =
∫

A x∗( f (ω))dµ = 0 for all

x∗ ∈ X ∗ implies that x = 0.

Fortunately, Proposition 3.7 remains true as well.

Theorem 3.21 (Pettis). Let f : Ω→ X be a Pettis integrable function and µ a σ-finite measure.

Let (An)n∈N be a sequence of disjoint measurable sets and A :=
∞⋃

n=1
An, then

∫
A

f dµ =

∞∑
n=1

∫
An

f dµ .

Proof. Since the sets An (n ∈ N) are disjoint and measurable then for all x∗ ∈ X ∗, we have

x∗
(∫

⋃
∞

n=1 An

f dµ

)
=

∫
⋃

∞

n=1 An

x∗( f (ω))dµ

where the right hand side is a Bochner integral. On account of Proposition 3.7, we have∫
⋃

∞

n=1 An

x∗( f (ω))dµ =
∞∑

n=1

∫
An

x∗( f (ω))dµ ,

and by Corollary 3.14, we arrive at

∞∑
n=1

∫
An

x∗( f (ω))dµ =
∞∑

n=1

x∗
(∫

An

f (ω)dµ
)
.

From this it may be concluded that the indefinite Pettis integral is weakly countably additive.

However, applying the Orlicz–Pettis theorem (A.9) we get that
∞∑

n=1
x∗
(∫

An
f (ω)dµ

)
is un-

conditionally convergent and therefore convergent, that is,

x∗
(∫

⋃
∞

n=1 An

f dµ

)
=

∞∑
n=1

x∗
(∫

An

f dµ
)
= x∗

(
∞∑

n=1

∫
An

f dµ

)

for all linear functionals x∗ ∈ X ∗, therefore∫
A

f dµ =

∫
⋃

∞

n=1 An

f dµ =

∞∑
n=1

∫
An

f dµ

as claimed.

We are about to prove the Pettis integral counterpart of Theorem 3.8.

Theorem 3.22. Let f : Ω→X be a measurable function with the decomposition f (ω) = g(ω)+

h(ω) introduced in Corollary 2.15 where h(ω) :=
∑

∞

i=1 χAi(ω)xi. Then f is Pettis integrable

if and only if
∑

∞

i=1 µ(Ai)xi is unconditionally convergent. Moreover, in case of unconditional

convergence, we have
∫

Ω
f dµ =

∫
Ω

gdµ+
∑

∞

i=1 µ(Ai)xi.
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Proof. Necessity. Assume that f Pettis integrable then h is also Pettis integrable. The indefinite

Pettis integral of h is countably additive (Theorem 3.21), which leads to∫
Ω

hdµ =

∞∑
i=1

∫
Ai

hdµ =
∞∑

i=1

µ(Ai)xi.

The unconditional convergence is just a consequence of the fact that for any bijection σ : N→N
the function hσ =

∑
∞

i=1 χAσ(i)xσ(i) equals to h and thus

∞∑
i=1

µ(Ai)xi =
∞∑

i=1

µ(Aσ(i))xσ(i)

also holds.

Sufficiency. For the converse it is enough to prove that h is Pettis integrable provided that∑
∞

i=1 µ(Ai)xi is unconditionally convergent.

If x∗ ∈ X ∗ then the unconditional convergence implies that
∑

∞

i=1 µ(Ai)x∗(xi) is uncondi-

tionally convergent in R, and in this space the unconditional and absolute convergence are

equivalent. Thus we get ∫
Ω

|x∗(h(ω))|dµ =
∞∑

i=1

µ(Ai)|x∗(xi)|< ∞

which means that h is scalarly integrable. In addition, for all linear functionals x∗ ∈ X ∗, we

have ∫
Ω

x∗(h(ω))dµ =
∞∑

i=1

µ(Ai)x∗(xi) = x∗
(

∞∑
i=1

µ(Ai)xi

)
.

This gives the Pettis integral of h: ∫
Ω

hdµ =

∞∑
i=1

µ(Ai)xi.

Finally, f (ω) = g(ω)+h(ω) where g is Bochner integrable (since it is bounded) and according

to Proposition 3.20 it is a Pettis integrable function so f is Pettis integrable and∫
Ω

f dµ =

∫
Ω

g+hdµ =

∫
Ω

gdµ+
∫

Ω

hdµ =

∫
Ω

gdµ+
∞∑

i=1

µ(Ai)xi.

The proof is complete.

In what follows, we present two limit theorems concerning Pettis integrals. The first is

formulated for weakly sequentially complete spaces (Defintion A.7). The second one is the

generalization of the Lebesgue Dominated Convergence Theorem.
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Proposition 3.23. Let X be a weakly sequentially complete Banach space. Let f : Ω→ X be a

function and ( fn)n∈N : Ω→ X a sequence of simple functions such that fn→ f weakly almost

everywhere and ∫
Ω

|x∗( fn(ω))− x∗( fm(ω))|dµ→ 0 as n,m→ ∞,

for any x∗ ∈ X ∗. Then f is Pettis integrable and

w
lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ .

Proof. It is obvious that any simple function fn (n ∈ N) is scalarly integrable, and hence the

assumption ∫
Ω

|x∗( fn(ω))− x∗( fm(ω))|dµ→ 0 as n,m→ ∞

means that the sequence (x∗( fn))n∈N is Cauchy in L1(Ω,A ,µ), which is complete, thus the weak

limit x∗( f ) is also in L1(Ω,A ,µ), that is, f is scalarly integrable. In other words

lim
n→∞

∫
Ω

x∗( fn(ω))dµ =

∫
Ω

x∗( f (ω))dµ (1)

for all x∗ ∈ X ∗. However, we know that for simple functions x∗(
∫

Ω
fn dµ) =

∫
Ω

x∗( fn(ω))dµ

holds (n∈N). A glance at (1) shows that x∗(
∫

Ω
fn dµ) converges and that it is a Cauchy sequence

for all x∗ ∈ X ∗.
We concluded that

∫
Ω

fn dµ is a weak Cauchy sequence. Since X is weakly sequentially

complete it follows that
∫

Ω
fn dµ has a weak limit in X , that is,

w
lim
n→∞

∫
Ω

fn dµ =: x ∈ X .

We proved that, for any x∗ ∈ X ∗ we have

x∗(x) = lim
n→∞

x∗
(∫

Ω

fn dµ
)
= lim

n→∞

∫
Ω

x∗( fn(ω))dµ =

∫
Ω

x∗( f (ω))dµ ,

that is, x is the Pettis integral of f .

Note 3.24. Every reflexive Banach space is weakly sequentially complete. [Meg98] 2.8.11.

Corollary.

Theorem 3.25 (Dominated Convergence Theorem). Let fn : Ω→ X be a sequence of Pettis

integrable functions. Suppose that fn(ω)→ f (ω) weakly for µ-almost every ω ∈ Ω, and that

there exists a Lebesgue integrable function g : Ω→R such that |x∗( fn(ω))|6 g(ω) for µ-almost

every ω ∈Ω (n ∈ N) and for all x∗ ∈ X ∗. Then f is Pettis integrable and

w
lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ .

�
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Proposition 3.26. Let f ,g : Ω→ X be two Pettis integrable and measurable functions such that∫
A

f dµ =

∫
A

gdµ (A ∈ A).

Then f (ω) = g(ω) µ-almost every ω ∈Ω.

Proof. The same argument applies here as in Corollary 3.15.

Note 3.27 (Pettis space). We recall Note 3.16, the Banach space of Bochner integrable func-

tions. Similarly, the Pettis integrable functions form a vector space and we can define a norm

on it. Let P (X ;Ω,A ,µ) denote the normed space of equivalence classes of Pettis integrable

f : Ω→X functions which agree almost everywhere (see Proposition 3.26) such that ‖ f‖P (X )<

∞ where

‖ f‖P (X ) := sup
x∗∈X ∗

∫
Ω

|x∗( f (ω))|dµ .

It was proved that if µ is the Lebesgue measure in [0,1] then for any infinite dimensional Banach

space X , the space P (X ;Ω,A ,µ) is noncomplete [JK77].

3.5 The connection between Pettis and Bochner integrable functions

We mentioned that Theorem 3.8 and 3.22 were useful since we could characterize the inte-

grability of a strongly measurable function by the help of its countably valued part. Owing

to Appendix A we know the relationship between unconditionally and absolutely convergent

series which yields some interesting fact about Bochner and Pettis integrals.

Corollary 3.28. If f : Ω→ X is Bochner integrable then it is Pettis integrable.

Proof. We already proved this in Proposition 3.20. However, it also follows from the fact that

absolute convergence implies unconditional convergence.

Corollary 3.29. Let X be an infinite dimensional Banach space. Then there exists a measurable

function which is Pettis but not Bochner integrable.

Proof. By the Dvoretzky–Rogers theorem (A.10) we know that there exists an unconditionally

convergent series
∑

∞

k=1 xk (xk ∈ X ) that is not absolutely convergent. Let Ai (i ∈ N) be a

disjoint sequence of measurable sets with 0 < µ(Ai) < ∞. Then the countably valued function

h(ω) :=
∑

∞

k=1
xk

µ(Ai)
χAi(ω) is Pettis but not Bochner integrable (Theorem 3.8 and 3.22).

Corollary 3.30. The sets of Pettis and Bochner integrable measurable functions coincide if and

only if X is finite dimensional.

Proof. It immediately follows from Corollary 3.29 that if X is infinite dimensional then then

two sets cannot be the same. However, if X is finite dimensional then the equivalence of uncon-

ditional and absolute convergence together with Theorem 3.8 and Theorem 3.22 complete the

proof.
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Corollary 3.31. Assume that the Banach space X does not contain subspaces isomorphic to c0.

Then in Theorem 3.22 it is enough to assume that
∑

∞

i=1 µ(Ai)xi is weakly absolutely convergent.

Proof. The Bessaga–Pełczyński theorem (A.8) guarantees that every weakly absolutely conver-

gent series is unconditionally convergent.

Theorem 3.32 (Diestel–Dimitrov). Let X be a Banach space that does not contain subspaces

isomorphic to c0. Let f : Ω→ X be a measurable and scalarly integrable function. Then f is

Pettis integrable.

Proof. The function f is measurable so we can consider the form f = g+
∑

∞

i=1 χAixi (Corollary

2.15) where g is Bochner integrable. By the scalar integrability, we obtain that for all linear

functionals x∗ ∈ X ∗:

|x∗( f −g)|=
∞∑

i=1

|x∗(xi)|χAi

therefore
∞∑

i=1

|x∗(xi)|µ(Ai) =

∫
Ω

|x∗( f −g)|dµ < ∞.

proves the weak absolute convergence. Now, Corollary 3.31 finishes the proof.

References The proof of Theorem 3.4 is identical to the one that can be found in [DMP03]

Theorem 3.10.8. Subsection 3.2 mainly follows the structure of [DU77] II. Integration: The-

orem 3 and Theorem 4 (i), (ii), (iii). Hille theorem (3.13) is from [van08] Theorem 1.19, a

different proof can be found in [DU77] Theorem 6 but it uses Corollary 2.14 so it requires a σ-

finite measure space. Subsection 3.4 is based on [DU77] II. Integration: 3. The Pettis integral,

[SY05] 2.2 Pettis integral, [PS99] 5.2.4 Passage to the Limit under a Weak Integral Sign and

[Mus91] 5. Integrability of strongly measurable functions, 8. Limit theorems.

4 Vector measures

A function F : A → X is called a finitely additive vector measure if whenever A1 and A2 are

disjoint members of A then F(A1 ∪A2) = F(A1)+F(A2). If F is countably additive, that is,

F (
⋃

∞

n=1 An) =
∑

∞

n=1 F(En) for all disjoint sequences (An)n∈N in A , then we say that F is a

vector measure.

The well known limiting properties of scalar measures are satisfied, namely if (An) is an

increasing sequence in A such that
⋃

n∈NAn =: A then lim
n→∞

F(An) =F(A). A similar proposition

can be formulated for decreasing sequences.

Example 4.1 (a finitely additive vector measure which is not countably additive). Consider

the measure space ([0,1],A ,λ) where λ is the Lebesgue measure. Let T : L∞[0,1]→ X be a
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continuous linear operator. For a measurable set A ∈ A let F(A) := T (χA), then F is a finitely

additive vector measure since A1,A2 ∈ A (A1 ∩A2 = ∅) and the linearity of T implies that

F(A1∪A2) = T (χ(A1∪A2)) = T (χA1 +χA2) = T (χA1)+T (χA2) which proves the finite additivity.

The failure of F to be countably additive in general can be demonstrated with the following

choices: let X := (R, | · |) and consider the subspace C[0,1] ⊂ L∞[0,1]. The point evaluation

functional δ1/2( f ) := f (1/2) is continuous on C[0,1] with an operator norm of 1, and therefore

by the Hahn–Banach theorem continuously extends to L∞[0,1] and its norm does not change.

Let us define the operator T by this extension.

To obtain a contradiction assume that F is countably additive. Let

An := [0,(n−1)/2n]∪ [(n+1)/2n,1] ∈ A ,

we can see that An ⊂ An+1 (n ∈ N) and
⋃

n∈N
An = [0,1]\{1/2} imply that

F([0,1]\{1/2}) = lim
n→∞

F(An).

Since χ([0,1]\{1/2}) = χ([0,1]) λ-almost everywhere and χ([0,1]) ∈C[0,1], we have

F([0,1]\{1/2}) = T (χ([0,1]\{1/2})) = T (χ[0,1]) = χ[0,1](1/2) = 1.

Let f be a continuous function such that f (1/2) = 0 and esssup[0,1] |χAn(x)− f (x)| = 1/2

( f (x) = x−1/2 is an appropriate choice). Since T ( f ) = 0 and ‖T‖op = 1, we have

|F(An)|= |T (χAn)|= |T (χAn)−T ( f )|6 esssup
[0,1]
|χAn(x)− f (x)|= 1/2,

which leads to a contradiction with lim
n→∞

F(An) = 16 1/2.

Example 4.2 (a vector measure generated by a function). Let (Ω,A ,µ) be a σ-finite measure

space and f : Ω→ X a Bochner (Pettis) integrable function, then the indefinite

ν f (A) :=
∫

A
f dµ (A ∈ A)

Bochner (Pettis) integral of f is a countably additive vector measure. These facts follow from

Theorem 3.21 and Proposition 3.7, respectively.

Example 4.3 (a vector measure). Consider the construction in Example 4.1 with the change of

the domain of T to L1([0,1]).

It is obvious that

‖F(A)‖6 ‖T‖op‖χA‖L1 6 λ(A)‖T‖op.

It follows that if (An)n∈N is a disjoint sequence of Lebesgue measurable sets then

lim
m→∞

∥∥∥∥∥F

(
∞⋃

n=1

An

)
−

m∑
n=1

F(An)

∥∥∥∥∥= lim
m→∞

∥∥∥∥∥F

(
∞⋃

n=m+1

An

)∥∥∥∥∥6 lim
m→∞

λ

(
∞⋃

n=m+1

An

)
‖T‖op.

However, lim
m→∞

λ
(⋃

∞

n=m+1 An
)
= 0 thus

∑m
n=1 F(An)→ F (

⋃
∞

n=1 An) as m→ ∞.
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4.1 Variation of vector measures

Let F : A → X be a finitely additive or a countably additive vector measure. The variation of

F is a function |F | : A → [0,∞] defined by

|F |(A) := sup
π


m∑

j=1

‖F(A j)‖ :
m⋃

j=1

A j = A and π := {A1,A2, . . . ,Am} are disjoint sets

 .

The π in the supremum is called a partition of A.

The function ‖F‖ : A → [0,∞] given by

‖F‖(A) := sup
x∗∈X ∗

{
|x∗ ◦F |(A) : ‖x∗‖op 6 1

}
is called the semivariation of F .

We say that F is a measure of bounded variation or semivariation if |F |(Ω) < ∞ or

‖F‖(Ω)< ∞.

It immediately follows that ‖F‖(A) 6 |F |(A) since A is a partition of A and |x∗(F(A))| 6
‖F(A)‖ when ‖x∗‖op 6 1. Summarizing, we have

‖F‖(A)6 ‖F(A)‖6 |F |(A). (2)

The vector measures are monotone set functions, that is, whenever A,B ∈ A satisfy A ⊂ B,

we have |F |(A)6 |F |(B).

Proposition 4.4. Let F be a vector measure, then its variation |F | is a [0,∞]-valued measure.

Proof. The nonnegativity of |F | and |F |(∅) = 0 are obvious.

We check the finite additivity of |F |. Let us take any disjoint measurable sets A and B.

Consider the partitions πA and πB where

|F |(A)−
∑

C∈πA

‖F(C)‖< ε

2
and |F |(B)−

∑
C∈πB

‖F(C)‖< ε

2

are attained, respectively for a given ε > 0. Then, of course, the partition π := πA∪πB appears

in the supremum of |F |(A∪B) hence

|F |(A∪B)>
∑

C∈πA

‖F(C)‖+
∑

C∈πB

‖F(C)‖> |F |(A)+ |F |(B)− ε.

Letting ε→ 0 proves that

|F |(A∪B)> |F |(A)+ |F |(B).

For the reverse inequality consider the partition π where

|F |(A∪B)−
∑
C∈π

‖F(C)‖< ε
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is attained. Then we can make a new partition of A and B:

πA := π(= {C1,C2, . . . ,Cn})∩A := {C1∩A,C2∩A, . . . ,Cn∩A}

and πB := π∩B. Since

‖F(Ci∩A)‖+‖F(Ci∩B)‖> ‖F(Ci∩B)+F(Ci∩A)‖=

‖F((Ci∩B)∪ (Ci∩A))‖= ‖F(Ci)‖

(i = 1,2, . . . ,n), summing over π we get that

|F |(A)+ |F |(B)>
n∑

i=1

(‖F(Ci∩A)‖+‖F(Ci∩B)‖)>

n∑
i=1

‖F(Ci)‖> |F |(A∪B)− ε,

which proves the reverse inequality.

To prove the countable additivity, let (En)n∈N be a sequence of disjoint measurable sets and

π a partition of
⋃

∞

n=1 En. Then

∑
A∈π

‖F(A)‖=
∑
A∈π

∥∥∥∥∥F

(
A∩

∞⋃
n=1

En

)∥∥∥∥∥=∑
A∈π

∥∥∥∥∥
∞∑

n=1

F(A∩En)

∥∥∥∥∥6∑
A∈π

∞∑
n=1

‖F(A∩En)‖6
∞∑

n=1

∑
A∈π

‖F(A∩En)‖6
∞∑

n=1

|F |(En).

This holds for any partition π thus |F |(
⋃

∞

n=1 En)6
∑

∞

n=1 |F |(En). For the reverse inequality we

use that |F | is finitely additive and monotone, that is,

n∑
k=1

|F |(Ek) = |F |

(
n⋃

k=1

Ek

)
6 |F |

(
∞⋃

k=1

Ek

)
.

Letting n→ ∞ we have |F |(
⋃

∞

n=1 En)>
∑

∞

n=1 |F |(En) and the proof is completed.

Note 4.5. F being of bounded variation here means that |F | is a finite measure.

Proposition 4.6. Let f : Ω→ X be a Bochner integrable function. Let us consider the vector

measure F generated by f . Then

|F |(A) =
∫

A
‖ f (ω)‖dµ (A ∈ A).

Proof. Let π be a partition of a measurable set A. Then∑
E∈π

‖F(E)‖=
∑
E∈π

∥∥∥∥∫
E

f dµ
∥∥∥∥6∑

E∈π

∫
E
‖ f (ω)‖dµ =

∫
A
‖ f (ω)‖dµ ,
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that is, |F |(A)6
∫

A ‖ f (ω)‖dµ .

We need to prove the reverse inequality. By the Bochner integrability of f there exists a

sequence of simple functions ( fn)n∈N such that lim
n→∞

∫
Ω
‖ f (ω)− fn(ω)‖dµ = 0. Thus for any

ε > 0 we can fix n0 ∈ N such that∫
Ω

‖ f (ω)− fn0(ω)‖dµ < ε.

We construct a partition π′ of A satisfying∑
E∈π′

∥∥∥∥∫
E

fn0 dµ
∥∥∥∥= ∫

A
‖ fn0(ω)‖dµ . (3)

Let us consider the representation
∑n

k=1 χBkyk of fn0 . Now, we define π′ with{
B1∩A,B2∩A, . . . ,Bn∩A,A\

n⋃
k=1

(Bk∩A)

}
,

which is clearly a partition of A. It is evident that if ω ∈ A\
⋃n

k=1(Bk∩A) then fn0(ω) = 0 and

that ∫
Bk∩A
‖ fn0(ω)‖dµ =

∥∥∥∥∫
Bk∩A

fn0 dµ
∥∥∥∥= µ(Bk∩A)‖yk‖ (k = 1,2, . . . ,n),

which verifies (3).

Now, take a partition ρ such that

|F |(A)−
∑
C∈ρ

∥∥∥∥∫
C

f dµ
∥∥∥∥< ε. (4)

We would like to keep property (3) for this new partition. This can be achieved by decomposing

each set in ρ as follows: if Ci ∈ ρ then{
Ci∩B1∩A, . . . ,Ci∩Bn∩A,Ci∩

(
A\

n⋃
k=1

(Bk∩A)

)}
satisfies what we wanted. Therefore we can replace each Ci in ρ with such a decomposition.

Note that, |F |(A) is a supremum thus after having finished with this replacement procedure we

might get closer to |F |(A) in the sense that (4) still holds for some 0 < ε′ 6 ε.

It follows that∑
C∈ρ

∣∣∣∣∥∥∥∥∫
C

f dµ
∥∥∥∥−∥∥∥∥∫

C
fn0 dµ

∥∥∥∥∣∣∣∣6 ∫
A
‖ f (ω)− fn0(ω)‖dµ < ε.
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Therefore∣∣∣∣|F |(A)−∫
A
‖ fn0(ω)‖dµ

∣∣∣∣=
∣∣∣∣∣∣|F |(A)−

∑
C∈ρ

∥∥∥∥∫
C

f dµ
∥∥∥∥+∑

C∈ρ

∥∥∥∥∫
C

f dµ
∥∥∥∥−∑

C∈ρ

∥∥∥∥∫
C

fn0 dµ
∥∥∥∥
∣∣∣∣∣∣6∣∣∣∣∣∣|F |(A)−

∑
C∈ρ

∥∥∥∥∫
C

f dµ
∥∥∥∥
∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
C∈ρ

∥∥∥∥∫
C

f dµ
∥∥∥∥−∑

C∈ρ

∥∥∥∥∫
C

fn0 dµ
∥∥∥∥
∣∣∣∣∣∣6∣∣∣∣∣∣|F |(A)−

∑
C∈ρ

∥∥∥∥∫
C

f dµ
∥∥∥∥
∣∣∣∣∣∣+
∑
C∈ρ

∣∣∣∣∥∥∥∥∫
C

f dµ
∥∥∥∥−∥∥∥∥∫

C
fn0 dµ

∥∥∥∥∣∣∣∣< 2ε.

Since ε > 0 was arbitrarily chosen, this proves that

|F |(A) = lim
n→∞

∫
A
‖ fn(ω)‖dµ =

∫
A
‖ f (ω)‖dµ .

One straightforward application of this theorem is that we can give a new proof of Corollary

3.15.

New proof of Corollary 3.15. Consider the vector measure F generated by f −g. It follows

that for all A ∈ A we have F(A) = 0. Then∫
A
‖( f −g)(ω)‖dµ = 0 (A ∈ A)

implies that ‖( f −g)(ω)‖= 0 for µ-almost every ω ∈Ω which can happen only if f (ω) = g(ω)

for µ-almost every ω ∈Ω.

Note 4.7. It easily follows from Proposition 4.6 that a vector measure F generated by a Bochner

integrable function is of bounded variation. In fact, if f is strongly measurable and Pettis

integrable then F is of bounded variation if and only if f is Bochner integrable. Under the

assumption of being Pettis integrable, Rybakov showed [Ryb68] that the generated measure is

of σ-finite variation.

Note 4.8. Proposition 4.6 can be stated for scalar measures since (R, | · |) is a Banach space.

This means that a classical scalar measure can be considered as a vector measure. Summarizing

that, we can say that if f ∈ L1(Ω,A ,µ) and λ(A) :=
∫

A f dµ then

|λ|(A) =
∫

A
| f (ω)|dµ (A ∈ A).

4.2 Integration with respect to vector measures

Le F be a vector measure and f : Ω→ R a real-valued |F |-simple function represented by

α1, . . . ,αn ∈ R and disjoint, measurable sets A1, . . . ,An ∈ A .
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The integral of f with respect to the vector measure F is defined by∫
Ω

f dF :=
n∑

k=1

αkF(Ak).

Since the Ai are disjoint (i = 1,2, . . . ,n) the equality | f (ω)|=
∑n

k=1 |αi|χAi(ω) holds. Then∥∥∥∥∫
Ω

f dF
∥∥∥∥6 n∑

k=1

|αk|‖F(Ak)‖6
n∑

k=1

|αk||F |(Ak) =

∫
Ω

| f (ω)|d|F | .

Notice that |F | is a measure (Proposition 4.4) so it follows that
∫

Ω
| f (ω)|d|F | = ‖ f‖1 where

‖ · ‖1 denotes the usual norm of the space L1(Ω,A , |F |).
The set of the real valued |F |-simple functions is a dense subspace in L1(Ω,A , |F |) and we

proved that the integral operator f 7→
∫

Ω
f d|F | is continuous on this subspace. Therefore, if

f ∈ L1(Ω,A , |F |) and ( fn)n∈N is a sequence of |F |-simple functions such that ‖ f − fn‖1→ 0,

then ∫
Ω

f dF := lim
n→∞

∫
Ω

fn dF

continuously and uniquely extends the operator f 7→
∫

Ω
f dF to the whole L1(Ω,A , |F |). Thus

our integral is well defined.

We summarize the results of this subsection in the following lemma:

Lemma 4.9. Let F be a vector measure. The operator TF : L1(Ω,A , |F |)→X given by TF( f ) :=∫
Ω

f dF is a continuous linear operator with ‖TF‖op 6 1.

Proof. We only need to show that if f ∈ L1(Ω,A , |F |) then ‖
∫

Ω
f dF ‖ 6 ‖ f‖1. We have seen

this is true for simple functions, so∥∥∥∥∫
Ω

f dF
∥∥∥∥= ∥∥∥∥ lim

n→∞

∫
Ω

fn dF
∥∥∥∥6 lim

n→∞
‖ fn‖1 = ‖ f‖1.

The rest already has been proved above.

4.3 Absolute continuity

Let (Ω,A ,µ) be a finite measure space and F : A → X a vector measure. We say that F is

absolutely continuous with respect to µ if µ(A) = 0 implies F(A) = 0 for all A ∈ A .

Lemma 4.10. F is absolutely continuous with respect to µ if and only if for every ε > 0 there

exists a δ > 0 such that if A ∈ A with µ(A)< δ then ‖F(A)‖< ε. �

We note that this lemma is often used in literature as the definition of absolute continuity.

However, we prefer the definition which we are accustomed to use in real analysis.
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Proposition 4.11. Let F be a vector measure of bounded variation such that it is absolutely

continuous with respect to a finite, scalar valued measure µ. Then its variation |F | is also

absolutely continuous with respect to µ.

Proof. Since F is absolutely continuous with respect to µ we know that if A ∈ A with µ(A) = 0

then F(A) = 0. If π is a parition of A then for all C ∈ π, we have C ⊂ A, and so µ(C) = 0. The

absolute continuity of F implies that ∑
C∈π

‖F(C)‖= 0.

Therefore |F |(A) = 0, which means that |F | is absolutely continuous with respect to µ.

Assume that our vector measure F is given by a Bochner integral with respect to its variation,

that is, there exists a Bochner integrable function f such that

F(A) =
∫

A
f d|F | (A ∈ A).

Then, by the previous proposition, we know that |F |� µ. According to the Radon–Nikodym

theorem there exists a measurable function g : Ω→ [0,∞] such that

|F |(A) =
∫

A
gdµ (A ∈ A).

This is the Radon–Nikodym derivative of |F | with respect to µ, that is, d|F |
dµ dµ = g. We use

without proof that ∫
A

f
d|F |
dµ

dµ =

∫
A

f d|F |= F(A).

Combining these facts yields

F(A) =
∫

A
f gdµ (A ∈ A).

In the next section we investigate that whether a given vector measure possesses this kind

of property, namely, whether it can be generated by a Bochner integral with respect to a scalar

measure.

Note 4.12 (Banach space of vector measures). Let M1(A ,X ,µ) denote the vector space of vector

measures of the form F : A→ X being absolutely continuous with respect to µ. It can be proved

that the variation defines a norm on M1(A ,X ,µ). In fact, this space is complete with the varia-

tion norm and the map f 7→
∫

Ω
f dµ is a norm-preserving isomorphism between L1(X ;Ω,A ,µ)

and M1(A ,X ,µ) [Lan93] Corollary 4.3.

References Example 4.1 with proof can be found in [FLS95] 7.1 Preliminaries and Vector

Measures. The proof of Proposition 4.4 and Proposition 4.6 are the verbose variants of [DU77]

General Vector Measure Theory: Proposition 9 and Integration: Theorem 4 (iv), respectively.

Subsection 4.2 is based on [Din00] D. Integration with respect to vector measures with finite

variation. For a proof of Lemma 4.10 you may consult [Rya02] Proposition 5.9.

30



5 The Radon–Nikodym property and Riesz representable op-

erators

A Banach space X has the Radon–Nikodym property with respect to a finite measure space

(Ω,A ,µ) if for each absolutely continuous vector measure F : A → X of bounded variation

there exists f ∈ L1(X ;Ω,A ,µ) such that

F(A) =
∫

A
f dµ (A ∈ A).

We say that g is the Radon–Nikodym derivative of G with respect to F .

An operator T : L1(Ω,A ,µ)→ X is (Riesz) representable if there exists a function g ∈
L∞(X ;Ω,A ,µ) satisfying

T ( f ) =
∫

Ω

f gdµ ( f ∈ L1(Ω,A ,µ)).

5.1 The Radon–Nikodym property and L1(Ω,A ,µ)→ X operators

Lemma 5.1. Let T : L1(Ω,A ,µ)→ X be a continuous linear operator. Let us consider the

vector measure G(A) := T (χA) (A ∈ A).

Then T is representable if and only if the Radon–Nikodym derivative of G exists, that is,

there exists a function g ∈ L1(X ;Ω,A ,µ) such that

G(A) =
∫

A
gdµ (A ∈ A).

In this case, we have g ∈ L∞(X ;Ω,A ,µ),

T ( f ) =
∫

Ω

f gdµ ( f ∈ L1(Ω,A ,µ)),

and esssupΩ |g|= ‖T‖op.

Proof. Necessity. Since T is representable, we can find a function g in L∞(X ;Ω,A ,µ) satisfying

T ( f ) =
∫

Ω
f gdµ for all f ∈ L1(Ω,A ,µ). It immediately follows that for any A ∈ A , we have

G(A) = T (χA) =

∫
Ω

χAgdµ =

∫
A

gdµ .

Sufficiency. Let g ∈ L1(X ;Ω,A ,µ) be the Radon–Nikodym derivative of G, that is,

T (χA) = G(A) =
∫

A
gdµ (A ∈ A).

Then ‖G(A)‖= ‖T (χA)‖6 ‖T‖op‖χA‖L1 = µ(A)‖T‖op.

The variation |G| satisfies |G|(A)6 ‖G(A)‖ (see (2)). Thus it follows that

|G|(A)6 µ(A)‖T‖op (A ∈ A).
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By Proposition 4.6, we have

|G|(A) =
∫

A
‖g(ω)‖dµ6 µ(A)‖T‖op,

hence ‖g(ω)‖ 6 ‖T‖op for µ-almost every ω ∈ Ω, that is, g ∈ L∞(X ;Ω,A ,µ) and esssupΩ |g|
6 ‖T‖op. By the Bochner theorem (3.4) if f ∈ L1(Ω,A ,µ), then f g is Bochner integrable, so

we may define a continuous operator T ′( f ) :=
∫

Ω
f gdµ. This operator coincides with T on

characteristic functions and since the linear span of them is dense in L1(Ω,A ,µ) we can deduce

that T ′ = T .

What is left to show is that esssupΩ |g|= ‖T‖op. Now, we know that

‖T ( f )‖=
∥∥∥∥∫

Ω

f gdµ
∥∥∥∥6 ∫

Ω

| f (ω)|‖g(ω)‖dµ6 ‖ f‖L1

(
esssup

Ω

|g|
)
.

Hence ‖T‖op 6 esssupΩ |g|, and the proof is complete.

We are about to prove our main theorem. This theorem states that the Radon–Nikodym

theorem is true for a Banach space X if and only if the Riesz representation theorem describes

all operators T as above.

Theorem 5.2. Let X be a Banach space and (Ω,A ,µ) a finite measure space. Then X has the

Radon–Nikodym property with respect to (Ω,A ,µ) if and only if each continuous operator from

L1(Ω,A ,µ) into X is representable.

Proof. Sufficiency. Let F : A → X be a vector measure of bounded variation absolutely contin-

uous with respect to µ. Then (Ω,A , |F |) is a finite measure space (Proposition 4.4) and thus the

operator T : L1(Ω,A , |F |)→X given by T ( f ) :=
∫

Ω
f dF is representable (since it is continuous

by Lemma 4.9). Therefore, there exists a function g ∈ L∞(X ;Ω,A , |F |) such that

T ( f ) =
∫

Ω

f gd|F | ( f ∈ L1(Ω,A , |F |)).

Then

T (χA) =

∫
Ω

χA dF = F(A).

On the other hand

T (χA) =

∫
A

gd|F | .

Thus we have F(A) =
∫

A gd|F | for all A∈A therefore F is Radon–Nikodym differentiable with

respect to µ (Subsection 4.3 is devoted to prove this fact).

Necessity. Let T : L1(Ω,A ,µ)→ X be a continuous operator. We have seen that F(A) =

T (χA) defines a vector measure (see Example 4.3). If A ∈ A with µ(A) = 0 then

‖F(A)‖6 ‖T‖op‖χA‖L1 6 λ(A)‖T‖op

implies that F(A) = 0 thus F � µ. Therefore its Radon–Nikodym derivate f exists and thus

Lemma 5.1 completes the proof.
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5.2 Banach spaces with and without the Radon–Nikodym property

c0 does not have the Radon–Nikodym property

Let c0 denote the space of real valued sequences converging to 0 equipped with the supre-

mum norm ‖ · ‖∞. In this example, we consider the measure space ([0,1],A ,λ) where λ is the

Lebesgue measure. We define a vector measure F : A → c0 by

F(A) :=
(∫

A
sin(x)dλ ,

∫
A

sin(2x)dλ , . . . ,

∫
A

sin(nx)dλ , . . .

)
.

We need to show that F maps to c0. The Lebesgue–Riemann lemma states that if f ∈L1([0,1],A ,λ)

then

lim
n→∞

∫ 1

0
f (x)einx dλ = 0.

Applying the lemma with f (x) := χA(x) ∈ L1([0,1],A ,λ) (A ∈ A) yields that

lim
n→∞

∫
A

sin(nx)dλ = 0.

Moreover, our vector measure is absolutely continuous with respect to λ and is of bounded

variation. The latter follows from |sin(x)|6 1 (x ∈ R) thus we have∫
A

sin(nx)dλ6 λ(A) (A ∈ A).

Assume that F has a Radon–Nikodym derivative

g(x) = (g1(x),g2(x), . . . ,gn(x), . . .) ∈ L1(c0; [0,1],A ,λ).

Such a derivative should satisfy the relation∫
A

sin(nx)dλ =

∫
A

gn(x)dλ

for all n ∈ N and measurable set A. It implies that gn(x) = sin(nx) for λ-almost every x ∈ [0,1].

However, if x is in the set (0,1] that has Lebesgue measure 1, the sequence (gn(x))n∈N is not

even convergent. Thus g cannot be in L1(c0; [0,1],A ,λ). We proved that F does not have a

Radon–Nikodym derivative.

Let us consider a linear operator T : L1([0,1],A ,λ)→ c0 given by

T ( f ) :=
(∫ 1

0
f (x)sin(nx)dλ

)
n∈N

.

It is indeed c0-valued (again, Lebesgue–Riemann lemma) and is continuous since

sup
n∈N

T ( f )6 sup
n∈N

(∫ 1

0
| f (x)sin(nx)|dλ

)
n∈N
6
∫ 1

0
| f (x)|dλ = ‖ f‖1.
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In the light of Theorem 5.2 it would not be surprising if could not represent T . Now, contrary

to our conjecture, suppose that there exists a function g ∈ L∞(c0; [0,1],A ,λ) such that

T ( f ) =
∫ 1

0
f gdλ ( f ∈ L1([0,1],A ,λ)).

Then

F(A) =
(∫

A
sin(nx)dλ

)
n∈N

= T (χA) =

∫
A

gdλ

contradicts the fact that F is not Radon–Nikodym differentiable. Therefore T is not Riesz

representable.

Hilbert space valued measures have a Radon-Nikodym derivative

Let (H ,〈·, ·〉H ) be a real Hilbert space and (Ω,A ,µ) a finite measure space. Consider an arbi-

trary vector measure F : A →H of bounded variation such that F � µ.

Let f : Ω→H be an |F |-simple function, that is,

f (ω) =
n∑

i=1

viχAi(ω) (vi ∈H )

where Ai ∈ A (i = 1,2, . . . ,n) are disjoint and having finite |F |-measure.

We recall that, in Subsection 4.2, we have already introduced an integration method with

respect to vector measures. However, we could not integrate vector valued but only scalar

valued |F |-simple functions. The reason for that was obvious as we could not interpret the

product xi ·F(Ai) (xi ∈ X ) in Banach spaces.

We will resolve this issue in Hilbert spaces if we redefine our integral with the help of inner

products: ∫
Ω

f dF :=
n∑

i=1

〈F(Ai),vi〉.

The same procedure as before applies here when we try to extend this integral for Hilbert space

valued functions, namely, we prove that f 7→
∫

Ω
f dF is a continuous functional and then we

extend it to a bigger space. First, we prove that f 7→
∫

Ω
f dF is L2(H ;Ω,A , |F |)-continuous on

|F |-simple functions.

Since Ai (i = 1,2, . . . ,n) are disjoint, we have

‖ f (ω)‖H =
n∑

i=1

‖vi‖H χAi(ω),

in addition, we know that ‖F(A)‖H 6 |F |(A) thus

|〈F(Ai),vi〉|6 ‖vi‖H ‖F(Ai)‖H 6 ‖vi‖H |F |(Ai).
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Then, by the Cauchy–Schwarz inequality∣∣∣∣∫
Ω

f dF
∣∣∣∣6 n∑

i=1

|〈F(Ai),vi〉|6
n∑

i=1

‖vi‖H ‖F(Ai)‖H 6∫
Ω

‖ f (ω)‖H d|F |(ω) =
∫

Ω

‖1Ω(ω)‖H ‖ f (ω)‖H d|F |(ω) =

〈‖1Ω(ω)‖H ,‖ f (ω)‖H 〉L2 6 ‖1Ω‖L2‖ f‖L2

where ‖ · ‖L2 denotes the usual norm on either L2(H ;Ω,A , |F |) or L2(Ω,A , |F |), and

1A(ω) :=

{
e, ω ∈ A

0, otherwise
(A ∈ A)

where e is a vector with ‖e‖H = 1 and 0 is the null vector of H .

Finally, it follows that we can extend f 7→
∫

Ω
f dF to a unique continuous functional on

L2(H ;Ω,A , |F |).
We can use the classical Riesz representation theorem for Hilbert spaces, that is, there exists

an element g ∈ L2(H ;Ω,A , |F |) such that∫
Ω

f dF = 〈 f ,g〉L2 =

∫
Ω

〈 f (ω),g(ω)〉H d|F |(ω) ( f ∈ L2(H ;Ω,A , |F |)).

Now, let h : Ω→ [0,∞] be the Radon–Nikodym derivative of the scalar measure |F |with respect

to µ, that is,

h =
d|F |
dµ

.

It follows that ∫
Ω

h(ω)〈 f (ω),g(ω)〉H dµ(ω) =
∫

Ω

〈 f (ω),g(ω)〉H
d|F |
dµ

dµ(ω) =∫
Ω

〈 f (ω),g(ω)〉H d|F |(ω) =
∫

Ω

f dF .

We would like to establish a connection between the integral defined in Subsection 4.2 and this

new integral. To do this, we consider a vector measure F∗ : A → H ∗ of bounded variation

which is absolutely continuous with respect to µ.

Let f be a real valued simple function in the following form

f (ω) =
n∑

i=1

αiχAi (αi ∈ R).

Integrating f with respect to F∗, by definition, we get(∫
Ω

n∑
i=1

αiχAi dF∗
)
(v) =

(
n∑

i=1

αiF∗(Ai)

)
(v) =

n∑
i=1

αi〈F(Ai),v〉 (v ∈H )

35



where F(Ai) denotes the Riesz representant of the functional F∗(Ai). Notice that the right hand

side is equal to the integral of
∑n

i=1 αivχAi with respect to F , that is,∫
Ω

n∑
i=1

αivχAi(ω)dF(ω) =

n∑
i=1

αi〈F(Ai),v〉.

In other words, we proved that if f is a simple function then(∫
Ω

f dF∗
)
(v) =

∫
Ω

f (ω)vdF(ω) =

∫
Ω

h(ω)〈 f (ω)v,g(ω)〉H dµ(ω) (v ∈H ).

Since ∫
Ω

χA dF∗ = F∗(A),

we can conclude that

F∗(A)(v) =
∫

A
vdF =

∫
A

h(ω)〈v,g(ω)〉H dµ(ω) (A ∈ A ,v ∈H ),

that is, the Radon–Nikodym derivative of F∗ with respect to µ is

ω 7→ h(ω)〈·,g(ω)〉H ∈ L1(H ∗;Ω,A ,µ).

Finally, H is isometrically isomorphic to its dual space and thus we proved that H has the

Radon–Nikodym property.

Note 5.3. In fact, we also proved that the relation(∫
Ω

f dF∗
)
(v) =

∫
Ω

f (ω)vdF(ω) =

∫
Ω

h(ω)〈 f (ω)v,g(ω)〉H dµ(ω) (v ∈H )

holds for all f ∈ L2(Ω,A , |F∗|) since simple functions form a dense subspace of L2.

Before closing this part, it should be noted that there is a more general result stating that all

reflexive Banach spaces have the Radon–Nikodym property and reflexive spaces, among others,

include Hilbert spaces.

It has also been proven that if X has the Radon–Nikodym property, then so does Lp(X ;Ω,A ,µ)

(1 < p < ∞).

If X is a separable dual space, that is, X is separable such that X = Y ∗ for some Banach

space Y the following holds:

Theorem 5.4 (Dunford–Pettis). Let X be a separable dual Banach space. Then X has the

Radon–Nikodym property. �

References In this section, I relied on the following sources: [Rya02] 5.1 Vector Measures

and the Radon–Nikodym property, 5.4 Operators on L1(µ) spaces. [Lan93] VII, §4. Complex

or Vectorial Measures and Duality and [DU77] III. Analytic Radon–Nikodym Theorems and

Operators on L1(µ).

36



A Sequences and series in Banach spaces

A wide variety of notions of convergence regarding series and sequences have been proposed in

Banach spaces. In what follows, we present some of them, and we state some theorems which

will turn out to be valuable when we characterize the integrability of Banach space valued

functions.

Definition A.1. Let (xn)n∈N be a sequence in X such that for any bijection σ : N→ N the

sequence (xσ(n))n∈N is convergent. Then we say that (xn)n∈N is unconditionally convergent.

Definition A.2. Let (xn)n∈N be a sequence in X such that (x∗(xn))n∈N is convergent in K for all

x∗ ∈ X ∗. Then we say that (xn)n∈N is weakly convergent.

Definition A.3. Let (xn)n∈N be a sequence in X such that (x∗(xn))n∈N is absolutely convergent

in K for all x∗ ∈ X ∗. The we say that (xn)n∈N is weakly absolutely convergent.

Note A.4. All of the above stated definitions can be extended to series in the usual way.

Definition A.5. Let (xn)n∈N be a sequence in X such that (x∗(xn))n∈N is a Cauchy sequence in

K for all x∗ ∈ X ∗. Then we say that (xn)n∈N is a weak Cauchy sequence.

Note A.6. It can be easily shown that every convergent sequence (or equivalently Cauchy se-

quence) in a Banach space is a weak Cauchy sequence. However, it is generally not true that

every weak Cauchy sequence has a weak limit in a Banach space.

Definition A.7. A Banach space X is weakly sequentially complete if every weak Cauchy se-

quence has a weak limit in X .

Theorem A.8 (Bessaga–Pełczyński). A Banach space X does not contain subspaces isomor-

phic to c0 if and only if every weakly absolutely convergent series in X is unconditionally con-

vergent. �

Theorem A.9 (Orlicz–Pettis). Let
∑

∞

n=1 xk be a series in a Banach space X . Assume that for

each set A ⊂ N there exists xA ∈ X such that for each x∗ ∈ X ∗ we have
∑
n∈A

x∗(xn) = x∗(xA).

Then the series
∑

∞

n=1 xk is unconditionally convergent. �

Theorem A.10 (Dvoretzky–Rogers). Let X be an infinite dimensional Banach space. Then for

every sequence (cn)n∈N with cn > 0 and
∑

∞

n=1 c2
n < ∞ there is an unconditionally convergent

series
∑

∞

k=1 xk in X for which ‖xn‖= cn (n ∈ N). �

Note A.11. If we take cn := 1/n (n ∈ N) we know that
∑

∞

n=1 1/n2 = π2/6 and
∑

∞

n=1 1/n =

∞. Consequently, every infinite dimensional Banach space admits at least one unconditionally

convergent series which is not absolutely convergent.

References This appendix is based on [SY05] Appendix B Series in Banach spaces.
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