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Chapter 1

Introduction

Linear regression has become an extremely important topic of modern statistical sci-

ence applied for example in system identi�cation, machine learning and �nancial math-

ematics. Finding suitable models to observed unknown systems is a classic statistical

problem. The linear model developed by Gauss is applied all around the world in a vari-

ety of �elds. Standard methods pick a single �point estimate� out of the possible ones, but

sometimes we need a guarantee of �nding the true model. For that reason we often build

con�dence regions around the point estimators. These set estimators are usually based on

the asymptotic property (e.g. limiting distribution) of a given point estimator, therefore

they can only be applied when the number of observations is large enough.

In this thesis we are going to investigate two well-known point estimators and get

to know an algorithm, namely the Sign-Perturbed Sums (SPS) method, which builds

distribution-free exact con�dence regions around these estimators even for �nitely many

observations.

First of all the least squares (LS) estimator is going to be introduced. Its most impor-

tant properties are going to be overviewed and the corresponding fundamental results are

going to be presented.

Second, the Sign-Perturbed Sums (SPS) method is going to be introduced. Examining

this method is the main subject of this thesis. This algorithm has been developed by

my supervisor Csáji Balázs, Erik Weyer and Marco Campi in 2012 [10]. Its main advan-

tage is that it builds an exact con�dence region with user-chosen probability for �nitely

many observations under very mild assumptions on the noise. In the original version, this

method builds the region around the LS estimator. This is why LS is thoroughly examined

before this section. The SPS' nice properties are summerized and an extension is made
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for autoregressive systems. These results were published by the mentioned authors.

In the second part of the thesis the least absolute deviatons (LAD) estimator is going

to be investigated. Similarly to the LS its most important both asymptotic and non-

asymptotic properties are going to be presented. Even a short comparison will be made

to the LS.

Finally a modi�ed version of the SPS is going to be shown which builds exact con�-

dence region around the LAD estimator. There are open questions about the con�dence

region that are constructed by this algorithm. The pointwise consistency for this method

was proven and the extention of this algortihm to the ARX system was made by me and

my supervisor. It is in the last section of the thesis.

In the appendix some simulation examples and the MATLAB codes are presented for

demonstrating the algorithm.
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Chapter 2

Least Squares Criterion

2.1 Least squares data �tting

In this chapter I am going to introduce the least squares (LS) estimate which is a

standard method to approximate solutions in linear systems. It is extremely important

because of its many advantageous properties and extensive applicability. It was �rst in-

troduced by Legendre [17] and Gauss [15] in the beginning of the 19th century. Since

then an enourmous developement has been made on the method in terms of probability

theory by Gauss himself, Laplace and many others. Nowadays its leading role in linear

regression is not questionable. The most importantant features are going to be presented

in this chapter. We are also going to see some of the fundamental results related to this

particular estimate such as the Gauss-Markov theorem and con�dence ellipsoids.

Point estimation is a method which, trying to �nd the true parameter of an unknown

random variable, picks a single point out of the parameter space based on �nitely many

observations. There are several point estimators (such as maximum likelihood, method

of moments etc.) based on di�erent ideas, each with a variety of great properties. One

well-known estimator is the Least Sqaures estimator (LS). When we have a �nite sample

{(Y1, ϕ1), (Y2, ϕ2), ..., (Yn, ϕn)} it is reasonable to search for the parameter θ which gives

us the solution with the least residual w.r.t. Yt − ϕTt θ in any given data point. �Least

squares� means that we want to minimize the sum of the squares of the residuals made

in each observed point. There are other methods minimizing di�erent moments of the

residual function (see Chapter 3), but this chapter deals with the LS.
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2.1.1 Determenistic case

Normal equation

Assume that for a certain linear system with known structure but unknown true

parameter θ∗ we have recorded inputs and outputs over a time interval 1 ≤ t ≤ n:

{(Y1, ϕ1), (Y2, ϕ2), ..., (Yn, ϕn)}.

In this notation Y ∈ Rn is the output also called "dependent variable" vector where

Yt ∈ R is the output for any given t and {ϕt}nt=1 ⊆ Rd are the inputs also called regressors

or �explanatory variables�. We assume that we have a linear relation between the variables

of the system and the output. Assuming a linear system behind simpli�es the real problem,

but also makes it easier to �nd applicable estimators. In ideal circumstances the following

equation is true in linear systems:

Yt = ϕTt θ
∗ +Nt (2.1)

where Nt is real valued variable for all t = 1, . . . , n indicating the noise in each measure-

ment. The constant unknown true parameter is θ∗. Our goal is to �nd this parameter. We

assume that this equation describes the observed system correctly.

Based on this equation that we know for linear systems we can predict a certain Yt.

For any θ parameter we can calculate the prediction for Ŷt this way:

Ŷt(θ) = ϕTt θ (2.2)

where Ŷt(θ) is called the predictor function and the quantity of Yt − Ŷt(θ) is called the

residual or prediction error for a given t and θ. For all t = 1, . . . , n, ϕt ∈ Rd are assumed

to be constant regressors for simplicity. Let Φ denote the matrix we get if we put the row

vectors ϕTt for each t = 1, . . . , n into a matrix this way

Φ ,


ϕT1

ϕT2
...

ϕTn

 .
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Using this matrix we can rewrite the known equation this way
Y1

Y2

...

Yn

 =


ϕT1

ϕT2
...

ϕTn




θ∗1

θ∗2
...

θ∗d

+


N1

N2

...

Nn

 (2.3)

where θ∗i is the corresponding coordinate of the true parameter θ∗. Similiarly in a more

simple notation

Y = Φθ∗ +N. (2.4)

A 1. Assume that Φ is �skinny� (n ≥ d) and has a full column rank (rank(Φ) = d).

Having more observations than variables is an obvious criterion for estimation. Fewer

variables would lead us into di�erent problems such as system design or controll. We are

going to see later that full column rank is also important, though it is still a very mild

condition.

As it was mentioned earlier, we would like to minimize the squares of the residuals

to approximate the true parameter θ∗. We choose the parameter where this minimum is

pursued for our estimate.

θ̂n := argmin
θ∈Rd

n∑
t=1

(Yt − Ŷt(θ))2 (2.5)

If we apply the linear prediction for Ŷt(θ) the estimator can be expressed as

θ̂n := argmin
θ∈Rd

n∑
t=1

(Yt − ϕTt θ)2. (2.6)

In addition, if we use the matrix Φ, it simpli�es the notation to

θ̂n := argmin
θ∈Rd

‖Y − Φθ‖2. (2.7)

Notice that the sum we want to minimize is a convex quadratic function of θ and it

is greater than (or equal to) zero. Therefore, we can seek a minimum point by taking the

derivative with respect to θ and set it equal to zero. As we take the gradient we get this:
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∂

∂θ
(‖Y − ΦT θ‖2) = −2ΦT (Y − Φθ) (2.8)

Consequently

− 2ΦT (Y − Φθ) = 0 (2.9)

ΦTY = ΦTΦθ̂n. (2.10)

This equation is called the normal equation. We see that (Y − Φθ) is orthogonal to

the column vectors of ΦT . The Φ matrix is �skinny� and has a full column rank therefore

ΦTΦ is invertible so there is only one unique solution to the problem. It can be calculated

this way:

θ̂n = (ΦTΦ)−1ΦTY (2.11)

As it was shown, this estimate has a unique analitical solution under mild assumptions

which makes it possible to use in many cases.

Linear solution

The least squares estimate is linear. As we saw in (2.11) this estimate has a unique

analitical solution. The matrix that we have on the right hand side of the equation

(ΦTΦ)−1ΦT ∈ Rd×n is a linear operator.

Orthogonal projection

Theorem 2.1.1. The matrix P = Φ(ΦTΦ)−1ΦT is an orthogonal projection on the range

of Φ assuming A1.

It means that P is idempotent and self-adjoint.

Proof. First, I am going to show that P is idempotent meaning that P 2 = P .

P 2 = (Φ(ΦTΦ)−1ΦT )2 = Φ(ΦTΦ)−1ΦTΦ(ΦTΦ)−1ΦT (2.12)

= Φ[(ΦTΦ)−1(ΦTΦ)](ΦTΦ)−1ΦT (2.13)

= Φ(ΦTΦ)−1ΦT = P (2.14)
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Second, I prove that P is self-adjoint.

P T = (Φ(ΦTΦ)−1ΦT )T = Φ[(ΦTΦ)−1]TΦT = Φ[(ΦTΦ)T ]−1ΦT = Φ(ΦTΦ)−1ΦT = P

(2.15)

We get that P is an orthogonal projection.

Moore-Penrose pseudoinverse

In linear algebra an A ∈ Rm×n does not have an inverse. For this reason a gener-

alization of the inverse concept has been introduced. The widely known Moore-Penrose

pseudoinverse was developed independently by Moore [18] (1920), Bjerhammar [4](1952)

and Penrose [19] (1955).

De�nition 2.1.2. For an A ∈ Rm×n a pseudoinverse of A is A+ ∈ Rn×m that satis�es

these criterions:

AA+A = A (2.16)

A+AA+ = A+ (2.17)

(AA+)T = AA+ (2.18)

(A+A)T = A+A. (2.19)

Note that the concept of the Moore-Penrose pseudoinverse can be extended to complex

matrices. In that case reasonably in the third and fourth criterions we need to adjungate

AA+ and A+A instead of just transposing. Though when A is real valued its pseudoinverse

is real valued as well so now we do not need to deal with the complex case. We know

that A+ always exists and is unique [22]. If the �rst criterion is met for a matrix it is

called generalized inverse. If the second criterion is satis�ed then the matrix is called

generalized re�exive inverse. Uniqueness is not always held for generalized inverse. The

last two criterions makes the Moore-Penrose pseudoinverse unique. Notice that when A

has a full column rank we can �nd a nice algebraic formula for the pseudoinverse.

A+ = (ATA)−1A (2.20)

This formula is the same that we got by solving the normal equation for the LS estimator,
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therefore LS is a special case of the Moore-Penrose pseudoinverse. This way

θ̂ = A+Y (2.21)

estimator always exists and when A is skinny and has a full column rank θ̂ equals to

the LS estimator, but when the equation is underdetermined it gives us the �Least-norm�

solution.

2.1.2 Stochastic case

Unbiasedness

Assume we have a �nite sample X with n observations. In fundamental Statistics we

de�ned ubiasedness this way.

De�nition 2.1.3. The statistic T(X) is an unbiased estimator of the g(θ) function if and

only Eθ[T (X)] = g(θ) for all θ ∈ Θ.

Here, X is the sample and T is a function on the sample space. The LS estimate can

be seen as a function on the sample space which estimates the parameter θ∗. For LS:

X = {Yt, ϕt},
T (X) = (ΦTΦ)−1ΦTY and g = id.

A 2. : The noise has a zero mean, E(Nt) = 0 for all t = 1, . . . , n.

Theorem 2.1.4. Assuming A1 and A2 the least squares estimator is unbiased.

Proof.

E[θ̂n] = E[(ΦTΦ)−1ΦTY ] = E[(ΦTΦ)−1ΦT (Φθ∗ +N)] = θ∗ + (ΦTΦ)−1ΦTE[N ] (2.22)

We know that the noise has a zero mean. It gives us the following:

E[θ̂LS] = θ∗

which proves that the LS estimate is unbiased.
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Gauss-Markov theorem

The least squares estimator is the best linear unbiased estimator (BLUE). Best means

that the least squares has the �least� variance out of the linear unbiased estimators.

Neither linearity nor unbiasedness can be left out. In general, variance is a positive semi-

de�nite matrix also called covariance matrix for each random vector. In this scenario least

variance means that its covariance matrix is the least in the Loewner partial order which

is a partial order de�ned on the Hermitien matrices.

De�nition 2.1.5. Let A and B be two symmetric matrices of order n. B 4 A if and only

if A−B is a positive semi-de�nite matrix.

Using this ordering we can state the Gauss-Markov theorem. Assume that for a linear

system the followings are true:

A 3. The noises are uncorrelated. E(NNT ) = σ2I.

A 4. The noises are homoscedastics and they have the same �nite variance, var(Ni) =

σ2 <∞ ∀i = 1, . . . , n.

Theorem 2.1.6 (Gauss-Markov). [16] If A1, A2, A3 and A4 are valid, then the least

squares estimate has the least variance in the Loewner partial order out of the linear

unbiased estimators.

Proof. Suppose we have an unbiased estimate θ̃ other than LS which is linear in Y .

θ̃ = CY (2.23)

It is easy to see that C can be rewritten as

C = (ΦTΦ)−1ΦT +D (2.24)

Knowing that C is unbiased gives us the following.

E(θ̃) = E[((ΦTΦ)−1ΦT +D)(Φθ∗ +N)] = θ∗ +DΦθ∗ ⇒ DΦ = 0 (2.25)

The covariance matrix of θ∗ is going to be:

12



E[(θ∗ − θ̃)(θ∗ − θ̃)T ] = E
[
[(ΦTΦ)−1ΦT +D]NNT [Φ(ΦTΦ)−1 +DT ]

]
. (2.26)

Using that σ2I = E(NNT ) ∈ Rn×n and the linearity of expectation

E[(θ∗ − θ̃)(θ∗ − θ̃)T ] = [(ΦTΦ)−1ΦT +D]E(NNT )[Φ(ΦTΦ)−1 +DT ]

(2.27)

= [(ΦTΦ)−1ΦT +D]σ2I[Φ(ΦTΦ)−1 +DT ] = σ2[(ΦTΦ)−1ΦT +D]I[Φ(ΦTΦ)−1 +DT ]

(2.28)

= σ2(ΦTΦ)−1 + σ2(ΦTΦ)−1ΦTDT + σ2DΦ(ΦTΦ)−1 + σ2DDT .

(2.29)

Since DΦ = 0

E[(θ∗ − θ̃)(θ∗ − θ̃)T ] = σ2(ΦTΦ)−1 + σ2DDT . (2.30)

It is clear that DDT is a positive semi-de�nite matrix. Consequently the covariance matrix

of θ̃ equals to the covariance matrix of θ̂n plus a positive semide�nite matrix. Hence θ̂n has

a smaller variance using the Loewner partial order relative to any other linear unbiased

estimator.

E�ciency in case of Gaussian noise

The Gauss-Markov theorem showed us that the least squares estimator is the best

linear unbiased operator. With more assumptions additional theorems can be proven.

E�ciency can be another good property of an estimator. It measures the quality of

an estimator. A more e�cient estimator needs less observation or data to produce a

given performance. We use the Fisher information matrix to measure the performance. It

was named after Sir Ronald Fisher British statistician who played a leading role in the

foundation of modern statistical science. The Fisher information can be de�ned this way.

De�nition 2.1.7. Assume that Θ ⊆ Rp is an open (usually convex) set of parameters.

Let l(θ) , log(f(X; θ)) be the natural logarithm of the likelihood function of X. Suppose

that the function θ 7→ log f(X; θ) is di�erentiable, then ∂l(θ)
∂θ

is a p dimensional column

vector. Simplifying the notation let ∂l(θ) be ∂l(θ)
∂θ

. The Fisher information is de�ned as the

13



following symmetric, positive semide�nite matrix:

I(θ) = E[∂l(θ)∂l(θ)T ] (2.31)

Suppose we have an unknown parameter θ∗ which is to be estimated with an unbiased

estimator θ̂. Then, the variance of θ̂ is bounded by the inverse of the Fisher information

matrix of the true parameter.

cov(θ̂) � I−1(θ∗) (2.32)

This bound is called the Cramér-Rao lower bound. It was discovered by Harald Cramér [9]

and Calyampudi Radhakrishna Rao [23] independently in the 1940s. Now let e(θ) denote

cov(θ̂)−1I−1(θ∗). Consequently the following is true

e(θ) � I.

Using this notation we can de�ne e�cient estimators.

De�nition 2.1.8. An unbiased estimator is e�cient if e(θ) = 1 for all θ ∈ Θ.

Equivalently an estimator is e�cient if cov(θ̂) is equal to the Cramér-Rao lower bound.

Suppose that the noise has a normal distribution. In this case it can be proven that

the least squares estimator is e�cient. It means that the LS estimator covariance matrix

reaches the Cramér-Rao lower bound.

Note that this assumption is not always met. Usually we do not have this information

about the noise in our hand. Still this result is important. Proof can be found in Chingnun

Lee's notes about linear regression models [16]. It is important to see that in case of

Gaussian noise the LS estimator is the same as the maximum likelihood estimator, which

is de�ned as

θ̂ML , argmax
θ

fθ(X) = argmax
θ

L(θ) (2.33)

where f is the density function of the sample and L is the log-likelihood function. Note

that the maximum likelihood estimator does not always exist or is not always unique, but

in this special case it can be showed that it is equal to the LS.

Now I am going to list some of the most important asymptotical properties of the

least squares estimator. These are extremely useful and give us a reasonable approach to

the construction of con�dence regions.
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Consistency

We are going to investigate the properties of the least squares as n, the �sample size�,

tends to in�nity.

De�nition 2.1.9. The {θ̂n} estimate sequence is consistent if θ̂n → θ∗ in probability as

n→∞.

De�nition 2.1.10. The {θ̂n} estimate sequence is strongly consistent if θ̂n → θ∗ almost

surely as n→∞.

A 5. limn→∞(ΦT
nΦn

n
) = Q where Q is �nite and nonsingular.

Theorem 2.1.11. Assume that A1 A2, A3, A4 and A5 hold then the least squares esti-

mator is consistent. [16]

θ̂n
p−→ θ∗ (2.34)

Proof.

θ̂n = (ΦT
nΦn)−1ΦT

nY = θ∗ + (ΦT
nΦn)−1ΦT

nN = θ∗ +

(
ΦT
nΦn

n

)−1(
ΦT
nN

n

)
(2.35)

We know that:

E
(

(ΦT
nN)

n

)
= 0

and

E
[

(ΦT
nN)

n

(ΦT
nN)T

n

]
=
σ2

n
Q

therefore

lim
n→∞

E
(

(ΦT
nN)

n

)
= lim

n→∞

σ2

n
Q = 0. (2.36)

Consequently

(ΦT
nN)
n

p−→ 0 ⇒ θ̂n
p−→ θ∗.

Note that it can be shown that limn→∞ θ̂n = θ∗ almost surely as well. It means that the

strong consistency is also true as n tends to in�nity under certain circumstances. See [8]

for more information on this topic.

15



2.1.3 Asymptotical Gaussianity

Theorem 2.1.12. [16] Under the conditions of A1, A2, A3, A4 and A5 the least squares

estimate is asymptotically Gaussian.

If we assume that ΦTΦ is O(n) then limn→∞(ΦTΦ)−1 = 0. We know that
√
n(θ̂n−θ) ∼

N(0, σ2(ΦTΦ/n)−1) for each n. Hence
√
n(θ̂n − θ)→ N(0, σ2Q−1) in distribution.

2.1.4 Asymptotical e�ciency

LS is an e�cient estimator for Gaussian noise. Its information matrix reaches the

Cramér-Rao lower bound for all n. Consequently the Fisher information matrix reaches

the Cramér-Rao bound asymptotically too. Therefore LS is asymptotically e�cient. It

also means that LS is a minimume-variance unbiased estimate (MVUI) asymptotically.

2.1.5 Con�dence ellipsoids

Using a point estimator gives us one speci�c θ̂ from the parameter space as an es-

timator. This parameter can have great properties such as unbiasedness, consistency or

e�ciency just like the least squares estimate had, but typically it is going to be equal to

the true parameter θ∗ with zero probability. It is often useful to �nd a set of parameters

which contains the true parameter with at least a user-chosen probability q. In many

cases, we need such guarantee to prove that our calculation is correct for the purpose of

safety, quality or punctuality. It is critical for robust method and risk management.

De�nition 2.1.13. A Θ set of parameters is a con�dence region if P(θ∗ ∈ Θ) ≥ q.

Note that here the q probability is just a lower bound therefore these regions can

contain more parameters than necessary. For example the entire parameter space is a

con�dence region for every q ∈ [0, 1] because it contains the true parameter with exactly

1 probability which is de�nitely more than q. Nevertheless this con�dence region is useless.

It does not give us any new information about the parameters.

Sometimes it is possible to reach the lower bound and �nd exact con�dence regions

which leads us to the following de�nition.

De�nition 2.1.14. A Θ set of parameters is an exact con�dence region if

P(θ∗ ∈ Θ) = q.
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Finding con�dence regions is a fundamental problem in Statistics. Many di�erent

algorithms have been developed for such aims. There are many di�erent methods with a

variety of assumptions and approximations.

Now, I am going to show a standard example for a non-exact asymptotic con�dence

region. This approach comes from the central limit theorem which explains why the regions

are asymptotic. Even though we cannot construct exact regions with this method and we

need many observations there is a variety of applications of this method in di�erent �elds

of Science such as Economy, Social Sciences and Biology.

Knowing that under some moment conditions the LS estimate is asymptotically Gaus-

sian gives us a great approach to the construction of a con�dence region around the LS

estimate.

Let θ̂n denote the LS estimate based on n data points. Then, according to asymptotic

Gaussianity
√
n(θ̂n−θ∗) −→ N(0, σ2Q−1) in distribution, whereN(0, σ2Q−1) is the normal

distribution with zero mean and covariance matrix σ2Q−1, σ2 is the variance of the noise

and Q = limn→∞( 1
n
ΦT
nΦn) which is �nite and nonsingular as stated in A5. Reasonably we

are going to approximate the quantity of
√
n(θ̂n − θ∗).

√
n(θ̂n − θ∗) ∼ N(0, σ2Q−1) (2.37)

Note that usually we do not know σ2 exactly since it depends on the noise which is

unknown. Most of the time we need to estimate σ2. For this aim we use σ̂2
n which is an

unbiased estimator of σ2.

σ̂2
n =

1

n− d

n∑
t=1

(Yt − ϕT θ̂n)2 (2.38)

Now we are able to estimate the previous quantity in (2.37). Obtaining (approximately)

1

σ̂n
(
1

n
ΦT
nΦn)

1
2
√
n(θ̂n − θ∗) ∼ N(0, I). (2.39)

Consequently (approximately)

n

σ̂2
n

(θ̂n − θ∗)(ΦT
nΦn)(θ̂n − θ∗) ∼ χ2(d) (2.40)

where χ2(d) denotes the χ2 distribution with d degrees of freedom. Then we can build an
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approximate con�dence region by

Θq
n = {θ ∈ Rd : (θ̂n − θ)(ΦT

nΦn)(θ̂n − θ) ≤ µ
σ̂2
n

n
} (2.41)

where q is user-chosen probability level. We can �nd µ by solving q = Fχ2(d)(µ) where F

is the cumulative distribution function of the d dimensional χ2 distribution. Then

P(θ∗ ∈ Θq
n) ≈ q.

Note that this is a heuristic method which often gives us inaccurate regions for small

samples.

Sometimes we cannot repeat the experiment or measurement as many times as it

would be necessary to build a great con�dence region therefore it is reasonable to �nd

a non-asymptotic method which constructs regions with good properties even for small

number of data points. In the next section I am going to introduce an algorithm which

gives us exact, �nite sample con�dence regions.
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2.2 Non-asymptotic con�dence region for the LS

Finding the true paramter can be very hard because of the lack of informations. Our

knowlegde about the noise is usually limited and the number of observations is also �nite.

I am going to introduce you a method which proposes a solution with these restrictions.

It was originally developed by Balázs Csanád Csáji, Marco C. Campi and Erik Weyer

in 2012 [10]. This method is called the Sign-Perturbed Sums (SPS). It constructs exact

con�dence regions under mild statistical assumptions around the least squares estimate.

As we are going to see compared to the asymptotic con�dence regions these regions are

going to be exact. The main assumption that we have to make is that the noises are

symmetrically distributed around zero. The method exploits this symmetry as much as

possible. This method can be used with small changes for many di�erent systems. It is

also possible to build con�dence regions around estimators other than the LS. The SPS for

the least absolute deviations (LAD) estimate is going to be presented in the next chapter.

2.2.1 The Sign-Perturbed Sums method

Consider a linear system. Assume we have n observations like we had in the previous

section:

{(Y1, ϕ1), (Y2, ϕ2), ..., (Yn, ϕn)}. (2.42)

Suppose that the explanatory variables are deterministic here. There is neither autore-

gression nor correlation between the inputs. This simple system can be for example a

�nite impulse system with order d (FIR(d)) where the dimension of the regressors is the

order of the FIR system. Nevertheless we assume that each output was processed this way

Yt = ϕTt θ
∗ +Nt (2.43)

The notation is the same as it was in the previous sections.

As I mentioned there are only a few mild assumptions.

B 1. (Nt)t is an independent random noise sequence (not necessary identically distributed)

and each Nt is symmetrically distributed around zero.

B 2. det(Rn) 6= 0 where Rn = 1
n

∑n
t=1 ϕtϕ

T
t
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Note that these assumptions are really mild. The noise does not need to have special

moment conditions. We do not assume stationarity for the noise terms nor a speci�c

distribution. Though independence is the strongest assumption with small changes in the

SPS this condition can be relaxed. Practically many of the standard distributions satisfy

the assumption about the symmetricity (Gauss, Lagrange, Cauchy etc.).

Our goal is to construct an exact con�dence region with user-chosen probability. The

idea is going to lean on the symmetricity. Now let

S0(θ) ,
1

n
(Rn)−1/2

n∑
t=1

ϕt(Yt − ϕTt θ) (2.44)

be the reference sum and the sign-perturbed sums which are indicated in the name of the

method are

Si(θ) ,
1

n
(Rn)−1/2

d∑
t=1

αi,tϕt(Yt − ϕTt θ) (2.45)

for i = 1, . . . ,m − 1, where {αi,t} are i.i.d. random signs meaning αi,t = ±1 with 1/2

probability for each i and t. Note that R−1/2
n is not necessary but it helps to shape the

region and 1/n is introduced only for numerical stability.

The intuitive idea is that when we get far enough from the true parameter ‖S0(θ)‖2

increases faster than {‖Si(θ)‖2} so eventually it will dominate the ordering. Formally

when ‖θ̃‖ is large enough, where θ̃ , θ∗ − θ

‖
n∑
t=1

ϕtϕ
T
t θ̃ +

n∑
t=1

ϕtNt‖2
R−1

n
> ‖

n∑
t=1

αi,tϕtϕ
T
t θ̃ +

n∑
t=1

αi,tϕtNt‖2
R−1

n
(2.46)

with high probability. In fact
∑n

t=1 ϕtϕ
T
t θ̃ increases faster than

∑n
t=1 αi,tϕtϕ

T
t θ̃. The formal

proof of this claim relies on the Schur complement argument.

If we calculate these equations for the true parameter (θ∗) we get the following

S0(θ∗) =
1

n
(Rn)

1
2

d∑
t=1

ϕtNt

Si(θ
∗) =

1

n
(Rn)

1
2

d∑
t=1

αi,tϕtNt (2.47)
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where i = 1, . . . ,m − 1. The main idea is that since Nt has a symmetric distribution

around zero, Nt and αi,tNt have the same distribution so S0(θ∗) and Si(θ∗) also have the

same distribution for all i ∈ {0, . . . ,m− 1}. Therefore if we somehow sort the Si vectors

for i = 0, . . . ,m−1 there is no reason why S0 should be greater or smaller than any other

Si. Proof can be found in [11]. To sort the vectors we are going to use the 2-norm. Note

that we can use any norm to construct regions though some norms result smaller regions

than others, there is no signi�cant di�erence in the size.

Consequently S0 is going to be in each place in the order with 1
m
probability so S0 is

going to be among the �rst q with q
m
probability. We are going to overview the property

of exactness more precisely later.

2.2.2 The algorithm

The SPS algorithm is going to test each parameter whether it is in the con�dence

region or not. It has two parts. The �rst part is the initialization. Here we have to set

the hyperparameters. The con�dence region is going to contain the true parameter with

a user-chosen probability so we need to set p �rst. For any chosen rational p we can �nd

q ∈ N andm ∈ N such that p = 1− q
m
. As we can see there are many di�erent usable (q,m)

pairs. Though each pair may construct di�erent region the di�erence in shape and size is

not signi�cant. During the initialization process we calculate the shaping matrix, R1/2 =
1
n
(Rn)1/2. It exists because of A2 and used only for shaping the region and numerical

stability. There are many methods to �nd R1/2. One is the Cholesky factorization, which

I used during the simulation process (see Chapter 4). We also have to generate n(m− 1)

random signs αi,t such that P(αi,t = ±1) = 1
2
. These random signs are �xed for each

parameter. We also need to provide a strict total order on the sign perturbed sums.

Vector norms can be equal. For this reason we use a random permutation π which chooses

between the sums in case of tie. So the strict total order on the sign perturbed sums is

de�ned as

Sk �π Sj if and only if

(
‖Sk‖2 > ‖Sj‖2 ) or

(
‖Sk‖2 = ‖Sj‖2 and π(k) > π(j)

)
.

The pseudocode for the initialization is given in Table 2.1.
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Pseudocode: SPS-Initialization

1. Given a (rational) con�dence probability p ∈ (0, 1),

set integers m > q > 0 such that p = 1− q/m;

2. Calculate the outer product

Rn , 1
n

n∑
t=1

ϕtϕ
T
t ,

and �nd a factor R1/2
n such that

R
1/2
n R

(1/2)T
n = Rn;

3. Generate n (m− 1) i.i.d. random signs {αi,t} with
P(αi,t = 1) = P(αi,t = −1) = 1

2
,

for i ∈ {1, . . . ,m− 1} and t ∈ {1, . . . , n};
4. Generate a random permutation π of the set

{0, . . . ,m− 1}, where each of the m! possible

permutations has the same probability 1/(m!)

to be selected.

Table 2.1

Note that π is a bijection from {0, . . . ,m− 1} to itself, thus for k 6= j, π(k) 6= π(j).

After the initialization process the indicator function can test whether a parameter is

included in the con�dence region or not. This function is given in the Table 2.2. For any

given parameter �rst we calculate the predicted residuals, then we evaluate them−1 sign-

perturbed sums and the reference sum. In order to sort the vectors we use the the total

order that was de�ned earlier. Finally we compute the rank of the value corresponding to

the reference sum in the order. If the rank is q then the parameter is in the con�dence

region with con�dence level of 1 − q
m
. In other words the indicator function is going to

return with the value of 1 if ‖S0(θ)‖2 is not among the q largest in the strict total order

or else it will exclude the parameter and return with 0 value.

Using this function now we can express the con�dence region we found as

Θ̂n = {θ ∈ Θ : SPS − indicator(θ) = 1} (2.48)

In the next section we are going to see that this con�dence region is exact. Moreover, since

S0(θ̂n) = 0 if the region is non-empty the LS is always included and it is in the center of
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Pseudocode: SPS-Indicator ( θ )

1. For the given θ, compute the prediction errors

for t ∈ {1, . . . , n}
Nt(θ) , Yt − ϕT

t θ;

2. Evaluate

S0(θ) , R
− 1

2
n

1
n

n∑
t=1

ϕtNt(θ),

Si(θ) , R
− 1

2
n

1
n

n∑
t=1

αi,t ϕtNt(θ),

for i ∈ {1, . . . ,m− 1};
3. Order scalars {‖Si(θ)‖2} according to �π;
4. Compute the rank R(θ) of ‖S0(θ)‖2 in the ordering,

where R(θ) = 1 if ‖S0(θ)‖2 is the smallest in the

ordering, R(θ) = 2 if ‖S0(θ)‖2 is the second

smallest, and so on.

6. Return 1 if R(θ) ≤ m− q, otherwise return 0.

Table 2.2

the region. It can be shown that this estimator is star convex with the center of LS and

also can be proven that it is strongly consistent.

However we can only evaluate the indicator function for �nitely many data points we

will see how we are able to represent these regions nicely using its good properties.

2.2.3 Exact con�dence regions

The most important property of SPS is that it constructs a con�dence region with

exact user-chosen probability for �nitely many data points meaning that Θ̂n is an exact

con�dence region.

Theorem 2.2.1. [11] Assuming B1 and B2 the con�dence probability of the constructed

con�dence region is exactly p,

P(θ∗ ∈ Θ̂n) = 1− q

m
. (2.49)

A formal proof was presented in [11]. It is based on the perception that {||Si(θ∗)||2}m−1
i=1

are uniformly ordered.
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De�nition 2.2.2. Let Z1, Z2, . . . , Zk be �nitely many random variables and � is a strict

order on them. Suppose for all permutations i1, i2, . . . , ik of indices 1, . . . , k we have

P(Zik � Zik−1
� · · · � Zi1) =

1

k!
. (2.50)

Then we call {Zi} uniformly ordered with respect to order �.

If {‖Si(θ∗)‖2}m−1
i=0 is uniformly ordered, then ‖S0(θ∗)‖ is included in the �rst q elements

in the order with exactly q
m
probability, which justi�es the theorem.

The proof of the claim that {‖Si(θ∗)‖2}m−1
i=0 are uniformly ordered relies on three

lemmas. The proof of these lemmas are rather technical than complicated therefore not

all details are presented here.

Lemma 1. Let α, β1, . . . , βk are i.i.d. random signs, then the random variables

α, αβ1, . . . , αβk are also i.i.d. random signs.

The formal proof uses that the original variables are independent and that αβi and βi

are identically distributed.

Lemma 2. Let X and Y be two independent, Rd-valued and Rk-valued vector variable,

respectively. Consider a measurable function g : Rd × Rk 7→ R and a Borel-set A ⊆ R. If
we have P(g(x, Y ) ∈ A) = p for all (�xed) x ∈ Rd, then P(g(X, Y ) ∈ A) = p is also true.

Lemma 3. Let Z1, . . . , Zk be real-valued, i.i.d. random variables. Then, they are uniformly

ordered w.r.t. �π.

A detailed argument about these can be found in [11] Appendix A. Using these lemmas

we are able to prove the theorem (2.49).

Proof. As it was said we would like to verify that {‖Si(θ∗)‖2}m−1
i=0 are uniformly ordered.

Notice, that for θ = θ∗ we can express all Si(.) function as

Si(θ
∗) = R

− 1
2

n
1

n

n∑
t=1

αi,tϕtNt (2.51)

for all i = 0, . . . ,m − 1, where α0,t = 1 for all t ∈ {1, . . . , n}. We can see that all Si(.)

functions depend on the perturbed noise sequence {αi,tNt}nt=1 via the same measurable

function. We denote this function by S(α1,1N1, . . . , αi,nNn) , Si(θ
∗).
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Since each Nt is symmetric sign(Nt) and |Nt| are independent. Now we introduce

γi,t , αi,t sign(Nt). (2.52)

We can use lemma 1 because αi,t are i.i.d. random signs independent of sign(Nt) so {γi,t}nt=1

are not only independent of {|Nt|}nt=1 but also i.i.d. random signs.

Now look at one constant realization of {|Nt|}nt=1, called {vt}nt=1. We de�ne the real

valued variables Zi , ‖S(γi,1v1, . . . , γi,nvn)‖2. We apply the same (measurable) function

to each element of an i.i.d. sample therefore the result we get are going to be i.i.d. as well,

so {Zi} are i.i.d. random variables. Hence, lemma 3 can be applied. Consequently {Zi}
are uniformly ordered.

We proved that for a �xed realization of |Nt| the uniform ordering property is achieved.

Let {|Nt|} be X, {γi,t} be Y and ‖S(.)‖2 is g. Applying lemma 2 we see that the probabil-

ities are independent of the particular realization of {|Nt|} so we obtain the unconditional

uniform ordering property for {‖Si(θ∗)‖2}, from which the theorem follows.

2.2.4 Star convexity

We said before that the SPS constructs the con�dence region around the LS estimator.

Now we are going to interpret this claim more precisely. It has been seen that the LS is

in the con�dence region unless it is empty coming from the fact that ‖S0(θ̂n)‖ = 0. To

punctuate our claim that LS is in the center of the con�dence region let's recall the

de�nition of star convexity.

De�nition 2.2.3. S ⊆ Rn is star convex if and only there exists an x ∈ S called the star

center that for all α ∈ [0, 1] and for all y ∈ S it is true that xα + (1− α)y is an element

of S.

It is easy to see that all convex sets are star convex even though the controverse is not

true. Now the following theorem holds.

Theorem 2.2.4. If B1 and B2 are true then the con�dence region built by SPS is star

convex with the LS estimate as a star center or empty.

Convexity is not necessarely held. For example for q = 1 the constructed region is the

union of ellipsoids, which are not usually convex. A formal proof of this theorem can be

found in [11]. It is not so simple. the proof relies on the Schur complement argument. The

25



main idea is to express Θ̂n as unions and intersections of star convex sets having θ̂n as a

common star center. Also notice that the region can be empty with small probability. It

can happen that the generated signs are all one vectors so accidentally the θ̂n is excluded

during the process, but the probability of this event is really small and decreases with

an exponantial rate. It can be showed that if we do not allow two identical random sign

vectors the method still works, though in practise this is not a problem. The property of

star convexity gives us a good approach to �nd the boundary of the con�dence region,

which helps us representing these regions in lower dimensions.

2.2.5 Ellipsoidal outer approximation

Now we would like to represent the con�dence region that is constructed by the SPS.

As we can see in the method, for any given parameter it is easy to �nd out if it is in

the region or not. We have to calculate {‖Si(θ)‖2} for all i = 0, . . . ,m − 1 for that

parameter and compare them. It is possible to check each parameter in a grid and test

if that is included. However, it is computationally demanding and for higher dimensions

representation remains a big issue as always. Another problem is that we do not know

how big is our region estimator. There has not been anything so far that guarantees that

the region is not going to be too big or too small. Finding a great grid and interval is also

an arising question. Although the LS estimator gives us a great starting point because it

should be the center of the grid (see Section 2.2.4) the size and shape depend on a lot of

factors such as the variance of the noise, the number of observations, which norm we use

and even on the chosen m and q in the method. Some of these factors are unknown like

the variance of the noise.

Although, using the property of star convexity gives us a better approach to repre-

sentation, it is still going to be computationally demanding. We know that LS is the star

center of the region (if it is non-empty) therefore it is possible to �nd the boundaries

starting to test parameters from the LS in each direction. Using binary search algorithm

is a relatively fast way to �nd the boundary starting from the LS estimator in any di-

rection with a user-chosen accuracy. The problem is that in the parameter space usually

there are in�nitely many directions. Hence compact representation remains an issue.

As we could not �nd a truely compact representation for the con�dence region, trying

to �nd a good way of approximating the region is reasonable. Even though this way

our con�dence region is not going to be exact anymore a guaranteed probability is still
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achievable meaning that the true parameter, θ∗ is included in the con�dence region with

at least a user-chosen p probability. An outer approximation method has been developed

by Balázs Csáji, Erik Weyer and Marco Campi in [11]. This approximation is e�ciently

computed (in polynomial time) and can be represented very e�ciently in a compact way.

Expanding ‖S0(θ)‖2 we can rewrite the reference sum as

‖S0(θ)‖2 =

[
1

n

n∑
t=1

ϕt(Yt − ϕT
t θ)

]T
R−1
n

[
1

n

n∑
t=1

ϕt(Yt − ϕT
t θ)

]
(2.53)

=

[
1

n

n∑
t=1

ϕtϕ
T
t (θ − θ̂n)

]T

R−1
n

[
1

n

n∑
t=1

ϕtϕ
T
t (θ − θ̂n)

]
(2.54)

= (θ − θ̂n)TRn(θ − θ̂n). (2.55)

where θ̂n is the LS estimator. First, consider those parameters where there are at least q

‖Si(θ)‖2 greater or equal to ‖S0(θ)‖2. Now we do not worry about the random ordering

used in the SPS method. Our estimator is going to be an outer approximation so we may

allow more parameters to be included in the region than we did before. First we look at

this set:

Θ̂n ⊆
{
θ ∈ Rd : (θ − θ̂n)TRn(θ − θ̂n) ≤ r(θ)

}
,

where r(θ) denotes the qth greatest value of ‖Si(θ)‖2.

Our goal is to �nd an upper bound instead of r(θ) independent of θ. Let r denote

this �x boundary. Using this r we can see that the region we get is going to be a similar

ellipsoid as in the asymptotic theorem. At least the shape and the orientation of the

con�dence ellipsoid are going to be the same as it was there because those depend just

on the matrix Rn. Even though this ellipsoid has a di�erent size depending on r it is a

guaranteed con�dence region for �nitely many data points. In addition to that the values

of θ̂n, Rn and r give us a compact representation to this region.

2.2.6 Convex programming formulation

Looking for a �x r as upper bound instead of r(θ) leads us to a convex optimization

problem.

Comparing the reference sum to just a single sign-perturbed sum with index i for each
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parameter we can get this set of parameters:

{ θ : ‖S0(θ)‖2 ≤ ‖Si(θ)‖2 }

⊆ { θ : ‖S0(θ)‖2 ≤ max
θ:‖S0(θ)‖2≤‖Si(θ)‖2

‖Si(θ)‖2 }.

We can rewrite this relation as:

(θ − θ̂n)TRn(θ − θ̂n) ≤[
1

n

n∑
t=1

αi,tϕt(Yt − ϕT
t θ)

]T
R−1
n

[
1

n

n∑
t=1

αi,tϕt(Yt − ϕT
t θ)

]
= θTQiR

−1
n Qiθ − 2 θTQiR

−1
n ψi + ψT

i R
−1
n ψi,

where Qi ∈ Rd×d and ψi ∈ Rd are de�ned this way:

Qi ,
1

n

n∑
t=1

αi,tϕtϕ
T
t ,

ψi ,
1

n

n∑
t=1

αi,tϕtYt.

We know that

max
θ:‖S0(θ)‖2≤‖Si(θ)‖2

‖Si(θ)‖2 = max
θ:‖S0(θ)‖2≤‖Si(θ)‖2

‖S0(θ)‖2.

Let's use this notation: z , R
1
2

T
n (θ − θ̂n). Now the quantity we seek

max
θ:‖S0(θ)‖2≤‖Si(θ)‖2

‖S0(θ)‖2

can be found as the solution of the following optimization problem:

maximize ‖z‖2

subject to zTAiz + 2zTbi + ci ≤ 0,

(2.56)
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where Ai, bi and ci are de�ned as

Ai , I −R−
1
2

n QiR
−1
n QiR

− 1
2

T
n ,

bi , R
− 1

2
n QiR

−1
n (ψi −Qiθ̂n),

ci , −ψT
i R
−1
n ψi + 2θ̂T

nQiR
−1
n ψi − θ̂T

nQiR
−1
n Qiθ̂n.

This problem is not convex in general, but it can be shown that strong duality holds.

Formal proof can be found in [11]. It means that the maximum we look for is equal to

the optimum value of the dual problem, which can be expressed as

minimize γ

subject to λ ≥ 0[
−I + λAi λbi

λbT
i λci + γ

]
� 0,

(2.57)

where �� 0� denotes that a matrix is positive semide�nite. This problem is convex indeed,

therefore it can be solved easily using Gurobi or other tools.

Let γ∗i be the value we get by solving the convex optimization problem. Now we know

that

{θ : ‖S0(θ)‖2 ≤ ‖Si(θ)‖2} ⊆ {θ : ‖S0(θ)‖2 ≤ γ∗i }.

Obtaining

Θ̂n ⊆ ̂̂Θn ,
{
θ ∈ Rd : (θ − θ̂n)TRn(θ − θ̂n) ≤ r

}
,

where r is the qth largest value of γ∗i , i = 1, . . . ,m− 1.

The outer approximation is ̂̂Θn. It contains more parameters than Θ̂n so it is clear that

it is a guaranteed con�dence region, meaning

P
(
θ∗ ∈ ̂̂Θn

)
≥ 1− q

m
= p,

for any �nite n.

The pseudocode for computing ̂̂Θn is given in Table 2.3.
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Pseudocode: SPS-Outer-Approximation

1. Compute the least-squares estimate,

θ̂n = R−1
n

[
1
n

n∑
t=1

ϕtYt

]
;

2. For i ∈ {1, . . . ,m− 1}, solve the optimization

problem (2.56), and let γ∗i be the optimal value;

3. Let r be the qth largest γ∗i value;

4. The outer approximation of the SPS con�dence

region is given by the ellipsoid̂̂Θn =
{
θ ∈ Rd : (θ − θ̂n)TRn(θ − θ̂n) ≤ r

}
.

Table 2.3

2.2.7 Asymptotic properties

One of the most important properties of the SPS is that it is non-asymptotic. It gives

us an estimate for �nitely many data points. Nevertheless it would be great if SPS would

construct a more accurate con�dence region when we have more data points. In other

words when we have more information about a system then we would like to get closer

to the true parameter. In the next paragraphs we will see that SPS has nice asymptotical

properties as well. In a way it is strongly consistent and its size and shape is similar to

the asymptotic elipsoid as both n and m (the number of sums) goes to in�nity.

Strong consistency

We are going to see that as the number of observations tends to in�nity the size of the

region gets smaller so the region shrinks around the true parameter and asymptotically

all parameters are going to be excluded except θ∗.

Strong consistency holds if we assume the following:

B 3. lim infn→∞ λmin(Rn) = λ̃ > 0 where λmin is the minimum eigenvalue of a matrix,

B 4.
∑∞

t=1
‖ϕt‖2
t2

<∞ (regressor growth rate restriction),

B 5.
∑∞

t=1
E(N2

t )2

t2
<∞ (noise variance rate restriction).

Theorem 2.2.5. Assuming B1, B2, B3, B4 and B5 ∀ε > 0 (almost surely) ∃Ñ that

Θ̂n ⊆ Bε(θ
∗) ∀n > Ñ .
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A formal proof of this theorem can be found here [25] in Appendix A. The proof

relies on the strong Law of Kolmogorov, uses the assumptions and the Cauchy-Schwarz

inequality. Note that in this theorem Ñ is stochastic, it depends on the noise realization.

The noise can be non-stationary and the variance of the noise may itself tend to

in�nity, though the growth rate cannot be so big (see B6). Even the regressors themselves

can tend to in�nity though there is restriction for the rate as well (see B5).

Asymptotic shape

The shape and size are comparable to the asymptotic standard ellipsoids as we assume

that

B 6. lim supn→∞
1
n

∑∞
t=1 ‖ϕt‖4 <∞ (regressor growth rate restriction)

B 7. Ni is i.i.d. with E[Nt] = σ2 and E[N4
t ] <∞

To claim the theorem we need to de�ne the relaxed asymptotic ellipsoids, which are:

Θ̃n(ε) ,

{
θ : (θ − θ̂n)TRn(θ − θ̂n) 5

µσ2 + ε

n

}
.

where ε > 0. We use Θ̂n,m which refers to the con�dence region for n observations and

m − 1 sign-perturbed sums. As it was mentioned earlier both n and m goes to in�nity.

Let qm , b(1 − p)mc so that the probability that Θ̂n,m contains the true parameter is

pm , 1− qm
m
. We know that pm → p as m→∞, it comes from the construction.

Theorem 2.2.6. Assume B1, B2, B3, B6 and B7. then, there exists a doubly indexed set

of random variables {εn,m} such that limn→∞ limm→∞ εn,m = 0 a.s., and

Θ̂n,m ⊆ Θ̃n(εn,m)

The formal proof can be found in [25]. In the previous section we saw that LS is

the Best Linear Unbiased Estimator (BLUE), more preciesely the Gauss-Markov theorem

holds. This theorem shows us that in the long run Θ̂n,m is almost surely contained in the

standard asymptotic ellipsoid for the LS estimate, though noise variance can increase by

an asymptotically vanishing margin.
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2.3 SPS for ARX system

After dealing with a simple linear model we are going to consider an auto regressive

system with exogenous input also called the ARX model. In this model the explanatory

variables are previous outcomes and independent exogenous inputs, so the following holds

Yt +
na∑
j=1

a∗jYt−j ,
nb∑
j=1

b∗jUt−j +Nt. (2.58)

It can be reformulated into linear regression form as

Yt , −
na∑
j=1

a∗jYt−j +

nb∑
j=1

b∗jUt−j +Nt = ϕθ∗ +Nt (2.59)

where Yt is the tth outcome, na and nb are known orders of the ARX system, and

ϕt , [−Yt−1, . . . ,−Yt−na , Ut−1, . . . , Ut−nb
]T (2.60)

θ∗ , [−a∗1, . . . ,−a∗na
, b1, . . . , b

∗
nb

]. (2.61)

The presence of past outputs makes it harder to apply SPS on this system. The

standard SPS cannot be used directly, because the previous outcomes are not independent

of the noise. More precisely the
∑n

t=2−Yt−1Nt respective to Si(θ∗) does not have the same

distribution as
∑n

t=2−Yt−1αi,tNt, since Yt−1 depends on Nt−2,Nt−3 and so on. Therefore

we would not get an exact region in this case. Our goal in this section is to extend the

original SPS to the ARX model. This extended method was introduced in [10].

We are going to use alternative Ȳt such that
∑n

t=2−Ȳt−1αi,tNt has the same distribution

as
∑n

t=2−Yt−1Nt respective to Si(θ∗). We can apply these trajectories in general ARX

systems, but �rst let us consider a �rst order case where na = nb = 1.

2.3.1 First order ARX system

In the �rst order case the following equation holds

Yt = −a∗1Yt−1 + b∗1Ut−1 +Nt. (2.62)
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with |a∗1| < 1. Assume that B1 and B2 are true and we have n observations {(Yt, Ut)nt=0},
however notice that Un is not necessary. We also assume that the exogenous inputs are

independent of each other and the noise. We would like to apply the SPS on this system.

Our aim is to construct exact con�dence region for θ∗ around the LS estimator.

First, for any given parameter θ = [a1, b1] we can calculate the predicted residuals as

in the previous section

N̂t(θ) , Yt − ϕT θ (2.63)

for all t = 1, . . . , n.

The level of the con�dence region remains user-chosen so we need to choose integers

m and q such that P(θ∗ ∈ Θn) = 1 − q
m
. Again, in the initialization process we have

to generate m − 1 random sign vectors. As we recall these random signs were denoted

this way: {αi,t}nt=1 for all i = 0, . . . ,m − 1 where α0,t = 1 for all t = 1, . . . , n. We know

that each element of these signs are identically distributed and independent of any other

variable of the system. With these random signs we can perturb the predicted errors and

calculate (αi,tN̂t(θ))
n
t=1 for all i = 0, . . . ,m − 1. Using these alternative perturbed errors

we can predict alternative outcomes

Ȳt(θ, αi) , −a1Ȳt−1 + b1Ut−1 + αi,tN̂t(θ), (2.64)

with the initial condition Ȳ1(θ, αi) = Y1. It is easy to see that for θ = θ∗ we have

N̂t(θ
∗) = Nt (2.65)

and Ȳt−1 can be expressed as

Ȳt(θ
∗, αi) = (−a∗1)t−1Y1 +

t−1∑
k=1

b∗1(−a∗1)k−1Ut−k +
t−1∑
k=1

(−a∗1)k−1αi,t−kNt−k+1. (2.66)

We can also form alternative regressors

ϕ̄t(θ, αi) , [−Ȳt(θ, αi), Ut]T. (2.67)
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Using these now we are able to de�ne the sign-perturbed sums and the reference sum

S0(θ) , R
− 1

2
n

n∑
t=1

ϕt(Yt − ϕT
t θ), (2.68)

Si(θ) , R̄
− 1

2
n (θ, αi)

n∑
t=1

ϕ̄t(θ, αi)αi,t(Yt − ϕT
t θ), (2.69)

for i = 1, . . . ,m− 1, where

R̄
− 1

2
n (θ, αi) ,

1

n

n∑
t=0

ϕ̄t(θ, αi)ϕ̄
T
t (θ, αi). (2.70)

Notice that for θ = θ∗ we know that R
− 1

2
n = R̄

− 1
2

n (θ∗,1) and Yt−1 = Ȳt−1(θ∗,1), since

N̂t(θ
∗) = Nt where 1 is the all one vector. Calculating the reference sum respective to θ∗

we get

S0(θ∗) = R
− 1

2
n

n∑
t=1

ϕt(Yt − ϕT
t θ
∗) = R̄

− 1
2

n (θ∗,1)
n∑
t=1

[
−Ȳt(θ∗, αi)

Ut−1

]
Nt (2.71)

Evaluating the sign-perturbed sums gives us

Si(θ
∗) = R̄

− 1
2

n (θ∗,1)
n∑
t=1

[
−Ȳt(θ∗, αi)

Ut−1

]
(αi,tNt) (2.72)

We can express Yt−1 and Ȳt(θ∗, αi) as

Yt = (−a∗1)t−1Y1 +
t−1∑
k=1

b∗1(−a∗1)k−1Ut−k +
t−1∑
k=1

(−a∗1)k−1Nt−k+1 (2.73)

Ȳt(θ
∗, αi) = (−a∗1)t−1Y1 +

t−1∑
k=1

b∗1(−a∗1)k−1Ut−k +
t−1∑
k=1

(−a∗1)k−1αi,t−kNt−k+1 (2.74)

We can see that symmetry has been kept, because in the equation of Si(θ∗) all Nt has

been replaced by αi,tNt. It is also clear that Yt and Ȳt(θ∗, αi) are identically distributed,

because we know that the noise has a distribution symmetric around zero. It also implies

that Si(θ∗) and S0(θ∗) are identically distributed. Similarly like in the original system we

are going to get a uniformly ordered collection of random variables respective to the �π
total order which was de�ned earlier. That is why the con�dence region we get excluding

34



those parameters where ‖S0(θ)‖2 is among the q largest values of {‖Si(θ)‖2}m−1
i=0 remains

exact ergo we can proceed as before.

2.3.2 General ARX system

When we consider a more general ARX system we may rely on the same idea. Again we

would like to predict alternative Ȳt such that
∑n

t=2−Ȳt−1αi,tNt has the same distribution

as
∑n

t=2−Yt−1Nt corresponding to θ = θ∗. We calculate the residuals just like in the �rst

order case

N̂t(θ) , Yt − ϕT θ (2.75)

for all t = 1, . . . , n. Again, in the initialization process we generate m − 1 random sign

vectors, so that each element of these vectors are ±1 with exactly 1
2
probability and

independent of any other variable of the system. We perturb the predicted residuals and

using these alternative perturbed errors we predict alternative outcomes

Ȳt(θ, αi) , −
na∑
j=1

ajȲt−j(θ, αi) +

nb∑
j=1

bjUt−j + αi,tN̂t(θ), (2.76)

with the initial conditions of Ȳt(θ, αi) , Yt, for t ∈ {1− na, . . . , 0}. Alternative regressors
can be expressed as

ϕ̄t(θ, αi) , [−Ȳt−1(θ, αi), . . . ,−Ȳt−na(θ, αi), Ut−1, . . . , Ut−nb
]T. (2.77)

We compute the sign-perturbed sums and the reference sum as in the �rst order case. See

equation (2.71) and (2.72). We can proceed as for simple linear systems. If necessary we

have to use a tie-breaking rule. We may use a random permutation for this purpose. The

true parameter, θ∗ is included in the con�dence region constructed by this extended SPS

method with exactly 1− q
m
probability, formally

P(θ∗ ∈ Θq
m) = 1− q

m
. (2.78)
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Chapter 3

Least Absolute Deviations Criterion

Another important well-known point estimator used in linear regression models is the

least absolute deviations (LAD) estimator also called the least absolute errors (LAE),

least absolute value (LAV), least absolute residual (LAR), sum of absolute deviations or

L1 − norm condition. These names are used to this speci�c criterion and also for the

optimization techniqe that relies on it. As the names indicate this method minimizes the

sum of absolute errors or residuals which are going to be introduced formally later. This

chapter is based on a very clear and detailed summary written by Dielman [14].

The LAD criterion was �rst applied by Boscovich R. J. [5] in the middle of the 18th

century. In this paper it was used to �t a line to observation data. The method remained

prior until Legendre announced the LS criterion in 1805 [17]. After that, LAD took a

secondary role in solving regression problems. The main reason of this was that LS has

a unique analitical solution which is not computationally demanding to �nd. Another

factor was that Gauss [15] and Laplace made a great developement on the method of

LS in terms of probability theory. Many of these important results are expounded in the

previous chapter.

Although LS is more known there are many advantagous property of the LAD estima-

tor campared to LS. In this chapter I am going to review some of the fundamental results

related to LAD and point out the di�erences and similarities between the LAD and the

LS estimator.

First of all in this section the linear regression problem we would like to solve is going

to be introduced and possible methods to �nd a solution are going to be proposed. Later

on some of the LAD's important properties are going to be presented.
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3.1 Linear programming problem

Consider the same linear regression model as in Chapter 2. Again we have a linear

system with known structure but unknown true parameter θ∗ so that

Yt = ϕTt θ
∗ +Nt. (3.1)

The notation is the same as it was before. We have n observations and our goal is to

estimate the true parameter.

For each θ we can calculate the prediction error or residual as before using (2.2).

N̂t(θ) , Yt − ϕTt θ (3.2)

Now we are going to estimate the true parameter by minimizing the sum of the absolute

residuals made in each data point. There is no square function introduced this time.

Consequently the LAD estimator is

θ̂n , argmin
θ∈Rd

n∑
t=1

‖Yt − Ŷt(θ)‖1. (3.3)

Notice that we cannot take the derivative with respect to θ as we did in case of the LS

criterion because this time the function that we want to minimize is not di�erentiable.

As we see there is not necessarily a simple analitical solution. Uniqueness is another

questionable property of this estimator. It is relatively easy to construct examples that do

not have only one solution. You can see one very simple counterexample below on Figure

3.1 based on three observations searching for a two dimensional parameter. As we can see

there could be in�nitely many estimators. In these cases tie-breaking rules are applied to

pick one parameter whenever it is needed.

Even though there is not always a unique analitical solution to this optimization

problem, there are methods dealing with it. Notice that our regression problem can be

reformulated into a linear programming problem, where the LAD estimator can be found
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Figure 3.1: LAD estimator is not always unique. Each line minimizes the residuals in
L1-norm.

as the optimum of the following optimization problem:

minimize
n∑
t=1

(d+
t + d−t ) (3.4)

subject to Ŷt − (ϕTt θ̂n + d+
t − d−t ) = 0 (3.5)

∀t = 1, . . . , n (3.6)

where d+
t , d

−
t ≥ 0, and ϕt are the input vectors and θ̂n is the LAD estimator for n

observations. The signs of the estimators' coordinates are unrestricted. The d+
t and d−t

are the positive and negative residuals associated with the tth observation.

To solve this linear programming (LP) problem we can use the simplex method, which

was developed by Dantzig in 1947 [13]. Charnes [7] was the �rst who used simplex method

to solve the LAD regression problem. He and his group applied directly the primal version

of the simplex method however it was soon recognised that taking into consideration the

special structure of the problem computational e�ciency can be improved. Until the 1990s

a great variety of algorithm using the simplex method has been developed.

As LP solving improved, nowadays interior point algorithms or ellipsoid algorithms

can be applied to solve this problem in polynomial time, even though in practise simplex

method is e�cient in most of the cases. Portnoy and Kroenker [21] showed that interior

point algorithms together with a simple data preprocessing approach can provide a sig-

ni�cant improvement in speed. They also noted that simplex-based algorithms can �nd

the LAD estimator in less time than computing LS for a few hundred observations, but
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when the size of data gets very large simplex produces a solution much slower.

3.2 Properties of the LAD estimator

As it was listed in the �rst chapter the LS has many advantagous properties. We

are going to see that under certain circumstances the LAD estimator has nice properties

as well. In this section our aim is to review these therefore proofs are not going to be

presented, though they can be found in the referenced papers.

The assumptions we need to take are di�erent than they were before in case of the LS

estimator. Sometimes they become relatively complicated.

3.2.1 Asymptotic Gaussianity

Koenker and Bassett [3] investigating the asymptotic properties of the LAD estimator

proved the following theorem. They needed to make a variety of assumptions.

C 1. Assume that the distribution function (F ) of the noise has a median zero.

C 2. F is continuous and has continous and positive f at median, where f is the density

function of the noise.

C 3. Assume that 1
n
ΦTΦ→ Q as n→∞ where Q is a positive de�nite matrix.

Theorem 3.2.1. Let {θ̂n} denote a sequence of unique LAD estimators. Assuming C1,

C2 and C3
√
n(θ̂n − θ∗) converges in distribution to a d dimensional Gaussian random

vector variable with mean zero and covariance matrix σ2Q−1 where σ2 is the asymptotic

variance of the sample median from random samples of distribution F, i.e. σ = [2f(0)]−1.

The proof can be found in [3]. Bassett and Koenker also proved that asymptotic

normality holds when the mean residual is zero.

Pollard [20] showed a direct proof of the asymptotic Gaussianity. The technique he

used relies on the convexity of the criterion function and this proof is more direct.

3.2.2 Consistency

Wu proves strong consistency in [26] under certain conditions for the LAD estimator.

He emphasizes that proving the asymptotic theory for this estimate is more di�cult as
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compared to the LS estimator, because the absolute value function is not di�erentiable

in 0. In the referenced paper Wu provides these conditions for ensuring strong consistency.

D 1. λn
d2n logn

→∞ as n→∞, where λn is the smallest eigenvalue of Φn.

D 2. There exists a constant k > 1 such that dn
nk−l → 0.

D 3. N1, N2, . . . , Nn are independent random variables and med(Ni) = 0, i = 1, . . . , n.

D 4. There exist constants C1 > 0, C2 > 0 such that P(−h < Ni < 0) > C2h and

P(O < Ni < h) > C2h for all i = 1, . . . and h ∈ (0, C1).

Theorem 3.2.2. [26] Assume D1, D2, D3 and D4, then limn→∞ θ̂n = θ∗ almost surely.

In this paper it is also proved that under these conditions θ̂n → θ∗ rapidly with an

exponential rate.

In another paper he and Bai [2] list a variety of conditions and possible assumptions

which implies weak consistency. For example this theorem holds.

D 5. The disturbances are independent and come from distribution functions Fi each with

median zero.

D 6. There exist positive constants p ∈ (0, 1/2) and δ > 0 such that for each i = 1, 2, . . .

min{P(Ni > δ),P(Ni < −δ)} > p

Theorem 3.2.3. [2] Assume D5 and D6, then Φ−1
n → 0 as n → ∞ is a necessary

condition for weak consistency, where Φ =
∑n

t=1 ϕtϕ
T
t .

3.2.3 Unbiasedness

LAD estimator is unbiased if the conditional distribution of the vector of errors is

symmetric given the matrix of regressors. When there is not a unique solution we must

use a tie-breaking rule to ensure unbiasedness. For further information see Andrews' [1]

results.
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3.2.4 Comparison between LS and LAD

Though LAD criterion was developed some decades earlier the use of LS became prior

due to its uniqueness and easy to compute analitical solution. Nowadays there are e�cient

methods to �nd the LAD estimator as well so it can be applied in many cases. Both esti-

mates have good properties such as consistency, asymptotic normality and unbiasedness.

In comparison we can say that LAD is more robust than LS. The use of LAD is superior

when we deal with heavy-tailed error distribution, because LAD is not so sensitive to

outliers as LS. In other words whenever a median is more e�cient than the mean as a

parameter of a distribution LAD is preferable.
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3.3 Another version of the SPS method

The non-asymptotic method of SPS can be modi�ed to a more robust version. It was

developed by Algo Care, Csáji Balázs and Erik Weyer [6]. We are going to see that even

the strongest assumption that we made on the noise term, that it has to be symmetric

about zero, can be relaxed. Making small changes in the algorithm implies that we can

use this modi�ed SPS when the noise is asymmetric. Now the only restriction we need

to make is that the disturbance has a median zero, which is a weaker assumption than

symmetricity was. Here we need to know these medians for every Nt and they need to

be the same for all noise terms. When the medians are not zero but identical and known

we can shift every noise term and this way reduce the problem back to the normal zero

median case.

3.3.1 LAD-SPS

The normal SPS method constructs an exact con�dence region around the LS esti-

mator. This variant of the SPS called the LAD-SPS builds the region around the LAD

estimator. It means that if the region is non-empty than the LAD estimator is going to

be included. LAD was introduced in the previous section as

θ̂n , argmin
θ∈Rd

n∑
t=1

‖Yt − Ŷt(θ)‖1. (3.7)

Its most important properties were discussed and a comparison has been made to the LS

before.

In this section we are going to use the θ̂n notation only for the LAD estimator based

on n observations. From now on the LS estimator will be denoted by θLS to avoid any

misunderstanding.

A small change in the original algorithm is going to construct the con�dence region

around the LAD estimator instead of the LS estimator. The initialization process re-

mains the same as it was before. Hence, the level of the built con�dence region stays

user-chosen. The only di�erence we have to make is replacing the original S0 reference

sum and Si sign-perturbed sums where i = 1, . . . ,m− 1 by new type of sums de�ned this

way

Z0(θ) , R
− 1

2
n

1

n

n∑
t=1

ϕt sign(N̂t(θ)) (3.8)
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Zi , R
− 1

2
n

1

n

n∑
t=1

αi,tϕt sign(N̂i(θ)) (3.9)

where

N̂t(θ) , Yt − ϕT θ. (3.10)

As we can see we use the same �shaping matrix�, because the errors of LAD estimators are

also asymptotically Gaussian [20] with the covariance matrix R−1, when R = limn→∞Rn

exists and is invertible.

As earlier, the region contains a θ parameter if and only it is true for this parameter

that the norm of the reference sum, ‖Z0(θ)‖, is among the q largest in the strict order

on {‖Zi(θ)‖2}m−1
i=0 . Remember that we use a tie-breaking rule if it is necessary. First,

notice that Z0(θ̂n) = 0 because 1
n

∑n
t=1 ϕt sign(Nt(θ)) is the subgradient of the mean of

the absolute deviation error 1
n

∑n
t=1 ‖Yt − ϕtθ‖. Therefore the LAD estimator is included

in the con�dence region.

If we evaluate the reference sum for the true parameter we get the following

Z0(θ∗) = R
− 1

2
n

1

n

n∑
t=1

ϕt sign(N̂t(θ
∗)) = R

− 1
2

n
1

n

n∑
t=1

ϕt sign(Nt) (3.11)

since

N̂t(θ
∗) = Yt − ϕT θ∗ = Nt. (3.12)

Notice that sign(Nt) = ±1 with 1
2
probability implying that sign(Nt) = αi,t in distribution.

Now evaluate the sign-perturbed sums for the true parameter.

Zi(θ
∗) = R

− 1
2

n
1

n

n∑
t=1

ϕtαi,t sign(N̂t(θ
∗)) = R

− 1
2

n
1

n

n∑
t=1

ϕtαi,t sign(Nt) (3.13)

It is easy to see that sign(Nt) = αi,t sign(Nt) in distribution thus there is no reason why

any sign-perturbed sum should be greater or less than the reference sum in the 2-norm.

In other words the Zi(θ∗) for all i = 0, . . . ,m − 1 are identically distributed and they

are independent as well so after sorting these vectors all orderings are equally likely. The

formal proof is similar to the one we had for the original SPS method, though this case

is a bit easier. Consequently the true parameter is going to be included in the con�dence

region with exactly 1 − q
m
probability. Let Θq

m denote the con�dence region built by the
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LAD-SPS using m− 1 sign-perturbed sums, then formally

P(θ∗ ∈ Θq
m) = 1− q

m
(3.14)

meaning that the exact con�dence result holds true.

3.3.2 Consistency

In the original version of SPS method consistency was a great property of the con-

structed regions under mild assumptions (B1, B2,B3,B4 and B5). We hoped that similar

theorem holds in case of LAD-SPS. Simulation showed us that LAD-SPS can be consis-

tent because the regions are shrinking around the true parameter as n goes to in�nity

(see 4.8).

It is easy to see that we need to assume that the LAD is consistent, because the LAD

estimator is always included in the region unless it is empty. Satisfactory assumptions for

LAD's consistency were listed before. Wu's article deals with this topic [26]. Beside that

it is reasonable to assume B1, B2, B3 and B4. In addition, suppose that

B 8. Nt has a median zero and continous density function at 0.

Theorem 3.3.1. Assume B1, B2, B3, B4 and B8. Furthermore suppose that the LAD

estimator is consistent. Then pointwise consistency is true. For all θ 6= θ∗

P
( ∞⋂
k=1

∞⋃
n=k

{θ ∈ Θ̂n}
)

= 0. (3.15)

Proof. We look at the following quantity ‖Z0(θ)‖2−‖Zi(θ)‖2 for a �xed θ 6= θ∗. We would

like to see that there is an Ni so that if n > Ni this quantity is greater than a positive

ε. In that case ‖Z0(θ)‖2 dominates over ‖Zi(θ)‖2. If it is true for all i ∈ {1, . . . ,m − 1},
then we can use the maximum of Ni, because for all n > max{Ni} ‖Z0(θ)‖2 will be the

largest. So eventually θ will be excluded.

First we are going to see that ‖Si(θ)‖2 tends to zero as n goes to in�nity similarly to

the proof in [25]. We know that

Zi(θ) = R
− 1

2
n

1

n

n∑
t=1

ϕtαi,t sign(N̂t(θ)). (3.16)
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Let denote

Γn ,
1

n

n∑
t=1

ϕtαi,t sign(N̂t(θ)). (3.17)

If we look at αi,t sign(N̂t(θ)) we see that it has the same distribution as αi,t. Both variables

take values ±1 with 1
2
probability. We may check the Kolmogorov criterion for every

coordinate of Γn

∞∑
t=1

E[ϕ2
t,k(αi,t sign(N̂t(θ)))

2]

t2
=

E[ϕ2
t,k1]

t2
≤

∞∑
t=1

‖ϕt‖2

t

1

t
≤

√√√√ ∞∑
t=1

‖ϕ‖4

t2

√√√√ ∞∑
t=1

1

t2
<∞

(3.18)

by using Cauchy-Schwarz inequality and B4. Therefore, we can apply the Strong Law of

Large Numbers and we get that Γn → 0 almost surely. We know that lim infn→∞ λmin(Rn) >

0 (see B3) so we get that R
− 1

2
n Γn = Zi(θ)

a.s.−−→ 0. Consequently

‖Zi(θ)‖2 a.s.−−→ 0. (3.19)

Just like in the original version of SPS we would like to prove that ‖Z0(θ)‖2 9 0 when

θ 6= θ∗.

Our intuition is that for any θ 6= θ̂n (LAD estimate) the expected value of the vector∑n
t=1 ϕt sign(N̂t(θ)) should not be zero therefore its norm converges to a positive value.

In [12] it was shown that if E
[∑n

t=1 ϕt sign(N̂t(θ))

]
equals to zero then θ also minimizes

the L1-norm function. They used B8 there. Consequently θ = θ̂n. It means that the

subgradient of the LAD estimator cannot be zero for any other parameter than θ̂n.

Again we may use the Strong Law of Large Numbers. The quantity of
1
n

∑n
t=1 ϕt sign(Nt(θ)) almost surely converges to a nonzero vector. We know that Rn

is singular and converges to a positive de�nite matrix (see B3) therefore R
− 1

2
n has a mini-

mum eigenvalue greater than zero and even lim inf λmin

(
R
− 1

2
n

)
is positive. It follows that

R
− 1

2
n

∑n
t=1 ϕt sign(Nt(θ)) almost surely converges to a nonzero vector. It also means that

its norm has to be positive. More precisely ‖Z0(θ)‖ → ε > 0. So we got that eventually

all θ 6= θ∗ is going to be excluded from the con�dence region.
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3.4 LAD-SPS for ARX Systems

In this section we would like to extend the LAD-SPS to ARX systems. As we are going

to see this extension is similar to the one that was presented for the original SPS. Now,

our goal is to construct an exact con�dence region around the LAD estimator for �nitely

many data points.

Let us consider the following autoregressive exogenous (ARX) stochastic system

Yt +
na∑
j=1

a∗jYt−j ,
nb∑
j=1

b∗jUt−j +Nt, (3.20)

where Yt is the output, Ut is the exogenous input and Nt is the noise a�ecting the system at

time t. Random variables {Yt}, {Ut} and {Nt} are real-valued. We assume that the inputs

are observed and the orders na and nb are known. Regarding the noise, we only assume that

{Nt} is a sequence of independent random variables, which are also independent of the

inputs, {Ut}, and each Nt is distributed symmetrically around zero. Though mediangale

distribution of the disturbance is not enough this time, symmetricity is still a very mild

condition on the noise as this assumption is met by most of the well-known distribution

(Gaussian, Laplace, Cauchy etc.).

The available sample is (w.l.o.g.) assumed to be (re-index and drop super�uous data

to achieve this)

Y1−na , Y1−na+1, . . . , Yn, U1−nb
, U1−nb+1, . . . , Un−1. (3.21)

We cannot use the LAD-SPS directly because the
∑n

t=2−Yt−1Nt respective to θ∗ does

not have the same distribution as
∑n

t=2−Yt−1αi,tNt, since Yt−1 depends on Nt−1,Nt−2 and

so on. For this reason we build up alternative trajectories so that these two have the same

distribution.

For any given θ = [a1, . . . , ana , b1, . . . , bnb
]T to �nd alternative outcomes �rst we cal-

culate the prediction errors or residuals

N̂t(θ) , Yt − ϕT
t θ. (3.22)

After that we generate m − 1 random sign vectors so that {αi,t} are i.i.d. random signs

(take values ±1 with probability 1/2 each). Using these random signs we are able to build
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up the the alternative perturbed outputs

Ȳt(θ, αi) , −
na∑
j=1

ajȲt−j(θ, αi) +

nb∑
j=1

bjUt−j + αi,tN̂t(θ), (3.23)

with the initial conditions Ȳt(θ, αi) , Yt, for t ∈ {1−na, . . . , 0}. We can calculate Rn and

{R̄n(θ, αi)}, the refence and perturbed covariance estimates reasonably,

Rn ,
1

n

n∑
t=1

ϕtϕ
T
t , (3.24)

R̄n(θ, αi) ,
1

n

n∑
t=1

ϕ̄t(θ, αi)ϕ̄
T
t (θ, αi), (3.25)

where the reference and perturbed regressor vectors {ϕt} and {ϕ̄t(θ, αi)} are de�ned as

ϕt , [−Yt−1, . . . ,−Yt−na , Ut−1, . . . , Ut−nb
]T , (3.26)

ϕ̄t(θ, αi) , [−Ȳt−1(θ, αi), . . . ,−Ȳt−na(θ, αi), Ut−1, . . . , Ut−nb
]T, (3.27)

Then, the reference and the sign-perturbed sums, with respect to parameter θ, can be

calculated as

S0(θ) , R
− 1

2
n

1

n

n∑
t=1

ϕt sign(N̂t(θ)), (3.28)

Si(θ) , R̄
− 1

2
n (θ, αi)

1

n

n∑
t=1

ϕ̄t(θ, αi)αi,t sign(N̂t(θ)), (3.29)

for i ∈ {1, . . . ,m− 1}. With these vectors we can proceed as before.

3.4.1 Exact con�dence

We saw that for θ = θ∗

N̂t(θ
∗) = Nt (3.30)
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It is also clear that Yt and Ȳt(θ∗, αi) are the same in distribution, since Nt is symmetrically

distributed around zero. It is easy to see that

Yt = Ȳt(θ
∗,1) (3.31)

R
− 1

2
n = R̄

− 1
2

n (θ∗,1). (3.32)

Consequently

S0(θ∗)=R
− 1

2
n

1

n

n∑
t=1

ϕt sign(N̂t(θ
∗)) = R̄

− 1
2

n (θ∗,1)
1

n

n∑
t=1

ϕ̄t(θ
∗,1) sign(N̂t) (3.33)

which is identically distributed as the sign perturbed sums

Si(θ
∗)=R̄

− 1
2

n (θ∗, αi)
1

n

n∑
t=1

ϕ̄t(θ
∗, αi) sign(αi,tN̂t). (3.34)

Although the sums are identically distributed they are not necessarily independent of

each other. Nevertheless the same arguments works as in the previous sections to show

that {‖Si(θ∗)‖2}m−1
i=1 are uniformly ordered, meaning that all permutations are going to

be equally likely after sorting the elements. It gives us the wished result

P(θ∗ ∈ Θq
m) = 1− q

m
(3.35)

where Θq
m is the con�dence region we get using this extended version of LAD-SPS for an

ARX system.
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Chapter 4

Appendix

4.1 Simulation examples

Trying to understand the SPS method as much as possible I made some simulations

on computer generated data.

I considered the following second order linear system

Yt = ϕTt Θ∗ +Nt (4.1)

where Θ∗ , [3, 3] andNt were i.i.d. uniform variables on [−0.5, 0.5] interval. The regressors

were randomly generated as well on the [0, 6] interval. I demonstrated the SPS based on

n = 40, n = 80 and n = 120 observations with m = 100 and q = 5 (see 4.1, 4.2

and 4.3). The resulted con�dence regions contained the true parameter with exactly 0.95

probability. I did similar experiments using the LAD-SPS based n = 80, n = 120 and

n = 400 observations (see 4.6, 4.7 and 4.8). From these �gures we can see how the regions

shrink around the true parameter. In other �gures (4.4, 4.9) we can see the di�erent layers

as the con�dence level changes. To achieve these layers I switched parameter q to 2, 5, 10

and 20 respectively in the SPS and LAD-SPS functions.
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Figure 4.1: 95% con�dence region constructed by the original SPS method, n=40, m=100.
The noise was uniform on the [−0.5, 0.5] interval. We can also see the true parameter and
the LS estimator.
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Figure 4.2: 95% con�dence region constructed by the original SPS method, n=80, m=100.
The noise was uniform on the [−0.5, 0.5] interval. We can also see the true parameter and
the LS estimator.
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Figure 4.3: 95% con�dence region constructed by the original SPS with n=120 and m=100.
The true parameter and the LS estimator can also be seen. The noise was uniform on the
[−0.5, 0.5] interval.
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Figure 4.4: The di�erent layers of the con�dence region constructed by the SPS are rep-
resented here, n=40, m=100 and the noise was uniform on the [−0.5, 0.5] interval. The
80%, the 90%, the 95% and the 98% con�dence regions can be seen on the �gure.
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Figure 4.5: In this �gure each point is represented with its con�dence level. Parameters
were n=50, m=100 and the noise was uniform on the [−0.5, 0.5] interval. The darker
points are included in the con�dence region with higher probability level and the brighter
ones are only included in the con�dence regions with lower probability level.

2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2

x-axis

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

y-
ax

is

SPS confidence layers

3*3
*

3LS

Figure 4.6: 95% con�dence region constructed by the LAD-SPS, n=80, m=100. The noise
was uniform on the [−0.5, 0.5] interval. We can also see the true parameter.
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Figure 4.7: 95% con�dence region constructed by the LAD-SPS, n=120, m=100. The
noise was uniform on the [−0.5, 0.5] interval. We can also see the true parameter.
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Figure 4.8: 95% con�dence region constructed by the LAD-SPS, n=400, m=100. The
noise was uniform on the [−0.5, 0.5] interval. We can also see the true parameter.
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Figure 4.9: The di�erent layers of the con�dence region constructed by the LAD-SPS
are represented here. Parameters were n=50, m=100 and the noise was uniform on the
[−0.5, 0.5] interval. The 80%, the 90%, and the 95% con�dence regions can be seen on the
�gure with di�erent colors.
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Matlab Codes

4.1.1 SPS initialization

1 par = [ 3 ; 3 ] ;

2 n=50;

3 f i=ze ro s (2 , n ) ;

4 y=ze ro s (1 , n ) ;

5 f o r i =1:n

6 f i ( 1 : 2 , i )=rand (2 , 1 ) ∗6 ;
7 y (1 , i )=f i ( 1 : 2 , i ) '∗ par+rand (1 ) −0.5;
8 end

9 R=1/n∗( f i ∗ f i ' ) ;
10 Rfe l=cho l (R) ;

11 a l=rand (n , 9 9 ) −0.5;
12 a l=s i gn ( a l ) ;

13 pi=randperm (100) ;

14 m=100;

4.1.2 SPS function

1 f unc t i on [ a]=SPSLS( par , y , f i , a l )

2 m=100;

3 q=5;

4 p=1−q/m;

5 n=40;

6 R=1/n∗( f i ∗ f i ' ) ;
7 Rfe l=cho l (R) ;

8 %randp (1/2) ;

9 %randperm (n) ;

10 d=s i z e ( f i , 1 ) ;

11 epsz=(y'− f i '∗ par ) ;
12 RI=inv ( Rfe l ) ;

13 S0=RI∗1/n∗ f i ∗ epsz ;
14 S=ze ro s (d ,m−1) ;
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15 f o r j =1:m−1
16 f o r i =1:n

17 S ( 1 : d , j )=S ( 1 : d , j )+f i ( 1 : d , i )∗ epsz ( i )∗ a l ( i , j ) ;
18 end

19 S ( 1 : d , j )=RI∗1/n∗S ( 1 : d , j ) ;
20 end

21 S=[S , S0 ] ;

22 s=ze ro s (1 ,100) ;

23 f o r j =1:100

24 s ( j )=norm (S ( 1 : d , j ) ) ;

25 end

26 s=so r t ( s ) ;

27 norm(S0 ) ;

28 b=f i nd ( s==norm(S0 ) ) ;

29 i f b<m−q+1
30 a=1;

31 e l s e

32 a=0;

33 %R=1/n∗sum(sum( f i ∗ f i ' ) ) ;
34 %Rfe l=cho l (R) ;

35 end

4.1.3 SPS simulation

1 a=l i n s p a c e ( 2 . 8 , 3 . 2 , 1 0 0 ) ;

2 b=l i n s p a c e ( 2 . 8 , 3 . 2 , 1 0 0 ) ;

3 c=ze ro s (100) ;

4 f o r i =1:100

5 f o r j =1:100

6 c ( i , j )=SPSLS ( [ a ( i ) ; b ( j ) ] , y , f i , a l ) ;

7 end

8 end

9 [X,Y]=meshgrid ( a , b) ;

10 contour (X,Y, c ' , 1 )
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11 hold on

12 p lo t (3 , 3 , ' k∗ ' )
13 g r id

14 Theta=inv ( f i ∗ f i ' ) ∗ f i ∗y ' ;
15 p lo t ( Theta (1 ) , Theta (2 ) , ' k∗ ' )
16 t ex t (3 , 3 , ' \ theta^∗ ' )
17 t ex t ( Theta (1 ) , Theta (2 ) , ' \ theta_{LS} ' )

18 t i t l e ( 'SPS n=40,p=0.95 ' )

4.1.4 SPS layers function

1 f unc t i on [ a]=SPSLSplus ( par , y , f i , a l )

2 m=100;

3 q=5;

4 p=1−q/m;

5 n=50;

6 R=1/25∗( f i ∗ f i ' ) ;
7 Rfe l=cho l (R) ;

8 %randp (1/2) ;

9 %randperm (n) ;

10 d=s i z e ( f i , 1 ) ;

11 epsz=(y'− f i '∗ par ) ;
12 RI=inv ( Rfe l ) ;

13 S0=RI∗1/n∗ f i ∗ epsz ;
14 S=ze ro s (d ,m−1) ;
15 f o r j =1:m−1
16 f o r i =1:n

17 S ( 1 : d , j )=S ( 1 : d , j )+f i ( 1 : d , i )∗ epsz ( i )∗ a l ( i , j ) ;
18 end

19 S ( 1 : d , j )=RI∗1/n∗S ( 1 : d , j ) ;
20 end

21 S=[S , S0 ] ;

22 s=ze ro s (1 ,100) ;

23 f o r j =1:100
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24 s ( j )=norm (S ( 1 : d , j ) ) ;

25 end

26 s=so r t ( s ) ;

27 norm(S0 ) ;

28 a=m−f i nd ( s==norm(S0 ) ) ;

29 end

4.1.5 SPS layers simulation

1 a=l i n s p a c e ( 2 . 8 , 3 . 2 , 1 0 0 ) ;

2 b=l i n s p a c e ( 2 . 8 , 3 . 2 , 1 0 0 ) ;

3 f i g u r e

4 hold on

5 f o r i =1:100

6 f o r j =1:100

7 c=SPSLSplus ( [ a ( i ) ; b ( j ) ] , y , f i , a l ) /100 ;

8 p lo t ( a ( i ) ,b ( j ) , '∗ ' , ' MarkerSize ' ,10 , ' MarkerEdgeColor ' ,[1− c 1−
c 1−c ] )

9 hold on

10 end

11 end

12 p lo t (3 , 3 , 'b∗ ' )
13 hold on

14 Theta=inv ( f i ∗ f i ' ) ∗ f i ∗y ' ;
15 p lo t ( Theta (1 ) , Theta (2 ) , 'b∗ ' )
16 t i t l e ( 'SPS con f idence l a y e r s ' )

17 t ex t (3 , 3 , ' \ theta^∗ ' )
18 t ex t ( Theta (1 ) , Theta (2 ) , ' \ theta_{LS} ' )

19 x l ab e l ( ' x−ax i s ' )
20 y l ab e l ( ' y−ax i s ' )
21 ax i s ( [ 2 . 7 5 3 .25 2 .75 3 . 2 5 ] )

4.1.6 LAD-SPS function

1 f unc t i on [ a]=SPSLAD( par , y , f i , a l )
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2 m=100;

3 q=5;

4 p=1−q/m;

5 n=50;

6 R=1/n∗( f i ∗ f i ' ) ;
7 Rfe l=cho l (R) ;

8 %randp (1/2) ;

9 %randperm (n) ;

10 d=s i z e ( f i , 1 ) ;

11 epsz=s i gn (y'− f i '∗ par ) ;
12 RI=inv ( Rfe l ) ;

13 S0=RI∗1/n∗ f i ∗ epsz ;
14 S=ze ro s (d ,m−1) ;
15 f o r j =1:m−1
16 f o r i =1:n

17 S ( 1 : d , j )=S ( 1 : d , j )+f i ( 1 : d , i )∗ epsz ( i )∗ a l ( i , j ) ;
18 end

19 S ( 1 : d , j )=RI∗1/n∗S ( 1 : d , j ) ;
20 end

21 S=[S , S0 ] ;

22 s=ze ro s (1 ,100) ;

23 f o r j =1:100

24 s ( j )=norm (S ( 1 : d , j ) ) ;

25 end

26 s=so r t ( s ) ;

27 norm(S0 ) ;

28 b=f i nd ( s==norm(S0 ) ) ;

29 i f b<m−q+1
30 a=1;

31 e l s e

32 a=0;

33 %R=1/n∗sum(sum( f i ∗ f i ' ) ) ;
34 %Rfe l=cho l (R) ;

35 end

59



4.1.7 LAD-SPS simulation

1 const =100;

2 a=l i n s p a c e ( 2 . 8 , 3 . 2 , const ) ;

3 b=l i n s p a c e ( 2 . 8 , 3 . 2 , const ) ;

4 ca=ze ro s ( const ) ;

5 f o r i =1: const

6 f o r j =1: const

7 ca ( i , j )=SPSLAD( [ a ( i ) ; b ( j ) ] , y , f i , a l ) ;

8 end

9 end

10 [X,Y]=meshgrid ( a , b) ;

11 [C, h]= contour (X,Y, ca ' , 1 ) ;

12 contour (X,Y, ca ' , 1 )

13 hold on

14 p lo t (3 , 3 , ' k∗ ' )
15 t i t l e ( 'LAD−SPS n=50,p=0.95 ' )

16 g r id

17 t ex t (3 , 3 , ' \ theta^∗ ' )
18 x l ab e l ( ' x ax i s ' )

19 y l ab e l ( ' y ax i s ' )
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