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Introduction

The aim of this thesis is to give an overview of bipartite matching problems

and the related results focusing on the online input models, and to study

their generalizations with matroid constraints.

The well-known theorems of K®nig and Hall characterize the maximum

cardinality of a matching in a bipartite graph. In the past decades, numerous

extensions of the bipartite matching problem have been studied, many of

them are motivated by real world problems. Such a model was introduced

by Karp, Vazirani, and Vazirani [13]. In their model, called online bipartite

matching, one side of the bipartition is known in advance and the vertices

of the other side arrive in an online fashion. Upon the arrival of a vertex,

its incident edges are revealed and an immediate and irrevocable matching

decision should be made, possibly leaving the vertex unmatched. The goal

is to maximize the size of the obtained matching. One of the real-world

applications is advertising, where one side corresponds to the set of items

and the other side to the set of buyers. Upon the arrival of a buyer, his

preferred items are revealed and a matching decision should be made.

Since its �rst appearance, online bipartite matching has received consid-

erable attention, therefore Chapter 1 provides a perspective on the allocation

problems and the related input models. Although both the o�ine and online

versions of the problems are described, the emphasis is on the latter one.

In Chapter 2, results on the online bipartite matching problem are de-

scribed including the early theorems and conjectures of Karp, Vazirani and

Vazirani and the latest work of Feige.
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Lastly, in Chapter 3, two matroid generalizations of bipartite matching are

considered. After a brief overview of the o�ine problems, greedy algorithms,

as possible optimal online algorithms, are studied with the aim of giving

bounds for the online problems.
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Chapter 1

Landscape of the problems

There are numerous generalizations of bipartite matching, which are studied

in di�erent input models. This chapter focuses on results corresponding to

the online variants.

1.1 Input models and arrival orders

There are several input models for bipartite allocation problems. These mod-

els di�er from each other in the information available on the arriving vertices.

In the o�ine model, the algorithm knows the whole graph G = (S, T ;E)

ahead of time. In the online models, in contrast, one side of the bipartiton

is known in advance, but the vertices of the other partition and the edges

arrive in an online fashion.

Online problems are studied under adversarial order in most of the cases,

since it is the most general setting. In this model, no preliminary knowledge

of the arriving vertices and edges is assumed. The algorithm knows only the

vertices of S that have already arrived, edges incident to them and vertices

of T . In the case of randomized algorithms, the adversary knows the code of

the algorithm and it can create the worst possible input, but does not know

the random choices.
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In the random arrival model, the adversary selects the graph, but not the

arrival order � the vertices of S arrive in a random order.

1.2 Online bipartite matching

In online bipartite matching, there is a bipartite graph G = (S, T ;E) where

one side T , called o�ine vertices, is known in advance and the vertices of

the other side S arrives online, one vertex at a time. When a vertex s ∈ S
arrives, edges incident to s are revealed. The arriving vertex can be matched

to one of its unmatched neighbors. The goal is to maximize the size of the

matching. This problem was introduced by Karp, Vazirani and Vazirani in

1990 [13].

Karp, Vazirani and Vazirani gave a randomized greedy algorithm, called

Ranking (see Algorithm 3). An algorithm for online bipartite matching is

called greedy if the only vertices of S that it leaves unmatched are those that

upon their arrival do not have an unmatched neighbor. Ranking chooses a

permutation π over the vertices of T uniformly at random, π is not known

by the adversary, and when an online vertex s arrives, it matches s to the

eligible neighbor t with the smallest rank π(t) or leaves it unmatched if all the

neighbors of s are unavailable. For bipartite graphs with maximum matching

of size n, the competitive ratio of Ranking is at least 1 − (1 − 1
n+1

)n, which

tends to 1− 1
e
as n goes to in�nity. In 2018, Feige [8] showed that, when the

input is chosen from a certain distribution Dn, no online algorithm matches

more than (1− 1
e
)n+ 1− 2

e
+O( 1

n!
) edges in expectation, thus the bound is

essentially tight.

1.3 Competitive ratio

The performance of an online matching algorithm A is quanti�ed by the

competitive ratio of A, de�ned as the ratio of the expected size of matching

obtained by A and the size of the maximum matching. The competitive ratio
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is determined by graphs that have a perfect matching [2, 7], in other words,

when the input graphs have a perfect matching, the algorithms' competitive

ratio is at most as much as that of the methods when the input graphs

are arbitrary, see the proof in Section 2.2. Hence, for every n, consider the

following class Gn of bipartite graphs. For every G = (S, T ;E) ∈ Gn, |S| =

|T | = n and G has a perfect matching. The following notations extend those

introduced by Feige [8] and enable the generalization of the competitive ratio

which is an algorithm-independent bound.

• ρ(A,G) is the (expected) cardinality of matching produced by A when

the input graph is G

• ρ(A,G) is the (expected) cardinality when A is chosen from a class of

algorithms A and graph G ∈ G and ρ(A,G) = maxA∈AminG∈G ρ(A,G)

• ρ̂(A) = minG bipartite graph
ρ(A,G)
m

where m is the size of the maximum

matching i.e. ρ̂(A) is the competitive ratio of A

• ρ(−,G) = ρ(G) is the maximum of ρ(A,G) over all A

• ρ̂ = infn
ρ(Gn)
n

is the largest constant such that ρ̂n ≤ ρ(Gn) for all n

Competitive ratio is used for measuring the performance not only of

the online bipartite matching, but of its generalizations. In the latter case,

ρ(A,G) denotes the value of the objective function attained by the algorithm

A. If A is randomized then ρ(A,G) is the expected value, and OPT (G) is

the optimal solution of the o�ine problem [16].

ρ̂(A) = minG bipartite graph

ρ(A,G)

OPT (G)

In general, let ρ̂ be the largest constant such that ρ̂ ≤ minG
ρ(G)

OPT (G)
where

ρ(G) is the maximum over all A of ρ(A,G), as above. The main online allo-

cation problems and their best known ratio ρ̂ are summarized in Table 1.2.
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1.4 Online vertex-weighted bipartite matching

The simplest generalization of online bipartite matching is when the o�ine

vertices have weights. This was introduced by Aggarwal in [1]. In this version

of bipartite matching, each vertex t ∈ T has a non-negative weight wt, which

are known in advance. The goal is to maximize the sum of the weights of the

matched vertices of T .

In this case, a greedy algorithm means that it matches the arriving vertex

to the available neighbor with the highest weight. Since Ranking ignores

the weights, it does not achieve the ratio of 1 − 1
e
if the weights are highly

skewed. One can construct examples in which the ratio of Ranking goes to

0. However, the aforementioned greedy algorithm works well in this case,

but has a competitive ratio of 1
2
when the weights are equal. Algorithm 1,

called Perturbed greedy, is a generalization of Ranking, but based on the

other greedy algorithm as well. It runs greedy on perturbed weights, i.e.

on w̃t = wt(1 − ert−1), where rt is chosen from U [0, 1]. Instead of choosing

a random permutation, it selects a permutation from a distribution that

depends on the weights of the vertices such that vertices with higher weights

have higher probability of being matched. In the case of equal weights, the

algorithm is the same as Ranking since selecting rt and choosing the highest

1 − ert−1 is equivalent to choosing a random permutation and picking the

highest ranked vertex. Perturbed greedy has competitive ratio of 1 − 1
e
for

any set of weights. For further details, see Aggarwal [1].

Algorithm 1 Perturbed greedy

1: initialize

2: For every t ∈ T :
3: Pick rt IID from U [0, 1].

4: De�ne its perturbed weight as w̃t := wt(1− ert−1).

5: when a vertex s ∈ S arrives

6: If s has no available neighbors, continue.

7: Match s to the available neighbor t with the maximum value of w̃t.
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1.5 Adwords

The Adwords problem, introduced by Mehta [17], generalizes the online bi-

partite matching problem as follows. Each o�ine vertex t ∈ T has a budget

Bt, and edges (s, t) ∈ E have bids bidst. When a vertex s ∈ S arrives, it may

be matched to a neighbor t that has not spent all its budget. If s is matched

to t, t depletes bidst amount of its budget. Once a vertex depletes its entire

budget, it becomes unavailable. The goal is to maximize the total budget

spent.

The main motivation of Adwords problem is online advertising [16]. Spon-

sored search is an example for this, in which set T corresponds to advertisers

who are in contract with a given search engine. Each advertiser puts in a

bid value for each of the given keywords that are relevant to their ad, and

they set a budget Bt serving as the limit of their total expenses. The search

engine gets the ad-requests S sequentially as users search during the day.

These are also called queries and ad-slots. Each ad-request can be allocated

to one advertiser, who is charged its bid when the allocation is made. Once an

advertiser runs out of its budget, it cannot be allocated to any more ad-slots.

The objective in this model is to maximize the total amount of money spent

by the advertisers. In some models, if an advertiser's remaining budget B′t is

less than its bid bids,t, then the search engine runs with B′t as a new bid.

Small bid assumption

Adwords problem with small bid assumption is a special case of the above

problem, motivated by realistic situations. For each edge (s, t), bidst is small

compered to Bt. The Adwords problem is mostly studied under the small bid

assumption. When the bids are small, the algorithms can ignore the above

correction of the bids, since overspending is not signi�cant.
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Algorithms

The best known competitive ratio di�ers between algorithms for Adwords

with general bids and with small bids. Greedy, which allocates each s to that

available t which has the maximum value of bidst, achieves a ratio of 1
2
. The

known (1 − 1
e
)-competitive method works only in the case of small bids. It

scales the bids with a function similar to the one used by Perturbed greedy,

and then runs greedy on the scaled bids.

Adwords problem generalizes both online bipartite matching and online

vertex-weighted matching problems. The special case when Bt = wt for all t

and bidst = wt for all (s, t) ∈ E corresponds to the vertex-weighted version.

Online bipartite matching is equivalent to Adwords when all budgets and

bids are equal to 1. However, neither problem is a special case under the

small-bids assumption.

1.6 Display Ads

Display Ads problem is an edge-weighted and capacitated generalization of

online bipartite matching motivated by the display ads applications [9, 16].

In this problem, each edge (s, t) ∈ E has a weight wst and each vertex t ∈ T
has a capacity ct which is an upper bound on the number of vertices that

can be matched to t. When a vertex s ∈ S arrives, it may be assigned to an

available neighbor t. The goal is to maximize the total weight of the selected

edges.

Practical examples ful�ll the so-called large capacity assumption, that is,

the capacities of the vertices are signi�cantly larger than the weights of the

edges. This special case was considered by Mehta [9, 16].

Relevant input models

If there is only one o�ine vertex and its capacity is ct = 1, then the problem

is identical to picking the maximum from a stream of numbers which arrive
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online. Therefore it is not possible to obtain any non-trivial competitive ratio

for this model, since as soon as an algorithm chooses a number, the adversary

can generate a much larger number subsequently. The random order input

model and the free-disposal model are two motivated models, in which a

better competitive ratio can be achieved. In the free-disposal model, edges

can be removed later from the matching, but this choice is irrevocable.

1.7 Online submodular welfare maximization

Online submodular welfare maximization is a generalization of all the above

problems (see Table 1.1). Each o�ine vertex t ∈ T has a non-negative mono-

tone submodular valuation function ft : 2S → R+. When a vertex s ∈ S

arrives, it has to be allocated to a neighbor t. The allocation produces a par-

tition of S, let St be the vertices of S allocated to t. The goal is to maximize∑
t∈T ft(St).

A set function f : 2S → R+ is called monotone if f(Y ) ≤ f(X) for every

two sets Y ⊆ X ⊆ S, and submodular if for any two sets X and Y , f(X) +

f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ). An equivalent form of submodularity is

f(Y ∪ x)− f(Y ) ≥ f(X ∪ x)− f(X) for every two sets Y ⊆ X ⊆ S and an

element x ∈ S \X.

Algorithm

For online submodular welfare maximization problem, Algorithm 2, which is

a greedy method, achieves a competitive ratio of 1
2
[16]. Kapralov [12] showed

that this ratio is optimal when vertices of S arrive in an adversarial order and

the allocations are irrevocable. However, in the setting when vertices arrive

in a uniformly random order, Buchbinder [4] proved that the same algorithm

achieves a strictly larger competitive ratio. For submodular maximization,

a greedy algorithm means that it allocates each s ∈ S to t ∈ T with the

highest marginal gain.
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Algorithm 2 Greedy for online submodular maximization

1: when a vertex s ∈ S arrives

2: For each t ∈ T , let St denote the set of vertices in S already allocated

to t.

3: Allocate s to that t which maximizes ft(St ∪ s)− ft(St).

Table 1.1: The aforementioned problems are special cases of the online sub-

modular welfare maximization with the valuation functions below.

Problem Valuation function

Bipartite matching min{1, |St|}

Vertex-weighted matching wt min{1, |St|}

Adwords min{Bt,
∑

s∈St
bidst}

Display ads maxX⊆St,|X|≤ct{
∑

s∈X wst}

1.8 Online bipartite matching under matroid

constraints

The above problems can be generalized by introducing matroid constraints.

One of these generalizations is when the objective is to maximize the size

of the matching while the set of matched o�ine vertices are independent in

a given matroid. In the case of online bipartite matching, o�ine vertices T

and a matroid on T are known in advance and vertices of S arrive online,

one by one along with their incident edges. Wang and Wong gave an 1− 1
e
-

competitive algorithm in the random arrival model [20].

Adwords problem can be generalized this way as well and a greedy algo-

rithm presented by Wang [20] achieves a ratio of 1 − 1
e
with the small bid

assumption. This is a motivated problem, if an advertiser manages multiple
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ads with a �xed total budget, it corresponds to the matroid generalization

of Adwords, with a partition matroid on T .

1.9 Online submodular maximization with ma-

troid constraints

A matroid constrained generalization of submodular maximization was stud-

ied by Chan [6]. Each o�ine vertex t ∈ T has a non-negative monotone

submodular function ft : 2S → R+ and a matroid H = (S, I) is given on

S. As a vertex s ∈ S arrives, it may be assigned to a vertex t ∈ T with

respect to the matroid constraint, that is, the vertices allocated to t have to

form an independent set St ∈ I for each t ∈ T . The objective is to maximize∑
t∈T ft(St), just as in Section 1.7. Online bipartite matching is a special case

corresponding to 1-uniform matroid constraints.

In the free-disposal model, one may remove some of the matched vertices

in order to ensure the independence of a set St. In [6], authors gave a 1
1+α

-

competitive algorithm with free-disposal, where α is the root of α = eα−2.

1.10 O�ine versions

In the o�ine problem, the entire graph is known in advance. The well-known

theorems of Hall and K®nig give conditions on the existence of a matching

covering one side of the bipartition and on the maximum cardinality of a

matching in a bipartite graph [10, 15]. The o�ine version of vertex-weighted

bipartite matching and display ads problems can be solved in polynomial time

as well. However, the Adwords problem (without the small bid assumption)

is NP-hard to approximate to any factor better than 15
16

and the best known

o�ine algorithm achieves 3
4
-approximation [5, 16, 19]. Adwords problem with

small bid assumption can be approximated within a factor of (1−4ε) if the bid

to budget ratio bidst
Bt

is at most ε for all s, t [5, 16]. The Submodular Welfare
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Maximization problem is NP-hard to approximate better than 1 − 1
e
[14,

16]. Rado's theorem [18] generalizes Hall's theorem for the o�ine matroidal

bipartite matching problem, see the details in Section 3.1.

Table 1.2: Summary of the best known approximation ratios for online match-

ing problems.

Problem ρ̂

Bipartite matching 1− 1
e

Vertex-weighted matching 1− 1
e

Adwords ≥ 1
2

• with small bids 1− 1
e

Display ads 0

• in random order 1
e

• with free disposal ≥ 1
2

• with free disposal and large bids 1− 1
e

Submodular welfare maximization 1
2

Matroidal bipartite matching (in random order) 1− 1
e
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Chapter 2

Online bipartite matching

In the online bipartite matching problem, the input is a bipartite graph

G = (S, T ;E) where the o�ine vertices T are known in advance and the

vertices of S arrive online. Edges incident to s ∈ S are revealed when s

arrives and s may be matched to an available adjacent vertex t ∈ T . The

goal is to maximize the size of the matching.

2.1 Algorithms for online bipartite matching

When a vertex s arrives, an algorithm may match s to one of its unmatched

neighbors or leave it unmatched irrevocably.

An algorithm for the online bipartite matching is called greedy if the only

vertices of S that are left unmatched are those that do not have an available

neighbor upon their arrival. Every non-greedy algorithm A can be replaced

by a greedy method A′ that produces at least as many edges as A does.

Indeed, let s be a vertex that is left unmatched upon arriving, although it

has an available neighbor. If s still has an unmatched neighbor t at the end

of the algorithm, the matching produced by A can be extended with edge

(s, t) to get a better solution. If algorithm A′′ matches s to t and does the

same as A otherwise, it has strictly better performance. In the other case,

when A matches all the neighbors of s, let A′′ di�er from A in matching s to
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a neighbor t, which is available at the arrival of s. Thus, all the vertices of

T that are matched by A are matched by A′′ as well, hence A′′ matches at

least as many vertices as A does. By applying this to each non-greedy choice

of A, one gets a greedy algorithm A′.

Every greedy algorithm produces a maximal matching and the size of a

maximal matching is at least half of that of a maximum matching, since an

edge can block at most two edges from the maximum matching.

For every deterministic algorithm, the adversary can select an input on

which the algorithm produces only half the size of the maximum matching.

For example, let the �rst |S|
2
arriving vertices be incident to all the vertices

of T and let the remaining vertices of S be neighbors only of vertices that

the algorithm matches to the �rst |S|
2
vertices.

2.2 Ranking

To improve the size of the matching beyond n
2
, Karp, Vazirani and Vazi-

rani [13] considered randomized methods. Algorithm 3 is the randomized

greedy method of Karp, Vazirani and Vazirani [13], called Ranking. For bi-

partite graphs with maximum matching of size n, Ranking �nds at least

(1 − 1
e
)n edges in expectation. They showed that this bound is essentially

tight. When the input is chosen from a certain distribution Dn, no online

algorithm matches more than (1− 1
e
)n+O(1) edges in expectation. In 2018,

Feige [8] gave a tighter (1− 1
e
)n+ 1− 2

e
+O( 1

n!
) upper bound on the perfor-

mance ratio of any online matching algorithm.

Algorithm 3 Ranking

1: initialize

2: Choose a random permutation π of T .

3: when a vertex s ∈ S arrives

4: If s has no available neighbors, leave it unmatched.

5: Else, match s to a neighbor t with the lowest value of π(t).
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The aforementioned distribution Dn is de�ned as follows. For each graph

from Dn, let the cardinality of the two sides be n i.e. |S| = |T | = n. Select

a permutation τ over T . For every i = 1, . . . , n, (sj, ti) ∈ E i� j = τ(k) for

some k ≥ i. Dn satis�es the following three conditions, suggesting that any

graph from Dn is a worst input against Ranking.

• It has a unique perfect matching, which is the set of edges (sj, tτ(j)) for

1 ≤ j ≤ n.

• If sj cannot be matched, neither can any of the vertices afterwards since

all neighbors of sj + 1 are also neighbors of sj. Hence all the vertices in

a pre�x of S are matched and then no vertices in the resulting su�x

are matched.

• An o�ine vertex tτ(j) can be matched only in the �rst j rounds.

The expected size of the matching produced by Ranking is the same on

every graph from Dn since Ranking generates a random permutation over

T , hence graphs that only di�er by a permutation over T are considered

to be equal. Thus, consider one representative graph, called MonotoneG [8],

which is shown on Figure 2.1. Permutation τ of MonotoneG is the identity

permutation i.e. the set of the edges are E = {(si, tj)|1 ≤ i ≤ n, i ≤ j ≤ n}.
The unique perfect matching is M = {(si, ti)|1 ≤ i ≤ n}.

bc bc bc bc

bcbc bcbc

bcbc

bc

bc

bc bc bcs4s3s2s1

t1 t2 t3 t4

Figure 2.1: A representative graph of D4.

It is known that Ranking is optimal against Dn, but it is an open question
whether Dn is optimal against Ranking.
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Conjecture 2.2.1. ρ(Gn) = ρ(Ranking,Dn) for all n.

The above conjecture of Karp, Vazirani and Vazirani is still open, but

the bounds are essentially tight. The theorems below summarize the known

bounds on ρ̂. Mehta [17] gave an upper bound.

Theorem 2.2.2. For Dn de�ned as above, ρ(Dn) ≤ (1− 1
e
)n+O(1).

Feige [8] proved that there exists a tighter bound on ρ(Dn).

Theorem 2.2.3. Let the function a(n) be such that ρ(Ranking,Dn) = a(n)
n!

for all n. Then a(n) = (n+1)!−d(n+1)−d(n), where d(n) is the number of

derangements (permutations with no �xed points) on the numbers 1, . . . , n.

Consequently, ρ(Dn) = (1− 1
e
)n+ 1− 2

e
+O( 1

n!
), and this is an upper bound

on ρ(Gn).

Karp, Vazirani ang Vazirani [13] showed a lower bound on ρ(Gn), but the

presented proof had gaps. Later, Goel and Mehta [11, 17] gave alternative

proofs motivated by the Adwords problem.

Theorem 2.2.4. For each bipartite graph G ∈ Gn, the competitive ratio of

Ranking algorithm is at least 1− (1− 1
n+1

)n, which tends to 1− 1
e
as n goes

to in�nity. Hence ρ(Ranking) ≥ (1− 1
e
)n and ρ̂ ≥ 1− 1

e
.

Proof of Theorem 2.2.4

The proof below is based on the one presented by Birnbaum and Mathieu [2].

Let Ranking(G, σ, π) denote algorithm Ranking on input graph G when the

arrival order is permutation σ over S and the ranking is π over T . WhenG and

σ are �xed, Ranking(π) is the simpli�cation of notation Ranking(G, σ, π).

LetMσ,π andMπ be the matchings produced by algorithms Ranking(G, σ, π)

and Ranking(π), respectively. LetM(v) be the neighbor of vertex v in a given

matching M .

Lemma 2.2.5. Let v ∈ S ∪ T , G′ = G \ v, and σ′ and π′ be permutations

over S ′ and T ′ induced by σ and π, respectively. If the matchings produced by
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Ranking(G, σ, π) and Ranking(G′, σ′, π′) are not identical, then they di�er

in a single alternating path starting at vertex v.

Proof. In set Mσ,π ∪Mσ′,π′ , the degree of each vertex is at most 2, therefore

it is a disjoint union of paths and cycles. If Mσ,π ∪Mσ′,π′ is a matching, then

the two matchings are identical orMσ,π(v) cannot be matched after removing

v. One has to show that if there is a path of length at least 2, then it is unique

and starts at vertex v.

Suppose that there is a path P of length k where k > 1, which does not

include v. Consider the �rst arriving s ∈ S of P . If s is matched to t in the

case of one input graph, but not for the other input graph, then in the second

case, t must be matched to an earlier vertex, which is a contradiction. Thus

such path does not exist. Cycles are not contained by Mσ,π ∪Mσ′,π′ since a

cycle means that Ranking matches the same vertices in di�erent order in the

two cases, which contradicts the construction of σ′ and π′.

Claim 2.2.6. The competitive ratio is determined by graphs that have a

perfect matching.

Proof. Let G be an arbitrary bipartite graph and �x σ and π. Let v be a

vertex, G′ = G \ v and σ′ and π′ be the permutations over S ′ and T ′, just

as in Lemma 2.2.5. If the matchings Mσ,π and Mσ′,π′ are not identical, then

they di�er in a single alternating path starting at vertex v, see Lemma 2.2.5.

Thus, for every σ and π, Mσ,π has at least as many edges as Mσ′,π′ . For all σ

and π, |Mσ̃,π̃| ≤ |Mσ,π| when G̃ ∈ Gn for any n is the graph constructed from

G by removing all vertices which are not in the maximum matching, σ̃ and

π̃ are the permutations over S̃ and T̃ . Therefore the size of the maximum

matching is the same in both graphs, hence the competitive ratio does not

increase.

Hence assume that G has a perfect matching. Fix graph G and arrival

order σ. Let M∗ be a perfect matching, and n = |S|. The following two

lemmas are structural observations focusing on the ranks of the matched

vertices.
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Lemma 2.2.7. Fix s ∈ S and let t = M∗(s). If t is not matched by

Ranking(π), then s is matched to a vertex t′ whose rank π(t′) is less than

π(t).

Proof. If t is not matched by Ranking(π), then when s arrives, it has some

available neighbors since t is one of them. Thus, s is matched to the available

neighbor t′ with the minimum rank, which is less than π(t).

Lemma 2.2.8. Let s ∈ S and t = M∗(s). Let π′ be a permutation and let πi

be the permutation obtained from π′ by changing the rank of vertex t to i, in

other words, removing t from π′ and putting it back in so its rank is i. If t is

not matched by Ranking(π′), then for every i, s is matched by Ranking(πi)

to a vertex ti with rank πi(ti) at most π
′(t).

Proof. By Lemma 2.2.7, s is matched to a vertex t′ inMπ′ and π
′(t′) < π′(t).

If matchings Mπ′ and Mπi are not identical, then they di�er along a single

alternating path starting at vertex t with an edge inMπi , since t is unmatched

by Ranking(π′). Moreover, the vertices of T traversed by the path have

increasing rank in πi. Thus, s is matched to vertex ti by Ranking(πi), whose

rank is πi(ti) ≤ πi(t
′). By de�nition of πi, πi(t

′) ≤ π′(t′) + 1 ≤ π′(t).

Lemma 2.2.9. Let xk denote the probability over π that the vertex of T of

rank k is matched by the algorithm. Then 1− xk ≤ 1
n

∑
1≤j≤k xj.

Proof. Let Rk ⊆ S denote the set of vertices that are matched by the

algorithm to the vertices of T of rank at most k. Given a random permutation

π over T , de�ne a new random permutation π′ by choosing a vertex t ∈ T
uniformly at random, taking it out of π and moving it back in so that its

rank is k. Consider the matching produced by Ranking(π′). Let s be such

that t = M∗(s). The probability that t is not matched by Ranking(π′) is

1 − xk. By Lemma 2.2.8, applied for i such that πi = π, if t is not matched

by Ranking(π′), then s is matched by Ranking(π) to a vertex t̃ such that

π(t̃) ≤ k, in other words, s ∈ Rk. The choice of t is random, so s is a vertex

chosen uniformly at random as well and Lemma 2.2.8 holds for all i, thus s
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is independent of π, hence independent of Rk. In other words, the event that

s ∈ Rk does not depend of π. Thus, conditional on π, the event that s ∈ Rk

has probability |Rk|
n
. Taking expectations over π, one gets 1

n

∑
1≤j≤k xj.

With Lemma 2.2.9, the proof of Theorem 2.2.4 can be completed. Since

the considered graphs have perfect matchings, the competitive ratio is the

in�mum of 1
n

∑
1≤j≤n xj. Let sk =

∑
1≤j≤k xj. Rewrite xk as sk − sk−1 to get

an equivalent form of Lemma 2.2.9 which is 1 + sk−1 ≤ sk(1 + 1
n
). The in�-

mum occurs when all inequalities are tight equalities. This yields a recursive

formula sk = n
n+1

+ nsk−1

n+1
. It follows that sk =

∑
1≤j≤k(1−

1
n+1

)j. Hence, the

competitive ratio is at least 1
n
sn = 1

n

∑
1≤j≤n(1 − 1

n+1
)j = 1 − (1 − 1

n+1
)n,

which tends to 1− 1
e
as n goes to in�nity.

Sketch of the proof of Theorem 2.2.3

In what follows, the main steps of the proof of Feige [8] are presented.

Theorem 2.2.10. Let function a(n) be s.t. ρ(Ranking,MonotoneG) = a(n)
n!

for all n. Then a(n) = (n+ 1)!− d(n+ 1)− d(n), where d(n) is the number

of derangements (permutations with no �xed points) of the numbers 1, . . . , n.

Proof. Fix n and MonotoneG ∈ Dn as the input. Let Πn denote the set of

all permutations over T . Ranking picks a permutation π ∈ Πn uniformly at

random. Let π(ti) denote the rank of ti under π and πi be the vertex of rank

i in π, that is πi = π−1(ti).

For 1 ≤ i ≤ n, let d(n, i) be the number of permutations over 1, . . . , n in

which all �xed points (if any) are among the �rst i items.

Lemma 2.2.11. The function d(n, i) satis�es the following properties.

• d(n, n) = n! for every n ≥ 1,

• d(n, i+ 1) = d(n, i) + d(n− 1, i) for all 1 ≤ i < n.
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Proof. The �rst statement holds, since d(n, n) denotes the number of permu-

tations on 1, . . . , n with no restrictions, hence d(n, n) = n!. The combinatorial

interpretation of the second statement is that d(n, i + 1) is the sum of the

number of permutations over 1, . . . , n where i+1 is not a �xed point and the

number of permutations in which i+ 1 is a �xed point.

By a similar argument, d(n + 1, 1) = d(n + 1) + d(n) follows. Therefore,

it is su�cient to prove that d(n+ 1, 1) = (n+ 1)!− a(n).

For 1 ≤ i ≤ n, let a(n, i) denote the number of permutations π ∈ Πn in

which πi is matched by Ranking(π). (Notation Ranking(π) is used as in the

proof of Theorem 2.2.4.) Lemma 2.2.12 motivates the study of a(n, i).

Lemma 2.2.12. For a(n) and a(n, i) as de�ned above, it holds that a(n) =∑n
i=1 a(n, i).

Proof. For a permutation π ∈ Πn, let Mπ denote the greedy matching pro-

duced by Ranking when it uses permutation π and the input graph is Mono-

toneG. Then by de�nition,

a(n) =
∑

π∈Πn

|Mπ|.

By changing the order of summation, one gets that

∑

π∈Πn

|Mπ| =
n∑

i=1

a(n, i).

Lemma 2.2.13. Function a(n, i) satis�es the following equations.

• a(n, 1) = n! for every n ≥ 1,

• a(n, i) = a(n, i+ 1) + a(n− 1, i) for all 1 ≤ i < n.

Proof (sketch). The �rst equation holds, since s1 is matched to πi in every

permutation π. For the second statement, de�ne a bijection Bi : Πn → Πn for
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i < n, whereBi(π) �ips the order between indices i and i+1, i.e.Bi(π)i = πi+1

and Bi(π)i+1 = πi. There are three possibility when t = πi = Bi(π)i+1 is

matched by any of Ranking(π) and Ranking(Bi(π)) or neither of them.

Using these events, Lemma 2.2.13 can be proved, but the rather long and

technical proof is omitted here. See [8] for details.

Lemma 2.2.14. For a(n, i) and a(n) as de�ned above, a(n) = (n + 1)! −
a(n+ 1, n+ 1).

Proof. Applying Lemma 2.2.12 and the second statement of Lemma 2.2.13,

one gets that a(n) =
∑n

i=1 a(n, i) =
∑n

i=1(a(n + 1, i) − a(n + 1, i + 1)) =

a(n+1, 1)−a(n+1, n+1). Lemma 2.2.13 also states that a(n+1, 1) = (n+1)!,

proving the lemma.

Applying both Lemma 2.2.14 and Lemma 2.2.11, Theorem 2.2.10 is equiv-

alent to equation d(n+ 1, 1) = a(n+ 1, n+ 1), which holds by Lemma 2.2.15.

Lemma 2.2.15. For every 1 ≤ i ≤ n, it holds that a(n, i) = d(n, n+ 1− i).

Proof. The proof is by induction on n and i.

For the base case n = 1, necessarily i = 1 and a(1, 1) = 1 = d(1, 1)

holds by de�nition. For given n > 1, the base case is i = 1, and indeed

a(n, 1) = n! = d(n, n) follows. For the inductive step, consider a(n, i) where

1 < i ≤ n, and assume that the inductive hypothesis holds for n′ < n and

for n with i′ < i. One easily gets that

a(n, i) = a(n, i− 1)− a(n− 1, i− 1)

= d(n, n+ 2− i)− d(n− 1, n+ 1− i)
= d(n, n+ 1− i).

The �rst and third equalities holds by Lemma 2.2.13 and Lemma 2.2.11,

while the inductive hypothesis implies the second one.

Claim 2.2.16 restates Theorem 2.2.3.
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Claim 2.2.16. For every n and MonotoneG ∈ Dn,

ρ(Ranking,MonotoneG) = (1 +
1

e
)n+ (1− 2

e
) + ν(n),

where |ν(n)| < 1
n!
.

Proof. Theorem 2.2.10 shows that a(n) = (n+1)!−d(n+1)−d(n). It is well-

known that d(n) = n!
e
rounded to the nearest integer. Hence |d(n)− n!

e
| < 1

2

and |a(n)− (1− 1
e
)(n+ 1)!− n!

e
| < 1. Dividing the latter inequality by n! and

replacing (1− 1
e
)(n+ 1) by (1− 1

e
)n+ 1− 1

e
, it follows that

|ρ(Ranking,MonotoneG)− (1− 1

e
)n+ 1− 1

e
− 1

e
| < 1

n!
,

proving the claim.
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Chapter 3

Matroidal bipartite matching

In this section, two matroidal bipartite matching problems are studied. The

�rst one is when there is a matroid on one side of the bipartition. In the

online problem, this side is the o�ine class T . This online version and the

related results were brie�y mentioned in Section 1.8. The second one, when

there is a matroid on the other side as well, has more open questions in the

online case.

Matroids generalize linear independence in vector spaces, the notation

was introduced by Whitney [21]. A matroid H is a pair (S, I) where S is the

ground set of the matroid and I ⊆ 2S is a family of subsets of S that satisfy

the following properties, called independence axioms.

(I1) ∅ ∈ I,

(I2) X ⊆ Y ∈ I ⇒ X ∈ I,

(I3) For every subset X ⊆ S, the maximal subsets of X which are in I have
the same cardinality.

The members of I are called independent sets, all other subsets of S are

dependent. Axiom (I3) means that the maximal independent subsets of each

subset of S are equicardinal. This maximum number is called the rank of

X and is denoted by r(X), where r is the rank function of the matroid.
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The rank of the ground set, r(S), is the rank of the matroid. For a ground

set S, the matroid in which every subset of S is independent is called the

free matroid. As other examples of matroids, the uniform and the partition

matroids are de�ned as follows. Let {S1, . . . , Sk} be a partition of S and

let g1, . . . , gk be non-negative integers. Declare a subset I ⊆ S independent

if |I ∩ Si| ≤ gi holds for each i. The matroid obtained this way is called

the partition matroid. One might prove that its rank function r is given by

r(X) =
∑

i(min{gi, |X ∩ Si|}). The uniform matroid is a partition matroid

with k = 1. For a survey on matroid theory, see Frank [10].

3.1 H-independent matchings

Let G = (S, T ;E) be a simple bipartite graph and H a matroid on T . A

matching is called H-independent if the vertices of T covered by the match-

ing form an independent set of H. Note that HE-independence is an other

approach to obtain the same problem, since H determines a matroid on

ground set E in which a subset F is independent if dF (t) ≤ 1 for every t ∈ T
and the subset of T covered by F is independent in H � this way one gets a

matroid HE.

Rado [18] gave a matroid generalization of Hall's Theorem. For a sub-

set X ⊆ S, let Γ(X) denote the set of neighbors, i.e. Γ(X) = {t ∈ T :

there is an edge (s, t) ∈ E with s ∈ S} [10].

Theorem 3.1.1 (Rado). Let G = (S, T ;E) be a bipartite graph and let H be

a matroid on T . G has an H-independent matching covering S if and only if

the following Rado condition holds,

r(Γ(X)) ≥ |X|

for every subset X ⊆ S.

The defect form of Rado's theorem [10] gives the maximum cardinality

of the H-independent matching when the entire S cannot be covered, and it

depends only on the extent of the violation of the previous condition.
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Theorem 3.1.2 (Rado, defect form). Let G = (S, T ;E) be a bipartite graph

and H a matroid on T . The maximum cardinality of an H-independent

matching is equal to

µ := min
X⊆S
{r(Γ(X)) + |S −X|}.

As the above theorems show, the conditions for the o�ine optimality are

known.

In the online version of matroidal bipartite matching, the o�ine vertices

T and a matroid H on T are known in advance and the vertices of S arrive

online, one by one along with their incident edges, just as in Section 1.8. The

objective is to maximize the size of an H-independent matching.

3.1.1 Algorithms

In general, a greedy algorithm for matroidal online bipartite matching is sim-

ilar to the one given in Section 2.1 for online bipartite matching. It leaves

s ∈ S unmatched only if upon its arrival all of its neighbors are already

matched or it has no unmatched neighbors t ∈ T such that both CS ∪ {s}
and CT ∪{t} are independent sets in the appropriate matroid, where CS and

CT denote the previously covered vertices in S and T , respectively. In this

problem, the only matroid is on ground set T , therefore consider the above

de�nition of the greedy algorithm with the free matroid on S.

Claim 3.1.3. Greedy algorithms are optimal for the online bipartite H-

independent matching problem.

Proof. One has to show that for every non-greedy algorithm A, there exists a

greedy A′ that produces at least as many edges as A does. The construction

goes as follows for a given graph G = (S, T ;E) and a matroid H on T .

Consider the matching produced at the end of algorithm A and the event

that a vertex s ∈ S is left unmatched by algorithm A even though it had

available neighbors at its arrival. There are three possible cases,
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• s has a neighbor t which is matched by A to an s′ ∈ S arriving later

than s,

• t is unmatched and the union of {t} and the matched vertices of T is

independent in the matroid,

• t is unmatched but the matched vertices and t are dependent all to-

gether.

In the �rst two cases, the argument in Section 2.1 can be applied. Otherwise,

there exists a circuit containing t and some later-arriving vertices from which

any vertex can be removed, so that the remaining set is independent. Thus,

a vertex t′ which is matched to a vertex s′ that arrived later than s can be

left out. So, if algorithm A′ matches s to t (and leaves out edge (s′, t′)) for

each s ∈ S that A left unmatched by a non-greedy choice, then A′ matches

at least as many vertices as A does.

De�nition 3.1.4. An algorithm is an α-approximation for a problem if it

�nds a solution within a factor α of the optimum solution for every instance

of the problem.

If the problem is a maximization, then α < 1 and the approximate solu-

tion is at least α times the optimum solution by the de�nition. In the case of

a minimization problem, α > 1 and the approximate solution found by the

algorithm is at most α times the optimum.

Claim 3.1.5. Greedy is 1
2
-approximation algorithm for the H-independent

matching problem.

Proof. Let G = (S, T ;E) be a bipartite graph and H a matroid on T . Con-

sider the following two matchings of G, the maximum H-independent match-

ing produced by the greedy algorithm and a �xed optimal H-independent

matching. Let P denote the vertices of T that are matched by the greedy algo-

rithm and let R consists of those vertices in T that are covered by the optimal

matching. Furthermore, let P1 = P ∩R, P2 = P \P1 and R2 = R \ (R1∪P1),
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where R1 ⊆ T is such that t ∈ R1 if and only if t has a neighbor s for which

edge (s, t) is in the maximum matching and s is matched by the greedy

algorithm too, see Figure 3.1.

︷ ︸︸ ︷
aaafaaa

︷ ︸︸ ︷
aaafaaa

︷︸︸︷

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

R2R1P1P2

bc

bc
︷︸︸︷

T

S

Figure 3.1: Subsets of T . Dotted edges correspond to the optimal matching

and the solid ones are selected by the greedy algorithm.

The claim is equivalent to the following inequality.

|R| ≤ 2|P |

Using the notations de�ned above, this can be reformulated as

|P1|+ |R1|+ |R2| ≤ 2(|P1|+ |P2|)

which, in turn, is equivalent to

|R1|+ |R2| ≤ |P1|+ 2|P2|.

By the de�nition, |R1| ≤ |P1|+ |P2|. Thus, to conclude the proof, one has to
show inequality |R2| ≤ |P2|. Sets P1 ∪ P2 and P1 ∪R2 are independent, since

both are covered by one of the H-independent matchings, hence r(P1∪P2) =

|P1| + |P2| and r(P1 ∪ R2) = |P1| + |R2| holds. For all t ∈ R2, P1 ∪ P2 ∪ {t}
is dependent by the de�nition of R2. When some s ∈ Γ(t) arrived, t is an

available neighbor, yet both s and t are unmatched. This scenario occurs

only if t is dependent with the already matched vertices, since the algorithm

is greedy. This implies r(P1 ∪ P2 ∪R2) = r(P1 ∪ P2). However, P1 ∪R2 ∪ {p}
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might be independent for some p ∈ P2, hence r(P1∪R2) ≤ r(P1∪R2∪{p}) ≤
r(P1 ∪R2 ∪ P2) follows. Thus, one gets

|P1|+ |R2| = r(P1 ∪R2) ≤ r(P1 ∪R2 ∪ P2) = r(P1 ∪ P2) = |P1|+ |P2|.

This implies |R2| ≤ |P2| as required, �nishing the proof.

3.2 Strongly independent matchings

Let G = (S, T ;E) be a bipartite graph and H1 and H2 be matroids on

ground sets S and T , respectively. A matching is called strongly independent

if it covers an independent set of vertices in both matroids. Brualdi [3, 10]

gave a formulation which includes the theorems of K®nig and Rado as special

cases.

Theorem 3.2.1 (Brualdi). Let G = (S, T ;E) be a bipartite graph with ma-

troids H1 and H2 on ground sets S and T , respectively. The largest cardinality

of a strongly independent matching of G is equal to

min{r1(X) + r2(Y ) : X ⊆ S, Y ⊆ T,X ∪ Y covers each edge of G}.

3.2.1 Algorithm for the online problem

In the online version, only the o�ine vertices T and a matroid H2 on T are

known in advance, and the vertices of S together with H1 arrive online. The

objective is to maximize the size of a strongly independent matching.

The greedy algorithm, de�ned above, is optimal if there is no matroid

given on the online vertices, however, the above arguments cannot be ex-

tended to the case of two matroids. In the following instance, one cannot

guarantee that the greedy matching has at least as many edges as the non-

greedy one. Let s1 be a vertex which has available neighbor t1 at its arrival,

and assume that the non-greedy algorithm leaves s1 unmatched. If a later-

arriving vertex s2 is matched to t1 and s3 to t2 and the union of {s1, s3} and
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some of the previously matched vertices is dependent, then greedy � that

matches s1 � may produce strictly less edges, since it is possible that both

s2 and s3 remain unmatched. Yet, greedy has the same approximation factor

regardless whether a matroid is given on S or not. Note that one obtains

Claim 3.1.5 as a special case of Claim 3.2.2 when H1 is the free matroid.

However, the arguments are entirely di�erent, hence both are presented.

Claim 3.2.2. Greedy is 1
2
-approximation algorithm for the strongly indepen-

dent matching problem.

Proof. Assume that the greedy algorithm selects the edges e1, . . . , ek in this

order. Let F denote the set of strongly independent matchings of G. Let

θi = max{|F | : F ⊆ E, {e1, . . . , ei} ⊆ F and F ∈ F}, (3.1)

that is, θi is the cardinality of the largest strongly independent matching that

contains the �rst i edges selected by the greedy method. The approximation

factor follows from the inequality

θi ≥ θi−1 − 1 for all i ≥ 1. (3.2)

LetMi denote a matching attaining the maximum in equation (3.1) for all

i ∈ 1, . . . , k. Consider the cases of how the size of the matching changes when

ei is added to the edges of Mi−1 if some edges may be removed. Informally,

one has to argue that when ei is added to the edges of Mi−1, there exists

(at most) two edges f, f ′ ∈ Mi−1 s.t. (Mi−1 \ {f, f ′}) ∪ {ei} is a strongly

independent matching.

For a given 1 ≤ i ≤ k, if ei ∈ Mi−1, then θi = θi−1 and inequality (3.2)

holds. Otherwise ei = (si, ti) /∈Mi−1 and three conditions on si and ti might

be violated, namely they might be covered by another edge from Mi−1 or

might form a dependent set with some matched vertices.

Let us call a vertex v available if it is neither dependent of some of the

vertices covered by Mi−1 nor covered by it. Note that these cannot occur

simultaneously and the roles of si and ti are symmetric.
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Either si or ti is available, there exists a matching M ′
i−1 such that ei ∈

M ′
i−1 and |M ′

i−1| = θi−1, three distinct cases follow.

• Both si and ti cannot be available, since then Mi−1 would not be max-

imal.

• If ti is available and si is dependent from a set S ′ ⊆ S which is cov-

ered by Mi−1, then there exists a circuit containing si and from which

removing a vertex s′, si is independent with the remaining matched

vertices, hence ei can be added with the loss of only one other edge.

• The next case is when ti is available and si is covered by another

matched edge. Leaving that edge and adding ei instead does not change

the cardinality of the matching.

In the following three cases, at most two edges are needed to be removed in

order to add ei. Let ti be in a circuit with some vertices of T ′ ⊆ T , covered

by Mi−1.

• If si is in a circuit with some vertices of S ′, then there exist vertices

s′ and t′ on the appropriate circuits such that removing them, both

si and ti are independent with the remaining matched vertices. This

means that the edges incident to s′ and t′ are removed, but ei is added,

which makes a loss of at most one edge in total.

• If si is covered by Mi−1, then the removal of the edges incident to si

and t′ de�ned as above is su�cient to add ei.

Otherwise,

• vertex ti is covered by Mi−1, then the last remaining case is that Mi−1

also covers si, but (si, ti) /∈ Mi−1. Replacing the two edges incident to

si and ti with ei makes a strongly independent matching of size θi−1−1.

The above cases show that the strongly independent matchings derived

from Mi−1 have at least θi−1 − 1 edges and θi, by de�nition, is at least
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as large as the size of these matchings, hence inequality (3.2) holds for all

i. By de�nition, θ0 is the cardinality of the maximal strongly independent

matching and θk is the cardinality of the greedy matching. To complete the

proof, observe that

k = θk ≥ θk−1 − 1 ≥ . . . ≥ θ0 − k
2k ≥ θ0

follows from inequality (3.2) meaning that the size of the solution found by

greedy is at least 1
2
times the cardinality of the optimal matching.

3.2.2 Bounds for online strongly independent matching

Claim 3.2.2 gives a lower bound for the strongly independent matching prob-

lem, since greedy algorithms have a competitive ratio of at least 1
2
. The

results on online bipartite matching serve as an upper bound, since it is a

special case when the matroids are the free matroid. Hence any matroidal

online bipartite matching algorithm has a competitive ratio of at most 1− 1
e
.

However, it remains open to �nd the tight bound.
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