
Finite Hyper POSETs

István Tomon

Matematika BSc

Eötvös Loránd Univeristy

Supervisor: Gyula Katona

May 29, 2012

1



2



Contents

1 Acknowledgement 4

2 Abstract & motivation 4

3 General Hyper POSETs 5
3.1 Introduction to Hyper POSETs . . . . . . . . . . . . . . . . . . . 5
3.2 Longest chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Chain and anti chain decomposition . . . . . . . . . . . . . . . . 12

4 Lexicographic Hyper POSETs 15

5 Geometric Hyper POSETs 20

6 Applications 31

3



1 Acknowledgement

I would like to thank Gyula Katona for his enthusiastic guidance and supervis-
ing.

2 Abstract & motivation

It is a well known problem, that if given a series of real number, a1, ..., amn+1,
then it contains a monotone increasing subseries with n+1 elements or a mono-
tone decreasing subseries with m+1 elements. Look at this problem in the fol-
lowing way: let H = {a1, ..., amn+1} and de�ne the relation <1 such as ai <1 aj
if and only if i < j and ai ≤ aj and de�ne <2 such that ai <2 aj if and only
if i < j and ai ≥ aj . Then (H,<1) and (H,<2) are POSETs. Plus in the
structure (H,<1, <2) every to di�erent elements can be compared due to <1 or
<2, and every monotone increasing subseries is a <1 chain and every monotone
decreasing subseries is a <2 chain. Thus it is enough to prove the following
general problem: if (H,<1, <2) is a structure with the properties above, then
there exists a <1 chain with n+1 elements or a <2 chain with m+1 elements.
This new view of the problem opens up opportunities for generalizations and a
couple of new problems occur as well.

More preciously, in this article a generalization of POSETs are being studied,
which I call Hyper POSET (HPOSET). It is a structure (H,<1, ..., <n) where
<1, ..., <n are transitive relations such that every two di�erent elements can be
compared due to at least one of the relations. My goal is to study the chains
and anti chains in these structures and to show some of its applications.
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3 General Hyper POSETs

3.1 Introduction to Hyper POSETs

De�nition 1 (H,<1, <2, ..., <n) is called a Hyper POSET (HPOSET) if H is
a set, (H,<k) is a POSET (k = 1, ..., n) and for any x, y ∈ H, x ̸= y there is a
1 ≤ m ≤ n such that x <m y or y <m x (there can be more than one such m's).
For an r positive integer an (H,<1, ..., <n) Hyper POSET is called an r-Hyper
POSET, if for every x, y ∈ H, x ̸= y there are at least r di�erent relations
between x and y.

The following statement is trivial and I let the reader to �gure out its solu-
tion.

Statement 1 Let (H,<1, ..., <n) be a Hyper POSET and 1 ≤ k ≤ n be arbi-
trary. If G ⊂ H is an antichain due to <k, then (G,<1, ..., <k−1, <k+1, ..., <n)
is a Hyper POSET.

There are some di�erent ways, that the product of Hyper POSETs can be
de�ned, but the following de�nition proved to be the most useful and obvious.

De�nition 2 Let n and k be positive integers and for i = 1, ...k let Hi = (Hi, <1

, ..., <n) be Hyper POSETs. Let

H1 ⋆ .... ⋆ Hk = (H1 × ...×Hk, <1, ..., <n)

be the ordered product of H1, ...,Hk where the relations are de�ned in the follow-
ing way: let (x1, ..., xk), (y1, ..., yk) ∈ H1 × ...×Hk that (x1, ..., xk) ̸= (y1, ..., yk)
and let r be the smallest index, that xr ̸= yr. Then (x1, ..., xk) <m (y1, ..., yk) if
and only if xr <m yr.

Statement 2 If H1, ...,Hk are r-Hyper POSETs with n relations, then H1⋆....⋆
Hk is an r-Hyper POSET.

Proof Let x = (x1, ..., xk) and y = (y1, ..., yk) be di�erent elements of
H1 × ...×Hk, such that p is the smallest index, that xp ̸= yp. Then because of
Hp is an r-Hyper POSET, there are at least r relations between xp and yp, and
these relations will hold between x and y as well.

Now it has to be proved, that the relations <1, ..., <m are transitive. Lets
suppose, that (x1, ..., xk) <m (y1, ..., yk) and (y1, ..., yk) <m (z1, ..., zk) for some
m. Let p be the smallest index, such that xp ̸= yp and q be the smallest index,
that yq ̸= zq. Then xp <m yp and yq <m zq.
If p = q then x1 = y1 = z1, ..., xp−1 = yp−1 = zp−1 and xp <m yp and yp <m zp.
But Hp is a Hyper POSET, so xp <m zp and p is the smallest i index, that
xi ̸= zi, so (x1, ..., xk) <m (z1, ..., zk). If p < q then x1 = y1 = z1, ..., xp−1 =
yp−1 = zp−1 and xp <m yp = zp, so p is the smallest i index, that xi ̸= zi and
xp <m zq so (x1, ..., xk) <m (z1, ..., zk).
If p > q then x1 = y1 = z1, ..., xq−1 = yq−1 = zq−1 and xq = yq <m zq, so q is
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the smallest i index, that xi ̸= zi and xq <m zq so (x1, ..., xk) <m (z1, ..., zk).
So <m is transitive for m = 1, ..., k which means, that H1 ⋆ .... ⋆Hk is an r-Hyper
POSET.�

3.2 Longest chain

My goal is to study the chains in the HPOSETs. With the help of this a tool
named Erd®s-Szekeres code[3] (ESz code) will be used.

De�nition 3 Let (H,<1, ..., <n) be a Hyper POSET. Let f : H → (Z+)n be
the function such that for any x ∈ H the k'th (k = 1, ..., n) coordinate of f(x)
is the length of the longest chain in (H,<k) with smallest point x. Then f is
the Erd®s-Szekeres code of the Hyper POSET.

Unluckily the ESz code does not determine the HPOSET due to isomor-
phism. The following picture shows two HPOSET's with the same ESz code,
not isomorphic to each other.

Obviously, they cannot be isomorph, because the one on the left has 2 <1

and 4 <2 relations and the one on the right has 3 of both of the relations.
Nevertheless, the ESz code is a very useful tool in some problems.

Lemma 1 Let (H,<1, ..., <n) be an r-HPOSET and f its Erd®s-Szekeres code.
Let x, y ∈ H such that x ̸= y. Then f(x) and f(y) di�er in at least r coordinates.

Proof Let x, y ∈ H be such that x ̸= y. Then there exists 1 ≤ m1 ≤ ... ≤
mr ≤ n such that x <ms y or y <ms x (s = 1, ..., r). It will be proved, that
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f(x) and f(y) di�er in the ms'th coordinate, for s = 1, ..., r.
It can be assumed that x <ms y. Let C ⊂ H one of the longest chains due to
<ms

with smallest element y. Then the ms'th coordinate of f(y) is |C|. But
C ∪ {x} is a longer chain with smallest element x, so by the de�nition of f the
ms'th coordinate of f(x) is at least |C| + 1. By that the ms'th coordinate of
f(x) and f(y) di�er.�

Now I prove a little Lemma, which will be very useful in some constructions.

Lemma 2 Let H1, ..., hk be Hyper POSETs and H = H1 ⋆ ... ⋆ hk. Let cj,m
(1 ≤ j ≤ k, 1 ≤ m ≤ n) be the size of the longest chain in Hj due to <m and
aj,m be the size of the biggest anti chain. Then the size of the biggest chain in
H due to <m is c1,m...ck,m and the size of the biggest anti chain due to <m is
a1,m...ak,m.

Proof Firstly, lets prove it for the chains. Let Cj,m ⊂ Hj be a chain such
that |Cj,m| = cj,m. Then if Cm = C1,m × ... × Ck,m, then Cm ⊂ H1 × ... ×Hk

and |Cm| = c1,m...ck,m. Plus if (x1, ..., xk) and (y1, ..., yk) are di�erent elements
of Cm and r is the smallest index, that xr ̸= yr, then xr and yr are di�erent
elements of Cr,m, which is a <m chain, so xr <m yr or yr <m xr. That means,
that (x1, ..., xk) <m (y1, ..., yk) or (y1, ..., yk) <m (x1, ..., xk). So Cm is a <m

chain. That proves, that the longest chain is at least c1,m...ck,m long.
Now it will be proved with induction on k, that every <m chain has at most
c1,m...ck,m elements. For k = 1 it is obvious. Now let assume, that it is known
for the ordered product of k − 1 Hyper POSETS and it will be proved for k.
Let C ′ ⊂ H1 × ...×Hk be a <m chain and let

pr1 C
′ = {t ∈ H1

∣∣∃(t, x2, ..., xk) ∈ C ′}.

Then pr1 C
′ is a <m chain, because if t1, t2 ∈ pr1 C

′ cannot be compared by
<m, then neither (t1, x1, ..., xk), (t2, y1, ..., yk) ∈ C ′. So |pr1 C ′| < c1,m. Now
for every t ∈ pr1 C

′ let

C ′
t = {(x2, ..., xk ∈ H2 × ...×Hk

∣∣(t, x2, ..., xk) ∈ C ′}.

Then C ′
t is a <m chain in H2 ⋆ ... ⋆ Hk so by the assumption of the induction

|C ′
t| ≤ c2,m...ck,m. But ∪

t∈pr1 C′

{t} × C ′
t = C ′

so
|C ′| =

∑
t∈pr1 C′

|C ′
t| ≤

∑
t∈pr1 C′

c2,m...ck,m ≤ c1,m...ck,m

which is exactly what we wanted to prove.
For anti chains it can be proved by the same idea as for chains.�

The next theorem is a generalization of the well known theorem, that in
every POSET with t2 + 1 elements, there is a chain or an anti chain with at
least t+ 1 elements.
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Theorem 1 Let (H,<1, ..., <n) be an r-Hyper POSET such that |H| ≥ tn−r+1+
1. Then there is an 1 ≤ m ≤ n and a C ⊂ H such that |C| ≥ t+ 1 and C is a
<m chain.

Proof Let the HPOSET's ESz code be f . Let assume indirectly that the
length of every chain is at most t. That means that for every x ∈ H every
coordinate of f(x) is at most t, so f(x) ∈ {1, ..., t}n. But |H| ≥ tn−r+1 + 1 and
the �rst n− r+1 coordinates of the vectors in f(H) can have maximum tn−r+1

di�erent values, so by the pigeon hole theorem there are two vectors, f(x) and
f(y), whose �rst n−r+1 coordinates is equal. But then f(x) and f(y) can only
di�er in the last r − 1 coordinates. This contradicts with the previous lemma,
which claims, that every two di�erent vectors should have at least r di�erent
coordinates. �

Remark This theorem will be used in the case r = 1 for which the statement
is that in a Hyper POSET (H,<1, ..., <n) there is a chain at least ⌈ n

√
|H|⌉ long.

Now it will be shown, that if given n and r then the previous theorem is
strict for in�nitely many t. More preciously there exists an r-Hyper POSET
(H,<1, ..., <n) that |H| = tn−r+1 and the longest chain has t elements.

Theorem 2 Let r < n be positive integers. Then there exists in�nitely many
t positive integer, that there exists an r-Hyper POSET (H0, <1, ..., <n) with
tn−r+1 elements such that every chain has a length at most t.

Proof First a little lemma will be proved, which can be a useful tool in
other constructions as well:

Lemma 3 Let r < n be positive integers and G ⊂ (Z+)n a �nite subset which
satis�es the following conditions:

(i) if v, w ∈ G and v ̸= w, then v and w di�ers in at least r coordinates

(ii) if (x1, ..., xn) ∈ H then for i = 1, ..., n and s = 1, ..., xi − 1 there exists a
vector vi,s ∈ G, whose i'th coordinate is s

Then there exists an r-Hyper POSET (H,<1, ..., <n) that if f its Erd®s-
Szekeres code, then f(H) = G.

Proof of Lemma Let H = G and for (x1, ..., xn), (y1, ..., yn) ∈ G let
(x1, ..., xn) <i (y1, ..., yn) if and only if xi > yi (for i = 1, ..., n). Then (H,<1

, ..., <n) is an r-Hyper POSET, because it is easy to see, that (H,<i) is a POSET
and by condition (i) every two vectors di�er in at least r coordinates, so there
are at least r di�erent relations between any two di�erent vectors in H.
Now it will be proved, that if f is the Erd®s-Szekeres code, then for x =
(x1, ..., xn) ∈ G it is true, that f(x) = x (this proves, that f(H) = G). Let
f(x) = (p1, ..., pn). By condition (ii), for s = 1, ..., xi − 1 there is a vec-
tor vi,s ∈ H whose i'th coordinate is s. So by the determination of <i the
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set {x, vi,xi−1, ..., vi,1} is a <i chain with xi elements and starting point x, so
pi ≥ xi. Plus if {x, v1, ..., vl} is a chain with starting point x, than the i'th
coordinates of v1, ..., vl are pairwise di�erent positive integers smaller than xi,
so pi ≤ xi, which means, that pi = xi (for i = 1, ..., n). So it is proved, that
f(x) = x and the proof of the lemma is done. �

Let p be a prime number greater than n. From now on all the calculations

meant over the �eld Fp. Let M ∈ F(r−1)×n
p , whose (i, j)'th entry is mi,j = ji−1.

For any 1 ≤ a1 < ... < ar−1 ≤ n integers let Ma1,...,ar−1 be the (r− 1)× (r− 1)
submatrix ofM , whose j'th column is the aj 'th column ofM . ThenMa1,...,ar−1

is a Vandermonde-matrix, so its determinant can be calculated in the following
way:

detMa1,...,ar−1 =
∏

1≤i<j≤r−1

(ai − aj).

Because of 1 ≤ a1 < ... < ar−1 ≤ n < p it is true, that ai − aj ̸= 0 so

detMa1,...,ar−1 ̸= 0

which means, that Ma1,...,ar−1 is invertible (over Fp). Now let

G = {v ∈ Fn
p

∣∣Mv = 0}.

rank(M) = r − 1 so G is a n− r + 1 dimensional subspace of Fn
p , which means

that |G| = pn−r+1.
It will be shown, that if v, w ∈ G and v ̸= w, then v and w has at least r
di�erent coordinates. Let v − w = (x1, ..., xn) and let assume indirectly, that
there are at least n− r + 1 zeros among x1, ..., xn. Let 1 ≤ a1 < ... < ar−1 ≤ n
indices, that xj = 0 if j ̸∈ {a1, ..., ar−1}. v − w ∈ G so M(v − w) = 0, which
means that

Ma1,...,ar−1

 xa1

...
xar

 = 0.

But Ma1,...,ar−1 is invertible so necessarily (xa1 , ..., xar−1) = 0, which means
that v − w = 0, which is a contradiction.
Finally for every m ∈ Fp and 1 ≤ j ≤ n there is a vector in G, whose j'th
coordinate is m. It is true because every Ma1,...,ar−1 is invertible, so if 1 ≤ b1 <
... < bn−r+1 ≤ n and s1, ..., sn−r+1 ∈ Fp are �xed, then one can �nd a vector
(x1, ..., xn) ∈ G, that xb1 = s1, ..., xbn−r+1 = sn−r+1.
Let ϕ : Fp → {1, ..., p} be any bijection, than the set ϕ(G) satis�es the conditions
(i) and (ii) in the previous lemma, so there exists an r-Hyper POSET (H,<1

, ..., <n), that for its f Erd®s-Szekeres code, f(H) = ϕ(G). But every vector's
every coordinate in ϕ(G) is at most p, so by the de�nition of f it is clear,
that every chain in (H,<1, ..., <n) has at most p elements. So if t = p, then
|H| = tn−r+1 and every chain has at most t elements.
It has been proved, that if n < t = p is a prime, then there exists an r-Hyper
POSET, which satis�es the conditions of the theorem.�
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Remark It is true, that if every prime divisor of t is bigger than n, then
there exists an r-Hyper POSET with tn−r+1 elements, that the biggest chain
has at most t elements. Let t = p1...pk the prime factorization of t and let
Hi be an r-Hyper POSET with pn−r+1

i elements, that the longest chain has
at most pi elements (i = 1, ..., k). Then if H = H1 ⋆ ... ⋆ Hk, then H has
pn−r+1
1 ...pn−r+1

k = tn−r+1 elements and due to Lemma 2 the longest chain has
at most p1...pk = t elements.
My conjecture is, that the previous theorem is true for every t big enough respect
to n. It cannot be true for small t. I will show that one can not pick tn−r+1

elements from {1, ..., t}n, that every two di�er in at least r coordinates, which
is su�cient by the train of thoughts presented in the proof of Theorem 1.
If v, w ∈ {1, ..., t} let d(v, w) be the number of non-zero coordinates of v − w.
Then ({1, ..., t}n, d) is a metric space, and v and w di�er in r coordinates if and
only if d(v, w) ≥ r. Let assume, that v1, ..., vs are vectors from {1, ..., t}n that
d(vi, vj) ≥ r for every 1 ≤ i < j ≤ s, then the spheres B⌊ r−1

2 ⌋(vi) are disjoint

(BR(x) = {y ∈ {1, ..., t}n
∣∣d(x, y) ≤ R}). But it can be calculated easily, that

|B⌊ r−1
2 ⌋(vi)| =

⌊ r−1
2 ⌋∑

j=1

(
n

j

)
(t− 1)j .

So because of |{1, ..., t}n| = tn and that the spheres B⌊ r−1
2 ⌋(vi) are disjoint it is

s ≤ tn

⌊ r−1
2 ⌋∑

j=1

(
n

j

)
(t− 1)j

.

If t is small (for example smaller than 1
2

(
n

⌊ r−1
2 ⌋
) 1

⌈ r−1
2

⌉ ) than the right side is

smaller than tn−r+1, so the theorem cannot be strict.

Theorem 1 can be generalized in the following way:

Theorem 3 Let s ≤ r < n be positive integers and let (H,<1, ..., <n) be an
r-Hyper POSET. Let

α = min

{
(n− r + 1)s, 2s−1

(
n

s

)
−
(
r

s

)
+ 1

}
and let assume, that |H| ≥ tα + 1. Than there exists a C ⊂ H and 1 ≤ i1 ≤
... ≤ is ≤ n that |C| ≥ t+ 1 and C is a chain due to <i1 , ..., <is .

Proof First it will be proved for the case α = (n−r+1)s. It will be proved by
induction on s. For s = 1 it is equivalent with Theorem 1, so it is done. If s > 1
let assume, that the statement is proved for s− 1. If |H| > t(n−r+1)s + 1 than

by Theorem 1 there exists a B ⊂ H that |B| ≥ t(n−r+1)s−1

+1 and B is a chain
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due to one of the relations. It can be assumed without the loss of generality,
that B is a <n chain. Now (B,<1, ..., <n−1) is a an (r− 1)-Hyper POSET with

n − 1 relations and |B| ≥ t((n−1)−(r−1)+1)s−1

+ 1 so using the assumption of
the induction there exists a C ⊂ B and 1 ≤ i1 ≤ ... ≤ is−1 ≤ n − 1 that C is
a chain due to <i1 , ..., <is−1 . But then C is a chain in (H,<1, ..., <n) due to
<i1 , ..., <is−1 , <n, so it is done.
Now we prove the case where α = 2s−1

(
n
s

)
−
(
r
s

)
+ 1. Let

J = {(j1, ϵ2j2, ..., ϵsjs)
∣∣ϵ2, ..., ϵn ∈ {−1, 1}; 1 ≤ j1 < ... < js ≤ n}.

Then |I| = 2s−1
(
n
s

)
. De�ne the Hyper POSET (H, (≺j)j∈J) as follows: if j ∈ J

and j = (j1, ϵ2j2, ..., ϵsjs) where ϵ2, ..., ϵn ∈ {−1, 1} and 1 ≤ j1 < ... < js ≤ n
than x ≺j y if and only if x <j1 y and for k = 2, ..., s if ϵk = 1 then x <jk y and
if ϵk = −1 then y <jk x. It is clear that the relation ≺j is transitive. Because
(H,<1, ..., <n) is an r-Hyper POSET, there are at least r relations between any
two di�erent elements of H, and every s-tuples of this r relations determine
clearly an ≺j relation between these two elements. So (H, (≺j)j∈J) is an

(
r
s

)
-

Hyper POSET. Apply Theorem 1 to the (H, (≺j)j∈J ) r0 =
(
r
s

)
-Hyper POSET

with n0 = 2s−1
(
n
s

)
relations. Because |H| ≥ t2

s−1(ns)−(
r
s)+1 + 1 = tn0−r0+1 + 1

there exists a C ⊂ H that C is a≺j chain for some j ∈ J . If j = (j1, ϵ2j2, ..., ϵsjs)
then it is clear, that C is a chain in (H,<1, ..., <n) due to <j1 , ..., <js , so the
proof is complete.�

Remark If n is big respect to r > s > 2 then (n − r + 1)s ∼ ns and

2s−1
(
n
s

)
−
(
r
s

)
+1 ∼ 2s−1

s! n
s so then α = 2s−1

(
n
s

)
−
(
r
s

)
+1. But if r is big enough,

then α = (n− r + 1)s.

Now we may ask, that what can be said about the biggest anti chain in a
HPOSET. We have to assume, that there is only one relation between any two
elements or else it can be that every anti chain has only one element (if H is
totally ordered due to every relation). If n = 2, then an <1 anti chain is an <2

chain and a <1 anti chain is a <2 chain, so the answer is the same as it was for
chains, so if |H| ≥ t2 + 1 then there is an anti chain with t + 1 elements. Now
let's examine the case n > 2. If |H| ≥ t2 + 1 then there is a <1 chain or an <1

anti chain with t + 1 elements. But a <1 chain is a <2 anti chain, so there is
an anti chain in (H,<1, ..., <n) with t + 1 elements. My conjecture is that if t
is big enough respect to n then this is strict.
For the proof of this one have to construct a HPOSET (H,<1, ..., <n) with t

2

elements such that for every 1 ≤ k ≤ n the set H is the union of t pieces of
disjoint <k chains with length t (this is the only way the construction can look
like, if we don't want an anti chain with t + 1 elements). The construction
doesn't seem to be hard rather need a lot of work and case separation. Instead
of that I show a construction if n = q + 1 where q is the power of an arbitrary
prime number and t = qm (m ∈ N).
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De�nition 4 A Hyper POSET is called Strong Hyper POSET or SHPOSET if
there is only one relation between any two elements.

Theorem 4 Let q be the power of a prime number, m an integer, n = q + 1
and t = qm. Then there exists a Strong Hyper POSET (H,<1, ..., <n) such that
|H| = t2 and every anti chain due to any of the relations has at most t elements.

Proof First a Strong Hyper POSET G = (G,<1, ..., <n) will be constructed
with q2 elements such that the biggest anti chain has q elements. Let the
elements of G be x1, ..., xq2 . If q is a power of a prime number, then there exists
a �eld with q elements, Fq. Let A be the a�ne plane over Fq, then A has q2

elements, so there exist bijections between the elements of G and A, let one
of them be φ : G → A. The lines in A has exactly q + 1 di�erent directions,
let them be v1, ...,vq+1. De�ne the relation <k (k = 1, ..., n) in G as follows:
xi <k xj if and only if i < j and the direction of the line lying on φ(xi), φ(xj)
is vk. Then there is only one relation between any two elements of G and
<k is transitive, because if xi <k xj and xj <k xl then i < j < l and the
direction of the line lying on φ(xi), φ(xj) is the same as the direction of the line
φ(xj), φ(xl), which means that φ(xi), φ(xj), φ(xl) is collinear, so the direction
of the line φ(xi), φ(xl) is vk too.
Now it will be shown that every anti chain in (G,<1, ..., <n) has at most q
elements. Let assume, that A ⊂ G and |A| ≥ q + 1. For any 1 ≤ k ≤ n there is
exactly q lines in A with direction vk and their union contains every element of
A. So because of |φ(A)| = q+ 1 there is two elements a, b ∈ φ(A) that lies on a
line with direction vk and so φ−1(a) <k φ

−1(b) or φ−1(b) <k φ
−1(a) and that

means that A cannot be a <k anti chain for any k.
Now let H = G ⋆ ... ⋆ G where G is multiplied m times. Then H is a Strong
Hyper POSET with q2m elements and by Lemma 2 every anti chain has at most
qm elements. The construction is complete.�

3.3 Chain and anti chain decomposition

In this section my goal is to give an upper bound to the minimal number of
chains needed to decompose a Hyper POSET with n relations an t elements.
The following theorem is a generalization of Theorem 5 in my previous work [2].

Theorem 5 Let (H,<1, ..., <n) be Hyper POSET such that |H| = t. Then
there is an 1 ≤ m ≤ n, such that H is the union of at most⌈

n− 1

n
t

⌉
<m-chains.

Proof It will be proved by induction on n. Firstly, let's prove for n = 2. Let
G ⊂ H be the biggest anti chain in the POSET due to <2. By the Dilworth's[1]
theorem H is the union of |G| pieces of <2 chains so if |G| ≤

⌈
t
2

⌉
then it is done.

12



Now let assume that |G| >
⌈
t
2

⌉
. For every two elements x, y ∈ G the relation

x <2 y and y <2 x cannot hold, so it must be x <1 y or y <1 x. That means
that G is a <1 chain. And the elements of H \G are individually <1 chains, so
H is the union of at most

1 + |H \G| = 1 + t− |G| ≤ 1 + t−
(⌈

t

2

⌉
+ 1

)
= t−

⌈
t

2

⌉
≤
⌈
t

2

⌉
<1 chains.

Let assume, that it is true for n− 1 (n ≥ 3) and it will be proved for n. Let
G ⊆ H be one of the biggest anti chains in the POSET de�ned by <n. By the
Dilworth's theorem H is the union of |G| piece of <n chain so if

|G| ≤
⌈
n− 1

n
t

⌉
then it is done. Now let assume that |G| >

⌈
n−1
n t
⌉
. G is an <n anti chain, so

at least one of the relations <1, ..., <n−1 holds between any two elements of G.
That means, that the assumption of the induction can be applied on G. Using
that for an 1 ≤ m ≤ n− 1 the set G is the union of⌈

n− 2

n− 1
|G|
⌉

<m chains. The points of H \G are individually <m chains, so H is the union
of at most ⌈

n− 2

n− 1
|G|
⌉
+ t− |G|

<m chains. If h(x) =
⌈
n−2
n−1x

⌉
+ t− x then h is clearly monotone decreasing in

the set of integers so if |G| >
⌈
n−1
n t
⌉
then

h(|G|) ≤ h

(⌈
n− 1

n
t

⌉
+ 1

)
Let s =

⌈
n−1
n t
⌉
− n−1

n t then 0 ≤ s < 1 and

h

(⌈
n− 1

n
t+ 1

⌉)
= h

(
n− 1

n
t+ s+ 1

)
=

=

⌈
n− 2

n− 1

(
n− 1

n
n+ s+ 1

)⌉
+ t−

(
n− 1

n
t+ s+ 1

)
=

=

⌈
n− 2

n
t+ (s+ 1)

n− 2

n− 1

⌉
+
1

n
t−1−s < n− 2

n
t+(s+1)

n− 2

n− 1
+1+

1

n
t−1−s < n− 1

n
t+1.

So h(|G|) is smaller than n−1
n t+1 and it is an integer, so h(|G|) ≤

⌈
n−1
n t
⌉
. The

theorem is proven.�
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Remark If t is given it is not hard to �nd a (H0, <1, ..., <n) Hyper POSET,
that |H| = t and for which the above theorem is strict, so H cannot be decom-
posed into less than

⌈
n−1
n t
⌉
pieces of <m chains (m = 1, ..., n).

Theorem 6 Let (H,<1, ..., <n) be a Strong Hyper POSET such that |H| = t.
Then there exists an 1 ≤ m ≤ n that H is the union of

⌊
t
n + n−1

2

⌋
pieces of <m

anti chains.

Proof For i = 1, ..., n let Ci be one of the biggest chains due to <i. If
|Ci| ≤

⌊
t
n + n−1

2

⌋
for some i, then due to the Dilworth theorem H is the union

of
⌊
t
n + n−1

2

⌋
pieces of <i anti chains and it is done. So it can be assumed, that

|Ci| ≥
⌊
t
n + n−1

2

⌋
+ 1 for i = 1, ..., n. But (H,<1, ..., <n) is a Strong Hyper

POSET, so two di�erent types of chains can intersect at maximum one point.
That means, that∣∣∣∣∣

n∪
i=1

Ci

∣∣∣∣∣ ≥
n∑

i=1

|Ci| −
(
n

2

)
≥ n

(⌊
t

n
+
n− 1

2

⌋
+ 1

)
−
(
n

2

)
.

But

n∪
i=1

Ci ⊂ H so

∣∣∣∣∣
n∪

i=1

Ci

∣∣∣∣∣ ≤ t which means n(
⌊
t
n + n−1

2

⌋
+ 1) −

(
n
2

)
≤ t. It is

equivalent to
⌊
t
n + n−1

2

⌋
+ 1 < t

n + n−1
2 which is a contradiction, so the proof

is complete.

Theorem 7 Let n ≥ 2 be a positive integer and (H,<1, ..., <n) a Strong Hyper

POSET such that |H| ≤ t(t+1)
2 − 1. Than there exists A1, ..., At−1 that Ai is an

anti chain due to one of the relations (i = 1, ..., t− 1) and

t−1∪
i=1

Ai = H.

Proof It will be proved by induction on t. For t = 2 it is |H| ≤ 2. If
|H| = 1 then it is trivial. If H = {x, y} then it can be assumed without the loss
of generality, that x <1 y and then H is a <2 anti chain, so it is the union of 1
anti chain.
Now let assume, that the statement is true for t = u − 1 and now it will be

proved for t = u. Let |H| ≤ u(u+1)
2 − 1 and let C ⊂ H be one of the biggest

<1 chain. If |C| ≤ u− 1 then by the Dilworth theorem H is the union of u− 1
pieces of <1 anti chains, so the proof is done. If |C| ≥ u then let H0 = H \ C.
In that case

|H0| ≤
u(u+ 1)

2
− 1− u =

u(u− 1)

2
− 1

so by the assumption of the induction there exists A1, ..., Au−2 anti chains, that
u−2∪
i=1

Ai = H0. But C is a <1 chain and H is a Strong Hyper POSET, so C is a

14



<2 anti chain. With the choice of Au−1 = C it is

u−1∪
i=1

Ai = H and A1, ..., Au−1

are all anti chains due to one of the relations, so the proof is complete.

4 Lexicographic Hyper POSETs

De�nition 5 Let H ⊂ Nn and x = (x1, ..., xn) and y = (y1, ..., yn) are di�erent
elements of H. De�ne the relations <k (k = 1, ..., n) as the following: x <k y if
and only if x1 = y1, x2 = y2, ..., xk−1 = yk−1 and xk < yk. Then (H,<1, ..., <n)
is a Hyper POSET and it will be called as the Lexicographic Hyper POSET
(LHPOSET) de�ned from H.

In this section we will study the Lexicographic Hyper POSETs. These special
Hyper POSETs come up naturally in some constructions because it is easy to
characterize their chains and anti chains.

Statement 3 Let H ⊂ Nn and H = (H,<1, ..., <n) be a Lexicographic Hyper
POSET de�ned from H. Let f be it's Erd®s-Szekeres code and G = Imf . Let
G = (G,≺1, ...,≺n) be the Lexicographic Hyper POSET de�ned from G. Then
f : H → G is an order changing bijection, so for every x, y ∈ H it holds that
x <k y ⇔ f(y) ≺k f(x) for k = 1, ..., n.

Proof Let assume that x <k y for some x = (x1, ..., xn) and y = (y1, ..., ym)
(x, y ∈ H). That means that x1 = y1, x2 = y2, ..., xk−1 = yk−1, xk < yk. Due
to the de�nition of LHPOSET the <m relation only determined by the �rst m
coordinates so if 1 ≤ l ≤ k − 1 then x <l z ⇔ y <l z and z <l x ⇔ z <l x for
any z ∈ H. Which means, that due to <l relation x and y behaves the same,
so the l'th coordinate of f(x) and f(y) are the same. The k'th coordinate of
f(x) is larger, than the k'th coordinate of f(y), because if C ⊂ H is a longest
chain due to <k with smallest point y, then C ∪ {x} is a longer chain with
smallest point x. So we got, that f(y) ≺k f(x). Now let assume, that for some
x, y ∈ H it is f(x) ≺k f(y). In a LHPOSET there is exactly one relation between
two elements so because of upper written it must be y <k x. So summarized:
x <k y ⇔ f(y) ≺k f(x).

Lemma 4 Let H ⊂ Zn be a �nite set and let

pri H = {y|∃(x1, ..., xi−1, y, xi+1, ..., xn) ∈ H}

for i = 1, ..., n.Let (H,<1, ..., <n) be the Lexicographic Hyper POSET de�ned
from H. Then the longest chain due to the relation <i has maximum |pri H|
elements.

Proof Let x1, ..., xk ∈ H such that x1 <i ... <i xk. It is enough to prove,
that k ≤ |priH|. For j = 1, ..., k let the coordinates of xj be (xj,1, ..., xj,n).
Then by the de�nition of <i it is x1,r = x2,r = ... = xk,r if 1 ≤ r < i integer
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and x1,i < ... < xk,i. That means, that x1,i, ..., xk,i are pairwise di�erent. But
x1,i, ..., xk,i ∈ priH, so k ≤ |priH|. The lemma is proven. �

Theorem 8 Let t be a positive integer. Then there exists an H0 ⊂ Zn such that
|H| = tn and if (H0, <1, ..., <n) is the Lexicographic Hyper POSET de�ned from
H then the longest chain due to any of the relations has maximum t elements.

Proof Let
H0 = {1, ..., t}n,

then |H0| = tn. Furthermore |pri H0| = t for i = 1, ..., n, so by the previous
lemma it is obvious, that the longest chain has t elements due to every relations.
�

Theorem 9 Let H ⊂ Zn and (H,<1, ..., <n) the Lexicographic Hyper POSET
de�ned from H. If t = |H| then there exists 1 ≤ m ≤ n and A ⊂ H such that A

is an anti chain due to <m and |A| ≥ t
n−1
n .

Proof A little stronger statement will be proved: let ak be the size of the
biggest anti chain due to <k (k = 1, ..., n), then

n∑
k=1

ak ≥ nt
n−1
n .

This will be proved by induction on n, but �rst a little analytical lemma needed.

Lemma 5 Let x1, ..., xr and y be nonnegative real numbers such that x1 + ...+
xr = t and xi ≤ y (i = 1, 2, ..., r). Let 0 < α < 1 then

xα1 + ...+ xαr ≥ tyα−1.

Proof of lemma Let

C = {(x1, ..., xr)
∣∣0 ≤ xi ≤ y;x1 + ...+ xr = t}

and f : C → R
f((x1, ..., xr)) = xα1 + ...+ xαr .

Then C is compact and f is continuous so f has a minimum and it takes it
on some element z = (z1, ..., zr) ∈ C. Now it will be shown that except at
most one 1 ≤ i ≤ r it is zi = y or zi = 0. Let assume that there exists a
1 ≤ i < j ≤ n such that 0 < zi, zj < y. Let's check two cases: if zi + zj ≤ y
then zαi + zαj > (zi + zj)

α (using that 0 < α < 1) and with z′i = zi + zj , z
′
j = 0

it is z' = (z1, ..., z
′
i, ..., z

′
j , ..., zr) ∈ C and f(z') < f(z) which is a contradiction.

If zi + zj > y then using that idα is concave, it is zαi + zαj > yα + (zi + zj − y)α

so with z′i = y and z′j = xi + xj − y it's z' ∈ C and f(z') < f(z) which is again
a contradiction.
The zeros from z1, ..., zr can be left, so it can be assumed, that every zi = y
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except for at most one. Then because their sum is t, there must be
⌊

t
y

⌋
pieces

of y and one t− y
⌊

t
y

⌋
= y

{
t
y

}
. So the minimum of f on C is⌊

t

y

⌋
yα +

(
y

{
t

y

})α

=

(
t

y
−
{
t

y

})
yα +

(
y

{
t

y

})α

=

= tyα−1 + yα
({

t

y

}α

−
{
t

y

})
≥ tyα−1

where the last inequality holds because 0 < α < 1 and 0 ≤
{

t
y

}
< 1.�

Let's get back to the proof of the statement. If n = 1 then the statement
claims, that a1 ≥ 1, which is obvious, because every element as a set is an anti
chain. Now let assume that for any LHPOSET with n − 1 relations the above
statement is true and now it will be proved for any LHPOSET (H,<1, ..., <n)
that

n∑
k=1

ak ≥ nt
n−1
n .

Let assume that the set of the �rst coordinates of the elements ofH is {w1, ..., wr}
and let Awi ⊂ H be the set of vectors, whose �rst coordinate is wi (i = 1, ..., r).
Then Awi is an anti chain due to <1. Let y = a1, then y is the size of the biggest
anti chain due to <1, so |Awi | ≤ y. Let xi = |Awi | and Hi = (Awi , <2, ..., <n),
then this an Lexicographic Hyper POSET with n− 1 relations, so if Bi,k is the
biggest anti chain due to <k in it (k = 2, ..., n) and |Bi,k| = bi,k, then by the
induction

n∑
k=1

bi,k ≥ (n− 1)x
n−2
n−1

i .

Let's notice that for k = 2, ..., n

Ck =
r∪

i=1

Bi,k

is an anti chain due to <k, because if x ∈ Bi,k and y ∈ Bj,k where i ̸= j then
x <1 y or y <1 x. So ak ≥ |Ck| and now some calculations can be done:

n∑
k=1

ak ≥ y +
n∑

k=2

|Ck| = y +
n∑

k=2

∣∣∣∣∣
r∪

i=1

Bi,k

∣∣∣∣∣ =
= y +

n∑
k=2

r∑
i=1

bi,k = y +
r∑

i=1

n∑
k=2

bi,k ≥ y +
r∑

i=1

(n− 1)x
n−2
n−1

i .

Now using the lemma with 0 ≤ xi ≤ y, x1 + ... + xn = t and α = n−2
n−1 the

inequality

y + (n− 1)

r∑
i=1

x
n−2
n−1

i ≥ y + (n− 1)ty−
1

n−1
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holds. Apply the A-G inequality for the numbers y and n− 1 pieces of ty−
1

n−1 .
It claims, that

y + (n− 1)ty−
1

n−1 ≥ n
n

√
y(ty−

1
n−1 )n−1 = nt

n−1
n

which is exactly that needed to be proven.
So it is proved that

n∑
k=1

ak ≥ nt
n−1
n

and from that it easily follows that there exists an 1 ≤ m ≤ n such that
am ≥ t

n−1
n which means that the biggest <m anti chain has size at least t

n−1
n .�

Theorem 10 There exists an H0 ⊂ Nn such that |H0| = tn and the Lexico-
graphic Hyper POSET (H0, <1, ..., <n) de�ned from H0 has the property, that
for m = 1, ..., n the size of the biggest anti chain due to <m is at most tn−1.

Proof The construction is the same as in the theorem with the longest
chain. Let H0 = {(x1, ..., xn

∣∣xi = 1, ..., t; i = 1, ..., n} be the set. Let

Cu1,...,um−1,um+1,...,un = {(u1, ..., um−1, s, um+1, ..., un
∣∣s = 1, ..., t},

then Cu1,...,um−1,um+1,...,un is a <m chain and

t∪
u1=1

...
t∪

um−1=1

t∪
um+1=1

...
t∪

un=1

Cu1,...,um−1,um+1,...,un = H0,

so H0 is the union of tn−1 pieces of <m chains, which means that the biggest
<m anti chain has a size at most tn−1.�

Theorem 11 Let H ⊂ Nn be a set such that |H| <
(
t+n−1

n

)
. Let (H,<1

, ..., <n) be the Lexicographic Hyper POSET de�ned from H. Then there ex-
ist A1, ..., At−1 ⊂ H, that for i = 1, ..., t − 1 the set Ai is an anti chain due to

one of the relations <1, ..., <n and H =
t−1∪
i=1

Ai.

Proof It will be proved by induction on n. If n = 1 the statement claims

that if |H| < t then there exists <1 anti chains A1, ..., At−1 that H =

t−1∪
i=1

Ai.

But this is trivial, because |H| ≤ t − 1 and all points of H as a set are anti
chains. Now let assume, that the statement is true for 1, ..., n − 1 (n ≥ 2), it
will be shown for n.
Now an induction on t will be used (t ≥ 2). If t = 2 then it claims that if
|H| < n+1 then H is an anti chain itself due to one of the relations <1, ..., <n.
If H is not an <n anti chain, then there is x, y ∈ H such that x <n y, so x and
y di�er in only the last coordinate. Let H ′ ⊂ Nn be the set, whose elements are
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the elements ofH without the last coordinate. Then because x and y is the same
without the last coordinate, |H ′| < n and (H ′, <1, ..., <n−1) is a Lexicographic
Hyper POSET, so by the induction on n it comes that H ′ is an anti chain due
one of the relations <1, ..., <n−1 and H is an anti chain due to the same relation.
Let assume that the statement is true for t − 1 (t ≥ 3), it will be proved for
t. Let M be the size of the biggest anti chain due to <n. Then let's examine
two cases: �rst case when M ≥

(
t+n−1
n−1

)
. Let A1 be one of the biggest <n anti

chains and H ′ = H \A1. Then

|H ′| <
(
t+ n− 1

n

)
−
(
t+ n− 2

n− 1

)
=

(
t+ n− 2

n

)
and (H ′, <1, ..., <n) is an LHPOSET so by the induction on t it is clear, that

there exists A2, ..., At−1 anti chains that H ′ =

t−1∪
i=2

Ai, so it is H =

t−1∪
i=1

Ai and

A1, ..., At−1 are anti chains, so that case is proven.
Second case, when M <

(
t+n−2
n−1

)
. By the de�nition of LHPOSET's if x, y ∈ H

and x ̸= y, then (x <n y or y <n x)⇔(the vectors x and y di�er in the �rst
n − 1 coordinate). So a B ⊂ H is an <n anti chain if and only if there are no
two vectors in B, that they are the same in the �rst n− 1 coordinate. Let

H ′′ = {(x1, ..., xn−1)
∣∣∃y, (x1, ..., xn−1, y) ∈ H}

then |H ′′| = M because of the previous ideas. The relations <1, ..., <n−1 only
depends on the �rst n− 1 coordinates, so it can be said that (H ′′, <1, ..., <n−1)
is an LHPOSET with n− 1 relations. It is |H ′′| =M <

(
t+n−2
n−1

)
, so because of

the induction on n it is clear, that H ′′ is de union of t− 1 subsets B1, ..., Bt−1,
such that Bi is an anti chain due to one of the relations <1, ..., <n−1. Now for
i = 1, ..., t− 1 let

Ai = {(x1, ..., xn)
∣∣(x1, ..., xn−1) ∈ Bi; (x1, ..., xn) ∈ H}.

Then it's easy to check that if Bi was an anti chain due to <m (1 ≤ m ≤ n− 1)
then Ai is also an anti chain in (H,<1, ..., <n) due to <m, and because of

H ′′ =
t−1∪
i=1

Bi it is H =
t−1∪
i=1

Ai, so A1, ..., At−1 satis�es the conditions. The proof

is complete.�

Theorem 12 There exists an H0 ⊂ Nn that |H0| =
(
t+n−1

n

)
and if (H0, <1

, ..., <n) is the Lexicographic Hyper POSET de�ned from H0, and A1, ..., Ar are

subsets of H0 such that

r∪
i=1

Ai = H0 and Ai is an anti chain due to one of the

relations <1, ..., <n then r ≥ t.

Proof Call the set H0 (n, t)-ordered if

H0 = {(x1, ..., xn)
∣∣t ≥ x1 ≥ ... ≥ xn ≥ 1}.
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It will be proved by induction on n that the (n, t)-ordered set satis�es the
conditions. If n = 1 then H0 = {1, 2, ..., t} so |H0| = t and H0 is a totally
ordered set, so every anti chain has maximum one elements. Because of that
at least t anti chains needed to cover it. Now let assume, that the statement
is true for (n− 1, u)-ordered sets where u = 1, 2..., now it will be proved for n.
Firstly, |H0| =

(
n+t−1

n

)
, because

(
n+t−1

n

)
is the number of n-tuples (y1, ..., yn)

such that n + t − 1 > y1 > ... > yn ≥ 1 and the function φ((y1, ..., yn)) =
(y1 − (n− 1), y2 − (n− 2), ..., yn) is a bijection between these n-tuples and H0.

Let A1, ..., Ar be anti chains such that

r∪
i=1

Ai = H0 and let assume that exactly

k of them is an <1 anti chain. It can be assumed, that these are A1, ..., Ak. For
y = 1, ..., t let

Gy = {(y, x2, ..., xn)
∣∣y ≥ x2 ≥ ... ≥ xn ≥ 1}

and
G′

y = {(x2, ..., xn)
∣∣y ≥ x2 ≥ ... ≥ xn ≥ 1}.

Then every <1 anti chain is a subset of one of the G1, ..., Gt, so if A1, ..., Ak are
all of the <1 anti chains, then there is at least t− k indexes i1 < ... < it−k such
that none of the elements of Gij (j = 1, ..., t−k) are covered by any of A1, ..., Ak.
And then it must be it−k ≥ t − k. So every element of Git−k

is covered with
one anti chain from Ak+1, ..., Ar. Now start examine G′

it−k
. (G′

it−k
, <2, ..., <n)

is an LHPOSET with n− 1 relations which is (n− 1, it−k)-ordered. If

A′
s = {(x2, ..., xn)

∣∣(it−k, x2, ..., xn) ∈ As}

(s = k + 1, ..., r), then A′
s is anti chain in G′

it−k
with the same relation and

r∪
i=k+1

A′
i = G′

it−k
so by the induction on n it comes, that r − k ≥ it−k ≥ t− k,

so r ≥ t and the proof is complete.�

Remark This construction shows, that if n = 2, then Theorem 7 is strict for
every t ≥ 2 positive integer.

5 Geometric Hyper POSETs

De�nition 6 Let n, d be positive integers and H be a �nite subset of Rd. Let
D1, ..., Dn be convex cones in Rd, such that(

n∪
i=1

Di

)
∪

(
n∪

i=1

−Di

)
= Rd.

De�ne the Hyper POSET H = H(H,D1, ..., Dn) = (H,<1, ..., <n) as follows: for
x, y ∈ H, x ̸= y the relation x <i y holds (i = 1, ..., n) if and only if y−x ∈ Di.
Lets call these type of Hyper POSETs Geometric Hyper POSET (GHPOSET),
and lets call d the dimension of the Geometric Hyper POSET.
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Statement 4 The above de�nition is correct, so let D1, ..., Dn ⊂ Rd be convex
cones, such that (

n∪
i=1

Di

)
∪

(
n∪

i=1

−Di

)
= Rd.

De�ne the structure H = (H,<1, ..., <n), such that for x, y ∈ H, x ̸= y the
relation x <i y holds (i = 1, ..., n) if and only if y− x ∈ Di. Then H is a Hyper
POSET.

Proof Firstly, it will be shown, that <i (i = 1, ..., n) is transitive. Let
assume, that for x, y, z ∈ H it is x <i y and y <i z. Then y − x ∈ Di

and z − y ∈ Di. But Di is a convex cone, so it is closed for summation, so
Di ∋ (y − x) + (z − y) = z − x, which means x <i z.
Secondly, it will be shown, that if x ̸= y ∈ H, then there exists 1 ≤ i ≤ n, that
x <i y or y <i x. Because of the criteria(

n∪
i=1

Di

)
∪

(
n∪

i=1

−Di

)
= Rd

there exists at least one i, that y − x ∈ Di or y − x ∈ −Di. If y − x ∈ Di, then
x <i y and if y − x ∈ −Di, then x− y ∈ Di, so y <i x. This proves, that H is a
Hyper POSET.�

De�nition 7 Lets call the �nite system D1, ..., Dn of convex cones covering, if(
n∪

i=1

Di

)
∪

(
n∪

i=1

−Di

)
= Rd and the intersection of any two di�erent cones

from D1, ..., Dn,−D1, ...,−Dn is the origin. If D1, ..., Dn is a covering system,
then lets call the Geometric Hyper POSET H(H,D1, ..., Dn) Strong Geometric
Hyper POSET (SGHPOSET), .

Remark Any Strong Geometric Hyper POSET is obviously a Strong Hyper
POSET, but there are GHPOSETs, which are SHPOSETs, but not isomorph to
a SGHPOSET.
For example let 0 = (0, 0, 0), x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1) and let
D1 = {(a,−b, b)|a, b ≥ 0}, D2 = {(−a, a, b)|a, b ≥ 0}, D3 = {(−a, b, a)|a, b ≥ 0}
and let H = {0, x, y, z}.
R3 \ (D1 ∪ D2 ∪ D3 ∪ −D1 ∪ −D2 ∪ −D3) is the union of a �nite number of
convex cones, let them be E1, ..., Er. Then

H(H,D1, D2, D3, E1, ..., Er) = (H,<1, <2, <3,≺1, ...,≺r)

is a GHPOSET and 0 <1 x, y <1 z, 0 <2 z, y <2 x, 0 <3 y, x <3 z are all the
relations, so it is a Strong Hyper POSET.
But it is not isomorphic to a SGHPOSET, because if there is an isomorphism

f : H(H,D1, D2, D3, E1, ..., Er) → H(G,D′
1, D

′
2, D

′
3, E

′
1, ..., E

′
r)
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then f(x) − f(0) ∈ D′
1, f(z) − f(y) ∈ D′

1 so because D′
1 is a convex cone

f(x)− f(0) + f(z)− f(y) ∈ D′
1. Similarly f(z)− f(0) ∈ D′

2, f(x)− f(y) ∈ D′
2,

so f(z)−f(0)+f(x)−f(y) ∈ D′
2. So f(x)+f(z)−f(0)−f(y) ∈ D′

1∩D′
2, which

is impossible, because it is not hard to show, that f(x)+f(z)−f(0)−f(y) ̸= 0.

Statement 5 Let H1, ..., Hk ⊂ Rd and let D1, ..., Dn ⊂ Rd be convex cones,
such that the interior of D1, ..., Dn is not empty and Hi = H(Hi, D1, ..., Dn) is
a Strong Geometric Hyper POSET (i = 1, ..., k). Lets suppose, that if x, y ∈ Hi

and x <j y (1 ≤ j ≤ n) then y − x ∈ int Dj. Then there exists an H ⊂ Rd,
such that

H1 ⋆ ... ⋆ Hk ≃ H(H,D1, ..., Dn).

Proof The sets H1, ..., Hk are �nite, so they are bounded, lets suppose that
their union can be covered with a circle of radius R. For i = 1, ..., k and x, y ∈ Di

where x ̸= y, if x <j y then y − x ∈ int Dj which means that there exists a
0 < ri,x,y, that Bri,x,y

(y − x) ∈ Dj (where Br(x) is the open circle with center

x and radius r). Let r = min
i=1,...,k

( min
x̸=y∈Di

ri,x,y). Finally let t = R
2kr .

De�ne ϕ : R2 × ...× R2 → R2, where R2 is multiplied k times, as follows:

ϕ((x1, ..., xk)) =

k∑
i=1

xit
k−i.

It will be shown, that if H = ϕ(H1 × ... × Hk) then ϕ extracts to a H1 ⋆
... ⋆ Hk → H(H,D1, ..., Dn) isomorphism. Let (x1, ..., xk) and (y1, ..., yk) be
di�erent elements of H1 × ... × Hk and let q be the smallest index, that xq ̸=
yq and let suppose, that xq <j yq. Then (x1, ..., xk) <j (y1, ..., yk). Now it
has to be proved, that ϕ((x1, ..., xk)) <j ϕ(y1, ..., yk) which is equivalent to
ϕ((y1, ..., yk))− ϕ((x1, ..., xk)) ∈ Dj .

ϕ((y1, ..., yk))− ϕ((x1, ..., xk)) ∈ Dj =
k∑

i=1

yit
k−i −

k∑
i=1

xit
k−i =

=

k∑
i=q

(yi − xi)t
k−i = tk−q

yq − xq +

k∑
i=q+1

(yi − xi)t
q−i


Here ∥∥∥∥∥∥

k∑
i=q+1

(yi − xi)t
q−i

∥∥∥∥∥∥ ≤
k∑

i=q+1

∥yi − xi∥tq−i ≤ 1

t

k∑
i=q+1

∥yi − xi∥

and ∥yi − xi∥ < 2R because H1, ..., Hk can be covered with circle with radius
R, so

1

t

k∑
i=q+1

∥yi − xi∥ <
1

t
k2R = r.
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So ∥∥∥∥∥∥
k∑

i=q+1

(yi − xi)t
q−i

∥∥∥∥∥∥ < r

which means that

ϕ((y1, ..., yk))− ϕ((x1, ..., xk)) ∈ tk−qBr(yq − xq).

But yq − xq ∈ Dj and by the de�nition of r it is true, that Br(yq − xq) ⊂
Dj , so t

k−qBr(yq − xq) ⊂ Dj and thus ϕ((y1, ..., yk)) − ϕ((x1, ..., xk)) ∈ Dj .
So ϕ((x1, ..., xk)) <j ϕ(y1, ..., yk) which proves, that ϕ can be extracted to an
isomorphism. The proof is complete. �

Theorem 13 Let L be a Lexicographic Hyper POSET with n relations and
D1, ..., Dn be a covering system in the plane, that the interior of Di is not empty
(i = 1, ..., n). Then there exists an H ⊂ R2 that for the Strong Geometric Hyper
POSET G = H(H,D1, ..., Dn) the Hyper POSETs L and G are isomorph.

Proof For i = 1, ..., n let vi ∈ int(Di) any vector. Let L = (L,<1, ..., <n),
where L ⊂ Zn and for x ∈ L let pri be the i'th coordinate of x. Let Hi =
{pri(x)vi

∣∣x ∈ L} and Hi = (Hi, D1, ..., Dn). Than Hi is a <i chain and it
satis�es, that if x, y ∈ Hi and x <i y then y − x ∈ int(Di). Let ϕ : L →
H1 × ... × Hn be the injection, that ϕ((x1, ..., xn)) = (x1v1, ..., xnvn) and let
Im(ϕ) = G∗. Than ϕ : L → (G∗, D1, ..., Dn) is an isomorphism.
Let H∗ = H1 ⋆ ... ⋆ Hn. Then by the previous statement, there exists H =
H(H,D1, ..., Dn) that H ≃ H∗. Let ψ : H∗ → H be an isomorphism and G =
ψ(G∗), G = H(G,D1, ..., Dn). Then

(ψ |G∗) ◦ ϕ

is an isomorphism between L and G. �

Theorem 14 Let D1, ..., Dn be convex cones in R2, such that the interior of

Di is not empty (i = 1, ..., n),

(
n∪

i=1

Di

)
∪

(
n∪

i=1

−Di

)
= R2 and Di ∩ Dj =

Di ∩D′
j = {0} for any 1 ≤ i, j ≤ n, i ̸= j. Then there exists a constant C, that

for in�nitely many t positive integers there exists a set H ⊂ R2, that |H| = t
and the biggest anti chain in the SGPOSET H(H,D1, ..., Dn) = (H,<1, ..., <n)
due to any of the relations is smaller than C

√
t.

Proof For any s positive integer let Hs = {(a, b)
∣∣a = 1, ..., s; b = 1, ..., s}.

Then it will be shown, that there exists a constant C (dependant on D1, ..., Dn),
that in H(Hs, D1, ..., Dn) the biggest anti chain due to any of the relations is
smaller than Cs. Because of |Hs| = s2, it proves the theorem for t = s2.
For i = 1, ..., n the interior of Di in not empty, so there exists a vector in Di,
whose both coordinates are rational numbers, let it be (ai

bi
, cidi

), where ai, ci are
integers and bi, di are positive integers. But Di is a cone, so bidi(

ai

bi
, cidi

) =
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(aidi, bici) ∈ Di. Let (pi, qi) = (aidi, bidi), then pi, qi are integers and (pi, qi) ∈
Di). It will be shown, that

C = max
1≤i≤n

|pi|+ |qi|

satis�es the conditions.
It will be proved, that the biggest anti chain due to the relation <i is smaller
then s(|pi| + |qi|). It can be assumed, that pi > 0 and qi > 0, the other four
cases can be handled the same way. For any u, v integers let

A(u, v) = {(u+ api, v + aqi)
∣∣a ∈ Z}

then A(u, v) is a <i chain, because if x, y ∈ A(u, v), then y − x is a multiple of
(pi, qi) ∈ Di. Plus s∪

j=1

qi∪
k=1

Aj,k

 ∪

 pi∪
j′=1

s∪
k′=1

Aj′,k′

 ⊃ Hs.

It is true, because if (x, y) ∈ Hs, then let j be the biggest integer, that (x −
jpi, y − jqi) ∈ Hs. Then x − jpi ≤ pi or y − jqi ≤ qi. In the �rst case

(x, y) ∈
pi∪

j′=1

s∪
k′=1

Aj′,k′ and in the second case (x, y) ∈
s∪

j=1

qi∪
k=1

Aj,k.

So Hs is the union of s(pi + qi) pieces of <i chains, so the biggest anti chain
due to <i is smaller than s(pi + qi). The proof is complete.�

Remark If given the integer n, the most natural case is when

Di =

{
(r cosα, r sinα)

∣∣r ≥ 0;
(i− 1)π

n
≤ α <

iπ

n

}
.

Let Cn be the inf of the constants, which satisfy the conditions of the upper
theorem for these D1, ..., Dn. It might be a hard question to determine Cn. In
every SHPOSET there is an antichain with

√
t elements, if the basis set has t

elements, so Cn ≥ 1 for n = 2, 3.... For n = 2 it is C2 = 1 and the s× s square
lattice is a good construction.

For n > 2 it is Cn ≤ n. If we follow the proof of the upper theorem, it is
enough to �nd (pi, qi) ∈ Di, that pi, qi are integers, and |pi| + |qi| ≤ n. Let
zj = (j, n− j), zj+n = (n− j,−j), zj+2n = (−j, j−n) and zj+3n = (j−n, j) for
j = 0, ..., n − 1. Then z0, ..., z4n−1 are all the vectors with integer coordinates,
where the sum of the absolute value of the coordinates is n. Let βj be the
angle of the vectors zj and zj+1 (β4n−1 is the angle of z4n−1 and z0). Then
βj = β2n−j = βj+2n = β4n−j and if 0 < j < n − 1 then it can be calculated
easily that

sinβj =
n√

j2 + (n− j)2
√
(j + 1)2 + (n− j − 1)2

≤ n
n√
2

n√
2

=
2

n
.
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If n ≥ 3 then sin π
n > 2

n , which means that sinβj < sin π
n , so βj ≤ π

n . That
means, that for j = 0, ..., 4n−1 it is βj <

π
n , so for any given i one of the vectors

of z0, ..., z4n−1 is an element of Di, so there is a vector in Di, where the sum of
the absolute values of the coordinates is exactly n. This proofs the statement.

For n = 3 I will prove strict result for the problem above:

Theorem 15 For i = 1, 2, 3 let Di =
{
(r cosα, r sinα)

∣∣r ≥ 0; (i−1)π
3 ≤ α < iπ

3

}
and let H(H,D1, D2, D3) = (H,<1, <2, <3), where H ⊂ R2 and |H| > 3s2 −
3s + 1, where s is a positive integer. Then there exists an A ⊂ H such that
|A| > 2s− 1 and A is an anti chain due to one of the relations <1, <2, <3.

Proof Firstly, I will de�ne how a chain can be extracted to a broken line in
R2 and some of its features will be studied. Let D ⊂ R2 be a convex cone and
v the direction of the bisector of D (D is always an angle, so v is well de�nied).
For x, y ∈ R2 let x ≺ y if y − x ∈ D. Let C = {x1, ..., xm} be a chain due to
≺ such that x1 ≺ ... ≺ xm. De�ne the broken line L(C) an follows: connect xj
and xj+1 with a segment if j = 1, ...,m− 1 and draw a half line from x1 to the
direction of −v and a half line from xm to the direction v (L is dependent on D,
but for simplicity, it will not be marked, and it will not cause any confusion).
Then it is easy to see, that L(C) is a <i chain too. Let x, y ∈ L(C). If x and
y are on the same segment, then x − y is parallel to one of the vectors v or
xj+1 − xj , which are all in D ∪ (−D) so x ≺ y or y ≺ x. If x and y are in
di�erent segments, let suppose, that x ∈ [xj , xj+1], y ∈ [xl, xl+1]. If j < l then
x ≺ xj+1 ≺ xl ≺ y and if l > j, then it is y ≺ x. The cases where at least one
of x or y is on an in�nite segment can be proved similarly.

Lemma 6 Let C1, ..., Ck be �nite ≺ chains. Then there exists C ′
1, ..., C

′
k chains,

that

k∪
j=1

Cj =

k∪
j=1

C ′
j and the broken lines L(C1), ..., L(Ck) are pairwise disjoint.

Proof of lemma It can be assumed, that C1, ..., Ck are pairwise disjoint,
else some points can be left out from each Cj without changing the union. Let

S be a square with two sides parallel to v and which covers

k∪
j=1

Cj and de�ne

L0(C) = L(C) ∩ S for any C chains. Then L0(C) have a �nite length, let l(C)
be the length of L0(C). Plus L(C1) \ L0(C1), ..., L(Ck) \ L0(Ck) are unions of
parallel half lines, so every intersection of L(C1), ..., L(Ck) are inside of S.
Lets suppose that for some a and b the broken lines L0(Ca) and L0(Cb) have
intersection. Let x1 ≺ ... ≺ xm be the points of Ca and y1, ..., yn be the points
of Cb. If [xj , xj+1] and [yl, yl+1] intersect, then let {z} = [xj , xj+1] ∩ [yl, yl+1]
and let C∗

a = {x1, ..., xj , yl+1, ..., yn} and C∗
b = {y1, ..., yl, xj+1, ..., xm}. Then

C∗
a and C∗

b are ≺ chains, because yl ≺ z and z ≺ xj+1 so yl ≺ xj+1 and for the
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same reason xj ≺ yl+1. Plus l(Ca) + l(Cb) > l(C∗
a) + l(C∗

b ) because

l(Ca)+l(Cb)−(l(C∗
a)+l(C

∗
b )) = |xj+1−xj |+|yl+1−yl|−|xj−yl+1|−|yl−xj+1| =

= |xj+1 − z|+ |z − xj |+ |yl+1 − z|+ |z − yl| − |xj − yl+1| − |yl − xj+1| =

= (|xj+1 − z|+ |z − yl| − |yl − xj+1|) + (|z − xj |+ |yl+1 − z| − |xj − yl+1|) > 0

where the last inequality holds because of the triangle inequality. If [xj , xj+1]
intersects with the half line from y1, then let there intersection be z and let
C∗

a = {x1, ..., xj , y1, ..., yn} and C∗
b = {xj+1, ..., xm}. Then C∗

a and C∗
b are also

<i chains and l(Ca) + l(Cb) > l(C∗
a) + l(C∗

b ). It is true, because let d1 be the
distance from the side of S, which intersects with the half line from y1. Let d2
be the distance from the same side of S and d3 be the distance of z from that
side. Then

l(Ca) + l(Cb)− l(C∗
a)− l(C∗

b ) =

= |xj−xj+1|+d1−d2−|xj−y1| = |xj−z|+|z−xj+1|+d3+|y1−z|−d2−|xj−y1| =

= (|xj − z|+ |z− y1|− |xj − y1|)+ |z−xj+1|+d3−d2 > |z−xj+1|+d3−d2 > 0

where the last inequality holds because d3−d2 is the length of the perpendicular
projection of z − xj+1 to the vector v. If L0(Ca) and L0(Cb) intersects in other
way, it can be handled as this last case.

So if L(Ca) and L(Cb) intersects, then Ca and Cb can be replaced with C
∗
a and

C∗
b , such that Ca ∪Cb = C∗

a ∪C∗
b and l(Ca)+ l(Cb) > l(C∗

a)+ l(C∗
b ). Repeating

this procedure we will arrive to a state C ′
1, ..., C

′
k, that L0(C

′
1), ..., L0(C

′
k) are

disjoint, because there are only �nite ways to select k chains from the �nite

set

k∪
j=1

Cj , and in every step, the sum

k∑
j=1

l(C ′
k) is strictly decreasing. So the

procedure have to stop after N steps, where N is the number of possible ways,

to select k chains from

k∪
j=1

Cj .�

Let assume indirectly, that for i = 1, 2, 3 the biggest anti chain due to <i

is at most 2s − 1. Then by the Dilworth theorem H is the union of 2s − 1
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pieces of <i chains. Let T1, ..., T2s−1 be <1 chains, such that

2s−1∪
j=1

Tj = H

and let U1, ..., U2s−1 be <2 chains, that
2s−1∪
j=1

Uj = H. Then by the previous

lemma it can be assumed, that L(T1), ..., L(T2s−1) are pairwise disjoint and
L(U1), ..., L(U2s−1) are pairwise disjoint.
Let v1, v2 be the bisector of D1 and D2. For j = 1, ..., n the broken line
L(Tj) divides the plane into two parts, let them be L+(Tj) and L−(Tj) de-
termined by the following: let x ∈ R2 \ L(Tj) and X = {x} − L(Tj). Then
X − X = L(Tj) − L(Tj) ⊂ D1 ∪ −D1. If there exists y ∈ D2 ∪ D3 and
z ∈ −D2∪D3, then y−z ∈ D2∪D3, because D2∪D3 is also a convex cone. But
y− z ∈ X −X ⊂ D1 ∪−D1, which is disjoint from D2 ∪D3, so it is impossible.
That means, that X ∩D2 ∪D3 or X ∩ −D2 ∪ −D3 is empty, if the �rst one is
empty, then x ∈ L−(Tj), else x ∈ L+(Tj). The broken lines L(T1), ..., L(Tn) are
pairwise disjoint, so if j ̸= l then L+(Tj) ⊂ L+(Tl) or L+(Tl) ⊂ L+(Tj). With-
out the loss of generality it can be assumed, that L+(T1) ⊂ ... ⊂ L+(T2s−1).
Similarly, it can be assumed, that L+(U1) ⊂ ... ⊂ L+(U2s−1) where L+(Uj) and
L−(Uj) is de�ned by −D3 and D1 instead of D2 and D3.

For every 1 ≤ j, l ≤ 2s − 1 the broken lines L(Tj) and L(Ul) intersect, let
their intersection be zj,l, It is obvious, that H ⊂ {(zj,l

∣∣j, l = 1, ..., 2s − 1}.
Then it will be proved, that if 1 ≤ j < l ≤ 2s − 1 and 1 ≤ k ≤ 2s − 1, then
zj,k <2 zl,k. It is true, because zj,k, zl,k ∈ L(Uk), so zj,k <2 zl,k or zl,k <2 zj,k,
but zl,k ∈ L(Tl) ⊂ L+(Tj), so zl,k − zj,k ∈ D1 ∪ −D1 ∪D2 ∪D3, which means,
that zj,k <2 zl,k. Similarly, it is true, that zk,j <1 zk,l.
If for some 1 ≤ a, b, c, d ≤ 2s− 1 it is za,b <3 zc,d, then a < c, because if a = c
then za,b <1 zc,d or zc,d <1 za,b and if a > c, then za,b ∈ L(Ta) ∈ L+(Tc), so
za,b− zc,d ∈ D1 ∪−D1 ∪D2 ∪D3, which means, that zc,d− za,b ̸∈ D3. Similarly,
it can be proved, that d < b, because if b = d then za,b <2 zc,d or zc,d <2 za,b
and if b < d, then zc,d ∈ L(Ud) ∈ L+(Ub), so zc,d−za,b ∈ D2∪−D2∪D1∪−D3,
which means, that zc,d − za,b ̸∈ D3.
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Lemma 7 Let n be a positive integer and S = {(a, b)
∣∣a, b = 1, ..., n}. De�ne

the relation ≺ on S such that (a, b) ≺ (c, d) if a < c and d < b. Then clearly
(S,≺) is a POSET. Let C1, ..., Ck be ≺ chains (k ∈ N). Then∣∣∣∣∣

k∪
i=1

Ci

∣∣∣∣∣ ≤ kn− k2 − 1

4

if k is odd, and if k is even, then∣∣∣∣∣
k∪

i=1

Ci

∣∣∣∣∣ ≤ kn− k2

4
.

First proof of lemma Let D = {(a, b) ∈ mathbbR2|a > 0, b < 0}. Then D
is a convex cone, and for x,y ∈ S it is x ≺ y if and only if y − x ∈ D. So if
Ci is a ≺ chain L(Ci) can be de�ned with the help of D. After that it can be
assumed by Lemma 6 that L(C1), ..., L(Ck) are disjoint. Let

∂S = {(a, b) ∈ S
∣∣a = 1 ∨ b = 1 ∨ a = n ∨ b = n}.

The bisector of D is (1,−1), so by the de�nition of L the broken line L(Ci)
intersects ∂S at two points, one of them is on the left or upper sides of S,
let this be xi = (ai, bi) (then ai = 1 or bi = n), the other is on the top or
right side, let that be yi = (ci, di) (then ci = n or di = 1). Then |Ci| ≤
min{ci − ai +1, bi − di +1} ≤ min{n+1− ai, di}, because the �rst coordinates
of the elements of Ci forms a strictly increasing series of integers, and the second
coordinates form a strictly monotone decreasing series of integers. So∣∣∣∣∣

k∪
i=1

Ci

∣∣∣∣∣ ≤
k∑

i=1

|Ci| ≤
k∑

i=1

min{n+ 1− ai, di}.

But because of L(C1), ..., L(Cn) are pairwise disjoint, the points x1, ...,xn

are pairwise di�erent, so

k∑
i=1

min{n+ 1− ai, di}

takes its maximum, if we choose the most points possible from the top right
corner of ∂S. More preciously, it takes its maximum if

{x1, ...,xn} =

=

{
(1, n), (1, n− 1), ...,

(
1, n−

⌊
k − 1

2

⌋)
, (2, n), (3, n), ...,

(⌈
k − 1

2

⌉
, n

)}
so

k∑
i=1

min{n+ 1− ai, di} ≤
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≤ n+(n− 1)+ ...+

(
n−

⌊
k − 1

2

⌋)
+(n− 1)+ (n− 2)+ ...+

(
n−

⌈
k − 1

2

⌉)
.

It is easy to check, that the right side is equal to the formula given in the
Lemma.�

Second proof of lemma For i = 1, ..., n let

Ai = {(n+ 1− i, j)
∣∣j = 1, ..., i} ∪ {(n+ 1− j, i)

∣∣j = 1, ..., i}.

Then |Ai| = 2i− 1 and the disjoint union of A1, ..., An is S. Furthermore Ai is
a ≺ anti chain, which means, that for l = 1, ..., k the intersection of Cl and Ai

contains maximum one point. That means, that∣∣∣∣∣Ai ∩
k∪

l=1

Cl

∣∣∣∣∣ ≤ min{|Ai|, k} = min{2i− 1, k}.

But then ∣∣∣∣∣
k∪

l=1

Cl

∣∣∣∣∣ =
∣∣∣∣∣

n∪
i=1

Ai ∩
k∪

l=1

Cl

∣∣∣∣∣ ≤
≤

n∑
i=1

∣∣∣∣∣Ai ∩
k∪

l=1

Cl

∣∣∣∣∣ ≤
n∑

i=1

min{2i− 1, k}.

If k is odd, then

n∑
i=1

min{2i− 1, k} = 1 + 3 + ...+ k − 2 + k + k

(
n− k + 1

2

)
=

=

(
k + 1

2

)2

+ k

(
n− k + 1

2

)
= kn− k2 − 1

4
,

and if k is even, then

n∑
i=1

min{2i−1, k} = 1+3+...+k−1+k

(
n− k

2

)
=

(
k

2

)2

+k

(
n− k

2

)
= kn−k

2

4
.

This proves the lemma. �

Let C1, ..., C2s−1 be <3 chains, whose union is H. De�ne the relation ≺ on
{zj,l} as follows: za,b ≺ zc,d if a < b and d < c. Then <3⊂≺ (which means
x <3 y ⇒ x ≺ y), so C1, ..., C2s−1 are ≺ chains too. Let S = {(a, b)

∣∣a, b =
1, ..., 2s − 1} and ϕ : H → S be the function, that ϕ(zj,l) = (j, l) if zj,l ∈ H.
Then

ϕ : (H,≺) → (ϕ(H),≺)
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is an isomorphism, where (S,≺) is de�ned as in the lemma above. Applying the
lemma for n = 2s− 1,k = 2s− 1 and ϕ(C1), ..., ϕ(C2s−1) it is∣∣∣∣∣

2s−1∪
i=1

ϕ(Ci)

∣∣∣∣∣ ≤ (2s− 1)(2s− 1)− (2s− 1)2 − 1

4
= 3s2 − 3s+ 1 < |H|,

so C1, ..., C2s−1 cannot cover H, which is a contradiction. So the theorem is
proven.�

Now I will show a construction, which proves, that the previous theorem is
strict.

Theorem 16 Let s be a positive integer and for i = 1, 2, 3 let

Di =

{
(r cosα, r sinα)

∣∣r ≥ 0;
(i− 1)π

3
≤ α <

iπ

3

}
.

Then there exists an H ⊂ R2, that |H| = 3s2−3s+1 and in H(H,D1, D2, D3) =
(H,<1, <2, <3) the biggest anti chain due to any of the relations has at most
2s− 1 elements.

Proof Let v =
(
cos π

6 , sin
π
6

)
∈ D1 and w =

(
cos 5π

6 , sin
5π
6

)
∈ D3, then

v+w ∈ D2. Let

H = {av+ bw
∣∣a, b ∈ {0, ..., 2s− 2} ∨ |a− b| ≤ s− 1}.

It will be proved, that H satis�es the condition. Firstly, the size of H
will be determined. v and w are independent, so if av + bw = cv + dw,
then a = c, b = d. If a is given, then there are min{a, 2s − 2 − a} pieces
of (a, b) pairs, such that b ∈ {0, ..., 2s − 2} and |a − b| ≤ s − 1, so |H| =
(s− 1) + s+ ...+ (2s− 2) + (2s− 3) + ...+ (s− 1) = 3s2 − 3s+ 1.
Secondly, it will be proved, that the biggest anti chain due to <1, <2, <3 has at
most 2s − 1 elements. For that, it is enough to prove, that H is the union of
2s− 1 pieces of <i chains (i = 1, 2, 3). If i = 1, then for j = 1, ..., 2s− 1 let

Aj = {av+ (j − 1)w
∣∣a ∈ {0, ..., 2s− 2} ∨ |a− j + 1| ≤ s− 1}.
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Then the di�erence of any two elements of Aj is a multiple of v, so Aj is a
<1 chain and clearly H is the union of A1, ..., A2s−1. If i = 3, then for similar
reasons the <3 chains

Cj = {(j − 1)v+ bw
∣∣b ∈ {0, ..., 2s− 2} ∨ |b− j + 1| ≤ s− 1}

prove, that the biggest <3 chain has maximum 2s − 1 elements. If i = 2 then
let

Bj = {(a+ j − s)v+ aw
∣∣a ∈ {0, ..., 2s− 2} ∨ a+ j − s ∈ {0, ..., 2s− 2}}.

Then the di�erence of any two element in Bj is the multiple of v+w, so Bj is
a <2 chain. Plus if x = av+ bw ∈ H, then for j = a− b+ s it is 1 ≤ j ≤ 2s− 1,

because of |a − b| ≤ s − 1 and so x ∈ Bj , which means, that

2s−1∪
j=1

Bj = H. So

the construction of H satis�es the condition.�

6 Applications

There is not known polynomial algorithm for �nding the biggest clique or the
biggest empty set in an ordinary graph yet. But there is polynomial algorithm
for �nding the biggest chain and the biggest anti chain in a partially ordered
set. If we look at the graph of a partially ordered set (the graph, whose vertices
are the points of the POSET and there is an edge between two vertices if and
only if the two points can be compared), cliques are equivalent to chains and
empty sets are equivalent to anti chains. So if we could order a graph's edges,
that we get a POSET, it will be easy to �nd the biggest cliques and anti chains.
Unluckily, the next theorem will show, that it is very unlikely, and there are
graphs, which are not the union of "few" POSETs.

De�nition 8 Let's call a simple graph G POSET graph, if there exists a par-
tially ordering of the vertices of G, (V (G), <), such that if x, y ∈ V (G), then

(x < y) ∨ (y < x) ⇔ {x, y} ∈ E(G).

Let's call such an ordering of V (G) good.

Theorem 17 Let k be a given positive integer. Then there exists a simple graph
G, such that G is not the union of k POSET graphs, so there are no k POSET

graphs P1, ..., Pk, that V (Pi) = V (G) (i = 1, ..., k) and

k∪
i=1

E(Pi) = E(G).

Proof Due to Erd®s and Szekeres[5] there exists a Gn graph with at least
(1 + o(1)) n

e
√
2
2

n
2 vertices, such that nor the graph, and nor its complement

contain a clique with n vertices. We will use, that (1 + o(1)) n
e
√
2
2

n
2 > 2

n
2 if
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n > N for some N . It will be shown, that if n is big, then Gn or Ḡn is not the
union of k POSET graphs.
Let assume indirectly, that both of them is the union of k POSET graphs.
Let be <1, ..., <k good orderings for the k POSET graphs, whose union is Gn,
and let be <k+1, ..., <2k good orderings for the POSET graphs covering Gn.
Then (V (Gn), <1, ..., <2k) is a Hyper POSET, because if x, y ∈ V (Gn) and
{x, y} ∈ E(Gn), then there exists 1 ≤ i ≤ k, that x <i y or y <i x and if
{x, y} ∈ E(Gn), then there exists k + 1 ≤ j ≤ 2k, that x <j y or y <j x.
Applying Theorem 1 on (V (Gn), <1, ..., <2k), there is a chain with at least

2k
√
|V (Gn)| >

2k
√
2

n
2 = 2

n
4k

elements due to one of the relations <l (1 ≤ l ≤ 2k). Let's choose n, such that
n

4 log2 n > k (such an n always exists), then

2
n
4k > n

so there is a <l chain with at least n elements. But if l ≤ k, then a <l chain is a
clique in Gn, and if l > k, then it is a clique in Gn, but due to the de�nition of
Gn every clique in Gn and Gn has a size less then n, which is a contradiction.
So if n

4 log2 n > k, then Gn or its complement is not the union of k POSET

graphs.�

It is a well known problem, that for any d there exists an Nd, such that in d
dimensional space if a set has Nd points, then it contains an obtuse angle. This
problem has been already solved and the fact, that the smallest such Nd is 2d

was proved by Ludwig Danzer and Branko Grünbaum[4].
Without giving the smallest possible limit, I will prove the following generaliza-
tion of this problem:

Theorem 18 If d, n ∈ N, d ≥ 2,n ≥ 3 and α ∈ R+ is given, then there exists
an Nd,n,α, such that if H ⊂ Rd and |H| > Nd,n,α then there exists a subset G
of H, that |G| = n and every triangle whose vertices are from G has an angle
greater then π − α.

Remark If n = 3 and α = π
2 , then it is the same problem as above. If α = π

2
then it states, that every enough big set in R contains an n element subset, that
every three points in that determine an obtuse angle.

Proof Let B be the unit sphere with center 0 in R. Let s = 2sinα
4 . Because

B is compact, there is a �nite s-net in B, let the points of it be v1, ..., vk ∈ B.

So it means, that B ⊂
k∪

i=1

Bs(vi), where Bs(vi) is the open sphere with center vi

and radius s. Let Di = {r ∈ Rd
∣∣∥vi − r

∥r∥∥ < s}. Then Di is the set of vectors,

whose preserved angle with vi is smaller than α
2 , so Di is a convex cone. Plus
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k∪
i=1

Di = Rd \ 0, because r
∥r∥ ∈ B and v1, ..., vk is an s-net of B, so there is an i

for every r, such that ∥vi − r
∥r∥∥ < s.

IfH is a subset of Rd, then de�ne the Geometric Hyper POSET H(H,D1, ..., Dn) =
(H,<1, ..., <k). Let Nd,n,α = (n − 1)k. If |H| > Nd,n,α = (n − 1)k, then by
Theorem 1 there exist an 1 ≤ m ≤ k and A ⊂ H with n elements, that A is a
<m chain.
It will be shown, that G = A satis�es the conditions. Let x, y, z be di�er-
ent elements of A, then it can be assumed without the loss of generality, that
x <m y <m z. Then y − x ∈ Cm and z − y ∈ Cm, which means that the
angle of vi and y − x is smaller than α

2 , and the angle of vi and z − y is also
smaller than α

2 . But then the angle of y − x and z − y is smaller than α, so
xyz∠ > π − α. So G = A really satis�es the conditions. That means, that the
constant Nd,n,α = (n− 1)k is a good choice.�

Remark With the idea of this solution, one may count, that Nd,3,π2
≤ 22

d−1

,

which means, that there is an obtuse angle in every set with more than 22
d−1

elements, which is unluckily far from the strict.
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