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Notations

N, Z, C are the sets of natural numbers, integers, complex numbers respectively.
Zy, is the group of residue classes modulo n.

IF, is the finite field of ¢ elements.

IBTq is the algebraic closure of F,.

Z} is the multiplicative group of Z,.

C, is the cyclic group of order n.

St={z€eC:|z| =1}.

e(x) = ¥,

¢(n) is the Euler phi function at n.
w(n) is the Mébius function at n.

(5) is the Legendre symbol modulo p.

w(n) is the number of distinct prime divisors of n.

g(x) = O(f(x)) means that there is a constant C' > 0 such that |g(z)| < C - f(z) as
T — 00.
g(x) < f(x) also means g(x) = O(f(x)).

9(x)
o0 |F ()]

g(x) = o(f(x)) means that lim =0 as z — oo.

g(x) ~ f(x),r — oo means that (z))—>1asx—>oo



1 Introduction

In the present thesis, I study the distribution of primitive roots, quadratic residues and
quadratic non-residues modulo a prime. In Sections 1 and 2, I will recall some of the
most important earlier results, which I will use to solve some problems in Sections 3 and
4. These two sections contain my own results: Theorems 2.3.5, 3.1.1, 3.1.2, 3.2.1, 3.2.2,
4.1.5, 4.2.1 and 4.2.2. Section 5 introduces famous open questions about primitive roots.
An Appendix is a summary of an elementary proof for a weaker version of Weil’s theorem
from [1].

1.1 Order and primitive root

Let n and a be positive integers with (n,a) = 1. By Euler theorem we have:
a?™m =1 (mod n). We recall the definitions of the multiplicative order and the primitive
root modulo n as

Definition 1.1.1 The multiplicative order of a modulo n, denoted by ord,(a), is the
smallest positive integer which satisfies a°™4#(¥) = 1( mod n). We obtain that ord,(a)
divides ¢(n). If ord,(a) = ¢(n), then a is called a primitive root modulo n.

In other words, a is a primitive root modulo n if and only if the residue class of @ modulo

n is a generator of Z7. In general, primitive roots modulo n exist iff Z} is a cyclic group.
We have

Theorem 1.1.2 (Classification of the multiplicative group of residue classes)
i) 2 = C.
it) Ziy = Cy , Zy = Cy and Z;, = Cy x Cyr—2, when k > 2.
1i1) Ly = Cory = Cpr-1(p—1y, if p is an odd prime.
iv) In general, if n = p'flplfpg?’ ...pF then using the Chinese remainder theorem, we get

Ly 2Ly X Ly X ... X Ly, .
Py Pa p.

T

Thus Z! is a cyclic group iff n = 2, 4, p* or 2p*, where p is an odd prime. As a
consequence, we see that primitive roots modulo n exist only for these values of n. The
number of primitive roots modulo n is ¢(4(n)) ( |2, Theorem 10.9] ).
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Definition 1.1.3 Let g be a primitive root modulo n. For every integer x with (z,n) =
1, the discrete logarithm of x denotes the unique integer ind,(z) which satisfies 0 <
ind,(z) < ¢(n) — 1 and
z = ¢"%@ (mod n).

1.2 Multiplicative character.

Definition 1.2.1 We call a function x : Z — C is a multiplicative charater modulo n if
it has the following properties:

i) x(k 4+ n) = x(k) for all integer k,
ii) x(k) = 0 if and only if (k,n) > 1,
iii) x(kh) = x(k)x(h) for all integers k and h.

Remarks. i) We call a multiplicative character modulo n is principal and we denote it
by xo, if x(k) =1 for all k with (k,n) =1 and x(k) = 0 for all & with (k,n) > 1.

1) A multiplicative character y is of order d if d is the smallest positive integer with
x¢ = x0. We write ord(y) = d.

iii) We write ¥(k) = x (k).

Let n be a positive integer. Consider its prime factorization: n = 2%p{"p3? ... pSr, where

p;’s are distinct odd primes. Then every multiplicative character modulo n is of the form
X = X'X1X2---Xr, Where X' is a character modulo 2%, x; is a character modulo p;* for
1=1,2,...,r.

All multiplicative characters modulo p®* where p is an odd prime and o« > 1, or p = 2
and « € {1,2}, are of the form:

x(k) =

e(Z) i p 1t k,
0ifp| k.

where ¢ is a primitive root modulo p® and [ =0,1,2,...,¢(p"%) — 1.

The case of modulo 2% when o > 3 is different. For every odd integer k, we denote by

b(k) the unique integer such that 1 < b(k) < @ and

k—1

k=(=1)72 -5 (mod 2%).
All multiplicative characters modulo 2% are of the form:

k) = (1) e(28) - o) if b(k) is odd,
V00 b(k) is even.
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where a = 1,2 and ¢ = 1,2,...,¢(§a).

We just have described all multiplicative characters modulo n. The following proposi-
tions are basic properties of multiplicative characters:

Proposition 1.2.3 We have

o(n) if x =1 (mod n),

> x@) = ) ( ) (1.2.1)
0if x # 1 (mod n).

x (mod n)

Proposition 1.2.4 We have

> xl@) = {E?(i?)xiiéxxj xo- (1.2.2)

Proposition 1.2.5 Let x be an integer and n be a positive integer with (z,n) = 1. For
given integers my, mo, ..., m,, we have:

#{i:m; =z (mod n)} = L Z X(x)iy(ml) (1.2.3)
¢(n) .

x (mod n)

Proposition 1.2.6 For a given charater x of order d modulo n, we have

d if z = y? for some y € Z,
T+ x(z) + x(@)? + ...+ x(@)" = 1if (z,n) > 1, (1.2.4)
0 otherwise.

We will use these propositions in the next sections.

1.3 Additive character.

Definition 1.3.1 Let (G, +) be a finite abelian group. We define an additive character
of G as a homomorphism v : G — S'. Thus (z +y) = ¥(x) - Y(y) for all z,y € G.

Remark. We will only consider the cases when G = Z,, G = Z, X Z, and G =
Lyp—1 X Lyp—1 X Zyp_1, where p is a prime.

If G = Z,, then all additive characters of G are of the form

rT

) for all z € G,
p

Ur () = ef

where r € {0,1,2,...,p—1}.
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If G =7Z, x Z,, then all additive characters of G are of the form

TT + sy

Gral(9)) = ey for all (a,y) € G,

where ;s € {0,1,2,...,p—1}.
G =72,1%x2Zy x7Z,, then all additive characters of G are of the form

re + sy +iz

N ) for all (z,y,2) € G,
p_

¢T,8¢((I’ Y, Z)) = 6(

where r,s,t € {0,1,2,...,p— 2},
We recall some basic properties of additive characters:

Proposition 1.3.2 For a given z € GG, we have

_JIGlifz =0,
%}D(w) = {Oifx%o. (1.3.1)

Proposition 1.3.3 For a given additive character 1 of GG, we have

z;;w(x) B {o if ) £ . (1.3.2)

1.4 Estimates for character sums.

In order to solve certain counting problems we will use character and exponential sums.
The next step is to estimate them. In Propositions 1.2.4 and 1.3.3, character sums over
the whole groups are well studied. We recall some bounds for character sums over subsets
of groups.

m—+n
Character sums over intervals of the form >  x(z) are called incomplete sums. Polya

r=m-+1
and Vinogradov proved the following famous estimate:

Theorem 1.4.1 (Pdlya- Vinogradov Inequality) Let y be a nonprincipal multiplicative
character modulo ¢, ¢ > 2 and m,n be two integers with n > 0. Then we have

m-+n

> ()

r=m++1

< \/q-log q. (1.4.1)

At the present time, the best bound for incomplete sums is due to Burgess in [3]:
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Theorem 1.4.2 (Burgess’ bound, [3]) Let p be a prime and x be a non-principal mul-
tiplicative character modulo p. For any integers m,n,r with n,r > 0, we have

m+n

> x(@)

r=m+1

< ' par - log p. (1.4.2)

The following result which is due to Gyarmati and Sarkozy studies multiplicative char-
acter sums over arbitrary subsets:

Theorem 1.4.3 (The dual of Vinogradov’s lemma) [4, Theorem 2| If a(x), 8(x) are
complex valued functions over the finite field F, and x is a nonprincipal multiplicative
character modulo ¢, then writing

= > al@)byx(+y),

z€Fy€eF,
and
X =3 la@P, V=3 |8
z€F, S
we have
S| < (XY q)Y2. (1.4.3)

The proof uses Weil’s theorem and Vinogradov’s lemma.

In [4], Gyarmati and Sarkozy proved the following generalization of Vinogradov’s lemma
for two variable polynomials over a finite field:

First, we give the definition of the primitive kernel in [4]. Let f(x,y) € F,lx,y] be a
two variable polynomial. Write

n

flz,y) = Zn(y)xi = Zsj(x)yj where 7;(y) € Fy[y] , s;(z) € F,[z].

=0 7=0

Then f(z,y) is said to be primitive in x if ged(r1(y), m2(y), -+ ,rn(y)) = 1 and primitive
in y if ged(sq(z), so(x), -, sm(x)) = 1.

We write f(x,y) in the following form

f(z,y) = R(y)S(x)H(z,y),
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where the polynomial H(z,y) is primitive both in = and y. H(zx,y), which is well defined
up to a constant factor, is called the primitive kernel of f(x,y).

Theorem 1.4.4 (Gyarmati, Sarkézy) |4, Theorem 5| Assume that a(z) ,5(z) are
complex valued functions on F,, x is a nonprincipal multiplicative character of order d of
F,, and f(x,y) is a two variable polynomial over [, such that its primitive kernel H (z,y)
is not of the form cK (z,y)? Let n,m be the degree of f(z,y) in variables z, y respectively.
Writing

S=3 > a@Byx(f(z,y),

zelF, yeF,
X = la@)P, Y =>Y |8
z€lF, y€elFp
and
b —
max |5(y)],
we have

1] < (X (2nYp*? + 5b2nmp?)) """, (1.4.4)

For problems of counting special values of polynomial over finite fields, we will use the
following theorem of Weil:

Theorem 1.4.5 (Weil’s bound) Let h(z) € F,[z] be a polynomial and x be a nonprin-
cipal multiplicative character of order k& modulo p. Suppose that h(z) is not of the form
chy(z)k. Denote by s the number of distinct roots of h(z) in F,. We have:

p—1

> x(h(@))

=0

< (s—1)- Vb < (deg(h) — 1) - /. (1.4.5)

In Appendix, we give an elementary proof of a weaker version of Weil’s bound from
[1].
For additive characters, we have the following estimates:

Lemma 1.4.6 (|2, Theorem 8.21|) Let p be a prime and M be a natural number with
1 < M < p. Then for any natural number r with 1 < r < p, we have

Y e

1<z<M p

p
< —. 1.4.6
<2 (146
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The sums of the form Kl(r, s;p) = > e(%) are called the Kloosteman sums. We
0<t<p
have

Theorem 1.4.7 (Weil’s bound for Kloosterman sum)

IK1(r, s; p)| < 2/p. (1.4.7)
(See for example [5, Chapter 11]).

Conditional bounds for character sums are also obtained under the assumption of the
generalised Riemann hypothesis.

Conjecture 1.4.8 ( The Generalised Riemann hypothesis - GRH) For a given multi-
plicative character x modulo ¢, define the corresponding Dirichlet L-function of x by

L(x,s) = Z% for all s € C with Re(s) > 1.
n=1

Then L(y,s) has an analytic continuation to a meromorphic function over C. GRH
states that if L(y,s) =0 and 0 < Re(s) < 1, then Im(s) = 1/2.

The case ¢ = 1 and x(n) = 1 for all n is the original Riemann hypothesis.

Assuming GRH, Montgomery and Vaughan showed the following estimate for character
sum, which improves the Pélya-Vinogradov’s inequality:

Corollary 1.4.9 ([|6]) Under the assumption of GRH, we have

m—+n

> x(@)

r=m++1

< /q - log logg. (1.4.8)




2 Extremal values

2.1 The least primitive root.

Let p be a prime. There are ¢(p — 1) distinct primitive roots modulo p. We will give an
upper bound for the smallest primitive root modulo p. Denote by g(p) the least primitive
root modulo p. We will use estimates of character sums in order to give an upper bound

for ¢(p).
Let m,n be integers, with 0 < m < m+n < p. Denote by N the number of primitive
roots modulo p between m 4+ 1 and m +n. Write p—1 = Hq and @ = qu, where ¢;’s

are distinct primes. We prove the following well known 1dent1ty

Lemma 2.1.1 (|6, 9.20])

m+n
Nonn = QZ¢ pd) Y > x(@), (2.1.1)
dlQ x: ord(x)=d z=m+1

Proof of Lemma 2.1.1 Using formula (1.2.4) for every charater x; of order ¢; and
x # 0 (mod p), we have

- ¢; if ¢; | ind,(z),
14 xi(z) + Xi(x)Q + A () = {0 otherwiseg

Since an integer x is a primitive root modulo p iff ord,(x) = p — 1, which is equivalent
o (indy(x), Q) = 1, we have:

ﬁ<1 x4+ Xi(x)‘h‘*l) _ {1 if  is a primitive root modulo p (21.2)

q; 0 otherwise.

=1

Summing up formulas (2.1.2) for all z € {m + 1,m +2,...,m + n}, we obtain:

m-+n .
= H Lt @) +xal@)? + (@)
r=m+1 =1 qi

10
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It is sufficient to show that:

H(l_ L+ xi(z) + xi(2) ‘+...+ Zqﬁ Z -
i=1 i Q 10 T
For d | @), note that
[e -3 =D =o-§
and
H(_Xi(l’> +Xi($) ;;...—l—xi(;l;)qz‘— ) _ H;_ll 1_|[ f_lXi(x)]
_ d)
d
x: ord(x)=d
Hence
[o - Ltle) b xle ot o,
Tl L @) e
- ZUl(l ¢ 7 )
e Ly ) ) (o
- dIZQ g(l . E( . )
49 x: ord(x)=d
=5 oD Y
dQ x: ord(x)=d

We will use Burgess’ bound (1.4.2) to obtain the following estimate of g(p):
Theorem 2.1.2 We have

g(p) = O(pi*e) for all € > 0, as p — oo. (2.1.3)

Proof of Theorem 2.1.2 By formula (2.1.1), we have

m-+n
dlQ x: ord(x)=d x=m+1

11
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If d =1, then y is the principal charater and the corresponding term in the sum is

Lo .n=29 _1 _olp-1
0 P(Q)-n = 0 ((1 p)n+ o)) = Py O(1).
If ord(x) = d > 1, then y is not the principal character. Using (1.4.2), we have:
. m+n
Now = P=iiom+ s T o) ¥ |3 )
p d|Q,d>1 x: ord(x)=d |z=m+1
< Mn+0(1) +1 > ¢(%) > n? - pi -logp
p Qd\Q,d>1 x: ord(x)=d
= M0+ 5 3 o Dstant vt -los
p d|Q,d>1
= Do)+ 5 S et -pi-losp
p Qd\Q,d>1
— —(b(pp_ 1>n +0(1) + @.(2”(1’1) - 1)n% .p7 - logp
= @n +O(pite) for all € > 0.

By taking m = 0 and let p — oo, we see that if n = O(pi“), then N, , > 0. Thus
there exists at least one primitive root modulo p between 0 and O(pi“).

We conclude that g(p) = O(pi“) foralle >0asp — oco. B
Shoup showed in |7] that under the assumption of GRH, we have g(p) = O((logp)").

2.2 The least quadratic nonresidue.

Let p be a prime. Then the first quadratic residue modulo p is 1. Denote by n, the
first quadratic nonresidue modulo p. Vinogradov conjectured that n, = O.(p®) for all
e>0asp— oo.

First, there is an elemetary bound for n, as follows:

Theorem 2.2.1 [8, Exercise 4.1.14,b] We have

n, < P+ 1. (2.2.1)

Proof of Theorem 2.2.1 Since 1 < n, < p, we may choose a positive integer m such that
(m —1)n, < p < mn,. Thus 0 < mn, —p < n,. So mn, — p must be a quadratic residue
modulo p as n, is the least quadratic nonresidue modulo p.

12
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We have (=72=F) = (=) = (9)(72) = —(%) = 1. So m is also a quadratic nonresidue
modulo p and m > n,,.

It implies that (n, — 1)n, <p=mn,</p+1. A

By combining a sieve theory argument of Vinogradov and Burgess’ bound (1.4.2), we
give a sharper bound for n,.

Theorem 2.2.2 [9] We have
ny = Oe(prlﬁﬁ) for all € > 0,p — oo. (2.2.2)
Proof of Theorem 2.2.2 Applying (1.4.2) for Legendre symbol, we have

Z(];)

=1

- 1
<np " pr-log p.

= n, K p% - (logp)™™*. Let r — oo, we obtain that n, <. p%“.

Vinogradov’s method is the following:

M M
x x n
—)| = )= +M|>M-2-#n:1<n<<M,(—)=-1
;(p) ;((p) ) { ) }
If () = —1, then there is a prime r such that r|n and (7) = —1. In the case n = n,,

we obtain that n, is a prime. Hence

M

Z(E) > M—2-#n:1<n< M) =-1)
=1 p p
> M—-2- ) #{n:1<n<Mrn}
np<r<M
r:prime
M
> M—2. M
2 > 5
np<r<M
rprime
M M
> M -2 = 2.
= RS
r<M r<n,
riprime Tiprime

By Mertens’ theorem, we have > 1 =loglogy + O(1) as y — co. It implies that
r<y
riprime

13



2 Extremal values

M
S (E)| > M —2M(loglog M — loglogn, + O(1)) = 2M (3 — log 1222 + O(1))

lognyp

M
S (2)| < MR pi - logp = p! /AT 0mET) L og p = o( M)

1
If we assume that n, > MV, then we get

M
o(M)={>(£) > 2M (5 — log% +0(1)) = 2M (log e + O(1)),
r=1 log M Ve

which is a contradiction.
1 1
Son, < MVi™ = O (pive""). M

Ankeny showed in [10] that under the assumption of GRH, we have n, = O((log p)?).

2.3 The consecutive values.

In the previous sections, we were looking for estimates for the least primitive root and
the first quadratic nonresidue modulo prime p. Our method was to find a sort interval,
which contains a primitive root or a quadratic nonresidue. Conversely, it is natural to
ask questions about intervals which contain only primitive roots, quadratic residues and
quadratic nonresidues.

More precisely, we ask that for a given positive integer n > 2, for which prime p there
exists a number x with 0 < < psuch that x+1,z+2,...,x+n are all primitive roots, or
are all quadratic residues modulo p 7 Does there exist a positive constant C'(n) depending
only on n such that for all prime p with p > C(n), there is always an interval of length n
of primitive roots and quadratic residues?

In [11], Jagmohan Tanti and Thangadurai gave explicit values for C(n)’s. In fact, they
proved that

Theorem 2.3.1 (|11, Theorem 1.2]) For a positive integer n > 3, we write C(n) =
(n — 2)24™. Then for all primes p with p > C(n), there exist an interval of length n of
quadratic residues modulo p.

Theorem 2.3.2 (|11, Theorem 1.3]) For a positive integer n > 2, we write C'(n) =
exp(2°5"). Then for all primes p with p > C(n), there exist an interval of length n of
primitive roots modulo p.

Let d be a divisor of p — 1 with d|(p — 1). Generalizing Theorem 2.3.1, we ask for the
existence of intervals of length n of d-th powers in F,,.

14



2 Extremal values

Lemma 2.3.3 Given positive integers n and d. For r with 0 < r < (d — 1)n, denote by
S(r) the number of tuples of integers of the form (ki, ko, ..., k,) which satisfies 0 < k; <

d—1and > k; = r. Then we have

i=1
(d=1)n
S(r)y=d". (2.3.1)
r=0

Proof of Lemma 2.3.3 We have

(d—1)n

(1+z+2*+. S(r
r=0

By taking x = 1 we get formula (2.3.1).1

Let P(d,n,p) be the number of intervals of d-th powers in F, and x be a nonprincipal
multiplicative character of order d modulo p. Using formula (1.2.4) for 0 <z <p—n—1,
we have

ﬁ1+x(x+i) +x2(x+0) 4+ .+ TN +19) {1 if # + 1 is a d-th power for all 4,

o d 0 otherwise.
Thus
P(d,n,p) = pn1ﬁ1+x z+i) + X +i) + .+ (2 )
=0 =1 d
1 p—n—1
= o Z X DX (z +2)...x"(z +n)
=0 OS
12
= 2 Z X((z+ )" +2)" (2 +n)™)
=0 0<k;<d—1
=1, n
1 p—1 (d—1)n
G > @+ DA+ 2" (e n))
z=0 r=0 iki:T
i=1
» 1 p—1 (d—1)n
- St Mz + DR+ 28 ().
rx=0 r=1 Zn:kizr

15



2 Extremal values

It follows that

|X((x + D)@ +2)k2 . (v + n)k")| .

By Weil’s bound (1.4.6), we have

p—1
S (@ + DR @+ 2 (o 0)™)] < (n— 1) B
x=0
Hence
(d=1)n (d—1)n
1 n—1)yp
)P(d,n,p)—(% < o (n—l)\/ﬁ:(d#( S(r) —S§(0)).
r=1 > k;=r r=0
By §(0) = 0 and formula (2.3.1), we have
Lemma 2.3.4
P(d,n,p) ~ 2] < (0= 1)yl - d—ln). (2.3.2)

There is an interval of length n of d-th powers in F, iff P(d,n,p) > 0. By (2.3.2), we
see that P(d,n,p) > 0 if

%_(n—l)\/ﬁ(l—%)>0<:>\/]3>(n—1)(d"—1)-

We conclude that

Theorem 2.3.5 Given positive integers n > 2 and d > 2. Then for all primes p with
d|(p—1) and p > (n — 1)%(d™ — 1)?, there exists an interval of length n of d-th powers in
F,.

Remarks. i) By Dirichlet theorem, for a given d > 2 there exist infinitely many primes
p with d|(p — 1). So there exist infinitely many primes p with d|(p — 1) and
p > (n—1)%(d" — 1)% in Theorem 2.3.4.

i1) If d is too large to compared with p, then intervals of length n of d-th powers in F,
might not exist. For example, when d = ;%1 there are at most three d-th powers in I, are
1,0 and —1.

16



3 Special values of polynomials over
finite fields

Let p be a prime. Carlitz, in his paper [12], studied the following questions:

Let fi(x), fo(x),. .., fr(x) and g1(x), g2(x), ..., gs(x) be non constant polynomials over
[F,. Assume that f;(z)’s are pairwise relatively prime and squarefree polynomials, and also
that g;(x)’s are pairwise relatively prime and squarefree polynomials.

We would like to estimate

N, =#{x €F,: all f;(z)’s are primitive roots} ;

M;=#{z eF,: (ngEx)) =¢ foralli=1,2,... s}, where ¢; € {+1,—1}’s are given;

and N, ; = #{z € F, : fi(x)’s and g;(x)’s satisfy the previous conditions simultaneously}.
In fact, he showed that:

"(p—1 "(p—1
/\/}NMJ;ZSMSNp;andTMSNMl)aSp—)oo.
P ’ P
After rewriting N, , M, , N, in terms of character sums [12, Lemma 3], his main

p—1
argument is to use estimate for character sums of the form: |> x(f(z))|. In fact, he
=0

used an estimate of Davenport and mentioned that a better result could be obtained by
applying Weil’s bound (1.4.5).

Using (1.4.5), we will give the explicit error terms for N, and M. For simplicity, we
only consider the case of one polynomial.

3.1 Primitive roots.

Let f(z) be a polynomial over F,. Denote by N (f) the number of 2’s in F, such that
f(zx) is a primitive root modulo p. Then we have
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3 Special values of polynomials over finite fields

Theorem 3.1.1(Carlitz, [12]) If f(z) is not of the form cg(x)* where k > 1 and k | p—1,
then

o(p— 1) - 20~V
VP
Remark. Hardy and Ramanujan proved that for almost all integers n, we have

w(n) ~ loglogn. But there is not an asymptotic formula for w(n) as n — oo. However,

for all primes p > 5, we have w(p — 1) < 1.385 - lolgoizp (|13, page 167]).

N(f)=¢(p—1)+O( ) as p — oo. (3.1.1)

In another direction, we will study the problem in the case of two variable polynomials
over subsets of F), x IF,,.

In [14], I extend this problem for arbitrary subsets of F, x F,: Let A, B be two subsets
of F, and f(x,y) be a two variable polynomial over I, . The degrees of f(z,y) in variables
x,y are n,m respectively. Denote by N4 g(f) the number of pairs (z,y) € A x B such
that f(z,y) is a primitive root modulo p. We have

Theorem 3.1.2 If the primitive kernel H(z,y) of f(z,y) is not of the form cK (z,y)"
where k> 1 and k| p — 1, then

|A|1/2|B|1/2

pl/4

D151 O(o(p- 120 -nt 2

Naals) = 2=

+m'2A)NY?) as p — oo.
(3.1.2)

In order to rewrite NV, in terms of character sums we use Lemma 2.2 in Carlitz’s paper
[12] and sum up over F,.

Lemma 3.1.3 (Carlitz, [12, Lemma 2.2]) We have

N(f)qu;—- +Z“Z Z ZX . (3.1.3)

ord(x)=d x=0

Extending Lemma 2.2 of Carlitz in [12] for two variable polynomials and summing up
over the subset A x B, we have

Lemma 3.1.5

—1 (d)
Nas(f) = 222 |+ 5 > Dt |- 01
p d|p 11 ord(x)=d xeA

18



3 Special values of polynomials over finite fields

Then we will use (1.4.5) to estimate the character sum

>0 X(f(x,y)

zeA yeB

For the detailed proofs of Theorems 3.1.1 and 3.1.2, see [14]

Remark. From (3.1.2), we see that for large a prime p if | A||B| > np?/?, then we have
Nags(f) > 0.

For certain polynomials f(z,y) and sets A, B, we obtain the following corollaries of
Theorem 3.1.2 :

Corollary 3.1.6 Let M be a positive integer and A = B = {1,2,..., M}. Let p be a
large prime.

i) For f(z,y) = ax +by; p{a,ptband M > p** we get that there exists a primitive
root modulo p of the linear form ax + by where 1 < z,y < p*/%.

ii) For f(x,y) = vy and M > p*/4 there exists a primitive root modulo p of the form zy
where 1 < z,y < p3/4.

ii) For f(x,y) = 2% +y* and M > 2p*/*, there exists a primitive root modulo p of the
form 22 4+ y? where 1 < z,y < 2p*/*.

Corollary 3.1.7 Let A be the set of quadratic residues modulo p and take

f(z,y) = z +y. Since |A] = &, we have Nap(f) > 0 when |B] > 1p'/? and p large

2
enough. That means there is a primitive modulo p of the form z%+y with 1 < y < 1p'/2.

3.2 Quadratic residues.

Let f(z) be a polynomial over F,. Denote by Q(f) the number of 2’s in F,, such that
f(zx) is a quadratic residue modulo p. We have

Theorem 3.2.1 (Carlitz, [12])
i) If f(x) € Fp[z] is not of the form cg(z)? with ¢ € F,, g(x) € F,[z], then we have

)Q(f) ~ g‘ < % N degQ(f). (3.2.1)

i1) Let r,(f) be the number of z’s with 1 < 2 < p for which f(x) = 0 ( mod p). If
f(z) € Fylx] is of the form cg(z)? with ¢ € F,, g(x) € F,[z], then we have

p —1r,(f) if ¢ is a quadratic residue modulo p,
Qf) = { o) (3.2.2)

0 if ¢ is a quadratic nonresidue modulo p.

For the proof of Theorem 3.2.1, see [14].
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3 Special values of polynomials over finite fields

Remark. (3.2.1) tells us that for all, but very special form of cg(z)?, of polynomial
f(z), the number of z’s such that f(z) is a quadratic residue modulo p is of average size

10+ O(\/p) as p — .

In [14], T study the extended version of this problem: Let A, B be two subsets of F,
and f(x,y) be a two variable polynomial over F,. The degrees of f(z,y) in variables x,y
are n, m respectively. Denote by Q4 5(f) the number of pairs (x,y) € A x B such that
f(z,y) is a quadratic residue modulo p. Using estimate (1.4.5) of Gyarmati and Sarkozy
for Legendre symbol in the same way in Theorem 3.2.1, we get

Theorem 3.2.2 If the primitive kernel H(z,y) of f(x,y) is not of the form cK(x,y)?,
then

1Q.a5(f) — |A|IB|| < |AY2|B]Y*p%* - nY2(2 + 5mpY?) Y2 +mn.  (3.2.3)
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4 Covering finite fields

4.1 Exponents of primitive root.

Let p be a large prime and a be an arbitrary element in ;. Let M be a positive integer
with 1 < M < p. The set {a® : 1 < x < M} represents every element of [, if and only if
a is a primitive root modulo p and M =p — 1.

Let aq, as be two elements of F;; and M, M, be two positive integers with 1 < My, My <
p. The following question was asked in [15]:

What conditions are needed on M; and M, such that the set {af +af : 1 <2z < M;,1 <
y < Mo}, or the set {af —ay : 1 <z < M;,1 <y < M,} represents every element of I,
or in other words, covers F, 7

Andrew Odlyzko conjectured that when a; = as = ¢ is a primitive root modulo p, the
1
set {g° —¢¥: 1 <,y < M} covers F, when M = O(p27°) for any fixed € > 0 and for any
p large enough with respect to € .

So far, the only known method to solve these problems is based on charater sums.
Rudnik and Zaharescu [16] showed that for M = O(pilog p) the set {a¥ —a¥ : 1 < 2 <
M, 1 <y < Ma} covers Fy. Recently, Cilleruelo and Zumalacarregui in [15] improved the

bound to ﬂpg. In fact, they proved that:
Theorem 4.1.1([15, Theorem 1) If min(ord,(a), M) > v/2pi, then

{a" —a":1<z,y<M}=F,.

Theorem 4.1.2([15, Theorem 2]) If min(ord,(ay), M;)-min(ord,(as), My) > p2, then

{ai +ay: 1 <o <My, 1 <y< My} DF;,
{ai —ay : 1 <o < My, 1 <y < My} OF,.

Here we only consider the primitive roots’ case:
Corollary 4.1.3 Let g be a primitive modulo p, i.e ord,(g9) = p — 1. If M > V2pi,
then

{¢*—¢" 1 <z,y< M} =F,.

21



4 Covering finite fields

Corollary 4.1.4 Let g1, g» be two primitive roots modulo p, i.e ord,(g:) = ord,(gz2) =
p—1. If My - M, Zp%, then

{g+gy:1<a<M,1<y<M}DF,
(=g 1<ax<M,1<y<M}=F,

In [17], T extend these results to the case of three primitive roots. Let g1, go, g3 be
primitive roots modulo p. We also expect that {¢7 +¢5 +¢5: 1 <x,y,2 < M} D [} when
M = O(p%“) for any fixed € > 0 and for any p large enough with respect to e. Using the
method of Cilleruelo and Zumalacarregui in [15], we prove that

Theorem 4.1.5 If M > 2p%, then

{9 +9i+9;:1<2,y,2<M}2DF;

4.2 Products.

Let p be a prime. For an integer M with 1 < M < p — 1, denote by Sj; the set
{zy mod p : 1 < z,y < M}. The natural question is for which values of M the set Sy
contains all nonzero residues modulo p? From [18], it is conjectured that M can be as
small as p'/2*¢. Garaev also suggested in [18] that M can be taken as small as p*/4*¢ and
one can improve it to p*/%. However, he did not publish his proof of these facts. In the
present thesis, I will prove them. More precisely, we have

Theorem 4.2.1 ([18]) If M > \%p%log p, then
Su =T, (4.2.1)
After that, we will use the ideas of Cilleruello and Zumalacéarregui in [15] to improve the
bound to

Theorem 4.2.2 (|[18])For any € > 0 and any large enough prime p, if M > 2/2 + € pi,
then we have

Sy = F. (4.2.2)

Proof of Theorem 4.2.1 The idea is that if there is an element « of IF; such that a ¢ Sy,
then we can deduce from this an upper bound for M: M < C. Conversely, if M > C,
then there does not exist such an element « in F, or in other words: Sy 2 F,. Since p is
a prime, we obtain that Sy = ).

Recall that all additive characters of Z, x Z,, are of the form ¢, ;((x,y)) = e(%) with
0 <s,t<p—1. Thus we have
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4 Covering finite fields

Y Y Y D) = et Y Y () X bl

P 1<z, y<M 0<t<p 0<r,s<p 0<t<p 1<z, y<M

Suppose that o ¢ Sy, which means xy # aforalll < x,y < M. Then the left
handside of the previous equation is equal to 0. Hence

Zzﬁ—l—

0<r,s<p 0<t<p 1<x§M p 1<y<M

M? - (p+1)=

We need the following lemma

Lemma 4.2.3 (|2, Theorem 8.21]) Let p be a prime and M be a natural number such
that 1 < M < p. Then for any natural number r with 1 < r < p, we have

Y e

<2 (4.2.4)
P 2r
1<z<M

From (4.2.3) and (4.2.4), we obtain that

1

Ze(rt—i— t

0<t<p

pz_ pz_

M? - (p+1) < max

T 0<r,s<p

By applying (1.4.7), we get that
pp_1 1 pp_1 1
M2 . 1) <2 ._§ _._E Z.

Since (1 + % + % +...+ %) ~ log p as p — oo, for p large enough we have:

PP

og p)® < —5 (log p)>.

M?* < L/ (1
T 2(p+1)
So we obtain (4.2.1): M < \%p% -log p.1
Proof of Theorem 4.2.2 For o € F}, we denote by U(a) the set {(a;, y) 1 vy = a}. Let
> h(v)

V={(zy):1<z,y <Y} Thus V+V =Sy and 3 — P2 |V| = V]2
veV

Y#4o0,0
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4 Covering finite fields

Suppose that a ¢ Sy, which means xy # « forall 1 < z,y < M, or equivalently
(V+V)NU(a) =0, we have

ZZ Z¢v+v—u V|2 | ]+Z ZZwarv_u

Y vu'eV uel(a PY#po,0 v,v' €Vuel(a

Hence

VE-U@)] = | Y > w+v) Y d(-u)
ueU(a)

h#po,0 v’ EV

IN

> W(v)

veV

DL | 2 vl

Y#po0 |uel(a)

(4.2.5)

Since U(«) is the set of solutions of the equation zy = «, we have |U(a)| =p — 1. By
applying (1.4.7), we get

o re+s-<
> v = | Suten|=| v -] 3t
uel(a) TY=o 0<z<p 0<z<p p
< 2p. (4.2.6)
Combining (4.2.5) and (4.2.6), we have
VE-(p=1) < 2p- Y |> 9 PV = V).
#io,0 |vEV
Hence ) )
M 2
V| = (_> < WP

2 p+2p—1

Since pfgi}gl < (24 e)p% for any € > 0 and large enought p, we get

(%)2 <2+ -p>.

So we obtain M < 2v/2 + e-pi for any € > 0 and large enought p, which proves (4.2.2).1
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5 Open problems and questions

5.1 Artin’s conjecture.

One of the most famous unsolved problems about primitive root is the so called Artin’s
conjecture, due to Emil Artin:

Conjecture 5.1.1 (Artin’s conjecture) A given integer a which is neither -1 and nor a
square of an integer, is a primitive root modulo p for infinitely many prime p.

More precisely, Artin’s conjecture also predicts the asymptotic density for these primes
in the set of prime numbers. The Artin’constant C' is

c=]] a- m) = 0.3739...

p:prime

Let P(a) be the set of primes p such that a is a primitive root modulo p. Then the

density C'(a) = lim W is conjectured to be exist, and:
n—oo

i) Pla) = {{2}, when C'L = —1 or a is an odd square,
&, when a is an even square.
We have C(a) = 0.
ii) If a = b*, where k # 2, then C(a) = v(k)C(b), where v(k) is a multiplicative

arithmetic function defining at prime powers as v(q") = q‘é(fﬁ)l

for prime q.

i11) Writing a = sf(a)-r? with sf(a) is squarefree integer. If sf(a) = 1 (mod 4), then

Clay=(1- [[ ——)c

2 g1
dsf @ 71

g:prime

iv) For all other values of a: C(a) = C.

In 1967, Hooley showed under the assumption of GRH that this conjecture is true. In
1984, R.Gupta and Ram Murty proved the conjecture is true for infinitely manny values of
a, but their sieve theory argument does not give any precise value of a. After that, Roger
Heath-Brown improved their result and showed that there are at most two prime numbers
a for which the conjecture fails. Heath-Brown’s result lead to a dramatic claim that there
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5 Open problems and questions

is an integer between arbitrary three primes for which Artin’s conjecture is true. However,
we do not know which one is it.

5.2 Sequence of primitive roots.

Let p be an odd prime. Recall that primitive roots modulo p” exist for all positive
integer n. Denote by lg,(n) the least primitive root modulo p™. Thus lg,(1) = g(p).
Jacobi proved that lg,(n) = lg,(2), for all n > 2, see [19]. We are interested in relations
between lg,(1) and lg,(2). There is an elementary criterion:

Proposition 5.2.1 ([19]) A primitive root g modulo p is also a primitive root modulo
p? if and only if
g?~t # 1 (mod p?). (5.2.1)
Following A.Paszkiewicz in [19], there are only two odd primes less than 102 is 41487
and 6692367337 for which lg,(1) # lg,(2). He also raised two problems:
Conjecture 5.2.2([19]) For almost all prime p, we have lg,(1) = lg,(2).

Question 5.2.3([19]) Is it true that there are infinitely manny primes p for which
Lgp(1) # 1gp(2)?

As a consequence of (5.2.1), we have lg,(1) < lg,(2). So the question is for which prime
p, we have lg,(2) > lg,(1) ?
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6 Appendix

We give a summary of Part I of the book [1]|: Equations Over Finite Fields: An Ele-
mentary Approach of Wolfgang M. Schmidt, sketching an elementary proof for a weaker
version of Weil’s bound. All theorems and lemmas are indexed as in [1].

6.1 Equations v/ = f(z) and y? —y = f(x).

6.1.1 Finite fields.

Let F, be a finite field of order g, where ¢ = p*, p prime. F, is the splitting field of
X7 — X over F), and all of its elements are roots of X9 — X. The multiplicative group [y
is a cyclic group of order ¢ — 1.

Let F,/F, be a finite extension with r = ¢". Then
Gal(F, /F,) = Homg, (F,,F,) = {id, Frob,, Frob., - -- ,Frobg_l},

where Frob, : F, — [, is the Frobenius automorphism Frob,(z) = x9. The elements
of F, are exactly the fixed points of Frob,. The trace function of F,/F, is Tr(x) =

T4zl 42T gt
LemmalF For every x € I, the following statements are equivalents:
(2) Tr(xz)=0.
(1) JyeF,:x=y?—y.
(77i) There are exactly ¢ elements y € I, such that x = y? — y.
Denote by D the differential operator on k[X]. Then we have

Theorem 1G Let k be a finite field of characteristic p. M is an integer with M < p
(this is an essential condition). If we have P(X) € k[X] and = € k such that

0= P(z) = DP(z) = D°P(z) = --- = DM"'P(x),

then (X — 2)M|P(X).
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6 Appendix

6.1.2 Equations y? = f(x).

Consider the equation y = f(z) in F, with d|¢ — 1. An elliptic equation is an equation
of the form y? = f(x), where deg f(X) = 3,4 and f(X) has distinct roots. A hyperelliptic
equation is an equation of the form y? = f(z), where f(X) is arbitrary.

Let N be the number of solutions of y? = f(z) with z,y € F;
Ny be the number of solutions of f(z) =0 with z € F;
N, be the number of solutions of f(x)@ /4 — 1 =0 with x € F;

N, be the number of solutions of f () D@=D/dp f(g)d=2a=D/d ... 4 f(g)leD/d 1 =0
with z € IF,.

We have ¢ = No+ N; + Ny, because for all x € F, the equation f(z)?— f(x) = 0 implies
that

f(z) - (f@)(q—l)/d — 1) (f(x )(d Dig=1)/d f(x ) (d=2)(¢=1)/d 4 ... 4 1) =0.

We also have N = Ny + dNy, because 0 = y¢ = f(x) or 0 # y¢ = f(x) implies that
f(z)a=1/4 — 1 =0 (the number of y’s is (¢ — 1,d) = d from Lemma 2D).

It has been shown that if Y¢ — f(X) is not absolutely irreducible (reducible over F, or
become reducible over F2), then the number of solutions is not approximate to ¢. So we
need to assume that Y¢ — f(X) is absolutely irreducible in order to be able to prove that
|N — q| = O(\/q). Absolute irreducibility is analized by the following lemmas

Lemma 2B Absolute irreducibility is invariant under non-singular linear substitu-
tion,i.e if ae — bd # 0, then f(X,Y) is irreducible over k iff f(aX +bY + ¢, dX +eY + f)
is irreducible over k.

Lemma 2C For Y — f(X) € k[X,Y], the following statements are equivalents:
(1) Y* — f(X) is absolutely irreducible.
(ii) Y¢ — c¢f(X) is absolutely irreducible Ve € k, ¢ # 0.
(i
(

ii1) If f(X) = a(X — z1)" (X — 29)% -+ (X — z,)% is the factorization of f in k, then
d,dy,dy, - dy) = 1.

Corollary (Stepanov’s condition) Writing deg f = m. If (m,d) = 1, then Y — f(X)
is absolutely irreducible.

Lemma 2D C,, is the cyclic group of order n. C? is the subgroup of d-th powers in C,,.
Then for every = € C¢, there are exactly (n,d) elements y € C, such that y? = x.
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6 Appendix

6.1.3 Construction of auxiliary polinomials.
For an absolutely irreducible polynomial Y — f(X), we write deg f = m and assume
that: m > 1,d > 1; d|lg — 1; (m,d) = 1; ¢ = p or p>. We write g(X) = f(X)l-D/d,

Lemma 3A Suppose that h;(X) = kig(X) + X%k (X) 4+ -+ X%k (X),0<i < d—1,
and deg k;; < g/d —m.

If ho(z) + g(X)hy(X) + -+ + g(X)hy_1(X) =0, then k;;(X) = 0, for all 4, 5.
Proof of Lemma 3A We have

ho(x) + g(X)ha(X) + -+ g(X) " haoa(X) = > g(X) X9 k;;(X) = 0

j=0

If the degrees of g(X)'X%k;;(X) are different for all ¢,j, then ¢(X)'X%k;(X) = 0,
which implies that £;; =0

The degree of g(X)' X¥k;;(X) is

i.deg g+ qj +deg ki; = (¢/d)(dj + im) + deg ki; — (i/d)m.

Hence
(¢/d)(dj +im) — m < deg g(X)' XV k;;(X) < (q/d)(dj +im) + (q¢/d) — m.
(Since deg ki; < g/d —m).
So we need to show that the intervals
[(a/d)(dj + im) — m; (q/d)(dj + im) + (¢/d) — m]

are disjoint, which is true because for (i,75) # (¢, j"), we have dj + im # dj’ + i'm from
(m,d) =1 (by considering modulo d). B

Lemma 3B(Fundamental lemma)(The existence of auxiliary polynomial with zeros of
high order) Let a(Z) be a polinomial of degree €, where 1 < e < d — 1. S is the set of
x € F, such that either a(g(z)) =0 or f(z) = 0. An integer M satisfies: m +1 < M and
(M +3)? < (29)/d.

Then there exists a nonzero polynomial r(X) which has a zero of order at least M for
every r € S and

degr <e-(¢q/d)- M + 4mgq.

Proof of Lemma 3B
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6 Appendix

d-1 K
We will find r(X) in the form f(X)™ .Y Zk‘w( 19(X) X9 where k;;(X) (its coeffi-

1=0j=
cients) are to be determined, deg k;; < (¢/d) —m, K = |[(¢/d)(M +m +1)].

First, we check that

d-1 K

deg f(X)M + deg ZZI@W )XY

=0 j=0

deg f(X) - M + max deg k;;(X)g(X)' X%

deg f(X) - M + max deg k;;(X) + max deg g(X)’ + max deg X%
mM + (q/d — M) + (d — Dm((q — 1)/d) + 4K

€-(q/d) - M + 4mgq (by substituting the value of K).

deg r(X)

IN

VAN VAN VANRVAN

Since r(X) has a factor f(X)™, we only need to choose 7(X) such that it has a zero of
order at least M for every z satisfying a(g(x)) = 0.

The point is that we can use Theorem 1G to choose 7(X) so D'r(z) =0 for all 0 <1 <
M — 1 for each z with a(g(z)) = 0. Note that ¢ = p or p?, therefore M < p. We have the
essential condition of 1G. Denote by B the number of polynomials of this form.

Denote by A the number of polynomials we obtain from possible k;;(X)’s. A can be
caculated by the number of possible coefficients of polynomials k;;(X).

All we have to do is to show that A > B by counting B and A.

To count B we need to analize D'r(X). By induction on 1 : 0 <1 < M — 1, we get
that

where kT (X) = £(X).(DED (X)) + (DF(X)).(M — 1 +1i((qg — 1)/d))-k3 (X).

We see that k;g-ﬂ)(X) is a polynomial, and deg k (D (X)) < deg kfjl) (X) +m — 1. Thus
deg kl(]l) (X) <(q/d)—m+1(m—1) (by descendlng to deg k;;(X)).

Since deg a(Z) = €, we have

a(z) =0= 2" =co+ciz+ - +ce 12!

Writing . ' . ‘
2= ng) + cgz)z +- 4 c@lze_l,‘v’i >0
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6 Appendix

Considering = € F, such that a(g(z)) =0 = g(z) =z =
g(2) = cf’ + ge) + -+ gla)

Therefore, if z € F, with a(g(z)) = 0, we can rewrite

DIr(X) = F(X) 3 s (X)g(X),

where
d-1 K

ZZQ l{:(l ( note thatX% = X7).
=0 j=0
and deg sgl)(X) <q/d+Ilm—-1)—-1+ K.

We need that sgl) (X) =0forall0 <t < e— 1, which implies a homogeneuos linear
equations of coefficients of k;;(X)’s. Then if the number of equations is less then number
of variables (number of coefficients of k;;(X)’s), i.e B < A, then there exist a nontrivial
solution and we obtain a good choice of k;;(X)’s.

The number of coeflicients of 35’) (X)’s, which we want all of them to be 0 with 0 <t <
e—land 0<I<M-—-1is

e—1 M-1

B < ZZ deg s\ (X
t=0 =0
e—1M-1
< ZZ(q/d+l(m—1)—1+K)
t=0 =0

< eM((q/d) + K)+ (M?/2)(m — 1)e

d-1 K
and A= > > deg k;;(X).
i=0j=0
Choose deg k;;(X) as maximal as possible: deg k;;(X) = (¢/d) — m, we have A =
((g/d) —=m)d(K + 1)
Then B < A follows from conditions of M, K.

To show that (X)) # 0, we use Lemma 3A: since there is a polynomial k;;(X) # 0, we
obtain r(X) Z 0. B

31



6 Appendix

6.1.4 Proof of the main theorem.

Theorem 2A(Main theorem: [N — q| = O(,/q)) Let Y? — f(X) be an absolutely
irreducible polynomial with m = deg f and ¢ > 100dm?. N is the number of zeros of
Y — f(X). Then we have

IN — q| < 4d**m.\/q.

Proof of Theorem 2A (Under conditions in Fundamental lemma)

Since the number of zeros of r(X), counting with multiplicities, can not exceed deg r(X),
we have

IS|- M < degr <e-(¢q/d)- M+ 4gm.

Choose M = |/2q/d| —3. As ¢ > 100dm?, we have m+1 < +/q/d < M < \/2q/d - 3.
Thus

S| < e-(q/d) +4gm/M < €-(q/d) + 4m~/dg.
i) Choose a(Z) = Z —1: So S is the set of x € F, such that g(z) =1 or f(z) =0, and
e=1.
Hence |S| = Ny + N < (¢/d) + 4m+/dg, which implies that

N =dN, + Ny < d-|S| < q+4d**m/q.

ii) Choose a(Z) = Z%* 1 +---+Z+1: So S is the set of x € F, such that g(z)*! +
-+ g(x)+1=00r f(r)=0,and e =d — 1.

Hence |[S| = Ny + Ny < (d — 1)(q/d) + 4m+/dq
= Ny =q— Ny — Ny > (q/d) — 4m+/dq
= N =dN; + Ny > d- Ny > q —4d**m,/q.
We obtain that
q— 4d3/2m\/§ < N< q+4d3/2m\/§

with conditions (m,d) = 1 and ¢ = p or p?, which can be removed by technical arguments.
|
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6 Appendix

6.1.5 A weaker version of Weil’s bound.

Theorem 2B (| > x(f(2))| = O(¢/?))

z€lFy

Let x # xo be a multiplicative of exponent d with d|p — 1. f(X) € F,[X] is a polynomial
of degree m such that Y¢ — f(X) is absolutely irreducible. If ¢ > 100dm?, then

> x(f(@))| < 5md*?¢'.

z€lFy

Proof of Theorem 2B (Deducing from 2A) Let g be a primitive root modulo g. Write
Ny, = #{(x,y) : y* — f(x)g~" = 0} to be the number of zeros of Y¢ — f(X)g~*.

From Lemma 2C, we have Y¢— f(X)g~* is also absolutely irreducible. Thus by Theorem
2A we have |Nj, — q| < 4md>®/?¢"/2.

Write N| = #{(z,y) : y?* — f(z)g~* = 0,y # 0} to be the number of zeros of Y¢ —
f(X)g™* with Y # 0.

If y =0, then f(z) =0. Thus we have
#{(x,y) 1y’ = f2)g™" =0,y =0} S #{a: f(x) =0} < deg f=m.
So we obtain [N — Nj| < m. It follows that |N; — ¢| < 5md®/?¢"/2.

Rewrite > x(f(z)) = ZZ_le -x(g") with Zy = #{z : f(z)-g7" € (F})?, ie f(x)- g% =

zelFy =0

y® for some y # 0}.
Note that Z, = N/./d, so by writing Z; = (q/d) + Ry, we have |R;| < 5md"/?q'/2.

d—1
As > x(g*) = 0 (since x is of exponent d), we have
k=0

Y XU@)] = D_Ze-x(d")| = D_((a/d) + Re) - x(d")| = | DR~ x(g")
€T, k=0 k=0 k=0
d—1
< Z\Rk\ < d-5md"?¢"? = 5md®/*¢*/2.
k=0
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6 Appendix

Theorem 2B’ (Weil type conditions) Let x be a multiplicative character of order d > 1.
f(X) € F,[X] is a polynomial of degree m and is not of the form c-{(X)? with ¢ € F, and
[(X) € F,[X]. If ¢ > 100dm?, then we have

D x(f(@)] < 5md*2q .

€y

Lemma 4B (Analizing f(X) = c¢-1(X)? condition) For f(X) € F,[X] and d|q — 1, the
following statements are equivalents:

(4) f(X)=c-k(X)? with ¢ € F, and k(X) € F,[X].
(i) f(X) = h(X)? with h(X) € F,[X].
(#31) f(X) =c- (X — 1) - (X —22)® -+ (X — 2,)° with x; € F, and d|e;.

Proof of Lemma 4B (iii) = (i): Suppose (iii), and let k(X) = (X — z1)9.(X —
x)? -+ (X — x,5)% € Fy[X]. Then we need to show that k(X) € F,[X].

Since k(X)) = f(X)/c € F,[X], by writing k(X) = X* + ¢, X9 + ... + ¢,, we will
show that ¢; € [F,.

Considering k(X)? = (X" + X' + - 4+ ¢,)? € F,, the coefficient of X%~ in k(X )?
is d - ¢;+ (a polynomial in ¢y, ..., ¢;—1). Since dc; € Fy, we obtrain ¢; € F,. Thus we have
¢; € F, for all ¢ by induction. W

Proof of Theorem 2B’
Write f(X) =c- (X —21)® - (X —29)®2 -+ (X — x,)% with z;’s are distinct in F,.
Since f(X) # c-1(X)?, we have e = ged(eq, - - - , ¢, d) is a proper divisor of d, i.e e < d.

Let b(X) = (X —x1)/¢ - (X — m9)/¢ - (X — x,)%/¢, then k(X) € F,[X] by Lemma
4B.

From f(X) = c¢- k(X)¢ and Corollary of Lemma 2C with ged(ey/e,- -+ ,c5/e,dje) = 1,
we have Y%¢ — k(X) is absolutely irreducible and deg k = m/e. As e|d and e < d, x© is
of exponent d/e > 1. By using Themrem 2B, we have

D x(f@)| = |x(e). Y x“(k(x))| < 5(m/e)(d/e)*q"* < 5md*?q">.M

z€l, z€lF,
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