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1 Introduction

Problems of linear algebra need to be solved every day in different areas of

science and engineering. When they can not be solved analytically, numerical

methods come into prominence. They play a really important role in life, e.g.

when building airplanes, bridges, doing operations and machine learning. For this

reason it is essential to see in which case how effective and fast is an algorithm.

In subsection 2.1 numerical methods are introduced for solving systems of

linear equations Ax = b. We will see how Gauss elimination can be improved and

made a really effective tool. Knowing the computational costs of a modification it

will be discussed if it is worth to be used or not. Subsection 2.2 elaborates what it

means if a system is ill-conditioned, and why it is so dangerous while using

numerical methods. Furthermore, we will see two methods from recent articles

showing ideas how to increase accuracy when the system is ill-conditioned.

Section 3 presents four different methods for solving nonlinear equations. The

first two, Bisection and Regula falsi are bracketing methods. They keep the

solution in the start interval, which is reduced in every step until it is small

enough. Newton’s and Secant methods start with an initial guess, and with using

a scheme they produce better an better solutions. The algorithms are compared in

the sense of efficiency and running time.

Section 4 details the topic of eigenvalues. First we will get familiar with the

Gershgorin discs (4.1 ), which gives a spectacular way of approximating

eigenvalues. In subsection 4.2 Power iteration and its variants show how to

compute one eigenvalue-eigenvector pair of the given matrix. Its improved version

is the orthogonal iteration, which can compute more eigenvalues at the same time.

Last but not not least, the QR method is presented, which finds all the eigenvalues

of the matrix. For this reason, this is the most widely used method for computing

eigenvalues. In the last century it was listed as one of the top 10 algorithms. We

will see what is the Singular Value Decomposition (4.3 ) and how it is applied to

approximate matrices. One article is presented here which solves ill-conditioned

systems with the use of SVD. Spectrum slicing (4.4 ) is a way of finding one or

more eigenvalues of a symmetric matrix. For this we need the Cauchy interlacing

theorem, Sturm sequence and the previously mentioned Bisection method.
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The Appendix contains the code of seven algorithms discussed in the thesis.

Apart from a few cases, the books and articles I used are mentioned in the

beginning of each section. Beside the material listed in the References I utilized a

lot from what I learnt in Eindhoven during my Erasmus semester.
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2. SYSTEMS OF LINEAR EQUATIONS

2 Systems of linear equations

The problem of solving many linear equations simultaneously arises whenever

we have multiple variables that are dependent on each other. In these cases we are

interested in solving the system of linear equations

Ax = b, A ∈ Rn×n, b ∈ Rn.

Since it appears in several areas, such as science and engineering, it is essential to

find accurate and efficient ways of solving these problems. Of course, for 2-3

variables one could solve it manually, but for more than 3 unknowns (or equations)

the problem becomes much more complicated.

2.1 Numerical methods for solving systems of linear

equations

For writing this subsection I used the following books: [3], [7], [11].

Here we consider only direct numerical methods, which means that the

solution is calculated by performing arithmetic operations with the equations. The

aim is to transform the initially given system to an equivalent system of equations

that can be solved easily. These preferred forms are upper triangular, lower

triangular and diagonal matrices. One can obtain the solution of the upper and

lower triangular matrices with backward and forward substitution, respectively.

The diagonal matrix contains the solution in its diagonal entries.

2.1.1 Gauss elimination method

The most known method for solving systems of linear equations is Gauss

elimination. The point is to transform the given coefficient matrix A to an upper

triangular form, so that we can easily solve this equivalent system by backward

substitution. We start from the first row, and continue until the second last row.

In each step we have a pivot element (aii), and we eliminate all the elements below

the pivot. We execute this by subtracting the pivot ith row (row of the pivotal

element) from the jth ( j=i+1,...n) rows mij =
aji
aii

times, so that the elements aji,

( j=i+1,...n) become 0.

The code for Gauss elimination can be found in the Appendix A.1.
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2.1. Numerical methods for solving systems of linear equations

Operations count

Gauss elimination with back substitution for an n× n system requires n3

3
+ n2 − n

3

multiplications/divisions, and n3

3
+ n2

2
− 5n

6
additions/subtraction. As n grows, n3

3

will be the leading term in both of these expressions.

Weak points of the algorithm

• If the pivot element is 0, the algorithm cannot proceed with the division

when we try to eliminate the elements below the pivot.

• If the magnitude of the pivot element is small relative to the other terms in

the pivot row, it leads to bigger round-off errors.

2.1.2 Gauss elimination with pivoting

Now the solution will be presented for the previously mentioned potential

difficulties when applying Gauss elimination. To solve the problem when the pivot

element is 0, we can switch rows. If there is a solution for the system, there is

always a nonzero element below the 0 pivot element, and these two rows can be

changed. If we take a look at the main step of the procedure, we can see that any

round-off error is amplified by mij. Therefore, we would like to ensure that this

multiplier is small. This can be accomplished by row interchanges. When

eliminating elements in column j, we seek the largest element in column j, on or

below the main diagonal, and then interchanging that element’s row with row j.

This is called partial pivoting. We reached that the multiplier will be smaller

than one. Furthermore, pivoting in this manner requires O(n2) comparisons to

determine the appropriate row interchanges, which extra expense is negligible

compared to the overall cost of Gauss elimination, and therefore is outweighed by

the potential reduction in round-off error.

Even though we avoided big round-off errors, a loss of significant digits can

still appear, if the coefficients in the pivot equation are much larger or smaller

than in the other equation. This can be fixed by scaling, which means that in

every row the maximum absolute value of magnitude equals to 1. For this reason,

we search in every row the element with the largest absolute value, and divide the

equation by this number. It again adds only O(n2) comparisons to compute the

scale factors, so it does not add a significant overhead to Gauss elimination. Gauss

elimination with scaling and partial pivoting is an extremely effective tool.
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2.1. Numerical methods for solving systems of linear equations

The code for Gauss elimination with partial pivoting and scaling can be found in

the Appendix A.2.

There is an extension of partial pivoting, called complete pivoting. Here we

compare all the elements in the matrix that are to the right and down from the

pivoting position. We find the one with largest absolute value, and with row and

column interchanges we move it to the pivoting position. This requires O(n3)

comparisons, so it increases the computational costs quite a lot. Obviously, it is at

least as effective as partial pivoting. Furthermore, in some special cases, this

method can be more effective in controlling the effects of round-off errors than

partial pivoting. Also, complete pivoting makes Gauss elimination stable, which

means that the entries of the matrix will not grow exponentially when they are

updated by elementary row operations. However, in reality, we rarely encounter

with those special kind of matrices. For this reason complete pivoting is not used a

lot in practice.

2.1.3 Gauss-Jordan elimination method

As a result of the Gauss-Jordan elimination we obtain a diagonal matrix with

normalized elements in the diagonal. We reach this by dividing every row with its

pivot element (so the pivot elements are equal to 1), and we eliminate all the

elements below and above the pivot element, so finally A is transformed to the

identity matrix, and the new vector b’ is the solution.

The advantage of this algorithm is that we can solve the system for several

right hand side vectors b at the same time by augmenting all the right hand side

vectors to A.

Operations count

For an n× n system this method requires n3

2
+ n2

2
multiplications/divisions and

n3

2
− n

2
additions/subtractions. So as n grows, n3

2
is going to be the leading term in

both expressions. We can see, that - especially for large matrices - Gauss-Jordan

method requires much more operations than the Gauss elimination. Hence,

practically it is not often used, but for example, for computing the inverse of a

matrix it is a widespread method, since we can compute it with B = I, and the

solution will be the inverse of A.

The code for Gauss-Jordan method can be found in the Appendix A.3.
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2.2. Ill-conditioned systems

2.1.4 LU decomposition

In the Gauss elimination procedure the elimination part requires much more

operations than the back substitution. During the elimination both the matrix A

and the right hand side vector b are changed, so it is not possible to solve the

problem for more right hand side vectors simultaneously. We can see that it would

be really useful to dissociate the operations made on A from the ones made on b.

One option for solving various systems of equations Ax = b that have the same

coefficient matrices A but different constant vectors b is to first calculate the

inverse of the matrix A. However, we know that the computational costs of

calculating the inverse matrix are really high. Another way is to calculate the LU

decomposition of A, where U is the upper triangular matrix which is the result of

the Gauss elimination, and L is a lower triangular matrix with ones in its diagonal,

and the mij multipliers used during the Gauss elimination are below the diagonal.

Once we computed the LU factorization of A, we can easily solve the linear system

LUx = b. First, we solve Ly = b by forward substitution, and then we solve

Ux = y by backward substitution.

Operations count

This procedure uses O(2
3
n3) for the matrix factorization and O(n2) for the forward

and backward substitution.

This method is especially advantageous for solving systems that have the same

coefficient matrices A but different constant vectors b.

The code for the Gauss elimination using LU decomposition can be found in the

Appendix A.4.

2.2 Ill-conditioned systems

For writing this subsection I used the following books [3], [7].

Consider the solution of the system

Ax = b, A ∈ Rn×n, b ∈ Rn. (1)

First, recall some important matrix norms for A ∈ Rn×n.

4



2.2. Ill-conditioned systems

Definition 2.1 (Induced matrix norm).

Let A be ∈ Rn×n. Then the induced matrix norm of A is

‖A‖ = max
x∈Rn,x 6=0

‖Ax‖
‖x‖

Properties of induced matrix norms:

• ∀x ∈ Rn, A ∈ Rn×n : ‖Ax‖ ≤ ‖A‖‖x‖

• All induced matrix norm satisfy ‖I‖ = 1

• Submultiplicity: ‖AB‖ ≤ ‖A‖‖B‖ ∀A,B ∈ Rn×n

• ρ(A) ≤ ‖A‖ ∀A ∈ Rn×n, where ρ(A) is the eigenvalue of A which has the

maximum absolute value.

Important induced matrix norms:

• 1-norm (column norm): ‖A‖1 = max
j=1,2,...n

n∑
i=1

|aij|

• 2-norm (row norm): ‖A‖2 =
√
ρ(ATA)

• ∞-norm: ‖A‖∞ = max
i=1,2,...n

n∑
j=1

|aij|

An example of noninduced matrix norms:

• Frobenius-norm : ‖A‖F =

√
n∑
i=1

n∑
j=1

a2ij

When trying to solve system (1) we are interested in how the solution x

changes if the coefficient matrix A and the right hand side vector b have small

changes. So what is the resulting error δx in x if A is perturbed by δA and b is

perturbed by δb ?

Proposition 2.1.

The resulting relative error is

‖δx‖
‖x‖

≤ ‖A−1‖‖A‖(‖δA‖
‖A‖

+
‖δb‖
‖b‖

).

Proof.

Consider the perturbed equality:

(A+ δA)(x + δx) = b + δb

⇔ Ax + δAx + Aδx + δAδx = b + δb.

5



2.2. Ill-conditioned systems

By neglecting the term δAδx, and using Ax = b we find:

δAx + Aδx
.
= δb.

After arranging this equation we get that

δx
.
= A−1(−δAx + δb).

Taking the induced norm gives us the following:

‖δx‖ ≤ ‖A−1‖ · (‖δA‖ · ‖x‖+ ‖δb‖).

Since we are interested in the relative errors, divide the inequality by ‖x‖ to find
‖δx‖
‖x‖

≤ ‖A−1‖ ·
(
‖δA‖+

‖δb‖
‖x‖

)
= ‖A−1‖ · ‖A‖ ·

(
‖δA‖
‖A‖

+
‖δb‖
‖A‖ · ‖x‖

)
.

By using ‖b‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖, we get

‖δx‖
‖x‖

≤ ‖A−1‖ · ‖A‖ ·
(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
.

Definition 2.2 (Condition number of a matrix).

Let A ∈ Rn×n be a nonsingular matrix. The condition number of A is defined as

κ(A) = ‖A−1‖‖A‖.

Proposition 2.2.

The condition number is always at least 1.

Proof.
‖A−1‖‖A‖ ≥ ‖A−1A‖ ≥ 1.

Remark.

In practise the most important feature is that the condition number is a measure

for singularity. If κ(A) is close to 1, then the matrix is nearly singular, hence it is

easy to invert. If κ(A) is very large, then A is far from being singular. The

following example illustrates that on the other hand, determinant is not always a

good measure for singularity.

Example.

Let α ∈ R, α ≥ 0. Let A = αI.

Clearly, A is nonsingular, A−1 = 1
αI

.

Now we check what result the condition number and the determinant of A shows.

κ(A) = ‖A−1‖‖A‖ = ‖αI ‖ · ‖ 1
αI
‖ = α · 1

α
= 1. The condition number shows that A

is nonsingular, therefore it proves to be a good measure for the singularity of A.

det(A) = αn. For 0 ≤ α ≤ 1 the determinant becomes very small, and for α ≥ 1 it

becomes very large.

6



2.2. Ill-conditioned systems

Theorem 2.3 (Perturbation theorem).

Let the matrix A ∈ Rn×n be nonsingular. Let B ∈ Rn×n. Let ‖.‖ be an induced

matrix norm. Consider the perturbed matrix A+B.

If ‖BA−1‖ < 1, then A+B is nonsingular and

‖A−1‖
1 + ‖BA−1‖

≤ ‖(A+B)−1‖ ≤ ‖A−1‖
1− ‖BA−1‖

.

Proof.

Since ρ(BA−1) ≤ ‖BA−1‖ ≤ 1, it follows that I +BA−1 is nonsingular. We can

express A+B as the product of two nonsingular matrices:

A+B = (I +BA−1)A.

Therefore A+B is nonsingular, too, because its determinant will not be zero. Let

us define the matrix C ∈ Rn such that

(A+B)−1 = A−1 + C.

Because (A+B)(A+B)−1 = I, it follows that

(A+B)(A−1 + C) = I ⇔ I + AC +BA−1 +BC = I

⇔ (A+B)C = −BA−1

⇔ C = −(A+B)−1BA−1

So (A+B)−1 = A−1 + C = A−1 − (A+B)−1BA−1. If we take norms, we get

‖(A+B)−1‖ ≤ ‖A−1‖+ ‖(A+B)−1‖‖BA−1‖.

Which is equivalent to

(I − ‖BA−1‖) · ‖(A+B)−1‖ ≤ ‖A−1‖.

This gives the right inequality. The proof of the left inequality is similar.

Rule of thumb.

If the condition number κ(A) = 10k, then one may lose up to k digits of accuracy

when solving a system with condition number k. This rule is determined by

experience.

Remark.

The rule of thumb shows that we need to be careful with matrices that have huge

condition numbers, because we can get solutions which are really far from the exact

ones. When it comes to engineering for example, this sounds quite dangerous.

Definition 2.3 (Preconditioner).

A preconditioner P of a matrix A ∈ Rn×n is a matrix such that

κ(P−1A) ≤ κ(A).

7



2.2. Ill-conditioned systems

Remark.

Preconditioned techniques are often used in numerical methods, e.g. for solving

linear systems of equations. In that case we solve P−1Ax = Pb instead of the

original system, which reduces the computational costs, and is more effective. We

will see an application for this when presenting the article [5] on page 10.

Definition 2.4 (Ill-conditioned and well-conditioned linear systems).

A system of linear equations is said to be ill-conditioned when some small

perturbation in the system can produce relatively large changes in the exact

solution. Otherwise, the system is said to be well-conditioned.

Remark.

If the condition number is much bigger than 1, the system is likely to be

ill-conditioned. Sometimes we cannot calculate the determinant and the condition

number of a matrix, because the arithmetical operations used here are similar to

the ones used for solving the linear system of equations. That is why many times

we do not care about the exact number, it is enough to know if the condition

number is much larger than 1.

Remark.

The geometric meaning of an ill-conditioned system in two dimensions is trying to

find the intersection point of two almost parallel lines.

Example.

Suppose that we have the results of an experiment, with the small uncertainty of

0.001 in the right hand side vector b.

0.835x+ 0.667y = b1

0.333x+ 0.266y = b2

With (b1, b2) = (0.168, 0.067) the exact solution is (x, y) = (1, -1). Let us make a

small perturbation in b within the range of uncertainty of the measurements. If

(b1, b2) = (0.169, 0.066), the solution will change to (x, y) = (-932, 1167). And if

(b1, b2) = (0.167, 0.068), the solution will change to (x, y) = (934, -1169). We can

see that a small change in the problem we try to solve, caused a big change in the

solution. Taking the 1-norm, we get that the condition number of the coefficient

matrix is 1,754,300, which is clearly not close to 1, therefore we can state, that the

system is ill-conditioned. As we can see, the problem is that all three solutions

have the same validity for being the exact one, and they are really far from each

other, so we cannot rely on the solution we get from this system.

8



2.2. Ill-conditioned systems

The main cause of ill-conditioned systems is that many times we cannot have

exact values for the coefficient matrix, because the data is gained from

experiments. This means that we cannot rely on the solution we get from this

system, since the measurements used for calculating are not accurate. If they have

a little error, the system gives a solution which is relatively really far from the

other one. We cannot risk so much while building a bridge, or having an operation,

for example.

2.2.1 Recent methods for solving ill-conditioned systems

It is obvious that ill-conditioned systems play an important role in several

areas, hence there are a lot of scientists working on how to deal with these

systems. I would like to present three different methods for this problem from

recent articles. Two of them will be shown now, and one later (in subsection

4.3.2), since it requires some further knowledge discussed in 4.3.

1. Multi-scale method for ill-conditioned linear systems [12]

This article introduces a multi-scale method, which reduces the condition number

of the coefficient matrix, thus, it gives an efficient way for solving linear

ill-conditioned systems. After rewriting the given problem, due to the lowered

condition number, it can be easily solved by a known iterative method. Then we

only need to do some basic multiplications to find the solution of the original

problem.

The method.

If the coefficient matrix A of the equations Ax = b (see (1)) is ill-conditioned, the

system can be solved by the following equations

Ãx̃ = b, (2)

where Ã and x̃ are as follows

Ã =


1

‖α1‖2a11
1

‖α2‖2a12 . . . 1
‖αn‖2a1n

1
‖α1‖2a21

1
‖α2‖2a22 . . . 1

‖αn‖2a2n
...

...
. . .

...
1

‖α1‖2an1
1

‖α2‖2an2 . . . 1
‖αn‖2ann

 , x̃ =


‖α1‖2 x1

‖α2 ‖2 x2

...

‖αn‖2 xn

 ,

here αj , j = 1, 2, ...n is the jth column of A.

9



2.2. Ill-conditioned systems

With (2), the following multi-scale method is obtained for system (1):

Step 1: Solve Ãx̃ = b with iterative methods

Step 2: x =


1

‖α1‖2 x1

1
‖α2 ‖2 x2

...
1

‖αn‖2 xn

 .

2. A fast and efficient algorithm for solving ill-conditioned linear

systems. [5]

This article presents an algorithm which is based on a preconditioned technique.

The point is to find the LU factorization of A instead of computing A−1, which

reduces the computational costs, and we use the approximate inverse of L as a left

preconditioner in the method. The algorithm first finds the usual LU factorization

with partial pivoting, and applies the iterative refine method for the solution. In

case it does not satisfy the stopping criteria, the preconditioned technique is

applied, and the iterative refinement method is used on the approximate solution.

This second part, as planned, only needs to be executed if the system is

ill-conditioned, so it does not add any additional computational cost if the system

is well-conditioned.

The algorithm.

We assume that LU approximates A (A ≈ LU) with κ(A) ≈ κ(L). Let XL denote

an approximate inverse of L. By using XL as a preconditioner, the linear system

(1) can be transformed into

XLAx = XLb.

Remark. In the following steps, while presenting the algorithm, we will execute

the LU factorization of AT, but working with the LU factorization of A would also

be correct.

Step 1. Execute an LU factorization of AT with partial pivoting:

PAT ≈ LU.

Then solve

UTLTPx = b

by forward and back substitutions for obtaining its approximate solution,

x̃ ≈ PT(LT)−1(UT)−1b.

10



2.2. Ill-conditioned systems

Step 2. Apply the iterative refinement method to the approximate solution

obtained at Step 1. By this method an accurate solution of Ax = b can be

obtained if A is not ill-conditioned. So first, calculate the

rk ≈ b− Ax̃k

residual precisely. Next, we solve

Ay = rk (3)

by using LU factors obtained at Step 1. Let ỹk be the approximate solution of (3),

then we update x̃k by

x̃k+1 = x̃k + ỹk.

The more steps repeat, the more accuracy of x̃ gains. If the stopping criterion for

the iterations is satisfied, then the algorithm successfully stops. Otherwise, go to

Step 3.

Step 3. Adopt a result of an LU factorization of AT in Step 1 such as

XL ≈ (UT)−1.

Use XL as a left preconditioner of A to reduce the condition number of A.

Multiply Ax = b by XL from the left. Let C and d denote an approximation of

XLA and XLb, respectively:

C ≈ XLA, d ≈ XLb.

Here, XLA and XLb should be calculated accurately. Then, we split both XL and

A into two parts, and

XLA = ((XL)1 + (XL)2) (A1 + A2) = (XL)1A1 + (XL)1A2 + (XL)2A,

which involves three triangular matrix-matrix multiplications. Now consider

Cx = d. (4)

We expect C is not ill-conditioned. If that is the case, (4) can be solved using a

standard way with an LU factorization and forward and back substitutions.

Step 4. Apply the iterative refinement method to the approximate solution at Step

3. It is almost the same as Step 2, except

rk = XL(b− Ax̃k).
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3. SOLVING NONLINEAR EQUATIONS

3 Solving nonlinear equations

For writing this section I used the books [3], [13].

Consider a continuous function f on a given interval [a, b]. Solving a nonlinear

equation in one variable means finding x ∈ [a, b], that satisfies f(x) = 0 (the root

of f). If f : Rn → Rn is a multivariable function, then we search for the vector

x ∈ Rn for which f(x) = 0 holds. In simpler cases the root can be found

analytically, but we can not always use a formula to find the solution. Then we

can apply numerical methods, which will give an approximate of the true solution.

These methods stop when the required accuracy is reached, so when the value of f

at the numerical and the true solution is closer than a predefined value. There are

bracketing and open methods. The bracketing methods need a starting interval

where the solution can be found. Then they keep the solution within the interval,

while reducing the length of it small enough. The open methods start with an

initial guess that is close to the actual solution. This may be done by looking at

the graph of the function. Then by using a scheme the estimates are getting

better. These latter ones are more effective, but does not always converge, whereas

the bracketing methods do.

First we define three types of convergence types that appear in the following

methods. [9]

Definition 3.1 (Linear convergence).

Suppose we have a sequence {xn} such that xn → x∞ ∈ Rk. We say that the

convergence is linear if there exists r ∈ (0, 1) such that

‖xn+1 − x∞‖
‖xn+1 − x∞‖

≤ r

for all sufficiently large n.

Definition 3.2 (Superlinear convergence).

We say a sequence {xn} converges to x∞ superlinearly if we have

lim
n→∞

‖xn+1 − x∞‖
‖xn+1 − x∞‖

= 0.

Definition 3.3 (Quadratic convergence).

We say a sequence {xn} converges to x∞ at a quadratic rate if ∃ 0 < M <∞ such

that
‖xn+1 − x∞‖
‖xn+1 − x∞‖2

≤M

for all sufficiently large n.

12



3.1. Bisection method

3.1 Bisection method

Bisection method is a bracketing method for finding a numerical solution for

the equation f(x) = 0, when it is known that f is continuous within a given

interval [a, b] and the equation has a solution.

The algorithm.

Step 1. Choose the first interval by finding points a and b such that a solution

exists between them. This means that f(a) and f(b) have different signs such that

f(a)f(b) <0. The points can be determined by examining the plot of f(x) versus x.

Step 2. Calculate the first estimate of the numerical solution xNS1 by

xNS1 =
a+ b

2
.

Step 3. Determine whether the true solution is between a and xNS1, or between

xNS1 and b. This is done by checking the sign of the product f(a)f(xNS1):

If f(a)f(xNS1) < 0, the true solution is between a and xNS1. =⇒
Let the new interval [a, b] := [a, xNS1].

If f(a)f(xNS1) > 0, the true solution is between xNS1 and b. =⇒
Let the new interval [a, b] := [xNS1, b].

Step 2.-3. are repeated until the required accuracy is reached.

x

f(x)

a

b

True solution

First estimate

Second estimate

Third estimate

Figure 1: Bisection method.
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3.2. Regula falsi method

Notes.

• The method converges linearly to the solution with convergence ratio 0.5

(provided a root was trapped in the interval [a, b] to begin with).

• However, the method my fail when the function is tangent to the axis and

does not cross the x-axis at f(x) = 0.

The code for Bisection method can be found in the Appendix A.5.

3.2 Regula falsi method

This method (also called false position method) is also a bracketing method for

finding a numerical solution of an equation of the form f(x) = 0. We use it when

it is known that, within a given interval [a, b], f(x) is continuous and the equation

has a solution. The Regula falsi method is really similar to the Bisection method,

the difference is how we choose the next estimate of the numerical solution.

The method starts with finding an initial interval [a1, b1] that brackets the

solution. After this we connect f(a1) and f(b1) with a straight line. The first

estimate xNS1 of the numerical solution is the intersection point of this line and

the x-axis. Then we choose the new interval [a2, b2] such that it is a subinterval of

[a1, b1] that contains the solution. We continue this until our estimate is close

enough to the true solution.

For a given interval [a, b], the equation of a straight line that connects point

(b, f(b)) to point (a, f(a)) is given by:

y =
f(b)− f(a)

b− a
(x− b) + f(b) (5)

To find where this line intersects the x-axis, we need to substitute y = 0 to

equation (5). Now if we solve the equation for x, we will get the numerical solution:

xNS =
a · f(b)− b · f(a)

f(b)− f(a)
. (6)

The algorithm.

Step 1. Similarly to the Bisection method, first find points a and b such that

f(a)f(b) < 0. We know that the solution is between a and b.

14



3.3. Newton’s method

Step 2. Calculate the first estimate of the numerical solution xNS1 by using

equation (6).

Step 3. Determine the next interval by checking the sign of the product

f(a) · f(xNS1).
If f(a)f(xNS1) < 0 =⇒ [a, b] := [a, xNS1].

If f(a)f(xNS1) > 0 =⇒ [a, b] := [xNS1, b].

Repeat Step 2.-3. until a specified tolerance or error bound is attained.

x

f(x)

a1

b1

f(a1)

f(b1)

b2
b3

a2 a3

f(a3)
f(a2)

True solution

First estimate

Second estimate

Third estimate

Figure 2: Regula falsi method.

Proposition 3.1.

Let f be three times continuously differentiable in a neighbourhood of the solution

xS with f ′(xS) = 0, f”(xS) > 0. If the the root is close enough to the endpoints of

the starting interval, then the method converges superlinearly to xS with the order

of convergence 1+
√
5

2
. [8]

3.3 Newton’s method

Newton’s method is a scheme for finding a numerical solution of an equation of

the form f(x) = 0, where f(x) is continuous and differentiable, and the equation is

known to have a solution near a given point.

The algorithm starts by choosing the first estimate x1 of the solution. We obtain

the second estimate x2 by taking the tangent line to f(x) at the point (x1, f(x1))

and finding the intersection point of the tangent line with the x-axis. The next
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3.4. Secant method

estimate x3 is the intersection of the tangent line to f(x) at the point (x2, f(x2))

with the x-axis, and so on.

The slope f ′(x1) for the first iteration is given by

f ′(x1) =
f(x1)− 0

x1 − x2
.

If we rearrange the equation, we get

x2 = x1 −
f(x1)

f ′(x1)
.

We can generalize this equation for determining the next estimate xi+1 form xi:

xi+1 = xi −
f(xi)

f ′(xi)
. (7)

This is the general iteration formula for Newton’s method.

The algorithm.

Step 1. Choose a point x1 as an initial guess of the solution.

Step 2. Calculate xi+1 for i = 1, 2, ... by using equation (7), until the error is

smaller than a specified value.

Proposition 3.2.

If f is three times continuously differentiable in a neighbourhood of the solution xS

with f ′(xS) = 0, f”(xS) > 0, then Newton’s method converge to xS quadratically

(provided that the starting point x1 is close enough to xS). [8]

Notes.

• When the method does not converge, it is usually because the starting point

is not close enough to the solution. Convergence problems typically occur

when the value of f ′(x) is close to zero in the vicinity of the solution.

• The derivative may be difficult to determine in some cases. This time we

may determine the slope numerically, or we can use the Secant method,

described in the next subsection, since it does not use the derivatives.

The code for Newton’s method can be found in the Appendix A.6.

3.4 Secant method

The Secant method is a scheme for finding a numerical solution of the equation

f(x) = 0. The method uses two points in the neighbourhood of the solution to find

the new estimate. These two points are used to determine a straight line (secant

line), and the point where it intersects the x-axis is the new estimate.
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3.4. Secant method

The slope of the secant line is given by

f(x1)− f(x2)

x1 − x2
=

f(x2)− 0

x2 − x3
.

This can be solved for x3:

x3 = x2 −
f(x2)(x1 − x2)
f(x1)− f(x2)

.

Once the point x3 is determined, it is used together with the point x2 to calculate

the next estimate of the solution, x4.

The generalized formula for xi+1 is

xi+1 = xi −
f(xi)(xi−1 − xi)
f(xi−1)− f(xi)

. (8)

Relationship to Newton’s method.

Examination of the Secant method shows that when the two points that define the

secant line are close to each other, the method is actually an approximated form of

Newton’s method. This can be seen by rewriting equation (8) in the form

xi+1 = xi −
f(xi)

f(xi−1)−f(xi)
xi−1−xi

.

The convergence rate of Secant method is 1+
√
5

2
, so it converges slower than

Newton’s method. However, the latter needs the actual derivative of f , whereas

Secant method uses the approximation of it, saving computational costs.

The code for Secant method can be found in the Appendix A.7.
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4. EIGENVALUE PROBLEMS

4 Eigenvalue problems

In this section I use the following books: [3], [4], [6], [7], [11].

Eigenvalue problems play a very important role in science and engineering.

They appear whenever something is oscillating in a periodic motion. One famous

example is related to the Chladni figures, which appear when fine grained sand or

dust on a vibrating plate organizes itself to reveal the nodal lines of the vibrating

plate. (Nodal lines are the lines that stay in place while the other parts are in the

state of the vibration.) A spectacular video of Chldani figures can be seen on the

link [1]. It shows how the geometric patterns become more and more complex as

the pitch of the voice made increases. Also, the spectacular failure of the Tacoma

bridge is shown to be related to an eigenvalue problem. To find further details

about these examples, see [2].

In the study of vibrations, the eigenvalues represent the natural frequencies of

a system or component, and the eigenvectors represent the modes of these

vibrations. It is important to identify these natural frequencies, because when the

system or component is subjected to periodic external loads (forces) at or near

these frequencies, resonance can cause the response (motion) of the structure to be

amplified, which potentially leads to failure of the component. In mechanics of

materials , the principal stresses are the eigenvalues of the stress matrix, and the

principal directions are the directions pf the associated eigenvectors. In quantum

mechanics, the eigenvectors represent one of the states in which an object or a

system may exist corresponding to a particular eigenvalue.

Although eigenvalue problems are often formulated at the level of differential

equations, there is a link between these and eigenvalue problems involving

Au = λu. Numerical determination of the eigenvalues in a problem involving an

ordinary differential equation reduces to finding the eigenvalues of an associated

matrix A, which results in a problem of the form Au = λu.

Definition 4.1 (Eigenvalues and Eigenvectors).

Given A ∈ Rn×n, find x ∈ Rn,x 6= 0, and λ ∈ C such that Ax = λx. Here λ is an

eigenvalue, x is an eigenvector of A. Any such pair (λ,x) is called an eigenpair of

A.

Remark (Geometrical interpretation).

Geometrically, Ax = λx means that under transformation by A, the eigenvectors

can only change in their magnitude or sign.
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4. EIGENVALUE PROBLEMS

The orientation of the vectors x and Ax is the same. The eigenvalue λ determines

the amount of stretch or shrink made on the eigenvector when being transformed

by A.

Definition 4.2 (Spectrum).

Let A ∈ Rn×n. The set of distinct eigenvalues of A, denoted by σ(A), is called the

spectrum of A.

Definition 4.3 (Spectral radius).

Let A ∈ Rn×n. The number ρ(A) = max
λ∈σ(A)

|λ| is called the spectral radius of A.

Many applications do not require precise knowledge of the eigenvalues of A,

only an upper bound. The next proposition gives a rough but cheap approximate

for ρ(A).

Proposition 4.1.

∀A ∈ Rn×n : ρ(A) ≤ ‖A‖ for every matrix norm.

Proof. For any (λ,x) eigenpair of A, Ax = λx. We know that for any vector

norm ‖λx‖ = |λ| · ‖x‖, therefore

|λ| · ‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖ · ‖x‖

for all λ ∈ σ(A).

By computing this eigenvalue bound we only get one big circle, whose radius is

usually much bigger than the spectral radius ρ(A). We get a better approximation

with using Gershgorin circles, which are elaborated in the next subsection (4.1).

Earlier we analysed how the solution of the system

Ax = b, A ∈ Rn×n, b ∈ Rn, x ∈ Rn changes if A or b has some uncertainties. Now

we want to see how the eigenvalues of a matrix A change if the elements of A have

small perturbations. The following theorem tells us about the condition of the

eigenvalues of A in case the Jordan decomposition of A is diagonal.

Theorem 4.2 (Conditioning of eigenvalues).

Let A ∈ Cn×n and A = S−1DS, where D = diag(λ1, λ2, ...λn). Let ‖A‖ matrix

norm be such that for all D diagonal matrix ‖D‖ = max
i
|di|. (E.g. 1-norm,

2-norm, ∞-norm.) If B ∈ Cn×n and ε > 0, then in case

λ(ε) ∈ σ(A+ εB),

∃ i such that

|λ(ε)− λi| ≤ ε ‖B‖ ‖S‖ ‖S−1‖ = ε ‖B‖ κ(S).
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4.1. Gershgorin circles

Proof.

Let λ(ε) be an eigenvalue of A+ εB. If λ(ε) = λi for some i, then the left hand

side of the inequality is 0, and the right hand side consists of only nonnegative

numbers, so the statement is trivially true.

Therefore we may assume that λ(ε) 6= λi for i = 1, ...n. In this case

0 = det(A+ εB − λ(ε)I) = det(S−1DS + εB − λ(ε)I) =

= detS−1(D + εSBS−1 − λ(ε)I)S) = det(D − λ(ε)I + εSBS−1) =

= det(D − λ(ε)I) det(I + ε(D − λ(ε)I)−1SBS−1)

(Rather than doing small manipulations on the equations, we used the property

that the determinant of similar matrices are equal.)

Since λ(ε) 6= λi for i = 1, ...n, we have det(D − λ(ε)I) 6= 0. For this reason

det(I + ε(D − λ(ε)I)−1SBS−1) = 0.

This implies that

ε ‖(D − λ(ε)I)−1‖ ‖S‖ ‖B‖ ‖S−1‖ ≥ ‖ε(D − λ(ε)I)−1SBS−1‖ ≥ 1,

because otherwise the matrix would be invertible, and its determinant would not

be 0. Hence, ε ‖B‖ κ(S) ≥ min
i
|λi − λ(ε)|.

4.1 Gershgorin circles

In many cases it is not essential to know the eigenvalues exactly, but is enough

to have a good approximation for them. Now we will see a graphic way of

approximating eigenvalues.

Here consider an n× n complex matrix A (as the previous definitions are also

true over C).

Theorem 4.3 (Gershgorin I).

Let A ∈ Cn×n. For every row of the matrix, let Ri be the sum of the absolute

values of the nondiagonal entries, so

Ri :=
n∑

j=1,j 6=i

|aij|.

Let Bi be the discs in the complex plane with center aii and radius Ri, so

Bi := {z ∈ C, |z − aii| ≤ Ri}.

Proof. Let λ be an eigenvalue of A and u be the corresponding eigenvector.
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4.1. Gershgorin circles

Then the ith equation of the eigenvalue equation Au = λu gives
n∑
j=1

aijuj = λui (i = 1, 2, ..., n).

Now choose m such that ‖u‖∞ = max
l=1,2,...,n

|ul| = |um|. We obtain

n∑
j=1,j 6=m

amjuj = (λ− amm) um. (9)

Since u is an eigenvector, we know that um 6= 0, therefore we can divide (9) by

um. Now taking the absolute value of both sides of the equality we get

|λ− amm| =
n∑

j=1,j 6=m

|amj| ·
∣∣∣∣ uj

um

∣∣∣∣ .
Here

∣∣∣ uj

um

∣∣∣ ≤ 1, because um = ‖u‖, which means that for all j = 1..n uj ≤ um.

Hence, if we leave out this factor from the right side of the equation, we will

increase it. So, the conclusion is

|λ− amm| ≤
n∑

j=1,j 6=m

|amj| = Rm,

which means that λ ∈ Bm.

Corollary.

The eigenvalues of a diagonal matrix are the entries on the diagonal.

Theorem 4.4 (Gershgorin II).

Let A ∈ Cn×n. Assume we can divide the Gershgorin discs into two disjoint sets:

V1 is the union of k discs and V2 is the union of the other n− k discs. Then k

eigenvalues lie in V1 and n− k eigenvalues lie in V2 (counting multiplicities).

Proof. Let ε ∈ [0, 1] and define the following matrix:

(B(ε))ij =

aii, (i = j)

εaij, (i 6= j).

One can easily see that in the case when ε = 0, B(0) = diag(a11, ..., ann) , the

theorem is clearly true. Furthermore, using the definition, we can realize that for

all ε ∈ [0, 1] the diagonal entries of the matrix B(ε) are the same as of the original

matrix A. For this reason the centers of the Gershgorin circles will remain the

same for any ε ∈ [0, 1] parameter.

The union of the k circles will be disjoint from the n− k circles for all B(ε),

ε ∈ [0, 1] matrices. Since V1 and V2 consist of closed discs and they are disjoint,

their distance d is strictly larger than 0. We saw that the centers of the Gershgorin
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4.1. Gershgorin circles

circles are independent from the parameter ε, but the radii grow with ε growing

bigger. The radii will be the largest for ε = 1, in the case when B(1) = A. We

know that even in this case the d > 0 distance applies. Now we obtained what we

need to see that the theorem is true, because the eigenvalues are continuous

functions of ε.

Remark.

If A is real, the centers of the Gershgorin discs lie on the real axis.

For example, see Figure 4 and 5.

Remark.

We know that for any real symmetric matrix the eigenvalues are real, which gives

us a more exact approximation for the eigenvalues, namely the range of eigenvalues

is going to be given by the intersection of the real axis and the union of the

Gershgorin circles.

Example.

Consider the following matrix A =


−2 4 −3 1

4 14 2 0

−3 2 −8 −1

1 0 −1 1

.

Figure 3 shows the Gershgorin discs of A and its eigenvalues denoted by red stars.

-14-13-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

Figure 3: Gershgorin circles of a symmetric matrix

The following theorem shows a way for modifying the radii of Gershgorin

circles with some parameters. This enables us to move or disjoint the circles when

it is needed.
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4.1. Gershgorin circles

Theorem 4.5 (Gershgorin III ).

Let D = diag(d1, d2, ..., dn) ∈ Rn×n, det(D) 6= 0. Consider the matrix Ā = D−1AD.

We know that it has the same eigenvalues as A (because similarity transformation

preserves eigenvalues). Furthermore, we can see that diagonal entries do not

change, which means, the centers of the Gershgorin circles remain the same,

though the r̄i radii of Ā will be modified in the following way:

r̄i =
n∑

j=1,j 6=i

∣∣∣∣aijdjdi

∣∣∣∣ (i = 1, 2, ..., n).

.

Remark.

Since σ(AT) = σ(A), we can also define the radii of Gershgorin circles with the

column sums, so the eigenvalues of A are also contained in the following

Gershgorin circles:

Dj := {z ∈ C, |z − aii| ≤ Cj}

where

Cj =
n∑

i=1,i 6=j

|aij| (j = 1, 2, ..., n).

Remark.

Let us use the following notations: Gr =
n⋃
i=1

Bi and Gc =
n⋃
j=1

Dj.

We can obtain the best estimate by considering Gr

⋂
Gc, which will be seen in

the next example.

Example.

We would like to give an estimate for the eigenvalues of A =

5 1 1

0 6 1

1 0 −5

.

The exact solution is σ(A) = {5, (1± 5
√

5)/2} ≈ {5, 6.0902,−5.0902}. Now we

compare results from three methods.

• We can have a crude estimate from Proposition 4.1, which gives us (using

the ∞-norm) |λ| ≤ ‖A‖∞ = 7 ∀λ ∈ σ(A).

• Now we use the Gershgorin circles derived from row sum to give a better

estimate. The computed discs can bee seen on the Figure 4. Theorems 4.3

and 4.4 guarantee that one eigenvalue is in (or on) the circle centered at -5,

while the remaining two eigenvalues are in (or on) the larger circle centered

at +5. The red stars show the exact location of the eigenvalues on the plot.
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4.2. Iteration methods

• The best estimation is obtained from the intersection of the Gershgorin

circles derived from Gr

⋂
Gc. Figure 5 shows us that one eigenvalue is in

the circle centered at -5, and the other two eigenvalues are in the union of

the other two circles. Again the red stars mark the places of the actual

eigenvalues.

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

-2

-1

1

2

Figure 4: Gershgorin circles derived from row sum

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

-1

0

-1

Figure 5: Gershgorin circles derived from Gr

⋂
Gc

4.2 Iteration methods

Since eigenvalues are the roots of the characteristic polynomial of a matrix,

they can only be computed iteratively, as there are no closed formulas for roots of

polynomilas of degree higher than four.

4.2.1 Power iteration

This method computes one eigenpair.

Let A ∈ Rn×n such that for the eigenvalues λ1, λ2, ...λn of A the following holds:

|λ1| > |λ2| ≥ ... ≥ |λn|. Here λ1 is called the dominant eigenvalue. Let u1,u2, ...,un

be the corresponding eigenvectors, and suppose that they are independent.

Therefore they form a basis in Rn.
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4.2. Iteration methods

Choose an arbitrary start vector x0 ∈ Rn, x0 6= 0. We can write x0 in the terms of

the basis vectors u1,u2, ...,un: x0 =
n∑
j=1

βjuj. Suppose that β1 6= 0, which means

that x0 is not perpendicular to u1.

Consider the following iteration.

xi+1 = Axi, for i = 0, 1, 2, ...

Where do these vectors x0,x1,x2, ... converge? The next proposition gives us the

answer.

Proposition 4.6.

The vectors xi (i→∞) converge to u1, the eigenvector that belongs to the

dominant eigenvalue λ1.

Proof.

xi = Aix0 = Ai

(
n∑
j=1

βjuj

)
=

n∑
j=1

βjA
iuj =

n∑
j=1

βjλ
i
juj = β1λ

i
1u1 +

n∑
j=2

βjλ
i
juj

= λi1

(
β1u1 +

n∑
j=2

βj

(
λj
λ1

)i
uj

)

Since |λ1| > |λ2| ≥ ... ≥ |λn|, it follows that
(
λj
λ1

)i
→ 0 for i→∞.

So we obtained that xi → λi1β1u1.

There is always the question if we can speed up the convergence of the method.

The following variant of power method shows a way for this.

Power method with shift.

Let us see the idea first. Let σ ∈ R. If Au = λu, then

(A− σI)u = Au− σu = λu− σu = (λ− σ)u.

This means that B = A− σI has the same eigenvectors as A, but the eigenvalues

are shifted, so B has the eigenvalues µk = λk − σ with k=1,2,...,n.

Now use the power method on B. This is the power method with shift.

Of course the next question is how to choose σ so that we can speed up the

convergence.

Recall: the eigenvalues are λ1 > λ2 ≥ ... ≥ λn.

If we want µ1 = λ1 − σ to remain the dominant eigenvalue, we need σ < λ1+λn
2

.

If we want µ2 = λ2 − σ to remain the next largest, we need σ ≤ λ2+λn
2

.

The converge speed for the power method with shift is µ2
µ1

= λ2−σ
λ1−σ .
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4.2. Iteration methods

It is going to be minimal if we choose σ = λ2+λn
2

.

Remarks.

The optimal choice is theoretical, since λ2 and λn are unknowns.

One can take a different shift in every iteration step.

4.2.2 Rayleigh quotient

Using the power method we get xi+1 ≈ λi+1
1 β1u1 = λ1λ

i
1β1u1 ≈ λ1xi. If we

take the inner product with xi on both sides, we have the following approximation

for the dominant eigenvalue: λ1 ≈ <xi+1,xi>

<xi,xi>

Definition 4.4 (Rayleigh quotient).

Let x ∈ Rn, x 6= 0. The Rayleigh quotient ρ(x) ∈ R of x is defined as

ρ(x) :=
< Ax,x >

< x,x >
.

We can see that the Rayleigh quotients ρ(xi) converge to the dominant eigenvalue

λ1.

Theorem 4.7.

Assume that the eigenvectors ui are normalized, so ‖ui‖2 = 1.

Let x ∈ Rn with ‖x‖2 = 1 be an approximation of u1.

Then the Rayleigh quotients ρ(x) = <Ax,x>
<x,x>

= < Ax,x > is an approximation of λ1

and the estimated error is

|λ1 − ρ(x)| ≤ 2 · ‖A‖2 · ‖u1 − x‖2.

Proof.

|λ1 − ρ(x)| = |λ1 < u1,u1 > − < Ax,x > |

= | < Au1,u1 > − < Ax,x > |

= | < Au1,u1 > − < Ax,u1 > + < Ax,u1 > − < Ax,x > |

= | < A(u1 − x),u1 > + < Ax,x > |

≤ | < A(u1 − x),u1 > |+ | < Ax,x > |

≤ ‖A(u1 − x)‖2 · ‖u1‖2 + ‖Ax‖2 · ‖u1 − x‖2
≤ ‖A‖2 · ‖u1 − x‖2 + ‖A‖2 · ‖x‖2 · ‖u1 − x‖2
= 2 · ‖A‖2 · ‖u1 − x‖2
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4.2. Iteration methods

During the power method iterations the values ‖xi‖2 can become very large or

small. Let us normalize the vectors, so take xi

‖xi‖2
. This brings us to the following

iteration.

Rayleigh quotient iteration.

Choose a start vector z0 ∈ Rn with ‖z0‖2 = 1. For i =0,1,2,... compute

1. yi+1 := Azi

2. ρi := ρ(zi) = < Azi, zi > = < yi+1, zi >

3. zi+1 := yi+1

‖yi+1‖2

The Rayleigh quotients ρi converge to the dominant eigenvalue λ1.

Connection between Power method and Rayleigh quotient iteration.

Power method Rayleigh quotient iteration

Choose x0 ∈ Rn Choose z0 ∈ Rn with ‖z0‖2 = 1

Compute for i =0,1,2,... Compute for i =0,1,2,...

1. xi+1 := Axi 1. yi+1 := Azi

2. ρ(xi) = <xi+1,xi>

<xi,xi>
2. ρi := ρ(zi) = < Azi, zi > = < yi+1, zi >

3. zi+1 := yi+1

‖yi+1‖2

Assume that we take x0 = z0. What is the relationship between xi and zi?

Proposition 4.8.

Using the previous notations, we have

zi =
xi

‖y1‖2 · ‖y2‖2 · ... · ‖yi‖2
and ρ(zi) = ρ(xi).

Proof.

We will prove zi = xi

‖y1‖2·‖y2‖2·...·‖yi‖2
by induction.

Base case (k=1):
z1 =

y1

‖y1‖2
=

Az0

‖y1‖2
=

Ax0

‖y1‖2
=

x1

‖y1‖2
.

Induction hypothesis (IH): We assume that the claim holds for any k ≥ 1, which

means that zk = xk

‖y1‖2·‖y2‖2·...·‖yk‖2
for k ≥1. We prove the claim for k+1.

zk+1 =
yk+1

‖yk+1‖2
=

Azk

‖yk+1‖2
=
A( xk

‖y1‖2·‖y2‖2·...·‖yk‖2
)

‖yk+1‖2
(by the IH)

=
Axk

‖y1‖2 · ‖y2‖2 · ... · ‖yk‖2 · ‖yk+1‖2
=

xk+1

‖y1‖2 · ‖y2‖2 · ... · ‖yk+1‖2
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4.2. Iteration methods

The proof of the second part comes now.

ρ(zi) = < Azi, zi > = < yi+1, zi > = ‖yi+1‖2 < zi+1, zi >

= ‖yi+1‖2
< zi+1, zi >

< zi, zi >

= ‖yi+1‖2

〈
xi+1

‖y1‖2·‖y2‖2·...·‖yi+1‖2
, xi

‖y1‖2·‖y2‖2·...·‖yi‖2

〉
〈

xi

‖y1‖2·‖y2‖2·...·‖yi‖2
, xi

‖y1‖2·‖y2‖2·...·‖yi‖2

〉
= ‖yi+1‖2

(
< xi+1

‖yi+1‖2
,xi >

< xi,xi >

)
=
< xi+1,xi >

< xi,xi >
=
< Axi,xi >

< xi,xi >
= ρ(xi)

This means that the Rayleigh quotients ρ(zi) in the scaled version of the power

method have the same convergence speed as the quotients ρ(xi).

Convergence speed of the Rayleigh quotient iteration.

We have ρ(xi) = λ1

(
1 +O

((
λ2
λ1

)i))
This means that ρ(xi) = λ1 + c ·

(
λ2
λ1

)i
and lim

i→∞
ρ(xi+1)−λ1
ρ(xi)−λ1

= λ2
λ1
.

=⇒ ρ(xi+1)− λ1︸ ︷︷ ︸
error in step i+1

≈ λ2
λ1︸︷︷︸

convergence factor

· (ρ(xi)− λ1)︸ ︷︷ ︸
error in step i

Remark.

The Rayleigh quotients ρ(xi) converge linearly to λ1.

The convergence factor is λ2
λ1

. So if
∣∣∣λ2λ1 ∣∣∣ is close to 1, the convergence is slow, and if

it is << 1, the method converges fast.

Special case of symmetric matrices.

If A is symmetric, then the the convergence speed of the power method is higher:

ρ(xi) = λ2i1 ·

(
1 +O

(
λ2
λ1

)2i
)

Here the convergence factor is
(
λ2
λ1

)2i
.

4.2.3 Inverse iteration

Let A be nonsingular. Let λ be an eigenvalue with the corresponding

eigenvector u. Since A is nonsingular, we know that λ 6= 0. Then

Au = λu⇔ A−1Au = λA−1u⇔ u = λA−1u⇔ A−1u =
1

λ
u.
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4.2. Iteration methods

Therefore the matrix B = A−1 has the same eigenvectors as A, but the eigenvalues

µk of B are µk = 1
λk
.

The inverse iteration is applying the power method on B = A−1. It will find the

dominant eigenvalue µn = 1
λn

with the convergence factor µn−1

µn
= λn

λn−1
.

Inverse iteration with shift.

We apply the power method on B = (A− σI)−1.

B has the same eigenvectors as A, with the shifted eigenvalues µk = 1
λk−σ

.

What is the dominant eigenvalue? The good news are that we can make any

eigenvalue dominant, because it depends on the choice of σ. This means that with

the appropriate choice of σ we can compute any of the eigenvalues of A. When we

have the result µk after the iteration, we just add σ to its reciprocal.

If we choose σ such that the dominant eigenvalue is µk, and the next largest is µl,

then the convergence factor is µl
µk

= λk−σ
λl−σ

. To speed up the convergence, we can

modify σ in every step. A good choice is to take the currently computed λk as the

next shift.

4.2.4 Orthogonal iteration

The orthogonal or subspace iteration is a generalized version of the power

method to compute more than one eigenpair. The idea is to use the power method

on more vectors at the same time. So instead of a single vector x ∈ Rn, choose a

start matrix Q0 ∈ Rn×k. Make sure that the columns of Q0 are orthonormal. The

number of its columns, 1 < k ≤ n, is the number of the eigenvalues we want to

compute.

Orthogonal iteration

1. Choose a start matrix Q0 with orthonormal columns.

2. For i =0,1,2,... compute matrices Qi+1 and Ri+1 such that

Qi+1Ri+1 = AQi,

where Qi+1 ∈ Rn×k is orthogonal and Ri+1 ∈ Rk×k is upper triangular.

Remark.

Because Ri is upper triangular, the diagonal entries of Ri (i→∞) converge to the

eigenvalues λ1, λ2, ..., λk.

Disadvantages of the orthogonal iteration.

• If A is a dense matrix, it is expensive to compute a QR decomposition in

every step of the iteration.
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4.2. Iteration methods

• The start matrix Q0 must be carefully chosen. Columns should have nonzero

components in the directions of the eigenvectors we want to compute.

• The convergence speed is essentially that of the power method without shift.

4.2.5 QR iteration

Theorem 4.9 (QR decomposition.).

Consider the matrix A ∈ n×n and assume that A−1 exists.

Then ∃! A = QR decomposition, where Q is orthogonal and R is upper triangular

with rii > 0 for i =1,2,...,n.

Proof.

Now we will show only the uniqueness, assuming that there exists the

decomposition A = QR. (We will prove the existence by giving an algorithm at the

end of this chapter.)

Indirectly, assume that the QR decomposition exists, and it is not unique. It

follows that A = Q1R1 = Q2R2. Multiplying the equation Q1R1 = Q2R2 by R−11

from the right and by Q−12 = QT
2 from the left, we get QT

2Q1 = R2R
−1
1 . On the left

side of the equation we have an orthogonal matrix, and on the right an upper

triangular. An upper triangular matrix which is orthogonal (and therefore normal

as well), is diagonal. A diagonal matrix with positive entries in its diagonal is the

identity matrix. So the equality holds only if Q1 = Q2, and it implies that

R1 = R2.

The QR algorithm.

The QR algorithm was listed as one of the top ten algorithms in the last century.

This is the most widely used algorithm for computing the eigenvalues of dense

matrices. It finds all the eigenvalues and eigenvectors of the matrix.

First, we will transform the given matrix A ∈ Rn×n into upper Hessenberg form.

This will reduce the computing costs for finding the QR decomposition. The upper

Hessenberg form is an upper triangular matrix with one subdiagonal. We will do

the transformation by Givens rotations.
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4.2. Iteration methods

Definition 4.5 (Givens rotation).

A Givens rotation is a matrix of the form

p q

G=



1
. . .

1

c s

1
. . .

1

−s c

1
. . .

1



p

q

with c2 + s2 = 1.

Interpretation as mapping.

G is a rotation over the (p, q)-plane with the angle Φ where c = cos(Φ) and

s = sin(Φ).

Properties of G.

• G is the identity matrix except the rows and columns p, q.

Gpp = c Gpq = s

Gqp = −s Gqq = c

• G is orthogonal, since GTG = I.

• We can create one zero entry in the matrix A with one Givens rotation.

So we will transform A into upper Hessenberg form by Givens rotations.

For j=1,2,...n-2 create zeros in the jth column at positions aj+2,j, aj+3,j, ..., an,j. To

create a zero at position (3, 1), we change the two entries a2,1 and a3,1. So we use a

Givens rotation with p=2 and q=3. Let us denote this by G2,3. If we left multiply

A by G2,3, only the rows 2 and 3 are changed. Similarly, if we right multiply A by

GT
2,3, only the columns 2 and 3 are changed.

One can see that G2,3AG
T
2,3 has zero at position (3, 1).

Define A = Gn−1,nGn−2,nGn−2,n−1...G2,3AG
T
2,3...G

T
n−2,n−1G

T
n−2,nG

T
n−1,n. Then A has

upper Hessenberg form and we used a similarity transformation, so A has the same

eigenvalues as A.
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4.2. Iteration methods

Definition 4.6 (Irreducibility).

A is reducible if there is a permutation matrix P such that PAPT is block upper

triangular.

So PAPT =

(
A11 A12

0 A22

)
. Otherwise A is called irreducible.

Proposition 4.10.

If the Hessenberg matrix A is irreducible, then Q0 = I is a suitable start matrix for

the orthogonal iteration on A.

Assume that A is irreducible.

Orthogonal iteration on the Hessenberg matrix.

1. Take as a start matrix Q0 = I.

2. For i=0,1,2,... compute matrices Qi+1 and Ri+1 such that Qi+1Ri+1 = AQi

where Qi+1 ∈ Rn×n is orthogonal and Ri+1 ∈ Rn×n is upper triangular.

Here we compute all the eigenvalues, so we work with k = n.

Qi+1Ri+1 = AQi ⇔ QT
i Qi+1︸ ︷︷ ︸
:=Q̃i+1

Ri+1 = QT
i AQi︸ ︷︷ ︸
:=Ai

By definition, Q̃i+1 is orthogonal and Ai is similar to A. So we have Q̃i+1Ri+1 = Ai.

By swapping the factors, we get

Ri+1Q̃i+1 = (QT
i+1AQi) · (QT

i Qi+1) = QT
i+1AQi+1 = Ai+1.

QR algorithm.

1. Transform A to upper Hessenberg form, using left and right multiplication with

Givens rotations. This gives A = A0, an upper Hessenberg matrix that has the

same eigenvalues as A.

2. Compute for i=0,1,2,... the QR decomposition Q̃i+1Ri+1 = Ai and swap the two

factors: Ai+1 = Ri+1Q̃i+1.

Remark.

Every matrix Ai has upper Hessenberg form. Therefore we only need to create

zeros at the subdiagonal of Ai (which means applying n-1 Givens rotations) to find

its QR decomposition.

It can be shown that the subdiagonal of Ai converges to 0, which means that Ai

converges to upper triangular form.

Another way to compute the QR algorithm is to use Householder transformations,

which create zeros under the diagonal of A.
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Definition 4.7 (Householder transformation).

Let x ∈ Rn, x 6= 0. Then the matrix H := I − 2 · xxT

xTx
is called Householder

transformation.

Proposition 4.11.

Let H be the Householder transformation. Then H is symmetric and orthogonal.

Proof.

HT =
(
I − 2 · xxT

xTx

)T
= IT −

(
2 · xxT

xTx

)T
= I − 2 · I

xTx
· (xxT)T = I − 2 · I

xTx
· xxT,

so HT = H, which means that H is symmetric.

HTH = HH =
(
I − 2 · xxT

xTx

)(
I − 2 · xxT

xTx

)
= I − 4 · xxT

xTx
+ 4 · xxTxxT

(xTx)2
=

= I - 4 ·xxT

xTx
+ 4 · xxT

xTx
= I, so HT = H−1, therefore H is orthogonal.

Interpretation of the Householder transformation as mapping.

Let y ∈ Rn. Then Hy =
(
I − 2 · xxT

xTx

)
· y = y − 2 · xxTy

xTx
= y − 2 · xTy

xTx
· x.

Let us take two special choices for y. Let y1, y2 ∈ Rn.

If y1 is parallel to x ( y1 = cx), then Hy1 = cx− 2c · <x,x>
<x,x>

· x = −cx = −y1.

If y2 is orthogonal to x, then < x,y2 >= xTy2 = 0, so Hy2 = y2.

Every vector w ∈ Rn can be decomposed to a component that is parallel to x and

one that is orthogonal (so w has the form w = y1 + y2). Therefore we have

Hw = Hy1 +Hy2 and we got that the Householder transformation is a reflection

to the hyperplane x⊥ = {y ∈ Rn :< x,y >= 0}.

The following proposition says that that any vector can be transformed to a

special form with the suitable Householder transformation. So we can create zeros

at all coordinates of the vector except the first one.

Proposition 4.12.

Let y ∈ Rn. There exists x ∈ Rn with ‖x‖2 = 1, such that Hy = σe1, where

σ = ±‖y‖2 and x = y−σe1
‖y−σe1‖2 .

Proof.

For the defined vector x it is obviously true that ‖x‖ = 1. If y = 0, then σ = 0 and

the proposition holds.

Let us assume that y 6= 0. By definition < y,y >= σ2. Let us substitute x into the

definition of the Householder matrix.(
I − 2 · y − σe1

‖y − σe1‖2
(y − σe1)T

‖y − σe1‖2

)
y = y − 2

‖y − σe1‖22
(y − σe1)(< y,y > −σ < e1,y >)

= y − (y − σe1) = σe1
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4.3. Singular Value Decomposition

We use that ‖y − σe1‖22 in the denominator is the same as

< y − σe,y − σe> =< y,y > −2σ < y, e1 > +σ2 = 2(< y,y − σ < y, e1 >) and

therefore we can simplify the fraction by this expression.

Now we can define the QR algorithm by using Householder transformations.

QR algorithm.

Now we indicate the vector x in the Householder transformation (H = H(x)).

Let A = [a1, a2, ..., an] ∈ Rn×n. Then according to the previous proposition

∃x1 ∈ Rn with ‖x1‖2 = 1 such that H(x1)a1 = σ1e1. We get that

H(x1)A =

(
σ1 cT1

0 A1

)
, where A1 ∈ Rn−1×n−1 and H1 := H(x1) is orthogonal.

Similarly for A1 = [a1
(1), a2

(1), ..., an−1
(1)] there exists x2 ∈ Rn−1 with ‖x2‖2 = 1

such that H(x2)a1
(1) = σ2e1.

Then H2 :=

(
1 0

0 H(x2)

)
is also orthogonal and H2H1A =

σ1 cT1

0 σ2 cT2

0 0 A2

.

If we continue this method, in n-1 steps we will obtain an upper triangular matrix,

which contains the values σ1 in its diagonal. Hn−1Hn−2...H2H1A = R, and because

Hi is symmetric and orthogonal, we have A = H1H2...Hn−2Hn−1︸ ︷︷ ︸
Q:=

R = QR.

4.3 Singular Value Decomposition

If A ∈ Rm×n with m ≥ n, then ATA is a square real symmetric n× n matrix.

Theorem 4.13.

The eigenvalues of ATA are nonnegative.

Proof. If λ is an eigenvalue of ATA, then ∃ u ∈ Rn such that ATAu = λu. If we

multiply both sides by u from the right, we get < ATAu, u > = λ < u,u >.

This is equivalent to < Au, Au > = λ < u,u >. Rearranging this equation we

obtain λ = <Au,Au>
<u,u>

≥ 0.

Definition 4.8 (Singular values).

Let us denote the eigenvalues of ATA by (σ1)
2, ..., (σn)2. The numbers

σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0 are called the singular values of A.

Let vi be an eigenvector of ATA that corresponds to the eigenvalue (σi)
2.
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4.3. Singular Value Decomposition

Then ATAvi = (σi)
2vi. The vectors v1, ...,vn can be chosen such that they form

an orthonormal system.

Definition 4.9 (Right singular vectors).

The vectors v1, ...,vn defined above are called the right singular vectors of A.

If A ∈ Rm×n, then AAT is an m×m real symmetric matrix.

We saw that ATAvi = (σi)
2vi. If we multiply both sides by A from the left, we

obtain AATAvi = (σi)
2Avi. If A has independent columns, then Avi 6= 0, so Avi is

an eigenvector of AAT, with corresponding eigenvalue (σi)
2.

Proposition: If we take ui = 1
σi
Avi, then ui is an eigenvector, ‖ui‖2 = 1 and

< ui,uj >= 0, if i 6= j.

Proof: We know that ATAvi = (σi)
2vi and < vi,vj > = δij =

1 (i = j)

0 (i 6= j)

If we take ui = 1
σi
Avi, we have

< ui,uj > = <
1

σi
Avi,

1

σj
Avj > =

1

σiσj
< vi, A

TAvj >=

=
1

σiσj
σ2
j < vi,vj > =

σj
σi

δij = δ.

AAT is an m×m matrix, so it has m eigenvalues. We have already found

(σ1)
2, ..., (σn)2, with the corresponding eigenvectors u1, ...un .

Let z ∈ Rn, z 6= 0, such that z is orthogonal to every column of A.

Then

z ⊥ ai ∀i = 1, 2, ..., n

⇔ < z, ai > = 0 ∀i = 1, 2, ..., n

⇔ ai
Tz = 0 ∀i = 1, 2, ..., n.

It follows that ATz = 0, and hence AATz = 0.

Now we have that z is an eigenvector with eigenvalue λ = 0. We can find m− n
linearly independent eigenvectors for the eigenvalue λ = 0.

Choose un+1, ...,um such that ATAui = 0 ∀i = n+ 1, n+ 2, ...,m and the vectors

u1,u2, ...,um form an orthonormal system.

So we obtained all the eigenvalues and eigenvectors of AAT:

The eigenvalues are (σ1)
2, (σ2)

2, ..., (σn)2, 0, 0, ..., 0.

The eigenvectors are u1,u2, ...,um, and they form an orthonormal system where

AATui =

(σi)
2ui (i = 1, 2, ..., n)

0 (i = n+ 1, n+ 2, ...,m)
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Definition 4.10 (Left singular vectors).

The vectors u1, ...,um defined above are called the left singular vectors of A.

Theorem 4.14 (Singular Value Decomposition).

Let A ∈ Rm×n, with m ≥ n. Then there exist orthogonal matrices U ∈ Rm×m and

V ∈ Rn×n and a diagonal matrix Σ = diag(σ1, ..., σn) ∈ Rm×n such that

A = UΣV T.

(For proof see [11] page 270-271.)

4.3.1 Application of SVD: Approximating a matrix

Theorem 4.15 (Decomposition into rank-1 matrices).

Any matrix A can be decomposed as a sum of rank-1 matrices:

A = σ1u1v1
T + σ2u2v2

T + σnunvn
T.

Here (ui) and (vi) are the column vectors of the orthogonal matrices U ∈ Rm×m

and V ∈ Rn×n, respectively, and the numbers (σi) are the diagonal entries of

Σ ∈ Rm×n from the Singular Value Decomposition.

We have ‖uivi
T‖2 = 1.

Proof.

The decomposition follows from the construction of the vectors (ui), (vi) and the

definition of singular values. We need to prove that ‖uivi
T‖2 = 1.

Recall: For any matrix M ∈ Rn×n : ‖M‖2 = max
x 6=0

‖Mx‖2
‖x‖2 = max

‖y‖2=1
‖My‖2. Now

compute this norm for M = uivi
T.

‖uivi
T‖2 = max

‖y‖2=1
‖uivi

Ty‖2

= max
‖y‖2=1

|vi
Ty| · ‖ui‖2 (10)

= max
‖y‖2=1

‖vi‖2 · ‖y‖2 · |cos(α)| (11)

= 1 (12)

To obtain equality (10) we use that vi
Ty is a constant, so we can bring it out from

the norm, taking absolute value. For getting (11), we first recognize that

‖ui‖2 = 1, because it is a column vector of the orthogonal matrix U , used in the

SVD decomposition. Second, we substitute in the definition of dot product, which

gives us |vi
Ty| · ‖ui‖2 = ‖vi‖2 · ‖y‖2 · |cos(α)|. For the equality (12), we use that

‖y‖2 = 1 by definition, and ‖vi‖2 = 1, because it is a column vector of the
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4.3. Singular Value Decomposition

orthogonal matrix V from the SVD. We know that the maximum of |cos(α)| is 1,

and now we are done.

The SVD method can be used to approximate matrices as follows.

Define Σk = diag(σ1, σ2, ..., σk, 0, 0, ..., 0) for k ≤ n.

The matrix

Ak = UΣkV
T = σ1u1v1

T + σ2u2v2
T + ...+ σkukvk

T

is a rank-k approximation of A. Furthermore, this Ak matrix is the best rank-k

approximation of A, when the error is measured in either the 2-norm, or the

Frobenius norm. Here we will only show this property in the 2-norm. For the

Frobenius norm, see [4], page 121-122.

Lemma.

‖A− Ak‖22 = σ2
k+1

Proof.

Let A =
n∑
i=1

σiuivi
T be the singular value decomposition of A. Then

Ak =
k∑
i=1

σiuivi
T and A− Ak =

n∑
i=k+1

σiuivi
T. Let v be the top singular vector of

A− Ak (the one associated with the largest singular value). If we express v as a

linear combination of v1,v2, ...,vn, we get v =
n∑
i=1

αivi. Then

|(A− Ak)v| =

∣∣∣∣∣
n∑

i=k+1

σiuivi
T

n∑
j=1

αjvj

∣∣∣∣∣ =

∣∣∣∣∣vi

n∑
i=k+1

αiσiuivi
Tvi

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=k+1

αiσiui

∣∣∣∣∣ =

√√√√ n∑
i=k+1

α2
iσ

2
i

The vector v maximizing this last quantity, subject to the constraint that

|v|2 =
n∑
i=1

α2
i = 1, occurs when αk+1 = 1 and the rest of the αi are 0. Therefore,

‖A− Ak‖22 = σ2
k+1.

Now we will prove that Ak is the best rank-k approximation of A.

Theorem 4.16.

Let A ∈ Rm×n. For any matrix B of rank at most k,

‖A− Ak‖2 ≤ ‖A−B‖2.

Proof.

If A is of rank k or less, the theorem is obviously true since ‖A− Ak‖2 = 0.
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4.3. Singular Value Decomposition

Hence, assume that A is of rank greater than k. From the Lemma above, we know

that ‖A− Ak‖22 = σ2
k+1.

Indirectly, let us suppose that there is some matrix B of rank at most k such that

B is a better 2-norm approximation of A than Ak. This means that

‖A−B‖2 < σk+1.

The null space of B, Null(B), has dimension at least n-k. Let v1,v2, ...vk+1 be the

first k+1 singular vectors of A. By dimension argument, it follows that there exists

a vector z 6= 0, that z ∈ Null(B) ∩ span{v1,v2, ...,vk+1}. Let us scale z such that

|z| = 1. We know that

‖A−B‖22 ≥ |(A−B)z|2.

Now use that z ∈ Null(B), which implies Bz = 0, and get

‖A−B‖22 ≥ |Az|2.

Since z ∈ span{v1, ...,vk+1}, we have

|Az|2 =

∣∣∣∣∣
m∑
i=1

σiuivi
Tz

∣∣∣∣∣
2

=
m∑
i=1

σ2
i (vi

Tz)2 =
k+1∑
i=1

σ2
i (vi

Tz)2

≥ σ2
k+1

k+1∑
i=1

(vi
Tz)2 = σ2

k+1.

It follows that ‖A−B‖22 ≥ σ2
k+1. These leads to a contradiction, because we

assumed that ‖A−B‖22 < σ2
k+1.

4.3.2 Solving ill-conditioned systems using SVD

Since now we know what is the Singular Value Decomposition, I would like to

present the article which uses the SVD to solve ill-conditioned systems efficiently

[10].

Consider the system

Ax = b, A ∈ Rn×n, b ∈ Rn (13)

in case it is ill-conditioned. Here we approach the problem as a least squares

problem, because it allows us to use more kind of methods, such as the Singular

Value Decomposition. The weak spot of this method is calculating the small

singular values, therefore we take the truncated version of the SVD (TSVD),

neglecting the dangerous singular values that could cause a problem. After we

create a new system with a reduced condition number, the problem is approached

with Gauss elimination.
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4.3. Singular Value Decomposition

The SVD of the coefficients’ matrix takes the form

A = V ΣUT =
m∑
i=1

σiviui
T, (14)

where Σ is an m×m diagonal matrix of singular values σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0

and V and U are square matrices formed of the left (ui) and right (vi) singular

vectors. By using (14), for the solution of (13) we get

x =
m∑
i=1

σ−1i ui(vi
Tb). (15)

Even though the small singular values are inherent in the SVD of badly

conditioned matrices, they are often computed inaccurate with this method.

Consequently, the solution (15) may not be accurate.

Intuition suggests that existing algorithms collapse in solving ill-conditioned

problems at some stage, where ”nearness’ of the initial coefficient matrix columns

(rows) becomes crucial. The algorithm presented here is an attempt to provide an

accurate solution to the problem.

The algorithm.

Let the following ”dangerous” small singular values be neglected in the SVD

solution:

ε ≥ σn+1 ≥ σn+2 ≥ ... ≥ σm.

Then (15) takes the form

x1 =
n∑
i=1

σ−1i ui(vi
Tb). (16)

The parameter ε defines the truncated version of the SVD (TSVD). The TSVD

solution (16) is widely used as a regularized LS problem solution. For the purpose

of this paper, however, solution (16) is not accurate enough. It may be pin-pointed

in the following way.

Let the matrices of the left and right singular vectors of the TSVD be designated

as V1 = [v1...vn] and U1 = [u1...un]. Then their orthogonal complements are

Ṽ2 = [ṽn+1...ṽm] ≡ (V1)
(⊥) and Ũ2 = [ũn+1...ũm] ≡ U

(⊥)
1 , correspondingly. Columns

of matrices Ṽ2 and Ũ2 span nullspaces of matrices V T
1 and UT

1 . Instead of using

singular vectors of the full SVD corresponding to neglected singular values, it is

preferable to compute orthonormal sets ṽn+1...ṽm and ũn+1...ũm on the base of

”good ” matrices (V1)
T and (U1)

T. It may be carried out in various ways as shown

in the next section.
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4.4. Spectrum slicing

Let us split the unknowns in (14) as follows:

x = U1z1 + Ũ2z2.

If we multiply (13) by [V1, V2]
T from the left, (13) takes the form

Ãz =

diag(σ1, ..., σn) 0

0 C

[z1

z2

]
=

[
b1

b2

]
, (17)

where

Ã = [V1, Ṽ2]
TA[U1, Ũ2],

C = Ṽ2
T
AŨ2,

b1 = V T
1 b, b2 = Ṽ2

T
b.

The new system of linear equations (17) can be solved independently for z1 and

z2. The vector z1 corresponds to the TSVD solution discussed above,

U1z1 = x1

and the vector z2 is computed from the following equation:

Cz2 = b2.

4.4 Spectrum slicing

We want to compute one or more eigenvalues of a symmetric matrix. For this we

first need to get familiar with the Sturm sequences and the Cauchy interlacing

theorem.

4.4.1 Cauchy interlacing theorem

Theorem 4.17 (Cauchy interlacing theorem).

Let A ∈ Rn×n be symmetric. Let A(j), (j = 1, ..., n) be the jth order principal

leading matrices, namely the j × j upper left blocks of A.

Then the eigenvalues of A(j) interlace the eigenvalues of A(j+1).

Remark.

This means that if A(j) has the eigenvalues λk, k = 1, 2, ..., j, with

λ
(j)
1 ≥ λ

(j)
2 ≥ ... ≥ λ

(j)
j−1 ≥ λ

(j)
j , then: λ

(j+1)
k+1 ≤ λ

(j)
k ≤ λ

(j+1)
k , k = 1, 2, ..., j.
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4.4. Spectrum slicing

For example, for n = 4, we can have the following:

A(4)

A(3)

A(2)

A(1)

* * * *

* * * *

* * * *

* * * *

A(4) = A
λ
(4)
4 λ

(4)
3 λ

(4)
2 λ

(4)
1

A(3)

λ
(3)
3 λ

(3)
2 λ

(3)
1

A(2)

λ
(2)
2 λ

(2)
1

A(1)

λ
(1)
1

To prove this theorem, let us see first the Courant-Fischer theorem.

Theorem 4.18 (Courant-Fischer theorem).

Let A ∈ Rn×n symmetric. Denote the eigenvalues of A as λ1, λ2, ...., λn with

λ1 ≥ λ2 ≥ ... ≥ λn. Then

λk = min
{S⊆Rn, dimS=n−k+1}

max
x∈S,x 6=0

< Ax, x >

< x, x >

for k = 1, 2, ..., n.

Proof. Let us choose the eigenvectors u1,u2, ...un of A such that they form an

orthonormal system.

Let k ∈ {1, 2, ..., n}. Define the space Sk := span{u1,u2, ...,uk}. Here dimSk = k.

We will prove the equality in the theorem by showing that inequality holds in both

directions.

(1) First, we show for every S ⊆ Rn with dimS = n− k + 1, that

max
x∈S,x 6=0

< Ax, x >

< x, x >
≥ λk.

Let S ⊆ Rn, dimS = n− k + 1. Since dimSk = k, we know that S ∩ Sk 6= ∅. For

this reason there exists x ∈ Rn, x 6= 0, such that x ∈ S ∩ Sk. Because x ∈ Sk, we

can write x as the linear combination of the basis vectors of Sk : x =
k∑
j=1

βjuj.

Then we have <Ax, x>
<x, x>

=

k∑
j=1

β2
j λj

k∑
j=1

β2
j

≥

k∑
j=1

β2
j λk

k∑
j=1

β2
j

= λk.

(2) Now we construct a space S ⊆ Rn with dimS = n− k + 1, such that
<Ax, x>
<x, x>

≤ λk.

Define S = span{uk,uk+1, ...,un}. Here dimS = n− k + 1, therefore the

intersection of S and Sk is not empty. Again, let x ∈ S ∩ Sk, x 6= 0.
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4.4. Spectrum slicing

Writing x in the basis of S, we have x =
n∑
j=k

γjuj.

If we use this form of x, we obtain <Ax, x>
<x, x>

=

n∑
j=k

γ2j λj

n∑
j=k

γ2j

≤

n∑
j=k

γ2j λk

n∑
j=k

γ2j

= λk.

Now we can prove the Cauchy interlacing theorem.

Proof (Cauchy interlacing theorem)

We will show the property for j = n− 1. We need to prove that

λ
(j+1)
k+1 ≤ λ

(j)
k ≤ λ

(j+1)
k .

The Courant-Fischer theorem gives the following results for λ
(n)
k and λ

(n−1)
k :

λ
(n)
k = min

{S⊆Rn, dimS=n−k+1}
max

x∈S, x 6=0

< Ax, x >

< x, x >

λ
(n−1)
k = min

{S⊆Rn−1, dimS=n−k}
max

y∈S, y 6=0

< A(n−1) y, y >

< y, y >
.

Let us define for y ∈ Rn−1 the vector x =

(
y

xn

)
∈ Rn and add the requirement

xn = 0. By adding this extra requirement, we have

λ
(n−1)
k = min

{S⊆Rn, dimS=n−k+1}
max

{x∈S, x 6=0, xn=0}

< Ax, x >

< x, x >
.

Now we can see that λ
(n)
k ≥ λ

(n−1)
k .

For λ
(n)
k+1 the Courant-Fischer theorem gives

λ
(n)
k+1 = min

{S⊆Rn, dimS=n−k}
max

x∈S, x 6=0

< Ax, x >

< x, x >
.

We saw that

λ
(n−1)
k = min

{S⊆Rn, dimS=n−k+1}
max

{x∈S, x 6=0, xn=0}

< Ax, x >

< x, x >
.

While this gives us k−1 general requirements and one special requirement

(xn = 0), the formula of λ
(n)
k+1 gives k general requirements.

Therefore we get λ
(n−1)
k ≥ λ

(n)
k+1.
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4.4. Spectrum slicing

4.4.2 Sturm sequences

Let pj be the characteristic polynomial of A(j), so

p0(λ) := 1

pj(λ) := det(A(j) − λI) for j = 1, 2, ..., n.

Theorem 4.19 (Sturm’s theorem).

Let A ∈ Rn×n be symmetric and µ ∈ R.

Consider the sequence (p0(µ), p1(µ), ..., pn(µ)).

Let s(µ) be the number of sign agreements in the sequence.

Then s(µ) is the number of eigenvalues λ of A with λ > µ.

Here if pj(µ) = 0, we assume a sign change.

Combining Sturm’s theorem and Bisection method.

We would like to find the eigenvalue λi of A.

Basically we use the numbers s(µ) instead of the f(x) function values from the

Bisection method.

Step 1. First, we need to find a, b ∈ R, such that s(a) ≥ i and s(b) < i. Sturm’s

theorem tells us that at least i eigenvalues are located to the right of a and less

than i eigenvalues are located to the right of b. For this reason we know that

λi ∈ (a, b).

Step 2. Now we take the midpoint m = a+b
2

of the interval, and we compute s(m).

If s(m)

≥ i, then a := m

< i, then b := m
.

This way we bisected the interval, and it still contains λi.

Step 3. If b− a ≤ ε for a given ε > 0, we obtained the solution with the required

accuracy, so we stop. Otherwise, return to Step 2..

Sturm sequences and eigenvalues.

The characteristic polynomials of A(j) are

pj(λ) = (λ
(j)
1 − λ) · (λ(j)2 − λ) · ... · (λ(j)j − λ).

From the Cauchy interlacing theorem we know that the eigenvalues of A(j)

interlace the eigenvalues of A(j+1). This means that the zeros of pj interlace the

zeros of pj+1.

Choose µ ∈ R and simply count the number of sign agreements in the Sturm

sequence.
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4.4. Spectrum slicing

λ = µ

p4(λ) =
∏4

k=1(λ
(4)
k − λ)

+ - + - - - +

λ
(4)
4

0

λ
(4)
3

0

λ
(4)
2

0

λ
(4)
1

0

p3(λ) =
∏3

k=1(λ
(3)
k − λ)

+ + - + + - -

λ
(3)
3

0

λ
(3)
2

0

λ
(3)
1

0

p2(λ) = (λ
(2)
1 − λ)(λ

(2)
2 − λ)

+ + - - + + +

λ
(2)
2

0

λ
(2)
1

0

p1(λ) = λ
(1)
1 − λ

+ + + - - - - -

λ
(1)
1

0

p0(λ) = 1
+ + + + + + + +

In this example we find + - - + - , so there is one sign agreement. This means that

A = A(4) has one eigenvalue that is bigger than µ.

Spectrum slicing method for symmetric matrices.

First, we transform A to an upper Hessenberg matrix with Givens rotations (see

Definition 4.5). Since A is symmetric, the result is a tridiagonal matrix.

Let us assume that

A =


α1 β2

β2 α2 β3
. . . . . . . . .

βn αn

 .

We would like to find the eigenvalue λi.

Let s(λ) denote the number of sign agreements in the Sturm sequence. The Sturm

sequence can be computed with the following recursion:

pj(λ) = (αj − λ) · (pj−1(λ))− β2
j · pj−2(λ), j = 1, 2, ...

Define p−1(λ) = 0, p0(λ) = 1.

Now we use the previously introduced algorithm:

Step 1. First find a, b ∈ R, such that s(a) ≥ i and s(b) < i.

Step 2. Take the midpoint m = a+b
2

of the interval, and compute s(m).

If s(m)

≥ i, then a := m

< i, then b := m
.

Step 3. If b− a ≤ ε for a given ε > 0, we obtained the solution with the required

accuracy, so we stop. Otherwise, return to Step 2.
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A Appendix

A.1 Gauss elimination

function x = Gauss(A,b)

%Input variables:

% A: Coefficient matrix

% b: Right hand side vector

%Output variable:

% x: Solution of the linear system of equations

ab = [A,b];

[R, C] = size(ab);

%Gauss elimination procedure:

for j = 1:R - 1

for i = j + 1:R

ab(i,j:C) = ab(i,j:C) - ab(i,j)/ab(j,j)*ab(j,j:C);

end

end

%Back substitution:

x = zeros(R,1);

x(R) = ab(R,C)/ab(R,R);

for i = R-1:-1:1

x(i) = (ab(i,C) - ab(i,i+1:R)*x(i+1:R))/ab(i,i);

end

x

end

I



A.2 Gauss elimination with partial pivoting and scaling

function x = GaussPivotLarge(A,b)

%Input variables:

% A: Coefficient matrix

% b: Right hand side vector

%Output variable:

% x: Solution of the linear system of equations

ab = [A,b];

[R, C] = size(ab);

% Pivoting section

for j = 1:R - 1

max=abs(ab(j,j));

maxi=j;

for k = j + 1:R

if abs(ab(k,j)) > max

max = abs(ab(k,j));

maxi = k;

end

end

abTemp = ab(j,:);

ab(j,:) = ab(maxi,:);

ab(maxi,:) = abTemp;

% Elimination part

for i = j + 1:R

ab(i,j:C) = ab(i,j:C) - ab(i,j)/ab(j,j)*ab(j,j:C);

end

end

x = zeros(R,1);

x(R) = ab(R,C)/ab(R,R);

for i = R - 1:-1:1

x(i) = (ab(i,C) - ab(i,i + 1:R)*x(i + 1:R))/ab(i,i);

end

x

end
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A.3 Gauss-Jordan method

function x = GaussJordan(A,b)

%Input variables:

% A: Coefficient matrix

% b: Right hand side vector

%Output variable:

% x: Solution of the linear system of equations

ab = [A,b];

[R, C] = size(ab);

%forward Gauss:

for j = 1:R - 1

%pivoting starts

max=abs(ab(j,j));

maxi=j;

for k = j + 1:R

if abs(ab(k,j)) > max

max = abs(ab(k,j));

maxi = k;

end

end

abTemp = ab(j,:);

ab(j,:) = ab(maxi,:);

ab(maxi,:) = abTemp;

%pivoting ends

ab(j,j:C) = ab(j,j:C)/ab(j,j); %normalizing ab(j,j)

for i = j + 1:R

ab(i,j:C) = ab(i,j:C) - ab(i,j)*ab(j,j:C);

end

end

%normalizing ab(R,R) by dividing the last row with ab(R,R):

ab(R,C-1:C) = ab(R,C-1:C)/ab(R,R);

%backward Gauss:

for j = R:-1:2

for i = j - 1:-1:1

ab(i,C:-1:j) = ab(i,C:-1:j) - ab(i,j)*ab(j,C:-1:j);

end

end

%Now x equals to b, and b is the last column of ab, so we can get x

%by taking the last column of ab:

x=ab(:,C)
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A.4 Gauss elimination using LU decomposition

function x = LUdecompGauss(A,b)

%Input variables:

% A: Coefficient matrix

% b: Right hand side vector

%Output variable:

% x: Solution of the linear system of equations

[R, C] = size(A);

%Computing LU factorization

for j = 1:R - 1

for i = j + 1:R

L(i,j) = A(i,j)/A(j,j);

A(i,j:C) = A(i,j:C) - A(i,j)/A(j,j)*A(j,j:C);

end

end

L(:,C)=zeros(R,1);

L=tril(L,1)+eye(size(A));

U=triu(A);

LU=L*U;

%Solving Ly=b with forward substitution

Ly=b;

y(1)=L(1,1)/b(1);

for j = 2:R

y(j) = (b(2)-L(i,1:i-1).*y(1:i-1))/L(i,i);

end

%Solving Ux=y with backward substitution

Ux=y;

x(R)=y(R)/U(R,R);

for i = R-1:-1:1

x(i) = (y(i)-U(i,i+1:R).*x(i+1:R))/U(i,i);

end

x

end
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A.5 Bisection method

function Xs = BisectionRoot(F,a,b,Err,imax)

% Input variables:

% F: Name of a user-defined function that calculates F for

% a given x

% a,b: Two points in the neighborhood of the root

% (on either side or the same side of the root)

% Err: Maximum error

% imax: Maximum number of iterations

% Output variable:

% Xs: Solution

if F(a)*F(b)>0

disp('Error: the given points are on the same side of the sol.')

else

for i=1:imax

xNS=(a+b)/2;

Erri=(b-a)/2;

if Erri<Err

Xs=xNS; %found the solution within the required tolerance

fprintf('The root of this nonlin. eq. is X=%11.6f\n',Xs)
break;

end

if i==imax

fprintf('Sol. was not found in %i iterations.\n',imax)
end

if F(a)*F(xNS)<0

b=xNS;

else

a=xNS;

end

end

end

end
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A.6 Newton’s method

function Xs = NewtonSol(F,FDer,Xest,Err,imax)

% Input variables:

% F: Name of a user-defined function that calculates F for

% a given x

% FDer: The derivative of F

% Xest: The initial guess for the solution

% Err: Maximum error

% imax: Maximum number of iterations

% Output variable:

% Xs: Solution

for i = 1:imax

Xi = Xest - F(Xest)/FDer(Xest);

if abs((Xi - Xest)/Xest) < Err

Xs = Xi;

fprintf('The root of the given equation is X=%11.6f. \n',Xs)
break

end

Xest = Xi;

end

if i==imax

fprintf('Solution was not obtained in %i iterations.\n',imax)
Xs = ('No answer');

end

end

VI



A.7 Secant method

function Xs = SecantRoot(F,a,b,Err,imax)

% Input variables:

% F: Name of a user-defined function that calculates F for

% a given x

% a,b: Two points in the neighborhood of the root

% (on either side or the same side of the root)

% Err: Maximum error

% imax: Maximum number of iterations

% Output variable:

% Xs: Solution

for i=1:imax

Xi = b - ((F(b)*(a-b))/(F(a)-F(b)));

if abs((Xi - b)/b) < Err

Xs=Xi; %Solution is found within the desired tolerance.

break;

end

a = b;

b = Xi;

end

if i==imax

fprintf('Solution was not obtained in %i iterations.\n',imax)
end

VII
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