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Introduction

There are multiple directions from which one can approach factor of i.i.d. processes.
One possible starting point is this: given a graph, we put independent, identically
distributed random variables — intuitively, a random label — on each vertex. Then we
construct some structure on the graph (e.g. a colouring), with the restriction that
for each vertex, our decision regarding that vertex only depends on the labels in
some finite neighbourhood of it. The question is, then, what sort of structures can
these algorithms produce? Can any random colouring of the graph be constructed in
this way? Can we give a procedure of this kind that, with high probability, gives an
independent set of the graph that is close to maximal in size? Or, more generally,
can we characterize the random processes on the graph that arise in this way?

Factor of i.i.d. processes can be seen as a formalisation (and generalisation) of
this concept. The goal of this thesis is to provide a glimpse into the various facets of
the current research in this area, especially in the context of regular graphs. We will
see concrete examples of graph algorithms based on these notions, as well as some of
their limitations.

The thesis is structured as follows: first, in Chapter 1 we recall relevant concepts
and notation from graph theory and probability theory. Then, in the second section
of the chapter we give a rigorous definition of factor of i.i.d. processes and highlight
some of their basic properties.

Chapter 2 is an account of [1], a paper giving an example of algorithms based on
factor of i.i.d. processes which construct various graph-theoretic structures, in this
case large independent sets in regular graphs. Beside possible practical applications,
these algorithms have theoretic relevance in that they can be used to prove lower
bounds on the size of the maximal independent set in certain graphs; in fact, the
bound provided for finite 3-regular graphs was optimal at the time of publication.
We will also prove the existence of the so-called Gaussian wave function, a random
process on the d-regular tree which is of separate mathematical interest.

In light of positive results such as the one described in the previous chapter,
the question naturally arises whether factor of i.i.d. algorithms can provide optimal,
or at least near-optimal answers to various graph optimization problems (such as
constructing colourings and matchings, or the aforementioned problem of finding large
independent sets). A related and actively researched problem is the characterization
of factor of i.i.d. processes, that is, finding necessary and sufficient conditions for a
random process to be a factor of an i.i.d. process. We examine both of these problems
in Chapter 3. We first summarize a paper of Gamarnik and Sudan [2], in which they

prove that for finding independent sets in random regular graphs, no factor of i.i.d.
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algorithm can be optimal, provided that the degree d of the graphs in question is large
enough. Finally, in the second section of the chapter we prove a theorem from [3],
which essentially asserts that, given a factor of i.i.d. process on the d-regular tree (for
d > 3), the correlation of marginal distributions on vertices distant from each other
must be small. The result gives a quantitative measure of this “smallness”, giving an
upper bound on the absolute value of the correlation which decays exponentially as
the distance increases. This is among the most effective tools currently known to

determine whether a random process is a factor of i.i.d. process.



Chapter 1
Definitions, preliminary results

The purpose of this chapter is to give the basic definitions of the objects that we will
focus on throughout the thesis. In the first section we recall the notions from graph
theory and probability theory that we will use in the subsequent chapters. Then in
the second section we define factor of i.i.d. processes and various related concepts,

which will be the main object of our investigations.

1.1 Definitions, terminology

Graph terminology. We will use the word graph to mean a simple, undirected graph.
The vertex and edge set of a graph G will be denoted by V(G) and E(G), respectively.
The girth of a graph is the length of its shortest cycle. A function ¢ : V(G) — V(G')
is an isomorphism between the graphs G and G’ if it is bijective and for any vertices
u,v € V(G) the pair (u,v) is an edge in G if and only if (¢(u), ¢(v)) is an edge in G;
in the case when G = G’ we say that ¢ is an automorphism of G. The automorphisms
of a graph form a group under composition, which will be denoted by Aut(G). G is
said to be vertex transitive if the action of Aut(G) on the vertex set is transitive,
that is, for every pair of vertices u, v there exists an automorphism ¢ which maps u
to v.

Given a positive integer d, we say that a graph is d-regular if every vertex of
the graph has degree d. There exists a d-regular graph on n vertices if and only if n
is greater than d and nd is even: the “only if” direction is trivial by the fact that

the sum of the degrees must be even, while sufficiency can be shown with a direct

construction, e.g. let the vertex set be {0,...,n — 1} and draw an edge between
any vertex k and k + j (mod n) for j = 1,... ,g in the case that d is even and
j=1,..., (dgl), % otherwise. For d > 2 we define the (infinite) d-regular tree, denoted

by Ty, as the unique (up to isomorphism) connected d-regular graph containing no



cycles. Sometimes we distinguish a vertex o of T,; which we call the root. A random
d-regular graph on n vertices is a random variable that is uniformly distributed on

the space of d-regular graphs of size n.

Gaussian random variables. We recall some properties of the Gaussian dis-
tribution which we will use in Chapter 2. As usual, a real-valued random variable
is said to have standard normal distribution if its density function is of the form
flz) = (2n)2 exp(—’;—Z). The k-dimensional standard normal distribution is the joint
distribution of k£ > 1 independent standard normal variables. A (real) vector-valued
random variable is said to have a multivariate Gaussian or jointly normal distribution
if it is of the form AX +b, where X is a random variable with k-dimensional standard
normal distribution, A is an n x k real matrix and b is a vector of R", for some
positive n. A multivariate Gaussian is degenerate if its covariance matrix is singular;
otherwise it is non-degenerate (i.e. positive definite, since covariance matrices are
always positive semidefinite). It is a standard fact that there exists a jointly normal
distribution with prescribed mean p and covariance matrix X precisely if X is positive
semidefinite, and whenever it exists, it is unique.

We close this section by presenting a proposition concerning trivariate Gaussians
which we will need in Chapter 2. The statement and a sketch of the proof can be
found in [1].

Proposition 1.1. For a trivariate, non-degenerate Gaussian (Zy, Zy, Zs) with zero
mean we have
1 1

P(Zy >0,Zy,> 0,25 >0) = 3 In > arccos(corr(Z;, Z;)).
1<i<;<3

1.2 Factor of i.i.d. processes

In this section we formalize the concept of a factor of i.i.d. process outlined in
the introduction. A random process on GG is a collection of random variables X =
(Xo)vev(@)), Xo : 2 = R. The random variable X, is called a marginal of the process.
If the marginals are identically distributed and they are independent, we say that
they form an 7.7.d. process.

We first formalize the notion that an algorithm on a graph does not use global
information in a rather general sense. In the next definition, F' can be seen as an
algorithm which, upon receiving information (a real number) from each vertex of the
graph, constructs an output on each vertex. Our requirement is that the output on a
given vertex should not use global knowledge about “where” the vertex is within the

graph: if we permute the nodes (and the information they carry accordingly) with
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an automorphism of the graph, the output should be permuted in the same way, but

not changed, apart from that. This gives rise to the definition of a factor.

Definition 1.2. Let (Y,.A) be a measurable space. We say that a measurable
F:RY(©) — YV function is an Aut(G )-factor (or simply factor), if for any vector
v € RV vertex v € V(G) and automorphism ¢ € Aut(G) we have F(¢x), =
F(2)g-1(0), where ¢(24)uev () = (To() Juev(c)- In other words, F' commutes with the
action of Aut(G).

Measurability in the above definition is meant with respect to the natural product
o-algebras obtained from the Borel o-algebra on R and from A on Y’; that is to say,

the ones generated by the cylinder sets. In most cases Y is either R or a discrete set.

Definition 1.3. We say that the random process X is a factor of i.i.d. process if
it is equal in law to F(Z), where Z is an i.i.d. process and F : RV(®) — RV(©) g a
factor. Similarly, a factor of i.i.d. set is a random set that is acquired as a factor of
an i.i.d. process; formally it is a set of the form {v € V(G) : F(Z), = 1}, where Z is
an i.i.d. process and F : RV(@) — {0,1}V(9) is a factor.

Some authors (e.g. [2], [3], [4]) only allow the random labelling to have marginals
with uniform distribution on [0, 1]. This is not a real restriction, since any distribution
on R can be realized as a (measurable) function of the this one. When presenting a
paper, we will always follow the convention that the authors use.

Our main focus will be on factor of i.i.d. processes on d-regular trees. In this
context (or generally, in the case when G is vertex-transitive) one can give a different

formalization, which is sometimes more convenient to use.

Definition 1.4. Let T be the rooted d-regular tree and (Y,.4) a measurable space.
We say that a function f : RVTa) — Y is a rule function if it is measurable and
invariant under the action of automorphisms that fix the root. In other words, f
is spherically symmetric around the root. Given a random i.i.d. labelling of Z =
(Zy)vev(ry), the factor of i.i.d. process generated by the rule function is (X, )ev(z,),
with X, = f(¢,2), where ¢, is an automorphism mapping the root to v, acting on

the labels as before.

The factor of i.i.d. process in the above process is well defined because of the
assumption that f is spherically symmetric around the root. It is easy to see that
the two definitions given are equivalent in the sense that (after we fix a root on Ty)
a factor uniquely defines a rule-function and vice versa.

A simple example of a factor of i.i.d. process is one that, on each node, outputs
the sum of the labels of the node’s neighbours. This can be naturally generalized

into following class of factor of i.i.d. processes.



Definition 1.5. We say that a process X is a linear factor of the i.i.d. process Z if

there exists a sequence of real numbers ag, a7, ..., such that for each v € V(G)
Xy :Z ad(v,u)Zu - Z Zakzua
ueV(G) k=0 u=>0
d(v,u)=k

where d(v, u) denotes the distance of v and u in G.

So far we only required locality in the sense that the algorithm couldn’t use
any information about the global structure of the graph. For both practical and
theoretical reasons, it is often desirable to assume that the output of the algorithm

on a vertex only depends on a finite neighbourhood of said vertex.

Definition 1.6. We say that a factor of i.i.d. process X = F(Z) on the graph G is
a block (or r-local) factor of i.i.d. process if there is a positive integer r such that

for any vertex v € V(@) and labellings =,y € RYV(72)| whenever 2 and y are equal on
the r-neighbourhood of v, F(x), = F(y)..

Locality can be similarly defined in terms of rule functions. We will see multiple
examples of how block factor of i.i.d. processes allow us to make a connection between
results on infinite and finite graphs (in our case between T, and various finite d-
regular graphs). We end this chapter by showing that block factors can, in a sense,

approximate any factor of i.i.d. on Ty that has marginals with finite expected value.

Proposition 1.7. Let X = (X,)vev(r,) be a factor of i.i.d. process on the rooted
d-reqular tree, generated by the rule function f and some random i.i.d. labeling
Z. Assume that the marginals of X have finite expected value. Then there exists a
sequence of rule functions fi, fa, ..., such that the factor of i.i.d. process X* generated
by fi is a block factor and for any vertex v the marginals X! converge to X, both

almost surely and in L', as i — oo.

Proof. The proof is a simple application of well-known results from martingale theory.
The basic idea is to consider the rule function f as a random variable and let the
approximating functions f; be the conditional expectation of this random variable
with respect to ever larger neighbourhoods of the root o. This can be made rigorous
as follows. Let A denote the probability distribution of the labeling Z on (RY (7
B), where B is the product of the Borel o-algebras. Then f, considered as a random
variable on the probability space (RV(#), B, \) has the same distribution as X,.
Let p, be the projection from R (72 onto the coordinate corresponding to the
vertex v. Consider, for ¢ > 1, the o-algebra F; = o({p, : d(v,0) < i}), i.e. the
o-algebra generated by the projections in the i-neighbourhood of the root. Note that



o(U2, F;) = B. We claim that the sequence of functions f; = E(f|F;) has the desired
properties. First, since Ef < oo, the sequence fi, fa,... converges to E(f|B) = f
both almost surely and in L'; this is essentially the statement of Lévy’s zero-one law,
which is a corollary of the martingale convergence theorem. Furthermore, since f; is
Fi-measurable, it only depends on the i-neighbourhood of the root. The final step
is to show that for positive i, f; is indeed a rule function, that is, it is spherically
symmetric around the root. Let ¢ be an automorphism of T, that leaves the root
fixed and consider a set A € F;. Note that the action ¢ : RV(T¢) — RV(T4) is measure-
preserving, and so the measures A o ¢! and \ are equal. This means that, using the

change of variables formula for Lebesgue integration, we have

[ fenixa) = [ fdeo) = [ fax= [ pax= [ rax

where the third equality is justified since pA = {¢z : * € A} is easily seen to
be in F; and f; is the conditional expectation. This, then, by the uniqueness of
the conditional expectation shows that, apart from a set of measure zero, f; is
spherically symmetric. For the sake of completeness we note that we can choose f;
to be spherically symmetric around the root everywhere by choosing the conditional
expectation in an arbitrary way and then averaging it over all the (finitely many)
root-fixing automorphisms of the i-neighbourhood of the root.

Thus f;,7 > 1 is a sequence of rule functions generating block factor of i.i.d.
processes. An immediate consequence of the construction of the probability space
(RV{Ta) B, \) is that the convergence of f; to f implies the convergence of the
marginals X! to X,, both almost surely and in L'. The convergence of the marginals
on any vertex v can be similarly seen, using the observation that any root-fixing
automorphism ¢ is measure preserving as a function on this probability space, as
was noted before.

O
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Chapter 2
Independent sets

In this chapter we are going to examine a method of finding independent sets (sets of
vertices with no edges connecting any two of them) in graphs with certain properties.
Besides possible practical applications, this approach will give a lower bound on the
ratio of the size of the largest independent set compared to the size of the graph, a
number referred to as the independence ratio of the graph. Throughout this chapter

we will follow [1].

2.1 A survey of the problem

Our focus will be on finite d-regular graphs (for d > 3, and especially d = 3) with
large girth, in other words, graphs that locally look like the d-regular tree.

There have been numerous results regarding the independence ratio of d-regular
graphs, and its asymptotic behavior as either d or the girth goes to infinity. Since in
a tree every other node can be chosen to form an independent set, one could think
that the independence ratio would approach 1/2 as the girth goes to infinity. However,
Bollobés [5] showed that this is not the case for uniform random d-regular graphs:
while with high probability the number of small cycles in these graphs are small,
their independence ratio is bounded away from /2. A detailed survey of previous
upper and lower bounds can be found in [1]; examples of more recent development
in this area are [6] and [7].

The main result of this chapter is the following theorem (Theorem 1 in [1]):

Theorem 2.1. Fvery 3-regular graph with sufficiently large girth has independence
ratio at least 0.4361.

This was an improvement on the previous lower bound which had been 0.4352,

due to Kardos, Kral and Volec [8]. Note that this bound is computer-assisted in that
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the authors used a computer to calculate certain numerical integrals; however, one
can use simpler estimates to get a bound of 0.43. It is this latter bound that we will
prove, and while we will describe the method of proving Theorem 2.1, we will not
replicate the computations, which can be found in the appendix of [1]. This lower
bound has been improved as well since the publication of said paper, the current
best result (at the time of writing) being 0.44533 (see [7]).

We will examine two related methods. Both of them consists of randomly assigning
numbers to each node of the graph and then choosing vertices based on a rule in
such way that the chosen nodes will form an independent set. If we can compute the
expected size of the random set acquired in this way, we get a lower bound on the size
of the maximal independent set in the graph (and consequently on the independence
ratio).

The first approach is to choose those vertices which have a number assigned to
them that is larger than the numbers assigned to their neighbours. The set acquired
thus will of course be independent; moreover, if we assigned the numbers in a way
that is independent and identically distributed for each vertex, then the probability
of being chosen is the same for all nodes, so the expected size of the set is just the
size of the graph multiplied by this probability. To illustrate this approach, we prove

the following simple proposition using it:
Proposition. Every finite d-reqular graph has independence ratio at least 1/(d+1).

Proof. Given a d-regular graph, let the random variables X,,v € V(G) be indepen-
dent and uniformly distributed on [0, 1]. We will choose vertices according to the rule
described in the preceding paragraph. For any vertex vy with neighbours vy, ..., vy,
the probability of the event that v; has the largest label among these vertices is the
same for all 0 <7 < d, and these are disjoint events, exactly one of which must hold. It
follows that the probability of choosing vg is 1/(d+1). Since this probability is the same
for all nodes, the expected size of the resulting independent set is [V(&)l/(d+1), implying

that there is an independent set at least this size, which concludes the proof. O

The second approach is more complex, but yields better results. This time we fix
a threshold 7 € R, and keep only those vertices which have a number smaller than 7
assigned to them. With the right threshold, the remaining components of the graph
will be small with high probability, and so under certain circumstances (such as the
graph not containing short cycles) they will often be trees, from which we can choose
large independent sets.

It is easily seen that both of these are examples of factor of i.i.d. independent sets

(assuming that the random labeling is an i.i.d. process). Furthermore, in both cases
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we can easily modify the algorithm in a way that produces another independent set
that is disjoint from the previous one (taking the vertices with smaller numbers than
their neighbours’, and keeping only the vertices having a larger number than the
threshold, respectively). The two subsets taken together form a bipartite graph, and
so we acquire lower bounds for the relative size of the maximal induced bipartite
graph as well. Thus, a byproduct of our proof will be the following theorem (Theorem
2 in [1]):

Theorem 2.2. Every 3-reqular graph with sufficiently large girth has an induced

subgraph that is bipartite and which contains at least a 0.86 fraction of the vertices.

Before being able to prove Theorem 2.1 and Theorem 2.2, we are going to need
some preliminary results concerning the so-called Gaussian wave function and its

approximation with factor of i.i.d. processes.

2.2 The Gaussian wave function and its proper-
ties

Existence of the Gaussian wave function. As alluded to before, we will first
work on the infinite d-regular tree. Our aim is to choose an invariant process in a
way that makes it feasible to calculate certain non-trivial probabilites. It turns out

that a particular Gaussian process will be suitable.

Definition 2.3. A process X on T} is a Gaussian process if for every v € V(T}) the
random variable X, has zero mean and for any finite subset vy, ..., v, of V(T}) the
joint distribution of (X, .., X,,) is a multivariate Gaussian. Furthermore, we say
that a Gaussian process X is Aut(T,)-invariant or simply invariant if for any ¢ €

Aut(Ty) the process (Xgw))vev(r,) is equal in law to X.

Since the joint distribution determines the marginal distributions (and since T}
is a transitive graph), in an invariant Gaussian process each X, must be identically
distributed. On the other hand, they need not necessarily be independent.

The joint distribution of a Gaussian process is determined by the covariances
cov(Xy, Xy), u,v € V(Ty). This, by the Kolmogorov extension theorem, is a conse-
quence of the fact that a multivariate Gaussian is determined (in distribution) by its
expected value and covariance matrix.

Note that for an invariant process these covariances only depend on the distance

of u and v, which lets us define the covariance sequence corresponding to the process.
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Definition 2.4. The covariance sequence of an invariant process X on Ty is the
sequence oy, 01, . . ., where o = cov(X,, X,) for some vertices u,v with distance k

in Td.

By the preceding paragraph, whenever there exists an invariant Gaussian process

with a given covariance sequence, it is unique.

Proposition 2.5. For any real A\ with |\| < d there exists a non-trivial invariant

Gaussian process X on Ty such that with probability 1 the equation

Z X, =2X,
ueN (v)
holds for every vertex v, where N(v) C V(Ty) is the neighbourhood set of v. If we
also require the variance of each X, to be 1, then the joint distribution of such a
process is unique. We will refer to this process as the Gaussian wave function with

eigenvalue .

Proof. Suppose for the moment that the process described in the proposition exists;
then, multiplying by a constant, we get another such wave function, and so by choosing
a suitable constant we may assume that each X, has variance 1. This process, by
the preceding discussion, is determined by the covariances og = 1,074, ..., and, given
any vertex vg and its neighbours vy, ..., vg the equation 0 = X, + ...+ X,, — AX,,
holds with probability 1. Thus we get

0 = cov(Xy, 0) = cov(Xyy, Xoy + ... + Xy, — AX,,) = doy — Aoy (2.1)

Similarly, if the node u has distance k from vy, then it has distance k — 1 from one

neighbour of vy and distance k£ 4 1 from the others, and so
0 =cov(X,,0) =cov(Xy, Xp, +...+ Xy, = AXy,) = (d—1)op 41 + 051 — Aop. (2.2)

holds as well.

These equations, taken together with the fact that oy equals 1, give a linear
recurrence relation which the covariance sequence must satisfy. Let o, k > 0 be
the unique solution to this recurrence. In particular, o1 = 4 and oy = V*=d)/4(d-1).
Then it suffices to construct an invariant Gaussian process on T,; with covariance
sequence oy. We will define the process recursively for every finite subset of V(T});
the statement will then follow from the Kolmogorov extension theorem.

First we start with two neighbouring vertices u and v. Since the matrix

1
Y= o1
01 1
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is positive semidefinite for |\| < d, there exists a bivariate Gaussian (X,, X,) with
covariance matrix > and zero mean.

Now suppose that we have already defined X,,v € S where S is the vertex set of
a finite subtree Ty[S] of Ty, such that for each u,v € S, cov(Xy, Xy) = 0gpuv). Let
vy be a leaf (a vertex with degree 1), with its unique neighbour in 7,[S] denoted by
vg, and d — 1 other neighbours vy, ...,v4-1 in T;. We define X,, fori=1,...,d -1
as a linear combination of X,,, X,, and Y;, where (Yi,...,Y; 1) is a multivariate
Gaussian independent from any of the already constructed X,, with a covariance
matrix to be specified later on.

That is, we set

X, :dileo—diled—i—Y;, i=1,...,d—1

A straightforward calculation shows that cov(X,,, Xy) = 04, for any u € S. We
also need to ensure that var(X;) = 0¢ and cov(X;, X;) = oy for 1 <i,5 <d—1,i # j.
These conditions can be satisfied by suitably choosing a = var(Y;) and b = cov(Y;, Y;):

by solving the equations

A\’ 1)’ 22
og = var(Xi) = <d—1> + (d—l) — mm + a, and

A 1\’ 2\
09 = COV(XZ‘,XJ') = (d—l) -+ <d—1> — WUI + b,

C(d—2)(d? - 22) a2
da—1g =Ty

All that remains to show is that there exists a multivariate centered Gaussian

we get

with these covariances; to this end, we have to establish that the covariance matrix
of (Y1,...,Yys_1) is positive semidefinite, or equivalently, that its eigenvalues are
non-negative.

The covariance matrix can be written in the form (a —b)I +bE, where every entry
of E; ; is 1, and I is the identity matrix. Then for any eigenvalue ;1 and corresponding
eigenvector v,
b—a-+ By

b

where v] = Z?;ll vj for 1 < ¢ < d — 1. This shows that either y = a — b or otherwise

o = ((a =0 +bE)v = (a—bv+b' <

v is the same in all coordinates, in which case p = a + (d — 2)b. So the matrix is
positive semidefinite precisely if @ > b and a > —(d — 2)b. Both of these inequalities
are satisfied whenever |A| < d, which shows the existence of (Y3,..., Y, 1).

We succeeded in defining the random variables X, on a larger connected subset

S"=SU{vy,...,v4-1}. If we choose the leaves in the right order (e.g. first in, first
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out) we can define X, on any finite connected subset by iterating this procedure; so
the statement follows from Kolmogorov’s extension theorem.

]

In the following, we will state two propositions without proof, although with some

explanation. The proofs can be found in (respectively) Section 3 and Section 2.1 of

[1].

Approximation with factor of i.i.d. processes. The next proposition provides
us with a critical tool; it allows us to approximate the Gaussian wave function in a
way that can be “projected” onto finite regular graphs as well (provided that their
girth is large enough). This is the reason why we can work on Ty, which, in a sense,

has a simpler structure than arbitrary finite regular graphs.

Proposition 2.6. For any real number A with |\| < 2v/d — 1 there ezists a sequence
of block factor of i.i.d. processes that converge in distribution to the Gaussian wave

function on Ty with eigenvalue .

Here, the factor of i.i.d. processes are meant to be factors of the i.i.d. labelling
where each marginal is a standard normal variable. We note that in Chapter 3 we
will prove Theorem 3.8, which implies as a corollary that this bound on |A| is sharp,
and in fact the Gaussian wave function with eigenvalue A cannot be approximated
by (not necessarily block) factor of i.i.d. processes whenever |\| > 2v/d — 1.

Percolation of the Gaussian wave function. One of our approaches to construct
independent factor of i.i.d. sets is to choose a threshold 7 and only leave the vertices
with labels less than 7. This procedure (and also the resulting set) is called a
percolation of Ty;. As we increase or decrease the threshold, the probability that a
given vertex will be part of the percolation changes accordingly. Our goal is to choose
T to be as large as possible, while making sure that the connected components in the
resulting set are small with high probability. Intuitively, we want to find a balance
between “throwing out” too many vertices and leaving the graph “too connected”
(which makes it difficult to choose independent sets). The following proposition

provides a suitable 7 in the case of d = 3.

Proposition 2.7. Let X be the Gaussian wave function on T with eigenvalue
A = —2v/2 and consider the set S; = {v € V(T3) : X, < 7}. If 7 < 0.086, then each

connected component of S, is finite almost surely.

In fact, 7 = 0.086 is the value used to achieve the result stated in Theorem 2.1.

The choice of a negative value for \ is sensible because it ensures that the labels on
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neighbouring vertices have negative correlation (see Equation (2.1)), which decreases
the probability of both of them being smaller than the threshold, thus making it less

likely that the percolation will leave large connected components.

2.3 Constructing independent sets

In this section we will show how to find independent sets in 3-regular graphs with
large girth using the tools of the previous sections. The procedures described in the
following could be carried out on d-regular graphs for any d > 3, but the computations
required for rigorously proving lower bounds quickly grow in difficulty as d increases.
Even for d = 4 the method, in its current form, seems to be inefficient for finding
theoretical bounds.

We will examine the two approaches outlined in the beginning of the chapter.
In both cases we will give a procedure that, given a labelling of the vertices of the
graph, constructs an independent set in a way that is invariant (with respect to
the automorphisms of the graph) and measurable. Moreover, whether a given node
is to be included in the set will only depend on the labels of the vertices in an
N'-neighbourhood of the node, for a fixed integer N'. If we choose the labelling in
a random manner, we obtain a random independent set in this way, and then the
expected size of this set gives a lower bound on the size of the largest independent
set.

The value of the results in the preceding section is that they allow us to work on
Ty and choose the Gaussian wave function corresponding to the eigenvalue —2v/2,
from now on denoted by X, as our random labelling. This works as follows: since both
X and our procedure is invariant, and 73 is transitive, the probability p that a given
vertex will be an element of the resulting set is the same for all the vertices. Then, by
Proposition 2.6, for any € > 0 we can find a linear block factor of i.i.d. process Y such
that if we replace X by Y and carry out the same procedure, the new probability of a
node being chosen will be at least p — e. Since Y is a block factor, for any v € V(73)
the random variable Y, only depends on an N-neighbourhood of v for some fixed
N. Thus, whether a vertex is chosen is determined by its (N 4+ N’)-neighbourhood.
As a consequence, we can carry out this procedure on any graph with girth at least
N + N’ without changing the probability of a vertex being chosen.

To summarize, for any number p’ < p there exists a number r such that in any
3-regular graph with girth at least r the independence ratio is at least p’. As a result,

our goal in the following is to maximize the probability p.
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We recall that, by Equations (2.1) and (2.2), the first three terms of the covariance

sequence for X are
op=1,01=——; 00 = —.

First approach. We choose those vertices which have greater labels assigned to
them than their neighbours. To calculate this probability, we will use the following
identity from Proposition 1.1 that holds for any trivariate non-degenerate Gaussian
(Zl7 Z27 Z3):
1 1
P(Z,>0,2y>0,Z3>0)= - — — arccos(corr(Z;, Z;)). (2.3)
2 4w 1<i<j<3
Then if vy € T3 is an arbitrary vertex with neighbours vy, ve,v3, and Z; =

Xy — Xu;, 0= 1,2, 3, the correlations in question are

(2.7 cov( Xy, — Xogs Xo, — Xug) o9 —201+09 1+2V2
corr(Z;, Z;) = = = .
! \/var(Xvi — Xy )var(X,, — X,,) 200 — 204 4
Therefore
1 3 1+ 22
p = P(vy is chosen) = 5 Ir arccos(i) = 0.42982...
7r

So any 3-regular graph with large enough girth has an independent set that

contains a 0.4298 fraction of the vertices.

Second approach. We fix a 7 € R threshold and consider the connected components
of the subgraph with vertex set S = {v : X, <7} C V(T3). If the size of a connected
component is small (smaller than a number N’), then we choose an independent
set from it containing at least half of its vertices in an invariant and measurable
way; otherwise, we simply leave the component out. A suitable way of choosing is
the following: since the subgraph is a tree, we can partition it into two independent
sets in a unique way. If the size of the component is 2k — 1 for some positive integer
k, then we choose the larger one, that is, the one with size k. If the component
contains an even number of vertices, we choose the set which contains the vertex
with the largest label. This procedure is invariant and measurable, and the choice
whether a node is to be included in the resulting set only depends on the labels in
its N'-neighbourhood.

Let pi be the probability that the size of the connected component of a given
vertex in the subgraph T3[S] is k, with & = 0 meaning that the vertex is not in S (these
probabilities are the same for all nodes). We can ensure that each component is finite

almost surely by choosing 7 to be under the critical threshold (see Proposition 2.7),
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which means that Y72, pr = 1. Then the probability that a vertex is chosen by the

procedure described in the preceding paragraph is
Tk 1Y

Z of — 1P2k—1 + 3 Zp%
2k —

If N' — oo, this converges to

P

1
2

(o) 1 o0
ka 1+ 35 (1—]90—229%—1) 5 (1 —po) + Z )p% 1-

k=1
Our goal then is to calculate (or estimate) the probabilities poy,_1. For the optimal
result this is done by choosing 7 to be as large as possible and then numerically
computing the needed probabilities to high precision. However, for the threshold
7 = 0 one can obtain estimates without the use of a computer.

7 = 0: In this case py = P(X, > 0) = /2. Given a vertex v with neighbours
(in T%) vy, v9, v3, the probability p; can be expressed as P(X, < 0,X,, > 0,X,, >
0, X,, > 0). However, since X is a Gaussian wave function with a negative eigenvalue,
whenever X, X,,, X,; > 0, X, < 0 must also hold (with probability 1). So, using
Proposition 1.1, we can write

1 3
m=P(X,, >0,X,>0X, >0)= 2 1n arccos(corr(X,,, Xu,)),
m

where corr(X,,, X,,) = 02 = 5/6. We can use the trivial estimate por_1 > 0 for k > 2

to arrive at the lower bound

1 3 5
5 % arccos(é) = 0.4300889...

which, at the time of the publication of [1] was the best lower bound proved without
the use of a computer.

We can also carry out the same procedure for the vertices with labels larger than
the threshold, which gives another independent set that is of the same size as the
previous one but disjoint from it, thus proving Theorem 2.2.

7 = 0.086: This is the largest value of 7 that has been shown to produce only
finite components almost surely (see Proposition 2.7). Note that this is not necessarily
the optimal threshold value: the authors of [1] claim that by using 7 = 0.12 and
N'" = 200, computer simulations suggested that the probability of a vertex being
chosen was above 0.438. Nonetheless, a rigorous lower bound required the finiteness
of connected components.

Even this case relies heavily on computing certain integrals numerically, the
details of which we will leave to [1]. We will only note that the lower bound of 0.4361,

proving Theorem 2.1, was achieved by introducing the numbers p), which denote the
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probability that any given path of length £k in 73 will actually be a component after
the percolation. Of course p; = p); one can also see that p; = 9p}, since a component
of three vertices must be a path, and for any given vertex there are 9 paths of length
3 containing it. For larger values of k, cxpj, < pr, where ¢ is the number of paths
of length k containing a given vertex. It is the numbers p, ps, pt that the authors
numerically compute (and then bound the error of the computation) to arrive at
Theorem 2.1.
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Chapter 3

Limitations of factor of i.i.d.

algorithms

In the preceding chapter we have seen a method of finding independent sets in
d-regular graphs with large girth using factor of i.i.d. processes. We noted that while
this method works for all d > 3, computational difficulties make it infeasible to use it
for proving theoretical lower bounds on the independence ratio of such graphs even
for d = 4.

The case of large d has been studied as well in the context of factor of i.i.d.
algorithms, which led to a remarkable result, though of a markedly different kind
from that of the previous chapter: in 2013, Gamarnik and Sudan [2] proved a theorem
pertaining to random d-regular graphs, which, in effect, shows that in that setting,
for large enough d, the sort of tools that we have seen in the previous chapter will
almost never produce independent sets close to the largest possible.

This shows that, while algorithms based on factor of i.i.d. processes have been
used with success for finding various graph-theoretic structures, such as matchings [9],
[10] and colourings [11], there are cases when the optimal result is not achievable using
them. Thus the result settled, with a negative answer, a conjecture of Hatami, Lovasz
and Szegedy [12], predicting that these algorithms can provide optimal solutions for
various common optimization problems on graphs (see Conjecture 2.4 in [2]).

Though it is not within the scope of this thesis to fully describe the (at times
quite computation-heavy) proof of this result, in the first section of this chapter we
provide a brief overview of the lines of thought in [2], and of the subsequent work of
Rahman and Virag [4], who strengthened the result. The authors of [4] also introduce
the concept of entropy in the context of random processes on graphs, and prove a
general criterion that every factor of i.i.d. process must obey. We will expressly state

this condition as it applies to processes T}.
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This leads us to the question of characterizing factor of i.i.d. processes on the
infinite d-regular tree. While so far there is no known necessary and sufficient condition
for deciding whether a process on T} is a factor of an i.i.d. process, there have been
various results in this area (see, e.g., [13], [14] and the references therein). In the
second section of the chapter we prove a theorem from [3], giving us a necessary
condition on pairwise correlations which the marginal distributions of such a process
must obey. We will introduce the notion of graphings, and in particular the so-called
Bernoulli graphing, which will make it possible for us to employ tools of functional
analysis in our examination of factor of i.i.d. processes.

The aforementioned condition on entropy and the condition on correlations are
both tools to decide whether a process can possibly be a factor of i.i.d. process.
We note that they are not directly comparable in strength: there are examples of

processes that obey one condition but fail the other, in both cases.

3.1 Non-optimality for independent sets

In this section we give the exact formulation of the statement proved by Gamarnik
and Sudan, and then outline its proof. Before we can even state the main theorem,

we need to introduce some notation and preliminary results.

Asymptotics of the independence ratio. In order to establish the non-optimality
of factor of i.i.d. algorithms we have to first formalize the notion of optimality in
this context. This has been made possible by results of Bayati, Gamarnik and Tetali
[15], and Frieze and Luczak [16]. Let oy, denote the independence ratio of a random
d-regular graph on n vertices (for the pairs (n,d) when such a graph exists). The
first of the aforementioned papers has shown that for any positive d, the sequence
of random variables {a4, : n > d,nd is even} converges in probability to some
(non-random) number ay. The second result, in turn, is that the sequence o for
d=1,2,..., is asymptotically 2lgd/q. In effect, if d and n are large enough, then

with high probability the independence ratio of G, is close to 2legd/q.

Factor of i.i.d. algorithms. We also need to clarify what we mean by a factor of
i.i.d. algorithm. As in the previous chapter, we will consider factor of i.i.d. processes
on the d-regular tree which construct independent sets, and then use a method of
projecting these sets onto finite graphs. The authors of [2] use the rule function
formulation of factor of i.i.d. processes. In the present case this means that we
distinguish a vertex o of Ty, called the root, and we construct a random set on T}

using a rule function f : [0,1]V¢ — {0, 1} which is spherically symmetric around
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the root (see Definition 1.4). In our case we also require f to have the property that
for any neighbouring vertices u,v and any labelling = € [0,1]V), at most one of
f(oux) and f(pyz) is equal to one, where ¢, and ¢, are automorphisms that map
u and v respectively to the root, acting on [0, 1]Y"® in the usual manner. We will
call (after [2]) a decision function with this property an independence function. A
factor of i.i.d. algorithm for constructing independent sets is, then, the procedure of
putting i.i.d. labels, each with uniform distribution on [0, 1], on the vertices of Ty,
and then using an independence function to generate an independent set.

We will measure the optimality of such an algorithm by the probability P(f(X) =
1) = E(f(X)), which we will denote by a(f); this is also referred to as the density of
f. Actually, to bridge the gap between T, and finite d-regular graphs we will consider
independence functions which only depend on some finite neighbourhood of the root.
However, this is not a real restriction in the sense that, by Proposition 1.7, any
independence function can be approximated by a local independence function in a
way that the density of the latter is arbitrarily close to the density of the former.

Given an r-local independence function on 7, we can construct an independent set
in G4, in the following way: we decorate the vertices of G, with i.i.d. labels, each
having uniform distribution on [0, 1]. Then if a vertex v has an (r + 1)-neighbourhood
isomorphic to a tree, we can apply f (taking v to be the root) to decide whether to
include it in the set; we simply leave out the nodes whose (r 4 1)-neighbourhood is
not a tree. It is easy to see that the resulting set I, , is independent.

This procedure is very similar to the one used in the previous chapter, with
the difference that we did not constrain ourselves to graphs with large girth. An
immediate question is whether the density of an independence function is adequate
in describing the size of the independent set it generates in Gg,. It is clear that
this method of projecting is only efficient if “most” of the vertices in the graph have

tree-like neighbourhoods. This indeed holds, according to Proposition 2.2 of [2].

Proposition 3.1. Let B,(Gg,) denote the number of vertices in G, which have
r-netghbourhoods not isomorphic to a tree. Then for any d and r, the sequence of

random variables %BT(Gd’n) converges in probability to zero, as n goes to infinity.

This immediately implies that E(B,.(Gq4,)) = o(n): indeed, for any e, if n is
sufficiently large, then P(B,(G4,) > ne) < €, and so by separately estimating the
expected value on {B,(Gq,) < ¢} and {B,(G4,) > €} and using the fact that
B,(G4n) < n, we obtain

1
ﬁE(Br(Gdyn)) <e+e=2.
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Hence the expected relative size of the independent set generated by f is

E<|]Gd’”|> = 1E< > I(vis chosen)) = lOz(f)(n—I[‘E(BHl(Gd,n))) = a(f)(1-o(1)),
n N oev(Gan) n
where the second equality is obtained by interpreting the sum of indicator variables as
a random sum of B,(Gy,,) i.i.d. variables, and then using the fact that E(XY, X;) =
E(N)E(Xj;), for i.i.d. variables X; which are independent from N as well.
This shows that the expected size of the “projected” set is close to the density,
for sufficiently large n. Thus we can define the number &; = sup, sup{a(f,) :
fr is an r-local independence function} to describe, in some sense, the largest size
of independent sets that can be constructed using the factor of i.i.d. algorithms
in question. Note that, as mentioned before, Proposition 1.7 implies that &; =

sup{a(f) : f is an independence function}.

The results of Gamarnik and Sudan. Now we are in the position to state the

main result of [2] (Theorem 2.5 in the paper):

Theorem 3.2. For every e > 0 and for all sufficiently (depending on €) large d,

&
IS8
—

<4

1
Oéd_2 2\/§

That is, if d is large enough, then for any factor of i.i.d. algorithm, with probability

+ €.

tending to 1 as n goes to infinity, the expected size of the independent set in a
random d-regular graph Gy, given by the algorithm is a multiplicative factor smaller
than the largest independent set in the graph.

The proof in [2] has two main building blocks, both of which consists of ex-
amining overlaps of independent sets: the first (Theorem 2.6 in the paper) shows
that independent sets in random regular graphs exhibit a “clustering” phenomenon,
that is, for any pair of large enough independent sets, they either intersect almost
nowhere or almost everywhere. To put it in a more quantitative manner, let g and z
be chosen such that 1/v2 < 8 <1 and 0 < 2z < /232 — 1, and denote by K(z) the
integers between U=20n1o8d o q Ut2nlogd ‘mhan the probability that there exist two

d d
independent sets in a random graph G, with size at least n% such that the

size of their intersection is in K (z) goes to zero as n tends to infinity.

As B — 1, z can be chosen arbitrarily close to 1 as well, and so we can conclude
that in most large enough regular graphs, the intersection of two independent sets
that are close to optimal in size is either negligible or very large.

On the other hand, Theorem 2.7 of the paper asserts that this is not the case for

independent sets generated by factor of i.i.d. algorithms. They use a technique of
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coupling random variables so that their correlation can be controlled by a parameter
p € [0, 1]. The idea of this is simple: given two labellings X and Y of the graph G,
both with uniform distribution on [0, 1]™ and independent from each other, construct
the random variable Z such that Z, = X, with probability p, and Z, = Y,, otherwise,
independently for every vertex u € V(G).

Now for any independence function f with density a(f) we can examine the
independent sets Iy and I, generated by f with labels X and Z respectively. For
p =1, X is equal to Z, and so the expected size of the intersection of Iy and I,
is the expected size of the sets themselves, which is a(f)n 4+ o(n). On the other
hand, for p =0, X and Z are independent, in which case it is not hard to see that
the expected size of the intersection is a(f)?n + o(n) (essentially, if a large enough
neighbourhood around a vertex v is a tree, then the choice to include v in Ix is
independent from the choice to include it in Iz, and the probability of both is a(f)).

Theorem 2.7 of the paper then states that any intermediate intersection size can
be produced with the right choice of p. In fact, it is shown that the probability that
a vertex is chosen under both labellings depends continuously on the parameter p,
so any value between a(f)? and a(f) can be achieved.

Intuitively, these two propositions imply that factor of i.i.d. independent sets can
not be close to optimal in size, and indeed, the proof of Theorem 3.2 depends mainly

on their appropriate use.

The result of Rahman and Virag. In their paper, Gamarnik and Sudan conjec-
tured that the multiplicative factor in Theorem 3.2 can be decreased to 1/2, claiming
that the extra factor of 1/2v2 is just an artifact of analysis. In 2015, Rahman and
Virdg published [4], which affirms this conjecture. We only note here that their
method is to consider a sequence of independent and identically distributed labellings
X;,1 > 0, and the sets I; generated by a factor f with the labels being the p-coupling
of Xy and Xj;, as described earlier. They then derive inequalities for the intersection
densities of any & of them, in contrast with [2], where only the case k = 2 is analyzed.
The main result is then obtained from the careful analysis of these inequalities.
The inequalities, in turn, depend crucially on a condition that the so called
entropy of the local algorithm in question must satisfy. We conclude this section by
stating this condition in the context of processes on the infinite d-regular tree, as

formulated in another paper by Rahman [17].

Definition 3.3. The entropy of a discrete probability distribution u is

H(p) = > —plz)logpu(x).

z€support(u)
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Theorem 3.4. Let X be a factor of i.i.d. process on Ty, d > 3, taking values from
{0,1}YVT2) . Moreover, let u,v € V(Ty) be two neighbouring vertices, and denote by
Px and mwx the distributions of (X, X,) and X,, respectively. Then the following
holds:

CH(Py) ~ (d~ DH(nx) 2 0.

3.2 Correlation decay

The results in this section can be seen as an example of exploiting the highly
symmetric nature of the d-regular tree to gather information about random processes
on it. To elaborate, we will use the symmetry of T, to construct a special graph
named the Bernoulli graphing (denoted by By) and a corresponding operator on the
Hilbert space L?*(€2), where Q4 = V(B,). We will also describe a way to transform
a rule function f of a factor of i.i.d. process on the tree into a function f on Qg
in an integral-preserving way. If f is square-integrable (that is, the factor of i.i.d.
process has marginals with finite variance), then the transformed function f will
be in L*(€2,), and this will allow us to use tools of functional analysis to prove a
theorem about the correlations between the marginals of factor of i.i.d. processes.
First, we give the general definition of the term graphing, a concept which arises

in the theory of sparse graph limits (as in [12]).

Definition 3.5. Let X be a Polish (i.e. separable, completely metrizable) topological
space with a measure v on its Borel sets. A graphing is a graph G on V(G) = X with
bounded maximal degree and Borel measurable edge set F(G) C X x X such that

for all measurable sets A, B C X we have

/ e(x, B)dv(z) = / e(x, A)dv(x),
A B
where e(z, S) is the number of edges from z € X to S C X.

Given a graphing G we can view it as an operator on the space of functionals
from its vertex set to the complex numbers by the following definition: for f : X — C
let G f be the function

Gfx)= > f(v), forzeX.

(z,w)EE(QG)

Thus we can view G as linear operator on L?(X). It turns out that the integral
condition in the definition of graphings is equivalent to the self-adjointness of this

operator:
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Proposition 3.6. Let X and v be as before, and let G be a graph on V(G) = X with
bounded mazximal degree and Borel measurable edge set E(G) C X x X. Then G is a
graphing if and only if the corresponding operator on L*(X) is self-adjoint.

Proof. Let A, B be measurable subsets of X with corresponding indicator functions
I4,Ip. The crucial observation is that GIp(z) = e(x, B) for all x € X, which is clear

from the relevant definitions. Then we have

(I, GI) :/XIA-QIB dz/:/AQIB dy:/Ae(x, B) dv(z).

Similarly,

(QIA,IB>:/XQIA-]BdV:/BgIAdl/:/Be(x,A)dy(x).

This shows that self-adjointness implies that G is a graphing, and the reverse
implication is true for indicator functions. But self-adjointness on the indicator
functions implies self adjointness on any function from L?(X), since by linearity it
extends to simple functions, and then the fact that any function in L*(X) is a limit
of such functions, together with the continuity of the inner product, finishes the

proof. O]

If the graphing G is d-regular, then the constant functions are eigenfunctions of G
(with eigenvalue d). It is easy to see that orthogonal complement LZ(X) of functions
with integral zero is an invariant subspace with respect to G; we will, following [3],
denote the norm of the graphing on this subspace by o(G).

We now construct the (d-regular) Bernoulli graphing, denoted by By. Consider
the probability space ([0,1]YV(74) B, \), that is, the space of labellings of the rooted
d-regular tree with the product o-algebra B and the product measure A\ (taking the
Lebesgue measure on [0, 1] for each vertex v). We construct an equivalence relation
on this space by saying x ~* y if and only if x = ¢y, where ¢ is a root-preserving
automorpishm of T;. We define Q4 = [0, 1]V (%) /~* to be the vertex set of B;. We can
define a sigma-algebra on Qg with the canonical quotient map ¢ : [0,1]V7%) — Q4 by
A={ACY :q ' (A) € B}. Then (Qq4, A, v) is a probability space, with v = Ao ¢g~*
being the pushforward measure. We connect two elements [z], [y] of €, if for the
corresponding labellings z,y there is an automorphism ¢ such that ¢ maps the root
to one of its neighbours and x = ¢y. This is easily seen to be well defined and
symmetric. We also note that this implies that two vertices are of distance k in By if
and only if there is an automorphism that maps one of the corresponding labellings
into the other and the root into a vertex that is of distance k in Ty. It is not difficult
to see that almost all vertices of By have a connected component isomorphic to T,

(in the sense that the set of such vertices has measure 1).
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It can be shown that the d-regular graph By constructed this way is a graphing
(see [12]). We will use Theorem 2 of [3], stating that o(B,) < 2v/d — 1 for d > 3. The
authors of said paper call a d-regular graphing Ramanujan whenever it obeys this
inequality.

The following discussion will establish the connection between factor of i.i.d.
processes and the Bernoulli graphing. Let f be the rule function of some factor of
i.i.d. process on Ty. The fact that f is spherically symmetric around the root allows
us to define the function f by setting f([z]) = f(z), for z € [0,1]VT2). In other
words, f = f o q. We also have that for any measurable set B € B, if the integral of
f on B is finite, then the following holds:

/deA:/Bfoqd/\:/q(B)fd()\oq1):[1(B)fdy,

the second equality being a general identity for Lebesgue integrals (for measurable ¢).
In words, the operation f — f, defined for functions that are spherically symmetric
around the root, preserves the integral.

The last tool we need is the following result from the domain of functional analysis.
A proof can be found in [18] (Theorem 9.9-2).

Proposition 3.7. Let T': H — H be a bounded self-adjoint linear operator on a
complex Hilbert space H. Then for any polynomial p with real coefficients,

Ip(T) || < max{|p(z)| : = € [Tl T[]}
Now we are ready to state and prove the main theorem of this section.

Theorem 3.8. Let X be a factor of i.i.d. process on the rooted d-reqular tree, d > 3,
generated by the rule function f : [0,1]V79) — R. Let us also assume that X, has

finite variance. Then for any vertices u,v of T, with distance k, the following holds:

2% 1\
X, X)) < [kr1 -2 .
|corr( )| ( d) ( — 1)

Proof. Since X is an invariant process, the correlation between two of its marginals
only depends on their distance, so we can assume that one of the vertices in question

is the root o. Furthermore, the marginals of X are identically distributed, and

X,—EX, X,—EX,
corr(X,, X,) = corr ( ) ;

\/var(Xo) 7 \/var(Xv)

so we can assume them to have zero mean and unit variance (i.e. we can replace f

h fflEXo

wit .
var(X,)

28



The proof consists of two steps. First, we show that the correlation of the marginals

- (k) 7
can be expressed as the inner product (f, %

obtained by connecting two elements whenever their distance is k£ in B;. Then we

bound this inner product by expressing the operator Bc(lk) as a polynomial of By and

), where Bc(lk) is a graphing on Qg

applying Proposition 3.7. We note that we will actually not use the fact that Bc(lk) is
a graphing, though it will follow from expressing the corresponding operator as a
polynomial of By, since this shows its self-adjointness.

Step one: In the following we fix a positive integer k, and write © ~ v whenever
u,v € V(T;) have distance k. Since we assumed zero mean and unit variance, we
have that corr(X,, X,) = cov(X,, X,) = EX,X,. Since this covariance only depends
on the distance of 0o and v, we can express it as the average of the covariances
cov(X,, Xy), for u ~ 0. Also we recall the fact that X, has the same distribution as
f viewed as a random variable on the probability space ([0, 1]V B, X). It follows
that

corr(X,, X,) = d(d—ll)k‘—l > EX,X, = d(d_ll)k_l/f(x) Y f(dur) dA(2),

o~y o~y

with ¢, being an automorphism such that ¢,(0) = u, for every u ~ z. The function
g(x) =3, f(¢ux) is spherically symmetric around the root. This implies that last
term is equal to )

W /Q ) f-gdv.

Our goal is to show that g = Bc(lk) f, as this will imply that the above integal is
equal to the claimed inner product. If [x] and [y]| are neighbouring vertices of Bgf),
then there is a Ty-automorphism ¢ such that o ~ ¢(0) and ¢x = y. This means that
for u = ¢(0), the ¢, in the definition of g can be taken to be this ¢. In fact, with
probability one (whenever no two coordinates of = are equal) there is a one to one
correspondance between neighbours of [z] in B((lk) and vertices u that are of distance

k from x. That means we have, for almost all [z] € Q,

~ r3 3 k) ¥
i([2) = g(x) = X f(dur) = X fllou) = X f@) = (B )(la)),
o o (l2].2") e E(BYY)
as desired.
Step two: For any bounded linear operator T on a Hilbert space and an arbitrary
element of the space z, we have [(Tx,z)| < || Tz| - ||| < [T - ||z||?, using the

Cauchy-Schwarz inequality and the definition of the operator norm. In our case, since

~ ~ (k)
f € L%(Qq) and || f|| = 1, this implies that it’s sufficient for us to bound g (d(afdl)k1>

from above.
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Let U, for n > 0 denote the Chebyshev polynomials of the second kind, i.e.
Up(z) = 1,Ui(x) = 2z and for n > 2,U,(x) = 22U,_1(x) — U,_o(x); also, let
U_1 = 0. We define the polynomials

d—1 1
qn(x) =\ ——U,(v) — ——=U,2(x), forn > 1.
d d(d—1)
Note that each g, is a linear combination of Chebyshev polynomials, thus they satisfy

the same recurrence relation.

We claim that
Bc(lk) - 1 B,
d(d — 1)1 d(d — 1)k—1% 2v/d—1)°

To show this, the key observation is that the operators Bc(lk) satisfy the following

recurrence relation:

BY = By, BY = B3 - dl,
BY* = B,BY — (¢ - 1)BYF Y k> 2.

The first line is self-explanatory, and the second can be seen by noting that for a

function g € L(X) and z € X, we have

(BaB @) = > BPg(v) = B Vg(a) + (@~ 1B gla),
(z,0)€E(By)
since with probability 1 the connected component of a vertex in By is isomorphic to
T,, and so a vertex that is of distance k£ from a neighbour of x is either of distance
k+1or k—1 from z. A straightforward calculation shows that the claimed identity
holds for k£ = 1, 2. The claim then follows by induction, since

1 By B 1 B, By _ Bg
dd—1pr\eva=1) Jd— 1 [Vi= 1" \ova=1) " \ava=1
By B® 1 By

Td—1 dld—1DF' d—1 d(d—1)k?2
1 (k) (k1)
= =T (BaBy” = (d = 1)Bf™Y)

B Béml)
~d(d—1)F

using the induction hyphotesis twice in the second line and the recursion for Bfikﬂ) in

the fourth We note that this part of the proof is adapted from the proof of Theorem
1.1 in [19].
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Using this claim, Proposition 3.7 and the fact that o(By) < 2v/d — 1 (Theorem
2.2 in [3]), we obtain the upper bound

B®
0 d < max gk (2)]
d(d— 1)kt el=11] fd(d — 1)k~

The last step then is to bound |gx(x)|. This can be done by observing that
d(d —1)gi(z) = (d — 2)Uk(z) + (Ug(x) — Up—2(x)) = (d — 2)Uy(x) + 2T} (z),

where Ty (x) is the k-th Chebyshev polynomial of the first kind, defined by the same
recurrence relations as Uy with the difference that T (x) = 1, Ty(z) = z. Both Uy and
Ty have their extrema in the given interval in —1 and 1, with Uy(1) = (=1)*U,(—1) =
k+1and T(1) = (—1)*Tx(—1) = 1 (these well known facts can be easily proved by

induction). It follows that the maximum of |¢(k)| on the interval is in 1 as well, with

d 2k
a0l = 325 (k1= %),

B 1 \" 2k
<ol—24 ) <(—— =
—Q(d(d—l)k—l s\va=z) \Ft13 )

which concludes the proof. O]

after rearranging. Summarizing,

. BYJ
lcov(X,, Xy)| = ‘<f7 d<d_le;k_1>
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