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0 Introduction

The aim of the present thesis is to introduce the basic notions of model
categories, which provide the standard framework for doing homotopy theory
in a categorical manner. It allows one to generalise the concepts of topology
to certain categories (e.g. the notion of a cylinder, homotopy groups, and
suspension), while the most important theorems remain true.

In the first section some of the basic concepts of category theory are
discussed in a short and incomplete way. Then a few classical theorems are
reconstructed, such as Whitehead’s theorem, fibre and cofibre sequences, etc.
In the last section a possible construction of model structures is given, which

is applied to prove the category of chain complexes to be a model category.
Thanks for the help of Szlics Andras, Szabé Endre and Makkai Mihély.



1 Categorical constructions

The main reference for this section is [4].

1.1 (co)limits

Definition 1.1.1. A diagram in the category € is a functor j : § — 6,
where § is any category. The diagram is (locally) small, if § is (locally)
small. Generally j is identified with its image.

Definition 1.1.2. A cone over the diagram j consists of an object A of 6,
and of arrows jX — A for all X € ¥, such that all triangles which contain
A commute. A cocone is the same with arrows A — jX. A morphism of
(co)cones is an arrow A — A’, such that all triangles having A and A’ as
vertices commaute.

Definition 1.1.3. The limit of the diagram j is the universal cone over it,
that means, from any other such cone there is a unique morphism of cones to
it. The colimit is the universal cocone (there is a unique morphism to every
other from it). Universality implies that if they exist they are unique up to
(unique) isomorphism (of (co)cones).

Example 1.1.1. Observe the following diagram in Ab:
Loy = Lz — Lo — . ..

Its colimit is the group Zp~ = |J7" Z,», together with the evident inclusions.
To see this, take any sequence of homomorphisms Z,» — G, such that all
of them are extensions of the previous ones. Then it induces a unique map
Zyo — G, whose restrictions are the given morphisms.

Example 1.1.2. In Table 1 the most important limits and colimits are listed
(without their proofs). Their names are: terminal object, initial object,
product, coproduct, equaliser, coequaliser, pullback, pushout.

1.2 adjunctions

Example 1.2.1. Let F': Sets — Vectk be the functor that assignes to each
set X the K-vector space generated by its elements and let U : Vectx —
Sets be the usual forgetful functor. Any function f : X — U(W) has a
unique K-linear extension f : F(X) — W given by f(3 cies) = S cif (&)
This has an inverse, namely the restriction of a linear map g : F(X) — W
to the base set X, and hence it gives a bijection ¢ : Vectx(F(X),W) —
Sets(X,U(W)).
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This assignment is defined in a homogenous way, this (so called nat-
urality) can be expressed by the following commutative diagrams. Here
h : X' — X is any set-set function, while g : W — W' is any K-linear
map.

FiFP(X) oW fly X S UW)  f:F(X) =W S fly: X = UW)

me[ Im m[ IUwh

foF(h) = flyoh 9o fr——F—Ulg)e flx

Definition 1.2.1. An adjoint pair of functors is the triple (F,U, ), where
F:€ - 2 and U : D — B are functors, while ¢ = {pxy}xeeves
is a set of functions, such that ¢ox_ : D(F(X),—) — 6(X,U(-)) and
o_y  D(F(-),Y) = B(—,U(Y)) are natural isomorphisms. Then F is
said to be the left adjoint of U (and U is called the right adjoint of F).

Proposition 1.2.1. Right adjoints preserve limits.

Proof. Take a diagram in @ and assume it has the limiting cone {p; : @ — a;}.
Its U-image gives a cone on the U-image of the diagram, for proving its

universality take an arbitrary cone {g; : b — U(a;)}. By the naturality of

@' in a_ we have ¢~ (g;) = ¢ (U(f}) 0 9:) = f; o ™ (gi), s0 {¢ ' (g9-)} is

a cone in 9, therefore there is a unique ! : F(b) — a making each triangle
commute. ¢ is natural in U(a_), so ¢(!) is a morphism of cones in 6. If
there was another such arrow ?, then by the naturality of ¢! and by the
uniqueness of | we get ¢ ~1(?) =!, applying ¢ gives ? = o(!).

in 9 in 6
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Corollary 1.2.1.1. By dualising the proof we get that left adjoints preserve
colimits.

Definition 1.2.2. The maps nx = ¢(lpx) : X — UFX form a natural
transformation n : Idg — UF by the naturality of . Analogously the natural
transformation ¢ : FU — Idg is defined on an object Y as ¢ '(1yy) :
FUY — Y. n is called the unit and ¢ is called the counit of the adjunction.

1.3 (co)monads and (co)algebras

Example 1.3.1. Let € be a fixed group and T : Sets — Sets be the
endofunctor with TX = G x X, where G denotes the underlying set of €.
Then two natural transformations: p: 72 — T and n : Id — T are defined,
given by the components px : GX(GxX) 3 (g1, (g2, x)) — (G192, ) € GX X
and nx : X 3z +— (u,z) € G x X, where u is the unit element of €. By the
associativity of group multiplication and by the properties of the unit, the
following diagrams commute:

Tpx
(91, (92, (93, 7)) —— (91, (9293, 7))

prx | [

<91927 <9375€>> T’ <9192937$>

Nrx Tnx

(g, %) —— (u, (g, 2)) (9, (u, z)) —— (g, 2)
\( V; *:4 >/
ug, gu,

Definition 1.3.1. A monad on the category € is a triple T = (T,n,p),
where T : € — B is an endofunctor, n : Id — T and p : T?> — T are natural
transformations, making the following diagrams commute:

T nT Tn
T3 —— T2 1dT 1?2 TId
“Tl l“ \l‘/
T2T>T T



Example 1.3.2. Let X be a fixed set and h : G x X — X an action of the
group € on it, that is h(gy, h(ge, x)) = h(g192, x) and h(u,x) = x. Using the
notations of Example 1.3.1, this means the commutativity of the following
diagrams:

(91, (9, 7)) s (g g0, ))& e (w7
NXI Ih \ Ih
(91927@ T h<9192ax) = h(91, h(92,9€)) h(U, iU)

A €-equivariant map between the €-actions (X, h) and (X', h’) is a func-
tion f: X — X', making

h

h(g,fE) i <g>$>

T

f(h(g,)) = h'(g, f(z)) by (g, f(x))

commutative.

Definition 1.3.2. A T-algebra for the monad T = (T, n, u) consists of an
object X of € (called the underlying object) and a morphism h : TX — X
(called the structure map), such that

Th 7

X N TX X 2Ly
Hxl ‘h \ Jh
TX X X

h

commute. A morphism of T-algebras is an arrow f : X — X', such that the
following square commutes:

h
X —TX

1

X/TTX’



The category of T-algebras is denoted by Alg(T).

Example 1.3.3. T = (T}, : Sets — Sets, 7, u), 7 is an algebra type.
T, X = {7r-terms on X}

nx : X — T, X is inclusion.

px : T?X — T, X is identity.

Then Alg(T) is the category of algebras of type 7, with objects (A, «),
where A is the underlying set and o : T, A — A is the evaluation function of
the algebra, having the properties &(g(ﬂﬁ_g)) = a(g(a(f(d)))) and a(a) =a
for all a € A.

A morphism / : A — A’ of Alg(T) should satisfy h(a(f(@))) = o/(f(h(a))),
which means precisely that h is a homomorphism.

In [1] a stronger version of the following is proved.

Proposition 1.3.1. If6 is complete and cocomplete (i.e. has all small limits
and colimits), and T : € — @ preserves colimits, then Alg(T) is complete
and cocomplete.

2 Model categories

The material of this section is taken from [2].

2.1 homotopies

Definition 2.1.1. An object a is the retract of the object b in the category
C, if there are maps i :a — b and r : b — a, such that ri = Id,. An arrow f
is the retract of the arrow g, if it is a retract in the category Mor C, whose
objects are the maps of C' and whose morphisms are commutative squares.

Definition 2.1.2. Leti:a — b and p : © — y be maps of the category C'.
Then i has the left lifting property wrt. p (and p has the right lifting property
wrt. i) if for every commutative square

there is a lift h : b — x that makes both triangle commute.

9



Definition 2.1.3. A model structure on a category C' consists of three sub-
categories of it, called weak equivalences, fibrations and cofibrations, together
with functors a, B8, v, 6 : Mor C — Mor C, such that

e if two out of f, g and gf is a weak equivalence then so is the third,

e if f is a retract of g and g belongs to one of the above subcategories,
then so does f,

e trivial cofibrations (maps, that are both cofibrations and weak equiv-
alences) have the left lifting property wrt. fibrations, while trivial fi-
brations (that are both fibrations and weak equivalences) have the right
lifting property wrt. cofibrations and

o cvery morphism f splits as B(f)oa(f), where a(f) is a cofibration and
B(f) is a trivial fibration and as §(f) o v(f), where ~v(f) is a trivial
cofibration and 0(f) is a fibration.

Definition 2.1.4. A model category is a category with all small limits and
colimits and with a model structure on it.

Proposition 2.1.1. If 6 is a model category, with the subcategories Fi16
(of fibrations), Gof (of cofibrations), and W (of weak equivalences), then
there is a model structure on G°P, whose fibrations form the category 6o £,
cofibrations form F16°P, and its weak equivalences form WP. This follows
from the self-duality of the axioms. O

Lemma 2.1.2 (Retract argument). Assume f = pi and f has l.l.p. wrt. p.
Then f is the retract of ©. Dually, if f has r.l.p. wrt. 1, then f is the retract

of p.

Proof. Complete the factorisation of f with 15 to get a commutative square.
Then there is a lift 7, that can be drawn as

A A A

]

Lemma 2.1.3. f is a (trivial) fibration/ (trivial) cofibration iff the related
lifting property holds.

10



Proof. For the nontrivial direction factor f to a cofibration followed by a
trivial fibration; f = pi. If f has L.L.p. wrt. p, then by the retract argument f
is a retract of 7, and hence it is a cofibration. The other cases are similar. [

Proposition 2.1.4. Cofibrations and trivial cofibrations are closed under
pushouts. Dually, fibrations and trivial fibrations are closed under pullbacks.

Proof. Assume f has left lifting property wrt. h, and the left square in the
following diagram is a pushout.

I'is induced by the universal property of the pushout, therefore commu-
tativity of the C'DFE-triangle is immediate. Then take the composites hc,
hl = db. Using universality again, commutativity of the lower triangle is
deduced, hence g has the same 1.1.p.

O

Proposition 2.1.5 (Ken Brown’s lemma). Let € be a model category and
D be a category with a distinguished subcategory W that has the 2-out-of-3
property. If F': € — D is a functor that maps triv. cof. between cofibrant
objects to W, then it does the same with all weak eqivalences between cofibrant
objects. The analogous result (concerning trivial fibrations between fibrant
objects) also holds.

Proof. Let f: A — B be a weak equivalence of cofibrant objects. Take the

factorisation (f,15): AV B if) C # B. Both components p o q o iy,

poqoiyand p are weak equivalences, so by the 2-out-of-3 axiom ¢ o ¢; and
q o 19 are also. The coproduct is equivalently the pushout

0— A



hence 71, i are cofibrations and ¢ o i1, g o 75 are trivial cofibrations. It also
follows that C' is cofibrant, so by assumption F'(q o iy) and F(q o iy) are
in W. Its 2-out-of-3 property implies that all identity maps of domains and
codomains of maps from W are included, therefore F/(pogoiy) = F(1g) € W.
Then F(p) and finally F(f) = F(poqo1i;) are also in it.

O

The homotopy category is at first given by the inversion of weak equa-
lences.

Definition 2.1.5. The homotopy category of a model category 6 s the free
category generated by € U W~ (where W' is the dual category of the sub-
category of weak equalences), factored by the relations ww ™!
W = lgom w, fg=fog (for allw e W, f,g € B).

= 1dom w1,

It is not trivial, that Ho 6 is locally small (as the objects might form a
proper class), but it will be proven later. Therefore it is not needed to move
to a higher set theoretical universe.

Proposition 2.1.6. There is v : € — Ho ‘6, which is identity on objects,
and takes the arrows of W to isomorphisms. If F': 8 — D also takes W to
isos, then there is a unique Ho F : Ho € — @ with (Ho F)oy=F. If ¢ :
‘6 — € has the same universal property, then there is a unique isomorphism
¢ : Ho 6 — &, such that ¢y = d holds.

Proof. ~ is identity on € and y(w™') = (yw)™'. Ho F|, = Flg and
Ho F(w™) = (Fw)™!. Therefore v is the initial object in the category
of functors mapping from 6, taking W to isos, so it is unique up to unique
isomorphism. O

Definition 2.1.6. The categories € and & are equivalent if there are func-
tors FF: 8 — D and G : D — B, such that the compositions are naturally
1somorphic to the identity functors of the domains.

Example 2.1.1. Let o be the skeleton of € (i.e. a full subcategory, where
any object from € is isomorphic to exactly one from of) and let K denote
the inclusion. The isomorphisms 6. : ¢ &£ Tc € 9 uniquely determine a
functor T' : € — o for which 0 is a natural isomorphism from Idg to KT.
TK = Idg, therefore a category is equivalent to its scaleton.

The proof of the following can be found in [4].

Proposition 2.1.7. A functor F : € — D is part of a weak equivalence, iff
it is biyjective on Hom-sets and for all x € D there is an isomorphism x =y
in D, such that y = F(b) for an object b € 6.

12



Let 6., 6y, €. denote the full subcategories of 6 consisting of the
cofibrant, fibrant and both fibrant and cofibrant objects and all morphisms
between them.

For any object A the functorial factorisation of A — x to a trivial cofi-
bration followed by a fibration gives a fibrant object RA, which is weakly
equivalent to it. By functoriality this extends to the fibrant replacement func-
tor R. The dual construction (factorising 0 — A as a cofibration followed by
a trivial fibration) gives the cofibrant replacement functor ). These induce
equivalence between the related homotopy categories.

Proposition 2.1.8. The categories Ho 6., Ho G5 ,Ho 6.5 and Ho € are
equivalent.

Proof. The inclusion i : €. — 6 preserves weak equivalences, so the functor
Hoi:Ho 6. — Ho € can be defined.
() also preserves them, as it is illustrated here.

QA— 4

% f
OB B

4B

0

Therefore the functor Ho () : Ho 6 — Ho 6, exists.

This picture also shows, that gl, : Qoi — lg, and ¢ 1 i0Q — 1g are
natural transformations, whose components are weak equivalences. Therefore
Ho qlg : Ho (Qoi) = Ho Qo Hoi — Ho lg = ly,¢ and Ho q :
HoioHo () — 1y, ¢ are natural isomorphisms. The rest is similar.

]

The homotopy category can also be defined through the notion of homo-
topy.

Definition 2.1.7. Let f,g: B — X be morphisms of the model category 6.

e A cylinder object for B is an object B', for which there is a factorisation
of1IV1: BVB — B as BVB ALY SN B, where ig\V11 is a cofibration
and s is a weak equivalence.

e Dually, a path object for X is X' if there is a factorisation of 1 x 1 :

X5 XxXas X 5 X2 X x X, where 1 is a weak equivalence
and po X p1 s a fibration.

13



e A left homotopy from f to g is a map H : B' — X, such that Hig = f
and Hi; = g. The notation will be f L g.

o The dual notion is right homotopy from f to g, which is a map K :
B — X', such that poK = f and p1 K = g. For right homotopy we will
write f ~ g.

e f is homotopic to g (in symbols: f ~ g), if f L gand f ~ g. fisa
homotopy equivalence if there is h : X — B, for which hf ~ 1g and
fh ~ ]-X-

Proposition 2.1.9. The cylinder objects B x Iy that are obtained from the
(o, B) functorial factorisation of 1V 1 form the object function of a functor
— x Iy. For any other cylinder object B' of B, B x Iy and B’ are weakly
equivalent.

Dually, there is a functorial path object X, coming from the (v,d) fac-
torisation. It is weakly equivalent to any other path object of X .

Lemma 2.1.10. 8B is a model category, f,g: B — X are arrows.

1. fAg h:X>Y =hfhg
f~g, h:A— B= fh~gh.

2. Xisﬁbmnt,frtg,h:A—>B:>fhrLgh.
B is cofibrant, f ~ g, h: X =Y = hf ~ hg.

3. B is cofibrant = L is an equivalence relation on G (B, X).
X s fibrant = ~ is an equivalence relation on B(B, X).

4. B is cofibrant, h : X — Y s a trivial fibration/ weak equivalence of

C@(B,X)/L = C@<B7Y)/A1J isomorphism (of

fibrant objects = h induces a
sets).
X is fibrant, h : A — B is a trivial cofibration/ weak equivalence of cofibrant

(B, X),, ~ 6(AX

objects = h induces a )/L isomorphism.

5. B is cofibrant = if f L g, then f ~ g, and for all X' path object there is a
K : B — X' right homotopy from f to g.

X is fibrant = if f ~ g, then f L g, and for all B’ cylinder object there is
an H : B' — X left homotopy from f to g.

Proof. By duality it is enough to prove statements about left homotopies.

14



1. ho H: B"— Y is a left homotopy from hf to hg if H was an f & g
homotopy.

2. The cylinder object of B is given by the factorisation B V B M

cof
B’ -2 B. s is assumed to be a trivial fibration; otherwise factor it as
w.e.
s: B S—1f> B” % B, where s, is trivial by the 2-out-of-3 property
tr.co 7

and therefore B” is a cylinder object. Then there would be a lift H' in
the diagram

/L.07Z.1
BV B ( ) B’ &l X
o
tr.cof fib
B/// %k

which is also a left homotopy from f to g by commutativity.

Assume AVA L A5 A gives the cylinder object A’. Now form the
square

A/

The composite H o k is a left homotopy from fh to gh.

3. Using the above notation, fs is a left homotopy from f to f, which
gives reflexivity. For symmetry use the same homotopy H : B’ — X,

s

but with the factorisation BV B 2% B % B. It remains to prove
transitivity.

Let H : B — X be a left homotopy from f to g, and H : B” — X

from ¢g to h. Form the pushout of B” &L B 4 B'. Then the map
t: C'— B is induced, as in

15



Define the maps jo : B Z'—O>B’—>Candj1 B4 B" - C. A
factorisation of 15 V 15 is given by BV B Wodl oty g,

The coproduct is equivalently a pushout from 0, using that B is cofi-
brant we get, that the inclusions B — BV B < B are cofibrations,
hence i; (the restriction of (ig,41) to the second component) is also.
soi; = 1lpg, so by the 2-out-of-3 property i; is a trivial cofibration,
then so is its pushout B” — C'. s’ is a weak equvalence, so t is a weak
equivalence too.

The pushout

H' X

gives a map K : C'— X, such that Kj, = Hig = f and Kj; = H'i| =
h. The problam is, that C' is not a cylinder object.

The suitable cylinder object C” is given by

B
s
(j()ajl) -
C % X

BV B
a s

cof r.fib

Cl

K is a left homotopy from f to h.

16



4. The case when h is a weak equivalence of fibrant object can be deduced
from the second case (when h is a trivial fibration) and the Ken Brown

lemma, applied to the functor 6(B,-) I : 6 — Sets which is well

defined by the first and third statement of this lemma. The subcategory
W < Sets containes the bijections.

Now assume h is a trivial fibration. The map 6(B, h)/iJ . 6(B, X)/’L —
6(B, Y)/l is surjective by the existence of the lift f in

~

e}

X

al

cof| 2 h] et

B

Y
f/

For injectivity assume H : B’ — Y is a left homotopy from Af to hg.
The lift K in

(f,9)
BV B X
o K.-
(ig,i1) | cof -~ h | tr.fib
B %
H

is a left homotopy from f to g.

5. Let H : B — X be a left homotopy from f to g. Using the same

arguments as in 3., we get that iq : B — B’ is a trivial cofibration. Let

X' be a path object via X = X’ WoPl, % « X. Form the square

rg
B

X/

/‘V

R
tr.cof | 71 o fib (po, p1)

B —— X x X
(H,gs)

17



Define K = JZO Then poK = poJiO = HZO = f and le = pljio =
gsty = ¢, so K is a right homotopy from f to g.

[]

Corollary 2.1.10.1. 6 is a model category, B is cofibrant, X is fibrant =

L=L s an equivalence relation on 6(B,X). If f ~ g, then any cylinder/

path object realises the homotopy. ]

Corollary 2.1.10.2. ~ is an equivalence relation on Arr €.r, which is com-
patible with composition, hence the category C@CJVN erists. [

It is worth to discuss the relation between left and right homotopies ex-
plicitely. A x I, A x I, etc. will denote arbitrary cylinder objects, while
A x Iy will stand for the functorial one, and the analogous notation will be
used for path objects.

Definition 2.1.8. A correspondence between the left homotopy H : B x I —
X and the right homotopy K : B — X1 (both going from f to g) is a map
w:Bx1I— X!, such that pip = K, @i, = rg, pop = H, and p1p = gs.

Corollary 2.1.10.3. Starting from any left homotopy H, there is a corre-
sponding right homotopy K. [

Our goal now is to define (generalised) homotopy groups. As a first step,
we discuss (left) homotopies between (left) homotopies. The reason why a
new notion is introduced, is that the cylinder objects are not assumed to
coincide, and also because these homotopies should fix the original maps.

Definition 2.1.9. Let H : BxI — X and H' : BxI' — X be left homotopies
from f to g, with the usual maps ig, i1, 7 and iy, iy, 7" of the cylinder objects.

Denote the pushout of B x 14 By B M Bx1I' by B x IB\/BB x 1.
\%
Factor the map v V 1’ into a cofibration followed by a weak equivalence, as
B x IB\/BB xI' 2 B, BA left homotopy from H to H' is a map
\Y%
H : B — B, such that Hig = H and Hi, = H'.
Proposition 2.1.11. As before, H and H' are left homotopies, K is a right

homotopy from f tog (f,g: B — X, B is cofibrant, X is fibrant). Assume K
corresponds to H. Then it corresponds to H', iff H and H' are left homotopic.

Proof. First assume ¢; and ¢, are correspondences between the above ho-
motopies. Form the square

18



BxI v BxI #1Y%
BvB

Pad
-
-
-
-

~ o~ P
cof [igV iy -~ D1 | tr.fib

B . X
gr

Then pop is a left homotopy from H to H', as popip = pop1 = H and
powit = potps = H’ )
Now assume H is a left homotopy from H to H'. iy is a cofibration (as
the inclusion B x I — B x [ B\/B B x I' is the pushout of a cofibration)
V

and it is a weak equivalence (by the 2-out-of-3 property, used for 7iy = r).
Therefore there is a lift in

Bxl "

XI

tr.eof |7y 7 fib| (posp1)

B—— X xX
(H,gr)

and gp’z’~1~: BxI' = X' is a correspondence from H' to K, as gzoap’il = 1'::[{1 =
H, pi¢liv = griv = gr', olivio = ¢ligio = o110 = K, and @'iriy = @igis =
P1i1 = 89

UJ

Corollary 2.1.11.1. Left homotopy is an equivalence relation on left homo-
topies from f : B — X to g : B — X (dually: right homotopy on right
homotopies is an equivalence relation), the equivalence classes form a set in
both cases (as any left homotopy corresponds to a right homotopy with fized
XT1), and correspondence gives a bijection between these two sets (denoted by
74 (B, X f,9) and 7(B,X: f,g)). 0

It will be convenient to illustrate correspondences as

gr
g —m"m49

K 59
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and in general, any map from a cylinder object to a path object, with lower
(resp. upper) side standing for composition with py (resp. p;), and with left
(resp. right) side standing for precomposition with i (resp. i1).

Lemma 2.1.12. These squares can be glued together at edges which refer
to the same homotopy (and therefore for vertical gluing the cylinder objects,
for horisontal, the path objects are assumed to coincide); i.e there is a map
B x I' — X", whose restrictions and projections are the compositions of
homotopies, written on the sides of the rectangle. This composition is defined
in the proof of Proposition 2.1.10, and it is written in the order of application
(unlike the composition of arrows).

Proof. Take the squares

hs
k| ¢ e,
ha
Ky ¥ ks
hy
Form the pullback:
/

B/ L BI
q1 h
B' ——B
Po

Then s and s’ induce 3, which is a weak equivalence by the pullback
stability of trivial fibrations, and by the 2-out-of-3 property. Take py = poqj,
and p; = p1q}, then (py,p1) 0 §: B — B x B is identity in both coordinates.

The maps ¢ and ¢ induce ® : A x [ — B, with po® = pow = hy and
1P = p1¢’ = hs. The only problam is that B may not be a path object, as
(po, p1) may not be a fibration. Therefore factor it into a trivial cofibration,
followed by a fibration, as
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. Do, P
AxI B (o, P1) B x B

@ .cof /
T 6= (do, dh)

Then & = v® : AxI — B’ has a path object as codomain, and dq®’' = hq,
d1®" = hs, ®'jo = kik}, and ®'j; = kok}. The last two equivality is by
definition; precomposing jo in the above diagram results the definition of
composition of right homotopies (whose dual was described in Proposition

2.1.10). O

Proposition 2.1.13.

e Composition of left homotopies respects the equivalence classes, 1i.e.
there is an induced map w (A, B; fi, f2)x7L (A, B; fo, f3) = 7t (A, B; f1, f3).
The dual statement also holds.

e [f Hy corresponds to K (via ¢1), and Hy corresponds to Ky (via @3 ),
then Hy o Hy corresponds to Ky o Ky (where Hy : fi L fa, Hy @ fo L f3,
Ki: fi ~ f2, Kot fo > f3)-

e (Hom(A, B),o) is a grupoid.
Proof.

e The second statement together with Proposition 2.1.11 implies the first
one.

e This is proved by forming the squares

f27"1 f37“2

K
k2 kQT’l 2 Y2 82f3

f27’1 ho

S
kl ®1 1f2 Slhg 81f3

hy ha
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e Associativity of composition follows from the fact, that it is defined
through a universal arrow from a pushout. The identity on [f] is [fr].
It can be seen by

gr gr
k kr ' g
fr h
and
gr gr
L 2 59 sgr sg
h gr

The inverse of h (as it was constructed in Proposition 2.1.10) is the same
map h™' : A x I — B, but j, and j; is reversed in the factorisation
through the cylinder object. Let ¢ be a correspondence between h
and k, and ¢y be a correspondence between h~!' and k', and let ¢}
and ¢}, be the same maps, but with the reversed cylinders as domains.
Then the following squares prove that the composition of [h] and [h™!]
is identity in both ways:

gr qr
sg @ #1 sg
ht h
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]

Definition 2.1.10. 7}(B) = (A, B) = m (A, B;0,0) is the first A-homotopy
group of B, where A is cofibrant and B is fibrant. It is a group by the previous
Proposition.

(10,31

The suspension of an object A is the pushout of x < AV A —)> A x Iy
(this and related concepts will be examined in the next section). This pushout
in the category of pointed topological spaces (Top.) results the reduced
suspension, therefore it is meaningful to define 7, (A4, B) as m (X" 1A, B). In
the remaining part the notion of homotopy is exposed to further discussion.

It can be proved, that Top, admits a model structure, where f is a
weak equivalence iff 7, (f) is isomorphism for all n = 0,1..., all spaces are
fibrant and the cofibrant ones are C'W-complexes. Therefore the following is
a generalisation of Whitehead’s theorem.

Theorem 2.1.14. Let € be a model category. A map of 6.; is a weak
equivalence iff it 1s a homotopy equivalence.

Proof. First assume f : A — B is a weak equivalence in ‘6.;. By the previous
lemma f, : C@CVN(X, A) — C@CJVN(X, B) is bijective. Taking X = B, there
isamap g : B — A, such that fg ~ 1p, and this g is unique up to homotopy.
Then fgf ~ f, taking X = A this means f.(gf) = f«(14) = f, therefore
gf ~ 1a.

Now take f : A — B to be a homotopy equivalence. Factor it as

A ﬁ C % B. Then C is both fibrant and cofibrant, so ¢ is a ho-

motopy equivalence by the first part of the theorem. Assume the homotopy
inverse of fis f': B — A, and H : B' — B is a left homotopy from ff’ to
1. Observe the square
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The lift H’ is a left homotopy from g f’ to ¢ = H'i;. We also get pq = Hiy =
1.

Let ¢ : C — A be a homotopy inverse for g. Then p ~ pgg ~ f¢,
therefore gp ~ (gf')(fg) ~ 1lc. Let K : C'" — C be a left homotopy
from 1o to gp. Kig = 1¢, 19 and 1o are weak equivalences, so K, and by
that Ki; = gp are weak equivalences too. The following commutes (with
horisontal composites being identical)

C C C

p qap p
p

B 1 C B

therefore p is the retract of ¢p, hence p and f = gp are weak equivalences. [

Note, that this generalisation of Whitehead’s theorem has nothing to do
with homotopy groups, although they were introduced for arbitrary cofibrant
A, and natural number n. It would be nice to see, how these notions are
related. The following is an important consequence of the previous theorem.

Proposition 2.1.15. Ifvy: 6.y — Ho 6.4, 6 : G5 — C@CVN are the evident

canonical functors, then 3! j : C@Cf/w — Ho 6.5 isomorphism of categories,
such that jo = ~. 7 is identity on objects.

Proof. 4 takes homotopy equivalences, therefore weak equivalences to isomor-
phisms. It would be enough to see, that it has the same universal property
as v, then Proposition 2.1.6 is applied.

Let F': €.y — D be a functor, that takes weak equivalences to isomor-

phisms. Assume AV A M% A is a cylinder object. Then s;, = s;, = 14,
s is a weak equivalence, so F'ig = F'i; is the inverse of F's. For a left homo-
topy H : A — B from f to g, F'f = (FH)(Fiy) = (FH)(Fi,) = Fg, so F
identifies left (and dually: right) homotopic maps.
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It implies, that F' factors through C@CVN as F'= G0 by G : C@CVN — D,
where G([f]) = F'f. This G is unique and it is idenetity on objects, so ¢ has
the required universal property. ]

The main goal of this section was the following theorem.
Theorem 2.1.16. 6 is a model category.
1. 6.5 — 6 induces C@CVN = Ho 6.y — Ho 6 equivalence of categories.

2. There are isomorphisms Ho G(vX,7Y) = G(QRX, QRY)/N =

B(RQX, RQY)/N ~ B(QX,RY)
Ho 6 is locally small.

~ natural in all components. Hence

3. v:6 — Ho B identifies left or right homotopic maps.
4. If vf is an isomorphism in Ho 6, then f is a weak equivalence.

Proof. The first statement is already seen, the third one is in the proof of
the previous proposition. For the second statement, recall that there is a
natural transformation ¢qr : 1 o R o () — 1lg¢, whose components are weak
equivalences. So we get a natural isomorphism from Ho i o Ho Ro Ho @)
to lg, that gives Ho B.r(YQRX,YQRY) = Ho B(yX,~Y). Then use the
isomorphism C@CVN = Ho 6.

As HoioHo RoHo Q = HoioHo QoHo R(= 1¢) we have that yRQX =
YQRX in Ho 6.s. Hence Ho 6.;(yQRX,7QRY) = Ho 6.;(yRQX,vQRY)

In the functorial factorisations QX — X is a trivial fibration and X —
RX is a trivial cofibration. Using the forth statement of Proposition 2.1.10,

€(1QX, ’VRY)/N isomorphisms, natural in both components.
Finally, if v f is an isomorphism in Ho 6, then by the commutativity of

vf

~

Y

QRX % QRY

QRf is an isomorphism in Ho 6.y, therefore in %/N. So QRf is a homotopy

equivalence in G.¢, hence a weak equivalence. The following shows Rf and
f to be weak equivalences:
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QRX @RS QRY

2.2 exact sequences

Definition 2.2.1. The category 6 is pointed, if it has an initial and a ter-
minal object, and the unique map between them is an isomorphism.

Some examples are Top, the category of pointed topological spaces, Cat,
the category of small categories with a distinguished object and base-point
preserving functors, and its full subcategory Grp. In general, one can al-
ways create a pointed category from a category with terminal object (x) by
concerning maps * — A as objects and commutative triangles as arrows.

In this section all categories are assumed to be pointed.

Definition 2.2.2. The kernel of a map f : A — B is the equalizer of f and
the zero-map 0 : A — x — B. Dually, the cokernel of f is the coequalizer of
f and 0.

These (co)limits have equivalent characterisation as the pullback of f
through * — B and dually, as the pushout of f through A — *. Motivated
by their realisation in Top, the (co)kernel is also referred as the (co)fibre of
the map, hence the below terminology.

Definition 2.2.3. In a pointed model category, the suspension of an object A
is the cokernel of the cofibration map AV A — A X Iy described in Definition

2.1.7.
The loop space of A is the kernel of the (dual) fibration AT — A x A.

Proposition 2.2.1. This extends to the suspension and loop functors; 3,82 :
Ho 6 — Ho 6.

Proof. By the commutativity of the left and back face of the cube
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The outer square in the pushout diagram

AVA—— %

AXIO

commutes, this induces X f. If f is a weak equivalence, then f x I is also,
then by the 2-out-of-3 property so is ¥ f. Now it follows, that ¥ and {2 are
endofunctors of Ho 6. ]

Proposition 2.2.2. ¥ is left adjoint to Q0 (in Ho ). Moreover, if [A, B,
is defined as m(QA, RB), then there are isomorphisms XA, B] = [A, B], =
[A, QB], natural in all components ([X,Y] stands for Ho 6(X,Y)).

Proof. First assume, that A is cofibrant and B is fibrant. Then the map
p:(f:3¥A— B)— (fr: Ax Iy — B) (where m : Ax Iy — XA is the cofibre
of AV A — A x I) is a bijection. It is well-defined; i.e. let K : YA — B! be
a right homotopy from f to f’, and let ¢ be a correspondence between f'm
and some right homotopy k. Form the squares
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I

T

s0 Km 50

fr

This shows, that fm and f'm correspond to the same right homotopy k& =
(s0)k, hence belong to the same homotopy class.

To see surjectivity take a left homotopy h : Ax Iy — B, with h(jo,71) =0
(Proposition 2.1.10 and 2.1.11 together imply, that any left homotopy is
homotopic to one which maps from the functorial cylinder object). Then
there is an induced map f : XA — B in the pushout

(Jos J1)

AV A

AXIO

hence h = fr.

To prove injectivity assume [f7] = [f'z], and let H : A — B be a left
homotopy between them. Define H' : A — B by H'jo, = H'j; = fr. Then
there is a lift in

SJT
AX[O f

BI
tr.cof | Jo f&’?}),pl) fib

A

B x B
(H,H')

and Kj; : Ax Iy — B! is aright homotopy from fr to f'm, with K7, (ig,i1) =
0. Therefore it factors through YA as K'xm, where poK'm = fm and p; K'm =
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f'm. Tt is enough to see, that 7 is an epimorphism (i.e. left-cancelable) which
holds, as it is the pushout of an epi (its codomain is the terminal object).
This argument shows, that (A, B) is invariant under weak equivalences,
in both variables. To see that m; : Ho €%’ x Ho 6; — Grp is a functor, one
has to check that for maps a: A" — A, b: B — B’ the following commutes

m(A,B) 3 a i afa x 1)) € m (4, B)

] [+

7Tl<A, B) S ba +— ba(a X [0) € 7T1(A/,B/>

*

associativity of composition in a fixed variable is immediate.
It remains to prove naturality. In the second variable it is automatic, in
the first it follows from the equality A x I, axlo, A x In B SA =AxTS

SAZS v A , which holds by definition.
Finally, we have the natural isomorphisms of functors

XA, B =2 [EQA,RB]| = [A,B]; =2 [QA,QRB] = [A, QB
which complete the proof
O

In the case of topological spaces, there is a map m : F' x QB — F', that
lifts the given loop with the given endpoint, and results the element of F,
in which the lift ends. The analogous construction is given for any model

category.
Let p : E — B be a fibration with fibre F'. A path object of B is given
B B
by B =2 B! (dfi B x B.

SE (dE,plvdE)
Factor 1p x sPopx 1pas B —— B 21
B B

s £ x B x E. Observe the
w.e. fib B B

following pullbacks:

Ex B xE
B B

(pry, pr?)/ \

ExBf Py E x B!
B
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By pullback stability (pry, pro) is a fibration, hence (pry.pro)o(d¥, p', d¥) =
(d¥,p') is also. prj is a trivial fibration. In the equation 15 = prio(d¥,p’)os”
all arrows except (d¥, p’) were shown to be weak equivalences, so by the '2-
out-of-3” axiom it is a trivial fibration.

Our next goal is to show, that Jla, such that

J
OB B!
a p'opry
FxE'xF
E FE

commutes, where 7 is the inclusion of the fibre.
Using the universal property of the defining pullback of Q2B it is enough
to see, that (dF,dP)oploprl] : F x B x F — B x B is equal to the zero-map.
E E

From the construction of the functorial path object it follows, that the square

I

pl——
dy dy
p
E B

commutes. Therefore (d¥, dP)op! = pxpo(dF,dF), and (d¥,dP)op’ oprl
pxpo(dy,df)opry =pxpoixio(pry,prs) =0
It is enough to prove, that the square

I pry
F é E E F Bl
= (pr],a) (dy.p")
X 7]
FxQB——— ExB!

B

is a pullback. Then 7 is a trivial fibration, so there is a map m : F X

-1 !
0B 2" B« F 27 P in How.
E FE
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Definition 2.2.4. A fibre sequence is the functorial image of the defining
pullback of the fibre of a fibration p, and of m : QB x F' — F at the functor
v:6 — Ho 6.

A cofibre sequence is the induced diagram in Ho 6 by the defining pushout
of the cofibre, and by the mapn: C'V XA — C.

In [5] Quillen proves the following result.

Theorem 2.2.3. For a fibre sequence F S ELB define the boundary map
as 0: OB 2% OB x F ™ F. Then

(4,98 % 14,08] 2 (A, F] & (A, E] 25 [A, B]

is an exact sequence of groups from [A,QE| to the left, half exact at all
stages (as a sequence of pointed sets), and

e 0,( A1) =0, X)) FuelAQE]: N =X (p)()
o i.(ag) =iu(ar) & INE[AQB] a1 =ay- A
o 1 (0) = Im(i.)

Here central dot abbreviates m* ([A,QB] x [A, F] — [A, F.
For a cofibre sequence A LSXBCwithd: 0 cryaAl vA

L [2X,B) 25 24,8 5 (0,8] Y (X, B] S (A, B

is exact in the same sense, except that - stands for the right action n* :
[C, B] x [¥A, B] — [C, B].

For a straightforward application observe the following model structure
on Cat,, the category of small pointed categories. The proof is given in [3].

Theorem 2.2.4. There is a model structure on Cat,, where fibrations are
isofibrations (i.e. whenever there is an isomorphism ¢ : a = b in D, such
that a = F(x), for the isofibration F : € — D, then there is an isomorphism
Y in @ for which ¢ = F()) cofibrations are functors, that are injective on
objects and weak equivalences are those, which are part of an equivalence of
categories.

Proposition 2.2.5. In the above model structure homotopy (between func-
tors F,G : 8 — D) is natural isomorphism (n), for which 0y, = 1., (xo is
the base point of 6).
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Proof. In the proof of the next corollary the functorial cylinder object is
characterised, then it follows immediately. O]

Corollary 2.2.5.1. If o : 8 — D is a functor that is injective on objects,
VD = D = D/< Im > is the factor map, and [6,D] denotes the
homotopy classes of @ — D functors, then

0— Hom(Fy_1,9) ailiN Hom(Fy_1,4) ey, Hom(F._1,9) z,

P19, ) L5 [D, o] £ [C, o]

is an exact sequence of pointed sets. Here sl is any (pointed, small) category,
and a, ¢, d, d" is the number of connected components of the related categories.

If p: € — B is an isofibration, and i : Ker p — € is the inclusion of
the kernel, then

0 — [o, (ker p)] L2 [, %Z] ©or). [g« @,Z]

and

0 — Hom(F,_1,ker p) = Hom(F,—1,€) — Hom(F,_1,B) —
— [d, ker p] (o, €] 2 [od, B

18 exact.

Proof. The following is a pushout square:

6

*

2

d (8

%/

Therefore there is a cofibre sequence € % & ¥, 9’ with some suitable 9.

Define 6 x I as € V 6 together with isomorphisms between the two
copies of an object (except xg), such that any square containing two of them
commutes. Then the composition

BV LexIXw
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is a factorisation of 1¢ V lg to a cofibration followed by a trivial fibration.
Here pr identifies the two copies of € and maps the vertical isomorphisms to
identities. This is surjective, and by commutativity it is bijective on Hom-
sets, so it is a trivial fibration. It follows, that 6 x I is a cylinder object.
Then the pushout

BV 6

*

C@XI Fc—l

shows, that the suspension of a category is the free group generated by ¢ — 1
elements, where ¢ is the number of connected components in 6.

For any monoid Jl and category €, Hom(Jl, Q) = [Al,6], as in this
case, a natural isomorphism would have only one component, which is the
identity of the base point.

Now we construct the loop object. Let € be the functor category €.

Note, that =< ° is itself not pointed, the base point of € is the functor,
whose image is the identity of o € €. Then

€ Le Lexe

is a decomposition of 1¢ X 1¢ to a trivial cofibration followed by a fibration.
Here i maps every object to its identity, and pr takes an isomorphism to its
endpoints.

The following is a pullback:

®~ ®!
pr
* 6 X 6
Finally, exactness of the last sequence follows by adjointness. O

Corollary 2.2.5.2. Hom(—,—) : Mon x Mon — Mon is left-exact in both
variables.

Proof. In the observed model structure every monoid homomorphism is a
cofibration, and the fibrations are those, which are surjective on invertable
elements (arrows). Therefore a short exact sequence is both a fibre and
cofibre sequence, then the above result is applied. ]
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3 Constructions for model categories

3.1 cofibrantly generated model categories

In this section a possible construction of model structures is considered. The
hardest part is to create functorial factorisation; this motivates the following
technicalities.

Definition 3.1.1. Assume, the category € has all small colimits, and X\ is
an ordinal (represented as a category). Then a A-sequence in 6 is a colimit-
preserving functor X : X — G (i.e. for each limit ordinal v < X\ the induced
map c%lgn Xp — X, is an isomorphism). The map Xo — c%lg/(n Xp of the

universal cone is said to be the transfinite composition of the \-sequence.

Definition 3.1.2. For a cardinal vy, the limit ordinal o is y-filtered, if A C «,
Al <~y = sup A <a.

Definition 3.1.3. Assume 6 has all small colimits, D is a collection of
arrows, A is an object, k is a cardinal. Then A is k-small rel. D, if for
all k-filtered ordinal \ and for all M\-sequence X : Xo = X1 =% ..., with
a; € D, the induced map ! : colim B(A, Xg) — B(A, colim Xp) is bijective.

G(A, colim Xpg)

0)x* (041)* (042)*

B(A, Xy) — (A, X)) —— (A4, Xy) — -

Example 3.1.1. Every set A is |A|-small. To see this, take f : A —
colim Xg. For all a € A thereis (3, such that f(a) € im pg,. sup B, =7 < A,
as \ was |Al-filtered.

Now f(a) € im p., for all @ € A, as pug, = p, o ag,, therefore f can be

factored as A & X, 22 colim X5 = ()4 (g) =i, (g), so ! is surjective.
To see injectivity, assume ! f; =!f5, then for all a € A there is 3,, such that

fip.(a) = fap,(a), where f; = pg, fig,. Then fi53 = fos, where § = sug Ba.
ac
Therefore f1 = fs.

Example 3.1.2. Every R-module A is |A|(|A|+ |R]|)-small. It can be proved
similarly, and the proof is given in [2].
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Definition 3.1.4. I C Arr 6 is a subclass.
o [-inj is the class of morphisms, that have r.l.p. wrt. I.
e [-proj is the class of morphisms, that have I.l.p.wrt. I.
o [-cof=(I-inj)-proj
o [-fib=(I-proj)-inj
Proposition 3.1.1. The above classes are subcategories. [

Lemma 3.1.2. I C [-cof, I C I-fib, (I-cof )-inj=I-ing, (I-fib)-proj=I-proj,
I CJ=I-inj O J-ing, I-proj 2 J-proj, I[-cof C J-cof, I-fib C J-fib.

If € is a model category and I is the class of cofibrations, then I-inj is
the class of trivial fibrations and I-cof=I.

If I is the class of fibrations, then elements of I-proj are trivial cofibrations
and I-fib=I. O

Example 3.1.3. Take 6 = Top and let [ consist of the boundary inclusions
Sn=1t <y D™ Then a pushout from I is the attachment of an n-cell;

Sn—l X

n__ X U D"
D Sn—1

Take a transfinite composition from these maps, whose domain is a point.
Codomains of such arrows are exactly the C'WW-complexes.

Definition 3.1.5. [ is a subset of Arr 6, 6 has all small colimits. A relative
I-cell complex is a map, that is the transfinite composition of arrows, that
are pushouts from I.

Lemma 3.1.3. All isomorphisms are in I-cell. I-cell C I-cof.

Proof. An isomorphism f : A = B is the transfinite composition of the
sequence whith only one object, A. For the second statement, it is enough
to prove, that I-cof is closed under pushouts and transfinite composition. It
was already seen, that left lifting properties are preserved by pushouts.

Assume g € I-inj, f, € I-cof, (a < X). Take g, ¢1 such that gpy = p1f.
Then the lifts h, (o < \) exist, and the relations gh, = @1ia, hafa = ©o
hold.
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O

Lemma 3.1.4. Tuke a A-sequence, where each arrow is from I, or is an
1somorphism. Then its transfinite composition is in I-cell.

Proof. The transfinite composition of isomorphisms is itself an isomorphism.
L.e. it can be choosen to be the first map in the sequence, while the rest of
the arrows of the cone are defined via transfinite recursion. Composing an
isomorphism after a pushout from [ is again a pushout. O

Lemma 3.1.5. 6 has all small colimits, I CArr € is a subset. Then I-cell
is closed under transfinite composition.

Proof. Such a sequence consists of isomorphisms and of transfinite composi-
tions of pushouts from I. Replacing these with the sequence of composable
arrows, the previous lemma can be applied. O

Lemma 3.1.6. Pushout of coproduct of maps from I is in I-cell.

Proof. A A\-sequence is created by transfinit recursion, whose composition is
isomorphic to the pushout f : X — Y of Ugex{gr : Cx — Dy} through
ho : UpCr — X, and where the cardinality of \ is | K|.

For the recursion define Xy = X, and for the successor ordinal 5+ 1 take
the pushout

Cp

Xp
93
Ds ——— Dg+1

where the above vertical map is given by the composition Cs — U,Cjy ho,

X 02, Xp. When f is a limit ordinal, take Xg = colzgn Xa.
a<

Using the universal properties of the defining colimits, we get for each 3
a universal map !5 : Xz — Y, such that lzi0g = f. f was also a pushout,

therefore there isamap ! : Y — X, = colif\n X, making
a<
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Lk Cy

Uk gk

commute (where dg is the map Dsz — Xpy1, appearing in the defining
pushout of Xg,1, composed with i(g11)). It is enough to prove that the

triangles including ! =!, commute, then the outer square can also be proved
to be a pushout, and finally ! turns out to be an isomorphism (hence ! € I-
cell).

Commutativity of the upper triangle is immediate, for the lower note the
commutativity of

1 —
(BN T B+
Xpp1

ha

LDy

Dy

(which follows from the construction of !5, using universality of the defin-
ing pushout of Xz.1). Then composing the edges of the tringle after the
coproduct cocone over the set { Dy }r<x leads to the desired commutativity,

by the universal property if the coproduct.
O

Theorem 3.1.7 (Small object argument). € has all small colimits, I CArr
G is a subset, domains of I are small rel. I-cell. Then there is (v,0) func-
torial factorisation, such that Vf € Arr € : v(f) € I-cell, §(f) € I-iny.

Proof. Assume k is a cardinal, such that domains of I are xk-small. Let A\ be
a k-filtered ordinal and take an arrow f: X — Y from 6.

First the A-sequence Z/ : A — % is defined, together with a natural
transformation p/ : Z/ —!y, where !y is the constant Y functor (i.e. maps
every object to Y and each arrow to 1y). It is defined through transfinite
recursion, as

« Zi=X,ph=1
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e for the successor ordinal 5 + 1:

Take all pairs of arrows (gs, hs) : gs € I (s € S), such that there is a
commutative square

f
gs Pé
B, Y

Then the pushout of Ug, : LU;Ay — UsB, through Uh, : LU;Ay — Zg is
defined to be iggq1 : Zg — Zgﬂ, and pgﬂ : Zgﬂ — Y is induced by
the universal property of the pushout. This makes sense even when S
is the empty set; in this case ig g1 = 12;3"

e When f is a limit ordinal take Zg = colign Z!I. Tt is proved by trans-

a<
finite induction, that the maps p/ : ZI — Y form a cocone, then
pg A g — Y is the induced morphism of cocones.

Define v(f) : X — Z] = colz’z\n Z! as the transfinite composition of
a<

the previous A-sequence, and (f) : Z/’\c — Y as the induced morphism of
cocones. Then f = §(f)v(f), and from the previous lemmas it follows that
Y(f) € I-cell.

Now take a commutative square

Domains of I are k-small rel. I-cell, therefore h factores through o' : A — Z g
for some 5 < A. The pair (g, /') is part of a commutative square ending in
Y, so from the definition of Zgﬂ it follows, that there is a &' : B — Zgﬂ,
such that everything commutes in

38



A 7!
W
Zj
gel M/ 5(6)
bz,

Therefore §(f) € I-inj.

It remains to prove, that this factorisation is functorial. It is enough to
see, that Z(-) : Arr € — Cat is a functor. In this case a commutative
square

f
X——Y

ag‘ \al

X/ > Y/
f/

induces a natural transformation from Z/ to Z/', using its components, we
get a cocone over the image of Z7/, ending in Z,. Therefore we get a map
Zy — Z3, that makes the left square commute in

To see the commutativity of the right square, whose vertexes are all endings
of cocones over Z/ (constructed by the composition of the square’s edges after
the colimiting object 7)), take the lift Z, — Y, that exists by universality,
and what makes both of the resulting triangles commute.

The required natural transformation is constructed via transfinite recur-
sion, with ¢y = . First note, that for all s € Ss there is a commutative
diagram
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I .
N/
s X — X!
VA
: y Y’

therefore there is a commutative outer square, and the universal property of
the pushout induces ¢g;:

hs
LIsAg

/
Zj

%A

When § is a limit ordinal, the component g is induced by the universal

property of the colimiting cocone.
O

Corollary 3.1.7.1. 6 has all small colimits, I CArr € is a subset, domains
of I are small rel. I-cell. Then for all f : A — B € I-cof, there is a
g:A— C € I-cell, such that f is the retract of g by a map, that fixes A.

Proof. Factor f as h o g, where g is in I-cell and A is in [-inj. f € I-cof,
therefore f has 1.1.p. wrt. h, so by the retract argument f is the retract of
g, with 14 in the appearing commutative squares. L]

Theorem 3.1.8 (Hirschhorn). € has all small colimits, I CArr 6 is a
subset, domains of I are small rel. I-cell. Assume A is small rel. I-cell.
Then A is small rel. I-cof.

Proof. Assume A is k-small rel. [-cell, \ is a r-filtered ordinal, and X :
A — B is a A-sequence from I-cof arrows (fg). The idea of the proof is to
construct a A-sequence Y : A — 6 from I-cell arrows (gz), together with
morphisms 7 : X — Y and r : Y — X, such that i = 1x. The construction
goes by transfinite recursion.
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Yo = Xy, 19 = ro = 1x,. By the retract argument there is a factorisation
of fgrg : Yg — Xpgq1 into an I-cell arrow gg : Yz — Yjzyq, followed by
Tg+1 ¢ Ygy1 — Xpgy1, which is in I-inj. As fz € I-cof, there is a lift g4y in
the square

9pis

Xp Y1
i1
Is T8+1
Xpp1 === Xp

When /3 is a limit ordinal, define Yz to be colz’gn Y,, then (using the
a<

previously constructed i,-s) we have a cocone over X| 5. ending in Yz, now
the induced map Xz — Yj defines ig. The analogous construction using r,-s
(v < ) gives 13 : Y3 — Xp. It follows from the universal property of the
colimiting cocone over X|g, that the equality rgig = 1x, holds.

The diagram

B(A, colim X,) colim ia)« G(A, colim Yy) (colim ra): G(A, colim X,)
a< a<A a<A

A A A

I

colim B(A, X,) colim (ic ) colim B6(A,Y,) colim (ia ) colim B6(A, X,)

a<A a<

a<A \\\\\\\\\\\\\‘_—ﬁ__——-’//’////////»

1

commutes. To see this, first remove the colimit operations from the lower
line, then remove the hom-functors. Now put them back. The retract of an
isomorphism is also an isomorphism.

]

Definition 3.1.6. The model category 6 is cofibrantly generated if there are
subsets I, J of Arr C, such that

e domains of I are small rel. I-cell,

e domains of J are small rel. J-cell,
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e J-inj is the class of fibrations,
o [-inj is the class of trivial fibrations.

I is referred as the set of generating cofibrations, J is the set of generating
trivial cofibrations.

The followings are immediate from the previous results.
Proposition 3.1.9. 6,1, J are as before.

e [-cof is the class of cofibrations.

FEvery cofibration is the retract of a map from I-cell.

Domains of I are small relative to cofibrations.

J-cof is the class of trivial cofibrations.

Every trivial cofibration is the retract of a map from J-cell.

Domains of J are small relative to trivial cofibrations.

Finally, the main theorem of this section can be stated.

Theorem 3.1.10. 6 has all small limits and colimits, W is a subcategory
of €, I and J are subsets of Arr €. Then B is a cofibrantly generated model
category with generating cofibrations I, trivial cofibrations J, and with W
being the category of weak equivalences, iff

o W has the 2-out-of-3 property, and is closed under retracts,

e domains of I are small rel. I-cell,

domains of J are small rel. J-cell,

J-cell C W N I-cof,

I-inj C W N J-inj,

W N I-cof C J-cof or W N J-inj C I-inj.
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Proof. The implication from the left to the right is already proved. Now,
take J-inj to be the class of fibrations, /-cof to be the class of cofibrations.
These were shown to be subcategories.

Any lifting property is preserved by retracts, and both functorial factori-
sations are given by the small object argument. For the lifting axiom first
assume U N I-cof C J-cof. Then trivial cofibrations have l.1.p. wrt. J-inj,
which are the fibrations. Take a trivial fibration p : X — Y and factor it
as B(p) o a(p), where a(p) € I-cof and B(p) € I-inj. Tt follows from the
2-out-of-3 property, that a(p) is a trivial cofibration, so p has right lifting
property wrt. it. By the retract argument p is the retract of 5(p), so it is in
I-inj. But I-inj =(I-cof)-inj, so p has r.l.p. wrt. cofibrations.

Now, assume W N J-inj C I-inj. This means, trivial fibrations have r.1.p.
wrt. I, which implies wrt. I-cof. Let 7 : X — Y be a trivial cofibration,
and factor it as (i) o (i), where (i) € J-cell and (i) € J-inj, which is a
trivial fibration. So ¢ has 1.Lp. wrt. §(¢) and is a retract of v(i). Therefore
i € J-cof (as it is closed under retracts), then ¢ has 1.L.p. wrt. J-inj, which
are the fibrations. ]

3.2 chain complexes

Let R be a ring with unit element 1. The category C'h(R) consists of chain

complexes as objects (i.e. a Z-indexed family of R-modules and R-module

homomorphisms: ... X} & Xk41 ..., such that d,_jod, =0foralln € Z),

and of chain maps as arrows (i.e. commutative ladders). The n-th homology
group of the chain complex X is defined as H, = ker d%m dpr This
category admits a cofibrantly generated model structure:

Definition 3.2.1. S™(M) is the chain complex, whose n-th module is M,
the rest is zero. The n — 1-th and n-th module of D"(M) is M, the rest is
zero, dp_q is identity. The abbreviations S™(R) = S™ and D"(R) = D" are
used.

I consists of the inclusions S"~' — D", elements of J are the maps
0 — D™. The class of fibrations is J-inj, the class of cofibrations is I-cof.
An arrow ¢ is a weak equivalence, iff H,(p) is an isomorphism for alln € Z.
The weak equivalences trivially form a subcategory.

To prove, that this is a model structure, the requirements of Theorem
3.1.10 must be checked.

Proposition 3.2.1. W has the 2-out-of-3 property, and is closed under re-
tracts.
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Proof. The functorial image of a composition (resp. retract) is again a com-
position (or retract), and this property holds for the class of isomorphisms
in any category. O

Proposition 3.2.2. FEvery object X in Ch(R) is small. Therefore domains
of I are small rel. I-cell, and domains of J are small rel. J-cell.

Proof. Let v > |R x |J,, X,,| be an infinite cardinal, A is a 7-filtered ordinal,
Y : A = Ch(R) is a A-sequence. The induced map ! : colign Hom(X,Y,) —
a<

Hom(X, coli/r\n Y,) should be proved to be an isomorphism.
a<
For surjectivity take a chain map f : X — colz‘;n Y., As X, is 7-
a<
small fg : Xz — colign (Y.)s factors through Y,,. Then f factors through
a<

Yo=sup ag, by @ map g : X — Y, which is a R-module homomorphism
B<A
in each coordinate, although may not be a chain map. As for all x € X}

Jr1(d¥ (x)) = dg°""™ Y ( fi.(x)) holds, there is 3, > «, such that g}, (di (z)) =
d:ﬁz (g5(x)), where ¢ = inp,9 and i, p, : Yo — Y3, is in the A-sequence Y.
Then f factors through Ys— ., 5, as f = uggs =lig(gs).

zeU, Xn
To see injectivity, assume ! f; =!fy, then (using previous notations) for all
x there is f3,, such that gi 5 (v) = g5 5 (). Then g7 5(z) = g5 5(z), where
8= sup f,. Therefore f; = f5. O

ern Xn

Proposition 3.2.3. p is a fibration, iff for each n, p, is surjective.

Proof. A chain map D™ — Y is completely determined by the image of 1 in
Y, (denoted by y,). Then a lift in the square

0 X
p
D" Y

means precisely that p!(y,) is nonempty.

Proposition 3.2.4. p: X — Y is a trivial fibration, iff p € I-ing.
Proof. A diagram of the form
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Sn—l X
p
D" Y

is in one-to-one correspondence with a pair (y,z) € Y,, & Z,_1 X, for which
Pn_1T = dy, while a lift is given by z € X,,, such that d,,z = z and pz = y.

First assume p € [-inj (i.e. in any of the above squares there is a lift).
For n € N and y € Z,Y, the pair (y,0) has the property p, 10 = dy = 0,
therefore there is a z € X,,, with dz = 0 and pz = y, which means, that
Znp : Zn X — Z,Y is surjective. An element of H,Y = ker dn/im i1 is a
set {yo+ 7 :y € im d, 1}, where yg € Z,Y. As 0 € im d,,,1, if yo is hit by
Znp, then [yo] is hit by H,p. Hence H,p is surjective.

p is also surjective (and therefore it is a fibration). lLe. if y € Y, then
dy € Z,_1Y, and by the surjectivity of Z, 1 X, thereis x € Z,,_1 X, such that
Pn—1Z = d,y. Using the lifting property again, an element z of X, exists, for
which pz = y.

Let H,X > [z] = [z + 0], where 2y € Z,X. H,p([xe]) = 0 means
dy € Y11 : pox = d,y1y. Therefore there is a z € X, with dz = x, so
[z] = 0.

Now assume p is a trivial fibration. We have to prove, that whenever
(y,x) is given, and y € Y,,, © € Z, 1X, pp,_12 = dp,y holds, one can construct
a z € X, with p,z = y and d,z = x. As p is a fibration, there is a short
exact sequence

0-K—-X5Y -0

p is a weak equivalence, therefore H,K = 0, as H, is an exact functor and
H.(p) is an isomorphism. Choose w € X,,, for which p,w = y.

p(dw) = d(pw) = dy = px, so p(dw—z) =0, i.e. dw—z € K. d(dw—x) =
—dr =0 (asz € Z,_1X) and H,K = 0 implies, that there is a v € K,,, such
that dv = dw — x. Now let z be w —v. Then pz =y —pv =y (as v € K,,)
and dz =dw —dv =2 [

It only remains to prove J-cell C W N I-cof. This is proved through
several lemmas.

Lemma 3.2.5. If the chain complex A is cofibrant, then for all n A, is a
projective R-module.

Proof. Starting from any surjection ¢ : M — N between the R-modules M

and N, there is a fibration D™(M) L, D™(N), where (D"(q))r = q for
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k =n, n—1, and all other maps are zero. It is also a weak equivalence, as all
homology groups are trivial. Given f : A,_; — N there is an induced chain
map f': A — D"(N), with (f'),—1 = f and (f’), = fd, being the nonzero
maps. The lift in

Dm(M)

A
-
.
cof i tr.fib Dn<q)
.

///
A f

D™(N)
proves that A,_; is projective. n

Definition 3.2.2. The chain maps f,qg : X — Y are chain homotopic, iff
there are maps D,, : X,, — Y,11, such that dZHDn + Dy1di = fro — gn-

Lemma 3.2.6. If C' is a cofibrant chain complezx, and all homology groups
of K are trivial, then any chain map f : C — K 1is chain homotopic to 0.

Proof. Define the chain complex P by P, = K,,® K1 and d(z,y) = (dz,x—
dy) (then d*(z,y) = (d*z,dx — (dz — d*y)) = 0 as required). The projection
p: P — K, given by (z,y) — z is surjective, hence is a fibration. H,(ker p) =
H,.1(K) = 0, which shows that p is also a weak equivalence. So there is a
lift in

P

cof tr.fib

(f, D)
T

f

C K
(f, D) is a chain map, therefore (d fn, fn — d%, Dy) = (fa-1dS, Dy_1dS),
equivality of the second coordinates completes the proof. O

Proposition 3.2.7. i : A — B is a cofibration, iff for all n 1, is a split
injection, with cofibrant cokernel.

Proof. First assume 7 is cofibrant. Then it has 1.1.p. wrt. the trivial fibration
D"(A,) — 0 (H.D""'(A,) = 0). Use it for a square, where the upper
map A — D""'(A,) is d in the n + 1-th dimension and identity in the n-th,
the rest are zero). Then hy,i, = 14,, so i, is a split injection. L.l.p-s are
preserved by pushouts, and 0 —coker 7 is the pushout of ¢ through A — 0.
Assume 1, is split injection, and C', the cokernel of 7 is cofibrant. Then
by Lemma 3.2.5 C, is projective, therefore B, can be written as A, & C,.
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We have to prove that ¢ has 1.1.p. wrt. the trivial fibration p : X — Y. Take
a commutative square with horisontal maps f: A — X and g : B — Y, and
let j : K = ker p — X denote the inclusion of the kernel.

p S

X
7 D | tr.fib

B:A@CiY

Using that i is a chain map we get, that the differential of B can be written
as d(a, c) = (da + 7¢, dc), where dr 4+ 7d = 0. Because of the commutativity
of the given square we can write g(a,c) = pf(a) + o(c). The fact that g is
also a chain map implies, that pf(da + 7¢) + o(dc) = dpf(a) + do(c), hence
do =pfr+ od.

A lift in the above square is given by a pair (f,v), where pr = ¢ and
fda + frc+ vde = dfa + dve, hence dv = vd + fr. The goal now is to
construct such v.

C, is projective, so there is G, : C,, — X,, with p,G,, = o,. Define
r=dG —Gd— fr:C, = X,_1. Aspr =pdG — pGd — pft =do — do =0,
there is s : C), = K,_1 with js = r. dr = —dGd — dft = —dGd — fdr =
—dGd+ frd = —rd shows that s : C' — XK is a chain map (where (XK), =
K, 1 and d*¥ = —d¥). By Lemma 3.2.6 s is chain homotopic to 0, i.e. there
are arrows D,, : C, — K, with —dD + Dd = s. Take v = G + jD. Then
pv =pG =0 and dv =vd+ f1,s0 h = (f,v) is a lift.

0

Proposition 3.2.8. ¢ : A — B € J-cof, iff coker i is a projective chain
complex, and i, is injective for all n.

Proof. First go from right to left. Take a square

f
A M
i plm
g
B N

p is a surjection as it is in J-inj. As C'is cofibrant, there is r : B — A, such
that ri = 14. (pfr — g)i = 0, so pfr — g factors through s : C — N. C
is cofibrant, the lift ¢t : C' — M exists, then fr — tj is a lift in the original
diagram.
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By Proposition 3.2.3 and 3.2.4 [-inj C J-inj, therefore J-cof C I-cof.
Take ¢ € J-cof. Then ¢ is injective, let ¢ : B — C' the factor map onto the
cokernel. There is a lift in

0
A M
7 P | € J-inj
Iq
B N

for any surjective p, and hi = 0, so h factors through C' as gq. ¢ is an
epimorphism, so the equality pgqg = fq implies pg = f, hence C is projective.
]

Corollary 3.2.8.1. J-cof C W N I-cof.

Proof. Again, take i : A — B € J-cof. Its cokernel C' is projective, so it
has 1.Lp. wrt. fibrations, so it is cofibrant (i.e. 0 — C' € I-cof). Therefore
1:A— B=A®C(C is also a cofibration.

It is enough to prove, that H,C' = 0. Define P as in the proof of Lemma
3.2.6. Let p : P — (' be projection to the first component; there is a
retraction (1, D) : C' — P, where dDz + Ddx = x. If dv = 0 then x = dDz,
so H.C =0 ]

This proves, that Ch(R) is a cofibrantly generated pointed model cat-
egory, therefore the previous results can be applied. Now it is possible to
define suspension and loop space for chain complexes, write out the exact se-
quences, or put Whitehead’s theorem and cofibrant replacement in context.
The details are not worked out here.
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