Abstract homotopy theory in categories

Szücs András
Kanalas Kristóf
egyetemi tanár
Matematikus BSc

Contents

0 Introduction 3
1 Categorical constructions 4
1.1 (co)limits 4
1.2 adjunctions 4
1.3 (co)monads and (co)algebras 7
2 Model categories 9
2.1 homotopies 9
2.2 exact sequences 26
3 Constructions for model categories 34
3.1 cofibrantly generated model categories 34
3.2 chain complexes 43

0 Introduction

The aim of the present thesis is to introduce the basic notions of model categories, which provide the standard framework for doing homotopy theory in a categorical manner. It allows one to generalise the concepts of topology to certain categories (e.g. the notion of a cylinder, homotopy groups, and suspension), while the most important theorems remain true.

In the first section some of the basic concepts of category theory are discussed in a short and incomplete way. Then a few classical theorems are reconstructed, such as Whitehead's theorem, fibre and cofibre sequences, etc. In the last section a possible construction of model structures is given, which is applied to prove the category of chain complexes to be a model category.

Thanks for the help of Szűcs András, Szabó Endre and Makkai Mihály.

1 Categorical constructions

The main reference for this section is [4].

1.1 (co)limits

Definition 1.1.1. A diagram in the category \mathscr{C} is a functor $j: \mathscr{G} \rightarrow \mathscr{C}$, where \mathcal{F} is any category. The diagram is (locally) small, if \mathcal{F} is (locally) small. Generally j is identified with its image.

Definition 1.1.2. A cone over the diagram j consists of an object A of \mathscr{C}, and of arrows $j X \rightarrow A$ for all $X \in \mathcal{F}$, such that all triangles which contain A commute. A cocone is the same with arrows $A \rightarrow j X$. A morphism of (co)cones is an arrow $A \rightarrow A^{\prime}$, such that all triangles having A and A^{\prime} as vertices commute.

Definition 1.1.3. The limit of the diagram j is the universal cone over it, that means, from any other such cone there is a unique morphism of cones to it. The colimit is the universal cocone (there is a unique morphism to every other from it). Universality implies that if they exist they are unique up to (unique) isomorphism (of (co)cones).
Example 1.1.1. Observe the following diagram in $A b$:

$$
\mathbb{Z}_{p} \hookrightarrow \mathbb{Z}_{p^{2}} \hookrightarrow \mathbb{Z}_{p^{3}} \hookrightarrow \ldots
$$

Its colimit is the group $\mathbb{Z}_{p^{\infty}}=\bigcup_{1}^{\infty} \mathbb{Z}_{p^{k}}$, together with the evident inclusions. To see this, take any sequence of homomorphisms $\mathbb{Z}_{p^{k}} \rightarrow G$, such that all of them are extensions of the previous ones. Then it induces a unique map $\mathbb{Z}_{p^{\infty}} \rightarrow G$, whose restrictions are the given morphisms.
Example 1.1.2. In Table 1 the most important limits and colimits are listed (without their proofs). Their names are: terminal object, initial object, product, coproduct, equaliser, coequaliser, pullback, pushout.

1.2 adjunctions

Example 1.2.1. Let $F:$ Sets \rightarrow Vect $_{\mathbf{K}}$ be the functor that assignes to each set X the K-vector space generated by its elements and let $U: \operatorname{Vect}_{\mathbf{K}} \rightarrow$ Sets be the usual forgetful functor. Any function $f: X \rightarrow U(W)$ has a unique K-linear extension $\hat{f}: F(X) \rightarrow W$ given by $\hat{f}\left(\sum c_{i} e_{i}\right)=\sum c_{i} f\left(e_{i}\right)$. This has an inverse, namely the restriction of a linear map $g: F(X) \rightarrow W$ to the base set X, and hence it gives a bijection $\varphi: \operatorname{Vect}_{\mathbf{K}}(F(X), W) \rightarrow$ $\operatorname{Sets}(X, U(W))$.

diagram	\emptyset				$\cdots{ }^{\text {b }}$			
	\lim	colim	\lim	colim	\lim	colim	\lim	colim
Sets	$\{*\}$	\emptyset	\prod	】	$\{x \mid f(x)=g(x)\}$	$\begin{aligned} Y / & \sim \\ f(x) & \sim g(x) \end{aligned}$	$\{\langle a, b\rangle \mid f(a)=g(b)\}$	$\begin{gathered} (X \sqcup Y) / \sim \\ i_{1} f(z) \sim i_{2} g(z) \end{gathered}$
Top	$\{*\}$	\emptyset	\prod	I	$\begin{gathered} \quad\{x \mid f(x)=g(x)\} \\ + \text { subspace topology } \end{gathered}$	$\begin{gathered} Y / \sim \\ f(x) \sim g(x) \\ + \text { quotient topology } \end{gathered}$	$\begin{aligned} & \{\langle a, b\rangle \mid f(a)=g(b)\} \\ & + \text { subspace topology } \end{aligned}$	$\begin{gathered} (X \sqcup Y) / \sim \\ i_{1} f(z) \sim i_{2} g(z) \\ + \text { quotient topology } \end{gathered}$
Top_{*}	$\left\{x_{0}\right\}$	$\left\{x_{0}\right\}$	1	V	$\begin{aligned} & \{x \mid f(x)=g(x)\} \\ + & \text { subspace topology } \end{aligned}$	$\begin{gathered} Y / \sim \\ f(x) \sim g(x) \\ + \text { quotient topology } \end{gathered}$	$\begin{aligned} & \{\langle a, b\rangle \mid f(a)=g(b)\} \\ & + \text { subspace topology } \end{aligned}$	$\begin{gathered} (X \sqcup Y) / \sim \\ i_{1} f(z) \sim i_{2} g(z) \\ + \text { quotient topology } \end{gathered}$
Grp		1	\prod	*	$\operatorname{ker}(f \cdot(1 / g))$	$\begin{gathered} Y / \sim \\ \sim \text { gen. by } f(x) \sim g(x) \end{gathered}$	$\{\langle a, b\rangle \mid f(a)=g(b)\}$	$\begin{gathered} (X \sqcup Y) / \sim \\ \sim \text { gen. by } i_{1} f(z) \sim i_{2} g(z) \end{gathered}$
Cat	$\{*\}$		Π	I	$\{x \mid f(x)=g(x)\}$	$\begin{gathered} Y / \sim \\ \sim \text { gen. by } f(x) \sim g(x) \end{gathered}$	$\{\langle a, b\rangle \mid f(a)=g(b)\}$	$\begin{aligned} (X \sqcup Y) / & \sim \\ \sim \text { gen. by } i_{1} f(z) & \sim i_{2} g(z) \end{aligned}$

This assignment is defined in a homogenous way, this (so called naturality) can be expressed by the following commutative diagrams. Here $h: X^{\prime} \rightarrow X$ is any set-set function, while $g: W \rightarrow W^{\prime}$ is any K-linear map.

$$
\begin{gathered}
f:\left.F(X) \rightarrow W \stackrel{\varphi}{\mapsto} f\right|_{X}: X \rightarrow U(W) \\
\left.F(h)^{*}\right\rceil \\
\left.f \circ F(X) \rightarrow W \stackrel{\varphi}{\mapsto} f\right|_{X}: X \rightarrow U(W) \\
\quad\left\lceil h^{*}\right. \\
\hline
\end{gathered}
$$

Definition 1.2.1. An adjoint pair of functors is the triple $\langle F, U, \varphi\rangle$, where $F: \mathscr{C} \rightarrow \mathscr{D}$ and $U: \mathscr{D} \rightarrow \mathscr{C}$ are functors, while $\varphi=\left\{\varphi_{X, Y}\right\}_{X \in \mathscr{C}, Y \in \mathscr{D}}$ is a set of functions, such that $\varphi_{X,-}: \mathscr{D}(F(X),-) \rightarrow \mathscr{C}(X, U(-))$ and $\varphi_{-, Y}: \mathscr{D}(F(-), Y) \rightarrow \mathscr{C}(-, U(Y))$ are natural isomorphisms. Then F is said to be the left adjoint of U (and U is called the right adjoint of F).

Proposition 1.2.1. Right adjoints preserve limits.
Proof. Take a diagram in \mathscr{D} and assume it has the limiting cone $\left\{p_{i}: a \rightarrow a_{i}\right\}$. Its U-image gives a cone on the U-image of the diagram, for proving its universality take an arbitrary cone $\left\{g_{i}: b \rightarrow U\left(a_{i}\right)\right\}$. By the naturality of φ^{-1} in a_{-}we have $\varphi^{-1}\left(g_{j}\right)=\varphi^{-1}\left(U\left(f_{j}^{i}\right) \circ g_{i}\right)=f_{j}^{i} \circ \varphi^{-1}\left(g_{i}\right)$, so $\left\{\varphi^{-1}\left(g_{-}\right)\right\}$is a cone in \mathscr{D}, therefore there is a unique !: $F(b) \rightarrow a$ making each triangle commute. φ is natural in $U\left(a_{-}\right)$, so $\varphi(!)$ is a morphism of cones in \mathscr{C}. If there was another such arrow ?, then by the naturality of φ^{-1} and by the uniqueness of ! we get $\varphi^{-1}(?)=$!, applying φ gives $?=\varphi(!)$.
in \mathscr{D}

in \mathscr{C}

Corollary 1.2.1.1. By dualising the proof we get that left adjoints preserve colimits.

Definition 1.2.2. The maps $\eta_{X}=\varphi\left(1_{F X}\right): X \rightarrow U F X$ form a natural transformation $\eta: I d_{\mathscr{C}} \rightarrow U F$ by the naturality of φ. Analogously the natural transformation $\varepsilon: F U \rightarrow I d_{\mathscr{D}}$ is defined on an object Y as $\varphi^{-1}\left(1_{U Y}\right)$: $F U Y \rightarrow Y . \eta$ is called the unit and ε is called the counit of the adjunction.

1.3 (co)monads and (co)algebras

Example 1.3.1. Let \mathscr{G} be a fixed group and T : Sets \rightarrow Sets be the endofunctor with $T X=G \times X$, where G denotes the underlying set of \mathscr{G}. Then two natural transformations: $\mu: T^{2} \rightarrow T$ and $\eta: I d \rightarrow T$ are defined, given by the components $\mu_{X}: G \times(G \times X) \ni\left\langle g_{1},\left\langle g_{2}, x\right\rangle\right\rangle \mapsto\left\langle g_{1} g_{2}, x\right\rangle \in G \times X$ and $\eta_{X}: X \ni x \mapsto\langle u, x\rangle \in G \times X$, where u is the unit element of \mathscr{G}. By the associativity of group multiplication and by the properties of the unit, the following diagrams commute:

$$
\begin{array}{cc}
\left\langle g_{1},\left\langle g_{2},\left\langle g_{3}, x\right\rangle\right\rangle\right\rangle & \stackrel{T \mu_{X}}{\longmapsto}\left\langle g_{1},\left\langle g_{2} g_{3}, x\right\rangle\right\rangle \\
\left.\mu_{T X}\right\rceil \\
\left\langle g_{1} g_{2},\left\langle g_{3}, x\right\rangle\right\rangle \stackrel{\mu_{X}}{\longmapsto}\left\langle\mu_{X}\right. \\
\left.\downarrow g_{1} g_{2} g_{3}, x\right\rangle
\end{array}
$$

Definition 1.3.1. A monad on the category \mathscr{C} is a triple $\mathbf{T}=\langle T, \eta, \mu\rangle$, where $T: \mathscr{C} \rightarrow \mathscr{C}$ is an endofunctor, $\eta: I d \rightarrow T$ and $\mu: T^{2} \rightarrow T$ are natural transformations, making the following diagrams commute:

Example 1.3.2. Let X be a fixed set and $h: G \times X \rightarrow X$ an action of the group \mathscr{G} on it, that is $h\left(g_{1}, h\left(g_{2}, x\right)\right)=h\left(g_{1} g_{2}, x\right)$ and $h(u, x)=x$. Using the notations of Example 1.3.1, this means the commutativity of the following diagrams:

A \mathscr{G}-equivariant map between the \mathscr{G}-actions $\langle X, h\rangle$ and $\left\langle X^{\prime}, h^{\prime}\right\rangle$ is a function $f: X \rightarrow X^{\prime}$, making

commutative.
Definition 1.3.2. A \mathbf{T}-algebra for the monad $\mathbf{T}=\langle T, \eta, \mu\rangle$ consists of an object X of \mathscr{C} (called the underlying object) and a morphism $h: T X \rightarrow X$ (called the structure map), such that

commute. A morphism of T-algebras is an arrow $f: X \rightarrow X^{\prime}$, such that the following square commutes:

The category of \mathbf{T}-algebras is denoted by $\operatorname{Alg}(\mathbf{T})$.
Example 1.3.3. $\mathbf{T}=\left\langle T_{\tau}:\right.$ Sets \rightarrow Sets, $\left.\eta, \mu\right\rangle, \tau$ is an algebra type.
$T_{\tau} X=\{\tau$-terms on $X\}$
$\eta_{X}: X \hookrightarrow T_{\tau} X$ is inclusion.
$\mu_{X}: T_{\tau}^{2} X \rightarrow T_{\tau} X$ is identity.
Then $\operatorname{Alg}(\mathbf{T})$ is the category of algebras of type τ, with objects $\langle A, \alpha\rangle$, where A is the underlying set and $\alpha: T_{\tau} A \rightarrow A$ is the evaluation function of the algebra, having the properties $\alpha(g(\overrightarrow{f(\vec{a})}))=\alpha(g(\overrightarrow{\alpha(f(\vec{a}))}))$ and $\alpha(a)=a$ for all $a \in A$.

A morphism $h: A \rightarrow A^{\prime}$ of $\operatorname{Alg}(\mathbf{T})$ should satisfy $h(\alpha(f(\vec{a})))=\alpha^{\prime}(f(\overrightarrow{h(a)}))$, which means precisely that h is a homomorphism.

In [1] a stronger version of the following is proved.
Proposition 1.3.1. If \mathscr{C} is complete and cocomplete (i.e. has all small limits and colimits), and $T: \mathscr{C} \rightarrow \mathscr{C}$ preserves colimits, then $\operatorname{Alg}(\mathbf{T})$ is complete and cocomplete.

2 Model categories

The material of this section is taken from [2].

2.1 homotopies

Definition 2.1.1. An object a is the retract of the object b in the category C, if there are maps $i: a \rightarrow b$ and $r: b \rightarrow a$, such that $r i=I d_{a}$. An arrow f is the retract of the arrow g, if it is a retract in the category Mor C, whose objects are the maps of C and whose morphisms are commutative squares.

Definition 2.1.2. Let $i: a \rightarrow b$ and $p: x \rightarrow y$ be maps of the category C. Then i has the left lifting property wrt. p (and p has the right lifting property wrt. i) if for every commutative square

there is a lift $h: b \rightarrow x$ that makes both triangle commute.

Definition 2.1.3. A model structure on a category C consists of three subcategories of it, called weak equivalences, fibrations and cofibrations, together with functors $\alpha, \beta, \gamma, \delta:$ Mor $C \rightarrow$ Mor C, such that

- if two out of f, g and $g f$ is a weak equivalence then so is the third,
- if f is a retract of g and g belongs to one of the above subcategories, then so does f,
- trivial cofibrations (maps, that are both cofibrations and weak equivalences) have the left lifting property wrt. fibrations, while trivial fibrations (that are both fibrations and weak equivalences) have the right lifting property wrt. cofibrations and
- every morphism f splits as $\beta(f) \circ \alpha(f)$, where $\alpha(f)$ is a cofibration and $\beta(f)$ is a trivial fibration and as $\delta(f) \circ \gamma(f)$, where $\gamma(f)$ is a trivial cofibration and $\delta(f)$ is a fibration.

Definition 2.1.4. A model category is a category with all small limits and colimits and with a model structure on it.

Proposition 2.1.1. If \mathscr{C} is a model category, with the subcategories $\mathscr{F} i \notin$ (of fibrations), $\mathscr{C o f}$ (of cofibrations), and \mathscr{W} (of weak equivalences), then there is a model structure on $\mathscr{C}^{o p}$, whose fibrations form the category \mathscr{C} of $\boldsymbol{f}^{o p}$, cofibrations form $\mathscr{F i} \succcurlyeq^{o p}$, and its weak equivalences form $\mathscr{W}^{\text {op }}$. This follows from the self-duality of the axioms.

Lemma 2.1.2 (Retract argument). Assume $f=$ pi and f has l.l.p. wrt. p. Then f is the retract of i. Dually, if f has r.l.p. wrt. i, then f is the retract of p.

Proof. Complete the factorisation of f with 1_{B} to get a commutative square. Then there is a lift r, that can be drawn as

Lemma 2.1.3. f is a (trivial) fibration/ (trivial) cofibration iff the related lifting property holds.

Proof. For the nontrivial direction factor f to a cofibration followed by a trivial fibration; $f=p i$. If f has l.l.p. wrt. p , then by the retract argument f is a retract of i, and hence it is a cofibration. The other cases are similar.

Proposition 2.1.4. Cofibrations and trivial cofibrations are closed under pushouts. Dually, fibrations and trivial fibrations are closed under pullbacks.

Proof. Assume f has left lifting property wrt. h, and the left square in the following diagram is a pushout.

! is induced by the universal property of the pushout, therefore commutativity of the $C D E$-triangle is immediate. Then take the composites $h c$, $h l=d b$. Using universality again, commutativity of the lower triangle is deduced, hence g has the same l.l.p.

Proposition 2.1.5 (Ken Brown's lemma). Let \mathscr{C} be a model category and \mathscr{D} be a category with a distinguished subcategory \mathscr{W} that has the 2-out-of-3 property. If $F: \mathscr{C} \rightarrow \mathscr{D}$ is a functor that maps triv. cof. between cofibrant objects to \mathbb{W}, then it does the same with all weak eqivalences between cofibrant objects. The analogous result (concerning trivial fibrations between fibrant objects) also holds.

Proof. Let $f: A \rightarrow B$ be a weak equivalence of cofibrant objects. Take the factorisation $\left(f, 1_{B}\right): A \vee B \underset{\text { cof }}{q} C \xrightarrow[\text { triv.fib. }]{p} B$. Both components $p \circ q \circ i_{1}$, $p \circ q \circ i_{2}$ and p are weak equivalences, so by the 2-out-of- 3 axiom $q \circ i_{1}$ and $q \circ i_{2}$ are also. The coproduct is equivalently the pushout

hence i_{1}, i_{2} are cofibrations and $q \circ i_{1}, q \circ i_{2}$ are trivial cofibrations. It also follows that C is cofibrant, so by assumption $F\left(q \circ i_{1}\right)$ and $F\left(q \circ i_{2}\right)$ are in \mathscr{W}. Its 2-out-of-3 property implies that all identity maps of domains and codomains of maps from \mathscr{W} are included, therefore $F\left(p \circ q \circ i_{2}\right)=F\left(1_{B}\right) \in \mathscr{W}$. Then $F(p)$ and finally $F(f)=F\left(p \circ q \circ i_{1}\right)$ are also in it.

The homotopy category is at first given by the inversion of weak equalences.

Definition 2.1.5. The homotopy category of a model category \mathscr{C} is the free category generated by $\mathscr{C} \cup \mathscr{W}^{-1}$ (where \mathscr{W}^{-1} is the dual category of the subcategory of weak equalences), factored by the relations $w w^{-1}=1_{\text {dom } w^{-1}}$, $w^{-1} w=1_{\text {dom } w}, f g=f \circ g($ for all $w \in \mathscr{W}, f, g \in \mathscr{C})$.

It is not trivial, that $H o \mathscr{C}$ is locally small (as the objects might form a proper class), but it will be proven later. Therefore it is not needed to move to a higher set theoretical universe.

Proposition 2.1.6. There is $\gamma: \mathscr{C} \rightarrow H o \mathscr{C}$, which is identity on objects, and takes the arrows of \mathscr{W} to isomorphisms. If $F: \mathscr{C} \rightarrow \mathscr{D}$ also takes \mathscr{W} to isos, then there is a unique Ho $F: H \circ \mathscr{C} \rightarrow \mathscr{D}$ with $(H o F) \circ \gamma=F$. If $\delta:$ $\mathscr{C} \rightarrow \mathscr{E}$ has the same universal property, then there is a unique isomorphism $\varphi:$ Но $\mathscr{C} \rightarrow \mathscr{E}$, such that $\varphi \gamma=\delta$ holds .

Proof. γ is identity on \mathscr{C} and $\gamma\left(w^{-1}\right)=(\gamma w)^{-1}$. Ho $\left.F\right|_{\mathscr{C}}=\left.F\right|_{\mathscr{C}}$ and Ho $F\left(w^{-1}\right)=(F w)^{-1}$. Therefore γ is the initial object in the category of functors mapping from \mathscr{C}, taking \mathscr{W} to isos, so it is unique up to unique isomorphism.

Definition 2.1.6. The categories \mathscr{C} and \mathscr{D} are equivalent if there are functors $F: \mathscr{C} \rightarrow \mathscr{D}$ and $G: \mathscr{D} \rightarrow \mathscr{C}$, such that the compositions are naturally isomorphic to the identity functors of the domains.

Example 2.1.1. Let \mathscr{A} be the skeleton of \mathscr{C} (i.e. a full subcategory, where any object from \mathscr{C} is isomorphic to exactly one from \mathscr{A}) and let K denote the inclusion. The isomorphisms $\theta_{c}: c \cong T c \in \mathscr{A}$ uniquely determine a functor $T: \mathscr{C} \rightarrow \mathscr{A}$ for which θ is a natural isomorphism from $I d_{\mathscr{C}}$ to $K T$. $T K=I d_{\mathscr{A}}$, therefore a category is equivalent to its scaleton.

The proof of the following can be found in [4].
Proposition 2.1.7. A functor $F: \mathscr{C} \rightarrow \mathscr{D}$ is part of a weak equivalence, iff it is bijective on Hom-sets and for all $x \in \mathscr{D}$ there is an isomorphism $x \cong y$ in \mathscr{D}, such that $y=F(b)$ for an object $b \in \mathscr{C}$.

Let $\mathscr{C}_{c}, \mathscr{C}_{f}, \mathscr{C}_{c f}$ denote the full subcategories of \mathscr{C} consisting of the cofibrant, fibrant and both fibrant and cofibrant objects and all morphisms between them.

For any object A the functorial factorisation of $A \rightarrow *$ to a trivial cofibration followed by a fibration gives a fibrant object $R A$, which is weakly equivalent to it. By functoriality this extends to the fibrant replacement functor R. The dual construction (factorising $0 \rightarrow A$ as a cofibration followed by a trivial fibration) gives the cofibrant replacement functor Q. These induce equivalence between the related homotopy categories.

Proposition 2.1.8. The categories $\mathrm{Ho}_{\mathscr{C}_{c}}, \mathrm{Ho}_{\mathrm{C}}, Н о \mathscr{C}_{c f}$ and $Н о \mathscr{C}$ are equivalent.

Proof. The inclusion $i: \mathscr{C}_{c} \rightarrow \mathscr{C}$ preserves weak equivalences, so the functor Ho $i: H o \mathscr{C}_{c} \rightarrow H o \mathscr{C}$ can be defined.
Q also preserves them, as it is illustrated here.

Therefore the functor $\mathrm{Ho} Q:$ Но $\mathscr{C} \rightarrow$ Но \mathscr{C}_{c} exists.
This picture also shows, that $\left.q\right|_{\mathscr{C}_{c}}: Q \circ i \rightarrow 1_{\mathscr{C}_{c}}$ and $q: i \circ Q \rightarrow 1_{\mathscr{C}}$ are natural transformations, whose components are weak equivalences. Therefore Ho $\left.q\right|_{\mathscr{C}_{c}}: H o(Q \circ i)=H o Q \circ$ Но $i \rightarrow H o 1_{\mathscr{C}}=1_{H o \mathscr{C}_{c}}$ and $H o q:$ Ho $i \circ H o Q \rightarrow 1_{\text {Ho }}$ \& are natural isomorphisms. The rest is similar.

The homotopy category can also be defined through the notion of homotopy.

Definition 2.1.7. Let $f, g: B \rightarrow X$ be morphisms of the model category \mathscr{C}.

- A cylinder object for B is an object B^{\prime}, for which there is a factorisation of $1 \vee 1: B \vee B \rightarrow B$ as $B \vee B \xrightarrow{i_{0} \vee i_{1}} B^{\prime} \xrightarrow{s} B$, where $i_{0} \vee i_{1}$ is a cofibration and s is a weak equivalence.
- Dually, a path object for X is X^{\prime} if there is a factorisation of 1×1 : $X \rightarrow X \times X$ as $X \xrightarrow{r} X^{\prime} \xrightarrow{p_{0} \times p_{1}} X \times X$, where r is a weak equivalence and $p_{0} \times p_{1}$ is a fibration.
- A left homotopy from f to g is a map $H: B^{\prime} \rightarrow X$, such that $H i_{0}=f$ and $H i_{1}=g$. The notation will be $f \stackrel{l}{\sim} g$.
- The dual notion is right homotopy from f to g, which is a map K : $B \rightarrow X^{\prime}$, such that $p_{0} K=f$ and $p_{1} K=g$. For right homotopy we will write $f \stackrel{r}{\sim} g$.
- f is homotopic to g (in symbols: $f \sim g$), if $f \stackrel{l}{\sim} g$ and $f \stackrel{r}{\sim} g . f$ is a homotopy equivalence if there is $h: X \rightarrow B$, for which $h f \sim 1_{B}$ and $f h \sim 1_{X}$.

Proposition 2.1.9. The cylinder objects $B \times I_{0}$ that are obtained from the (α, β) functorial factorisation of $1 \vee 1$ form the object function of a functor $-\times I_{0}$. For any other cylinder object B^{\prime} of $B, B \times I_{0}$ and B^{\prime} are weakly equivalent.

Dually, there is a functorial path object $X^{I_{0}}$, coming from the (γ, δ) factorisation. It is weakly equivalent to any other path object of X.

Lemma 2.1.10. \mathscr{C} is a model category, $f, g: B \rightarrow X$ are arrows.

1. $f \stackrel{l}{\sim} g, h: X \rightarrow Y \Rightarrow h f \stackrel{l}{\sim} h g$.
$f \stackrel{r}{\sim} g, h: A \rightarrow B \Rightarrow f h \stackrel{r}{\sim} g h$.
2. X is fibrant, $f \stackrel{l}{\sim} g, h: A \rightarrow B \Rightarrow f h \stackrel{l}{\sim} g h$. B is cofibrant, $f \stackrel{r}{\sim} g, h: X \rightarrow Y \Rightarrow h f \stackrel{r}{\sim} h g$.
3. B is cofibrant $\Rightarrow \stackrel{l}{\sim}$ is an equivalence relation on $\mathscr{C}(B, X)$. X is fibrant $\Rightarrow \stackrel{r}{\sim}$ is an equivalence relation on $\mathscr{C}(B, X)$.
4. B is cofibrant, $h: X \rightarrow Y$ is a trivial fibration/ weak equivalence of fibrant objects $\Rightarrow h$ induces a $\mathscr{C}(B, X) \underset{\sim}{\sim} \xrightarrow{\sim} \mathscr{C}(B, Y) / \underset{\sim}{l}$ isomorphism (of sets).
X is fibrant, $h: A \rightarrow B$ is a trivial cofibration/ weak equivalence of cofibrant objects $\Rightarrow h$ induces a $\mathscr{C}(B, X) / \underset{\sim}{\sim} \underset{\rightarrow}{\sim} \mathscr{C}(A, X) / \underset{\sim}{r}$ isomorphism.
5. B is cofibrant \Rightarrow if $f \stackrel{l}{\sim} g$, then $f \stackrel{r}{\sim} g$, and for all X^{\prime} path object there is a $K: B \rightarrow X^{\prime}$ right homotopy from f to g.
X is fibrant \Rightarrow if $f \stackrel{r}{\sim} g$, then $f \stackrel{l}{\sim} g$, and for all B^{\prime} cylinder object there is an $H: B^{\prime} \rightarrow X$ left homotopy from f to g.

Proof. By duality it is enough to prove statements about left homotopies.

1. $h \circ H: B^{\prime} \rightarrow Y$ is a left homotopy from $h f$ to $h g$ if H was an $f \stackrel{l}{\sim} g$ homotopy.
2. The cylinder object of B is given by the factorisation $B \vee B \xrightarrow[c o f]{\left(i_{0}, i_{1}\right)}$ $B^{\prime} \xrightarrow[\text { w.e. }]{s} B . s$ is assumed to be a trivial fibration; otherwise factor it as $s: B^{\prime} \xrightarrow[\text { tr.cof }]{s_{1}} B^{\prime \prime} \xrightarrow[f i b]{s_{2}} B$, where s_{2} is trivial by the 2-out-of-3 property and therefore $B^{\prime \prime}$ is a cylinder object. Then there would be a lift H^{\prime} in the diagram

which is also a left homotopy from f to g by commutativity.
Assume $A \vee A \xrightarrow{j} A^{\prime} \xrightarrow{t} A$ gives the cylinder object A^{\prime}. Now form the square

The composite $H \circ k$ is a left homotopy from $f h$ to $g h$.
3. Using the above notation, $f s$ is a left homotopy from f to f, which gives reflexivity. For symmetry use the same homotopy $H: B^{\prime} \rightarrow X$, but with the factorisation $B \vee B \xrightarrow{\left(i_{1}, i_{0}\right)} B^{\prime} \xrightarrow{s} B$. It remains to prove transitivity.
Let $H: B^{\prime} \rightarrow X$ be a left homotopy from f to g, and $H^{\prime}: B^{\prime \prime} \rightarrow X$ from g to h. Form the pushout of $B^{\prime \prime} \stackrel{i_{0}^{\prime}}{\leftarrow} B \xrightarrow{i_{1}} B^{\prime}$. Then the map $t: C \rightarrow B$ is induced, as in

Define the maps $j_{0}: B \xrightarrow{i_{0}} B^{\prime} \rightarrow C$ and $j_{1}: B \xrightarrow{i_{1}^{\prime}} B^{\prime \prime} \rightarrow C$. A factorisation of $1_{B} \vee 1_{B}$ is given by $B \vee B \xrightarrow{\left(j_{0}, j_{1}\right)} C \xrightarrow{t} B$.
The coproduct is equivalently a pushout from 0 , using that B is cofibrant we get, that the inclusions $B \rightarrow B \vee B \leftarrow B$ are cofibrations, hence i_{1} (the restriction of (i_{0}, i_{1}) to the second component) is also. $s \circ i_{1}=1_{B}$, so by the 2 -out-of- 3 property i_{1} is a trivial cofibration, then so is its pushout $B^{\prime \prime} \rightarrow C . s^{\prime}$ is a weak equvalence, so t is a weak equivalence too.
The pushout

gives a map $K: C \rightarrow X$, such that $K j_{0}=H i_{0}=f$ and $K j_{1}=H^{\prime} i_{1}^{\prime}=$ h. The problam is, that C is not a cylinder object.

The suitable cylinder object C^{\prime} is given by

$K \beta$ is a left homotopy from f to h.
4. The case when h is a weak equivalence of fibrant object can be deduced from the second case (when h is a trivial fibration) and the Ken Brown lemma, applied to the functor $\mathscr{C}(B,-) / \underset{\sim}{l}: \mathscr{C} \rightarrow$ Sets which is well defined by the first and third statement of this lemma. The subcategory $\mathscr{W} \leq$ Sets containes the bijections.
Now assume h is a trivial fibration. The map $\mathscr{C}(B, h) / \underset{\sim}{l}: \mathscr{C}(B, X) / \underset{\sim}{l} \rightarrow$ $\mathscr{C}(B, Y) / \underset{\sim}{l}$ is surjective by the existence of the lift f in

For injectivity assume $H: B^{\prime} \rightarrow Y$ is a left homotopy from $h f$ to $h g$. The lift K in

is a left homotopy from f to g.
5. Let $H: B^{\prime} \rightarrow X$ be a left homotopy from f to g. Using the same arguments as in 3., we get that $i_{0}: B \rightarrow B^{\prime}$ is a trivial cofibration. Let X^{\prime} be a path object via $X \xrightarrow{r} X^{\prime} \xrightarrow{\left(p_{0}, p_{1}\right)} X \times X$. Form the square

Define $K=J i_{0}$. Then $p_{0} K=p_{0} J i_{0}=H i_{0}=f$ and $p_{1} K=p_{1} J i_{0}=$ $g s i_{0}=g$, so K is a right homotopy from f to g.

Corollary 2.1.10.1. \mathscr{C} is a model category, B is cofibrant, X is fibrant \Rightarrow $\stackrel{l}{\sim}=\stackrel{r}{\sim}$ is an equivalence relation on $\mathscr{C}(B, X)$. If $f \sim g$, then any cylinder/ path object realises the homotopy.

Corollary 2.1.10.2. \sim is an equivalence relation on $\operatorname{Arr} \mathscr{C}_{c f}$, which is compatible with composition, hence the category $\mathscr{C}_{c f} / \sim$ exists.

It is worth to discuss the relation between left and right homotopies explicitely. $A \times I, A \times I^{\prime}$, etc. will denote arbitrary cylinder objects, while $A \times I_{0}$ will stand for the functorial one, and the analogous notation will be used for path objects.

Definition 2.1.8. A correspondence between the left homotopy $H: B \times I \rightarrow$ X and the right homotopy $K: B \rightarrow X^{I}$ (both going from f to g) is a map $\varphi: B \times I \rightarrow X^{I}$, such that $\varphi i_{0}=K, \varphi i_{1}=r g, p_{0} \varphi=H$, and $p_{1} \varphi=g s$.

Corollary 2.1.10.3. Starting from any left homotopy H, there is a corresponding right homotopy K.

Our goal now is to define (generalised) homotopy groups. As a first step, we discuss (left) homotopies between (left) homotopies. The reason why a new notion is introduced, is that the cylinder objects are not assumed to coincide, and also because these homotopies should fix the original maps.

Definition 2.1.9. Let $H: B \times I \rightarrow X$ and $H^{\prime}: B \times I^{\prime} \rightarrow X$ be left homotopies from f to g, with the usual maps i_{0}, i_{1}, r and $i_{0}^{\prime}, i_{1}^{\prime}, r^{\prime}$ of the cylinder objects. Denote the pushout of $B \times I \stackrel{\left(i_{0}, i_{1}\right)}{\leftrightarrows} B \vee B \xrightarrow{\left(i_{0}^{\prime}, i_{1}^{\prime}\right)} B \times I^{\prime}$ by $B \times I \underset{B \vee B}{\vee} B \times I^{\prime}$. Factor the map $r \vee r^{\prime}$ into a cofibration followed by a weak equivalence, as $B \times I \underset{B \vee B}{\vee} B \times I^{\prime} \xrightarrow{i_{0} \vee i_{1}} \tilde{B} \xrightarrow{\tilde{r}} B$. A left homotopy from H to H^{\prime} is a map $\tilde{H}: \tilde{B} \rightarrow B$, such that $\tilde{H} \tilde{i_{0}}=H$ and $\tilde{H} \tilde{i_{1}}=H^{\prime}$.

Proposition 2.1.11. As before, H and H^{\prime} are left homotopies, K is a right homotopy from f to g ($f, g: B \rightarrow X, B$ is cofibrant, X is fibrant). Assume K corresponds to H. Then it corresponds to H^{\prime}, iff H and H^{\prime} are left homotopic.

Proof. First assume φ_{1} and φ_{2} are correspondences between the above homotopies. Form the square

Then $p_{0} \varphi$ is a left homotopy from H to H^{\prime}, as $p_{0} \varphi \tilde{i_{0}}=p_{0} \varphi_{1}=H$ and $p_{0} \varphi \tilde{i_{1}}=p_{0} \varphi_{2}=H_{\tilde{H}}^{\prime}$

Now assume \tilde{H} is a left homotopy from H to $H^{\prime} . \tilde{i_{0}}$ is a cofibration (as the inclusion $B \times I \rightarrow B \times I \underset{B \vee B}{\vee} B \times I^{\prime}$ is the pushout of a cofibration) and it is a weak equivalence (by the 2-out-of-3 property, used for $\tilde{r} \tilde{i_{0}}=r$). Therefore there is a lift in

and $\varphi^{\prime} \tilde{i_{1}}: B \times I^{\prime} \rightarrow X^{I}$ is a correspondence from H^{\prime} to K, as $p_{0} \varphi^{\prime} \tilde{i_{1}}=\tilde{H} \tilde{i_{1}}=$ $H, p_{1} \varphi^{\prime} \tilde{i_{1}}=g \tilde{r} \tilde{i_{1}}=g r^{\prime}, \varphi^{\prime} \tilde{i_{1}} i_{0}=\varphi^{\prime} \tilde{i_{0}} i_{0}=\varphi_{1} i_{0}=K$, and $\varphi^{\prime} \tilde{i_{1}} i_{1}=\varphi^{\prime} \tilde{i_{0}} i_{1}=$ $\varphi_{1} i_{1}=s g$

Corollary 2.1.11.1. Left homotopy is an equivalence relation on left homotopies from $f: B \rightarrow X$ to $g: B \rightarrow X$ (dually: right homotopy on right homotopies is an equivalence relation), the equivalence classes form a set in both cases (as any left homotopy corresponds to a right homotopy with fixed X^{I}), and correspondence gives a bijection between these two sets (denoted by $\pi_{1}^{l}(B, X ; f, g)$ and $\pi_{1}^{r}(B, X ; f, g)$).

It will be convenient to illustrate correspondences as

and in general, any map from a cylinder object to a path object, with lower (resp. upper) side standing for composition with p_{0} (resp. p_{1}), and with left (resp. right) side standing for precomposition with i_{0} (resp. i_{1}).

Lemma 2.1.12. These squares can be glued together at edges which refer to the same homotopy (and therefore for vertical gluing the cylinder objects, for horisontal, the path objects are assumed to coincide); i.e there is a map $B \times I^{\prime} \rightarrow X^{I^{\prime}}$, whose restrictions and projections are the compositions of homotopies, written on the sides of the rectangle. This composition is defined in the proof of Proposition 2.1.10, and it is written in the order of application (unlike the composition of arrows).

Proof. Take the squares

Form the pullback:

Then s and s^{\prime} induce \tilde{s}, which is a weak equivalence by the pullback stability of trivial fibrations, and by the 2-out-of-3 property. Take $\tilde{p_{0}}=p_{0} q_{0}^{\prime}$ and $\tilde{p_{1}}=p_{1} q_{1}^{\prime}$, then $\left(\tilde{p_{0}}, \tilde{p_{1}}\right) \circ \tilde{s}: B \rightarrow B \times B$ is identity in both coordinates.

The maps φ and φ^{\prime} induce $\Phi: A \times I \rightarrow \tilde{B}$, with $\tilde{p_{0}} \Phi=p_{0} \varphi=h_{1}$ and $\tilde{p_{1}} \Phi=p_{1} \varphi^{\prime}=h_{3}$. The only problam is that \tilde{B} may not be a path object, as $\left(p_{0}, p_{1}\right)$ may not be a fibration. Therefore factor it into a trivial cofibration, followed by a fibration, as

Then $\Phi^{\prime}=\gamma \Phi: A \times I \rightarrow B^{\prime}$ has a path object as codomain, and $d_{0} \Phi^{\prime}=h_{1}$, $d_{1} \Phi^{\prime}=h_{3}, \Phi^{\prime} j_{0}=k_{1} k_{1}^{\prime}$, and $\Phi^{\prime} j_{1}=k_{2} k_{2}^{\prime}$. The last two equivality is by definition; precomposing j_{0} in the above diagram results the definition of composition of right homotopies (whose dual was described in Proposition 2.1.10).

Proposition 2.1.13.

- Composition of left homotopies respects the equivalence classes, i.e. there is an induced map $\pi_{1}^{l}\left(A, B ; f_{1}, f_{2}\right) \times \pi_{1}^{l}\left(A, B ; f_{2}, f_{3}\right) \xrightarrow{\circ} \pi_{1}^{l}\left(A, B ; f_{1}, f_{3}\right)$. The dual statement also holds.
- If H_{1} corresponds to $K_{1}\left(\right.$ via $\left.\varphi_{1}\right)$, and H_{2} corresponds to K_{2} (via φ_{2}), then $H_{1} \circ H_{2}$ corresponds to $K_{1} \circ K_{2}$ (where $H_{1}: f_{1} \stackrel{l}{\sim} f_{2}, H_{2}: f_{2} \stackrel{l}{\sim} f_{3}$, $\left.K_{1}: f_{1} \stackrel{r}{\sim} f_{2}, K_{2}: f_{2} \stackrel{r}{\sim} f_{3}\right)$.
- $(\operatorname{Hom}(A, B), o)$ is a grupoid.

Proof.

- The second statement together with Proposition 2.1.11 implies the first one.
- This is proved by forming the squares

- Associativity of composition follows from the fact, that it is defined through a universal arrow from a pushout. The identity on $[f]$ is $[f r]$. It can be seen by

and

The inverse of h (as it was constructed in Proposition 2.1.10) is the same map $h^{-1}: A \times I \rightarrow B$, but j_{0} and j_{1} is reversed in the factorisation through the cylinder object. Let φ_{1} be a correspondence between h and k, and φ_{2} be a correspondence between h^{-1} and k^{\prime}, and let φ_{1}^{\prime} and φ_{2}^{\prime} be the same maps, but with the reversed cylinders as domains. Then the following squares prove that the composition of $[h]$ and $\left[h^{-1}\right]$ is identity in both ways:

Definition 2.1.10. $\pi_{1}^{A}(B)=\pi_{1}(A, B)=\pi_{1}(A, B ; 0,0)$ is the first A-homotopy group of B, where A is cofibrant and B is fibrant. It is a group by the previous proposition.

The suspension of an object A is the pushout of $* \leftarrow A \vee A \xrightarrow{\left(i_{0}, i_{1}\right)} A \times I_{0}$ (this and related concepts will be examined in the next section). This pushout in the category of pointed topological spaces $\left(\mathbf{T o p}_{*}\right)$ results the reduced suspension, therefore it is meaningful to define $\pi_{n}(A, B)$ as $\pi_{1}\left(\Sigma^{n-1} A, B\right)$. In the remaining part the notion of homotopy is exposed to further discussion.

It can be proved, that $\mathbf{T o p}_{*}$ admits a model structure, where f is a weak equivalence iff $\pi_{n}(f)$ is isomorphism for all $n=0,1 \ldots$, all spaces are fibrant and the cofibrant ones are $C W$-complexes. Therefore the following is a generalisation of Whitehead's theorem.

Theorem 2.1.14. Let \mathscr{C} be a model category. A map of $\mathscr{C}_{\text {cf }}$ is a weak equivalence iff it is a homotopy equivalence.

Proof. First assume $f: A \rightarrow B$ is a weak equivalence in $\mathscr{C}_{c f}$. By the previous lemma $f_{*}: \mathscr{C}_{c f} / \sim(X, A) \rightarrow \mathscr{C}_{c f} / \sim(X, B)$ is bijective. Taking $X=B$, there is a map $g: B \rightarrow A$, such that $f g \sim 1_{B}$, and this g is unique up to homotopy. Then $f g f \sim f$, taking $X=A$ this means $f_{*}(g f)=f_{*}\left(1_{A}\right)=f$, therefore $g f \sim 1_{A}$.

Now take $f: A \rightarrow B$ to be a homotopy equivalence. Factor it as $A \underset{\text { tr.cof }}{g} C \xrightarrow[f i b]{p} B$. Then C is both fibrant and cofibrant, so g is a homotopy equivalence by the first part of the theorem. Assume the homotopy inverse of f is $f^{\prime}: B \rightarrow A$, and $H: B^{\prime} \rightarrow B$ is a left homotopy from $f f^{\prime}$ to 1_{B}. Observe the square

The lift H^{\prime} is a left homotopy from $g f^{\prime}$ to $q=H^{\prime} i_{1}$. We also get $p q=H i_{1}=$ 1_{B}.

Let $g^{\prime}: C \rightarrow A$ be a homotopy inverse for g. Then $p \sim p g g^{\prime} \sim f g^{\prime}$, therefore $q p \sim\left(g f^{\prime}\right)\left(f g^{\prime}\right) \sim 1_{C}$. Let $K: C^{\prime} \rightarrow C$ be a left homotopy from 1_{C} to $q p . K i_{0}=1_{C}, i_{0}$ and 1_{C} are weak equivalences, so K, and by that $K i_{1}=q p$ are weak equivalences too. The following commutes (with horisontal composites being identical)

therefore p is the retract of $q p$, hence p and $f=g p$ are weak equivalences.
Note, that this generalisation of Whitehead's theorem has nothing to do with homotopy groups, although they were introduced for arbitrary cofibrant A, and natural number n. It would be nice to see, how these notions are related. The following is an important consequence of the previous theorem.

Proposition 2.1.15. If $\gamma: \mathscr{C}_{c f} \rightarrow H o \mathscr{C}_{c f}, \delta: \mathscr{C}_{c f} \rightarrow \mathscr{C}_{c f} / \sim$ are the evident canonical functors, then $\exists!j: \mathscr{C}_{c f} / \sim \rightarrow H o \mathscr{C}_{c f}$ isomorphism of categories, such that $j \delta=\gamma . j$ is identity on objects.

Proof. δ takes homotopy equivalences, therefore weak equivalences to isomorphisms. It would be enough to see, that it has the same universal property as γ, then Proposition 2.1.6 is applied.

Let $F: \mathscr{C}_{c f} \rightarrow D$ be a functor, that takes weak equivalences to isomorphisms. Assume $A \vee A \xrightarrow{\left(i_{0}, i_{1}\right)} \xrightarrow{s} A$ is a cylinder object. Then $s_{i_{0}}=s_{i_{1}}=1_{A}$, s is a weak equivalence, so $F i_{0}=F i_{1}$ is the inverse of $F s$. For a left homotopy $H: A^{\prime} \rightarrow B$ from f to $g, F f=(F H)\left(F i_{0}\right)=(F H)\left(F i_{1}\right)=F g$, so F identifies left (and dually: right) homotopic maps.

It implies, that F factors through $\mathscr{C}_{c f} / \sim$ as $F=G \delta$ by $G: \mathscr{C}_{c f} / \sim \rightarrow D$, where $G([f])=F f$. This G is unique and it is idenetity on objects, so δ has the required universal property.

The main goal of this section was the following theorem.
Theorem 2.1.16. \mathscr{C} is a model category.

1. $\mathscr{C}_{c f} \hookrightarrow \mathscr{C}$ induces $\mathscr{C}_{c f} / \sim \cong$ Ho $\mathscr{C}_{c f} \rightarrow$ Ho \mathscr{C} equivalence of categories.
2. There are isomorphisms Ho $\mathscr{C}(\gamma X, \gamma Y) \cong \mathscr{C}(Q R X, Q R Y) / \sim \cong$ $\mathscr{C}(R Q X, R Q Y) / \sim \cong \mathscr{C}(Q X, R Y) / \sim$ natural in all components. Hence Ho \mathscr{C} is locally small.
3. $\gamma: \mathscr{C} \rightarrow$ Ho \mathscr{C} identifies left or right homotopic maps.
4. If γf is an isomorphism in Ho \mathscr{C}, then f is a weak equivalence.

Proof. The first statement is already seen, the third one is in the proof of the previous proposition. For the second statement, recall that there is a natural transformation $q r: i \circ R \circ Q \rightarrow 1_{\mathscr{C}}$, whose components are weak equivalences. So we get a natural isomorphism from $H o i \circ H o R \circ H o Q$ to $1_{\mathscr{C}}$, that gives Ho $\mathscr{C}_{c f}(\gamma Q R X, \gamma Q R Y) \cong H o \mathscr{C}(\gamma X, \gamma Y)$. Then use the isomorphism $\mathscr{C}_{c f} / \sim \cong H o \mathscr{C}_{c f}$.

As Ho io Ho RoHo $Q \cong$ Ho io Ho $Q \circ H o R\left(\cong 1_{\mathscr{G}}\right)$ we have that $\gamma R Q X \cong$ $\gamma Q R X$ in $H o \mathscr{C}_{c f}$. Hence ${ }^{H o} \mathscr{C}_{c f}(\gamma Q R X, \gamma Q R Y) \cong H o \mathscr{C}_{c f}(\gamma R Q X, \gamma Q R Y)$

In the functorial factorisations $Q X \rightarrow X$ is a trivial fibration and $X \rightarrow$ $R X$ is a trivial cofibration. Using the forth statement of Proposition 2.1.10, we have $\mathscr{C}(\gamma Q R X, \gamma Q R Y) / \sim \cong \mathscr{C}(\gamma R Q X, \gamma Q R Y) / \sim \cong \mathscr{C}(\gamma Q X, \gamma Q R Y) / \sim \cong$ $\mathscr{C}(\gamma Q X, \gamma R Y) / \sim$ isomorphisms, natural in both components.

Finally, if γf is an isomorphism in $Н о \mathscr{C}$, then by the commutativity of

$Q R f$ is an isomorphism in $H_{o} \mathscr{C}_{c f}$, therefore in \mathscr{C} / \sim. So $Q R f$ is a homotopy equivalence in $\mathscr{C}_{c f}$, hence a weak equivalence. The following shows $R f$ and f to be weak equivalences:

2.2 exact sequences

Definition 2.2.1. The category \mathscr{C} is pointed, if it has an initial and a terminal object, and the unique map between them is an isomorphism.

Some examples are $\mathbf{T o p}_{*}$ the category of pointed topological spaces, Cat $_{*}$ the category of small categories with a distinguished object and base-point preserving functors, and its full subcategory Grp. In general, one can always create a pointed category from a category with terminal object $(*)$ by concerning maps $* \rightarrow A$ as objects and commutative triangles as arrows.

In this section all categories are assumed to be pointed.
Definition 2.2.2. The kernel of a map $f: A \rightarrow B$ is the equalizer of f and the zero-map $0: A \rightarrow * \rightarrow B$. Dually, the cokernel of f is the coequalizer of f and 0 .

These (co)limits have equivalent characterisation as the pullback of f through $* \rightarrow B$ and dually, as the pushout of f through $A \rightarrow *$. Motivated by their realisation in Top, the (co)kernel is also referred as the (co)fibre of the map, hence the below terminology.

Definition 2.2.3. In a pointed model category, the suspension of an object A is the cokernel of the cofibration map $A \vee A \rightarrow A \times I_{0}$ described in Definition 2.1.7.

The loop space of A is the kernel of the (dual) fibration $A^{I_{0}} \rightarrow A \times A$.
Proposition 2.2.1. This extends to the suspension and loop functors; Σ, Ω : Но $\mathscr{C} \rightarrow$ Но \mathscr{C}.

Proof. By the commutativity of the left and back face of the cube

The outer square in the pushout diagram

commutes, this induces Σf. If f is a weak equivalence, then $f \times I_{0}$ is also, then by the 2-out-of-3 property so is Σf. Now it follows, that Σ and Ω are endofunctors of $\mathrm{Ho} \mathscr{C}$.

Proposition 2.2.2. Σ is left adjoint to Ω (in Ho \mathscr{C}). Moreover, if $[A, B]_{1}$ is defined as $\pi_{1}(Q A, R B)$, then there are isomorphisms $[\Sigma A, B]=[A, B]_{1}=$ $[A, \Omega B]$, natural in all components $([X, Y]$ stands for H O $\mathscr{C}(X, Y))$.

Proof. First assume, that A is cofibrant and B is fibrant. Then the map $\rho:(f: \Sigma A \rightarrow B) \mapsto\left(f \pi: A \times I_{0} \rightarrow B\right)$ (where $\pi: A \times I_{0} \rightarrow \Sigma A$ is the cofibre of $\left.A \vee A \rightarrow A \times I_{0}\right)$ is a bijection. It is well-defined; i.e. let $K: \Sigma A \rightarrow B^{I}$ be a right homotopy from f to f^{\prime}, and let φ be a correspondence between $f^{\prime} \pi$ and some right homotopy k. Form the squares

This shows, that $f \pi$ and $f^{\prime} \pi$ correspond to the same right homotopy $k=$ $(s 0) k$, hence belong to the same homotopy class.

To see surjectivity take a left homotopy $h: A \times I_{0} \rightarrow B$, with $h\left(j_{0}, j_{1}\right)=0$ (Proposition 2.1.10 and 2.1.11 together imply, that any left homotopy is homotopic to one which maps from the functorial cylinder object). Then there is an induced map $f: \Sigma A \rightarrow B$ in the pushout

hence $h=f \pi$.
To prove injectivity assume $[f \pi]=\left[f^{\prime} \pi\right]$, and let $H: \tilde{A} \rightarrow B$ be a left homotopy between them. Define $H^{\prime}: \tilde{A} \rightarrow B$ by $H^{\prime} j_{0}=H^{\prime} j_{1}=f \pi$. Then there is a lift in

and $K j_{1}: A \times I_{0} \rightarrow B^{I}$ is a right homotopy from $f \pi$ to $f^{\prime} \pi$, with $K j_{1}\left(i_{0}, i_{1}\right)=$ 0 . Therefore it factors through ΣA as $K^{\prime} \pi$, where $p_{0} K^{\prime} \pi=f \pi$ and $p_{1} K^{\prime} \pi=$
$f^{\prime} \pi$. It is enough to see, that π is an epimorphism (i.e. left-cancelable) which holds, as it is the pushout of an epi (its codomain is the terminal object).

This argument shows, that $\pi_{1}(A, B)$ is invariant under weak equivalences, in both variables. To see that $\pi_{1}: H o \mathscr{C}_{c}^{o p} \times H o \mathscr{C}_{f} \rightarrow \mathbf{G r p}$ is a functor, one has to check that for maps $a: A^{\prime} \rightarrow A, b: B \rightarrow B^{\prime}$ the following commutes

$$
\begin{gathered}
\pi_{1}(A, B) \ni \alpha \stackrel{a^{*}}{\longmapsto} \alpha\left(a \times I_{0}\right) \in \pi_{1}\left(A^{\prime}, B\right) \\
b_{*} \downarrow_{\downarrow} \\
\pi_{1}(A, B) \ni b \alpha \underset{b_{*}}{\longleftrightarrow} b \alpha\left(a \times I_{0}\right) \in \pi_{1}\left(A^{\prime}, B^{\prime}\right)
\end{gathered}
$$

associativity of composition in a fixed variable is immediate.
It remains to prove naturality. In the second variable it is automatic, in the first it follows from the equality $A \times I_{0} \xrightarrow{a \times I_{0}} A^{\prime} \times I_{0} \xrightarrow{\pi^{\prime}} \Sigma A^{\prime}=A \times I \xrightarrow{\pi}$ $\Sigma A \xrightarrow{\Sigma a} \Sigma A^{\prime}$, which holds by definition.

Finally, we have the natural isomorphisms of functors

$$
[\Sigma A, B] \cong[\Sigma Q A, R B] \cong[A, B]_{1} \cong[Q A, \Omega R B] \cong[A, \Omega B]
$$

which complete the proof

In the case of topological spaces, there is a map $m: F \times \Omega B \rightarrow F$, that lifts the given loop with the given endpoint, and results the element of F, in which the lift ends. The analogous construction is given for any model category.

Let $p: E \rightarrow B$ be a fibration with fibre F. A path object of B is given by $B \underset{\text { w.e. }}{s^{B}} B^{I} \xrightarrow[f i b]{\left(d_{0}^{B}, d_{1}^{B}\right)} B \times B$.

Factor $1_{E} \underset{B}{\times} s^{B} \circ p \underset{B}{\times} 1_{E}$ as $E \underset{\text { w.e. }}{s^{E}} E^{I} \xrightarrow[f i b]{\left(d_{0}^{E}, p^{I}, d_{1}^{E}\right)} E \underset{B}{\times} B^{I} \times \underset{B}{\times}$. Observe the following pullbacks:

By pullback stability $\left(p r_{1}, p r_{2}\right)$ is a fibration, hence $\left(p r_{1} . p r_{2}\right) \circ\left(d_{0}^{E}, p^{I}, d_{1}^{E}\right)=$ $\left(d_{0}^{E}, p^{I}\right)$ is also. $p r_{1}^{\prime}$ is a trivial fibration. In the equation $1_{E}=p r_{1}^{\prime} \circ\left(d_{0}^{E}, p^{I}\right) \circ s^{E}$ all arrows except $\left(d_{0}^{E}, p^{I}\right)$ were shown to be weak equivalences, so by the ' 2 -out-of-3' axiom it is a trivial fibration.

Our next goal is to show, that $\exists!\alpha$, such that

commutes, where j is the inclusion of the fibre.
Using the universal property of the defining pullback of ΩB, it is enough to see, that $\left(d_{0}^{B}, d_{1}^{B}\right) \circ p^{I} \circ p r_{2}^{\prime \prime}: F \underset{E}{\times} E_{E}^{I} \times F \rightarrow B \times B$ is equal to the zero-map. From the construction of the functorial path object it follows, that the square

commutes. Therefore $\left(d_{0}^{B}, d_{1}^{B}\right) \circ p^{I}=p \times p \circ\left(d_{0}^{E}, d_{1}^{E}\right)$, and $\left(d_{0}^{B}, d_{1}^{B}\right) \circ p^{I} \circ p r_{2}^{\prime \prime}=$ $p \times p \circ\left(d_{0}^{E}, d_{1}^{E}\right) \circ p r_{2}^{\prime \prime}=p \times p \circ i \times i \circ\left(p r_{1}, p r_{3}\right)=0$

It is enough to prove, that the square
is a pullback. Then π is a trivial fibration, so there is a map $m: F \times$ $\Omega B \xrightarrow{\gamma(\pi)^{-1}} F \underset{E}{\times} E^{I} \underset{E}{\times} F \xrightarrow{\gamma\left(p r r_{3}^{\prime \prime}\right)} F$ in Ho С.

Definition 2.2.4. A fibre sequence is the functorial image of the defining pullback of the fibre of a fibration p, and of $m: \Omega B \times F \rightarrow F$ at the functor $\gamma: \mathscr{C} \rightarrow$ Но \mathscr{C}.

A cofibre sequence is the induced diagram in $H o \mathscr{C}$ by the defining pushout of the cofibre, and by the map $n: C \vee \Sigma A \rightarrow C$.

In [5] Quillen proves the following result.
Theorem 2.2.3. For a fibre sequence $F \xrightarrow{i} E \xrightarrow{p} B$ define the boundary map as $\partial: \Omega B \xrightarrow{1_{B} \times 0} \Omega B \times F \xrightarrow{m} F$. Then

$$
\cdots \rightarrow[A, \Omega E] \xrightarrow{(\Omega p)_{*}}[A, \Omega B] \xrightarrow{\partial_{*}}[A, F] \xrightarrow{i_{*}}[A, E] \xrightarrow{p_{*}}[A, B]
$$

is an exact sequence of groups from $[A, \Omega E]$ to the left, half exact at all stages (as a sequence of pointed sets), and

- $\delta_{*}\left(\lambda_{1}\right)=\delta_{*}\left(\lambda_{2}\right) \Leftrightarrow \exists \mu \in[A, \Omega E]: \lambda_{1}=\lambda_{2} \cdot(\Omega p)_{*}(\mu)$
- $i_{*}\left(\alpha_{1}\right)=i_{*}\left(\alpha_{2}\right) \Leftrightarrow \exists \lambda \in[A, \Omega B]: \alpha_{1}=\alpha_{2} \cdot \lambda$
- $p_{*}^{-1}(0)=\operatorname{Im}\left(i_{*}\right)$

Here central dot abbreviates $m_{*}:[A, \Omega B] \times[A, F] \rightarrow[A, F]$.
For a cofibre sequence $A \xrightarrow{i} X \xrightarrow{\psi} C$ with $\partial: C \xrightarrow{1_{C}+0} C+\Sigma A \xrightarrow{n} \Sigma A$

$$
\ldots[\Sigma X, B] \xrightarrow{(\Sigma i)^{*}}[\Sigma A, B] \xrightarrow{\partial^{*}}[C, B] \xrightarrow{\psi^{*}}[X, B] \xrightarrow{i^{*}}[A, B]
$$

is exact in the same sense, except that • stands for the right action n^{*} : $[C, B] \times[\Sigma A, B] \rightarrow[C, B]$.

For a straightforward application observe the following model structure on $\mathbf{C a t}_{*}$, the category of small pointed categories. The proof is given in [3].

Theorem 2.2.4. There is a model structure on $\mathbf{C a t}_{*}$, where fibrations are isofibrations (i.e. whenever there is an isomorphism $\varphi: a \cong b$ in \mathscr{D}, such that $a=F(x)$, for the isofibration $F: \mathscr{C} \rightarrow \mathscr{D}$, then there is an isomorphism ψ in \mathscr{C} for which $\varphi=F(\psi)$) cofibrations are functors, that are injective on objects and weak equivalences are those, which are part of an equivalence of categories.

Proposition 2.2.5. In the above model structure homotopy (between functors $F, G: \mathscr{C} \rightarrow \mathscr{D})$ is natural isomorphism (η), for which $\eta_{x_{0}}=1_{x_{0}}\left(x_{0}\right.$ is the base point of \mathscr{C}).

Proof. In the proof of the next corollary the functorial cylinder object is characterised, then it follows immediately.

Corollary 2.2.5.1. If $\varphi: \mathscr{C} \rightarrow \mathscr{D}$ is a functor that is injective on objects, $\left.\psi: \mathscr{D} \rightarrow \mathscr{D}^{\prime}=D /<\operatorname{Im} \varphi\right\rangle$ is the factor map, and $[\mathscr{C}, \mathscr{D}]$ denotes the homotopy classes of $\mathscr{C} \rightarrow \mathscr{D}$ functors, then

$$
\begin{array}{r}
0 \rightarrow \operatorname{Hom}\left(F_{d^{\prime}-1}, \mathscr{A}\right) \xrightarrow{(\Sigma \psi)^{*}} \operatorname{Hom}\left(F_{d-1}, \mathscr{A}\right) \xrightarrow{(\Sigma \varphi)^{*}} \operatorname{Hom}\left(F_{c-1}, \mathscr{A}\right) \xrightarrow{\partial^{*}} \\
\xrightarrow{\partial^{*}}\left[\mathscr{D}^{\prime}, \mathscr{A}\right] \xrightarrow{\psi^{*}}[D, \mathscr{A}] \xrightarrow{\varphi^{*}}[C, \mathscr{A}]
\end{array}
$$

is an exact sequence of pointed sets. Here \mathscr{A} is any (pointed, small) category, and a, c, d, d^{\prime} is the number of connected components of the related categories.

If $p: \mathscr{E} \rightarrow \mathscr{B}$ is an isofibration, and $i: \operatorname{Ker} p \hookrightarrow \mathscr{E}$ is the inclusion of the kernel, then

$$
\begin{aligned}
& 0 \rightarrow\left[\mathscr{A},(\operatorname{ker} p)^{\mathbb{Z}}\right] \xrightarrow{(\Omega i)_{*}}\left[\mathscr{A}, \mathscr{E}^{\mathbb{Z}}\right] \xrightarrow{(\Omega p)_{*}}\left[\mathscr{A}, \mathscr{B}^{\mathbb{Z}}\right] \xrightarrow{\delta_{*}} \\
& \xrightarrow{\delta_{*}}[\mathscr{A}, \operatorname{ker} p] \xrightarrow{i_{*}}[\mathscr{A}, \mathscr{E}] \xrightarrow{p_{*}}[\mathscr{A}, \mathscr{B}]
\end{aligned}
$$

and

$$
\begin{aligned}
0 \rightarrow \operatorname{Hom}\left(F_{a-1}, \operatorname{ker} p\right) \rightarrow & H o m \\
\left(F_{a-1}, \mathscr{E}\right) \rightarrow & \operatorname{Hom}\left(F_{a-1}, \mathscr{B}\right) \rightarrow \\
\rightarrow & {[\mathscr{A}, \text { ker } p] \xrightarrow{i_{*}}[\mathscr{A}, \mathscr{E}] \xrightarrow{p_{*}}[\mathscr{A}, \mathscr{B}] }
\end{aligned}
$$

is exact.
Proof. The following is a pushout square:

Therefore there is a cofibre sequence $\mathscr{C} \xrightarrow{\varphi} \mathscr{D} \xrightarrow{\psi} \mathscr{D}^{\prime}$ with some suitable ∂.
Define $\mathscr{C} \times I$ as $\mathscr{C} \vee \mathscr{C}$ together with isomorphisms between the two copies of an object (except x_{0}), such that any square containing two of them commutes. Then the composition

$$
\mathscr{C} \vee \mathscr{C} \xrightarrow{i} \mathscr{C} \times I \xrightarrow{p r} \mathscr{C}
$$

is a factorisation of $1_{\mathscr{C}} \vee 1_{\mathscr{C}}$ to a cofibration followed by a trivial fibration. Here $p r$ identifies the two copies of \mathscr{C} and maps the vertical isomorphisms to identities. This is surjective, and by commutativity it is bijective on Homsets, so it is a trivial fibration. It follows, that $\mathscr{C} \times I$ is a cylinder object. Then the pushout

shows, that the suspension of a category is the free group generated by $c-1$ elements, where c is the number of connected components in \mathscr{C}.

For any monoid \mathcal{M} and category $\mathscr{C}, \operatorname{Hom}(\mathcal{M}, \mathscr{C})=[\mathcal{M}, \mathscr{C}]$, as in this case, a natural isomorphism would have only one component, which is the identity of the base point.

Now we construct the loop object. Let \mathscr{C}^{I} be the functor category $\mathscr{C} \leftrightarrow$. Note, that $\cdot \leftrightarrow \cdot$ is itself not pointed, the base point of $\mathscr{C} \leftrightarrow$ is the functor, whose image is the identity of $x_{0} \in \mathscr{C}$. Then

$$
\mathscr{C} \xrightarrow{i} \mathscr{C}^{I} \xrightarrow{p r} \mathscr{C} \times \mathscr{C}
$$

is a decomposition of $1_{\mathscr{C}} \times 1_{\mathscr{C}}$ to a trivial cofibration followed by a fibration. Here i maps every object to its identity, and $p r$ takes an isomorphism to its endpoints.

The following is a pullback:

Finally, exactness of the last sequence follows by adjointness.
Corollary 2.2.5.2. $\operatorname{Hom}(-,-):$ Mon \times Mon \rightarrow Mon is left-exact in both variables.

Proof. In the observed model structure every monoid homomorphism is a cofibration, and the fibrations are those, which are surjective on invertable elements (arrows). Therefore a short exact sequence is both a fibre and cofibre sequence, then the above result is applied.

3 Constructions for model categories

3.1 cofibrantly generated model categories

In this section a possible construction of model structures is considered. The hardest part is to create functorial factorisation; this motivates the following technicalities.

Definition 3.1.1. Assume, the category \mathscr{C} has all small colimits, and λ is an ordinal (represented as a category). Then a λ-sequence in \mathscr{C} is a colimitpreserving functor $X: \lambda \rightarrow \mathscr{C}$ (i.e. for each limit ordinal $\gamma<\lambda$ the induced map $\underset{\beta<\gamma}{\operatorname{colim}} X_{\beta} \rightarrow X_{\gamma}$ is an isomorphism). The map $X_{0} \rightarrow \underset{\beta<\lambda}{\operatorname{colim}} X_{\beta}$ of the universal cone is said to be the transfinite composition of the λ-sequence.

Definition 3.1.2. For a cardinal γ, the limit ordinal α is γ-filtered, if $A \subseteq \alpha$, $|A| \leq \gamma \Rightarrow \sup A<\alpha$.

Definition 3.1.3. Assume \mathscr{C} has all small colimits, D is a collection of arrows, A is an object, κ is a cardinal. Then A is κ-small rel. D, if for all κ-filtered ordinal λ and for all λ-sequence $X: X_{0} \xrightarrow{\alpha_{0}} X_{1} \xrightarrow{\alpha_{1}} \ldots$, with $\alpha_{i} \in D$, the induced map !: colim $\mathscr{C}\left(A, X_{\beta}\right) \rightarrow \mathscr{C}\left(A\right.$, colim $\left.X_{\beta}\right)$ is bijective.

Example 3.1.1. Every set A is $|A|$-small. To see this, take $f: A \rightarrow$ $\operatorname{colim} X_{\beta}$. For all $a \in A$ there is β_{a}, such that $f(a) \in \operatorname{im} \mu_{\beta_{a}}$. $\sup \beta_{a}=\gamma<\lambda$, as λ was $|A|$-filtered.

Now $f(a) \in$ im μ_{γ}, for all $a \in A$, as $\mu_{\beta_{a}}=\mu_{\gamma} \circ \alpha_{\beta_{a} \gamma}$, therefore f can be factored as $A \xrightarrow{g} X_{\gamma} \xrightarrow{\mu_{\gamma}}$ colim $X_{\beta}=\left(\mu_{\gamma}\right)_{*}(g)=!i_{\gamma}(g)$, so ! is surjective.

To see injectivity, assume ! $f_{1}=!f_{2}$, then for all $a \in A$ there is β_{a}, such that $f_{1, \beta_{a}}(a)=f_{2, \beta_{a}}(a)$, where $f_{i}=\mu_{\beta_{a}} f_{i, \beta_{a}}$. Then $f_{1, \beta}=f_{2, \beta}$, where $\beta=\sup _{a \in A} \beta_{a}$. Therefore $f_{1}=f_{2}$.
Example 3.1.2. Every R-module A is $|A|(|A|+|R|)$-small. It can be proved similarly, and the proof is given in [2].

Definition 3.1.4. $I \subseteq \operatorname{Arr} \mathscr{C}$ is a subclass.

- I-inj is the class of morphisms, that have r.l.p. wrt. I.
- I-proj is the class of morphisms, that have l.l.p.wrt. I.
- $I-c o f=(I-i n j)-p r o j$
- $I-f i b=(I-p r o j)-i n j$

Proposition 3.1.1. The above classes are subcategories.
Lemma 3.1.2. $I \subseteq I-c o f, I \subseteq I-f i b,(I-c o f)-i n j=I-i n j,(I-f i b)-p r o j=I-p r o j$, $I \subseteq J \Rightarrow I-i n j \supseteq J-i n j, I-p r o j \supseteq J-p r o j, I-c o f \subseteq J$-cof, I-fib $\subseteq J$-fib.

If \mathscr{C} is a model category and I is the class of cofibrations, then I-inj is the class of trivial fibrations and $I-c o f=I$.

If I is the class of fibrations, then elements of I-proj are trivial cofibrations and $I-f i b=I$.

Example 3.1.3. Take $\mathscr{C}=$ Top and let I consist of the boundary inclusions $S^{n-1} \hookrightarrow D^{n}$. Then a pushout from I is the attachment of an n-cell;

Take a transfinite composition from these maps, whose domain is a point. Codomains of such arrows are exactly the $C W$-complexes.

Definition 3.1.5. I is a subset of $\operatorname{Arr} \mathscr{C}, \mathscr{C}$ has all small colimits. A relative I-cell complex is a map, that is the transfinite composition of arrows, that are pushouts from I.

Lemma 3.1.3. All isomorphisms are in I-cell. I-cell $\subseteq I$-cof.
Proof. An isomorphism $f: A \xrightarrow{\sim} B$ is the transfinite composition of the sequence whith only one object, A. For the second statement, it is enough to prove, that I-cof is closed under pushouts and transfinite composition. It was already seen, that left lifting properties are preserved by pushouts.

Assume $g \in I$-inj, $f_{\alpha} \in I$-cof, $(\alpha<\lambda)$. Take φ_{0}, φ_{1} such that $g \varphi_{0}=\varphi_{1} f$. Then the lifts $h_{\alpha}(\alpha<\lambda)$ exist, and the relations $g h_{\alpha}=\varphi_{1} i_{\alpha}, h_{\alpha} f_{\alpha}=\varphi_{0}$ hold.

Lemma 3.1.4. Take a λ-sequence, where each arrow is from I, or is an isomorphism. Then its transfinite composition is in I-cell.
Proof. The transfinite composition of isomorphisms is itself an isomorphism. I.e. it can be choosen to be the first map in the sequence, while the rest of the arrows of the cone are defined via transfinite recursion. Composing an isomorphism after a pushout from I is again a pushout.
Lemma 3.1.5. \mathscr{C} has all small colimits, $I \subseteq A r r \mathscr{C}$ is a subset. Then I-cell is closed under transfinite composition.
Proof. Such a sequence consists of isomorphisms and of transfinite compositions of pushouts from I. Replacing these with the sequence of composable arrows, the previous lemma can be applied.
Lemma 3.1.6. Pushout of coproduct of maps from I is in I-cell.
Proof. A λ-sequence is created by transfinit recursion, whose composition is isomorphic to the pushout $f: X \rightarrow Y$ of $\sqcup_{k \in K}\left\{g_{k}: C_{k} \rightarrow D_{k}\right\}$ through $h_{0}: \sqcup_{k} C_{k} \rightarrow X$, and where the cardinality of λ is $|K|$.

For the recursion define $X_{0}=X$, and for the successor ordinal $\beta+1$ take the pushout

where the above vertical map is given by the composition $C_{\beta} \rightarrow \sqcup_{k} C_{k} \xrightarrow{h_{0}}$ $X \xrightarrow{i_{(0, \beta)}} X_{\beta}$. When β is a limit ordinal, take $X_{\beta}=\underset{\alpha<\beta}{\operatorname{colim}} X_{\alpha}$.

Using the universal properties of the defining colimits, we get for each β a universal map $!_{\beta}: X_{\beta} \rightarrow Y$, such that $!_{\beta} i_{(0, \beta)}=f . f$ was also a pushout, therefore there is a map $\tilde{!}: Y \rightarrow X_{\lambda}=\underset{\alpha<\lambda}{\operatorname{colim}} X_{\alpha}$, making

commute (where d_{β} is the map $D_{\beta} \rightarrow X_{\beta+1}$, appearing in the defining pushout of $X_{\beta+1}$, composed with $\left.i_{(\beta+1, \lambda)}\right)$. It is enough to prove that the triangles including $!=!_{\lambda}$ commute, then the outer square can also be proved to be a pushout, and finally ! turns out to be an isomorphism (hence $!\in I$ cell).

Commutativity of the upper triangle is immediate, for the lower note the commutativity of

(which follows from the construction of $!_{\beta+1}$, using universality of the defining pushout of $X_{\beta+1}$). Then composing the edges of the tringle after the coproduct cocone over the set $\left\{D_{k}\right\}_{k<\lambda}$ leads to the desired commutativity, by the universal property if the coproduct.

Theorem 3.1.7 (Small object argument). \mathscr{C} has all small colimits, $I \subseteq$ Arr \mathscr{C} is a subset, domains of I are small rel. I-cell. Then there is (γ, δ) functorial factorisation, such that $\forall f \in \operatorname{Arr} \mathscr{C}: \gamma(f) \in I$-cell, $\delta(f) \in I$-inj.

Proof. Assume κ is a cardinal, such that domains of I are κ-small. Let λ be a κ-filtered ordinal and take an arrow $f: X \rightarrow Y$ from \mathscr{C}.

First the λ-sequence $Z^{f}: \lambda \rightarrow \mathscr{C}$ is defined, together with a natural transformation $\rho^{f}: Z^{f} \rightarrow!_{Y}$, where $!_{Y}$ is the constant Y functor (i.e. maps every object to Y and each arrow to 1_{Y}). It is defined through transfinite recursion, as

- $Z_{0}^{f}=X, \rho_{0}^{f}=f$
- for the successor ordinal $\beta+1$:

Take all pairs of arrows $\left(g_{s}, h_{s}\right): g_{s} \in I(s \in S)$, such that there is a commutative square

Then the pushout of $\sqcup g_{s}: \sqcup_{s} A_{s} \rightarrow \sqcup_{s} B_{s}$ through $\sqcup h_{s}: \sqcup_{s} A_{s} \rightarrow Z_{\beta}^{f}$ is defined to be $i_{\beta, \beta+1}: Z_{\beta}^{f} \rightarrow Z_{\beta+1}^{f}$, and $\rho_{\beta+1}^{f}: Z_{\beta+1}^{f} \rightarrow Y$ is induced by the universal property of the pushout. This makes sense even when S is the empty set; in this case $i_{\beta, \beta+1}=1_{Z_{\beta}^{f}}$.

- When β is a limit ordinal take $Z_{\beta}^{f}=\underset{\alpha<\beta}{\operatorname{colim}} Z_{\alpha}^{f}$. It is proved by transfinite induction, that the maps $\rho_{\alpha}^{f}: Z_{\alpha}^{f} \rightarrow Y$ form a cocone, then $\rho_{\beta}^{f}: Z_{\beta}^{f} \rightarrow Y$ is the induced morphism of cocones.

Define $\gamma(f): X \rightarrow Z_{\lambda}^{f}=\underset{\alpha<\lambda}{\operatorname{colim}} Z_{\alpha}^{f}$ as the transfinite composition of the previous λ-sequence, and $\delta(f): Z_{\lambda}^{f} \rightarrow Y$ as the induced morphism of cocones. Then $f=\delta(f) \gamma(f)$, and from the previous lemmas it follows that $\gamma(f) \in I$-cell.

Now take a commutative square

Domains of I are κ-small rel. I-cell, therefore h factores through $h^{\prime}: A \rightarrow Z_{\beta}^{f}$ for some $\beta<\lambda$. The pair $\left(g, h^{\prime}\right)$ is part of a commutative square ending in Y, so from the definition of $Z_{\beta+1}^{f}$ it follows, that there is a $k^{\prime}: B \rightarrow Z_{\beta+1}^{f}$, such that everything commutes in

Therefore $\delta(f) \in I$-inj.
It remains to prove, that this factorisation is functorial. It is enough to see, that $Z^{(-)}: \operatorname{Arr} \mathscr{C} \rightarrow \mathbf{C a t}$ is a functor. In this case a commutative square

induces a natural transformation from Z^{f} to $Z^{f^{\prime}}$, using its components, we get a cocone over the image of Z^{f}, ending in Z_{λ}^{\prime}. Therefore we get a map $Z_{\lambda} \rightarrow Z_{\lambda}^{\prime}$, that makes the left square commute in

To see the commutativity of the right square, whose vertexes are all endings of cocones over Z^{f} (constructed by the composition of the square's edges after the colimiting object Z_{λ}), take the lift $Z_{\lambda} \rightarrow Y^{\prime}$, that exists by universality, and what makes both of the resulting triangles commute.

The required natural transformation is constructed via transfinite recursion, with $\varphi_{0}=\alpha_{0}$. First note, that for all $s \in S_{\beta}$ there is a commutative diagram

therefore there is a commutative outer square, and the universal property of the pushout induces $\varphi_{\beta+1}$:

When β is a limit ordinal, the component φ_{β} is induced by the universal property of the colimiting cocone.

Corollary 3.1.7.1. \mathscr{C} has all small colimits, $I \subseteq A r r \mathscr{C}$ is a subset, domains of I are small rel. I-cell. Then for all $f: A \rightarrow B \in I$-cof, there is a $g: A \rightarrow C \in I$-cell, such that f is the retract of g by a map, that fixes A.

Proof. Factor f as $h \circ g$, where g is in I-cell and h is in I-inj. $f \in I$-cof, therefore f has l.l.p. wrt. h, so by the retract argument f is the retract of g, with 1_{A} in the appearing commutative squares.

Theorem 3.1.8 (Hirschhorn). \mathscr{C} has all small colimits, $I \subseteq$ Arr \mathscr{C} is a subset, domains of I are small rel. I-cell. Assume A is small rel. I-cell. Then A is small rel. I-cof.

Proof. Assume A is κ-small rel. I-cell, λ is a κ-filtered ordinal, and X : $\lambda \rightarrow \mathscr{C}$ is a λ-sequence from I-cof arrows $\left(f_{\beta}\right)$. The idea of the proof is to construct a λ-sequence $Y: \lambda \rightarrow \mathscr{C}$ from I-cell arrows $\left(g_{\beta}\right)$, together with morphisms $i: X \rightarrow Y$ and $r: Y \rightarrow X$, such that $r i=1_{X}$. The construction goes by transfinite recursion.
$Y_{0}=X_{0}, i_{0}=r_{0}=1_{X_{0}}$. By the retract argument there is a factorisation of $f_{\beta} r_{\beta}: Y_{\beta} \rightarrow X_{\beta+1}$ into an I-cell arrow $g_{\beta}: Y_{\beta} \rightarrow Y_{\beta+1}$, followed by $r_{\beta+1}: Y_{\beta+1} \rightarrow X_{\beta+1}$, which is in I-inj. As $f_{\beta} \in I$-cof, there is a lift $i_{\beta+1}$ in the square

When β is a limit ordinal, define Y_{β} to be $\underset{\alpha<\beta}{\operatorname{colim}} Y_{\alpha}$, then (using the previously constructed i_{α}-s) we have a cocone over $\left.X\right|_{\beta}$, ending in Y_{β}, now the induced map $X_{\beta} \rightarrow Y_{\beta}$ defines i_{β}. The analogous construction using r_{α}-s $(\alpha<\beta)$ gives $r_{\beta}: Y_{\beta} \rightarrow X_{\beta}$. It follows from the universal property of the colimiting cocone over $\left.X\right|_{\beta}$, that the equality $r_{\beta} i_{\beta}=1_{X_{\beta}}$ holds.

The diagram

commutes. To see this, first remove the colimit operations from the lower line, then remove the hom-functors. Now put them back. The retract of an isomorphism is also an isomorphism.

Definition 3.1.6. The model category \mathscr{C} is cofibrantly generated if there are subsets I, J of Arr C, such that

- domains of I are small rel. I-cell,
- domains of J are small rel. J-cell,
- J-inj is the class of fibrations,
- I-inj is the class of trivial fibrations.
I is referred as the set of generating cofibrations, J is the set of generating trivial cofibrations.

The followings are immediate from the previous results.
Proposition 3.1.9. \mathscr{C}, I, J are as before.

- I-cof is the class of cofibrations.
- Every cofibration is the retract of a map from I-cell.
- Domains of I are small relative to cofibrations.
- J-cof is the class of trivial cofibrations.
- Every trivial cofibration is the retract of a map from J-cell.
- Domains of J are small relative to trivial cofibrations.

Finally, the main theorem of this section can be stated.
Theorem 3.1.10. CC has all small limits and colimits, \mathscr{W} is a subcategory of \mathscr{C}, I and J are subsets of $\operatorname{Arr} \mathscr{C}$. Then \mathscr{C} is a cofibrantly generated model category with generating cofibrations I, trivial cofibrations J, and with \mathscr{W} being the category of weak equivalences, iff

- W has the 2-out-of-3 property, and is closed under retracts,
- domains of I are small rel. I-cell,
- domains of J are small rel. J-cell,
- J-cell $\subseteq \mathscr{W} \cap I$-cof,
- $I-i n j \subseteq \mathscr{W} \cap J-i n j$,
- $\mathscr{W} \cap I-c o f \subseteq J-c o f$ or $\mathscr{W} \cap J-i n j \subseteq I-i n j$.

Proof. The implication from the left to the right is already proved. Now, take J-inj to be the class of fibrations, I-cof to be the class of cofibrations. These were shown to be subcategories.

Any lifting property is preserved by retracts, and both functorial factorisations are given by the small object argument. For the lifting axiom first assume $\mathscr{W} \cap I$-cof $\subseteq J$-cof. Then trivial cofibrations have l.l.p. wrt. J-inj, which are the fibrations. Take a trivial fibration $p: X \rightarrow Y$ and factor it as $\beta(p) \circ \alpha(p)$, where $\alpha(p) \in I$-cof and $\beta(p) \in I$-inj. It follows from the 2-out-of-3 property, that $\alpha(p)$ is a trivial cofibration, so p has right lifting property wrt. it. By the retract argument p is the retract of $\beta(p)$, so it is in I-inj. But I-inj $=(I$-cof $)$-inj, so p has r.l.p. wrt. cofibrations.

Now, assume $\mathscr{W} \cap J$-inj $\subseteq I$-inj. This means, trivial fibrations have r.l.p. wrt. I, which implies wrt. I-cof. Let $i: X \rightarrow Y$ be a trivial cofibration, and factor it as $\delta(i) \circ \gamma(i)$, where $\gamma(i) \in J$-cell and $\delta(i) \in J$-inj, which is a trivial fibration. So i has l.l.p. wrt. $\delta(i)$ and is a retract of $\gamma(i)$. Therefore $i \in J$-cof (as it is closed under retracts), then i has l.l.p. wrt. J-inj, which are the fibrations.

3.2 chain complexes

Let R be a ring with unit element 1 . The category $\operatorname{Ch}(R)$ consists of chain complexes as objects (i.e. a \mathbb{Z}-indexed family of R-modules and R-module homomorphisms: $\ldots X_{k} \stackrel{d_{k+1}}{\leftarrow} X_{k+1} \ldots$, such that $d_{n-1} \circ d_{n}=0$ for all $n \in \mathbb{Z}$), and of chain maps as arrows (i.e. commutative ladders). The n-th homology group of the chain complex X is defined as $H_{n}=\operatorname{ker} d_{n} / i m d_{n+1}$. This category admits a cofibrantly generated model structure:

Definition 3.2.1. $S^{n}(M)$ is the chain complex, whose n-th module is M, the rest is zero. The $n-1$-th and n-th module of $D^{n}(M)$ is M, the rest is zero, d_{n-1} is identity. The abbreviations $S^{n}(R)=S^{n}$ and $D^{n}(R)=D^{n}$ are used.
I consists of the inclusions $S^{n-1} \rightarrow D^{n}$, elements of J are the maps $0 \rightarrow D^{n}$. The class of fibrations is J-inj, the class of cofibrations is I-cof. An arrow φ is a weak equivalence, iff $H_{n}(\varphi)$ is an isomorphism for all $n \in \mathbb{Z}$. The weak equivalences trivially form a subcategory.

To prove, that this is a model structure, the requirements of Theorem 3.1.10 must be checked.

Proposition 3.2.1. W has the 2-out-of-3 property, and is closed under retracts.

Proof. The functorial image of a composition (resp. retract) is again a composition (or retract), and this property holds for the class of isomorphisms in any category.

Proposition 3.2.2. Every object X in $C h(R)$ is small. Therefore domains of I are small rel. I-cell, and domains of J are small rel. J-cell.

Proof. Let $\gamma>\left|R \times \bigcup_{n} X_{n}\right|$ be an infinite cardinal, λ is a γ-filtered ordinal, $Y: \lambda \rightarrow C h(R)$ is a λ-sequence. The induced map ! : colim $\operatorname{Hom}\left(X, Y_{\alpha}\right) \rightarrow$ $\operatorname{Hom}\left(X, \underset{\alpha<\lambda}{\operatorname{colim}} Y_{\alpha}\right)$ should be proved to be an isomorphism.

For surjectivity take a chain map $f: X \rightarrow \operatorname{colim} Y_{\alpha}$. As X_{α} is γ small $f_{\beta}: X_{\beta} \rightarrow \underset{\alpha<\lambda}{\operatorname{colim}}\left(Y_{\alpha}\right)_{\beta}$ factors through $Y_{\alpha_{\beta}}$. Then f factors through
 in each coordinate, although may not be a chain map. As for all $x \in X_{k}$ $f_{k-1}\left(d_{k}^{X}(x)\right)=d_{k}^{\text {colim } Y}\left(f_{k}(x)\right)$ holds, there is $\beta_{x}>\alpha$, such that $g_{k-1}^{\prime}\left(d_{k}^{X}(x)\right)=$ $d_{k}^{Y_{\beta x}}\left(g_{k}^{\prime}(x)\right)$, where $g^{\prime}=i_{\alpha, \beta_{x}} g$ and $i_{\alpha, \beta_{x}}: Y_{\alpha} \rightarrow Y_{\beta_{x}}$ is in the λ-sequence Y. Then f factors through $Y_{\beta=\sup _{x \in \cup_{n} X_{n}}} \beta_{x}$ as $f=\mu_{\beta} g_{\beta}^{\prime \prime}=!i_{\beta}\left(g_{\beta}^{\prime \prime}\right)$.

To see injectivity, assume $!f_{1}=!f_{2}$, then (using previous notations) for all x there is β_{x}, such that $g_{1, \beta_{x}}^{\prime \prime}(x)=g_{2, \beta_{x}}^{\prime \prime}(x)$. Then $g_{1, \beta}^{\prime \prime}(x)=g_{2, \beta}^{\prime \prime}(x)$, where $\beta=\sup _{x \in \mathrm{U}_{n} X_{n}} \beta_{x}$. Therefore $f_{1}=f_{2}$.

Proposition 3.2.3. p is a fibration, iff for each n, p_{n} is surjective.
Proof. A chain map $D^{n} \rightarrow Y$ is completely determined by the image of 1 in Y_{n} (denoted by y_{n}). Then a lift in the square

means precisely that $p_{n}^{-1}\left(y_{n}\right)$ is nonempty.

Proposition 3.2.4. $p: X \rightarrow Y$ is a trivial fibration, iff $p \in I-i n j$.
Proof. A diagram of the form

is in one-to-one correspondence with a pair $(y, x) \in Y_{n} \oplus Z_{n-1} X$, for which $p_{n-1} x=d y$, while a lift is given by $z \in X_{n}$, such that $d_{n} z=x$ and $p z=y$.

First assume $p \in I$-inj (i.e. in any of the above squares there is a lift). For $n \in \mathbb{N}$ and $y \in Z_{n} Y$, the pair $(y, 0)$ has the property $p_{n-1} 0=d y=0$, therefore there is a $z \in X_{n}$, with $d z=0$ and $p z=y$, which means, that $Z_{n} p: Z_{n} X \rightarrow Z_{n} Y$ is surjective. An element of $H_{n} Y=\operatorname{ker} d_{n} / \operatorname{im} d_{n+1}$ is a set $\left\{y_{0}+\tilde{y}: \tilde{y} \in \operatorname{im} d_{n+1}\right\}$, where $y_{0} \in Z_{n} Y$. As $0 \in \operatorname{im} d_{n+1}$, if y_{0} is hit by $Z_{n} p$, then $\left[y_{0}\right]$ is hit by $H_{n} p$. Hence $H_{n} p$ is surjective.
p is also surjective (and therefore it is a fibration). I.e. if $y \in Y_{n}$, then $d y \in Z_{n-1} Y$, and by the surjectivity of $Z_{n-1} X$, there is $x \in Z_{n-1} X$, such that $p_{n-1} x=d_{n} y$. Using the lifting property again, an element z of X_{n} exists, for which $p z=y$.

Let $H_{n} X \ni[x]=\left[x_{0}+0\right]$, where $x_{0} \in Z_{n} X . H_{n} p\left(\left[x_{0}\right]\right)=0$ means $\exists y \in Y_{n+1}: p_{n} x=d_{n+1} y$. Therefore there is a $z \in X_{n+1}$ with $d z=x$, so $[x]=0$.

Now assume p is a trivial fibration. We have to prove, that whenever (y, x) is given, and $y \in Y_{n}, x \in Z_{n-1} X, p_{n-1} x=d_{n} y$ holds, one can construct a $z \in X_{n}$ with $p_{n} z=y$ and $d_{n} z=x$. As p is a fibration, there is a short exact sequence

$$
0 \rightarrow K \rightarrow X \xrightarrow{p} Y \rightarrow 0
$$

p is a weak equivalence, therefore $H_{*} K=0$, as H_{*} is an exact functor and $H_{*}(p)$ is an isomorphism. Choose $w \in X_{n}$, for which $p_{n} w=y$.
$p(d w)=d(p w)=d y=p x$, so $p(d w-x)=0$, i.e. $d w-x \in K . d(d w-x)=$ $-d x=0\left(\right.$ as $\left.x \in Z_{n-1} X\right)$ and $H_{*} K=0$ implies, that there is a $v \in K_{n}$, such that $d v=d w-x$. Now let z be $w-v$. Then $p z=y-p v=y$ (as $v \in K_{n}$) and $d z=d w-d v=x$

It only remains to prove J-cell $\subseteq \mathscr{W} \cap I$-cof. This is proved through several lemmas.

Lemma 3.2.5. If the chain complex A is cofibrant, then for all $n A_{n}$ is a projective R-module.

Proof. Starting from any surjection $q: M \rightarrow N$ between the R-modules M and N, there is a fibration $D^{n}(M) \xrightarrow{D^{n}(q)} D^{n}(N)$, where $\left(D^{n}(q)\right)_{k}=q$ for
$k=n, n-1$, and all other maps are zero. It is also a weak equivalence, as all homology groups are trivial. Given $f: A_{n-1} \rightarrow N$ there is an induced chain map $f^{\prime}: A \rightarrow D^{n}(N)$, with $\left(f^{\prime}\right)_{n-1}=f$ and $\left(f^{\prime}\right)_{n}=f d_{n}$ being the nonzero maps. The lift in

proves that A_{n-1} is projective.
Definition 3.2.2. The chain maps $f, g: X \rightarrow Y$ are chain homotopic, iff there are maps $D_{n}: X_{n} \rightarrow Y_{n+1}$, such that $d_{n+1}^{Y} D_{n}+D_{n-1} d_{n}^{x}=f_{n}-g_{n}$.

Lemma 3.2.6. If C is a cofibrant chain complex, and all homology groups of K are trivial, then any chain map $f: C \rightarrow K$ is chain homotopic to 0 .

Proof. Define the chain complex P by $P_{n}=K_{n} \oplus K_{n+1}$ and $d(x, y)=(d x, x-$ $d y)\left(\right.$ then $d^{2}(x, y)=\left(d^{2} x, d x-\left(d x-d^{2} y\right)\right)=0$ as required). The projection $p: P \rightarrow K$, given by $(x, y) \mapsto x$ is surjective, hence is a fibration. $H_{*}(\operatorname{ker} p)=$ $H_{*+1}(K)=0$, which shows that p is also a weak equivalence. So there is a lift in

(f, D) is a chain map, therefore $\left(d_{n}^{P} f_{n}, f_{n}-d_{n+1}^{K} D_{n}\right)=\left(f_{n-1} d_{n}^{C}, D_{n-1} d_{n}^{C}\right)$, equivality of the second coordinates completes the proof.

Proposition 3.2.7. $i: A \rightarrow B$ is a cofibration, iff for all $n i_{n}$ is a split injection, with cofibrant cokernel.

Proof. First assume i is cofibrant. Then it has l.l.p. wrt. the trivial fibration $D^{n+1}\left(A_{n}\right) \rightarrow 0\left(H_{*} D^{n+1}\left(A_{n}\right)=0\right)$. Use it for a square, where the upper $\operatorname{map} A \rightarrow D^{n+1}\left(A_{n}\right)$ is d in the $n+1$-th dimension and identity in the n-th, the rest are zero). Then $h_{n} i_{n}=1_{A_{n}}$, so i_{n} is a split injection. L.l.p-s are preserved by pushouts, and $0 \rightarrow$ coker i is the pushout of i through $A \rightarrow 0$.

Assume i_{n} is split injection, and C, the cokernel of i is cofibrant. Then by Lemma 3.2.5 C_{n} is projective, therefore B_{n} can be written as $A_{n} \oplus C_{n}$.

We have to prove that i has l.l.p. wrt. the trivial fibration $p: X \rightarrow Y$. Take a commutative square with horisontal maps $f: A \rightarrow X$ and $g: B \rightarrow Y$, and let $j: K=\operatorname{ker} p \hookrightarrow X$ denote the inclusion of the kernel.

Using that i is a chain map we get, that the differential of B can be written as $d(a, c)=(d a+\tau c, d c)$, where $d \tau+\tau d=0$. Because of the commutativity of the given square we can write $g(a, c)=p f(a)+\sigma(c)$. The fact that g is also a chain map implies, that $p f(d a+\tau c)+\sigma(d c)=d p f(a)+d \sigma(c)$, hence $d \sigma=p f \tau+\sigma d$.

A lift in the above square is given by a pair (f, ν), where $p \nu=\sigma$ and $f d a+f \tau c+\nu d c=d f a+d \nu c$, hence $d \nu=\nu d+f \tau$. The goal now is to construct such ν.
C_{n} is projective, so there is $G_{n}: C_{n} \rightarrow X_{n}$ with $p_{n} G_{n}=\sigma_{n}$. Define $r=d G-G d-f \tau: C_{n} \rightarrow X_{n-1}$. As $p r=p d G-p G d-p f \tau=d \sigma-d \sigma=0$, there is $s: C_{n} \rightarrow K_{n-1}$ with $j s=r . d r=-d G d-d f \tau=-d G d-f d \tau=$ $-d G d+f \tau d=-r d$ shows that $s: C \rightarrow \Sigma K$ is a chain map (where $(\Sigma K)_{n}=$ K_{n-1} and $d^{\Sigma K}=-d^{K}$). By Lemma $3.2 .6 s$ is chain homotopic to 0 , i.e. there are arrows $D_{n}: C_{n} \rightarrow K_{n}$ with $-d D+D d=s$. Take $\nu=G+j D$. Then $p \nu=p G=\sigma$ and $d \nu=\nu d+f \tau$, so $h=(f, \nu)$ is a lift.

Proposition 3.2.8. $i: A \rightarrow B \in J$-cof, iff coker i is a projective chain complex, and i_{n} is injective for all n.

Proof. First go from right to left. Take a square

p is a surjection as it is in J-inj. As C is cofibrant, there is $r: B \rightarrow A$, such that $r i=1_{A} .(p f r-g) i=0$, so $p f r-g$ factors through $s: C \rightarrow N . C$ is cofibrant, the lift $t: C \rightarrow M$ exists, then $f r-t j$ is a lift in the original diagram.

By Proposition 3.2.3 and 3.2.4 I-inj $\subseteq J$-inj, therefore J-cof $\subseteq I$-cof. Take $i \in J$-cof. Then i is injective, let $q: B \rightarrow C$ the factor map onto the cokernel. There is a lift in

for any surjective p, and $h i=0$, so h factors through C as $g q . q$ is an epimorphism, so the equality $p g q=f q$ implies $p g=f$, hence C is projective.

Corollary 3.2.8.1. $J-c o f \subseteq \mathscr{W} \cap I$-cof.
Proof. Again, take $i: A \rightarrow B \in J$-cof. Its cokernel C is projective, so it has l.l.p. wrt. fibrations, so it is cofibrant (i.e. $0 \rightarrow C \in I$-cof). Therefore $i: A \rightarrow B=A \oplus C$ is also a cofibration.

It is enough to prove, that $H_{*} C=0$. Define P as in the proof of Lemma 3.2.6. Let $p: P \rightarrow C$ be projection to the first component; there is a retraction $(1, D): C \rightarrow P$, where $d D x+D d x=x$. If $d x=0$ then $x=d D x$, so $H_{*} C=0$

This proves, that $C h(R)$ is a cofibrantly generated pointed model category, therefore the previous results can be applied. Now it is possible to define suspension and loop space for chain complexes, write out the exact sequences, or put Whitehead's theorem and cofibrant replacement in context. The details are not worked out here.

References

[1] F. Borceux. Handbook of Categorical Algebra, volume 2. Cambridge University Press, 1994.
[2] M. Hovey. Model categories. Wesleyan University, Middletown, 1991.
[3] A. Joyal and M. Tierney. Strong stacks and classifying spaces. Lecture Notes in Mathematics, 1488:213-236, 1991.
[4] S. Mac Lane. Categories for the working mathematician. Springer-Verlag, 1998.
[5] D. G. Quillen. Homotopical algebra. Springer-Verlag, 1967.

