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2 Abstract & motivation

It is a well known problem, that if given a series of real number, aq, ..., ¢mn+1,
then it contains a monotone increasing subseries with n+1 elements or a mono-
tone decreasing subseries with m + 1 elements. Look at this problem in the fol-
lowing way: let H = {a1, ..., @mn+1} and define the relation <; such as a; <1 a;
if and only if ¢« < j and a; < a; and define <3 such that a; <, a; if and only
if i < j and a; > aj. Then (H,<;) and (H,<3) are POSETs. Plus in the
structure (H, <1, <2) every to different elements can be compared due to <y or
<9, and every monotone increasing subseries is a <; chain and every monotone
decreasing subseries is a <o chain. Thus it is enough to prove the following
general problem: if (H, <1,<3) is a structure with the properties above, then
there exists a <j chain with n + 1 elements or a <s chain with m + 1 elements.
This new view of the problem opens up opportunities for generalizations and a
couple of new problems occur as well.

More preciously, in this article a generalization of POSETs are being studied,
which T call Hyper POSET (HPOSET). It is a structure (H, <y, ..., <,) where
<y, ..., <n are transitive relations such that every two different elements can be
compared due to at least one of the relations. My goal is to study the chains
and anti chains in these structures and to show some of its applications.



3 General Hyper POSETs

3.1 Introduction to Hyper POSETs

Definition 1 (H,<i,<s,...,<y) is called a Hyper POSET (HPOSET) if H is
a set, (H,<y) is a POSET (k=1,...,n) and for any x,y € H, x # y there is a
1 <m <n such that x <,, y ory <,, © (there can be more than one such m’s).
For an r positive integer an (H, <y, ..., <) Hyper POSET is called an r-Hyper
POSET, if for every x,y € H, x # y there are at least v different relations
between x and y.

The following statement is trivial and I let the reader to figure out its solu-
tion.

Statement 1 Let (H,<4,...,<p) be a Hyper POSET and 1 < k < n be arbi-
trary. If G C H is an antichain due to <y, then (G, <1, ..., <k—1, <k41;--s <n)
is a Hyper POSET.

There are some different ways, that the product of Hyper POSETs can be
defined, but the following definition proved to be the most useful and obvious.

Definition 2 Let n and k be positive integers and fori=1,..k let 9, = (H;, <y
. <n) be Hyper POSETs. Let

D1 x x99 = (Hy X oo X Hyy <4400y <p)

be the ordered product of 1, ..., i where the relations are defined in the follow-
ing way: let (x1,...,x%), (Y1, -, yr) € H1 X ... X Hy, that (21, ..., 2k) 7 (Y1, -y Yk)
and let v be the smallest index, that x, # y.. Then (x1,...,Tk) <m (Y1, -, Yk) if
and only if T, <, Y.

Statement 2 If 94, ..., 9y are r-Hyper POSETs with n relations, then $1%....%
9 is an r-Hyper POSET.

Proof Let z = (z1,...,2%) and y = (y1,...,yx) be different elements of
Hy x ... x Hy, such that p is the smallest index, that z,, # y,. Then because of
9y is an r-Hyper POSET, there are at least r relations between z, and y,, and
these relations will hold between = and y as well.

Now it has to be proved, that the relations <q, ..., <,, are transitive. Lets
suppose, that (1,...,x%) <m (Y1,..-,yx) and (Y1, ..., Yx) <m (21, ..., 2x) for some
m. Let p be the smallest index, such that z, # y, and ¢ be the smallest index,
that y4 # 2zq. Then z, <., yp and yq <m 24.

Ifp=qthenzi =y1 =21,...,Tp—1 = Yp—1 = 2p—1 and x, <;, Yp and yp <p, 2p.
But $, is a Hyper POSET, so x, <,, 2, and p is the smallest ¢ index, that
xi # 23, 90 (T1, .0, Tk) < (21500, 28). I p < g then 1 = y1 = 21,...,2p—1 =
Yp—1 = 2Zp—1 and z, <, Yp = 2P, so p is the smallest 7 index, that z; # 2; and
Tp <m Zg SO (X1, ey k) <pm (21, ey 2)-

Ifp>gqgthen x1 =y1 = 21,...,Tg—1 = Yg—1 = Z¢g—1 and T4 = Yq <pm 2q, S0 q is



the smallest ¢ index, that z; # z; and x4 <p, 24 50 (@1, ..., k) <m (21, -y 2k)-
So <,y is transitive for m = 1, ..., k which means, that 91 x....x 9, is an r-Hyper
POSET.H

3.2 Longest chain

My goal is to study the chains in the HPOSETs. With the help of this a tool
named Erdds-Szekeres code[3] (ESz code) will be used.

Definition 3 Let (H,<y,...,<,) be a Hyper POSET. Let f : H — (Z)" be
the function such that for any x € H the k’th (k = 1,...,n) coordinate of f(x)
is the length of the longest chain in (H,<y) with smallest point x. Then f is
the Erdds-Szekeres code of the Hyper POSET.

Unluckily the ESz code does not determine the HPOSET due to isomor-
phism. The following picture shows two HPOSET’s with the same ESz code,
not isomorphic to each other.

) 1)

Obviously, they cannot be isomorph, because the one on the left has 2 <;
and 4 < relations and the one on the right has 3 of both of the relations.
Nevertheless, the ESz code is a very useful tool in some problems.

Lemma 1 Let (H,<y,...,<,) be an r-HPOSET and f its Erdds-Szekeres code.
Let x,y € H such that x #y. Then f(x) and f(y) differ in at least v coordinates.

Proof Let x,y € H be such that « # y. Then there exists 1 < m; < ... <
m, < n such that © <,,, y or y <;,, « (s = 1,...,7). It will be proved, that



f(z) and f(y) differ in the my’th coordinate, for s = 1,...,r.

It can be assumed that x <,,,, y. Let C C H one of the longest chains due to
<m, with smallest element y. Then the m,’th coordinate of f(y) is |C|. But
C U {z} is a longer chain with smallest element z, so by the definition of f the
mg’th coordinate of f(x) is at least |C| + 1. By that the my’th coordinate of
f(z) and f(y) differ.l

Now I prove a little Lemma, which will be very useful in some constructions.

Lemma 2 Let H1,...,0, be Hyper POSETs and $ = H1 % ... x bhi. Let ¢jm
(1 <7<k, 1<m<n)be the size of the longest chain in H; due to <., and
aj.m be the size of the biggest anti chain. Then the size of the biggest chain in
) due to <, 1S C1,m-..Ck,m and the size of the biggest anti chain due to <,, is

aim---Ak,m-

Proof Firstly, lets prove it for the chains. Let Cj,, C H; be a chain such

that |Cjm| = ¢jm. Then if Cr, = C1 py X ... X Chmy, then Cy, C Hy X ... X Hy,
and |Cp,| = ¢1,m---Chm- Plus if (z1, ..., zx) and (y1, ..., yx) are diflerent elements
of C,, and r is the smallest index, that =, # y,, then z, and y, are different
elements of C,. ,,,, which is a <,,, chain, so z, <p, ¥, or ¥, <;, x,. That means,
that (1,...,2%) <m (Y1, Yk) OF (Y1, 0y Yk) <mn (T1, .., Tk). So Cpy is & <y
chain. That proves, that the longest chain is at least ci m...Cx,m long.
Now it will be proved with induction on k, that every <,, chain has at most
Cl,m---Ck,m €lements. For k =1 it is obvious. Now let assume, that it is known
for the ordered product of £ — 1 Hyper POSETS and it will be proved for k.
Let C' C Hy x ... x H be a <,,, chain and let

pri C' = {t € Hi|3(t, x2,...,xx) € C'}.

Then pr; C’ is a <,, chain, because if t1,t2 € pr;y C’ cannot be compared by
<m, then neither (t1,z1,...,2x), (t2,y1,...,yx) € C'. So |pr1 C'| < ¢1,m. Now
for every t € pr; C’ let

C, = {(z2,...,zr € Hy X ... X Hk’(t7x2,...,mk) eC'}.

Then Cj is a <, chain in £ % ... * H; so by the assumption of the induction
|C}| < c2,m.--Ch,m- But
U {#xci=c
tepry C’

S0

Cl= 5 1012 S i £ i

tepry C’ tepry C’

which is exactly what we wanted to prove.
For anti chains it can be proved by the same idea as for chains.ll

The next theorem is a generalization of the well known theorem, that in
every POSET with ¢2 4+ 1 elements, there is a chain or an anti chain with at
least t 4+ 1 elements.



Theorem 1 Let (H,<q,...,<y) be an r-Hyper POSET such that |H| > t" "1+
1. Then there is an 1 <m <n and a C C H such that |C| >t+1 and C is a
<, chain.

Proof Let the HPOSET’s ESz code be f. Let assume indirectly that the
length of every chain is at most t. That means that for every x € H every
coordinate of f(x) is at most ¢, so f(z) € {1,...,t}". But |H| > """+t +1 and
the first n — 7+ 1 coordinates of the vectors in f(H) can have maximum ¢" "1
different values, so by the pigeon hole theorem there are two vectors, f(x) and
f(y), whose first n—r+1 coordinates is equal. But then f(z) and f(y) can only
differ in the last 7 — 1 coordinates. This contradicts with the previous lemma,
which claims, that every two different vectors should have at least r different
coordinates.

Remark This theorem will be used in the case r = 1 for which the statement
is that in a Hyper POSET (H, <y, ..., <y,) there is a chain at least [ {/|H|] long.

Now it will be shown, that if given n and r then the previous theorem is
strict for infinitely many ¢. More preciously there exists an r-Hyper POSET
(H,<1,...,<p) that |[H| = t"~"*! and the longest chain has ¢ elements.

Theorem 2 Let r < n be positive integers. Then there exists infinitely many
t positive integer, that there exists an r-Hyper POSET (Hy, <i,...,<n) with
t" "+ elements such that every chain has a length at most t.

Proof First a little lemma will be proved, which can be a useful tool in
other constructions as well:

Lemma 3 Let r < n be positive integers and G C (ZT)"™ a finite subset which
satisfies the following conditions:

(i) if v,w € G and v # w, then v and w differs in at least r coordinates

(ii) if (z1,...,xn) € H then fori=1,...,n and s = 1,...,x; — 1 there exists a
vector v; s € G, whose i’th coordinate is s

Then there exists an r-Hyper POSET (H,<1,...,<y) that if f its Erdds-
Szekeres code, then f(H) = G.

Proof of Lemma Let H = G and for (z1,...,2n), (Y1,.-,Yn) € G let
(21, ey ) <i (Y1, ., yn) if and only if z; > y; (for i = 1,...,n). Then (H, <,
sy <n) is an r-Hyper POSET, because it is easy to see, that (H, <;) is a POSET
and by condition (i) every two vectors differ in at least r coordinates, so there
are at least r different relations between any two different vectors in H.

Now it will be proved, that if f is the Erd@s-Szekeres code, then for x =
(z1,...,on) € G it is true, that f(z) = « (this proves, that f(H) = G). Let
f(x) = (p1,..,Pn). By condition (ii), for s = 1,...,2; — 1 there is a vec-
tor v; s € H whose i’th coordinate is s. So by the determination of <; the



set {z,Viz,—1,--, 0,1} is & <; chain with z; elements and starting point z, so
p; > ;. Plus if {x,v1,...,u;} is a chain with starting point z, than the i’th
coordinates of vy, ...,v; are pairwise different positive integers smaller than x;,
so p; < x;, which means, that p; = x; (for ¢ = 1,...,n). So it is proved, that
f(z) = = and the proof of the lemma is done. Bl

Let p be a prime number greater than n. From now on all the calculations
meant over the field F,. Let M € FY' ™" whose (i,)’th entry is m; ; = ji~ .
For any 1 <a; < ... < a,—1 <n integers let My, . o, , bethe (r—1)x (r—1)
submatrix of M, whose j’th column is the a;’th column of M. Then My, . a4, _,
is a Vandermonde-matrix, so its determinant can be calculated in the following
way:

det My, ... ar = H (a; —aj).

1<i<j<r—1

Because of 1 < a1 < ... < ar—1 <n <pitis true, that a; —a; # 0 so
det My, ... ap  #0

which means, that My, ., , is invertible (over F,). Now let

G ={veF)|Mv=0}

rank(M) =r —1so G is an —r + 1 dimensional subspace of ), which means
that |G| = pn~"+1,

It will be shown, that if v,w € G and v # w, then v and w has at least r
different coordinates. Let v — w = (z1,...,x,) and let assume indirectly, that
there are at least n — r 4+ 1 zeros among 1, ...,Z,. Let 1 <a; < ... <a,_1 <n
indices, that z; = 0if j & {a1,....,ar—1}. v —w € G so M(v —w) = 0, which
means that

Lay

M,, .. =0.

SAr—1
La

r

But Mg, ... 4., is invertible so necessarily (2q,, ..., Zq,._,) = 0, which means
that v — w = 0, which is a contradiction.
Finally for every m € FP and 1 < j < n there is a vector in G, whose j’'th
coordinate is m. It is true because every My, ... q,_, is invertible, so if 1 < b; <
ve < bp—ry1 < nand sq,...,8yp—rt1 € FP are fixed, then one can find a vector
(1, ..., zn) € G, that p, = 51,...,%6,_, 1 = Sn—ri1-
Let ¢ : F, — {1, ..., p} be any bijection, than the set ¢(G) satisfies the conditions
(i) and (ii) in the previous lemma, so there exists an r-Hyper POSET (H, <4
sy <n), that for its f Erd&s-Szekeres code, f(H) = ¢(G). But every vector’s
every coordinate in ¢(G) is at most p, so by the definition of f it is clear,
that every chain in (H, <y, ...,<,) has at most p elements. So if ¢ = p, then
|H| =t"""*1 and every chain has at most t elements.
It has been proved, that if n < ¢t = p is a prime, then there exists an r-Hyper
POSET, which satisfies the conditions of the theorem.H



Remark It is true, that if every prime divisor of ¢ is bigger than n, then
there exists an r-Hyper POSET with ¢ "1 elements, that the biggest chain
has at most ¢ elements. Let t = p;...py the prime factorization of ¢ and let
$; be an r-Hyper POSET with pf’_"”“l elements, that the longest chain has
at most p; elements (i = 1,....k). Then if § = $H1 * ... x Ny, then H has
pp T = 7=+ elements and due to Lemma 2 the longest chain has
at most p1...px =t elements.

My conjecture is, that the previous theorem is true for every t big enough respect
to n. It cannot be true for small t. I will show that one can not pick t"~"*!
elements from {1,...,¢}", that every two differ in at least r coordinates, which
is sufficient by the train of thoughts presented in the proof of Theorem 1.

If v,w € {1,...,t} let d(v,w) be the number of non-zero coordinates of v — w.
Then ({1,...,t}"™,d) is a metric space, and v and w differ in r coordinates if and
only if d(v,w) > r. Let assume, that v1,...,vs are vectors from {1,...,t}" that
d(v;,v;) > r for every 1 < i < j <'s, then the spheres BL%J(W) are disjoint

(Br(z) ={y € {1,...,t}"|d(z,y) < R}). But it can be calculated easily, that
N |
Bl = 3 (7)€,
= N
So because of |{1,...,t}"| = t" and that the spheres B (v;) are disjoint it is

tn

s <
L

r—1

= (e

Jj=

r—1

If ¢ is small (for example smaller than %(Léj) 727 1) than the right side is

smaller than t"~"*!, so the theorem cannot be strict.
Theorem 1 can be generalized in the following way:

Theorem 3 Let s < r < n be positive integers and let (H,<q,...,<p) be an
r-Hyper POSET. Let

a= min{(n—r+ 1)5,251<Z) - (Z) +1}

and let assume, that |H| > t* + 1. Than there exists a C C H and 1 < i1 <
e <ig<m that |C| >t+1 and C is a chain due to <;,,...,<;,.

s

Proof First it will be proved for the case « = (n—r+1)°. It will be proved by
induction on s. For s = 1 it is equivalent with Theorem 1, so it is done. If s > 1
let assume, that the statement is proved for s — 1. If |H| > t(*=7+1)" 11 than

by Theorem 1 there exists a B C H that |B| > t™="tD""" 41 and B is a chain

10



due to one of the relations. It can be assumed without the loss of generality,
that B is a <, chain. Now (B, <i,...,<p—1) is a an (r — 1)-Hyper POSET with
n — 1 relations and |B| > t((=D=(=D+D""" | 1 55 ysing the assumption of
the induction there exists a C C Band 1 <i; < ... <i4_1 <n—1that Cis
a chain due to <;,,...,<;,_,. But then C is a chain in (H,<,...,<,) due to
Ligs ooy i1y <n, 50 it is done.

Now we prove the case where v = 2°71(") — () + 1. Let

J ={(j1, €252, - €slis) €2, € € {1,111 < j1 < ... < js < m}.

Then |I| = 2°7!(7). Define the Hyper POSET (H, (<;)jcs) as follows: if j € J
and j = (J1,€2J2, .., €sjs) where €2,...,6, € {—1,1} and 1 < j; < ... < js < n
than = <; y if and only if z <;, y and for k =2, ..., s if ¢, = 1 then = <;, y and
if ¢, = —1 then y <;, . It is clear that the relation < is transitive. Because
(H,<1,...,<y) is an r-Hyper POSET, there are at least r relations between any
two different elements of H, and every s-tuples of this r relations determine
clearly an <; relation between these two elements. So (H,(<;);e) is an (])-
Hyper POSET. Apply Theorem 1 to the (H,(<;);ecs) ro = (%)-Hyper POSET

n

with ng = 2571(7) relations. Because |[H| > 27N ()= (O+ L1 = gro—ro+1 4
there exists a C C H that C'is a <; chain for some j € J. If j = (j1, €252, ..., €sJs)
then it is clear, that C is a chain in (H, <y, ..., <p) due to <j,, ..., <j,, so the
proof is complete.l

Remark If n is big respect to r > s > 2 then (n —r + 1)° ~ n® and
271 (M) = (1) +1 ~ 2° " 1% 50 then a = 251 (") = (1) + 1. But if r is big enough,

s s! s

then a = (n —r + 1),

Now we may ask, that what can be said about the biggest anti chain in a

HPOSET. We have to assume, that there is only one relation between any two
elements or else it can be that every anti chain has only one element (if H is
totally ordered due to every relation). If n = 2, then an <; anti chain is an <s
chain and a <; anti chain is a <, chain, so the answer is the same as it was for
chains, so if |[H| > ¢? + 1 then there is an anti chain with ¢ + 1 elements. Now
let’s examine the case n > 2. If |[H| > t? + 1 then there is a <; chain or an <;
anti chain with ¢t + 1 elements. But a <; chain is a <5 anti chain, so there is
an anti chain in (H, <q,...,<j,) with ¢ + 1 elements. My conjecture is that if ¢
is big enough respect to n then this is strict.
For the proof of this one have to construct a HPOSET (H, <1, ..., <) with 2
elements such that for every 1 < k& < n the set H is the union of ¢ pieces of
disjoint <}, chains with length ¢ (this is the only way the construction can look
like, if we don’t want an anti chain with ¢ 4+ 1 elements). The construction
doesn’t seem to be hard rather need a lot of work and case separation. Instead
of that I show a construction if n = ¢ + 1 where ¢ is the power of an arbitrary
prime number and t = ¢"™ (m € N).

11



Definition 4 A Hyper POSET is called Strong Hyper POSET or SHPOSET if
there is only one relation between any two elements.

Theorem 4 Let q be the power of a prime number, m an integer, n = q + 1
and t = q™. Then there exists a Strong Hyper POSET (H, <1, ..., <p) such that
|H| = t? and every anti chain due to any of the relations has at most t elements.

Proof First a Strong Hyper POSET 6 = (G, <4, ..., <,) will be constructed
with ¢ elements such that the biggest anti chain has ¢ elements. Let the
elements of G be z1, ..., 4. If ¢ is a power of a prime number, then there exists
a field with g elements, F,. Let 2 be the affine plane over F,, then 2 has ¢*
elements, so there exist bijections between the elements of G and 2, let one
of them be ¢ : G — 2A. The lines in A has exactly ¢ + 1 different directions,
let them be vy, ...,v411. Define the relation <; (k = 1,...,n) in G as follows:
z; <p x; if and only if ¢ < j and the direction of the line lying on ¢(x;), p(z;)
is vi. Then there is only one relation between any two elements of G and
<} is transitive, because if z; <j x; and x; <, x; then ¢ < j < [ and the
direction of the line lying on ¢(z;), ¢(z;) is the same as the direction of the line
o(xj), p(xr), which means that ¢(z;), o(x;), ¢(x1) is collinear, so the direction
of the line ¢(x;), p(x;) is vi too.

Now it will be shown that every anti chain in (G, <q,...,<;,) has at most ¢
elements. Let assume, that A C G and |A| > ¢+ 1. For any 1 < k < n there is
exactly ¢ lines in 2 with direction v and their union containg every element of
2. So because of |p(A)| = ¢+ 1 there is two elements a,b € p(A) that lies on a
line with direction v and so ¢~ 1(a) < ¢~ 1(b) or ¢~ 1(b) <r »~'(a) and that
means that A cannot be a < anti chain for any k.

Now let = & % ... x & where & is multiplied m times. Then § is a Strong
Hyper POSET with ¢>™ elements and by Lemma 2 every anti chain has at most
q™ elements. The construction is complete.ll

3.3 Chain and anti chain decomposition

In this section my goal is to give an upper bound to the minimal number of
chains needed to decompose a Hyper POSET with n relations an ¢ elements.
The following theorem is a generalization of Theorem 5 in my previous work [2].

Theorem 5 Let (H,<q,...,<p) be Hyper POSET such that |H| = t. Then
there is an 1 < m < n, such that H is the union of at most

]

Proof It will be proved by induction on n. Firstly, let’s prove for n = 2. Let
G C H be the biggest anti chain in the POSET due to <2. By the Dilworth’s[1]
theorem H is the union of |G| pieces of <5 chains so if |G| < [£] then it is done.

<m-chains.

12



Now let assume that |G| > [ﬂ For every two elements =,y € G the relation
x <9 y and y <9  cannot hold, so it must be x <; y or y <3 . That means
that G is a <; chain. And the elements of H \ G are individually <; chains, so

H is the union of at most

1+|H\G|=1+t—|G<1+t—<B-‘+1>:’5_B-‘ = m

<1 chains.

Let assume, that it is true for n — 1 (n > 3) and it will be proved for n. Let
G C H be one of the biggest anti chains in the POSET defined by <,. By the
Dilworth’s theorem H is the union of |G| piece of <, chain so if

G| < [n_ 14
n

then it is done. Now let assume that |G| > [2=1t]. G is an <, anti chain, so
at least one of the relations <y, ..., <,—1 holds between any two elements of G.
That means, that the assumption of the induction can be applied on G. Using
that for an 1 < m < n — 1 the set G is the union of

=

<m chains. The points of H \ G are individually <,, chains, so H is the union

of at most )
“=iel] +e- o

n—1

< chains. If h(z) = H—jx—‘ +t — « then h is clearly monotone decreasing in

the set of integers so if |G| > [2=1t] then

-1
B(GI) < h ([” ] +1)
n
Lets:["Tflﬂ—”TfltthenO§5<13nd
-1 -1
h([” t+1D=h<”t+s+1):
n n
n—2(n-—1 n—1
= n+s+1 +t——t+s+1) =
n—1 n n

-2 -2 1 -2
- [” 4 (s+ 1)~ —‘+tls < ) T St 1-s <
n n—1 n n n—1 n

So h(|G|) is smaller than "¢+ 1 and it is an integer, so h(|G|) < [2=1t]. The
theorem is proven.ll

13
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Remark If t is given it is not hard to find a (Hy, <1, ..., <) Hyper POSET,
that |H| = ¢ and for which the above theorem is strict, so H cannot be decom-
posed into less than [”Tflﬂ pieces of <,;, chains (m =1,...,n).

Theorem 6 Let (H,<q,...,<p) be a Strong Hyper POSET such that |H| = t.
Then there exists an 1 < m < n that H is the union of L% + ”T_lj pieces of <m,
anti chains.

Proof For i = 1,...,n let C; be one of the biggest chains due to <;. If
ICil < |+ %J for some ¢, then due to the Dilworth theorem H is the union
of | + 51| pieces of <; anti chains and it is done. So it can be assumed, that
ICi| > | £+ %J +1fori=1,..,n But (H,<y,..,<,) is a Strong Hyper
POSET, so two different types of chains can intersect at maximum one point.

That means, that
>i|c’i|_ M (L=t )y (7).
- p 2) n 2 2

n n
ButUCiCHso UCi

i=1 i=1
equivalent to Li + ”;1J +1< % + "T’l which is a contradiction, so the proof

n
is complete.

n

e

i=1

< t which means n([ + ”51J +1) - (g) <t Itis

t
n

Theorem 7 Let n > 2 be a positive integer and (H, <y, ...,<;) a Strong Hyper

POSET such that |H| < @ — 1. Than there exists Ay, ..., Ay_1 that A; is an

t—1
anti chain due to one of the relations (i=1,..,t —1) and U A;=H.
i=1

Proof It will be proved by induction on ¢t. For ¢t = 2 it is |H| < 2. If
|H| =1 then it is trivial. If H = {z, y} then it can be assumed without the loss
of generality, that © <; y and then H is a <5 anti chain, so it is the union of 1
anti chain.

Now let assume, that the statement is true for ¢ = u — 1 and now it will be
proved for t = u. Let |H| < % — 1 and let C C H be one of the biggest
<1 chain. If |C| < u — 1 then by the Dilworth theorem H is the union of u — 1
pieces of <; anti chains, so the proof is done. If |C| > u then let Hy = H \ C.
In that case

u(u — 1)

—leu=—"2 1
2

so by the assumption of the induction there exists Ay, ..., A,_o anti chains, that
u—2

U A; = Hy. But C is a <3 chain and H is a Strong Hyper POSET, so C is a
i=1

|H‘<u(u+1)
="

14



u—1

<o anti chain. With the choice of A,_1 = C it is U A;=H and Ay,..., A1
i=1

are all anti chains due to one of the relations, so the proof is complete.

4 Lexicographic Hyper POSETs

Definition 5 Let H C N" and x = (z1,...,x,) and y = (Y1, ..., Yn) are different
elements of H. Define the relations <j (k =1,...,n) as the following: x <y y if
and only if x1 = y1,T2 = Y2, .o, Th—1 = Yk—1 and x < Y. Then (H,<1,...,<n)
is a Hyper POSET and it will be called as the Lexicographic Hyper POSET
(LHPOSET) defined from H.

In this section we will study the Lexicographic Hyper POSETs. These special
Hyper POSETs come up naturally in some constructions because it is easy to
characterize their chains and anti chains.

Statement 3 Let H C N" and H = (H,<q,...,<,) be a Lezicographic Hyper
POSET defined from H. Let f be it’s Erdds-Szekeres code and G = Imf. Let
G = (G,=<1,...,=<n) be the Lexzicographic Hyper POSET defined from G. Then
f:+H — G is an order changing bijection, so for every x,y € H it holds that
r<py<e fly) <k f(z) fork=1,...,n.

Proof Let assume that x <y y for some & = (21, ...,2,) and y = (Y1, ..., Ym )
(z,y € H). That means that z1 = y1,22 = Yo, ..., Tho1 = Yk—1, Tk < Yk. Due
to the definition of LHPOSET the <, relation only determined by the first m
coordinates soif 1 <l <k—-1thenzx <z y<;zand z <;z & 2z <; x for
any z € H. Which means, that due to <; relation x and y behaves the same,
so the I’th coordinate of f(z) and f(y) are the same. The k’th coordinate of
f(z) is larger, than the k’th coordinate of f(y), because if C C H is a longest
chain due to <j with smallest point y, then C'U {z} is a longer chain with
smallest point z. So we got, that f(y) <r f(x). Now let assume, that for some
x,y € Hitis f(x) <k f(y). In a LHPOSET there is exactly one relation between
two elements so because of upper written it must be y <; x. So summarized:

T <pye fy) <k flz)
Lemma 4 Let H C Z™ be a finite set and let
pri H={y|3x1, ..., 0 1,y,Tiy1,...,7n) € H}

fori=1,..,n.Let (H,<q,...,<n) be the Lexicographic Hyper POSET defined
from H. Then the longest chain due to the relation <; has mazimum |pr; H|
elements.

Proof Let zy,...,x; € H such that 1 <; ... <; zx. It is enough to prove,
that k < |pr;H|. For j = 1,...,k let the coordinates of x; be (x1,...,Tjn)-
Then by the definition of <; it is 1, = 22, = ... = @, if 1 < r < 7 integer
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and z1; < ... < x,;. That means, that x;;,...,zs, are pairwise different. But
Ty Ty € priH, so k < |pr;H|. The lemma is proven. B

Theorem 8 Lett be a positive integer. Then there exists an Hy C Z™ such that
|H| =t" and if (Ho, <1, ..., <n) is the Lezicographic Hyper POSET defined from
H then the longest chain due to any of the relations has mazximum t elements.

Proof Let
Ho={1,...,t}",

then |Hy| = t™. Furthermore |pr; Ho| = t for i = 1,...,n, so by the previous
lemma it is obvious, that the longest chain has ¢ elements due to every relations.
[ |

Theorem 9 Let H C Z™ and (H,<q,...,<,) the Lexicographic Hyper POSET
defined from H. If t = |H| then there exists 1 <m <n and A C H such that A

n—1

is an anti chain due to <., and |A| >t = .

Proof A little stronger statement will be proved: let aj be the size of the
biggest anti chain due to <j (k =1, ...,n), then

n

n—1
g ap > nt n .
k=1

This will be proved by induction on n, but first a little analytical lemma needed.

Lemma 5 Let zy,...,x, and y be nonnegative real numbers such that x1 + ... +
xr=tandxz; <y (i=1,2,...,7). Let 0 < a < 1 then

o84 >ty
Proof of lemma Let
C = {(z1, ...,a:r)|0 <z <y;x1+ ...+ 2. =t}

and f:C —> R
fl(z1,.mp)) = af + .. + 2.

Then C' is compact and f is continuous so f has a minimum and it takes it
on some element z = (z1,...,2,) € C. Now it will be shown that except at
most one 1 < ¢ < ritis z; = y or z; = 0. Let assume that there exists a
1 <i<j<nsuchthat 0 < 2;,2; <y. Let’s check two cases: if z; +2; <y
then zf* + 2% > (2; + 2;)® (using that 0 < o < 1) and with 2] = 2; + 25, 2} = 0
it is 2’ = (21, ..., 2}, ., 255 o, 2) € C and f(2’) < f(z) which is a contradiction.
If z; + z; > y then using that id® is concave, it is 2{* + 2§ > y* + (2; + z; — y)*
so with z{ =y and 2} = 2; + x; —y it’s 2’ € C and f(2’) < f(z) which is again
a contradiction.

The zeros from z1, ...,z can be left, so it can be assumed, that every z; = y

16



except for at most one. Then because their sum is ¢, there must be VJ pieces

of y and one t — y EJ :y{i} So the minimum of f on C is
t 1\ t t 1\
S04 -GGG -
Yy Yy Y Yy Yy
o e
Y Yy

where the last inequality holds because 0 < o < 1 and 0 < { } <1l

Let’s get back to the proof of the statement. If n = 1 then the statement
claims, that a; > 1, which is obvious, because every element as a set is an anti
chain. Now let assume that for any LHPOSET with n — 1 relations the above
statement is true and now it will be proved for any LHPOSET (H, <1, ..., <p)

that
n n—1
Z ap > nt n
k=1

Let assume that the set of the first coordinates of the elements of H is {w1, ..., w, }
and let A,,, C H be the set of vectors, whose first coordinate is w; (i = 1,...,7).
Then A, is an anti chain due to <;. Let y = a4, then y is the size of the biggest
anti chain due to <y, so |Ay,;| <y. Let z; = |Ay,| and H; = (Aw,, <2,...s <n),
then this an Lexicographic Hyper POSET with n — 1 relations, so if B; i, is the
biggest anti chain due to <j in it (k = 2,...,n) and |B; ;| = b; x, then by the
induction

n—2

Zbi’k >(n— 1):(’177T1
k=1

Let’s notice that for k = 2,....,n

Cr = U B; i
i=1

is an anti chain due to <y, because if x € B;;, and y € Bj; where i # j then
x <y yory<iz. Soa>|Ckl and now some calculations can be done:

Zak>y+2\0k|—y+z UBlk

k=2 |i=1

—y+zzb k—y+zzbzk>y+z n—1)x

k=2 i=1 i=1 k=2

Now using the lemma with 0 < z; <y, 21 + ...+ 2, =t and a = Z—:f the
inequality

17



holds. Apply the A-G inequality for the numbers y and n — 1 pieces of ty_ﬁ.

It claims, that
1 n __1 n—1
Y + (n — ]_)ty n—1 2 n y(ty n—1 )77«*1 =nt n

which is exactly that needed to be proven.
So it is proved that

n N
ap >nt =
k=1
and fI'QII}l that it easily follows that there exists an 1 < m < n such :clhat
am >t n which means that the biggest <, anti chain has size at least t = .l

Theorem 10 There exists an Hy C N™ such that |Ho| = t" and the Lexico-
graphic Hyper POSET (Hy, <1,...,<n) defined from Hy has the property, that
form =1,....,n the size of the biggest anti chain due to <,, is at most t" 1.

Proof The construction is the same as in the theorem with the longest
chain. Let Hy = {(z1, ,ydn|xZ =1,..,t;i=1,...,n} be the set. Let

Curyovtim 1ttt = ULy oy U =15 8, U4 1, ...,un|s =1,..,t},

then Cul1-~»7um—l-,u'm,+17---qun is a <, chain and

so Hy is the union of "~ ! pieces of <,, chains, which means that the biggest
<., anti chain has a size at most t" .l

Theorem 11 Let H C N" be a set such that |[H| < ("1, Let (H, <,
sy <pn) be the Lexicographic Hyper POSET defined from H. Then there ex-
ist A1,...,Ay_1 C H, that for i = 1,...;t — 1 the set A; is an anti chain due to
t—1
one of the relations <4, ..., <, and H = U A;.
i=1
Proof It will be proved by induction on n. If n = 1 the statement claims
t—1
that if |H| < t then there exists <; anti chains Ay, ..., A;_; that H = U A;.
i=1
But this is trivial, because |H| < ¢t — 1 and all points of H as a set are anti
chains. Now let assume, that the statement is true for 1,...,n —1 (n > 2), it
will be shown for n.
Now an induction on ¢ will be used (¢ > 2). If t = 2 then it claims that if
|H| < n+1 then H is an anti chain itself due to one of the relations <q, ..., <.
If H is not an <,, anti chain, then there is z,y € H such that z <, y, so x and
y differ in only the last coordinate. Let H' C N™ be the set, whose elements are
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the elements of H without the last coordinate. Then because z and y is the same
without the last coordinate, |H'| < n and (H', <1, ..., <n—1) is a Lexicographic
Hyper POSET, so by the induction on n it comes that H’ is an anti chain due
one of the relations <y, ..., <,_1 and H is an anti chain due to the same relation.
Let assume that the statement is true for t — 1 (¢ > 3), it will be proved for
t. Let M be the size of the biggest anti chain due to <,,. Then let’s examine
two cases: first case when M > (tf;:l) Let A; be one of the biggest <,, anti
chains and H' = H \ A;. Then

) < <t+n—1> _<t+n—2> _ <t+n—2>
n n—1 n

and (H', <1, ...,<y) is an LHPOSET so by the induction on t it is clear, that

t—1 t—1
there exists As, ..., A;_1 anti chains that H' = U A;,soitis H = U A; and
i=2 i=1

Aj, ..., As_1 are anti chains, so that case is proven.

Second case, when M < (%7:2) By the definition of LHPOSETs if z,y € H
and z # y, then (x <,, y or y <, z)&(the vectors z and y differ in the first
n — 1 coordinate). So a B C H is an <,, anti chain if and only if there are no

two vectors in B, that they are the same in the first n — 1 coordinate. Let
H" = {(Ilv ceey xn—l)’3y7 ($17 ceoy Tp—1, y) € H}

then |H”| = M because of the previous ideas. The relations <y, ..., <,_1 only
depends on the first n — 1 coordinates, so it can be said that (H", <y, ..., <p—1)
is an LHPOSET with n — 1 relations. It is |H"| = M < (tflﬁzz), so because of
the induction on n it is clear, that H” is de union of ¢ — 1 subsets By, ..., B;_1,
such that B; is an anti chain due to one of the relations <1, ..., <,_1. Now for
i=1,..t—1let

A; = {(z1, ...,mn)|(x1, vy Tp—1) € By (21, ...,x,) € H}.

Then it’s easy to check that if B; was an anti chain due to <,, (1 <m <n-—1)

then A; is also an anti chain in (H,<i,...,<p) due to <,,, and because of
t—1 t—1

H" = U B; it is H = U A;, s0 Aq,..., Ay_1 satisfies the conditions. The proof
i=1 i=1

is complete.l

Theorem 12 There exists an Hy C N that |Hy| = (t+2_1) and if (Hp, <1
s ooy <n) 18 the Lexicographic Hyper POSET defined from Hy, and Ay, ..., A, are

subsets of Hy such that U A; = Hy and A; is an anti chain due to one of the

i=1
relations <q,...,<p thenr >t.

Proof Call the set Hy (n,t)-ordered if

Ho={(z1,...an)|[t > 21 > ... > 2, > 1},
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It will be proved by induction on n that the (n,t)-ordered set satisfies the
conditions. If n = 1 then Hy = {1,2,...,t} so |Hp| = t and Hy is a totally
ordered set, so every anti chain has maximum one elements. Because of that
at least ¢ anti chains needed to cover it. Now let assume, that the statement
is true for (n — 1, u)-ordered sets where u = 1,2..., now it will be proved for n.
Firstly, |Ho| = ("+£_1), because ("+£_1) is the number of n-tuples (y1, ..., Yn)

such that n+¢t—1 > y; > ... > y, > 1 and the function ©((y1,...,yn)) =
(y1 — (n—1),y2 — (n — 2),...,yn) is a bijection between these n-tuples and Hy.
)

Let Ay, ..., A, be anti chains such that U A; = Hy and let assume that exactly
i=1

k of them is an <; anti chain. It can be assumed, that these are Ay, ..., A;. For

y=1,..,tlet

Gll = {(y7$27"~7xn)|y 2 ) Z Z T Z 1}

and

G; = {(x27...7xn)‘y >x9> ... >, > 1}
Then every <; anti chain is a subset of one of the Gy, ..., Gy, so if Ay, ..., Ay are
all of the <7 anti chains, then there is at least t — k indexes i1 < ... < 74_ such
that none of the elements of G;; (j = 1, ...,t—k) are covered by any of Ay, ..., Ag.
And then it must be 4, > t — k. So every element of G;, , is covered with
one anti chain from A1, ..., A,. Now start examine G (G <9y ey <n)

Lt—k " Tt—k

is an LHPOSET with n — 1 relations which is (n — 1, 4;_j)-ordered. If
A/S = {(ZL'Q, ceny Zn)|(it_k,l’2, veey CEn) S AS}

(s = k+1,..,7), then A} is anti chain in G}, with the same relation and

ks

U A} = Gj,_, so by the induction on n it comes, that r —k > i, >t — k,
i=k+1
so r > t and the proof is complete.ll

Remark This construction shows, that if n = 2, then Theorem 7 is strict for
every ¢t > 2 positive integer.

5 Geometric Hyper POSETs

Definition 6 Let n,d be positive integers and H be a finite subset of R?. Let
D1, ..., D, be convex cones in R%, such that

() (0-2) -

Define the Hyper POSET $ = $(H, D1, ...,D,,) = (H, <1, ..., <) as follows: for
x,y € H, x # y the relation © <; y holds (i =1,....,n) if and only if y—z € D,.
Lets call these type of Hyper POSETs Geometric Hyper POSET (GHPOSET),
and lets call d the dimension of the Geometric Hyper POSET.
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Statement 4 The above definition is correct, so let D1, ..., D, C R? be convex

cones, such that
n n
=1 =1

Define the structure $H = (H,<q,...,<n), such that for x,y € H, x # y the
relation © <; y holds (i =1,...,n) if and only if y —x € D;. Then 9 is a Hyper
POSET.

Proof Firstly, it will be shown, that <; (i = 1,...,n) is transitive. Let
assume, that for z,y,z2 € H it is ¢ <; y and y <; z. Then y —x € D;
and z —y € D;. But D; is a convex cone, so it is closed for summation, so
D;> (y—x)+ (» —y) = z — z, which means z <; z
Secondly, it will be shown, that if x # y € H, then there exists 1 < i < n, that
x <;y ory <; x. Because of the criteria

(7))

there exists at least one 4, that y —x € D, or y —x € —D;. If y —x € D;, then
r<;yandify—x € —D;, then x —y € D;, so y <; x. This proves, that $ is a
Hyper POSET.H

Definition 7 Lets call the finite system D1, ..., Dy, of convex cones covering, if
n n
(U D,») U U —D; | = R? and the intersection of any two different cones

from D1, ...,D,,—D1,...,—D, is the origin. If D1, ..., D, is a covering system,
then lets call the Geometric Hyper POSET $(H, Dy, ..., D,,) Strong Geometric
Hyper POSET (SGHPOSET), .

Remark Any Strong Geometric Hyper POSET is obviously a Strong Hyper
POSET, but there are GHPOSETs, which are SHPOSETs, but not isomorph to
a SGHPOSET.

For example let 0 = (0,0,0),z = (1,0,0),y
Dy = {(a,—b,b)|a,b > 0}, Dy = {(—a,a,b)|a,b

and let H = {0,z,y,z}.

R3\ (D; U Dy U D3 U —D; U—Dy U —Ds) is the union of a finite number of
convex cones, let them be FEi, ..., E,.. Then

(0,1,0),z = (0,0,1) and let
0}7 3 =1\ — abaa

Vi ||
—

IS
-~
B

o

Vv

o
—

ﬁ(H7D17D27D33E17 "'7E’r‘) - (Hv <17 <27 <37 —<17 sy "<T)

is a GHPOSET and 0 <3 z,y <1 2,0 <3 2,y <2 7,0 <3 y,z <3 z are all the
relations, so it is a Strong Hyper POSET.
But it is not isomorphic to a SGHPOSET, because if there is an isomorphism

f:9(H,Dy, Dy, Dy, Ey, ..., E,) — $(G, D}, Dy, Dy, E}, ..., E.)
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then f(z) — f(0) € Di, f(z) — f(y) € D} so because D] is a convex cone
Fw) = F(0)+ £(2) — f(y) € D\ Similarly /(=) — £(0) € Db, f(z) — f(y) € Db
so f(2) = f(0)+f(x) = f(y) € Dy. So f(x)+f(2) = f(0) = f(y) € D1N D5, which
is impossible, because it is not hard to show, that f(z)+ f(2) — f(0) — f(y) # 0.

Statement 5 Let Hy,...,H, C R? and let D1,...,D,, C R? be convex cones,
such that the interior of D1, ..., D, is not empty and $H; = H(H;, D1, ..., D,) is
a Strong Geometric Hyper POSET (i =1,...,k). Lets suppose, that if x,y € H;
and x <jy (1 <j<n)theny—ax €int D;. Then there exists an H C R,
such that

D1 % .. x9N ~ H(H, Dy, ..., Dy).

Proof The sets Hy, ..., Hy are finite, so they are bounded, lets suppose that
their union can be covered with a circle of radius R. Fori=1,...,kand x,y € D;
where x # y, if * <; y then y —x € int D; which means that there exists a
0 < 7iqy, that By, (y —x) € D; (where B,(x) is the open circle with center

x and radius r). Let r = mlnk( ;Iémn Tiwy). Finally let t = 5&.
aAye
Define ¢ : R? x ... x R? = R2, where R? is multiplied k times, as follows:

o((z1, ..., x Zitk i

It will be shown, that if H = ¢(H; X ... x Hy) then ¢ extracts to a 91
% 9 — 9(H,Dy,...,D,) isomorphism. Let (x1,...,2x) and (y1,...,yx) be
different elements of H; x ... X Hj and let g be the smallest index, that z, #
yq and let suppose, that z, <; y,. Then (x1,...,zx) <; (Y1,...Yx). Now it
has to be proved, that ¢((z1,...,2x)) <; ¢(v1,...,yx) which is equivalent to
B((1, ) — 0((21, ., 2)) € Dy,

k k
¢((y1, ...,yk)) — qb((a:l, ...,:ck)) S Dj = Zyitk_i — Zaﬁitk—i
i=1 =1

k
1=q = q+1
Here
k k
> (yi — @)t Z lys — [t < — Z [
i=q+1 i=q+1 i=g+1

and |ly; — z;|| < 2R because Hy,..., H can be covered with circle with radius
R, so

1< 1
% Z ||yz_$t|| <¥k2R=T’.

1=q+1
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k

Z (i — )t <7

i=q+1

which means that

A((Y1s - yr)) — O((w1, .. 71)) € tkiqB’r(yq - xq)-

But y, — 24 € D; and by the definition of r it is true, that B,(y, — 4) C
Dj, so t*79B,(y, — z4) C Dj and thus ¢((y1,...,yx)) — ¢((1,...,z)) € Dj.
So ¢((z1, ..., xk)) <j ¢(y1,...,yx) which proves, that ¢ can be extracted to an
isomorphism. The proof is complete. B

Theorem 13 Let £ be a Lexicographic Hyper POSET with n relations and
Dy, ..., D, be a covering system in the plane, that the interior of D; is not empty
(i=1,...,n). Then there exists an H C R? that for the Strong Geometric Hyper
POSET & = $(H, Dy, ..., D,,) the Hyper POSETs £ and & are isomorph.

Proof For i = 1,...,n let v; € int(D;) any vector. Let £ = (L, <y, ..., <p),
where L C Z™ and for x € L let pr; be the i’th coordinate of z. Let H; =
{pri(z)vi|z € L} and $; = (H;,D1,...,D,). Than $; is a <; chain and it
satisfies, that if z,y € H; and = <; y then y — x € int(D;). Let ¢ : L —
Hy x ... x H, be the injection, that ¢((x1,...,x,)) = (X101, ..., Tpv,) and let
Im(¢) = G*. Than ¢ : £ — (G*, Dy, ..., Dy,) is an isomorphism.

Let " = H; ... x H,,. Then by the previous statement, there exists $H =
$H(H,Dq,...,D,) that $ ~ 9H*. Let ¢ : H* — $ be an isomorphism and G =
»(G*), 8 =9H(G, Dy,...,D,). Then

(Y lg)od

is an isomorphism between £ and &. B

Theorem 14 Let Dy,...,D, be convex cones in R?, such that the interior of
n

D; is not empty (i = 1,...,n), (U DZ-) U (U Di> =R2 gnd D; N D; =
i=1 i=1

D;N D ={0} for any 1 <i,j <n,i+# j. Then there exists a constant C, that

for infinitely many t positive integers there exists a set H C R?, that |H| =t

and the biggest anti chain in the SGPOSET $(H, D1, ...,Dy) = (H, <1, ..., <n)

due to any of the relations is smaller than C/t.

Proof For any s positive integer let Hs; = {(a,b)’a =1,.,80=1,..,s}.
Then it will be shown, that there exists a constant C' (dependant on Dy, ..., D,,),
that in $(Hs, D1, ..., Dy,) the biggest anti chain due to any of the relations is
smaller than Cs. Because of |H,| = s?, it proves the theorem for ¢t = 5.

For i = 1,...,n the interior of D; in not empty, so there exists a vector in D;,
whose both coordinates are rational numbers, let it be (%, ;—7), where a;, c; are
integers and b;,d; are positive integers. But D; is a cone, so bidi(‘g—:, 2—1) =

23



(a;d;, bic;) € D;. Let (pi,q;) = (a;d;, bid;), then p;, q; are integers and (p;, q;) €
D;). Tt will be shown, that

C = 4 .

ax [pif + |gi]

satisfies the conditions.
It will be proved, that the biggest anti chain due to the relation <; is smaller
then s(|p;| + |g:|). It can be assumed, that p; > 0 and ¢; > 0, the other four
cases can be handled the same way. For any u, v integers let

Au,v) = {(u+ ap;, v + aqi)|a ez}

then A(u,v) is a <; chain, because if z,y € A(u,v), then y — x is a multiple of
(pi,qi) € D;. Plus

qi

S
j=1k=
It is true, because if (z,y) € H,, then let j be the biggest integer, that (z —
Jjpi,y — jgi) € Hs. Then = — jp; < p; or y — jg; < ¢;. In the first case

pPi s s Qi
(z,y) € U U Aj 1 and in the second case (z,y) € U U Ajk.
J=1k'=1 j=1k=1
So Hj is the union of s(p; + ¢;) pieces of <; chains, so the biggest anti chain
due to <; is smaller than s(p; + ¢;). The proof is complete.l

Pi s
Ajyk- U U U Aj/yk/ O H,.
1

§'=1k'=1

Remark If given the integer n, the most natural case is when

D; = {(Tcosa,rsina)|r > 0; M <a< M} .
n n
Let C,, be the inf of the constants, which satisfy the conditions of the upper
theorem for these D, ..., D,. It might be a hard question to determine C,,. In
every SHPOSET there is an antichain with /¢ elements, if the basis set has ¢
elements, so C,, > 1 for n = 2,3.... For n =2 it is Cy = 1 and the s x s square
lattice is a good construction.

For n > 2 it is C,, < n. If we follow the proof of the upper theorem, it is
enough to find (p;,q;) € D;, that p;,q; are integers, and |p;| + |gi| < n. Let
Zj = (j7n_j)a Zj+n = (n_ja _j)7 Zj+2n = (_jvj_n) and Zj+3n = (J_na]) for
j=0,...,n—1. Then 2p,..., 24n—1 are all the vectors with integer coordinates,
where the sum of the absolute value of the coordinates is n. Let (3; be the
angle of the vectors z; and 241 (Ban—1 is the angle of z4,,—1 and zp). Then
Bj = Ban—j = Bj+2n = Pan—j and if 0 < j < n — 1 then it can be calculated
eagsily that

sin 3; = < =
BRI e ey Y sy e Ty el

n n 2
n

&)
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If n > 3 then sin 7 > %, which means that sin8; < sin =, S0 B; < =. That
means, that for j = 0,...,4n—11it is 8; < 7, so for any given ¢ one of the vectors
of zg, ..., Zan—1 is an element of D;, so there is a vector in D;, where the sum of

the absolute values of the coordinates is exactly n. This proofs the statement.

For n = 3 I will prove strict result for the problem above:

Theorem 15 Fori=1,2,3 let D; = {(rcosa,rsina)|r > O;@ <a< %}

and let $H(H, D1, Do, D3) = (H,<1,<2,<3), where H C R? and |H| > 3s*> —
3s + 1, where s is a positive integer. Then there exists an A C H such that
|A| > 2s — 1 and A is an anti chain due to one of the relations <, <2, <s.

Proof Firstly, I will define how a chain can be extracted to a broken line in
R? and some of its features will be studied. Let D C R? be a convex cone and
v the direction of the bisector of D (D is always an angle, so v is well definied).
For x,y € R? let * < yif y—x € D. Let C = {z1,...,7,,} be a chain due to
< such that z1 < ... < 2,,. Define the broken line L(C) an follows: connect z;
and z;4; with a segment if j = 1,...,m — 1 and draw a half line from z; to the
direction of —v and a half line from x,,, to the direction v (L is dependent on D,
but for simplicity, it will not be marked, and it will not cause any confusion).
Then it is easy to see, that L(C) is a <; chain too. Let xz,y € L(C). If x and
y are on the same segment, then x — y is parallel to one of the vectors v or
Zjt1 — ¢4, which are all in DU (—=D) so z < yor y < x. If z and y are in
different segments, let suppose, that « € [z, zj41], y € [z, z141]. If § <1 then
<241 <o <y andif I > j, then it is y < x. The cases where at least one
of x or y is on an infinite segment can be proved similarly.

Lemma 6 Let C1,...,Cy be finite < chains. Then there ezists C1, ..., Cj, chains,
k k
that U C; = U C’ and the broken lines L(C1), ..., L(Cy) are pairwise disjoint.

Jj=1 Jj=1

Proof of lemma It can be assumed, that C4,...,C) are pairwise disjoint,

else some points can be left out from each C; without changing the union. Let
k

S be a square with two sides parallel to v and which covers U C; and define
j=1

Lo(C) = L(C)N S for any C chains. Then Ly(C) have a finite length, let I(C)
be the length of Lo(C). Plus L(Cy) \ Lo(Ch1), ..., L(Ck) \ Lo(Ck) are unions of
parallel half lines, so every intersection of L(C1), ..., L(C}) are inside of S.

Lets suppose that for some a and b the broken lines Lo(C,) and Lo(Cp) have
intersection. Let 1 < ... < x,;, be the points of C; and y1, ..., y, be the points
of Cy. If [zj,xj41] and [yi, yi41] intersect, then let {z} = [z, xj41] N (Y1, Yit1]
and let C} = {z1,....%;, Y41, -, Yo} and Cy = {y1,...,y1,Tj41,.... Tm}. Then
Cy and Cy are < chains, because y; < z and 2z < ;41 80 y; < ;41 and for the
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same reason z; < yi4+1. Plus [(Cy) +1(Ch) > I(Cy) + 1(C}) because
UCa)+UCy) = (UCT)+UC)) = |zjr — 25|+ |y —vil =2 =yl = [y — 24| =
= lzj41 — 2|+ |2 — x| + |yisr — 2| + 12 =l = |zj — il — [y — 2] =

= (lzj+1 — 2l + [z —wl =y — zj51]) + (|2 — 25 + [y — 2 = |z —yi4a]) > 0
where the last inequality holds because of the triangle inequality. If [z}, 2;41]
intersects with the half line from g, then let there intersection be z and let
Cr =A{x1,....,xj,y1,...,yn} and C} = {z;41,..., 2 }. Then C} and C} are also
<, chains and I(Cy) + I(Ch) > I(CY) +1(CY). Tt is true, because let dq be the
distance from the side of S, which intersects with the half line from y;. Let ds
be the distance from the same side of S and ds be the distance of z from that

side. Then
U(Ca) +UCh) —U(Cq) = UCy) =

= |zj—zjp|tdi—do—|zj—y1| = |v;—2[+|z—zj 11| +d3+|y1— 2| —da—|z;—y1| =
= (lzj —2[+ 1z =yl =z —p1]) + [z —@js1| +ds —d2 > [z —xj 41| +d3 —d2 > 0

where the last inequality holds because ds —ds is the length of the perpendicular
projection of z — ;11 to the vector v. If Ly(C,) and Ly(C}) intersects in other
way, it can be handled as this last case.

1
I+1 )

Soif L(C,) and L(Cy) intersects, then C, and Cj, can be replaced with C;; and
Cy, such that C,UCy, = Cr UCY and [(Cy) +1(Cy) > 1(CF) +1(CF). Repeating
this procedure we will arrive to a state Cf,...,C}, that Lo(C}), ..., Lo(C},) are

disjoint, because there are only finite ways to select k& chains from the finite
k k

set U Cj, and in every step, the sum ZZ(C’,'C) is strictly decreasing. So the
j=1 j=1

procedure have to stop after N steps, where N is the number of possible ways,
k

to select &k chains from U c;

Jj=1

Let assume indirectly, that for ¢ = 1,2,3 the biggest anti chain due to <;
is at most 2s — 1. Then by the Dilworth theorem H is the union of 2s — 1
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2s5s—1
pieces of <; chains. Let Ti,...,T55_1 be <;i chains, such that U T, = H

j=1
2s—1

and let Uy, ...,Uss_1 be <5 chains, that U U; = H. Then by the previous
j=1

lemma it can be assumed, that L(T}),..., L(T2s—1) are pairwise disjoint and
L(Uy), ..., L(Uss—1) are pairwise disjoint.

Let v1,v2 be the bisector of D; and Dy. For j = 1,...,n the broken line
L(T}) divides the plane into two parts, let them be L, (T;) and L_(Tj) de-
termined by the following: let © € R? \ L(T;) and X = {z} — L(T}). Then
X —-X = L(T;) — L(T;) € D1 U—D;. If there exists y € Dy U D3 and
z € —DyUDg3, then y—2z € DyU Ds3, because Do U D3 is also a convex cone. But
y—z € X — X C Dy U—Dq, which is disjoint from Dy U Ds3, so it is impossible.
That means, that X N Dy U D3 or X N —Dy U — D3 is empty, if the first one is
empty, then « € L_(T}), else € L4 (T}). The broken lines L(T%), ..., L(T,,) are
pairwise disjoint, so if j # [ then L (T;) C L (T}) or L4 (T;) C L (Tj). With-
out the loss of generality it can be assumed, that L (T1) C ... C Ly(Tos_1).
Similarly, it can be assumed, that Ly (Uy) C ... C Ly (Uss—1) where Ly (U;) and
L_(Uj) is defined by —Ds and D, instead of Dy and Ds.

4\55,1/

For every 1 < j,1 < 2s — 1 the broken lines L(T;) and L(U;) intersect, let

their intersection be z;;, It is obvious, that H C {(z;,|j,l = 1,...,25 — 1}.
Then it will be proved, that if 1 < j <l <2s—1and 1 <k < 2s—1, then
Zj )k <2 21k It is true, because Zjky 2Lk € L(Uk), S0 zjk <2 21k OF 21k <2 Zjk,
but z;, € L(T;) C Ly (Tj), 80 21,5 — 25,5 € D1 U —D1 U Dy U D3, which means,
that z; x <2 z1k. Similarly, it is true, that zp ; <{ 2x,-
If for some 1 < a,b,c,d < 25 — 11t is 245 <3 Zc,d, then a < ¢, because if a = ¢
then zqp <1 Ze,d OF Ze,a <1 Zap and if a > ¢, then z,, € L(T,) € Ly (T¢), so
Zap — Ze,d € D1 U—D1UDyU D3, which means, that 2. q — zqp ¢ Ds3. Similarly,
it can be proved, that d < b, because if b = d then 2z, <2 2zcq OF 2¢,d <2 Zap
and if b < d, then Ze,d € L(Ud) € L+(Ub), SO Ze,d — Zab € DyU—DsUD;U—Dsg,
which means, that zc 4 — 2. & Ds.
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Lemma 7 Let n be a positive integer and S = {(a,b)|a,b = 1,...,n}. Define
the relation < on S such that (a,b) < (¢,d) if a < ¢ and d < b. Then clearly
(S,<) is a POSET. Let C4,...,Cy be < chains (k € N). Then

k

k2 —1
i=1
if k is odd, and if k is even, then
k
k2
Ci| <kn-——.
= h R

First proof of lemma Let D = {(a,b) € mathbbR*|a > 0,b < 0}. Then D
is a convex cone, and for x,y € S it is x < y if and only if y — x € D. So if
C; is a < chain L(C;) can be defined with the help of D. After that it can be
assumed by Lemma 6 that L(C4), ..., L(C}) are disjoint. Let

95 ={(a,b)€Sla=1Vvb=1Va=nVb=n}

The bisector of D is (1,—1), so by the definition of L the broken line L(C;)
intersects 9S at two points, one of them is on the left or upper sides of S,
let this be x; = (a;,b;) (then a; = 1 or b; = n), the other is on the top or
right side, let that be y, = (¢;,d;) (then ¢; = n or d; = 1). Then |C;] <
min{c; —a; +1,b; —d; + 1} < min{n + 1 — a;,d; }, because the first coordinates
of the elements of C; forms a strictly increasing series of integers, and the second
coordinates form a strictly monotone decreasing series of integers. So

k
Ue
i=1

But because of L(Cy),...,L(C},) are pairwise disjoint, the points X1, ...,Xp,
are pairwise different, so

k k
< Z |Ci| < Zmin{n +1—a;d;}.
i=1 i=1

k
Zmin{n +1—a;d;}
i=1

takes its maximum, if we choose the most points possible from the top right
corner of 0S. More preciously, it takes its maximum if

(X1, Xn} =
=i 1 (1= [ ([E52] )
) zk:min{n+1—ai,di}§
i=1
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§n+(n—1)+...+<n— V;lDHn—l)jL(n—Z)Jr...Jr(n— V;lb

It is easy to check, that the right side is equal to the formula given in the
Lemma.l

Second proof of lemma For i =1,...,n let
Ai={(n+1—-ij)lj=1,..,iu{ln+1—4i0)|j=1,...1}

Then |A;| = 2i — 1 and the disjoint union of Ay, ..., A, is S. Furthermore A; is
a < anti chain, which means, that for [ = 1, ..., k the intersection of C; and A;
contains maximum one point. That means, that

k
A4nlJa

=1

< min{|A;|, k} = min{2i — 1, k}.

But then

If £ is odd, then
n 1
Zmin{Qi—l,k‘}:1—|-3+...+/<;—2—|—k+k:(n—k—;) =

=1
E+1)2 k+1 k21
—<2> +’f("‘2)—’“”‘ e

and if k£ is even, then

n 2 2
> min{2i—1,k} = 143+..+k—1+k (n - I;) = (g) +k (n - ];) = kn—%.

i=1

This proves the lemma. B

Let C1,...,Cos_1 be <3 chains, whose union is H. Define the relation < on
{zj1} as follows: z,p < zcq if @ < band d < ¢. Then <3C< (which means
x <3y =1z =<y),so Cq,..Cy,_1 are < chains too. Let S = {(a,b)|a,b =
1,..,2s — 1} and ¢ : H — S be the function, that ¢(z;;) = (4,0) if z;;, € H.
Then

¢ (H>'<) — (¢(H)7 '<)
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is an isomorphism, where (S, <) is defined as in the lemma above. Applying the
lemma for n = 2s — 1,k = 2s — 1 and ¢(C1), ..., p(Cas—1) it is

2s—1

U ¢

i=1

(2s—1)2—1

<(2s-1)2s—-1)— 1

=35 -3s+1<|H|

so C1,...,Co5_1 cannot cover H, which is a contradiction. So the theorem is
proven.ll

Now I will show a construction, which proves, that the previous theorem is
strict.

Theorem 16 Let s be a positive integer and for i =1,2,3 let

3

Then there exists an H C R?, that |H| = 35> —3s+1 and in H(H, Dy, Doy, D3) =
(H,<1,<2,<3) the biggest anti chain due to any of the relations has at most
25 — 1 elements.

1 ,
D; = {(rcosa,rsina)|r > O;% <a< m}

Proof Let v = (cos %,sin%) € Dy and w = (cos 5%,sin %’T) € D3, then
v+wE Dy, Let

H = {av+bwla,b€{0,...25 =2} V]a - b| < s — 1}

It will be proved, that H satisfies the condition. Firstly, the size of H
will be determined. v and w are independent, so if av + bw = cv + dw,
then a = ¢,b = d. If a is given, then there are min{a,2s — 2 — a} pieces
of (a,b) pairs, such that b € {0,...,2s — 2} and |a — b < s—1, so |H| =
(s—1)+s+..+125—-2)+(25—3)+...+(s—1) =352 —3s+ 1.

Secondly, it will be proved, that the biggest anti chain due to <, <9, <s has at
most 2s — 1 elements. For that, it is enough to prove, that H is the union of
2s — 1 pieces of <; chains (1 =1,2,3). If i = 1, then for j = 1,...,2s — 1 let

Aj={av+(j—1)wla€{0,..,2s =2} V]a—j+ 1| < s — 1}.
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Then the difference of any two elements of A; is a multiple of v, so A4; is a
<1 chain and clearly H is the union of Ay, ..., Ass_1. If ¢ = 3, then for similar
reasons the <3 chains

Ci={(G-1v+bwlbe{0,..,2s =2}V |p—j+ 1] <s—1}

prove, that the biggest <3 chain has maximum 2s — 1 elements. If ¢ = 2 then
let

Bj={(a+j—s)v+aw|ac{0,...2s—2} Va+j—s€{0,..,2s — 2} }.

Then the difference of any two element in B; is the multiple of v + w, so B; is

a <o chain. Plusif x =av+bw € H, thenfor j =a—b+sitis1 <j <2s—1,
2s—1

because of |a —b] < s — 1 and so x € B;, which means, that U B; = H. So
j=1
the construction of H satisfies the condition.ll

6 Applications

There is not known polynomial algorithm for finding the biggest clique or the
biggest empty set in an ordinary graph yet. But there is polynomial algorithm
for finding the biggest chain and the biggest anti chain in a partially ordered
set. If we look at the graph of a partially ordered set (the graph, whose vertices
are the points of the POSET and there is an edge between two vertices if and
only if the two points can be compared), cliques are equivalent to chains and
empty sets are equivalent to anti chains. So if we could order a graph’s edges,
that we get a POSET, it will be easy to find the biggest cliques and anti chains.
Unluckily, the next theorem will show, that it is very unlikely, and there are
graphs, which are not the union of "few" POSETs.

Definition 8 Let’s call a simple graph G POSET graph, if there exists a par-
tially ordering of the vertices of G, (V(G), <), such that if z,y € V(QG), then

(z <y)V(y <z) & A{z,y} € E(G).
Let’s call such an ordering of V(G) good.

Theorem 17 Let k be a given positive integer. Then there exists a simple graph
G, such that G is not the union of k POSET graphs, so there are no k POSET
k

graphs Py, ..., Py, that V(P) = V(G) (i =1,...k) and |_J E(P;) = E(G).

i=1

Proof Due to Erdds and Szekeres[5] there exists a Gy, graph with at least

(14 0(1))6\%2% vertices, such that nor the graph, and nor its complement

contain a clique with n vertices. We will use, that (1 + 0(1))6%2% > 2% if
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n > N for some N. It will be shown, that if n is big, then G,, or G,, is not the
union of k¥ POSET graphs.

Let assume indirectly, that both of them is the union of k POSET graphs.
Let be <4, ..., <g good orderings for the kK POSET graphs, whose union is G,,
and let be <gy1,...,<or good orderings for the POSET graphs covering G,
Then (V(G,),<1,...,<2r) is a Hyper POSET, because if z,y € V(G,) and
{z,y} € E(G,), then there exists 1 < ¢ < k, that  <; y or y <; x and if
{z,y} € E(G,), then there exists k + 1 < j < 2k, that z <; y or y <; .
Applying Theorem 1 on (V(G,), <1, ..., <ar), there is a chain with at least

Y@ > Vo =i

elements due to one of the relations <; (1 <1 < 2k). Let’s choose n, such that
Thoggn > F (such an n always exists), then
21k >n

so there is a <; chain with at least n elements. But if [ < k, then a <; chain is a
clique in G,,, and if [ > k, then it is a clique in G,,, but due to the definition of
G, every clique in G, and G, has a size less then n, which is a contradiction.
So if $ > k, then G, or its complement is not the union of & POSET
graphs.ll

It is a well known problem, that for any d there exists an Ny, such that in d
dimensional space if a set has Ny points, then it contains an obtuse angle. This
problem has been already solved and the fact, that the smallest such N, is 2¢
was proved by Ludwig Danzer and Branko Griinbaum[4].

Without giving the smallest possible limit, I will prove the following generaliza-
tion of this problem:

Theorem 18 Ifd,n € N, d > 2,n > 3 and o € R is given, then there exists
an Ngn o, such that if H C R and |H| > Nyno then there exists a subset G
of H, that |G| = n and every triangle whose vertices are from G has an angle
greater then ™ — a.

Remark If n = 3 and o = 7, then it is the same problem as above. If « = §
then it states, that every enough big set in R contains an n element subset, that
every three points in that determine an obtuse angle.

Proof Let B be the unit sphere with center 0 in R. Let s = 2sing. Because

B is compact, there is a finite s-net in B, let the points of it be vy, ...,v; € B.
k

So it means, that B C U Bs(v;), where B(v;) is the open sphere with center v;

i=1
and radius s. Let D; = {r € R¢|||v; — ﬁ” < s}. Then D; is the set of vectors,

whose preserved angle with v; is smaller than 3, so D; is a convex cone. Plus
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E

U D; =R\ 0, because ﬁ € B and vy, ..., vx is an s-net of B, so there is an
i=1

for every r, such that ||v; — HTTHH < s.

If H is a subset of R?, then define the Geometric Hyper POSET $(H, Dy, ..., D,,) =
(H,<1,...,<k). Let Nypo = (n—1)*. If |[H| > Nynao = (n—1)%, then by
Theorem 1 there exist an 1 < m < k and A C H with n elements, that A is a
<,n chain.

It will be shown, that G = A satisfies the conditions. Let z,y,z be differ-
ent elements of A, then it can be assumed without the loss of generality, that
T <m Y <m 2. Theny—2a € C,, and z —y € C,,, which means that the
angle of v; and y — x is smaller than 5, and the angle of v; and z — y is also
smaller than . But then the angle of y — x and z — y is smaller than «, so
xyzZ > m — a. So G = A really satisfies the conditions. That means, that the
constant Ny, o = (n — 1)* is a good choice.l

2d—1

Remark With the idea of this solution, one may count, that Ng 3z < 2% |

which means, that there is an obtuse angle in every set with more than 22"
elements, which is unluckily far from the strict.
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