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Notations

N,Z,C are the sets of natural numbers, integers, complex numbers respectively.

Zn is the group of residue classes modulo n.

Fq is the �nite �eld of q elements.

Fq is the algebraic closure of Fq.

Z∗n is the multiplicative group of Zn.

Cn is the cyclic group of order n.

S1 = {z ∈ C : |z| = 1}.

e(x) := e2iπx.

φ(n) is the Euler phi function at n.

µ(n) is the Möbius function at n.

( .
p
) is the Legendre symbol modulo p.

ω(n) is the number of distinct prime divisors of n.

g(x) = O(f(x)) means that there is a constant C > 0 such that |g(x)| < C · f(x) as
x→∞.

g(x)� f(x) also means g(x) = O(f(x)).

g(x) = o(f(x)) means that lim
x→∞

g(x)
|f(x)| = 0 as x→∞.

g(x) ∼ f(x), x→∞ means that g(x)
f(x)
→ 1 as x→∞.
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1 Introduction

In the present thesis, I study the distribution of primitive roots, quadratic residues and
quadratic non-residues modulo a prime. In Sections 1 and 2, I will recall some of the
most important earlier results, which I will use to solve some problems in Sections 3 and
4. These two sections contain my own results: Theorems 2.3.5, 3.1.1, 3.1.2, 3.2.1, 3.2.2,
4.1.5, 4.2.1 and 4.2.2. Section 5 introduces famous open questions about primitive roots.
An Appendix is a summary of an elementary proof for a weaker version of Weil's theorem
from [1].

1.1 Order and primitive root

Let n and a be positive integers with (n, a) = 1. By Euler theorem we have:
aφ(n) ≡ 1 (mod n). We recall the de�nitions of the multiplicative order and the primitive
root modulo n as

De�nition 1.1.1 The multiplicative order of a modulo n, denoted by ordn(a), is the
smallest positive integer which satis�es aordn(a) ≡ 1 ( mod n). We obtain that ordn(a)
divides φ(n). If ordn(a) = φ(n), then a is called a primitive root modulo n.

In other words, a is a primitive root modulo n if and only if the residue class of a modulo
n is a generator of Z∗n. In general, primitive roots modulo n exist i� Z∗n is a cyclic group.
We have

Theorem 1.1.2 (Classi�cation of the multiplicative group of residue classes)

i) Z∗1 ∼= C1.

ii) Z∗2 ∼= C1 , Z∗4 ∼= C2 and Z∗
2k
∼= C2 × C2k−2 , when k > 2.

iii) Z∗
pk
∼= Cφ(pk) = Cpk−1(p−1), if p is an odd prime.

iv) In general, if n = pk11 p
k2
2 p

k3
3 . . . pkrr , then using the Chinese remainder theorem, we get

Z∗n ∼= Z∗
p
k1
1

× Z∗
p
k2
2

× . . .× Z∗
pkrr
.

Thus Z∗n is a cyclic group i� n = 2, 4, pk or 2pk, where p is an odd prime. As a
consequence, we see that primitive roots modulo n exist only for these values of n. The
number of primitive roots modulo n is φ(φ(n)) ( [2, Theorem 10.9] ).
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1 Introduction

De�nition 1.1.3 Let g be a primitive root modulo n. For every integer x with (x, n) =
1, the discrete logarithm of x denotes the unique integer indg(x) which satis�es 0 ≤
indg(x) ≤ φ(n)− 1 and

x ≡ gindg(x) (mod n).

1.2 Multiplicative character.

De�nition 1.2.1 We call a function χ : Z→ C is a multiplicative charater modulo n if
it has the following properties:

i) χ(k + n) = χ(k) for all integer k,

ii) χ(k) = 0 if and only if (k, n) > 1,

iii) χ(kh) = χ(k)χ(h) for all integers k and h.

Remarks. i) We call a multiplicative character modulo n is principal and we denote it
by χ0, if χ(k) = 1 for all k with (k, n) = 1 and χ(k) = 0 for all k with (k, n) > 1.

ii) A multiplicative character χ is of order d if d is the smallest positive integer with
χd = χ0. We write ord(χ) = d.

iii) We write χ̄(k) = χ(k).

Let n be a positive integer. Consider its prime factorization: n = 2αpα1
1 p

α2
2 . . . pαrr , where

pi's are distinct odd primes. Then every multiplicative character modulo n is of the form
χ = χ′χ1χ2 . . . χr, where χ

′ is a character modulo 2α, χi is a character modulo pαii for
i = 1, 2, . . . , r.

All multiplicative characters modulo pα where p is an odd prime and α ≥ 1, or p = 2
and α ∈ {1, 2}, are of the form:

χ(k) =

{
e( indg(k)·l

φ(pα)
) if p - k,

0 if p | k.

where g is a primitive root modulo pα and l = 0, 1, 2, . . . , φ(pα)− 1.

The case of modulo 2α when α ≥ 3 is di�erent. For every odd integer k, we denote by
b(k) the unique integer such that 1 ≤ b(k) ≤ φ(pα)

2
and

k ≡ (−1)
k−1
2 · 5b(k) (mod 2α).

All multiplicative characters modulo 2α are of the form:

χ′(k) =

{
(−1)

k−1
2
·a · e( b(k)

2α−2 · c) if b(k) is odd,

0 if b(k) is even.
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1 Introduction

where a = 1, 2 and c = 1, 2, . . . , φ(2
α)

2
.

We just have described all multiplicative characters modulo n. The following proposi-
tions are basic properties of multiplicative characters:

Proposition 1.2.3 We have

∑
χ (mod n)

χ(x) =

{
φ(n) if x ≡ 1 (mod n),

0 if x 6≡ 1 (mod n).
(1.2.1)

Proposition 1.2.4 We have

n∑
x=1

χ(x) =

{
φ(n) if χ = χ0,

0 if χ 6= χ0.
(1.2.2)

Proposition 1.2.5 Let x be an integer and n be a positive integer with (x, n) = 1. For
given integers m1,m2, . . . ,mr, we have:

#{i : mi ≡ x (mod n)} =
1

φ(n)
·
∑

χ (mod n)

χ(x)
r∑
i=1

χ(mi). (1.2.3)

Proposition 1.2.6 For a given charater χ of order d modulo n, we have

1 + χ(x) + χ(x)2 + . . .+ χ(x)d−1 =


d if x = yd for some y ∈ Z∗n,
1 if (x, n) > 1,

0 otherwise.

(1.2.4)

We will use these propositions in the next sections.

1.3 Additive character.

De�nition 1.3.1 Let (G,+) be a �nite abelian group. We de�ne an additive character

of G as a homomorphism ψ : G→ S1. Thus ψ(x+ y) = ψ(x) · ψ(y) for all x, y ∈ G.

Remark. We will only consider the cases when G = Zp, G = Zp × Zp and G =
Zp−1 × Zp−1 × Zp−1, where p is a prime.

If G = Zp, then all additive characters of G are of the form

ψr(x) = e(
rx

p
) for all x ∈ G,

where r ∈ {0, 1, 2, . . . , p− 1}.
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1 Introduction

If G = Zp × Zp, then all additive characters of G are of the form

ψr,s((x, y)) = e(
rx+ sy

p
) for all (x, y) ∈ G,

where r, s ∈ {0, 1, 2, . . . , p− 1}.

If G = Zp−1 × Zp−1 × Zp−1, then all additive characters of G are of the form

ψr,s,t((x, y, z)) = e(
rx+ sy + tz

p− 1
) for all (x, y, z) ∈ G,

where r, s, t ∈ {0, 1, 2, . . . , p− 2}.

We recall some basic properties of additive characters:

Proposition 1.3.2 For a given x ∈ G, we have

∑
ψ

ψ(x) =

{
|G| if x = 0,

0 if x 6= 0.
(1.3.1)

Proposition 1.3.3 For a given additive character ψ of G, we have

∑
x∈G

ψ(x) =

{
|G| if ψ = ψ0,

0 if ψ 6= ψ0.
(1.3.2)

1.4 Estimates for character sums.

In order to solve certain counting problems we will use character and exponential sums.
The next step is to estimate them. In Propositions 1.2.4 and 1.3.3, character sums over
the whole groups are well studied. We recall some bounds for character sums over subsets
of groups.

Character sums over intervals of the form
m+n∑
x=m+1

χ(x) are called incomplete sums. Pólya

and Vinogradov proved the following famous estimate:

Theorem 1.4.1 (Pólya-Vinogradov Inequality) Let χ be a nonprincipal multiplicative
character modulo q, q > 2 and m,n be two integers with n > 0. Then we have∣∣∣∣∣

m+n∑
x=m+1

χ(x)

∣∣∣∣∣� √q · log q. (1.4.1)

At the present time, the best bound for incomplete sums is due to Burgess in [3]:
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1 Introduction

Theorem 1.4.2 (Burgess' bound, [3]) Let p be a prime and χ be a non-principal mul-
tiplicative character modulo p. For any integers m,n, r with n, r > 0, we have∣∣∣∣∣

m+n∑
x=m+1

χ(x)

∣∣∣∣∣� n1− 1
r+1 · p

1
4r · log p. (1.4.2)

The following result which is due to Gyarmati and Sárközy studies multiplicative char-
acter sums over arbitrary subsets:

Theorem 1.4.3 (The dual of Vinogradov's lemma) [4, Theorem 2] If α(x), β(x) are
complex valued functions over the �nite �eld Fq and χ is a nonprincipal multiplicative
character modulo q, then writing

S =
∑
x∈Fq

∑
y∈Fq

α(x)β(y)χ(x+ y),

and

X =
∑
x∈Fq

|α(x)|2 , Y =
∑
y∈Fq

|β(y)|2

we have

|S| ≤ (XY q)1/2. (1.4.3)

The proof uses Weil's theorem and Vinogradov's lemma.

In [4], Gyarmati and Sárközy proved the following generalization of Vinogradov's lemma
for two variable polynomials over a �nite �eld:

First, we give the de�nition of the primitive kernel in [4]. Let f(x, y) ∈ Fq[x, y] be a
two variable polynomial. Write

f(x, y) =
n∑
i=0

ri(y)xi =
m∑
j=0

sj(x)yj where ri(y) ∈ Fq[y] , sj(x) ∈ Fq[x].

Then f(x, y) is said to be primitive in x if gcd(r1(y), r2(y), · · · , rn(y)) = 1 and primitive

in y if gcd(s1(x), s2(x), · · · , sm(x)) = 1.

We write f(x, y) in the following form

f(x, y) = R(y)S(x)H(x, y),

7



1 Introduction

where the polynomial H(x, y) is primitive both in x and y. H(x, y), which is well de�ned
up to a constant factor, is called the primitive kernel of f(x, y).

Theorem 1.4.4 (Gyarmati, Sárközy) [4, Theorem 5] Assume that α(x) , β(x) are
complex valued functions on Fp, χ is a nonprincipal multiplicative character of order d of
Fp, and f(x, y) is a two variable polynomial over Fp such that its primitive kernel H(x, y)
is not of the form cK(x, y)d. Let n,m be the degree of f(x, y) in variables x, y respectively.
Writing

S =
∑
x∈Fp

∑
y∈Fp

α(x)β(y)χ(f(x, y)),

X =
∑
x∈Fp

|α(x)|2 , Y =
∑
y∈Fp

|β(y)|2

and

b = max
y∈Fp
|β(y)|,

we have

|S| < (X(2nY p3/2 + 5b2nmp2))
1/2
. (1.4.4)

For problems of counting special values of polynomial over �nite �elds, we will use the
following theorem of Weil:

Theorem 1.4.5 (Weil's bound) Let h(x) ∈ Fp[x] be a polynomial and χ be a nonprin-
cipal multiplicative character of order k modulo p. Suppose that h(x) is not of the form
ch1(x)k. Denote by s the number of distinct roots of h(x) in Fp. We have:∣∣∣∣∣

p−1∑
x=0

χ(h(x))

∣∣∣∣∣ ≤ (s− 1) · √p ≤ (deg(h)− 1) · √p. (1.4.5)

In Appendix, we give an elementary proof of a weaker version of Weil's bound from
[1].

For additive characters, we have the following estimates:

Lemma 1.4.6 ([2, Theorem 8.21]) Let p be a prime and M be a natural number with
1 < M < p. Then for any natural number r with 1 < r < p, we have∣∣∣∣∣ ∑

1≤x≤M

e(
rx

p
)

∣∣∣∣∣ ≤ p

2r
. (1.4.6)
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1 Introduction

The sums of the form Kl(r, s; p) =
∑

0<t<p

e(
rt+s· 1

t

p
) are called the Kloosteman sums. We

have

Theorem 1.4.7 (Weil's bound for Kloosterman sum)

|Kl(r, s; p)| ≤ 2
√
p. (1.4.7)

(See for example [5, Chapter 11]).

Conditional bounds for character sums are also obtained under the assumption of the
generalised Riemann hypothesis.

Conjecture 1.4.8 ( The Generalised Riemann hypothesis - GRH) For a given multi-
plicative character χ modulo q, de�ne the corresponding Dirichlet L-function of χ by

L(χ, s) =
∞∑
n=1

χ(n)

ns
for all s ∈ C with Re(s) > 1.

Then L(χ, s) has an analytic continuation to a meromorphic function over C. GRH
states that if L(χ, s) = 0 and 0 < Re(s) < 1, then Im(s) = 1/2.

The case q = 1 and χ(n) = 1 for all n is the original Riemann hypothesis.

Assuming GRH, Montgomery and Vaughan showed the following estimate for character
sum, which improves the Pólya-Vinogradov's inequality:

Corollary 1.4.9 ([6]) Under the assumption of GRH, we have∣∣∣∣∣
m+n∑
x=m+1

χ(x)

∣∣∣∣∣� √q · log logq. (1.4.8)
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2 Extremal values

2.1 The least primitive root.

Let p be a prime. There are φ(p− 1) distinct primitive roots modulo p. We will give an
upper bound for the smallest primitive root modulo p. Denote by g(p) the least primitive
root modulo p. We will use estimates of character sums in order to give an upper bound
for g(p).

Let m,n be integers, with 0 < m < m+n < p. Denote by Nm,n the number of primitive

roots modulo p between m+ 1 and m+ n. Write p− 1 =
r∏
i=1

qαii , and Q =
r∏
i=1

qi, where qi's

are distinct primes. We prove the following well known identity:

Lemma 2.1.1 ([6, 9.20])

Nm,n =
1

Q

∑
d|Q

φ(
Q

d
)µ(d)

∑
χ: ord(χ)=d

m+n∑
x=m+1

χ(x). (2.1.1)

Proof of Lemma 2.1.1 Using formula (1.2.4) for every charater χi of order qi and
x 6≡ 0 (mod p), we have

1 + χi(x) + χi(x)2 + . . .+ χi(x)qi−1 =

{
qi if qi | indg(x),

0 otherwise.

Since an integer x is a primitive root modulo p i� ordp(x) = p− 1, which is equivalent
to (indg(x), Q) = 1, we have:

r∏
i=1

(1− 1 + χi(x) + . . .+ χi(x)qi−1

qi
) =

{
1 if x is a primitive root modulo p

0 otherwise.
(2.1.2)

Summing up formulas (2.1.2) for all x ∈ {m+ 1,m+ 2, . . . ,m+ n}, we obtain:

Nm,n =
m+n∑
x=m+1

r∏
i=1

(1− 1 + χi(x) + χi(x)2 + . . .+ χi(x)qi−1

qi
)

10



2 Extremal values

It is su�cient to show that:

r∏
i=1

(1− 1 + χi(x) + χi(x)2 + . . .+ χi(x)qi−1

qi
) =

1

Q

∑
d|Q

φ(
Q

d
)µ(d)

∑
χ: ord(χ)=d

χ(x).

For d | Q, note that ∏
qi-d

(1− 1

qi
) =

∏
qi-d

(
φ(qi)

qi
) = φ(

Q

d
) · d
Q

and

∏
qi|d

(−χi(x) + χi(x)2 + . . .+ χi(x)qi−1

qi
) =

∏
qi|d

−1

qi
·
∏
qi|d

qi−1∑
j=1

χi(x)j

=
µ(d)

d
·

∑
χ: ord(χ)=d

χ(x)

Hence

r∏
i=1

(1− 1 + χi(x) + χi(x)2 + . . .+ χi(x)qi−1

qi
)

=
r∏
i=1

(1− 1

qi
− χi(x) + χi(x)2 + . . .+ χi(x)qi−1

qi
)

=
∑
d|Q

∏
qi-d

(1− 1

qi
) ·
∏
qi|d

(−χi(x) + χi(x)2 + . . .+ χi(x)qi−1

qi
)

=
∑
d|Q

φ(
Q

d
) · d
Q
· µ(d)

d
·

∑
χ: ord(χ)=d

χ(x)

=
1

Q

∑
d|Q

φ(
Q

d
)µ(d)

∑
χ: ord(χ)=d

χ(x).�

We will use Burgess' bound (1.4.2) to obtain the following estimate of g(p):

Theorem 2.1.2 We have

g(p) = O(p
1
4
+ε) for all ε > 0, as p→∞. (2.1.3)

Proof of Theorem 2.1.2 By formula (2.1.1), we have

Nm,n =
1

Q

∑
d|Q

φ(
Q

d
)µ(d)

∑
χ: ord(χ)=d

m+n∑
x=m+1

χ(x).

11



2 Extremal values

If d = 1, then χ is the principal charater and the corresponding term in the sum is

1

Q
· φ(Q) · n =

φ(Q)

Q
· ((1− 1

p
)n+O(1)) =

φ(p− 1)

p
n+O(1).

If ord(χ) = d > 1, then χ is not the principal character. Using (1.4.2), we have:

Nm,n ≤
φ(p− 1)

p
n+O(1) +

1

Q

∑
d|Q,d>1

φ(
Q

d
)
∑

χ: ord(χ)=d

∣∣∣∣∣
m+n∑
x=m+1

χ(x)

∣∣∣∣∣
≤ φ(p− 1)

p
n+O(1) +

1

Q

∑
d|Q,d>1

φ(
Q

d
)
∑

χ: ord(χ)=d

n
1
2 · p

1
4 · log p

=
φ(p− 1)

p
n+O(1) +

1

Q

∑
d|Q,d>1

φ(
Q

d
)φ(d)n

1
2 · p

1
4 · log p

=
φ(p− 1)

p
n+O(1) +

1

Q

∑
d|Q,d>1

φ(
Q

d
)φ(d)n

1
2 · p

1
4 · log p

=
φ(p− 1)

p
n+O(1) +

φ(Q)

Q
.(2ω(p−1) − 1)n

1
2 · p

1
4 · log p

=
φ(p− 1)

p
n+O(p

1
4
+ε) for all ε > 0.

By taking m = 0 and let p → ∞, we see that if n = O(p
1
4
+ε), then Nm,n > 0. Thus

there exists at least one primitive root modulo p between 0 and O(p
1
4
+ε).

We conclude that g(p) = O(p
1
4
+ε) for all ε > 0 as p→∞. �

Shoup showed in [7] that under the assumption of GRH, we have g(p) = O((log p)6).

2.2 The least quadratic nonresidue.

Let p be a prime. Then the �rst quadratic residue modulo p is 1. Denote by np the
�rst quadratic nonresidue modulo p. Vinogradov conjectured that np = Oε(p

ε) for all
ε > 0 as p→∞.

First, there is an elemetary bound for np as follows:

Theorem 2.2.1 [8, Exercise 4.1.14,b] We have

np <
√
p+ 1. (2.2.1)

Proof of Theorem 2.2.1 Since 1 < np < p, we may choose a positive integer m such that
(m− 1)np < p < mnp. Thus 0 < mnp − p < np. So mnp − p must be a quadratic residue
modulo p as np is the least quadratic nonresidue modulo p.

12



2 Extremal values

We have (mnp−p
p

) = (mnp
p

) = (m
p

)(np
p

) = −(m
p

) = 1. So m is also a quadratic nonresidue
modulo p and m ≥ np.

It implies that (np − 1)np < p⇒ np <
√
p+ 1. �

By combining a sieve theory argument of Vinogradov and Burgess' bound (1.4.2), we
give a sharper bound for np.

Theorem 2.2.2 [9] We have

np = Oε(p
1

4
√
e
+ε

) for all ε > 0, p→∞. (2.2.2)

Proof of Theorem 2.2.2 Applying (1.4.2) for Legendre symbol, we have

np =

∣∣∣∣∣
np∑
x=1

(
x

p
)

∣∣∣∣∣� n
1− 1

r+1
p · p

1
4r · log p.

⇒ np � p
r+1
4r · (log p)r+1. Let r →∞, we obtain that np �ε p

1
4
+ε.

Vinogradov's method is the following:∣∣∣∣∣
M∑
x=1

(
x

p
)

∣∣∣∣∣ =

∣∣∣∣∣
M∑
x=1

((
x

p
)− 1) +M

∣∣∣∣∣ ≥M − 2 ·#{n : 1 ≤ n ≤M, (
n

p
) = −1}

If (n
p
) = −1, then there is a prime r such that r|n and ( r

p
) = −1. In the case n = np,

we obtain that np is a prime. Hence∣∣∣∣∣
M∑
x=1

(
x

p
)

∣∣∣∣∣ ≥ M − 2 ·#{n : 1 ≤ n ≤M, (
n

p
) = −1}

≥ M − 2 ·
∑

np≤r≤M
r:prime

#{n : 1 ≤ n ≤M, r|n}

≥ M − 2 ·
∑

np≤r≤M
r:prime

M

r

≥ M − 2

 ∑
r≤M
r:prime

M

r
−
∑
r≤np
r:prime

M

r

 .

By Mertens' theorem, we have
∑
r≤y

r:prime

1
r

= log log y +O(1) as y →∞. It implies that

13



2 Extremal values

∣∣∣∣ M∑
x=1

(x
p
)

∣∣∣∣ ≥M − 2M(log logM − log log np +O(1)) = 2M(1
2
− log logM

lognp
+O(1))

Let M = p1/4+ε. Since log p = o(pε) for all ε > 0, let r →∞ we have∣∣∣∣ M∑
x=1

(x
p
)

∣∣∣∣�M1− 1
r+1 · p 1

4r · log p = p1/4+
1
4r

+ε(1− 1
r+1

) · log p = o(M)

If we assume that np ≥M
1√
e
+ε
, then we get

o(M) =

∣∣∣∣ M∑
x=1

(x
p
)

∣∣∣∣ ≥ 2M(1
2
− log logM

logM
1√
e
+ε

+O(1)) = 2M(log ε+O(1)),

which is a contradiction.

So np < M
1√
e
+ε

= Oε(p
1

4
√
e
+ε

).�

Ankeny showed in [10] that under the assumption of GRH, we have np = O((log p)2).

2.3 The consecutive values.

In the previous sections, we were looking for estimates for the least primitive root and
the �rst quadratic nonresidue modulo prime p. Our method was to �nd a sort interval,
which contains a primitive root or a quadratic nonresidue. Conversely, it is natural to
ask questions about intervals which contain only primitive roots, quadratic residues and
quadratic nonresidues.

More precisely, we ask that for a given positive integer n ≥ 2, for which prime p there
exists a number x with 0 < x < p such that x+1, x+2, . . . , x+n are all primitive roots, or
are all quadratic residues modulo p ? Does there exist a positive constant C(n) depending
only on n such that for all prime p with p > C(n), there is always an interval of length n
of primitive roots and quadratic residues?

In [11], Jagmohan Tanti and Thangadurai gave explicit values for C(n)'s. In fact, they
proved that

Theorem 2.3.1 ([11, Theorem 1.2]) For a positive integer n ≥ 3, we write C(n) =
(n − 2)24n. Then for all primes p with p > C(n), there exist an interval of length n of
quadratic residues modulo p.

Theorem 2.3.2 ([11, Theorem 1.3]) For a positive integer n ≥ 2, we write C(n) =
exp(25.54n). Then for all primes p with p > C(n), there exist an interval of length n of
primitive roots modulo p.

Let d be a divisor of p − 1 with d|(p − 1). Generalizing Theorem 2.3.1, we ask for the
existence of intervals of length n of d-th powers in Fp.

14



2 Extremal values

Lemma 2.3.3 Given positive integers n and d. For r with 0 ≤ r ≤ (d−1)n, denote by
S(r) the number of tuples of integers of the form (k1, k2, . . . , kn) which satis�es 0 ≤ ki ≤
d− 1 and

n∑
i=1

ki = r. Then we have

(d−1)n∑
r=0

S(r) = dn. (2.3.1)

Proof of Lemma 2.3.3 We have

(1 + x+ x2 + . . .+ xd−1)n =

(d−1)n∑
r=0

S(r)xr.

By taking x = 1 we get formula (2.3.1).�

Let P (d, n, p) be the number of intervals of d-th powers in Fp and χ be a nonprincipal
multiplicative character of order d modulo p. Using formula (1.2.4) for 0 ≤ x ≤ p−n− 1,
we have

n∏
i=1

1 + χ(x+ i) + χ2(x+ i) + . . .+ χd−1(x+ i)

d
=

{
1 if x+ i is a d-th power for all i,

0 otherwise.

Thus

P (d, n, p) =

p−n−1∑
x=0

n∏
i=1

1 + χ(x+ i) + χ2(x+ i) + . . .+ χd−1(x+ i)

d

=
1

dn

p−n−1∑
x=0

∑
0≤ki≤d−1
i=1,··· ,n

χk1(x+ 1)χk2(x+ 2) . . . χkn(x+ n)

=
1

dn

p−1∑
x=0

∑
0≤ki≤d−1
i=1,··· ,n

χ((x+ 1)k1(x+ 2)k2 . . . (x+ n)kn)

=
1

dn

p−1∑
x=0

(d−1)n∑
r=0

∑
n∑
i=1

ki=r

χ((x+ 1)k1(x+ 2)k2 . . . (x+ n)kn)

=
p

dn
+

1

dn

p−1∑
x=0

(d−1)n∑
r=1

∑
n∑
i=1

ki=r

χ((x+ 1)k1(x+ 2)k2 . . . (x+ n)kn).

15



2 Extremal values

It follows that∣∣∣P (d, n, p)− p

dn

∣∣∣ ≤ 1

dn

p−1∑
x=0

(d−1)n∑
r=1

∑
∑
ki=r

∣∣χ((x+ 1)k1(x+ 2)k2 . . . (x+ n)kn)
∣∣ .

By Weil's bound (1.4.6), we have

p−1∑
x=0

∣∣χ((x+ 1)k1(x+ 2)k2 . . . (x+ n)kn)
∣∣ ≤ (n− 1)

√
p.

Hence∣∣∣P (d, n, p)− p

dn

∣∣∣ ≤ 1

dn

(d−1)n∑
r=1

∑
∑
ki=r

(n− 1)
√
p =

(n− 1)
√
p

dn
(

(d−1)n∑
r=0

S(r)− S(0)).

By S(0) = 0 and formula (2.3.1), we have

Lemma 2.3.4 ∣∣∣P (d, n, p)− p

dn

∣∣∣ ≤ (n− 1)
√
p(1− 1

dn
). (2.3.2)

There is an interval of length n of d-th powers in Fp i� P (d, n, p) > 0. By (2.3.2), we
see that P (d, n, p) > 0 if

p

dn
− (n− 1)

√
p(1− 1

dn
) > 0⇔ √p > (n− 1)(dn − 1).

We conclude that

Theorem 2.3.5 Given positive integers n ≥ 2 and d ≥ 2. Then for all primes p with
d|(p− 1) and p > (n− 1)2(dn − 1)2, there exists an interval of length n of d-th powers in
Fp.

Remarks. i) By Dirichlet theorem, for a given d ≥ 2 there exist in�nitely many primes
p with d|(p − 1). So there exist in�nitely many primes p with d|(p − 1) and
p > (n− 1)2(dn − 1)2 in Theorem 2.3.4.

ii) If d is too large to compared with p, then intervals of length n of d-th powers in Fp
might not exist. For example, when d = p−1

2
there are at most three d-th powers in Fp are

1, 0 and −1.
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3 Special values of polynomials over

�nite �elds

Let p be a prime. Carlitz, in his paper [12], studied the following questions:

Let f1(x), f2(x), . . . , fr(x) and g1(x), g2(x), . . . , gs(x) be non constant polynomials over
Fp. Assume that fi(x)'s are pairwise relatively prime and squarefree polynomials, and also
that gi(x)'s are pairwise relatively prime and squarefree polynomials.

We would like to estimate

Nr = #{x ∈ Fp : all fi(x)'s are primitive roots} ;

Ms = #{x ∈ Fp : (
gj(x)

p
) = εi for all i = 1, 2, . . . , s}, where εi ∈ {+1,−1}'s are given;

andNr,s = #{x ∈ Fp : fi(x)'s and gj(x)'s satisfy the previous conditions simultaneously}.

In fact, he showed that:

Nr ∼
φr(p− 1)

pr−1
; 2sMs ∼ p ; and 2rNr,s ∼

φr(p− 1)

pr−1
as p→∞.

After rewriting Nr , Ms , Nr,s in terms of character sums [12, Lemma 3], his main

argument is to use estimate for character sums of the form:

∣∣∣∣p−1∑
x=0

χ(f(x))

∣∣∣∣. In fact, he

used an estimate of Davenport and mentioned that a better result could be obtained by
applying Weil's bound (1.4.5).

Using (1.4.5), we will give the explicit error terms for Nr and Ms. For simplicity, we
only consider the case of one polynomial.

3.1 Primitive roots.

Let f(x) be a polynomial over Fp. Denote by N (f) the number of x's in Fp such that
f(x) is a primitive root modulo p. Then we have

17



3 Special values of polynomials over �nite �elds

Theorem 3.1.1(Carlitz, [12]) If f(x) is not of the form cg(x)k where k > 1 and k | p−1,
then

N (f) = φ(p− 1) +O(
φ(p− 1) · 2ω(p−1)

√
p

) as p→∞. (3.1.1)

Remark. Hardy and Ramanujan proved that for almost all integers n, we have
ω(n) ∼ log log n. But there is not an asymptotic formula for ω(n) as n → ∞. However,
for all primes p ≥ 5, we have ω(p− 1) ≤ 1.385 · log p

log log p
([13, page 167]).

In another direction, we will study the problem in the case of two variable polynomials
over subsets of Fp × Fp.

In [14], I extend this problem for arbitrary subsets of Fp × Fp: Let A, B be two subsets
of Fp and f(x, y) be a two variable polynomial over Fp . The degrees of f(x, y) in variables
x, y are n,m respectively. Denote by NA,B(f) the number of pairs (x, y) ∈ A × B such
that f(x, y) is a primitive root modulo p. We have

Theorem 3.1.2 If the primitive kernel H(x, y) of f(x, y) is not of the form cK(x, y)k

where k > 1 and k | p− 1, then

NA,B(f) =
φ(p− 1)

p− 1
·|A||B|+O(φ(p−1)2ω(p−1)·n1/2(

|A|1/2|B|1/2

p1/4
+m1/2|A|)1/2) as p→∞.

(3.1.2)

In order to rewrite Nr in terms of character sums we use Lemma 2.2 in Carlitz's paper
[12] and sum up over Fp.

Lemma 3.1.3 (Carlitz, [12, Lemma 2.2]) We have

N (f) =
φ(p− 1)

p− 1
·

p+
∑
d|p−1
d>1

µ(d)

φ(d)

∑
ord(χ)=d

p−1∑
x=0

χ(f(x))

 . (3.1.3)

Extending Lemma 2.2 of Carlitz in [12] for two variable polynomials and summing up
over the subset A× B, we have

Lemma 3.1.5

NA,B(f) =
φ(p− 1)

p− 1
·

|A||B|+ ∑
d|p−1
d>1

µ(d)

φ(d)

∑
ord(χ)=d

∑
x∈A
y∈B

χ(f(x, y))

 . (3.1.4)
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3 Special values of polynomials over �nite �elds

Then we will use (1.4.5) to estimate the character sum∣∣∣∣∣∑
x∈A

∑
y∈B

χ(f(x, y))

∣∣∣∣∣
For the detailed proofs of Theorems 3.1.1 and 3.1.2, see [14]

Remark. From (3.1.2), we see that for large a prime p if |A||B| ≥ np3/2, then we have
NA,B(f) > 0.

For certain polynomials f(x, y) and sets A,B, we obtain the following corollaries of
Theorem 3.1.2 :

Corollary 3.1.6 Let M be a positive integer and A = B = {1, 2, ...,M}. Let p be a
large prime.

i) For f(x, y) = ax + by; p - a, p - b and M ≥ p3/4, we get that there exists a primitive
root modulo p of the linear form ax+ by where 1 ≤ x, y ≤ p3/4.

ii) For f(x, y) = xy and M ≥ p3/4, there exists a primitive root modulo p of the form xy
where 1 ≤ x, y ≤ p3/4.

ii) For f(x, y) = x2 + y2 and M ≥ 2p3/4, there exists a primitive root modulo p of the
form x2 + y2 where 1 ≤ x, y ≤ 2p3/4.

Corollary 3.1.7 Let A be the set of quadratic residues modulo p and take
f(x, y) = x + y. Since |A| = p−1

2
, we have NA,B(f) > 0 when |B| ≥ 1

2
p1/2 and p large

enough. That means there is a primitive modulo p of the form x2+y with 1 ≤ y ≤ 1
2
p1/2.

3.2 Quadratic residues.

Let f(x) be a polynomial over Fp. Denote by Q(f) the number of x's in Fp such that
f(x) is a quadratic residue modulo p. We have

Theorem 3.2.1 (Carlitz, [12])

i) If f(x) ∈ Fp[x] is not of the form cg(x)2 with c ∈ Fp, g(x) ∈ Fp[x], then we have∣∣∣Q(f)− p

2

∣∣∣ ≤ deg(f)− 1

2
· √p+

deg(f)

2
. (3.2.1)

ii) Let rp(f) be the number of x's with 1 ≤ x ≤ p for which f(x) ≡ 0 ( mod p). If
f(x) ∈ Fp[x] is of the form cg(x)2 with c ∈ Fp, g(x) ∈ Fp[x], then we have

Q(f) =

{
p− rp(f) if c is a quadratic residue modulo p,

0 if c is a quadratic nonresidue modulo p.
(3.2.2)

For the proof of Theorem 3.2.1, see [14].
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3 Special values of polynomials over �nite �elds

Remark. (3.2.1) tells us that for all, but very special form of cg(x)2, of polynomial
f(x), the number of x's such that f(x) is a quadratic residue modulo p is of average size
1
2
p+O(

√
p) as p→∞.

In [14], I study the extended version of this problem: Let A, B be two subsets of Fp,
and f(x, y) be a two variable polynomial over Fp. The degrees of f(x, y) in variables x, y
are n,m respectively. Denote by QA,B(f) the number of pairs (x, y) ∈ A × B such that
f(x, y) is a quadratic residue modulo p. Using estimate (1.4.5) of Gyarmati and Sárközy
for Legendre symbol in the same way in Theorem 3.2.1, we get

Theorem 3.2.2 If the primitive kernel H(x, y) of f(x, y) is not of the form cK(x, y)2,
then

|QA,B(f)− |A||B|| ≤ |A|1/2|B|1/2p3/4 · n1/2(2 + 5mp1/2)1/2 +mn. (3.2.3)
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4 Covering �nite �elds

4.1 Exponents of primitive root.

Let p be a large prime and a be an arbitrary element in F∗p. Let M be a positive integer
with 1 < M < p. The set {ax : 1 ≤ x ≤ M} represents every element of F∗p if and only if
a is a primitive root modulo p and M = p− 1.

Let a1, a2 be two elements of F∗p andM1,M2 be two positive integers with 1 < M1,M2 <
p. The following question was asked in [15]:

What conditions are needed onM1 andM2 such that the set {ax1 +ay2 : 1 ≤ x ≤M1, 1 ≤
y ≤ M2}, or the set {ax1 − a

y
2 : 1 ≤ x ≤ M1, 1 ≤ y ≤ M2} represents every element of F∗p,

or in other words, covers F∗p ?

Andrew Odlyzko conjectured that when a1 = a2 = g is a primitive root modulo p, the
set {gx− gy : 1 ≤ x, y ≤M} covers Fp when M = O(p

1
2
+ε) for any �xed ε > 0 and for any

p large enough with respect to ε .

So far, the only known method to solve these problems is based on charater sums.
Rudnik and Zaharescu [16] showed that for M = O(p

3
4 log p) the set {ax1 − a

y
2 : 1 ≤ x ≤

M1, 1 ≤ y ≤M2} covers F∗p. Recently, Cilleruelo and Zumalacárregui in [15] improved the

bound to
√

2p
3
4 . In fact, they proved that:

Theorem 4.1.1([15, Theorem 1]) If min(ordp(a),M) ≥
√

2p
3
4 , then

{ax − ay : 1 ≤ x, y ≤M} = Fp.

Theorem 4.1.2([15, Theorem 2]) If min(ordp(a1),M1) ·min(ordp(a2),M2) ≥ p
3
2 , then

{ax1 + ay2 : 1 ≤ x ≤M1, 1 ≤ y ≤M2} ⊇ F∗p,

{ax1 − a
y
2 : 1 ≤ x ≤M1, 1 ≤ y ≤M2} ⊇ F∗p.

Here we only consider the primitive roots' case:

Corollary 4.1.3 Let g be a primitive modulo p, i.e ordp(g) = p − 1. If M ≥
√

2p
3
4 ,

then

{gx − gy : 1 ≤ x, y ≤M} = Fp.

21



4 Covering �nite �elds

Corollary 4.1.4 Let g1, g2 be two primitive roots modulo p, i.e ordp(g1) = ordp(g2) =

p− 1. If M1 ·M2 ≥ p
3
2 , then

{gx1 + gy2 : 1 ≤ x ≤M1, 1 ≤ y ≤M2} ⊇ F∗p,

{gx1 − g
y
2 : 1 ≤ x ≤M1, 1 ≤ y ≤M2} = Fp.

In [17], I extend these results to the case of three primitive roots. Let g1, g2, g3 be
primitive roots modulo p. We also expect that {gx1 +gy2 +gz3 : 1 ≤ x, y, z ≤M} ⊇ F∗p when
M = O(p

1
3
+ε) for any �xed ε > 0 and for any p large enough with respect to ε. Using the

method of Cilleruelo and Zumalacárregui in [15], we prove that

Theorem 4.1.5 If M ≥ 2p
2
3 , then

{gx1 + gy2 + gz3 : 1 ≤ x, y, z ≤M} ⊇ F∗p.

4.2 Products.

Let p be a prime. For an integer M with 1 < M < p − 1, denote by SM the set
{xy mod p : 1 ≤ x, y ≤ M}. The natural question is for which values of M the set SM
contains all nonzero residues modulo p? From [18], it is conjectured that M can be as
small as p1/2+ε. Garaev also suggested in [18] that M can be taken as small as p3/4+ε and
one can improve it to p3/4. However, he did not publish his proof of these facts. In the
present thesis, I will prove them. More precisely, we have

Theorem 4.2.1 ([18]) If M ≥ 1√
2
p

3
4 log p, then

SM = F∗p. (4.2.1)

After that, we will use the ideas of Cilleruello and Zumalacárregui in [15] to improve the
bound to

Theorem 4.2.2 ([18])For any ε > 0 and any large enough prime p, ifM ≥ 2
√

2 + ε ·p 3
4 ,

then we have

SM = F∗p. (4.2.2)

Proof of Theorem 4.2.1 The idea is that if there is an element α of F∗p such that α /∈ SM ,
then we can deduce from this an upper bound for M : M < C. Conversely, if M ≥ C,
then there does not exist such an element α in F∗p, or in other words: SM ⊇ F∗p. Since p is
a prime, we obtain that SM = F∗p.

Recall that all additive characters of Zp×Zp are of the form ψr,s((x, y)) = e( rx+sy
p

) with
0 ≤ s, t ≤ p− 1. Thus we have
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4 Covering �nite �elds

∑
ψ

∑
1≤x,y≤M

∑
0<t<p

ψ((x,
y

α
)+(t,

1

t
)) = M2·(p+1)+

∑
0<r,s<p

∑
0<t<p

ψr,s((t,
1

t
))

∑
1≤x,y≤M

ψr,s((x,
y

α
)).

Suppose that α /∈ SM , which means xy 6= α for all 1 ≤ x, y ≤ M . Then the left
handside of the previous equation is equal to 0. Hence

M2 · (p+ 1) =

∣∣∣∣∣ ∑
0<r,s<p

∑
0<t<p

e(
rt+ s · 1

t

p
)
∑

1≤x≤M

e(
rx

p
)
∑

1≤y≤M

e(
s y
α

p
)

∣∣∣∣∣ . (4.2.3)

We need the following lemma

Lemma 4.2.3 ([2, Theorem 8.21]) Let p be a prime and M be a natural number such
that 1 < M < p. Then for any natural number r with 1 < r < p, we have∣∣∣∣∣ ∑

1≤x≤M

e(
rx

p
)

∣∣∣∣∣ ≤ p

2r
. (4.2.4)

From (4.2.3) and (4.2.4), we obtain that

M2 · (p+ 1) ≤ max
0<r,s<p

∣∣∣∣∣ ∑
0<t<p

e(
rt+ s · 1

t

p
)

∣∣∣∣∣ · p2
p−1∑
r=1

1

r
· p

2

p−1∑
s=1

1

s
.

By applying (1.4.7), we get that

M2 · (p+ 1) ≤ 2
√
p · p

2

p−1∑
r=1

1

r
· p

2

p−1∑
s=1

1

s
.

Since (1 + 1
2

+ 1
3

+ . . .+ 1
p
) ∼ log p as p→∞, for p large enough we have:

M2 ≤
p2
√
p

2(p+ 1)
· (log p)2 <

p
√
p

2
· (log p)2.

So we obtain (4.2.1): M < 1√
2
p

3
4 · log p.�

Proof of Theorem 4.2.2 For α ∈ F∗p, we denote by U(α) the set {(x, y) : xy = α}. Let

V = {(x, y) : 1 ≤ x, y ≤ M
2
}. Thus V + V = SM and

∑
ψ 6=ψ0,0

∣∣∣∣∑
v∈V

ψ(v)

∣∣∣∣2 = p2 · |V | − |V |2.
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4 Covering �nite �elds

Suppose that α /∈ SM , which means xy 6= α for all 1 ≤ x, y ≤ M , or equivalently
(V + V ) ∩ U(α) = ∅, we have

0 =
∑
ψ

∑
v,v′∈V

∑
u∈U(α)

ψ(v + v′ − u) = |V |2 · |U(α)|+
∑
ψ 6=ψ0,0

∑
v,v′∈V

∑
u∈U(α)

ψ(v + v′ − u).

Hence

|V |2 · |U(α)| =

∣∣∣∣∣∣
∑
ψ 6=ψ0,0

∑
v,v′∈V

ψ(v + v′)
∑

u∈U(α)

ψ(−u)

∣∣∣∣∣∣
≤

∑
ψ 6=ψ0,0

∣∣∣∣∣∣
∑

u∈U(α)

ψ(−u)

∣∣∣∣∣∣
∣∣∣∣∣∑
v∈V

ψ(v)

∣∣∣∣∣
2

. (4.2.5)

Since U(α) is the set of solutions of the equation xy = α, we have |U(α)| = p − 1. By
applying (1.4.7), we get∣∣∣∣∣∣

∑
u∈U(α)

ψ(−u)

∣∣∣∣∣∣ =

∣∣∣∣∣∑
xy=α

ψ((x, y))

∣∣∣∣∣ =

∣∣∣∣∣ ∑
0<x<p

ψ((x,
α

x
))

∣∣∣∣∣ =

∣∣∣∣∣ ∑
0<x<p

e(
rx+ s · α

x

p
)

∣∣∣∣∣
≤ 2

√
p. (4.2.6)

Combining (4.2.5) and (4.2.6), we have

|V |2 · (p− 1) ≤ 2
√
p ·

∑
ψ 6=ψ0,0

∣∣∣∣∣∑
v∈V

ψ(v)

∣∣∣∣∣
2

= 2
√
p(p2|V | − |V |2).

Hence

|V | =
(
M

2

)2

≤
2p2
√
p

p+ 2
√
p− 1

.

Since
2p2
√
p

p+2
√
p−1 < (2 + ε)p

3
2 for any ε > 0 and large enought p, we get

(
M

2

)2

< (2 + ε) · p
3
2 .

So we obtainM < 2
√

2 + ε·p 3
4 for any ε > 0 and large enought p, which proves (4.2.2).�
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5 Open problems and questions

5.1 Artin's conjecture.

One of the most famous unsolved problems about primitive root is the so called Artin's
conjecture, due to Emil Artin:

Conjecture 5.1.1 (Artin's conjecture) A given integer a which is neither -1 and nor a
square of an integer, is a primitive root modulo p for in�nitely many prime p.

More precisely, Artin's conjecture also predicts the asymptotic density for these primes
in the set of prime numbers. The Artin'constant C is

C =
∏

p:prime

(1− 1

p(p− 1)
) = 0.3739...

Let P (a) be the set of primes p such that a is a primitive root modulo p. Then the

density C(a) = lim
n→∞

#{p∈P (a):p≤n}
π(n)

is conjectured to be exist, and:

i) P (a) =

{
{2}, when a = −1 or a is an odd square,

∅, when a is an even square.

We have C(a) = 0.

ii) If a = bk, where k 6= 2, then C(a) = v(k)C(b), where v(k) is a multiplicative

arithmetic function de�ning at prime powers as v(qn) = q(q−2)
q2−q−1 for prime q.

iii) Writing a = sf(a) · r2 with sf(a) is squarefree integer. If sf(a) ≡ 1 (mod 4), then

C(a) = (1−
∏

q|sf(a)
q:prime

1

q2 − q − 1
)C.

iv) For all other values of a: C(a) = C.

In 1967, Hooley showed under the assumption of GRH that this conjecture is true. In
1984, R.Gupta and Ram Murty proved the conjecture is true for in�nitely manny values of
a, but their sieve theory argument does not give any precise value of a. After that, Roger
Heath-Brown improved their result and showed that there are at most two prime numbers
a for which the conjecture fails. Heath-Brown's result lead to a dramatic claim that there
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5 Open problems and questions

is an integer between arbitrary three primes for which Artin's conjecture is true. However,
we do not know which one is it.

5.2 Sequence of primitive roots.

Let p be an odd prime. Recall that primitive roots modulo pn exist for all positive
integer n. Denote by lgp(n) the least primitive root modulo pn. Thus lgp(1) = g(p).
Jacobi proved that lgp(n) = lgp(2), for all n ≥ 2, see [19]. We are interested in relations
between lgp(1) and lgp(2). There is an elementary criterion:

Proposition 5.2.1 ([19]) A primitive root g modulo p is also a primitive root modulo
p2 if and only if

gp−1 6= 1 (mod p2). (5.2.1)

Following A.Paszkiewicz in [19], there are only two odd primes less than 1012 is 41487
and 6692367337 for which lgp(1) 6= lgp(2). He also raised two problems:

Conjecture 5.2.2([19]) For almost all prime p, we have lgp(1) = lgp(2).

Question 5.2.3([19]) Is it true that there are in�nitely manny primes p for which
lgp(1) 6= lgp(2)?

As a consequence of (5.2.1), we have lgp(1) ≤ lgp(2). So the question is for which prime
p, we have lgp(2) ≥ lgp(1) ?
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6 Appendix

We give a summary of Part I of the book [1]: Equations Over Finite Fields: An Ele-

mentary Approach of Wolfgang M. Schmidt, sketching an elementary proof for a weaker
version of Weil's bound. All theorems and lemmas are indexed as in [1].

6.1 Equations yd = f (x) and yd − y = f (x).

6.1.1 Finite �elds.

Let Fq be a �nite �eld of order q, where q = pk, p prime. Fq is the splitting �eld of
Xq −X over Fp and all of its elements are roots of Xq −X. The multiplicative group F∗q
is a cyclic group of order q − 1.

Let Fr/Fq be a �nite extension with r = qh. Then

Gal(Fr/Fq) = HomFq(Fr,Fr) = {id, Frobq, F rob2q, · · · , F robh−1q },

where Frobq : Fr → Fr is the Frobenius automorphism Frobq(x) = xq. The elements
of Fq are exactly the �xed points of Frobq. The trace function of Fr/Fq is Tr(x) =

x+ xq + xq
2

+ · · ·+ xq
h−1

.

Lemma1F For every x ∈ Fq, the following statements are equivalents:

(i) Tr(x) = 0.

(ii) ∃y ∈ Fr : x = yq − y.

(iii) There are exactly q elements y ∈ Fr such that x = yq − y.

Denote by D the di�erential operator on k[X]. Then we have

Theorem 1G Let k be a �nite �eld of characteristic p. M is an integer with M ≤ p
(this is an essential condition). If we have P (X) ∈ k[X] and x ∈ k such that

0 = P (x) = DP (x) = D2P (x) = · · · = DM−1P (x),

then (X − x)M |P (X).
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6 Appendix

6.1.2 Equations yd = f(x).

Consider the equation yd = f(x) in Fq with d|q− 1. An elliptic equation is an equation
of the form y2 = f(x), where deg f(X) = 3, 4 and f(X) has distinct roots. A hyperelliptic
equation is an equation of the form y2 = f(x), where f(X) is arbitrary.

Let N be the number of solutions of yd = f(x) with x, y ∈ Fq;

N0 be the number of solutions of f(x) = 0 with x ∈ Fq;

N1 be the number of solutions of f(x)(q−1)/d − 1 = 0 with x ∈ Fq;

N2 be the number of solutions of f(x)(d−1)(q−1)/d+f(x)(d−2)(q−1)/d+ · · ·+f(x)(q−1)/d+1 = 0
with x ∈ Fq.

We have q = N0 +N1 +N2, because for all x ∈ Fq the equation f(x)q−f(x) = 0 implies
that

f(x) · (f(x)(q−1)/d − 1) · (f(x)(d−1)(q−1)/d + f(x)(d−2)(q−1)/d + · · ·+ 1) = 0.

We also have N = N0 + dN1, because 0 = yd = f(x) or 0 6= yd = f(x) implies that
f(x)(q−1)/d − 1 = 0 (the number of y's is (q − 1, d) = d from Lemma 2D).

It has been shown that if Y d − f(X) is not absolutely irreducible (reducible over Fq or
become reducible over Fq2), then the number of solutions is not approximate to q. So we
need to assume that Y d − f(X) is absolutely irreducible in order to be able to prove that
|N − q| = O(

√
q). Absolute irreducibility is analized by the following lemmas

Lemma 2B Absolute irreducibility is invariant under non-singular linear substitu-
tion,i.e if ae− bd 6= 0, then f(X, Y ) is irreducible over k i� f(aX + bY + c, dX + eY + f)
is irreducible over k.

Lemma 2C For Y d − f(X) ∈ k[X, Y ], the following statements are equivalents:

(i) Y d − f(X) is absolutely irreducible.

(ii) Y d − cf(X) is absolutely irreducible ∀c ∈ k, c 6= 0.

(iii) If f(X) = a(X − x1)d1(X − x2)d2 · · · (X − xs)ds is the factorization of f in k̄, then
(d, d1, d2, · · · , ds) = 1.

Corollary (Stepanov's condition) Writing deg f = m. If (m, d) = 1, then Y d − f(X)
is absolutely irreducible.

Lemma 2D Cn is the cyclic group of order n. Cd
n is the subgroup of d-th powers in Cn.

Then for every x ∈ Cd
n, there are exactly (n, d) elements y ∈ Cn such that yd = x.
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6 Appendix

6.1.3 Construction of auxiliary polinomials.

For an absolutely irreducible polynomial Y d − f(X), we write deg f = m and assume
that: m > 1, d > 1; d|q − 1; (m, d) = 1; q = p or p2. We write g(X) = f(X)(q−1)/d.

Lemma 3A Suppose that hi(X) = ki0(X) +Xqki1(X) + · · ·+Xqlkil(X), 0 ≤ i ≤ d− 1,
and deg kij ≤ q/d−m.

If h0(x) + g(X)h1(X) + · · ·+ g(X)d−1hd−1(X) ≡ 0, then kij(X) ≡ 0, for all i, j.

Proof of Lemma 3A We have

h0(x) + g(X)h1(X) + · · ·+ g(X)d−1hd−1(X) =
l∑

j=0

g(X)iXqjkij(X) ≡ 0

If the degrees of g(X)iXqjkij(X) are di�erent for all i, j, then g(X)iXqjkij(X) ≡ 0,
which implies that kij ≡ 0

The degree of g(X)iXqjkij(X) is

i.deg g + qj + deg kij = (q/d)(dj + im) + deg kij − (i/d)m.

Hence

(q/d)(dj + im)−m < deg g(X)iXqjkij(X) ≤ (q/d)(dj + im) + (q/d)−m.

(Since deg kij ≤ q/d−m).

So we need to show that the intervals

[(q/d)(dj + im)−m; (q/d)(dj + im) + (q/d)−m]

are disjoint, which is true because for (i, j) 6= (i′, j′), we have dj + im 6= dj′ + i′m from
(m, d) = 1 (by considering modulo d). �

Lemma 3B(Fundamental lemma)(The existence of auxiliary polynomial with zeros of
high order) Let a(Z) be a polinomial of degree ε, where 1 ≤ ε ≤ d − 1. S is the set of
x ∈ Fq such that either a(g(x)) = 0 or f(x) = 0. An integer M satis�es: m+ 1 ≤M and
(M + 3)2 ≤ (2q)/d.

Then there exists a nonzero polynomial r(X) which has a zero of order at least M for
every x ∈ S and

deg r ≤ ε · (q/d) ·M + 4mq.

Proof of Lemma 3B
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6 Appendix

We will �nd r(X) in the form f(X)M ·
d−1∑
i=0

K∑
j=0

kij(X)g(X)iXqj, where kij(X) (its coe�-

cients) are to be determined, deg kij ≤ (q/d)−m, K = b(ε/d)(M +m+ 1)c.

First, we check that

deg r(X) ≤ deg f(X)M + deg
d−1∑
i=0

K∑
j=0

kij(X)g(X)iXqj

≤ deg f(X) ·M + max deg kij(X)g(X)iXqj

≤ deg f(X) ·M + max deg kij(X) + max deg g(X)i + max deg Xqj

≤ mM + (q/d−M) + (d− 1)m((q − 1)/d) + qK

≤ ε · (q/d) ·M + 4mq (by substituting the value of K).

Since r(X) has a factor f(X)M , we only need to choose r(X) such that it has a zero of
order at least M for every x satisfying a(g(x)) = 0.

The point is that we can use Theorem 1G to choose r(X) so Dlr(x) = 0 for all 0 ≤ l ≤
M − 1 for each x with a(g(x)) = 0. Note that q = p or p2, therefore M < p. We have the
essential condition of 1G. Denote by B the number of polynomials of this form.

Denote by A the number of polynomials we obtain from possible kij(X)'s. A can be
caculated by the number of possible coe�cients of polynomials kij(X).

All we have to do is to show that A > B by counting B and A.

To count B we need to analize Dlr(X). By induction on l : 0 ≤ l ≤ M − 1, we get
that

Dlr(X) = f(X)M−l.
d−1∑
i=0

K∑
j=0

k
(l)
ij (X)g(X)iXqj,

where k
(l+1)
ij (X) = f(X).(Dk

(l)
ij (X)) + (Df(X)).(M − l + i((q − 1)/d)).k

(l)
ij (X).

We see that k
(l+1)
ij (X) is a polynomial, and deg k

(l+1)
ij (X) ≤ deg k

(l)
ij (X) +m− 1. Thus

deg k
(l)
ij (X) ≤ (q/d)−m+ l(m− 1) (by descending to deg kij(X)).

Since deg a(Z) = ε, we have

a(z) = 0⇒ zε = c0 + c1z + · · ·+ cε−1z
ε−1

Writing
zi = c

(i)
0 + c

(i)
1 z + · · ·+ c

(i)
ε−1z

ε−1,∀i ≥ 0
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6 Appendix

Considering x ∈ Fq such that a(g(x)) = 0⇒ g(x) = z ⇒

g(x)i = c
(i)
0 + c

(i)
1 g(x) + · · ·+ c

(i)
ε−1g(x)ε−1

Therefore, if x ∈ Fq with a(g(x)) = 0, we can rewrite

Dlr(X) = f(X)M−l ·
ε−1∑
t=0

s
(l)
t (X)g(X)t,

where

s
(l)
t (X) =

d−1∑
i=0

K∑
j=0

c
(i)
t k

(l)
ij (X)Xj( note thatXqj = Xj).

and deg s
(l)
t (X) < q/d+ l(m− 1)− 1 +K.

We need that s
(l)
t (X) ≡ 0 for all 0 ≤ t ≤ ε − 1, which implies a homogeneuos linear

equations of coe�cients of kij(X)'s. Then if the number of equations is less then number
of variables (number of coe�cients of kij(X)'s), i.e B < A, then there exist a nontrivial
solution and we obtain a good choice of kij(X)'s.

The number of coe�cients of s
(l)
t (X)'s, which we want all of them to be 0 with 0 ≤ t ≤

ε− 1 and 0 ≤ l ≤M − 1 is

B ≤
ε−1∑
t=0

M−1∑
l=0

deg s
(l)
t (X)

≤
ε−1∑
t=0

M−1∑
l=0

(q/d+ l(m− 1)− 1 +K)

< εM((q/d) +K) + (M2/2)(m− 1)ε

and A =
d−1∑
i=0

K∑
j=0

deg kij(X).

Choose deg kij(X) as maximal as possible: deg kij(X) = (q/d) − m, we have A =
((q/d)−m)d(K + 1)

Then B < A follows from conditions of M,K.

To show that r(X) 6≡ 0, we use Lemma 3A: since there is a polynomial kij(X) 6≡ 0, we
obtain r(X) 6≡ 0. �
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6 Appendix

6.1.4 Proof of the main theorem.

Theorem 2A(Main theorem: |N − q| = O(
√
q)) Let Y d − f(X) be an absolutely

irreducible polynomial with m = deg f and q > 100dm2. N is the number of zeros of
Y d − f(X). Then we have

|N − q| ≤ 4d3/2m
√
q.

Proof of Theorem 2A (Under conditions in Fundamental lemma)

Since the number of zeros of r(X), counting with multiplicities, can not exceed deg r(X),
we have

|S| ·M ≤ deg r ≤ ε · (q/d) ·M + 4qm.

Choose M = b
√

2q/dc−3. As q > 100dm2, we have m+ 1 ≤
√
q/d ≤M ≤

√
2q/d−3.

Thus

|S| ≤ ε · (q/d) + 4qm/M ≤ ε · (q/d) + 4m
√
dq.

i) Choose a(Z) = Z − 1 : So S is the set of x ∈ Fq such that g(x) = 1 or f(x) = 0, and
ε = 1.

Hence |S| = N0 +N1 ≤ (q/d) + 4m
√
dq, which implies that

N = dN1 +N0 ≤ d · |S| ≤ q + 4d3/2m
√
q.

ii) Choose a(Z) = Zd−1 + · · ·+ Z + 1 : So S is the set of x ∈ Fq such that g(x)d−1 +
· · ·+ g(x) + 1 = 0 or f(x) = 0, and ε = d− 1.

Hence |S| = N0 +N2 ≤ (d− 1)(q/d) + 4m
√
dq

⇒ N1 = q −N0 −N2 ≥ (q/d)− 4m
√
dq

⇒ N = dN1 +N0 ≥ d ·N1 ≥ q − 4d3/2m
√
q.

We obtain that
q − 4d3/2m

√
q ≤ N ≤ q + 4d3/2m

√
q

with conditions (m, d) = 1 and q = p or p2, which can be removed by technical arguments.
�
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6 Appendix

6.1.5 A weaker version of Weil's bound.

Theorem 2B (

∣∣∣∣∣ ∑x∈Fqχ(f(x))

∣∣∣∣∣ = O(q1/2))

Let χ 6= χ0 be a multiplicative of exponent d with d|p− 1. f(X) ∈ Fq[X] is a polynomial
of degree m such that Y d − f(X) is absolutely irreducible. If q > 100dm2, then

∣∣∣∣∣∣
∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ < 5md3/2q1/2.

Proof of Theorem 2B (Deducing from 2A) Let g be a primitive root modulo q. Write
Nk = #{(x, y) : yd − f(x)g−k = 0} to be the number of zeros of Y d − f(X)g−k.

From Lemma 2C, we have Y d−f(X)g−k is also absolutely irreducible. Thus by Theorem
2A we have |Nk − q| < 4md3/2q1/2.

Write N ′k = #{(x, y) : yd − f(x)g−k = 0, y 6= 0} to be the number of zeros of Y d −
f(X)g−k with Y 6= 0.

If y = 0, then f(x) = 0. Thus we have

#{(x, y) : yd − f(x)g−k = 0, y = 0} ≤ #{x : f(x) = 0} ≤ deg f = m.

So we obtain |Nk −N ′k| ≤ m. It follows that |N ′k − q| < 5md3/2q1/2.

Rewrite
∑
x∈Fq

χ(f(x)) =
d−1∑
k=0

Zk ·χ(gk) with Zk = #{x : f(x) · g−k ∈ (F∗q)d, i.e f(x) · g−k =

yd for some y 6= 0}.

Note that Zk = N ′k/d, so by writing Zk = (q/d) +Rk, we have |Rk| < 5md1/2q1/2.

As
d−1∑
k=0

χ(gk) = 0 (since χ is of exponent d), we have

∣∣∣∣∣∣
∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ =

∣∣∣∣∣
d−1∑
k=0

Zk · χ(gk)

∣∣∣∣∣ =

∣∣∣∣∣
d−1∑
k=0

((q/d) +Rk) · χ(gk)

∣∣∣∣∣ =

∣∣∣∣∣
d−1∑
k=0

Rk · χ(gk)

∣∣∣∣∣
≤

d−1∑
k=0

|Rk| ≤ d · 5md1/2q1/2 = 5md3/2q1/2.

�
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6 Appendix

Theorem 2B' (Weil type conditions) Let χ be a multiplicative character of order d > 1.
f(X) ∈ Fq[X] is a polynomial of degree m and is not of the form c · l(X)d with c ∈ Fq and
l(X) ∈ Fq[X]. If q > 100dm2, then we have∣∣∣∣∣∣

∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ < 5md3/2q1/2.

Lemma 4B (Analizing f(X) = c · l(X)d condition) For f(X) ∈ Fq[X] and d|q − 1, the
following statements are equivalents:

(i) f(X) = c · k(X)d with c ∈ Fq and k(X) ∈ Fq[X].

(ii) f(X) = h(X)d with h(X) ∈ Fq[X].

(iii) f(X) = c · (X − x1)e1 · (X − x2)e2 · · · (X − xs)es with xi ∈ Fq and d|ei.

Proof of Lemma 4B (iii) ⇒ (i): Suppose (iii), and let k(X) = (X − x1)
e1 .(X −

x2)
e2 · · · (X − xs)es ∈ Fq[X]. Then we need to show that k(X) ∈ Fq[X].

Since k(X)d = f(X)/c ∈ Fq[X], by writing k(X) = Xu + c1X
d−1 + · · · + cu, we will

show that ci ∈ Fq.

Considering k(X)d = (Xu + c1X
d−1 + · · ·+ cu)

d ∈ Fq, the coe�cient of Xdu−i in k(X)d

is d · ci+ (a polynomial in c1, ..., ci−1). Since dc1 ∈ Fq, we obtrain c1 ∈ Fq. Thus we have
ci ∈ Fq for all i by induction. �

Proof of Theorem 2B'

Write f(X) = c · (X − x1)e1 · (X − x2)e2 · · · (X − xs)es with xi's are distinct in Fq.

Since f(X) 6= c·l(X)d, we have e = gcd(e1, · · · , cs, d) is a proper divisor of d, i.e e < d.

Let k(X) = (X − x1)e1/e · (X − x2)e2/e · · · (X − xs)es/e, then k(X) ∈ Fq[X] by Lemma
4B.

From f(X) = c · k(X)e and Corollary of Lemma 2C with gcd(e1/e, · · · , cs/e, d/e) = 1,
we have Y d/e − k(X) is absolutely irreducible and deg k = m/e. As e|d and e < d, χe is
of exponent d/e > 1. By using Themrem 2B, we have∣∣∣∣∣∣

∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ =

∣∣∣∣∣∣χ(c).
∑
x∈Fq

χe(k(x))

∣∣∣∣∣∣ < 5(m/e)(d/e)3/2q1/2 ≤ 5md3/2q1/2.�
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