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Chapter 1

Introduction

The first appearance of exterior products, exterior algebras in mathematics
was in differential geometry. Later on this algebraic tool has found uses in
other areas of mathematics as well. Lovász was the first, who used this tool
to solve a combinatorial problem. He proved a generalization of Bollobás’s
theorem. We describe some Bollobás-type theorems and their relations to
each other.

Later on exterior products have been used in additive combinatorics as
well. Two such directions are described in this thesis in detail.

The first is Snevily’s conjecture and related problems. Snevily’s conjec-
ture is quite easy to understand: if G is a finite Abelian group of odd order,
and A, B are two subsets of G such that |A| = |B|, then we can match the
elements of A and B such that in each pair the sum is different. This is an
unsolved problem, but there has been some recent progress in this area, with
the aid of the exterior algebras.

The second area we consider is the Erdős-Heilbronn conjecture. The
question is how small can the set of sums of two different element of A be, if
A ⊆ Zp is of fixed size. This was an unsolved problem since 1964, and at last,
was solved by Dias da Silva and Hamidoune in 1994 using exterior algebras.
We try to understand their method. We also prove, that the minimum is
only achieved for |A| ≥ 5, if A is an arithmetic progression. This has been
proved by Károlyi in 2005 using the polynomial method. However, we use
the exterior algebra method, which somewhat simplifies the proof.
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Chapter 2

Definitions and notations

We will use the following notations:
We will denote by p(n) and p2(n) the smallest and second smallest prime

divisor of an integer n > 1. If n does not have two different prime divisors
(i. e. n is a power of a prime), then p2(n) is defined to be ∞, and also
p(1) = p2(1) =∞.

The group of permutations of {1, 2, . . . , n} (the symmetric group) is de-
noted by Sn. If π ∈ Sn, then sgn(π) is the sign of the permutation. If F is
a field and A = (ai,j)1≤i,j≤n ∈ F n×n is a matrix, then its determinant and
permanent are defined by

detA =
∑
π∈Sn

sgn(π)
n∏
i=1

ai,π(i)

and

perA =
∑
π∈Sn

n∏
i=1

ai,π(i).

We will use the notation V (x1, . . . , xn) for the Vandermonde matrix
1 1 . . . 1

x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

... . . . ...
xn−1

1 xn−1
2 . . . xn−1

n

 .

The determinant of this matrix is detV (x1, . . . , xn) =
∏

j<i(xi − xj).
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The elementary symmetric polynomials of x1, . . . , xn are σ1, . . . , σn,
where

σk =
∑

1≤i1<i2<...<ik≤n

xi1 · · ·xik .

Let F be a field and G be a group. The group algebra FG is the vector
space of formal linear combinations of elements of G with coefficients from
F , equipped with the following multiplication: (

∑m
i=1 cigi)(

∑n
j=1 djhj) =∑

i,j cidjgihj, where ci, dj ∈ F , gi, hj ∈ G. So G is a basis for FG.
If G is a finite Abelian group and F is field, then a χ : G → F ∗ homo-

morphism from G into the multiplicative group of F is called a character of
G. These characters form the group Ĝ, called the character group of G (with
respect to F ). Let expG denote the exponent of G. It is well known that if
there is an element of order expG in F ∗, then Ĝ ∼= G.

4



Chapter 3

Introduction to exterior algebras

Let V be a vector space over a field F , and let m ≥ 0 be an integer. We say
that a pair (W,ϕ) is the m-th exterior power of V if the following hold: W is
an F -vector space, ϕ : V m → W is a multilinear map, for every 1 ≤ i < j ≤
m, vi = vj implies ϕ(v1, . . . , vm) = 0 (i. e. ϕ is alternating), and for every
pair (W ′, ϕ′) fulfilling these properties, there exists precisely one linear map
ψ : W → W ′ such that ϕ′ = ψ ◦ ϕ (i. e. the following diagram commutes).

V n

ϕ

}}{{
{{

{{
{{

ϕ′

��
W

ψ // W ′

There exists an m-th exterior power of V and it is unique up to isomor-
phism, that is, if (W,ϕ) and (W ′, ϕ′) are two n-th exterior powers of V , then
there exists a ψ : W → W ′ linear isomorphism such that ϕ′ = ψ ◦ ϕ. The
uniqueness is trivial. The existence is proved by constructing such a pair
(W,ϕ). The usual construction is the following: let W = (⊗mi=1V )/A, where
⊗ denotes the tensor product of vector spaces, and A is the linear subspace
of ⊗mi=1V spanned by those vectors v1 ⊗ · · · ⊗ vm such that for some i < j

we have vi = vj. Let ϕ be the unique multilinear map, which sends every
(v1, . . . , vm) ∈ V m to (v1 ⊗ · · · ⊗ vm) + A ∈ W .

The m-th exterior power of V is denoted by
∧m V , and ϕ(v1, . . . , vm)

is denoted by v1 ∧ · · · ∧ vm. If dimV = n, then dim
∧m V =

(
n
m

)
, and if

{e1, . . . , en} is a basis for V , then {ei1 ∧ · · · ∧ eim| 1 ≤ i1 < i2 < . . . < im} is
a basis for

∧m V . So if m > n, then
∧m V = {0}. We identify

∧0 V with F ,
and

∧1 V with V .
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Now let dimV = n and E(V ) = ⊕ni=0

∧i V . E(V ) can be turned into
an F -algebra introducing a multiplication · : E(V ) × E(V ) → E(V ) in the
following way: For every v1, . . . , vk, vk+1, . . . , vk+l ∈ V put (v1 ∧ · · · ∧ vk) ·
(vk+1 ∧ · · · ∧ vk+l) = v1 ∧ · · · ∧ vk+l where k, l ≥ 0, and · is bilinear. It is easy
to check that these conditions determine a unique multiplication on E(V ),
which will also be denoted by ∧. This does not make confusion, because
(v1∧· · ·∧vk)∧ (vk+1∧· · ·∧vk+l) = v1∧· · ·∧vk+l. If x ∈

∧i V and y ∈
∧j V ,

then x∧ y ∈
∧i+j V . Thus E(V ) with this multiplication is a graded algebra

called the exterior algebra of V . The multiplication in E(V ) is also called
the wedge product. The dimension of E(V ) is

∑n
i=0

(
n
i

)
= 2n.

Some useful rules for calculations with exterior products:

v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vm = −v1 ∧ · · · ∧ vj ∧ · · · ∧ vi ∧ · · · ∧ vm,

and in general for every permutation π ∈ Sm

vπ(1) ∧ · · · ∧ vπ(m) = sgn(π) · (v1 ∧ · · · ∧ vm).

This formula implies that if x ∈
∧k V and y ∈

∧l V , then x∧y = (−1)kly∧x.
A derivation on E(V ) is a linear transformation d : E(V ) → E(V ) such

that for every x ∈
∧i V and y ∈

∧j V we have d(x∧ y) = d(x)∧ y+x∧d(y).
A skew derivation on E(V ) is a linear map d : E(V ) → E(V ) such that for
every x ∈

∧i V and y ∈
∧j V we have d(x ∧ y) = d(x) ∧ y + (−1)ix ∧ d(y).

Lemma 3.1. If d : E(V )→ E(V ) is a derivation, then for every v1, . . . , vm ∈
V we have d(v1∧· · ·∧vm) =

∑m
i=1 v1∧· · ·∧d(vi)∧· · ·∧vm, and if d is a skew

derivation, then we have d(v1∧· · ·∧vm) =
∑m

i=1(−1)i−1v1∧· · ·∧d(vi)∧· · ·∧vm.

Proof. We prove the lemma by induction on m. For m = 1 and m = 2

the statement follows from the definition. If the statement is true for m− 1

(m > 2), then in the case of derivations,

d(v1 ∧ · · · ∧ vm) =

(m−1∑
i=1

v1 ∧ · · · ∧ d(vi) ∧ · · · ∧ vm−1

)
∧ vm+

+v1 ∧ · · · ∧ vm−1 ∧ d(vm),

and in the case of skew derivations,

d(v1 ∧ · · · ∧ vm) =

(m−1∑
i=1

(−1)i−1v1 ∧ · · · ∧ d(vi) ∧ · · · ∧ vm−1

)
∧ vm+

+v1 ∧ · · · ∧ vm−1 ∧ d(vm),
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as it was to be proved.

If ϕ : V → V is a linear transformation, then it defines a unique derivation
Dϕ on E(V ) by Dϕ(v1 ∧ · · · ∧ vm) =

∑m
i=1 v1 ∧ · · · ∧ ϕ(vi) ∧ · · · ∧ vm. This

definition works, because Am : (v1, . . . , vm) 7→
∑m

i=1 v1∧ · · · ∧ϕ(vi)∧ · · · ∧ vm
is an alternating multilinear map, so by the universal property of the exterior
power, there exists a unique (Dϕ)|∧m V :

∧m V → E(V ) linear map with the
needed property.
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Chapter 4

Bollobás-type theorems

4.1 Bollobás’s original theorem and generaliza-
tions

Bollobás’s theorem is concerned with systems of sets with special properties.
We will see different versions of it. The original form of the theorem is the
following.

Theorem 4.1. Bollobás’s theorem
Let A1, . . . , Am, B1, . . . , Bm be sets and r, s ≥ 0 integers such that

|Ai| = r, |Bi| = s and Ai ∩ Bi = ∅ for all 1 ≤ i ≤ m, and Ai ∩ Bj 6= ∅ for
all 1 ≤ i 6= j ≤ m. Then m ≤

(
r+s
r

)
.

It is easy to see that equality can be achieved: Let X be a set, |X| = r+s,
m =

(
r+s
r

)
and let {Ai : 1 ≤ i ≤ m} be the set of all r element subsets of X,

and let Bi = X\Ai.
First we prove a slight generalization of this theorem using exterior prod-

ucts. In the proof we can see how the conditions on the intersections of the
sets Ai and Bj can be reformulated using the language of exterior products.
The proofs follow [1].

Theorem 4.2. Bollobás’s theorem (skew version)
Let A1, . . . , Am, B1, . . . , Bm be sets and r, s ≥ 0 integers such that

|Ai| = r, |Bi| = s and Ai ∩ Bi = ∅ for all 1 ≤ i ≤ m, and Ai ∩ Bj 6= ∅ for
all 1 ≤ i < j ≤ m. Then m ≤

(
r+s
r

)
.
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Proof. Let X =
⋃
i=1m(Ai ∪Bi), let W = Rr+s. We choose for every x ∈ X

a wx ∈ W vector such that the vectors wx are in general position, i. e. if
d ≤ dimW = r + s and x1, . . . xd ∈ X are different, then wx1 , . . . , wxd
are linearly independent. This can be done for example taking wx to have
coordinates (1, a, a2, . . . , ar+s−1), where we pick for every x ∈ X a different
a ∈ R. Then the determinant of every r + s different vectors of this type is
a Vandermonde determinant, hence it does not vanish.

For every A ⊆ X let wA =
∧
x∈Awx. Here the order of the terms in the

wedge product can be arbitrary, so wA is determined only up to a ±1 factor
(we fix for every A a wA). So wA ∈ E(W )\{0}. Now let A,B ⊆ X. If
A ∩ B = ∅, then wA ∧ wB = ±wA∪B 6= 0. On the other hand, if x ∈ A ∩ B,
then wA ∧ wB = x ∧ x ∧ · · · = 0. So the conditions of the theorem can be
reformulated in the following way: wAi ∧wBi 6= 0 for all i and wAi ∧wBj = 0

for all i < j. But then the vectors wAi are linearly independent in
∧rW .

For suppose c1wA1 + · · · + cmwAm = 0, where there is at least one i such
that ci 6= 0. By taking the largest such i and rearranging the terms, we
get wAk = b1wA1 + · · · + bk−1wAk−1

for some 1 ≤ k ≤ m and b1, . . . bk−1 ∈
R. Taking the wedge product of both sides with wBk we get on the left
hand side a nonzero vector, while on the right hand side we get zero. This
contradiction proves that the vectors wAi are linearly independent in

∧rW ,
so m ≤ dim

∧rW =
(
r+s
r

)
.

The following generalization was proved by Z. Füredi in 1984.

Theorem 4.3. Bollobás’s theorem (threshold version, Z. Füredi)
Let A1, . . . , Am, B1, . . . , Bm be sets, m ≥ 2 and r, s ≥ 0 and t ≥ 0

integers such that |Ai| = r, |Bi| = s and |Ai ∩Bi| ≤ t for all 1 ≤ i ≤ m, and
|Ai ∩Bj| > t for all 1 ≤ i < j ≤ m. Then m ≤

(
r+s−2t
r−t

)
.

It is easy to give an example when equality occurs. Let r, s ≥ t ≥ 0, let
C and D be sets, |C| = t, |D| = r+ s− 2t, and let Ai be the sets containing
C and r − t elements from D, and let Bi = C ∪ (D\Ai), where 1 ≤ i ≤ m.
Then m =

(
r+s−2t
r−t

)
, |Ai| = r, |Bi| = s, |Ai ∩ Bi| = |C| = t for all i and

|Ai ∩Bj| > |C| = t for all i 6= j.
We will prove this theorem in the following sections.
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4.2 General position lemma

Definition 4.4. Let U , V be finite dimensional vector spaces over a field
F , and let U1 . . . , Uk be linear subspaces of U . We say that the linear map
ϕ : U → V is in general position with respect to the subspaces U1, . . . , Uk if
for every 1 ≤ i ≤ k we have dimϕ(Ui) = min(dimUi, dimV ).

Lemma 4.5. General position lemma
If F is an infinite field, U , V are vector spaces over F and U1, . . . , Uk are

linear subspaces of U , then there exists a ϕ : U → V linear map in general
position with respect to U1, . . . , Uk.

We omit the proof of this lemma, since it is not connected directly to our
subject. The interested reader may check the proof in [1].

4.3 Bollobás-type theorems for subspaces

Theorem 4.6. Lovász used first the exterior algebra method in combinatorics
in 1977 to prove the following version of Bollobás’s theorem. Bollobás’s the-
orem for subspaces (L. Lovász)

Let F be a field and W a vector space over F . Suppose U1, . . . , Um,
V1, . . . , Vm are linear subspaces of W and r, s ≥ 0 are integers such that
dimUi = r, dimVi = s and Ui∩Vi = {0} for all 1 ≤ i ≤ m, and Ui∩Vj 6= {0}
for all 1 ≤ i < j ≤ m. Then m ≤

(
r+s
r

)
.

Proof. We may assume that W is finite dimensional, because we can take W
to be the linear span of the subspaces Ui, Vi (i = 1, 2, . . . ,m). Let n = dimW .

We may also assume that the field is not finite. Otherwise let F be the
algebraic closure of F , and let (ek)

n
k=1 be a basis of W . Now let W be a

vector space over F with basis (ek)
n
k=1 such that W is an F -subspace of W .

If U is a subspace of W , let U be the F -subspace spanned by U in W . (In
fact, W and U could be defined as W ⊗F and U ⊗F .) It is easy to see that
dimF U = dimF U and if U , V are both subspaces ofW , then U ∩ V = U∩V .
Thus the conditions on the dimensions of Ui, Vi, Ui ∩ Vj remain valid for Ui,
Vi, Ui ∩ Vj. So, assuming the theorem is proved for infinite fields, because
|F | =∞, we get that m ≤

(
r+s
r

)
.

So suppose F is infinite. Since U1 ∩ V1 = {0}, we have n = dimW ≥
r + s. We consider first the case n = r + s. It is possible to assign to
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every U subspace with a given basis u1, . . . , uk an element of
∧kW\{0}: let∧

U = u1 ∧ · · · ∧ uk. This depends on the chosen basis: changing the basis
multiplies

∧
W by a nonzero scalar. This ambiguity however will not make

confusion in the proof.
If U and V are subspaces of W , then U ∩ V = {0} if and only if

∧
U ∩∧

V 6= 0. Let ui =
∧
Ui ∈

∧rW , vi =
∧
Vi ∈

∧sW for all i. Then ui∧vi 6= 0

for all i and ui ∧ vj = 0 for all i < j. This implies that the vectors ui are
linearly independent in

∧rW (the proof is the same as in the case of Theorem
4.2). Hence m ≤ dim

∧rW =
(
n
r

)
=
(
r+s
r

)
.

Now let n ≥ r+s be arbitrary. Let W ′ = F r+s, then by Lemma 4.5 there
is a linear map ϕ : W → W ′ in general position with respect to the subspaces
Ui, Vj, Ui + Vj where i, j runs through 1, 2, . . . ,m. Then dimϕ(Ui) = r,
dimϕ(Vj) = s, dim(ϕ(Ui) + ϕ(Vj)) = dimϕ(Ui + Vj) = dim(Ui + Vj), so

dim(ϕ(Ui) ∩ ϕ(Vj)) = r + s− dim(ϕ(Ui) + ϕ(Vj)) =

= r + s− dim(Ui + Vj) = dim(Ui ∩ Vj).

So the conditions of the theorem are valid for the subspaces ϕ(Ui) and ϕ(Vj)

and dimW ′ = r + s, so the above proof shows that m ≤
(
r+s
r

)
.

The following generalization was proved by Z. Füredi in 1984.

Theorem 4.7. Bollobás’s theorem for subspaces, threshold version
Let F be a field and W a vector space over F , and let U1, . . . , Um, V1,

. . . , Vm be linear subspaces of W . Suppose m ≥ 2 and r, s ≥ 0 and t ≥ 0

are integers such that dimUi = r, dimVi = s and dim(Ui ∩ Vi) ≤ t for all
1 ≤ i ≤ m, and dim(Ui ∩ Vj) > t for all 1 ≤ i < j ≤ m. Then m ≤

(
r+s−2t
r−t

)
.

Proof. As in the proof of Theorem 4.6 we may assume that dimW < ∞
and |F | = ∞. We know that the statement is valid for t = 0. We will
reduce all the cases to the case t = 0. Let ϕ : W → F t be a linear map
in general position with respect to the subspaces Ui, Vj, Ui ∩ Vj. Let W ′

denote the kernel of ϕ, and let U ′i = Ui ∩W ′, V ′j = Vj ∩W ′. The relation
dim(U1 ∩ V2) > t shows that r, s > t. So dimϕ(Ui) = dimϕ(Vi) = t,
dimϕ(Ui ∩ Vi) = dim(Ui ∩ Vi) for all i, and dimϕ(Ui ∩ Vj) = t for all i < j.
Thus dimU ′i = r− t, dimV ′i = s− t, U ′i ∩ V ′i = (Ui ∩ Vi)∩W ′ = {0} for all i,
and dim(U ′i ∩ V ′j ) = dim(Ui ∩ Vj)− t > 0. Therefore we can apply Theorem
4.6 to the subspaces U ′i , V ′i , and we get m ≤

(
(r−t)+(s−t)

r−t

)
.
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Now we are ready to prove the threshold version of the theorem for sets.
Proof of Theorem 4.3. Let X =

⋃m
i=1Ai ∪Bi, |X| = n. Let W = Rn, and

let (ex)x∈X be a basis for W . For an S ⊆ X, let W (S) be the subspace of W
spanned by {ex : x ∈ S}. Using Theorem 4.7 for Ui = W (Ai), Vi = W (Bi),
we get that m ≤

(
r+s−2t
r−t

)
.
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Chapter 5

Snevily’s conjecture and related
problems

5.1 Polynomial method, first results

The following conjecture originates from Snevily.

Conjecture 5.1. Snevily’s conjecture
Let G be a finite Abelian group, let a1, . . . , ak ∈ G be k different elements,

and b1, . . . , bk ∈ G be k different elements. If |G| is odd, then we can find
a permutation π ∈ Sk such that a1 + bπ(1), . . . , ak + bπ(k) are k different
elements.

The condition on |G| is necessary. If |G| is even, then let g be an element
of order 2, and let k = 2, a1 = b1 = 0, a2 = b2 = g. In this case there is no
good π permutation.

First, Snevily formulated this conjecture in 1999 for cyclic groups exam-
ining their addition table (see [5]). A transversal of a square matrix is a set
of elements of the matrix which contains from every row and every column
exactly one element. The conjecture can be easily reformulated in the fol-
lowing way: if |G| is odd, then every k × k submatrix of G’s addition table
has a Latin transversal, that is, a transversal of k distinct elements.

Alon proved the conjecture for G = Zp using a polynomial method
([4]). He actually proved a stronger result in that case, and based on this,
Dasgupta, Károlyi, Serra and Szegedy formulated the following conjecture.
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Conjecture 5.2. Dasgupta-Károlyi-Serra-Szegedy (DKSSz) conjecture
Let G be a finite Abelian group, a1, . . . , ak ∈ G be k different elements,

and b1, . . . , bk ∈ G (not necessarily different) elements. If p(|G|) > k, then
there is a π ∈ Sk permutation such that a1 + bπ(1), . . . , ak + bπ(k) are k
different elements.

If k ≥ p(|G|), then the statement is not true in general. For example, if
k = p(G), then let g be an element of order k, and let a1 = . . . = ak−1 = 0,
ak = g, and bi = ig for 1 ≤ i ≤ k. Then there is no good permutation π.

Lemma 5.3. Polynomial lemma
Let F be a field, and f ∈ F [x1, . . . , xn] be a polynomial. Suppose that

there is a monomial cxt11 · · ·xtnn in f with c 6= 0 such that
∑n

i=1 ti = deg f . If
S1, . . . , Sn are subsets of F such that |Si| > ti for all i, then f |S1×···×Sn 6= 0,
i. e. there are elements ai ∈ Si (1 ≤ i ≤ n) such that f(a1, . . . , an) 6= 0.

This lemma is used in [4] and also in [6]. Let us see how. We prove
Snevily’s conjecture using the polynomial lemma, in the simplest case, when
G = Zp, where p is an odd prime. We identify Zp and F = Fp. Let f ∈
F [x1, . . . , xk], f(x1, . . . , xk) =

∏
j<i((xi − xj)(bi + xi − bj − xj)), and let

S1 = . . . = Sk = A = {a1, . . . , ak}. We would like to show that there is a
π ∈ Sk such that

∏
j<i(bi + aπ(i)− bj − aπ(j)) 6= 0. But this is equivalent with

f |A×···×A 6= 0. Since f is the product of k(k−1) linear factors, deg f = k(k−
1). So by the polynomial lemma, it is enough to prove that the coefficient
of xk−1

1 · · ·xk−1
k in f is nonzero. This monomial has the same coefficient in∏

j < i(xi − xj)2.

∏
j<i

(xi − xj)2 = det(V (x1, . . . , xk))
2 =

(∑
π∈Sk

sgn(π)x
π(1)−1
1 · · ·xπ(k)−1

k

)2

=

=
∑
π,σ∈Sk

sgn(πσ)x
π(1)+σ(1)−2
1 · · ·xπ(k)+σ(k)−2

k

Hence the coefficient of xk−1
1 · · ·xk−1

k is
∑

σ∈Sk sgn(ρσ) sgn(σ), where ρ ∈ Sk,
ρ(i) = k + 1− i. Since sgn(ρ) = (−1)(

k
2), the coefficient is (−1)(

k
2)k!. This is

nonzero in Fp, if k < p. The case k = p is trivial, because 0 + 0, 1 + 1, . . . ,
(p− 1) + (p− 1) are all different in Fp for odd p.
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In fact we proved more. In the case of k < p, we did not use in the proof
that b1, . . . , bk are different. So we proved the DKSSz conjecture for G = Zp.

This proof essentially used the fact that Zp is the additive group of a
field. This is also true for (Zp)

α for α ≥ 1, so the same proof works for the
DKSSz conjecture (but not for Snevily’s) when G = (Zp)

α.

5.2 Proof of Snevily’s conjecture for cyclic
groups of odd order

We used previously the additive group of fields. That method worked only
for the groups (Zp)

α. We could try to use the multiplicative group of fields
as well. Every finite cyclic group can be embedded as a subgroup in the
multiplicative group of a field. Hence this approach might work in the case
of cyclic groups (and only there). It works, as proved in [6].

Theorem 5.4. (Dasgupta, Károlyi, Serra, Szegedy) Snevily’s conjecture is
true if G is a cyclic group of odd order.

Proof. Suppose that F is a field and G is embedded in F ∗. So a1, . . . , ak ∈ F ∗

are different elements and b1, . . . , bk ∈ F ∗ are different elements, and we
would like to find a permutation π ∈ Sk such that a1bπ(1), . . . , akbπ(k) are k
different elements. Now there are at least two possible ways to proceed.

The first way is to use the polynomial lemma again. We define f ∈
F [x1, . . . , xk] to be f(x1, . . . , xk) =

∏
j<i(xi − xj)(bixi − bjxj), and let S1 =

. . . = Sk = A. We want to show that f |S1×···×Sk 6= 0. Since deg f = k(k− 1),
it is enough to show that the coefficient of xk−1

1 · · ·xk−1
k is nonzero. Since

f(x1, . . . , xk) = detV (x1, . . . , xk) · detV (b1x1, . . . , bkxk) =

=
∑
π,σ∈Sk

sgn(π) sgn(σ)
k∏
i=1

(
x
π(i)−1
i · (bixi)σ(i)−1

)
,

the coefficient of xk−1
1 · · ·xk−1

k is
∑

σ∈Sk sgn(ρσ) sgn(σ)
∏k

i=1 b
σ(i)−1
i =, where

ρ ∈ Sk, ρ(i) = k + 1− i. So the coefficient is (−1)(
k
2) perV (b1, . . . , bk), hence

it would be enough to prove that perV (b1, . . . , bk) 6= 0.
The second way is the following: We would like to find a permutation

π ∈ Sk such that detV (a1bπ(1), . . . akbπ(k)) 6= 0, so it would be enough to
prove that

∑
π∈Sk detV (a1bπ(1), . . . akbπ(k)) 6= 0.
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Lemma 5.5.∑
π∈Sk

detV (a1bπ(1), . . . akbπ(k)) = detV (a1, . . . , ak) · perV (b1, . . . , bk).

Proof.

∑
π∈Sk

detV (a1bπ(1), . . . akbπ(k)) =
∑
π,σ∈Sk

sgn(σ)
k∏
i=1

(aibπ(i))
σ(i)−1 =

=
∑
σ,τ∈Sk

sgn(σ)
k∏
i=1

a
σ(i)−1
i

k∏
i=1

b
τ(i)−1
i =

= detV (a1, . . . , ak) · perV (b1, . . . , bk),

where τ ∈ Sk, τ(i) = σ(π−1(i)).

Since a1, . . . , ak are different, we get again, that it is enough to show that
perV (b1, . . . , bk) 6= 0.

If charF = 2, then this is true, since in characteristic 2 the permanent
of a matrix is equal to its determinant. Now, if G = Zn is a cyclic group of
odd order, then let F = F2ϕ(n) . We can embed G in F ∗, since F ∗ ∼= Z2ϕ(n)−1

and n|2ϕ(n) − 1. This proves Snevily’s conjecture for cyclic groups.

The proof reveals that in both Snevily’s conjecture and the DKSSz con-
jecture it is enough to find a field F and an embedding χ : G→ F ∗ such that
perV (χ(b1), . . . , χ(bk)) 6= 0. Let us try to use this in the DKSSz conjecture.
Let G = Zpα , where α ≥ 1, and let F = C. Since C∗ contains every finite
cyclic group as a subgroup, we can think of G as a subgroup of C∗ (we pick
any embedding). Thus the permanent of V (b1, . . . , bk) is the sum of pα-th
roots of unity, where the number of terms is k!. The following lemma shows,
that such a sum cannot vanish, because k < p and thus p - k!.

Lemma 5.6. Let λ1, . . . , λt be complex pα-th roots of unity such that λ1 +

· · ·+ λt = 0. Then p|t.

Proof. The following proof is due to Imre Z. Ruzsa.
Let u = e

2πi
pα , then the roots can be written as λj = uαj , where αj ≥ 0

is an integer. Let h(x) =
∑t

j=1 x
αj ∈ Z[x], then h(u) = 0. So Φpα(x) =∑p−1

m=0 x
mpα−1 , the pα-th cyclomatic polynomial, divides h(x) in Z[x]. Thus

p = Φpα(1)|h(1) = t.

16



Remark 5.7. The stronger result is also true that there is a partition of
the roots in the sum such that each part is of form {λ, λε, . . . , λεp−1}, where
ε = e

2πi
p , see [6, Lemma 7].

So we have proved the following theorem:

Theorem 5.8. The DKSSz conjecture is true if G = (Zp)
α or G = Zpα.

5.3 Exterior products and skew derivations

In this and the following section we try to understand the main ideas of [8].
Let V be vector space over a field F . Recall that a skew derivation on

E(V ) is ∆: E(V ) → E(V ) linear transformation such that for all x ∈
∧i V

and y ∈
∧j V we have ∆(x ∧ y) = ∆(x) ∧ y + (−1)ix ∧ ∆(y). Now let

ϕ : V → F be a linear function. We can define a skew derivation ∆ϕ on
E(V ): let ∆ϕ(v) = ϕ(v) for every v ∈ V , then by Lemma 3.1 we must have

∆ϕ(v1 ∧ · · · ∧ vm) =
m∑
i=1

(−1)i−1ϕ(vi)(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm).

Here v̂i means that vi is omitted from the wedge product. This really defines
a skew derivation, because of the universal property of the exterior power.

Lemma 5.9. If ϕ1, . . . , ϕm : V → K are linear functions and v1, . . . , vm ∈ V ,
then

∆ϕk ◦ · · · ◦∆ϕ1(v1 ∧ · · · ∧ vm) = det(ϕi(vj))1≤i,j≤m.

Proof. We prove by induction on m. For m = 1 the statement is true. If it
is true for m− 1 (m > 1), then the left hand side equals

∆ϕk ◦ · · · ◦∆ϕ2

( m∑
l=1

(−1)l−1ϕ1(vl)(v1 ∧ · · · ∧ v̂l ∧ · · · ∧ vm)

)
=

=
m∑
l=1

(−1)l+1ϕ1(vl) det(ϕi(vj))i 6=1;j 6=l = det(ϕi(vj)),

using Laplace expansion.
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5.4 Proof of a special case of the DKSSz con-
jecture

We have proved that in both Conjectures 5.1 and 5.2 it is enough to find
a field F and a χ : G → F ∗ embedding such that perV (χ(b1), . . . , χ(bk)) 6=
0. However we did not specify this χ yet, we always picked an arbitrary
embedding. Considering at the same time all the embeddings, in fact, all the
χ : G→ K∗ homomorphisms, we can get even stronger results. (The idea of
varying chi was used first by Gao and Wang in [7].)

The Vandermonde matrix V (χ(b1), . . . , χ(bk)) is the matrix formed from
the vectors (χi(b1), . . . , χi(bk)) where i = 1, 2, . . . , k, and χi = χi−1. Instead
of this, we could choose χ1, . . . , χk ∈ Ĝ arbitrarily.

From now on we use the multiplicative notation for the group G, because
we consider homomorphisms from G to the multiplicative group of a field.

Proposition 5.10. Let G be a finite Abelian group, F a field with an ele-
ment of order expG in F ∗, and let Ĝ denote the group of characters from
G to F ∗. Let a1, . . . , ak, b1, . . . , bk ∈ G, χ1, . . . , χk ∈ Ĝ. Suppose that
det(χi(aj))1≤i,j≤k 6= 0 and per(χi(bj))1≤i,j≤k 6= 0. Then there exists a permu-
tation π ∈ Sk such that a1bπ(1), . . .akbπ(k) are k different elements.

If we substitute χi = χi−1, then we get back the result about the perma-
nent of V (χ(b1), . . . , χ(bk)) proved previously.

Proof. Let V = FG be the group algebra, and let ϕi : V → K be linear
maps defined by ϕi(g) = χi(g) for every g ∈ G, 1 ≤ i ≤ k. For every
π ∈ Sk let us define Qπ ∈

∧k V as Qπ = a1bπ(1) ∧ · · · ∧ akbπ(k). Obviously, π
is a good permutation if and only if Qπ 6= 0. So it is enough to prove that∑

π∈Sk Qπ 6= 0. By Lemma 5.9 we have ∆ϕk ◦· · ·◦∆ϕ1(Qπ) = det(ϕi(ajbπ(j))),
thus

∆ϕk ◦ · · · ◦∆ϕ1

(∑
π∈Sk

Qπ

)
=
∑
π,σ

sgn(σ)
k∏
i=1

χi(aσ(i)bπ(σ(i))) =

=

(∑
σ

sgn(σ)
k∏
i=1

χi(aσ(i))

)(∑
τ

k∏
i=1

χi(bτ(i))

)
=

= det(χi(aj)) · per(χi(bj)).

The factors of the last product are nonzero, hence
∑

π∈Sk Qπ 6= 0.
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We will need a generalization of Lemma 5.6.

Lemma 5.11. (Sun, [9, Lemma 3.1]) Let λ1, . . . , λk be complex n-th roots
of unity such that λ1 + · · · + λk = 0. Then k can be written in the form
k =

∑
p|n xpp, where p runs through every prime divisor of n, and each xp is

a nonnegative integer.

Proof. We follow [9] and [10] in the proof.
All the n-th roots of unity are in the cyclomatic field Q(ε), where ε =

e2πi/n. An automorphism of this field sends ε to εt, where t ∈ Z, (t, n) = 1.
Thus λt1 + · · ·+ λtk = 0 for every t such that (t, n) = 1. Let

S =

{∑
p|n

xpp : xp ≥ 0, xp ∈ Z
}
,

and let us denote ht = λt1 + · · · + λtk for every t, and let σ1, . . . , σk be the
elementary symmetric polynomials of λ1, . . . , λk. We know that for every
positive integer t 6∈ S we have ht = 0, since (t, n) = 1. We will prove by
induction on t that for every 1 ≤ t ≤ k, if t 6∈ S, then σt = 0. In particular,
for t = k, since λ1 · · ·λk 6= 0, this shows that k ∈ S, thus proving the lemma.

The Newton-Girard formulas say that for all 1 ≤ t ≤ k we have

tσt +
t∑

j=1

(−1)jhjσt−j = 0,

where σ0 = 1. Rearranging the terms we get that

−tσt =
t∑

j=1

(−1)jhjσt−j =
∑

1≤j≤t
j∈S

(−1)jhjσt−j.

Using the induction hypothesis for every t− j, we get that

−tσt =
∑

1≤j≤t
j, t−j∈S

(−1)jhjσt−j

If t 6∈ S, then there is no j such that j and t − j are both in S since S is
closed under addition. Thus σt = 0.
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Theorem 5.12. Let G be a finite Abelian group, a1, . . . , ak be k different
elements, and b1, . . . , bk ∈ G (not necessarily different) elements. If p(|G|) >
k and p2(|G|) > k!, then there is a permutation π ∈ Sk such that a1bπ(1), . . . ,
akbπ(k) are k different elements.

Proof. It is enough to prove that there exist χ1, . . . , χk ∈ Ĝ such that
det(χi(aj)) and per(χi(bj)) are nonzero. The following lemma is the first
step in this direction.

Lemma 5.13. If a1, . . . , ak are different elements in G, then there exist
χ1, . . . , χk ∈ Ĝ such that det(χi(aj))1≤i,j≤k 6= 0.

Proof. Let n = |G| = |Ĝ|, G = {g1, . . . , gn} and Ĝ = {ψ1, . . . , ψn}, and let
C,C∗ ∈ F n×n matrices, C = (ψi(gj))1≤i,j≤n and C∗ = (ψ−1

j (gi))1≤i,j≤n. Then
(CC∗)i,j =

∑n
l=1(ψiψ

−1
j )(gl). Using the simple fact that for every ψ ∈ Ĝ\{1}

we have
∑

g∈G ψ(G) = 0, we get that CC∗ = |G| · I (the equations obtained
for each cell of the matrices are known as the orthogonality relations). We
know that expG is nonzero in F , because otherwise charF = q would divide
expG, thus xexpG−1 = (x(expG)/q−1)q in F [x], contradicting our assumption
that there is an element of order expG in F ∗. Hence C∗ = |G| · C−1. The
statement of the lemma is that the columns belonging to a1, . . . , ak in C are
linearly independent, which is true because C is invertible.

Now let F = C and choose any χ1, . . . , χk ∈ Ĝ given by Lemma 5.13
for a1, . . . , ak. We have to show that per(χi(bj)) 6= 0. We proved a similar
statement in Theorem 5.8, there we used a special case of Lemma 5.11. The
permanent of (χi(bj))1≤i,j≤k is the sum of k! terms, each of which is an n-th
root of unity (n = |G|). Suppose this sum is zero. Then k! =

∑
p|n xpp, where

xp ≥ 0 is an integer for each p. Since p2(n) > k!, we have k! = xp(n)p(n),
which contradicts p(n) > k.

Corollary 5.14. The DKSSz conjecture is true if G is a p-group.

Conjecture 5.15. Let G be a finite Abelian group, F a field with an element
of order expG in F ∗, and let Ĝ denote the group of characters from G to F ∗.
Let a1, . . . , ak ∈ G be k different elements, and b1, . . . , bk ∈ G be k different
elements. Then there exist χ1, . . . , χk ∈ Ĝ such that det(χi(aj))1≤i,j≤k 6= 0

and det(χi(bj))1≤i,j≤k 6= 0.
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This conjecture implies Snevily’s conjecture. For let G be an Abelian
group of odd order, and let F = F2ϕ(|G|) , then this conjecture says that
we can find χ1, . . . , χk ∈ Ĝ such that det(χi(aj)) 6= 0 and per(χi(bj)) =

det(χi(bj)) 6= 0.
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Chapter 6

Erdős-Heilbronn conjecture

6.1 The inequality

Let A be a subset of Zp. The question the Cauchy-Davenport theorem an-
swers is how small |A+ A| can be for fixed |A|.

Theorem 6.1. Cauchy-Davenport theorem
If A ⊆ Zp, then |A+ A| ≥ min(p, 2|A| − 1).

Definition 6.2. If A ⊆ Zp, let Au A = {a+ b : a, b ∈ A, a 6= b}.

The same question about the minimal possible size of AuA can be asked.

Theorem 6.3. Erdős-Heilbronn conjecture, proved by Dias da Silva and
Hamidoune (1994)

If A ⊆ Zp, then |Au A| ≥ min(p, 2|A| − 3).

It is surprising, that while the Cauchy-Davenport theorem and its gen-
eralizations are well understood, this similar question still does not have a
combinatorial proof. The algebraic methods however work well in this situ-
ation.

The inequality is sharp, because if A = {0, 1, . . . , k−1} where 2k−3 < p,
then Au A = {1, 2, . . . , 2k − 3}.

Proof. We identify Zp with the additive group (Fp,+), so A ⊆ Fp. Let |A| =
k ≥ 2, A = {a1, . . . , ak}, and let V be a k dimensional vector space over Fp
with basis {e1, . . . , ek}. Let ϕ : V → V be the unique linear map determined
by ϕ(ei) = aiei (1 ≤ i ≤ k). Let U = V ∧V , then the derivative of ϕ on U is
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Dϕ : U → U , a linear map such that Dϕ(v1 ∧ v2) = ϕ(v1) ∧ v2 + v1 ∧ ϕ(v2),
where v1, v2 ∈ V .

One basis for U is {ei ∧ ej| 1 ≤ i < j ≤ k}. In this basis the matrix of
Dϕ is diagonal, since Dϕ(ei ∧ ej) = (ai + aj)(ei + ej). Thus we see that the
set of eigenvalues of Dϕ is Au A. Let us denote the minimal polynomial of
ϕ and Dϕ by mϕ and mDϕ . Since both ϕ and Dϕ can be diagonalized, these
polynomials have no multiple roots, and their roots are the eigenvalues of
ϕ and Dϕ. So mϕ(x) =

∏
a∈A(x − a) and mDϕ(x) =

∏
b∈AuA(x − b), thus

deg(mϕ) = k and deg(mDϕ) = |A u A|. Therefore to prove the theorem, it
is enough to show that idU , Dϕ, D2

ϕ, . . . , DN
ϕ are linearly independent in

HomFp(U,U), where N = min{p − 1, 2k − 4}. It clearly suffices to find a
u ∈ U such that u, Dϕ(u), . . . , DN

ϕ (u) are linearly independent in U .
Let v = e1+· · ·+ek ∈ V , then v, ϕ(v), ϕ2(v), . . .ϕk−1(v) form a basis of V ,

because ϕi(v) = ai1e1 + · · ·+aikek, so the matrix formed from the coordinates
of these vectors is a Vandermonde matrix, which has nonzero determinant,
since a1, . . . , ak are pairwise different. Thus the vectors ui,j = ϕi(v) ∧ ϕj(v)

where 0 ≤ i < j < k, form a basis of U .
Our choice for u will be u = v ∧ ϕ(v).

Lemma 6.4. For every x, y ∈ V and n ≥ 0 we have

Dn
ϕ(x ∧ y) =

n∑
i=0

(
n

i

)
ϕi(x) ∧ ϕn−i(y).

Proof. Induction on n. For n = 0 the statement is valid, and if we know this
for n ≥ 0, then

Dn+1
ϕ (x ∧ y) = Dϕ

(
n∑
i=0

(
n

i

)
ϕi(x) ∧ ϕn−i(y)

)
=

=
n∑
i=0

(
n

i

)
ϕi+1(x) ∧ ϕn−i(y) +

n∑
i=0

(
n

i

)
ϕi(x) ∧ ϕn+1−i(y) =

=
n+1∑
i=0

((
n

i− 1

)
+

(
n

i

))
ϕi(x) ∧ ϕn+1−i(y) =

=
n+1∑
i=0

(
n

i

)
ϕi(x) ∧ ϕn+1−i(y).

(Here we used the notation
(
n
−1

)
=
(
n
n+1

)
= 0.)
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I have noticed that this lemma could be used in this simple case, instead
of using the complicated machinery (which worked in greater generality, see
Theorem 6.5) found in the original proof of Dias da Silva and Hamidoune.

Using this lemma we get for every n ≥ 0 that

Dn
ϕ(u) =

n∑
i=0

(
n

i

)
ϕi(v) ∧ ϕn+1−i(v) =

∑
i,j: i+j=n+1

(
n

i

)
ϕi(v) ∧ ϕj(v) =

=
∑

i,j: i+j=n+1, 0≤i<j

αi,jϕ
i(v) ∧ ϕj(v),

(6.1)

where αi,j =
(
n
i

)
−
(
n
j

)
=
(
n
i

)
−
(
n
i−1

)
= n!

i!(n−i)! −
n!

(i−1)!(n+1−i)! = n!(n+1−2i)
i!(n+1−i)! =

(i+j−1)!(j−i)
i!j!

. It is enough to show that DN
ϕ (v) is not in the linear span of

{Di
ϕ(v)|0 ≤ i < N}, because then, if c0v+· · ·+crDr

ϕ(v) = 0 where 0 ≤ r ≤ N

and cr 6= 0, then we can apply DN−r
ϕ to both sides, and get a contradiction.

Let us write up the vectors Dn
ϕ(v) in the basis {ui,j| 0 ≤ i < j < k}. If

k ≤ j, then we can express ϕj(v) as a linear combination of v, ϕ(v), . . . ,
ϕk−1(v), thus using (6.1) we get that for every n ≥ 0,

Dn
ϕ(v) =

∑
i,j: i+j=n+1, 0≤i<j<k

αi,jui,j +
∑

i,j: i+j≤n, 0≤i<j<k

ci,jui,j,

where ci,j ∈ Fp. Let s = bN
2
c, t = dN

2
e + 1, then s + t = N + 1 and

0 ≤ s < t < k, since N ≤ 2k − 4. The coefficient of us,t in Dl
ϕv is zero for

l < N , and for l = N it is αs,t = N !(t−s)
s!t!

. Since p - N ! (because N < p) and
N !(t−s)
s!t!
|N !, we get that αs,t 6= 0 in Fp, thus proving that DN

ϕ (v) is not in the
linear span of {Di

ϕ(v)| 0 ≤ i < N}.

This theorem has a generalization. Let us define
∧mA to be the set of

the sums of the m-subsets of A, so∧m
A = {a1 + · · ·+ am : a1, . . . , am ∈ A are all different}.

In particular,
∧2A = Au A.

Theorem 6.5. (Dias da Silva, Hamidoune) |
∧
A| ≥ min(p,m(|A|−m) + 1).

For m = 2 this gives Theorem 6.3. The proof follows the previous proof.
The additional difficulty lies in the calculation of the generalization of the
numbers αi,j. This calculation is needed since we use the fact that these
numbers are nonzero in Fp. For details, see [11].
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6.2 The case of equality

Now we know what is the minimum for |Au A| for fixed |A|, it is a natural
question that for which sets A is this minimum achieved. The interesting case
is when 2|A|−3 < p. If A is an arithmetic progression of k different elements
in Zp, then there is equality. In [13] Gy. Károlyi showed that if 5 ≤ k, then
the reverse is also true. For k = 4 it is not true, as the following example
illustrates: let p ≥ 11 be a prime and A = {0, 1, 3, 4} ⊆ Zp. Then A is not
an arithmetic progression, but |Au A| = |{1, 3, 4, 5, 7}| = 5 = 2 · |A| − 3.

Theorem 6.6. (Károlyi, 2005) If A ⊆ Zp, |A| ≥ 5, p > 2|A| − 3 and
|Au A| = 2|A| − 3, then A is an arithmetic progression.

Proof. This is a different proof from the original in [13]. There the Com-
binatorial Nullstellensatz is applied, while here we use the exterior algebra
method. This way, the calculations become simpler. The main idea of both
proofs is the following.

First, we change the field in which we are working in from Fp to its
algebraic closure F = Fp. All of the previous section is true for F instead
of Fp too, because the only thing we used about the field Fp was that it
has characteristic p. Let σi(A) be the elementary symmetric polynomials
of the elements of A. It is possible to prove that there exist polynomials
P3,. . . , Pk in F [x, y] such that equality in Theorem 6.3 implies that σ3(A) =

P3(σ1(A), σ2(A)), . . . , σk(A) = Pk(σ1(A), σ2(A)). Then it is not hard to find
an arithmetic progression A ⊆ F such that |A| = |A|, σ1(A) = σ1(A) and
σ2(A) = σ2(A) (see Lemma 6.9). Then for every 3 ≤ i ≤ k we have σi(A) =

Pi(σ1(A), σ2(A)) = σi(A), thus all the elementary symmetric polynomials of
A and A are the same, so A = A, because both A and A are the set of the
roots of the same polynomial. The main difference between the two proofs
is in the way of showing the existence of the Pi polynomials.

Let k = |A| ≥ 5, then p ≥ 2k − 1. We use the same notations as in the
proof of Theorem 6.3: A = {a1, . . . , ak} ⊆ F , V is a vector space over F
with basis {e1, . . . , ek}, ϕ is a V → V linear transformation, ϕ(ei) = aiei,
U = V

∧
V , Dϕ : U → U , v = e1 + · · · ek ∈ V , u = v ∧ ϕ(v) ∈ U . Let

ui,j = ϕi(v) ∧ ϕj(v), then B = {ui,j : 0 ≤ i < j ≤ k − 1} is a basis of
U , and u = u0,1. The minimal polynomial of ϕ is mϕ(x) =

∏k
i=1(x − ai) =

xk +
∑k

i=1(−1)iσix
k−i = xk −

∑k
i=1 six

k−i, where σi is the i-th elementary
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symmetric polynomial of a1, . . . , ak, and si = (−1)i−1σi. Our aim is to prove
that all the σi are polynomials of σ1 and σ2, where the polynomials does not
depend on A, only on k and i. We will prove this for si instead of σi, which
is just as good.

We proved in Theorem 6.3 that u, Dϕ(u), . . . , D2k−4
ϕ (u) are linearly

independent in U . Now we know that degmDϕ = 2k − 3, so D2k−3
ϕ (u) is a

linear combination of u, Dϕ(u), . . . , D2k−4
ϕ (u):

D2k−3
ϕ (u) =

2k−3∑
i=1

ciD
2k−3−i
ϕ (u). (6.2)

First we want to write up the coordinates of Dn
ϕ(u) in basis B for n =

0, 1, . . . , 2k − 3. We know from Theorem 6.3 that

Dn
ϕ(u) =

∑
i+j=n+1

0≤i<j

αi,jui,j, (6.3)

where αi,j = (i+j−1)!(j−i)
i!j!

. Here i+ j = n+ 1 ≤ 2k− 2 and i < j, so i ≤ k− 2.
The problem is that j can be greater than k − 1, so we have to express ui,j
in basis B. We know that ϕk+i = s1ϕ

k+i−1 + s2ϕ
k+i−2 + · · ·+ skϕ

i for every
i ≥ 0. This is linear recursion for id, ϕ, ϕ2, . . . , thus we can express them as
ϕj =

∑k−1
i=0 β

(j)
i (s)ϕi for every j ≥ k, where β(j)

i ∈ Z[x1, . . . , xk] and β
(j)
i (s)

stands for β(j)
i (s1, . . . , sk). Of course, β(k)

i (s) = sk−i for i = 0, 1, . . . , k − 1,
and

β
(j)
i (s) = β

(j−1)
i−1 (s) + sk−iβ

(j−1)
k−1 (s) (6.4)

for every j > k and 0 ≤ i < k (here β(m)
−1 is defined to be zero for every m).

Lemma 6.7. β(j)
i (s) = sj−i + γi,j(s1, . . . , sj−i−1) for every 0 ≤ i < k ≤ j

such that j − i ≤ k, where γi,j ∈ Z[x1, . . . , xj−i−1].

Proof. We proceed by induction on j. For j = k, this is obvious. If j > k,
then by the recursion formula (6.4), we get the statement using the induction
hypothesis.
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Let 0 ≤ i < j and j ≥ k. Then

ui,j = ϕi(v) ∧ ϕj(v) = ϕi(v) ∧
k−1∑
t=0

β
(j)
t (s)ϕt(v) =

= −
i−1∑
t=0

β
(j)
t (s)ut,i +

k−1∑
t=i+1

β
(j)
t (s)ui,t.

Now we are ready to express Dn
ϕ(u) in basis B. Using (6.3) and the last

equation, we get that if 0 ≤ n ≤ 2k − 3, then

Dn
ϕ(u) =

∑
i+j=n+1
i<j<k

αi,jui,j +
∑

i+j=n+1
k≤j

αi,j

(
−

i−1∑
t=0

β
(j)
t (s)ut,i +

k−1∑
t=i+1

β
(j)
t (s)ui,t

)
=

=
∑

i<j≤k−1

(
[i+ j = n+ 1]αi,j − [j ≤ n+ 1− k]αj,n+1−jβ

(n+1−j)
i (s)+

+ [i ≤ n+ 1− k]αi,n+1−iβ
(n+1−i)
j (s)

)
ui,j.

Here we use the following notation: if S is a statement, e. g. j ≤ n+ 1− k,
then [S] = 1 if S is true, and [S] = 0 otherwise. Now in (6.2) we can
compare the coefficients of ui,j on the two sides. We get the following system
of equations for c1, . . . , c2k−3, s1, . . . , sk: for every 0 ≤ i < j ≤ k − 1 we
have

− [j ≤ k − 2]αj,2k−2−jβ
(2k−2−j)
i (s) + αi,2k−2−iβ

(2k−2−i)
j (s) =

=
2k−3∑
t=1

ct
(
[i+ j = 2k − 2− t]αi,j − [j ≤ k − 2− t]·

· αj,2k−2−t−jβ
(2k−2−t−j)
i (s)+

+ [i ≤ k − 2− t]αi,2k−2−t−iβ
(2k−2−t−i)
j (s)

)
=

= c2k−2−i−jαi,j −
∑

1≤t≤k−2−j

ctαj,2k−2−t−jβ
(2k−2−t−j)
i (s)+

+
∑

1≤t≤k−2−i

ctαi,2k−2−t−iβ
(2k−2−t−i)
j (s).

(6.5)

We will write up this equation for special i, j pairs: for j = i+1, j = i+2,
j = i + 3, j = i + 4, j = i + 5 and j = i + 6. First, let j = i + 1, where
(k−3)/2 ≤ i ≤ k−3, so 3 ≤ 2k−3−2i ≤ k. Then we can use Lemma 6.7, thus
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we get the following: there exists a polynomial Pi,i+1 ∈ Z[x1, . . . , x2(2k−4−2i)]

which only depends on k, i (not on A), such that

(αi,2k−2−i − αi+1,2k−3−i)s2k−3−2i − αi,i+1c2k−3−2i =

= Pi,i+1(c1, . . . , c2k−4−2i, s1, . . . , s2k−4−2i) ∀i : 3 ≤ 2k − 3− 2i ≤ k.
(6.6)

Similarly, if j = i + 2, i + 3, i + 4, i + 5 or i + 6, and j ≤ k − 1 and
2k − 2− i− j ≤ k, then we can write up the following equations:

(αi,2k−2−i − αi+2,2k−4−i)s2k−4−2i − αi,i+2c2k−4−2i =

= Pi,i+2(c1, . . . , c2k−5−2i, s1, . . . , s2k−5−2i) ∀i : 2 ≤ 2k − 4− 2i ≤ k.
(6.7)

(αi,2k−2−i − αi+3,2k−5−i)s2k−5−2i − αi,i+3c2k−5−2i =

= Pi,i+3(c1, . . . , c2k−6−2i, s1, . . . , s2k−6−2i) ∀i : 3 ≤ 2k − 5− 2i ≤ k.
(6.8)

(αi,2k−2−i − αi+4,2k−6−i)s2k−6−2i − αi,i+4c2k−6−2i =

= Pi,i+4(c1, . . . , c2k−7−2i, s1, . . . , s2k−7−2i) ∀i : 4 ≤ 2k − 6− 2i ≤ k.
(6.9)

(αi,2k−2−i − αi+5,2k−7−i)s2k−7−2i − αi,i+5c2k−7−2i =

= Pi,i+5(c1, . . . , c2k−8−2i, s1, . . . , s2k−8−2i) ∀i : 5 ≤ 2k − 7− 2i ≤ k.
(6.10)

(αi,2k−2−i − αi+6,2k−8−i)s2k−8−2i − αi,i+6c2k−8−2i =

= Pi,i+6(c1, . . . , c2k−9−2i, s1, . . . , s2k−9−2i) ∀i : 6 ≤ 2k − 8− 2i ≤ k.
(6.11)

Let 3 ≤ m ≤ k and let m = 2l + 1 (so l ≥ 1). Suppose we know that
s1, . . . , sm−1 are polynomials of s1 and s2. We want to prove that the same
holds for sm too. The case of even m is similar (we use (6.7), (6.9) and
(6.11)), and we omit it, because it does not contain new ideas. Substituting
i = (2k−3−m)/2 = k− l−2 in (6.6), i = (2k−5−m)/2 = k− l−3 in (6.8),
and i = (2k−7−m)/2 = k− l−4 in (6.10), we get expressions of three linear
combinations of sm and cm as a polynomial of s1, . . . , sm−1 and c1, . . . , cm−1.
(We can only use (6.10) if m ≥ 5 and k ≥ 7, see the Remark 6.8 at the end
of the proof.) If there are at least two linear combinations which are linearly
independent, then both sm and cm are polynomial expressions of the previous
elements sl and cl, thus by induction, of s1 and s2. Therefore it is enough
to prove that the determinant of the coefficients of the linear combinations
obtained from (6.6) and (6.8) is nonzero, or the other determinant obtained
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from (6.8) and (6.10) is nonzero. So we need that δl 6= 0 or δ′l 6= 0 in F ,
where

δl = det

(
αk−l−2,k+l − αk−l−1,k+l−1 −αk−l−2,k−l−1

αk−l−3,k+l+1 − αk−l,k+l−2 −αk−l−3,k−l

)
, (6.12)

and

δ′l = det

(
αk−l−3,k+l+1 − αk−l,k+l−2 −αk−l−3,k−l

αk−l−4,k+l+2 − αk−l+1,k+l−3 −αk−l−4,k−l+1

)
. (6.13)

Substituting the definition of αi,j, and doing some calculations, we get
that

δl = 4(l + 1)(2l + 1)εl ·
(2k − 3)!(2k − 2l − 4)!

(k − l − 2)!(k − l − 1)!(k − l)!(k + l + 1)!
,

where εl = 3k − 2l2 − 4l − 3, and

δ′l = 8(l + 1)(2l + 1)ε′l·

· (2k − 3)!(2k − 2l − 4)!

(k − l − 1)(k − l)(k − l − 3)!(k − l − 2)!(k − l + 1)!(k + l + 2)!
,

where ε′l = 15k3−(10l2+20l+30)k2+(25l2+50l+15)k−(2l4+8l3+17l2+18l).

(I used the software Mathematica for the calculations.) Thus we need that p
does not divide εl or ε′l. This is exactly the same problem that arises in [13].
There it is proved by some calculations (which we omit), that if p|εl and p|ε′l,
then p|2l(l + 2)(2l + 1)(2l + 3), which is impossible, since 2l + 3 < p.

Remark 6.8. If m = 3 or k = 5 or k = 6, then it is enough to prove that
δl 6= 0 in F . This follows from the fact that p - 3k − 2l2 − 4l − 3 in these
cases.

We proved that for every fixed k (where p > 2k − 3), there exist polyno-
mials P1, . . . , Pk such that for every A ⊆ F , |A| = k and |A u A| = 2k − 3

imply that σi(A) = Pi(σ1(A), σ2(A)) for i = 1, 2, . . . , k. This can be applied
to k-element arithmetic progressions.

Lemma 6.9. For every S1, S2 ∈ F there exists an arithmetic progression B
of length k in F such that σ1(B) = S1 and σ2(B) = S2, and B is unique up
to the reverse of the order of elements.
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The proof is not hard ([13]). This is why we needed to work in the
algebraic closure of Fp: in the proof we need the extraction of square roots
in F .

Now suppose we have a k element arithmetic progression in F : a, a+ d,
. . . , a+(k−1)d. Then the elementary symmetric polynomials of the elements,
σ1, . . . , σk, are polynomials of a and d (k is fixed): σi = qi(a, d). If d 6= 0,
then for the set A = {a, a+ d, . . . , a+ (k− 1)d} we can use our result above,
so σi = Pi(σ1, σ2) = Pi(q1(a, d), q2(ad)). Thus qi(a, d) = Pi(q1(a, d), q2(ad))

for every a, d ∈ F such that a 6= 0. Since F is an infinite field, this means
that actually qi(x, y) = Pi(q1(x, y), q2(x, y)) in F [x, y] (see Lemma 5.3). (We
needed this little detour to handle the case d = 0.)

Now let A ⊆ F , |A| = k, |Au A| = 2k − 3 < p. Let A be the arithmetic
progression a, a+ d, . . . , a+ (k− 1)d such that σ1(A) = σ1(A) and σ2(A) =

σ2(A). Then

σi(A) = qi(a, d) = Pi(q1(a, d), q2(a, d)) = Pi(σ1(A), σ2(A)) = σi(A).

Since this is true for every i = 1, 2, . . . , k, we conclude that A = A, thus A is
an arithmetic progression.
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