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Abstract

My thesis is about the nature of evolutionary algorithms and how they can be applied to a well-known

optimization problem. A brief introduction about the elements of evolutionary algorithm is given. I

further investigated the Traveling Salesman Problem (TSP), a popular problem in combinatorial op-

timization. Some of the widely used methods for solving TSP including tour construction and tour

improvement heuristics are presented. I also discuss one possible generalization of the original prob-

lem (GTSP) and the solutions proposed. In the second part of the thesis I present how the TSP and

GTSP can be solved using genetic algorithms. In the final part, genetic algorithmic solution is com-

pared to a traditional tour construction heuristic on several instances. Limitations and possible future

improvements are discussed.
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Chapter 1

Evolutionary algorithms

Sources: [5], [11]

Evolutionary computation (EC) is a subfield of artificial intelligence. It serves as an umbrella term

for different iterative methods which are based on adopting Darwinian principles. EC can be classified

as a trial and error (generate and test) problem solver, a generic global optimization method with

a metaheuristic or stochastic nature. These methods store a multi-set of possible solutions (called: a

population) instead of just one element in the search space. Typically, EC methods are applied when

the size of the search space is too big for using exact algorithms. EC can be divided into three different

categories: methods inspired by biological evolution (evolutionary algorithms), methods inspired by

some biological behavior and methods using mathematical models.

Evolutionary algorithm (EA) is one of the EC methods. EA uses mechanisms that are prevalent

in biological evolution, such as selection, reproduction, recombination and mutation. It is a very di-

verse field consisting of many processes originated at different times and places: genetic algorithms,

evolutionary strategies, evolutionary programming and genetic programming. All these techniques are

based on the same underlying principle. We take a population of randomly generated elements of the

search space (individuals), then environmental pressure through natural selection is introduced (sur-

vival of the fittest). We can apply the given objective function as an abstract fitness measure to be

maximized. Candidates with higher fitness function have better chance to become parents and seed

the next generation. These good individuals pass their genes to the next generation, thus the average

fitness in the population will rise.

To solve a problem with EA we need to address three different issues:

1. how to represent individuals

2. how to create and apply the variation operations (recombination and mutation)

3. what kind selection and replacement should be used
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1.1 Representation of individuals

An individual of an Evolutionary Algorithm is an element of the search space. The search space consists

of all solutions of the given problem. Representation of an individual should bridge the gap between the

original problem context and the problem-solving space of the EA, thus linking the two worlds together.

In other words, it means we must convert possible solutions to a form that can be manipulated by a

computer. In the EA literature solutions in the original problem context are often called phenotypes

while their encoding in the EA context are referred to as genotypes. The whole evolutionary search

takes place in the genotype space, which can be very different from phenotype space (space of all

possible candidate solutions). The solution to the original problem is obtained after decoding the best

genotype. Therefore, all the feasible solutions are expected to be represented in the genotype space.

Potential representations are integer or real numbers/vectors, permutations, function parameters or

data structures (e.g. tree). The form of representation usually depends on the problem: the less complex

the search space in which the EA operates, the better the representation. The three most commonly

used form of representation are real (or integer) vector, binary vector and permutation.

Real or integer numbers can be assigned to each attribute and represent the individuals as vectors:

I=(x1,x2,...,xn), where xi is the variable for the i. attribute. Typically, numbers from only a given

interval can be assigned to the variables, thus the EA has to search in this bounded and closed n-

dimensional space.

Binary vector representation of an individual is similar to the integer representation. It is often

used in genetic algorithms as a genotype. In this case, the search takes places in an n-dimensional

hypercube (where n is the length of the string that represents the individual). We search for the vertex

with the highest fitness value.

Solutions of combinatorial optimization problems like the traveling salesman problem, timing prob-

lems or the quadratic assignment problem can be represented as permutations. These problems are

about ordering a given number of objects in a way to find the best order for a given objective function.

Individuals can be seen as I=(π1,π2,...,πn), which denotes the permutation of the first n elements where

the i-th position is occupied by the element πi.

1.2 Evaluation function

The evaluation function is prevalently called fitness function in EA terminology. It maps from the

search space to the real numbers and assigns the ’goodness’ as a solution to each individual, in other

words it measures the quality of the genotypes. It imposes requirements to which the population need

to adapt and defines what improvement means. It forms the basis for selection and therefore facilitates

improvement. Ultimately, the goal of every EA is to maximize the fitness function, i.e. find the global

maximum of the search space. There are many problems where the objective function is given. Some of

them can easily be converted into fitness function, however, more complex problems sometimes require

the creation of a fitness function which is made of different fitness functions. These should facilitate
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the attainment of partial goals.

1.3 Population

The population is a multiset of possible solutions, i.e. a set of genotypes in which even multiple copies

of an element are allowed. During the evolutionary process the individuals are never changing or

adapting, while the population does, thus the population forms the unit of evolution. Given a specific

representation, defining a population is about setting a size of it, which remains constant in most of the

EA applications. However, in some sophisticated EA algorithms an additional spacial structure with a

distance measure or neighborhood relation has to be defined. Selection operators (parent and survivor

selection) get a given population as argument, and return with a multiset of individuals. An important

characteristic of a given population is the diversity measure which indicates the variability of solutions.

Too little diversity can cause the process to get stuck at a local optimum, while too much diversity

can lead to a non, or slowly converging algorithm. There exists no single diversity measure, typically

the number of different fitness values, phenotypes or genotypes can be referred to as the diversity of

the population, nevertheless more sophisticated indicators, such as entropy, are also widely used.

1.4 Parent selection

Similarly to biological evolution, parent selection or mating selection in an EA should be responsible

for the improvement of the population average. This quality improvement is typically measured by

the fitness function. The basis of the selection is the observation that the fitness value of the parents

correlates with their children’s fitness. Therefore, this type of selection allows better individuals to be

the parents of the next generation. This is usually a stochastic process, where good solutions have a

greater chance of seeding the following generations, thus passing on their genes and characteristics.

Nevertheless, low quality solutions also get a small chance to become parents in order to sustain the

desirable diversity of the population. I introduce some of the most commonly used parent selection

operators: the Roulette Selection, the Stochastic Universal Sampling, the Tournament Selection and

the Truncation Selection.

1.4.1 Roulette Selection

Roulette selection is one of the first and best-known selection operators. It is a fitness proportional

selection, which means that individuals’ chance of becoming parents is proportional to the ratio of their

fitnesses. It is a replacement sampling process, i.e. an individual can be selected multiple times. Let Ii
be the i-th individual, and f is a nonnegative function that indicates the fitness of the individuals. The

chance of the individual Ii to be selected as a parent is p(Ii) =
f(Ii)∑n

j=1 f(Ij)
. The process of this selection

can be illustrated with the help of a roulette wheel. Lets map every individual onto a roulette, where

each individual Ii is represented by a space that proportionally corresponds to its fitness. A fix pointer
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is located at the outside of the wheel. We spin the roulette wheel and we select the individual to be a

parent on which the pointer points after the wheel stopped spinning (see Figure 1.1). When the wheel

Figure 1.1: Demonstration of Roulette Selection

is repeatedly spun |P| times (where |P| is the number of individuals in the population), the expected

number of copies of Ii will be |P|·p(Ii). The disadvantage of this selection is that if some of the fitness

functions are nearly equal, the best solution does barely have more chance than the others, although

this slight differences in fitness can be very important in finding the global optimum. To eliminate this

problem, scaling and fitness-transforming methods were suggested, but other forms of selection are

most commonly used.

1.4.2 Stochastic Universal Sampling

This type of selection is also a fitness proportional sampling method. However, the Stochastic Universal

Sampling (SUS) tries to minimize the number of duplicates among the parents. Unlike roulette selection,

SUS assigns an arc length to every individual proportional to their expected number of copies:

E(Ii)= |P|·p(Ii).

|P| pointers are uniformly distributed along the arc. We select |P| parents simultaneously by randomly

rotating the roulette and choosing the individuals whose circle segments are in front of the fixed

pointers.

1.4.3 Tournament Selection

Contrary to fitness proportional selection, Tournament Selection only uses the order of fitness values

to select the parents of the next generation. This helps to maintain variance in the population by

limiting the number of copies among the parents. This method selects parents in two steps. Firstly,
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Tournament Selection chooses tour number of individuals with equal probability, where tour is a

parameter. Secondly, out of these chosen individuals, the one with the highest rank will be selected to

be a parent. This process is repeated |P| times.

1.4.4 Truncation Selection

The idea behind Truncation Selection is to eliminate the worst individuals from the gene pool. This

method first orders individuals based on their fitness value, then selects the best T of them, where T

is a parameter. From these selected individuals everyone has an equal possibility to become a parent.

Unlike Tournament Selection which mimics biological selection, this is an artificial selection method.

1.5 Recombination

Crossover or recombination is the process where new solutions (offspring) are created from two (or

sometimes more) parent solutions. It is a variation operator that enables the EA to search in the

search space traced out by the parents, therefore the heritage of their attributes is warrantied. The

main idea behind recombination is that by crossing two solutions with different but desirable features,

an offspring can be created which combines advantages from both parents. Similarly to mutation,

recombination typically contains stochastic elements, either the choice of what parts of the parents are

crossed, or the method these parts are combined are random. There are many forms of recombination

dependent on the representation of the individuals and the specific problem. Recombination is the

main search process in most of the EAs.

1.6 Mutation

Variation operators (mutation and crossover) create new individuals from old ones, thus helping to

sustain the diversity of the population. Mutation is a variation operators which gets an individual as

input and creates a new one (offspring/child) from it. The new individual will only be slightly changed.

Drastic changes would erase the good properties of the selected solution. It is worth noting that mu-

tation is convenient for the fine-tuning of a search. while recombination searches in a bigger space (in

the hypercube generated by their parents) and it is useful for finding local and global optima, it is

not suitable for precise approximations. Mutation however, is competent for searching the neighboring

environment of the offspring, thus finding the best possible solution. The efficacy of the search is depen-

dent on more variables. The neighborhood of an individual consists of all the solutions reachable within

a single move (crossover or mutation). In easier problems, changing a couple of values at random could

be sufficient to sustain the desired variability, however in more complex problems with multiple local

maxima, changes in the definition of neighborhood could be necessary. That means, at the beginning

of a search a broader neighborhood should be defined, which helps to explore the search space quickly.
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However, at the end of the search a tighter, smaller neighborhood is more useful in finding a more

precise answer, while also facilitating convergence.

1.7 Survivor selection

After obtaining new individuals from the parents, the formation of a new generation is needed. In

order to refresh the old population, some individuals of the old generation are replaced with offspring.

This procedure is called survivor selection, replacement or reinsertion. This process is characterized by

the ratio of new offspring in comparison to the population size (generation gap), and the reinsertion

rate, which indicates the quotient of old individuals replaced by new ones. In case both rates are

equal to 1, then the entire new generation is formed from offspring. That means all solutions live only

one generation and there is no chance of survival. If the generation gap ≤ reinsertion rate, than all

the offspring are reinserted into the population, although some selection mechanism is required to

determine which individuals are to be replaced from the previous generation. Contrary to the parent

selection it is often a deterministic process where the solutions with the lowest fitness rates are replaced

while the other survive. This selection process is called elitism, because it enables the best solutions

to survive more generations. Nevertheless, if generation gap > reinsertion rate, than only a part of

the newborn solution can be reinserted into the new population. Therefore, some "spartan" selection

mechanism is required to distinguish between viable and nonviable offspring by eliminating the latter

ones.

1.8 Generating the EA cycle

An EA solves a specific problem with the help of numerous populations generated after each other.

The general scheme of an EA can be seen in the figure 1.2. A population at a given time is called a

Figure 1.2: General scheme of the EA cycle. Source: [11]
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generation. In order to get the EA running, the development of an initial population is needed. Usually

a set of random solutions is generated, although more sophisticated methods with some heuristic to

the specific problem can also be applied. In order to refine solutions, individuals as a result from a

former EA, or based on experts opinion can also form the initial population. After the initialization,

the strategic parameters must be specified. Strategic parameters are the specific values which define

the structure of the algorithm, function of the above mentioned processes (selection, recombination,

mutation, etc.) and the rate of the change in the population. These parameters are usually:

• size of the population

• pr: the probability of recombination

• pm: the probability of mutation

• generation gap

• reinsertion rate

These strategic parameters are very problem-specific. The success or failure of the EA method often

depends on the fine-tuning of parameters. Due to the stochastic nature of the EA, it is hard to tell the

moment when the EA reaches the desirable results. For this reason many termination conditions have

been formulated. In case the exact optimum is known, the EA should be stopped if this (or a solution

with a given ε > 0 precision) is reached. If such an optimal fitness value is unknown, a maximal number

of generations or maximal running time can be defined as stopping condition. Another widely used

condition for termination is when the best solutions are the same over a given number of generations.

That means the search operators cannot create better solutions. That could indicate that the global

optimum is reached, but likewise it could mean to be stuck at a local extremum. In real life applications

there are many problems with a given criterion for goodness. In this case we can stop the search if

the criterion is met. The last generally used termination condition is when the population becomes

too homogenous, i.e. the individuals are very similar to each other. The problem with this is that

the recombination operator becomes ineffective and cannot sustain the diversity of the population,

therefore the search can be stopped.

1.9 The Genetic Algorithm

Genetic algorithms are one of the best-known and most widely used evolutionary algorithms. It is

commonly used to generate high-quality solutions to optimization and search problems. This technique

was introduced by Holland in 1975 [18]. Since then, many variations of the original algorithm were

suggested. In my thesis, I will refer to Holland’s original algorithm as the canonical genetic algorithm.

In the canonical GA, individuals are represented with binary strings of fixed length. Fitness is defined

by fi/f̄ , where fi is the fitness associated with string i and f̄ is the average fitness of the population.

Holland used roulette selection to choose the parents of the next generation. In this algorithm, crossover
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is the main search operator, while mutation is used to map the nearby environment. Typically the

chance of recombination is very high (pr ≈ 0.9) and the rate of mutation is low (pm ≈ 0.01).The

canonical GA uses 1-pont crossover, that means Offspring 1 gets the first part of his string from Parent

1, and the second part from Parent 2. (Offspring 2 is generated in an analogous way, with the parents’

role reversed). The cut-point between the two parts is chosen randomly. Holland used simple bit

mutation. That means for each bit, there is a low probability of changing its value. Usually |P| number

of parents are selected, which generate |P| offspring. These children solutions immediately replace the

previous generation entirely, which means that each solution can only live for one generation. Over the

years, empirical results have shown many flaws in the canonical GA. For a faster convergence, elitism

was introduced. Also other selection mechanisms were suggested (see Section 1.4) which provided better

results. Experience showed that many problems can be better solved using non-binary representation

(for example see Chapter 2). Finally the problem of how to choose a fixed mutation and recombination

rate was largely solved with adaptive GA-s, where the parameters are encoded as extra genes and

allowed to evolve themselves (see Section 3.4). However, the canonical genetic algorithm is still widely

used in some straightforward problems in which binary representation is suitable. Moreover, it was

a unified base for theoretical results for decades, thus provided much insight into the behavior of

evolutionary processes in combinatorial search spaces.
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Chapter 2

Traveling salesman problem

The traveling salesman problem (TSP) is one of the best-known problems in combinatorial optimiza-

tion. The problem was defined in the 1800s by W. R. Hamilton and T. Kirkman. The problem can be

illustrated with a salesman who wants to travel to every city in the country to sell his product. He has

a map, where all the distances between the cities are listed. What is the shortest possible route where

he visits every city exactly once and ends up in his hometown? The constraint that the salesperson has

to start from his hometown can be ignored, since the cheapest tour will be identical, no matter where

he started the journey. Mathematically, this problem can easily be converted to a graph-theoretical

problem.

1 Definition. The (symmetric) traveling salesman problem: Given a G = (V,E) complete undirected

graph with n nodes and the distance (/cost) matrix between each of them, what is the shortest

(/cheapest) Hamiltonian cycle in G?

A Hamiltonian cycle is a closed walk through the graph that visits each node exactly once. In other

words the problem can be stated as following: we are given the set of n cities c1, c2, ..., cn and for each

par ci, cj , i 6= j a distance d(ci, cj). Our goal is to find an ordering π of the cities that minimizes the

quantity

n−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1)).

This quantity is referred to as tour length. In my thesis, I concentrated on the metric TSP, in which

the d distances satisfy the following three conditions:

1. d(ci, cj) ≥ 0 for 1≤i, j≤n and and d(ci, cj) = 0 if and only if i = j.

2. d(ci, cj) = d(cj , ci) for 1≤i, j≤n.

3. d(ci, cj) ≤ d(ci, ck) + d(ck, cj) for 1≤i, j, k≤n.
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The TSP minimization problem can be stated as a decision problem, that asks the following yes

or no question: Given a number t, a set of cities, and distance between all city pairs, is there a tour

visiting each city exactly once of length less than t?

2 Definition. TSPDECISION: Consider the set {(G, d, t) : G = (V,E) a complete graph, d is a

function d: V ×V → Z, t ∈ Z}. Is there any Hamiltonian cycle in G with cost that does not exceed t?

3 Theorem. The decision form of the traveling salesman problem is NP-complete.

Proof. First, we prove that the TSPDECISION ∈ NP . If we want to check the tour four credibility,

we have check that the tour contains each vertex exactly once and that the total sum of the tour does

not exceed t. Both can easily be done in polynomial time.

Secondly we prove that TSPDECISION is NP -hard. We can prove this by showing that the Hamilto-

nian cycle problem can be reduced to the TSPDECISION problem in polynomial time. Since we know

that the Hamiltonian cycle problem is NP -complete, the TSPDECISION must be NP-complete, too.

(Otherwise we could find a Hamiltonian path in polynomial time with the help of the TSPDECISION).

Assume G = (V,E) is an instance of Hamiltonian cycle, where |V |=n. We construct an instance of

TSPDECISION. We define a complete graph G′ = (V,E′), where E′ = {(i, j) : i, j ∈ V andi 6= j}.
Thus, the cost function is defined as:

(2.1) d(i, j) =

1, if (i,j) ∈ E.

2, if (i,j) /∈ E.

We prove that G has a Hamiltonian cycle if and only if G′ has a tour of cost at most n. Suppose that

a Hamiltonian cycle H exists in G. The cost of each edge in H is 1 in G′, since each edge belongs to

E. Therefore, H has a total cost of n in G′. Thus, if a graph G has a Hamiltonian cycle then graph G′

has a tour of n cost.

Conversely if G′ has a tour H ′ with a total cost of n, then each edge in the tour must have the cost of

1, because the cost of edges in E are 1 or 2 by definition and a tour contains n edges. Since all edges

have 1 cost in H ′, therefore it contains only edges in E. Thus, the traveling salesman tour in G′ is a

Hamiltonian cycle in G as well, therefore TSPDECISION is NP -Complete.

2.1 Applications of the symmetric TSP

The popularity of the traveling salesman problem is partly due to its wide variety of applications. Apart

from the obvious applications in optimizing traffic and transport routes, the symmetric TSP has been

applied to many different areas like VLSI chip fabrication [22], X-ray crystallography [4], overhauling

gas turbine engines [32], clustering of data arrays [26], chronological seriation in archeology [21] and

vehicle routing [26].
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2.2 Methods to solve the traveling salesman problem

Source: [20], [21]

The main difficulty of the traveling salesman problem is the immense number of possible solutions.

In a map with n cities, there are (n−1)!
2 different possible routes. Since the TSP minimization problem

is NP -hard too, (assuming the widely-believed conjecture P 6= NP ) any algorithm finding optimal

tours must have a worst-case running time that grows faster than any polynomial. Because of the

above-mentioned problems, instead of looking for an exact solution in polynomial time, researchers

concentrated on two different alternatives. One approach was the attempt to develop optimization

algorithm that work well on special real world instances, but ignore the worst-case scenarios. By

contrast, the other approach was to look for heuristics that merely find near-optimal solutions, but do

so quickly. In my thesis, I will concentrate on the latter ones.

2.2.1 Tour construction heuristics

Nearest Neighbor

Perhaps the most natural heuristic for the TSP is the well-known Nearest Neighbor algorithm. The

salesman starts off his journey from a random city and always travels to the nearest, yet unvisited city.

Mathematically, we construct an ordering cπ(1), ..., cπ(n), so that cπ(1) is chosen arbitrarily, and cπ(i+1)

is chosen to be the city cj that minimizes the {d(cπ(i),cj) : π(k) 6= j, 1≤ k ≤ i} distance. The salesman

traverses the cities in the constructed order, finally returning from the last city (cπ(n)) to where he

started (cπ(1)). The running time of the Nearest Neighbor algorithm is Θ(n2), since we have to look at

all the vertices and compute its distance from every other vertex, to choose the minimum. So, it is a

relatively fast algorithm, however it is clear that it will not provide an optimal solution in most cases.

Finding the nearest neighbors may "leave out" relatively close vertices, which than must be visited at

the end. This can lead to long distances between remaining cities by the end of the tour. All we can

guarantee is that in metric instances the ratio between the distance found by the Nearest Neighbor

heuristics, denoted by NN(I) and the optimal tour OPT(I) is NN(I)
OPT (I) ≤

1
2 (dlog2(n)e+1). [20]

Greedy algorithm

This tour construction heuristic is similar to the Nearest Neighbor algorithm in that it also builds up

the Hamiltonian cycle one edge at a time (note that a Hamiltonian cycle is a graph containing all

the vertices with a degree of two). However, this algorithm starts by sorting the edges by length, and

always adding the shortest remaining available edge to the tour. An edge is available if it is not yet

in the tour and if adding it would not create a 3-degree vertex or a cycle with edges less than n. This

heuristics can be implemented to run in Θ(n2log(n)) time, therefore it is somewhat slower than the

nearest neighbor algorithm, however, its worst-case tour quality is somewhat better. [20]

11



Nearest Insertion

This algorithm belongs to the family of insertion heuristics. These methods build a tour by starting

with a trivial tour of one city (ci) and then selecting cities in the tour one-by-one based on some criteria

until every city is visited. Nearest Insertion heuristic selects the node from the not yet visited cities

which is the nearest to any city in the tour. That means a city cj will be inserted if it minimizes the

distance d(ci,cj) where city ci is in the partial tour and cj not yet in the tour. Finally, cj will be visited

either before or after ci dependent on what is cheaper. This algorithm also runs in O(n2) time, and

guarantees the tour constructed not be longer than two times the optimal tour [34].

Cheapest Insertion

This algorithm is also of greedy nature. It proceeds by searching the node among all nodes not yet

inserted which can be inserted with the lowest increase in the length of the tour. It starts with finding

the city cj which minimizes the distance d(ci,cj), i 6= j and building the partial tour (ci,cj). A general

step is to find the cities ci, cj and ck, where ci and cj being at the two ends of an edge belonging to

the partial tour and ck not yet belonging to the partial for which d(ci,ck)+d(ck,cj)-d(ci,cj) is minimal.

Insert this city ck between ci and cj in the partial tour. We repeat this process until every node is

visited. This algorithm runs in O(n3) time (however, with careful programming it can be improved to

O(n2log(n))). This heuristic also guarantees the tour constructed not be longer than two times the

optimal tour [34].

Random Insertion

Random Insertion proceeds by selecting a random, not yet visited city ck in the map and insert it into

the tour in the cheapest possible way (d(ci,ck)+d(ck,cj)-d(ci,cj) is minimal, where ci and cj are already

in the partial tour). Although random insertion can only guarantee the found route to be shorter than

log2(n)+1 times the optimal solution, in practice, however, random insertion performs better than the

previous two insertion heuristics [34].

Farthest Insertion

Farthest insertion is a very useful tour construction heuristic with good qualities. It runs in O(n2)

time and provides good results in practice, too. However, its worst case tour length is unknown [34].

It proceeds by inserting the city ck in the tour if it is the farthest node, from the partial tour. That

means cj is inserted when its distance to any tour node is maximal. The idea behind this strategy is

to fix the overall layout of the tour early in the insertion process.

Christofides algorithm

We can as the question whether it is possible to provide a polynomial algorithm that has a worst-case

ratio better than two. In 1976, Christophides constructed an algorithm [6], that guarantees the ratio
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to be 1,5. This is the best algorithm as far as performance guarantee is concerned. I firstly present a

simple approximation algorithm and prove that it provides a tour with length at most two times the

optimal solution, then show how Christofides improved this algorithm to provide an 1,5 approximation

to the TSP.

The Double Minimum Spanning Tree heuristic starts by building a minimal-cost spanning tree T .

Note that the cost of T is smaller than the optimal tour, because if any edge e from optimal tour

is deleted we get a spanning tree and because of T ’s minimality and the nonnegativity of distances

we get: d(OPT) ≥ d(OPT - e) ≥ d(T). Then we duplicate all the edges in T , thus every vertex will

have an even degree. So, we can now easily construct an Euler cycle E. The Euler cycle will use every

edge in the duplicated graph, therefore d(E) = 2*d(T ) ≤ 2*d(OPT). Finally, we traverse the cycle

but short-circuit past vertices that have been seen before. Starting at a random node, follow the Euler

cycle, but mark vertices as already visited when we visit them. Later, when encountering a vertex

already visited, we simply skip to the next unvisited node in the Euler cycle. If we keep going until we

encounter the starting node again, we get a Hamiltonian tour H. Because of the triangle inequality the

resulting length is no greater than the length of the Euler cycle, therefore: d(H) ≤ d(E) ≤ 2*d(OPT).

In conclusion, we proved the following theorem:

4 Theorem. The Double Minimum Spanning Tree heuristic is a two-approximation to the TSP.

procedure doubletree

1. Build a minimum spanning tree from the set of all cities.

2. Duplicate all edges.

3. Construct an Euler cycle.

4.Traverse the cycle, but do not visit any node more than once, taking shortcuts when a node

has been visited.

end doubletree

Figure 2.1: Pseudocode for Double Minimum Spanning Tree heuristic

The Christofides algorithm is similar to the Double Minimum Spanning Tree. Likewise, it starts

with the construction of the minimum spanning tree T, but it constructs the Euler cycle in a cleverer

way. For the minimum spanning tree T holds that d(T ) ≤ d(OPT) (see above). Now, we add a minimum

weight perfect matching M on the odd-degree vertices. Since the number of odd-degree vertices are

even in every graph, this can be done. We claim that the total cost of the matching will be no greater

than 1
2d(OPT). Let N∗ be an optimal TSP tour on just the odd-degree vertices. Let N1 and N2 be

the two perfect matchings on the odd-degree nodes obtained by taking the edges of N∗ alternatively.
Then d(M) ≤ min {d(N1), d(N2)} ≤ d(N*)/2 ≤ d(OPT)/2. The first inequality is from the fact that

N1 and N2 are perfect matchings on the odd-degree nodes and M is the minimum weight matching on

13



the same nodes. The second inequality is holds because the minimum of two numbers is at most the

average. And finally, the last inequality is because if we get a TSP tour on the odd-degree vertices from

OPT by skipping the even-degree vertices we get a cycle that costs at most d(OPT) due to the triangle

inequality. And the resulting tour on the odd-degree vertices is not better than d(N∗), because N∗ is
optimal. We proved that d(M) leq 1

2d(OPT). Finally, we take the graph with edges consisting of the

edges T and M . This graph may contain double edges, since T and M may intersect (see Figure 2.2).

Figure 2.2: The graph consisting of edges of T and M. Source: [21]

Notice that all vertices have even degrees, because exactly one edge have been added to the odd-

degree nodes of T . So we can construct an Eulerian cycle E that has the cost of d(T )+d(M). The

last step is, as seen above, to produce a Hamiltonian cycle H by simply skipping the already visited

edges and obtaining a cycle that is due to the triangular inequality no worse than the Eulerian cycle

E. Therefore d(H) ≤ d(T )+d(M) ≤ d(OPT)+1
2d(OPT) = 3

2d(OPT). Thus:

5 Theorem. The Christofides algorithm is a 1,5-approximation to the TSP.

procedure christofides

1. Build a minimal spanning tree from all the set of all cities.

2. Compute a minimum weight perfect matching on the odd-degree vertices of the tree and

add it to the tree.

3. Construct an Euler cycle.

4.Traverse the cycle, but do not visit any node more than once, taking shortcuts when a

node has been visited.

end christofides

Figure 2.3: Pseudocode for Christofides heuristic
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The computation of the Christofides algorithm takes considerably more time than the previously

mentioned construction heuristics. A minimum weight perfect matching can be computed in O(n3)

time [10]. Since a spanning tree may have O(n) odd-degree vertices, the Christofides heuristic runs in

O(n3) time. However, this algorithm is rarely implemented in practice, because insertion algorithms

often perform better in real-world scenarios and are easier to implement.

2.2.2 Improving solutions

We saw that the quality obtained by tour construction can be moderate. Although these heuristics

can be useful for some applications, they are not satisfactory in general. However, traveling salesman

tours generated by the tour construction heuristics can be improved. In this section, we will have a

look on local improvement heuristics for the TSP. They are all based on different but simple exchange

operators (or moves) that converts one feasible TSP tour into another. It is a form of neighborhood

search process where each tour has an associated neighborhood of adjacent tours, i.e. those who can

be reached within a single move. The algorithm continually changes the current tour to an adjacent

one that is better, until no such tour in the neighborhood exists (hill climbing algorithms). That

means we reached a locally optimal solution. However, the running time of these algorithms cannot

be polynomially bounded in the worst case since it is dependent on the size of reductions achieved by

the tour modifications. Assuming integer input, the worst case scenario is that every improving move

reduces the tour length by one unit and hence the running time depends on the initial and final tour

length. In spite of these, these algorithms are often implemented because they usually provide very

good results on "real-word" problems. The following heuristics differ merely in terms of the definition

of adjacent tours.

Node Insertion

The Node Insertion removes one vertex from the existing tour and reinserting it at the best possible

position (see Figure 2.4). To check whether an improvement by node insertion is possible takes O(n2)

Figure 2.4: Illustration of Node Insertion. Source: [21]

time, since every possible insertion point for every possible vertex has to be examined. After finding

an improving insertion move, the tour can be updated in O(1) time. The pseudocode for the heuristic

based on Node Insertion can be implemented as seen in Figure 2.5:
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nodeinsertion

Let T be the current tour.

while not finished do
For every node i=1,2..., n:

Examine all possibilities to insert i at a different position in the tour. If the tour length can

be decreased, choose the best node insertion move and update T.

if If no improving moves could be found then
declare finished

end

end

end nodeinsertion

Figure 2.5: Node Insertion algorithm

Edge Insertion

A similar procedure can be defined, if we consider the edges instead of nodes. A single edge is removed

from its place and it is reinserted at the best possible place (see Figure 2.6).

Figure 2.6: Illustration of Edge Insertion algorithm. Source: [21]

The corresponding algorithm can be be implemented in a similar way to Node Insertion (see Figure:

2.7)

Regarding the running time, the same remarks as for Node Insertion apply. That means, it also

takes O(n2) time to check whether an improving move exist in the current graph. Similarly, the worst

case running time also depends on the measure of the improvements, therefore it depends on the initial

and final tour length.

2-opt and 3-opt

2-opt is the most famous among the simple local search algorithms. It was first proposed in 1958 by

Croes [7]. The motivation for this move is the following observation: considering the Euclidean case if

a tour crosses itself, it can be improved by eliminating the crossing edges and reconnecting the paths

in the way they do not cross (this can always be done). The new tour will be shorter than the old one

because the sum of the two diameters of a convex quadrilateral is bigger than the sum of two opposite

sides. A 2-opt exchange in general consists of deleting two random edges and reconnecting the paths
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edgeinsertion

Let T be the current tour.

while not finished do
For every node i=1,2..., n:

Examine all possibilities to insert the edge between i and its successor at a different

position in the tour. If it is possible to decrease the tour length this way choose the best

such edge insertion move and update T

if If no improving moves could be found then
declare finished

end

end

end edgeinsertion

Figure 2.7: Edge Insertion algorithm

in a different way to obtain a new TSP tour. Note that there is only one other way of reconnecting

paths to get a new tour. Even in the Euclidean case the eliminated edges do not have to necessarily

cross in order obtain improvement (see Figure 2.8).

Figure 2.8: Illustration of 2-opt exchange algorithm. Source: [21]

The implementation of the 2-opt heuristics can be seen in Figure 2.9.

To check whether an improving move can be found in a given situation takes O(n2) time, because

we have to check all pairs of tour edges . The 3-opt algorithm is the natural extension of the 2-opt,

where the exchange replaces up to three edges of the current tour. The number of combinations to

eliminate the three edges are
(
n
3

)
and eight ways are possible to reconnect the three paths to form a

tour (assuming each of them contains at least one edge). Note that Node Insertion, Edge Insertion and

2-opt are special 3-opt operators. Node and Edge Insertion is obtained when one path in a 3-opt move

consists of a single vertex or edge. A 2-opt exchange is a special 3-opt move, where one of the deleted

edge is used for reconnecting two paths. Therefore, out of the eight 3-opt moves, there is only three real

3-opt exchanges that is not contained by Node/Edge Insertion or 2-opt. There are also k-opt methods

for k>3 in which one move consists of replacing up to k edges but due to rapidly growing running time
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2-opt

Let T be the current tour.

while not finished do
For every node i=1,2..., m:

Examine all 2-opt moves involving the edge between i and its successor in the tour. If it is

possible to decrease the tour length this way, choose the best such 2-opt move and update

T.

if If no improving moves could be found then
declare finished

end

end

end 2-opt

Figure 2.9: 2-opt algorithm

and only slight improvement in performance these heuristics are implemented more rarely.

2.3 The generalized TSP

Source: [36]

Since the 19th century, the traveling salesman problem has been generalized in multiple directions.

One possible generalization of the original problem is the so called generalized Traveling Salesman

Problem (GTSP, also known as set TSP, Multiple Choice TSP or Covering TSP). This problem de-

scribes the salesman who wants to travel to exactly one city in each state and finally returning to his

starting position. Of course, he wants to minimize the total length of the trip. Similarly to the original

problem, it also can be formulated as a graph-theoretical question.

6 Definition. We are given a complete undirected graph G = (V,E), with n nodes and the distances

(/cost) between each of them. Moreover, the node set c1, c2, ..., cn is partitioned into m clusters C1, C2,

..., Cm (m≤n). What is the shortest (/cheapest) cycle that visits exactly one node from each cluster?

Note that in casem = n we get back the original TSP. The decision form of the generalized traveling

salesman problem, of which the TSPDECISION is a special case, is obviously also NP-complete.

2.4 Applications of the symmetric GTSP

Similarly to the original problem, its generalization proved to be useful in numerous real-world appli-

cations. For problems that are hierarchical by nature, the GTSP offers a more accurate model than the

TSP. For example, if the traveling salesman wants to distribute his product between all his dealers in

the country, he could meet all the local dealers in only one out of many possible cities in each state, so
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he can minimize the costs of his trip. In "real-world", the GTSP was used in airplane routing [30], mail

delivery [23], warehouse order picking [30], welfare agency routing [35], material flow system design [23],

vehicle routing [23] and computer file sequencing [1].

2.5 Methods to solve the GTSP

In solving the set-TSP, the first approach is to solve the problem with adaptations of TSP algorithms.

Simple tour construction heuristics are relatively easy to convert to the generalized version. Consider

the Nearest Neighbor heuristic as an example. This algorithm can be modified to include the nearest

city from a different, not yet visited cluster in every step. The process stops when all the produced tour

covers all clusters. Similarly, insertion heuristics can also be adapted if we keep track of the already

visited states. Conversely, improvement heuristics need more careful adaptation to the generalized

problem. I will present an algorithm called RP1, that is based on 2-opt and 3-opt exchanges [12]. Let T

be the current GTSP tour, visiting exactly one node from every cluster. Let S ⊆{c1, c2, ..., cn} be the

the set of visited cities. Although classical improvement algorithm can also provide an improved GTSP

solution on the subgraph induced by S, it never changes the set of visited cities. In order to remove

this restriction, Fischetti et al. proposed the following generalized 2-opt scheme: Let (..., Cα, Cβ , ...,

Cγ , Cδ,...) be the cluster sequence of the current tour T . In Figure 2.10 T is shown with continuous

line. All the edges of T not incident with the nodes Cα ∪ Cβ ∪ Cγ ∪ Cδ are fixed and drawn with

heavy lines. In this example let us denote the distance between city ci and city cj with cij . We try

to change the cluster sequence to (..., Cα, Cγ , ..., Cβ , Cδ,...) in the most efficient way. To do that we

determine two node pairs (u∗, w∗) and (v∗, z∗) such that

ciu∗ + cu∗w∗ + cw∗h = min {cia + cab + cbh : a ∈ Cα, b ∈ Cγ } and

cjv∗ + cv∗z∗ + cz∗k = min {cja + cab + cbk : a ∈ Cβ , b ∈ Cδ }, where nodes i, j, k (see Figure 2.10)

are the nodes visited by T belonging to the clusters preceding Cα, following Cβ , preceding Cγ and

following Cδ, respectively. This process requires |Cα| |Cγ | + |Cβ | |Cδ| comparisons. On the whole,

trying all possible pairs (Cα, Cγ) and (Cβ ,Cδ) runs in O(n2) time, since every edge of G needs to be

considered only twice.

Moreover, Fischetti’s RP1 algorithm also considers the 3-opt exchanges, in which we try to modify

the cluster sequence (..., Cα, Cβ , Cγ , ..., Cδ, Cε, ...) into (..., Cα, Cγ , ..., Cδ, Cβ , Cε, ...).

However, using modified TSP algorithms is not the only approach. Another possible solution is to

transform the generalized problem into the original, non-generalized traveling salesman problem in an

efficient way. One trivial way to transform the GTSP to the TSP is by decomposing one GTSP into

multiple, smaller size TSP problems. Each of the TSP problems is defined by a distinct set of cities,

with exactly one from every cluster. The different TSP instances correspond to the different possible

choices from the cluster. A tour of any of these TSP instances is obviously a (generalized) tour of

the original GTSP problem. The best of the TSP solutions will be the best generalized Tour of the

original instance. Unfortunately, this decomposition is very inefficient, since the number of problems
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Figure 2.10: The generalized 2-opt exchange. Source: [12]

to be solved can grow rapidly. One possible solution is to transform the GTSP to exactly one TSP

problem with larger size (for example see: [27]). Behzad and Modarres even achieved to transform

the set-TSP into the standard TSP problem, where the number of nodes in the transformed TSP

does not exceed the number of nodes in the original problem [3]. However, according to Noon and

Bean [30], this approach may not outperform the GTSP specialized algorithms, but gives researchers

means for verifying optimality on smaller problems. Such GTSP-specific solutions include dynamic

programming [1], integer programming [24], Lagrangian relaxation [29], branch-and-cut algorithms [12]

and genetic algorithms, which I will further investigate in my thesis.
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Chapter 3

Genetic algorithm for the traveling

salesman problem

Source: [25]

Genetic algorithms are often used to solve NP-hard problems. GAs often perform well approxi-

mating solutions to all types of problems because they ideally do not make any assumption about

the underlying fitness landscape. The runtime of genetic algorithms depends on the representation of

individuals and the implementation of GA operators.

3.1 Representation of tours

The first task to solve in every Genetic Algorithm is to represent individuals, i.e. possible solutions or

tours in this case. A good representation supports GA operators to perform easily and fast on them.

Many different representations have been proposed to the TSP using Genetic Algorithms. Among

others, solutions were represented by binary strings, matrices, adjacency lists and paths.

3.1.1 Binary representation

Binary representation is perhaps the most commonly used representation in Genetic Algorithms. It

is the most theoretically researched representation in the field of GAs [40]. In the traveling salesman

problem, each city is encoded as a dlog2(n)e long string, thus an individual is a string of length

ndlog2(n)e. For example, in a TSP with 5 cities, the cities can be represented as a 3-bit string (see

Figure 3.1).

In this problem, the tour (1-2-3-4-5) (than back to 1) is represented as

(000001010011100).

It is important to notice that there are 3-bit long strings that do not represent any city: 101,110,111.

This is a problem that has to be solved when considering crossover and mutation operator. For ex-

ample, the original crossover operator proposed by Holland [18] (although, he proposed it for another
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Figure 3.1: Binary representation of cities in the TSP

problem) has to be supplemented by some kind of repair algorithm. Consider for example the following

two tours: (1-2-3-4-5) and (1-5-2-4-3) represented as

(000001010011100) (000100001011010)

In the canonical GA algorithm (see 1.9) a random crossover point is selected. This breaks the strings

into two different parts. Lets suppose for example that we randomly select the crossover point to be

between the 9th and the 10th string:

(000001010 | 011100) (000100001 | 011010)

Recombinating the different paths we obtain:

(000001010011010) and (000100001011100),

which do not represent legal tours: (1-2-3-4-3) and (1-5-2-4-5). Some extra effort is necessary to correct

offspring. The role of repair algorithms is to transform those individuals that do not belong to the

search space into individuals of that search space. Similar problem arises with the canonical mutation

operator proposed by Holland [18] (see: 1.9). The operator changes one or more bits with a probability

equal to the mutation rate which is close to zero. For example, if the second or third bit changes in the

representation of the fifth city (100), we get a representation which does not correspond to any city,

thus correction is necessary. Due to these concerns, the binary representation in the TSP is rarely used

in practice.

3.1.2 Matrix representation

At least two considerable attempts have been made to represent tours as binary matrices.

1. Fox and McMahon [13] suggested representing an individual as a matrix M={mij} , 1 ≤ i, j ≤ n,

where mij=1 if, and only if, in the tour city i is visited before city j. For example the tour (2-4-1-3)

is represented as following: 
0 0 1 0

1 0 1 1

0 0 0 0

1 0 1 0


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Note that a valid TSP tour represented by a matrix has the following properties:

1.
∑n

i=1

∑n
i=1mij =

n(n−1)
2 (i, j ∈ {1, ..., n})

2. mii=0 (i ∈ {1, ..., n})

3. mij=1 ∧ mjk=1 ⇒ mik=1 (i, j, k ∈ {1, ..., n})

In case there are less than n(n−1)
2 ones in the matrix, but 2. and 3. are satisfied, one can always add

ones to the matrix in a way that it represents a legal tour. On that note, new crossover operators were

developed (for more details see: [13]). However, Fox and McMahon did not define mutation operator.

2. Seniw represented tours with matrices in a different way [8]. He defined the matrix M={mij} ,

1 ≤ i, j ≤ n, where mij=1 if, and only if, in the tour city j is visited immediately after city i. That

means a TSP tour is represented by a matrix which has exactly one 1 in every row and every column.

Conversely, matrices with exactly one 1 in each row and column does not necessarily represent a legal

tour. For example 
0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0


represents the tour (1-4-2-3), but 

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


represents the set of subtours {(1-2),(3-4)}. Various crossover and mutation operators with repair algo-

rithms have been defined [19], [8]. Although there are several good experimental results on moderate-

size TSP instances using matrix representation, this representation is not commonly used either.

3.1.3 Adjacency representation

In this representation proposed by Grefenstette [15], a solution is represented by a list of n cities. The

city j is listed in the i-th position if, and only if, the tour leads from city i to city j. Thus, the tour

(3-6-2-1-4-5)

is represented by the list

(132654).

Although every tour has a unique adjacency list representation, a list can represent an illegal tour. For

example, the list
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(231564)

represents two subtours: {(1-2-3), (4,5,6)}. It is easy to see that the classic crossover and mutation

operator may lead to illegal tours, therefore other operators had to be defined. Grenfenstette defined

various crossover operators (Alternating Edge Crossover, Subtour Chunks Crossover and Heuristic

Crossover [15]). However, all these operators gave poor experimental results ( [25]). This can be at-

tributed to the facts that the above-mentioned operators either destroy good subpaths in parents or

do not take into account any information available about edge length, thus this representation is not

widely used either.

3.1.4 Path representation

Path representation is by far the most natural representation of a tour. Again, a TSP tour is represented

by a list of n cities. The tour

(2-3-6-4-5-1)

is simply represented by

(236451),

that means if a city i is at the j-th position if the list, the city i is the j-th city to be visited. Advantages

of the path representation include simplicity of fitness evaluation and usefulness of final representation.

The fitness of a given individual (a TSP tour) is easy to evaluate, since it can be calculated by summing

the costs of each pair of adjacent nodes. The final representation is useful, because it directly outputs

the list of the cities in the order in which they have to be visited. Due to these good characteristics,

path representation is the most widely used representation both in TSP and GTSP instances solved

by Genetic Algorithms. In the following parts of my thesis, I will exclusively concentrate on this

representation of individuals. Again, the classical crossover and mutation operators are not suitable

for the path representation of the TSP, therefore other operators had to be defined.

3.2 Crossover

Source of Figures: [11]

Crossover (or recombination) is the process where parents give their genes and characteristics to

their offspring, thus forming the basis of the next generation. The ideal recombination operator should

recombine the critical information from parents’ structure in a non-destructive, meaningful manner.

Moreover, the other important role of this operator is to maintain population diversity and therefore

avoiding premature convergence. Crossover operators can be roughly divided into three main categories:

interval-preserving, position-based and edge-based crossover [39]. In an interval-preserving crossover

one sub-path is copied from one parent to the offspring and then the other cities are added accordingly

to their relative order in the second parents, so as to create an offspring that represents a legal tour.
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A position-based crossover preserves the relative position of cities in parents. It attempts to create

a child, where every position is occupied by the corresponding element from one of the parents. An

edge-based crossover tries to preserve good edges and add new ones heuristically. Different methods

use different preserving and adding algorithms. Without the claim of completeness, I present some of

the most commonly used recombination operators.

3.2.1 Partially-Mapped Crossover (PMX)

The Partially-Mapped Crossover is an interval-preserving recombination operator created by Goldberg

and Lingle [14]. It is one of the most widely used operator for path-type problems. Many slight variations

appeared in the literature, here I use Whitley’s definition [2], which works as follows:

1. Choose two crossover points at random, and copy the segment between them from the first parent

(P1) into the first offspring (see: 3.2).

Figure 3.2: PMX step 1.

2. Starting off from the first crossover point look for elements in that segment of the second parent

(P2) that have not been copied.

3. For each of these (say i), look in the offspring to see what element (say j) has been copied in its

place from P1.

4. Place i into the position occupied by j in P2, since we know that we will not be putting j there

(as we already have it in our string) (see: 3.3).

Figure 3.3: PMX step 4.

5. If the place occupied by j in P2 has already been filled in the offspring by an element k, put i in

the position occupied by k in P2.
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6. Having dealt with the elements from the crossover segment, the remaining position in this off-

spring can be filled from P2 (see: 3.4). The second child is created analogously with the parental

roles reversed.

Figure 3.4: PMX step 6.

If we look at the offspring created in out example, we can see that six out of nine links, present in

the offspring are present in at least one of the parents. A desirable property of any crossover operator

would be to preserve edges present in both parents. However, the edge {7-8} is present in both parents,

but not in the offspring.

3.2.2 Order Crossover (OX)

Order crossover is also one that can be categorized as an interval-preserving operator. As with PMX,

OX also has more different variations in the literature. It was first proposed by Davis [9], who observed

that the only important characteristic of a tour is the order of the cities, but not their absolute position.

It creates an offspring by choosing a subtour of one parent and preserving the relative order of cities

in the second one. Consider the following example, where two parent tours are:

(12345678) and (24687531).

Lets suppose that the two randomly selected cut point are between the second and the third bit and

between the fifth and the sixth bit. Hence, we get

(12|345|678) and (24|687|531).

Now we create the first offspring in the following way:

1. The tour segment between the cut points are copied from P1 into the offspring. We obtain:

(**|345|***).

2. Starting from the second cut point of the first parent, the remaining cities are copied in the order

in which they appear on the second parent, also starting from the second cut point. If a city is

already presented in the offspring, we simply skip that city. When the end of a parent is reached,

we continue from the first position, since the last and the first cities are connected in the tour.

In our example this results in the offspring
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(87|345|126).

The second offspring is created with the parental roles revered, i.e. copying the segment between

the two cut points from P2 and filling in the remaining bits in the order of P1.

3.2.3 Maximal Preservative Crossover (MPX)

The Maximal Preservative Crossover [28] tries to prevent the destruction of good edges, but at the

same time assures that there is enough information exchange between the parents. It works similar

to the PMX, however there are some restrictions on the length of selected substring. Offspring 1 is

created as following:

1. Randomly select a substring from P1, whose length is greater than or equal to 10 (except for

very small instances), but smaller than or equal to the number of cities divided by 2.

2. All the elements of the chosen substring are removed from P2.

3. The chosen substring from P1 is copied to the first part of the offspring.

4. The end of the offspring is filled up with cities in the same order as they appear in P2.

A second offspring is created in an analogous manner with the parents’ role reversed. For instance

consider the following parent tours with substring {345} chosen from the first parent:

(12|345|678) and (24687531).

The MPX copies the substring {3,4,5} to the offspring, then filling the rest with the elements of

P2, without duplicating any numbers, thus we obtain:

(34526871).

The advantage of this crossover is that the number of destroyed edges have an upper limit. This MPX

operator cannot destroy more edges than the length of the chosen substring. Usually at the beginning of

the execution it reaches this maximum number of destroyed edges, but later on this number decreases,

since solutions tend to have more common edges. Mühlbein et al. [28] decided to apply an additional

mutation operator when less than 10% of the edges were destroyed.

3.2.4 Cycle Crossover (CX)

The cycle crossover suggested by Oliver et al. [31] is a position-based crossover, since it is concerned

with preserving as much information as possible about the absolute position in which cities occur. This

operator tried to create an offspring where every bit is occupied by a corresponding element from one

of the parents. It is easier to understand CX through an example, thus consider the following parent

tours again:
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(12345678) and (24687531).

The first offspring can be created the following way:

1. We can choose the first element of the offspring to be equal to the first element in P1 or P2. Lets

suppose we choose it to be equal to the first element of P1, therefore it the offspring will have 1

in the first position:

(1*******)

2. The number 1 appears as the last element in P2, thus we know that the last element in the

offspring must also be chosen from P1, otherwise the city 1 would be visited two times and it

would not be a legal tour. Therefore, we get:

(1******8).

3. Because the number 8 appears to be at the fourth bit in P2, the fourth bit in the offspring must

also be occupied by the fourth element of P1. Analogously, the second element also has to be

chosen from P1. Note that we cannot continue this sequence, since the city number 2 is in the

first position in P2, which is already occupied, hence we got a so-called cycle which produces the

following offspring so far:

(12*4***8).

4. Now consider the third element in the offspring. Because we have chosen the first element to

be from P1, we should select the third element to be from the second parent P2. To follow the

previously introduced logic, the fifth, sixth and sevenths elements also has to be chosen from P2,

thus we obtain the final offspring:

(12647538).

Oliver et al. [31] concluded from theoretical and empirical results, that the CX operator performs

better on the Traveling Salesman Problem than the previously discussed PMX.

3.2.5 Position Based Crossover (PBX)

The Position Based Crossover suggested by Syswerda [38] starts by selecting a set of random positions

and copies the selected elements from P1 into the first offspring. The remaining positions are filled in

the order of unused cities in P2. Consider the following example with the random choice of the second,

third and sixth position.

(12345678) and (24687531).
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We proceed as following:

1. Copy the selected elements from P1 to the offspring:

(*23**6**)

2. Fill the empty slots with elements of P2 in the original order without using the cities already

present in the offspring. In our example, we obtain:

(42387651)

3.2.6 Heuristic Crossover (HX)

The Heuristic Crossover [16] is an edge-based operator, since it tries to prevent good edges of the

parents from being destroyed. The process of offspring creation can be described in 4 steps.

1. Select a random element to be the current city of the offspring.

2. Consider the four edges that are incident to the current city in the parental paths. Based on their

relative costs, define a probability distribution over these edges. The probability associated with

an edge that leads to a previously visited city should be defined as 0.

3. Select an edge on this distribution. In case none of the parental edges leads to an unvisited city

a random edge is selected. Update the current city.

4. Repeat the steps 3 and 4 until a complete tour has been constructed.

If HX is used with uniform distribution, about 30% of the edges are passed to the offspring from each

parent and 40% of the edges are randomly selected [25].

3.2.7 Edge Recombination Crossover (ERX)

The main idea of Edge Recombination operator is that as far as possible an offspring should only use

edges that are present in at least one of its parents, thus passing maximum amount of information to the

next generation. The breaking of edges is seen as an unwanted change. According to Grefenstette [16],

edge-based operators often have the problems of leaving cities without a continuing edge in the parents.

These cities become isolated and new edges (that have not been present in any of the parents) have to

be included in the offspring tour. The ERX tries to cope with this problem by first choosing cities which

have as few unused edges as possible. The only edge that is chosen without taking its characteristic into

consideration is the returning edge from the last city to the starting point. Due to its philosophy, only

a limited amount of new edges appear. The operator had many slightly different forms over the years.

I describe the probably most commonly used version of Whitley [2], also known as edge-3 crossover,

which ensures common edges to be preserved. The operator works as follows:
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1. Construct the edge table. Cities which are connected to the current city in both parent solutions

should be indicated with a ’+’ sign.

2. Pick an initial city at random and put it in the offspring and let that city be the current element.

3. Remove all the references to the current element from the edge table

4. If a current city has an entry in its edge table signed with ’+’, that city should be chosen as

the next element. If there is no city with ’+’ sign, chose the city which itself has the shortest

edge list. Ties should be split at random. In case of reaching an empty list, the other end of the

offspring is examined for extension. If the list of the other end is empty as well a new city is

chosen at random, hereby introducing a new edge. Finally go to step 2, until there are no more

unvisited cities.

Lets consider the following example, where the parent solutions are

(123456789) and (937826514).

Firstly, we calculate the edge table of the two parents (see: 3.5):

Figure 3.5: Edge table

We start by randomly selecting a city, let us say city number 1 for example. Then we look the

entries in its edge list and choose the city with the shortest edge list. Since cities 2,4 and 9 have 3

entries in their edge lists (number 1 is deleted from all the lists!) and city number 5 has only 2 entries,

we choose city number 5 as the next city to be visited, thus obtaining the partial tour

(15).

In the next step, we see that the edge table of 5 contains an entry with ’+’ sign, therefore we chose

city 6 as the new current city and get

(156).

After that, both 2 and 7 have a 2-entry list, therefore we chose randomly between them. Lets say we

chose city 2. We select city 8 as the next city because it has the shortest list, then 7 because it is

connected the 8 in both parent paths. By now we have the partial tour of

(156287).
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Finally, we choose 3 because it is the only remaining item in 7’s edge list, then we decide randomly

between its entries (4 and 9). At the end, we visit the only unvisited city. Supposing we chose 4

randomly at the last step, we obtain the offspring

(156287349),

and it is composed entirely of edges from the two parents. Note that only one child per recombination is

created by this operator. However, ERX can be modified to produce two children. Another important

observation is that the edge recombination operator indicates, that the path representation alone

might be too poor to represent important properties of a tour. For that reason, it was complemented

by another structure, in this example an edge table. Whitley et al. [41] tested the ERX operator

experimentally. They reported solutions with the ERX operator to be better than any previously

found solutions.

3.3 Mutation

Unlike in the binary representation, it is no longer possible to mutate each gene (city) independently,

because we would get offspring that do not represent a legal tour. Rather we consider moving alleles

around the genome, i.e. we change the place and internal sequence of a subpath in the tour. That

means the mutation rate parameter should be interpreted as the possibility of a solution undergoing a

mutation, while the genes in the genome remain unchanged. I will present some of the most commonly

used mutations of paths.

3.3.1 Swap Mutation

Swap mutation (also called exchange mutation or point mutation) selects two random cities in the tour

and exchanges them. For example, we select randomly the second and the fifth place in the tour

(123456789),

the mutation will cause the following change:

3.3.2 Insertion Mutation

The insertion mutation randomly selects a city from the tour, removes it, then replaces at a randomly

selected place. For instance, in our beloved example

(123456789)

if we first randomly select the fifth place with the value 5, remove it from the tour and then we replace

it in a randomly selected position (third in our example).
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3.3.3 Displacement Mutation

The displacement mutation is a natural extension of the insertion mutation, where we select a substring

instead of a single gene, remove it from the tour and reinserting it in different position. For instance if

we select the substring {2345} in our example and then replace it after the seventh position, we change

(1|2345|6789) to

(167234589).

3.3.4 Scramble Mutation

In scramble mutation, we chose a random subpath again and then scramble the order of the cities in

this subpath. For example, if we select the substring {2345} in

(123456789)

once again, we could get a result like this:

It is important to mention that the scramble mutation was suggested in scheduling problems and

not for the TSP. In problems where the adjacency is important it is rarely used, because it can destroy

many good connections in a subpath.

3.3.5 Inversion Mutation

The inversion mutation has two different forms: the simple inversion mutation and the general inversion

mutation. The simple inversion randomly selects a substring and reverses the order of this subpath. This

operator effectively breaks the tour into three parts and preserves all the links inside these substrings.

Note that only two links between parts are broken, thus the inversion mutation is the smallest change

that can be made in adjacency-based problems. All other changes can be easily constructed as a

sequence of inversions. Once again, if we consider the example

(123456789)

with the substring {2345} to be chosen, we obtain the following mutation:

The simple inversion mutation can be generalized in a way where the chosen substring is not only

inverted, but removed from the tour and then it is reinserted in another position analogously to the

displacement mutation.
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3.4 Setting parameters

One of the most important part of any GA is the right setting of parameters. Ultimately the success or

failure depends on the fine-tuning of these variables. Such parameters include the population size, the

rate of recombination (pr) and the mutation rate (pm). The choice of population size is heavily depen-

dent on the problem size. Too many individuals in a population can lead to very long computational

time, while too little population size may not be enough to map the whole fitness landscape. Following

Holland’s canonical genetic algorithm, the mutation rate is usually low (between 0.05 and 0.005) and

the crossover rate is high (0.5-1.0) [37]. In the last three decades, a new approach emerged in the GA

literature. In an adaptive genetic algorithm, pm and pr are variables that change adaptively during the

run of the algorithm. Crossover and mutation have a two-sided goal in any genetic algorithm. Firstly,

they are responsible for exploring new regions in the solution space in search of the global optimum.

And secondly, they should encourage the convergence to the global optimum, after locating the region.

Increasing values of pr and pm promote exploration at the expense of exploitation, while low rates

prohibit the exploration of new regions. Researchers try to achieve this trade-off by varying pm and pr

adaptively in response of the solutions. The rates are increased, when the population tends to get stuck

at local optimum and are decreased when the population is too scattered. The experimental results

show that GAs with carefully designed adaptive pm and pr rates provide much better solutions than

GAs with fixed rates [37].

3.5 GA for the GTSP

Due to previously mentioned considerations (see: 3.1), solutions of the generalized traveling sales-

man problem are also usually represented using permutations (path representation). However, using

crossover operators created for the original TSP might transform individuals into new ones outside the

solution space (offspring solutions may visit certain clusters more than once, while leaving out others).

That means we must look for crossover techniques that create offspring representing legal GTSP tours.

3.5.1 Generalized crossover

One possible solution was proposed by Gutin and Karapetyan [17], where a random fragment p1a,

p1a+1, ..., p1a+l−1 is selected from the first parent solution and it is copied to the beginning of the

child solution. Next, we create a sequence q′ from the second parents, starting off by the a + l-th

element. We remove vertices from q′ which have already been visited by the offspring, thus we obtain

a fragment q from the second parent with length m − l. Now q is affixed to the end of the offspring.

The second child is created in an analogous manner with parents’ role reversed.
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3.5.2 Generalized mutation

Traditional mutation operators can be applied to the generalized TSP, however the set of visited nodes

never changes during mutation. To eliminate this problem, more complex mutation operators were

developed. One possible approach is to first determine C1, C2, ..., Cm the order in which of clusters are

visited, then calculating the shortest tour visiting the node subsets in this fixed order. This can be done

in polynomial time, with a dynamic programming algorithm developed by Renaud and Boctor [33].

Let dij denote the distance between city i and city j and Lij the length of the shortest path from node

i from C1 to node j from Ck while passing by only one node in each of the clusters C2, C3, ..., Ck−1.

Let Li denote the length of the shortest m-edge tour starting from and coming back to the node i

while visiting one node in every cluster C2, C3, ..., Cm. Then L, the length of the shortest tour visiting

each cluster exactly once in the chosen order can be computed as follows:

L = min
i∈Si

Li,

where Li = min
j∈Sm

[Lij + dji];∀i ∈ S1,

where Lij = min
l∈Sk−1

[Lil + dlj ];∀i ∈ S1, ∀j ∈ Sk, k > 2;

and Lij = dij∀i ∈ S1, ∀j ∈ S2.

.

The time complexity of this algorithm is O(n3/m3) , although it can be reduced by choosing as S1

the cluster containing the smallest number of nodes [33].
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Chapter 4

Experimental results

I used MATLAB R2014a version to create a program on which I can test how the genetic algorithm

performs on GTSP instances. The program randomly distributes cities in a two dimensional square grid

and tries to solve the generated GTSP. The user can determine the area size, the number of clusters

and nodes, the size of the population, the number of generations and the rate of mutation. Vertices are

randomly assigned to the clusters while assuring that each cluster contains at least one node. The rate

of crossover was constant 1 in my experiments, thus every parent solution undergone recombination.

However, elitism was applied, thus the best of each generation was automatically added to the next

one. Throughout the experiments, the area size was 10. I compared the genetic algorithm to the

Nearest Neighbor algorithm (see Subsection 2.2.1). An animated user interface has been programmed

to visualize the results and the improvement of the genetic algorithm. On the left subplot, the result

of the Nearest Neighbor algorithm has been displayed. The subplot on the right displayed the best

path in each generation of the GA. The colors of the different states have been randomly generated.

An example plot can be seen in Figure 4.1.

Figure 4.1: An example run
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(a) Table of results (b) Example run of a 35 city TSP instance

Figure 4.2: 35 city TSP

4.1 Performance on traditional TSPs

The algorithms have been run 10 times. Each time a new TSP instance with 35 cities was generated.

The genetic algorithm was running for 3500 generations, the chance of mutation was 0.5%, and the

size of population was 30. The algorithm took approximately 63 seconds to run. The length of paths

and an example run on a 35 city TSP can be seen in Figure 4.2.

As we can see the GA outperforms the NN algorithm eight out of ten times. The length difference

can be as big as 16.8 units. However, in two TSP instances the NN algorithm found shorter tour than

the GA (highlighted red in the table).

4.2 Performance on 50-25 gTSPs

The algorithms have been run 10 times. Each time a new TSP instance with 50 cities and 25 states

was generated. The genetic algorithm was running for 2500 generations, the chance of mutation was

1%, and the size of population stayed 30. The algorithm took approximately 43 seconds to run. The

length of paths and an example run on a gTSP instance with 50 cities and 25 states can be seen in

Figure 4.3.

The genetic algorithm performed better on nine instances. We can conclude that the GA regularly

outperforms the Nearest Neighbor algorithm in such instances.

4.3 Performance on 100-20 gTSPs

The shortcoming of the Nearest Neighbor algorithm is that at the end of its run it can include very

long edges in the tour because some vertices are "left out". My conjecture is that NN performs better

on instances where the state to city ratio is smaller, because it has more opportunity to choose from,

thus the salesman is not required to travel such long distances towards the end of its journey. For that

reason, I tested whether the genetic algorithm is able to outperform the Nearest Neighbor algorithm
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(a) Example run on a 50-25 gTSP instance (b) Table of results

Figure 4.3: 50 city, 25 states gTSP

(a) Table of results (b) Example run on a 50-25 gTSP instance

Figure 4.4: 100 city, 20 states gTSP

on bigger instances with 100 cities and 20 states. In this instance the state to city ratio decreased

from 1:2 to 1:5 compared to the previous experiment. Due to the more complex environment the

population size has been significantly increased. In this experiment the size of population was 150. To

maintain reasonable running time, the algorithm was running only 1500 generations. The algorithm

took approximately 73 seconds to run. Mutation rate was 0.05%. The table of results and an example

run can be seen in Figure 4.4.

As we can see, the GA does not dominate as clearly as in smaller instances. However, it still

outperformed the NN algorithm seven out of ten times. We can conclude that GA is a useful algorithm

that is able to provide better results than the Nearest Neighbor heuristic even on bigger gTSP instances

with smaller state to city ratios.

4.4 Limitations and future improvement

The Nearest Neighbor algorithm could have been improved using tour improvement heuristics like

insertion or generalized 2-opt exchange heuristics (see: 2.2.2). This way we would have created shorter

tours, thus a tougher opponent to compete with. However, the genetic algorithm used in my experiments
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can also be improved in many ways. One possible improvement is to write an adaptive genetic algorithm

(3.4), thus continuously optimizing the mutation rate and crossover rate during the run. It would help

mapping the environment and avoid getting stuck at local optima. Another possible improvement is

to use the Shortest Tour algorithm 3.5.2 to find the shortest tour assuming the sequence of clusters

is given. In that way, finding the global optimum is reduced to finding the right order of the clusters.

Nevertheless, such an algorithm can lead to dramatically increased running times.
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Attachment

TSP.m

1 % noc = number o f c i t i e s

2 % as = area s i z e

3 % ps = populat ion s i z e

4 % distmtx = d i s t ance matrix o f the c i t i e s

5 % P = populat ion ( ps ∗ noc )

6 % bp = best path

7 % fbp = f i t n e s s va lue o f bes t path

8 % Gb = best path o f a gene ra t i on

9 % c i t i e s = randomly d i s t r i b u t e d c i t i e s

10 % c i t y l o c = i nd i c a t e s to which c l u s t e r a po int be longs

11 t i c

12 noc=100; %number o f c i t i e s

13 nos=20; %number o f s t a t e s

14 as=10; %area s i z e

15 ps=150; %populat ion s i z e

16 nog=1500; %number o f g ene ra t i on s

17 Mr=0.005; %ra t e o f mutation

18 i f noc<nos

19 e r r o r ( ’ There are more s t a t e s than c i t i e s ’ )

20 end

21 % randomly d i s t r i b u t e c i t i e s

22 c i t i e s=as∗ rand (2 , noc ) ;

23 %Clus t e r i ng c i t i e s i n to ’ s t a t e s ’

24 [ c i t y l o c , s t a t e c o l o r ]= c l u s t e r i n g ( nos , noc ) ;

25 %ca l c u l a t i n g the d i s t anc e matrix

26 distmtx=c a l c u l a t e d i s t ( noc , c i t i e s ) ;

27 %i n i t i a l i z i n g populat ion

28 P=i n i t i a l i z e p o p ( ps , noc , nos , c i t y l o c ) ;
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29 %drawing the c i t i e s on the map

30 [ hpb , r t i t l e ]= drawf igure ( as , noc , nos , c i t i e s , c i t y l o c , s t a t e c o l o r ) ;

31 %Nearest Neighbor h e u r i s t i c

32 NNpath=NN( c i t i e s , c i t y l o c , distmtx , noc , nos , as , hpb , r t i t l e ) ;

33 f o r i =1:nog ; %gene ra t i on loop

34 %ca l c u l a t e p r o b a b i l i t i e s f unc t i on

35 [ prob ,Gb, bp , fbp , i n v f i t n e s s ]= c a l cF i t n e s s ( ps , distmtx ,P) ;

36 % update bes t path on f i g u r e

37 updatebestpath ( c i t i e s ,Gb, hpb , r t i t l e , i n v f i t n e s s , bp , i )

38 %Roulette s e l e c t i o n :

39 pa r en t i nd i c e s=r ou l e t t e_ s e l e c t i o n ( ps , prob ) ;

40 %Crossover

41 P=cro s spa r en t s (P, pa r en t ind i c e s , c i t y l o c ) ;

42 %Mutation

43 P=mutation (P,Mr) ;

44 %El i t i sm

45 P( ps , : )=Gb;

46 %d i v e r s i t y measure

47 %div=d i v e r s i t y (P)

48 end

49 toc

50 pathlength (Gb, distmtx )

clustering.m

1 f unc t i on [ c i t y l o c , s t a t e c o l o r ]= c l u s t e r i n g ( nos , noc )

2 %This func t i on randomly a s s i g n s v e r t i c e s to c l u s t e r s , whi l e a s su r ing that

3 %every c l u s t e r at l e a s t one ver tex

4 c i t y l o c=ze ro s (1 , noc ) ;

5 i sLocated=ze ro s (1 , noc ) ;

6 f o r i =1: nos %a s s i gn i ng one random c i t y to every s tate , so we know every

s t a t e has at l e a s t one c i t y

7 randomcity=c e i l ( noc∗ rand ) ;
8 whi le ( i sLocated ( randomcity )~=0)

9 randomcity=c e i l ( noc∗ rand ) ;
10 end

11 i sLocated ( randomcity )=1;

12 c i t y l o c ( randomcity )=i ;
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13 end

14 f o r i =1:noc

15 i f ( i sLocated ( i )==0)

16 c i t y l o c ( i )=c e i l ( nos∗ rand ) ;
17 end

18 end

19 s t a t e S i z e=ze ro s (1 , nos ) ;

20 f o r i =1: nos

21 c=0;

22 f o r j =1:noc

23 i f c i t y l o c ( j )==i

24 c=c+1;

25 end

26 end

27 s t a t e S i z e ( i )=c ;

28 end

29 s t a t e c o l o r=ze ro s (1 ,3∗ nos ) ;
30 f o r i =1:3∗nos
31 s t a t e c o l o r ( i )=rand ;

32 end

calculatedist.m

1 f unc t i on distmtx=c a l c u l a t e d i s t ( noc , c i t i e s )

2 %th i s func t i on c a l c u l a t e s the d i s t anc e matrix between a l l v e r t i c e s

3 distmtx = ze ro s ( noc , noc ) ; %d i s t anc e matrix

4 f o r i =1:noc−1
5 c i t y 1=c i t i e s ( : , i ) ;

6 f o r j=i +1:noc

7 c i t y 2=c i t i e s ( : , j ) ;

8 d c i t i e s=sq r t ( ( c i ty1−c i t y 2 ) ’∗ ( c i ty1−c i t y 2 ) ) ;
9 distmtx ( i , j )=d c i t i e s ;

10 distmtx ( j , i )=d c i t i e s ;

11 end

12 end

initializepop.m
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1 f unc t i on P=i n i t i a l i z e p o p ( ps , noc , nos , c i t y l o c )

2 %th i s func t i on i n i t i a l i z e s the f i r s t populat ion by gene ra t ing random

3 %permutat ions o f v e r t i c e s

4 v i s i t a l l=ze ro s ( ps , noc ) ; %random permutat ions o f a l l c i t i e s , base f o r

c r e a t i n g the populat ion

5 f o r i =1: ps

6 v i s i t a l l ( i , : )=randperm ( noc ) ;

7 end

8 P=ze ro s ( ps , nos ) ; %populat ion

9 f o r i =1: ps

10 c=0;

11 i s S t a t eV i s i t e d=ze ro s (1 , nos ) ;

12 f o r j =1:noc

13 i f i s S t a t eV i s i t e d ( c i t y l o c ( v i s i t a l l ( i , j ) ) )==0

14 c=c+1;

15 P( i , c )=v i s i t a l l ( i , j ) ;

16 i s S t a t eV i s i t e d ( c i t y l o c ( v i s i t a l l ( i , j ) ) )=1;

17 end

18 end

19 end

drawfigure.m

1 f unc t i on [ hpb , r t i t l e ]= drawf igure ( as , noc , nos , c i t i e s , c i t y l o c , s t a t e c o l o r )

2 %th i s func t i on draws the v e r t i v e s on a two−dimens iona l as∗ as g r id

3 f i g u r e ( ’ un i t s ’ , ’ normal ized ’ , ’ p o s i t i o n ’ , [ 0 . 1 0 . 2 0 .8 0 . 5 ] ) ;

4 hbp=ze ro s (1 , 2 ) ;

5 r t i t l e=ze ro s (1 , 2 ) ;

6 f o r j =1:2

7 subplot (1 , 2 , j ) ;

8 hpb( j )=p lo t (NaN,NaN, ’m− ’ ) ;

9 r t i t l e ( j )=t i t l e ( ’ ’ ) ;

10 hold on ;

11 f o r i =1:noc

12 t ex t ( c i t i e s (1 , i ) , c i t i e s (2 , i ) , num2str ( i ) , ’ FontWeight ’ , ’ bold ’ , ’ c o l o r

’ , [ ( s t a t e c o l o r ( c i t y l o c ( i ) ∗3−2) ) ( s t a t e c o l o r ( c i t y l o c ( i ) ∗3−1) ) (

s t a t e c o l o r ( c i t y l o c ( i ) ∗3) ) ] ) ;
13 end
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14 f o r i =1: nos

15 p lo t ( c i t i e s ( 1 , : ) , c i t i e s ( 2 , : ) , ’ k . ’ ) ; % p lo t c i t i e s

16 end

17 ax i s equal ;

18 xlim ([−0.1∗ as 1 .1∗ as ] ) ;
19 ylim ([−0.1∗ as 1 .1∗ as ] ) ;
20 end

NN.m

1 f unc t i on NNpath = NN( c i t i e s , c i t y l o c , distmtx , noc , nos , as , hpb , r t i t l e )

2 %Nearest ne ighbor con s t ru c t i on h e u r i s t i c s

3 %Sta r t s with one node and always v i s i t s the nea r e s t node from unv i s i t ed

4 %s t a t e s

5 %Fina l l y draws s o l u t i o n

6 diam=sq r t (2 ) ∗ as ;
7 distmtx2=distmtx+eye ( noc ) ∗diam ;

8 s t a r t=c e i l ( rand∗noc ) ;
9 c=1; %counts how many s t a t e s we have v i s i t e d a l r eady

10 act=s t a r t ;

11 NNpath=ze ro s (1 , nos ) ;

12 NNpath( c )=act ;

13 whi le c~=nos

14 %we s e t c i t y d i s t an c e s in the same s t a t e to diam , so i t won ’ t be the

c l o s e s t c i t y

15 f o r i =1:noc

16 i f c i t y l o c ( i )==c i t y l o c ( act ) && i~=act

17 distmtx2 ( i , : )=diam ;

18 distmtx2 ( : , i )=diam ;

19 end

20 end

21 [ minval , minplace ]=min ( distmtx2 ( act , : ) ) ;

22 %do not v i s i t v i s i t e d c i t y again

23 distmtx2 ( act , : )=diam ;

24 distmtx2 ( : , act )=diam ;

25 act=minplace ;

26 c=c+1;

27 NNpath (1 , c )=act ;

46



28 end

29 NNlength=pathlength (NNpath , distmtx )

30 s e t (hpb (1 ) , ’Xdata ’ , [ c i t i e s (1 ,NNpath) c i t i e s (1 ,NNpath (1 ) ) ] , ’YData ’ , [ c i t i e s

(2 ,NNpath) c i t i e s (2 ,NNpath (1 ) ) ] ) ;

31 s e t ( r t i t l e (1 ) , ’ s t r i n g ’ , [ ’ Nearest Neighbor path length : ’ num2str (NNlength )

] ) ;

32 drawnow ;

calcFitness.m

1 f unc t i on [ prob ,Gb, bp , fbp , i n v f i t n e s s ]= c a l cF i t n e s s ( ps , distmtx ,P)

2 %ca l c u l a t e s f i t n e s s o f i nd i v i dua l s , marks the generat ion ’ s bes t s o l u t i o n

3 i n v f i t n e s s=ze ro s ( ps , 1 ) ;

4 prob=ze ro s ( ps , 1 ) ;

5 f o r j =1:ps %populat ion s i z e loop

6 i n v f i t n e s s ( j )=pathlength (P( j , : ) , distmtx ) ;

7 end

8 f i t n e s s =1./ i n v f i t n e s s ; % we want to maximize f i t n e s s , i n v e r s e o f path

l ength

9 prob=f i t n e s s /sum( f i t n e s s ) ;

10 [ fbp , bp]=max( prob ) ; %max i s g i v ing us two va lue s : the maximum value and

the number o f p o s i t i o n where the max element i s

11 Gb=P(bp , : ) ; %best path o f the gene ra t i on

updatebestpath.m

1 f unc t i on update=updatebestpath ( c i t i e s ,Gb, hpb , r t i t l e , i n v f i t n e s s , bp , i )

2 %th i s func t i on draws best path on the f i g u r e

3 s e t (hpb (2 ) , ’Xdata ’ , [ c i t i e s (1 ,Gb) c i t i e s (1 ,Gb(1) ) ] , ’YData ’ , [ c i t i e s (2 ,

Gb) c i t i e s (2 ,Gb(1) ) ] ) ;

4 s e t ( r t i t l e (2 ) , ’ s t r i n g ’ , [ ’ g ene ra t i on : ’ num2str ( i ) ’ bes t path

l ength : ’ num2str ( i n v f i t n e s s (bp) ) ] ) ;

5 drawnow ;

roulette selection.m

1 f unc t i on pa r en t i nd e i c e s=r ou l e t t e_ s e l e c t i o n ( ps , prob )

2 %th i s func t i on s e l e c t s parents f i t n e s s p r opo r t i ona l l y
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3 pa r en t i nd e i c e s=ze ro s (1 , ps ) ;

4 f o r i =1: ps

5 r=rand ;

6 f o r j =1:ps

7 i f sum( prob ( 1 : j ) )>r

8 pa r en t i nd e i c e s ( i )=j ;

9 break

10 end

11 end

12 end

crossparents.m

1 f unc t i on newgen=c ro s spa r en t s (P, pa r en t ind i c e s , c i t y l o c )

2 %th i s func t i on c r e a t e s a new genera t i on by c r o s s ov e r

3 %Crossover ra t e = 1

4 parents=P( paren t ind i c e s , : ) ;

5 newgen=ze ro s ( s i z e (P) ) ;

6 [m, n]= s i z e (P) ;

7 f o r i =1: f l o o r (m/2)

8 P1=parents (2∗ i −1 , : ) ;

9 P2=parents (2∗ i , : ) ;

10 cp1=c e i l ( ( n) ∗ rand ) ; %cutpo in t s are chosen at random from range [ 1 . . nos ]

11 cp2=c e i l ( ( n) ∗ rand ) ;
12 i f ( cp2<cp1 )

13 temp=cp2 ;

14 cp2=cp1 ;

15 cp1=temp ;

16 end

17 l=cp2−cp1+1;

18 %Creat ing f i r s t o f f s p r i n g

19 newgen (2∗ i −1 ,1: l )=P1( cp1 : cp2 ) ;

20 i s V i s i t e d=ze ro s (1 , n ) ;

21 f o r j =1: l

22 i s V i s i t e d ( c i t y l o c (P1( cp1+j−1) ) )=1;

23 end

24 %we c r ea t e q by r o t a t i n g P2 and then d e l e t i n g c i t i e s in the a l r eady

v i s i t e d s t a t e s
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25 q=ze ro s (1 , n ) ;

26 f o r j =1:n

27 i f cp2+j<=n

28 q ( j )=P2( cp2+j ) ;

29 e l s e

30 q ( j )=P2( cp2+j−n) ;
31 end

32 end

33 f o r j=n:−1:1

34 i f i s V i s i t e d ( c i t y l o c (q ( j ) ) )==1

35 q ( j ) = [ ] ;

36 end

37 end

38 newgen (2∗ i −1, l +1:n)=q ;

39 %cr ea t i n g second o f f s p r i n g

40 newgen (2∗ i , 1 : l )=P2( cp1 : cp2 ) ;
41 i s V i s i t e d=ze ro s (1 , n ) ;

42 f o r j =1: l

43 i s V i s i t e d ( c i t y l o c (P2( cp1+j−1) ) )=1;

44 end

45 %we c r ea t e q by r o t a t i n g P2 and then d e l e t i n g c i t i e s in the a l r eady

v i s i t e d s t a t e s

46 q=ze ro s (1 , n ) ;

47 f o r j =1:n

48 i f cp2+j<=n

49 q ( j )=P1( cp2+j ) ;

50 e l s e

51 q ( j )=P1( cp2+j−n) ;
52 end

53 end

54 f o r j=n:−1:1

55 i f i s V i s i t e d ( c i t y l o c (q ( j ) ) )==1

56 q ( j ) = [ ] ;

57 end

58 end

59 newgen (2∗ i , l +1:n)=q ;

60 end
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mutation.m

1 f unc t i on P=mutation (P,Mr)

2 %Displacement Mutation ( based on Larrange 1999)

3 [m, n]= s i z e (P) ;

4 f o r i =1:m

5 i f ( rand<Mr)

6 cut=[ c e i l ( rand∗n) c e i l ( rand∗n) ] ;
7 i f cut (2 )<cut (1 )

8 temp=cut (2 ) ;

9 cut (2 )=cut (1 ) ;

10 cut (1 )=temp ;

11 end

12 subtour=P( i , cut (1 ) : cut (2 ) ) ;

13 q=P( i , [ 1 : cut (1 )−1, cut (2 ) +1:n ] ) ;

14 i n s e r t i o np=c e i l ( rand∗ l ength (q ) ) ;

15 P( i , : ) =[q ( 1 : i n s e r t i o np ) subtour q ( i n s e r t i o np +1:end ) ] ;

16 end

17 end

pathlength.m

1 f unc t i on s = pathlength ( path , distmtx )

2 %th i s func t i on c a l c u l a t e s the l ength o f a g iven path

3 s=0; %path length summation

4 f o r k=1: l ength ( path )−1
5 s=s+distmtx ( path (k ) , path (k+1) ) ;

6 end

7 s=s+distmtx ( path ( l ength ( path ) ) , path (1 ) ) ;
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