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0 Introduction

The aim of the present thesis is to introduce the basic notions of model
categories, which provide the standard framework for doing homotopy theory
in a categorical manner. It allows one to generalise the concepts of topology
to certain categories (e.g. the notion of a cylinder, homotopy groups, and
suspension), while the most important theorems remain true.

In the first section some of the basic concepts of category theory are
discussed in a short and incomplete way. Then a few classical theorems are
reconstructed, such as Whitehead’s theorem, fibre and cofibre sequences, etc.
In the last section a possible construction of model structures is given, which
is applied to prove the category of chain complexes to be a model category.

Thanks for the help of Szűcs András, Szabó Endre and Makkai Mihály.
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1 Categorical constructions

The main reference for this section is [4].

1.1 (co)limits

Definition 1.1.1. A diagram in the category C is a functor j : J → C,
where J is any category. The diagram is (locally) small, if J is (locally)
small. Generally j is identified with its image.

Definition 1.1.2. A cone over the diagram j consists of an object A of C,
and of arrows jX → A for all X ∈ J, such that all triangles which contain
A commute. A cocone is the same with arrows A → jX. A morphism of
(co)cones is an arrow A → A′, such that all triangles having A and A′ as
vertices commute.

Definition 1.1.3. The limit of the diagram j is the universal cone over it,
that means, from any other such cone there is a unique morphism of cones to
it. The colimit is the universal cocone (there is a unique morphism to every
other from it). Universality implies that if they exist they are unique up to
(unique) isomorphism (of (co)cones).

Example 1.1.1. Observe the following diagram in Ab:

Zp ↪→ Zp2 ↪→ Zp3 ↪→ . . .

Its colimit is the group Zp∞ =
⋃∞

1 Zpk , together with the evident inclusions.
To see this, take any sequence of homomorphisms Zpk → G, such that all
of them are extensions of the previous ones. Then it induces a unique map
Zp∞ → G, whose restrictions are the given morphisms.

Example 1.1.2. In Table 1 the most important limits and colimits are listed
(without their proofs). Their names are: terminal object, initial object,
product, coproduct, equaliser, coequaliser, pullback, pushout.

1.2 adjunctions

Example 1.2.1. Let F : Sets→ VectK be the functor that assignes to each
set X the K-vector space generated by its elements and let U : VectK →
Sets be the usual forgetful functor. Any function f : X → U(W ) has a
unique K-linear extension f̂ : F (X) → W given by f̂(

∑
ciei) =

∑
cif(ei).

This has an inverse, namely the restriction of a linear map g : F (X) → W
to the base set X, and hence it gives a bijection ϕ : VectK(F (X),W ) →
Sets(X,U(W )).
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This assignment is defined in a homogenous way, this (so called nat-
urality) can be expressed by the following commutative diagrams. Here
h : X ′ → X is any set-set function, while g : W → W ′ is any K-linear
map.

f : F (X)→ W f |X : X → U(W )

f ◦ F (h) f |X ◦ h

ϕ

F (h)∗ h∗

ϕ

f : F (X)→ W f |X : X → U(W )

g ◦ f U(g) ◦ f |X

ϕ

g∗ U(g)∗

ϕ

Definition 1.2.1. An adjoint pair of functors is the triple 〈F,U, ϕ〉, where
F : C → D and U : D → C are functors, while ϕ = {ϕX,Y }X∈C,Y ∈D
is a set of functions, such that ϕX,− : D(F (X),−) → C(X,U(−)) and
ϕ−,Y : D(F (−), Y ) → C(−, U(Y )) are natural isomorphisms. Then F is
said to be the left adjoint of U (and U is called the right adjoint of F ).

Proposition 1.2.1. Right adjoints preserve limits.

Proof. Take a diagram in Dand assume it has the limiting cone {pi : a→ ai}.
Its U -image gives a cone on the U -image of the diagram, for proving its
universality take an arbitrary cone {gi : b → U(ai)}. By the naturality of
ϕ−1 in a− we have ϕ−1(gj) = ϕ−1(U(f ij) ◦ gi) = f ij ◦ ϕ−1(gi), so {ϕ−1(g−)} is
a cone in D, therefore there is a unique ! : F (b) → a making each triangle
commute. ϕ is natural in U(a−), so ϕ(!) is a morphism of cones in C. If
there was another such arrow ?, then by the naturality of ϕ−1 and by the
uniqueness of ! we get ϕ−1(?) =!, applying ϕ gives ? = ϕ(!).

in D in C

ai

aj

a F (b)f ij
!

pi

pj

ϕ−1(gi)

ϕ−1(gj)

ϕ−1(?)

U(ai)

U(aj)

U(a) bU(f ij)
ϕ(!)

U(pi)

U(pj)

gi

gj
?

6



Corollary 1.2.1.1. By dualising the proof we get that left adjoints preserve
colimits.

Definition 1.2.2. The maps ηX = ϕ(1FX) : X → UFX form a natural
transformation η : IdC→ UF by the naturality of ϕ. Analogously the natural
transformation ε : FU → IdD is defined on an object Y as ϕ−1(1UY ) :
FUY → Y . η is called the unit and ε is called the counit of the adjunction.

1.3 (co)monads and (co)algebras

Example 1.3.1. Let G be a fixed group and T : Sets → Sets be the
endofunctor with TX = G × X, where G denotes the underlying set of G.
Then two natural transformations: µ : T 2 → T and η : Id → T are defined,
given by the components µX : G×(G×X) 3 〈g1, 〈g2, x〉〉 7→ 〈g1g2, x〉 ∈ G×X
and ηX : X 3 x 7→ 〈u, x〉 ∈ G×X, where u is the unit element of G. By the
associativity of group multiplication and by the properties of the unit, the
following diagrams commute:

〈g1, 〈g2, 〈g3, x〉〉〉 〈g1, 〈g2g3, x〉〉

〈g1g2, 〈g3, x〉〉 〈g1g2g3, x〉

TµX

µTX µX

µX

〈g, x〉 〈u, 〈g, x〉〉

〈ug, x〉

ηTX

µX

〈g, 〈u, x〉〉 〈g, x〉

〈gu, x〉

TηX

µX

Definition 1.3.1. A monad on the category C is a triple T = 〈T, η, µ〉,
where T : C→ C is an endofunctor, η : Id→ T and µ : T 2 → T are natural
transformations, making the following diagrams commute:

T 3 T 2

T 2 T

Tµ

µT µ

µ

IdT T 2

T

ηT

µ

TId
Tη
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Example 1.3.2. Let X be a fixed set and h : G×X → X an action of the
group G on it, that is h(g1, h(g2, x)) = h(g1g2, x) and h(u, x) = x. Using the
notations of Example 1.3.1, this means the commutativity of the following
diagrams:

〈g1, 〈g2, x〉〉 〈g1, h(g2, x)〉

〈g1g2, x〉 h(g1g2, x) = h(g1, h(g2, x))

Th

µX h

h

x 〈u, x〉

h(u, x)

ηX

h

A G-equivariant map between the G-actions 〈X, h〉 and 〈X ′, h′〉 is a func-
tion f : X → X ′, making

h(g, x) 〈g, x〉

f(h(g, x)) = h′(g, f(x)) 〈g, f(x)〉

h

f Tf

h′

commutative.

Definition 1.3.2. A T-algebra for the monad T = 〈T, η, µ〉 consists of an
object X of C (called the underlying object) and a morphism h : TX → X
(called the structure map), such that

T 2X TX

TX X

Th

µX h

h

X TX

X

ηX

h

commute. A morphism of T-algebras is an arrow f : X → X ′, such that the
following square commutes:

X TX

X ′ TX ′

h

f Tf

h′
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The category of T-algebras is denoted by Alg(T).

Example 1.3.3. T = 〈Tτ : Sets→ Sets, η, µ〉, τ is an algebra type.
TτX = {τ -terms on X}
ηX : X ↪→ TτX is inclusion.
µX : T 2

τX → TτX is identity.
Then Alg(T) is the category of algebras of type τ , with objects 〈A,α〉,

where A is the underlying set and α : TτA→ A is the evaluation function of

the algebra, having the properties α(g(
−−→
f(~a))) = α(g(

−−−−−→
α(f(~a)))) and α(a) = a

for all a ∈ A.
A morphism h : A→ A′ ofAlg(T) should satisfy h(α(f(~a))) = α′(f(

−−→
h(a))),

which means precisely that h is a homomorphism.
In [1] a stronger version of the following is proved.

Proposition 1.3.1. If C is complete and cocomplete (i.e. has all small limits
and colimits), and T : C→ C preserves colimits, then Alg(T) is complete
and cocomplete.

2 Model categories

The material of this section is taken from [2].

2.1 homotopies

Definition 2.1.1. An object a is the retract of the object b in the category
C, if there are maps i : a→ b and r : b→ a, such that ri = Ida. An arrow f
is the retract of the arrow g, if it is a retract in the category Mor C, whose
objects are the maps of C and whose morphisms are commutative squares.

Definition 2.1.2. Let i : a → b and p : x → y be maps of the category C.
Then i has the left lifting property wrt. p (and p has the right lifting property
wrt. i) if for every commutative square

a x

b y

f

i
g

p

there is a lift h : b→ x that makes both triangle commute.

9



Definition 2.1.3. A model structure on a category C consists of three sub-
categories of it, called weak equivalences, fibrations and cofibrations, together
with functors α, β, γ, δ : Mor C →Mor C, such that

• if two out of f , g and gf is a weak equivalence then so is the third,

• if f is a retract of g and g belongs to one of the above subcategories,
then so does f ,

• trivial cofibrations (maps, that are both cofibrations and weak equiv-
alences) have the left lifting property wrt. fibrations, while trivial fi-
brations (that are both fibrations and weak equivalences) have the right
lifting property wrt. cofibrations and

• every morphism f splits as β(f)◦α(f), where α(f) is a cofibration and
β(f) is a trivial fibration and as δ(f) ◦ γ(f), where γ(f) is a trivial
cofibration and δ(f) is a fibration.

Definition 2.1.4. A model category is a category with all small limits and
colimits and with a model structure on it.

Proposition 2.1.1. If C is a model category, with the subcategories Fib

(of fibrations), Cof (of cofibrations), and W (of weak equivalences), then
there is a model structure on Cop, whose fibrations form the category Cofop,
cofibrations form Fibop, and its weak equivalences form Wop. This follows
from the self-duality of the axioms.

Lemma 2.1.2 (Retract argument). Assume f = pi and f has l.l.p. wrt. p.
Then f is the retract of i. Dually, if f has r.l.p. wrt. i, then f is the retract
of p.

Proof. Complete the factorisation of f with 1B to get a commutative square.
Then there is a lift r, that can be drawn as

A A A

B C B

f i f

r p

.

Lemma 2.1.3. f is a (trivial) fibration/ (trivial) cofibration iff the related
lifting property holds.

10



Proof. For the nontrivial direction factor f to a cofibration followed by a
trivial fibration; f = pi. If f has l.l.p. wrt. p, then by the retract argument f
is a retract of i, and hence it is a cofibration. The other cases are similar.

Proposition 2.1.4. Cofibrations and trivial cofibrations are closed under
pushouts. Dually, fibrations and trivial fibrations are closed under pullbacks.

Proof. Assume f has left lifting property wrt. h, and the left square in the
following diagram is a pushout.

A C E

B D F

f
g

h

a

b

c

d

!

! is induced by the universal property of the pushout, therefore commu-
tativity of the CDE-triangle is immediate. Then take the composites hc,
hl = db. Using universality again, commutativity of the lower triangle is
deduced, hence g has the same l.l.p.

Proposition 2.1.5 (Ken Brown’s lemma). Let C be a model category and
D be a category with a distinguished subcategory W that has the 2-out-of-3
property. If F : C→ D is a functor that maps triv. cof. between cofibrant
objects to W, then it does the same with all weak eqivalences between cofibrant
objects. The analogous result (concerning trivial fibrations between fibrant
objects) also holds.

Proof. Let f : A → B be a weak equivalence of cofibrant objects. Take the
factorisation (f, 1B) : A ∨ B q−−→

cof
C

p−−−−→
triv.fib.

B. Both components p ◦ q ◦ i1,

p ◦ q ◦ i2 and p are weak equivalences, so by the 2-out-of-3 axiom q ◦ i1 and
q ◦ i2 are also. The coproduct is equivalently the pushout

0 A

B A ∨B
i2

i1

11



hence i1, i2 are cofibrations and q ◦ i1, q ◦ i2 are trivial cofibrations. It also
follows that C is cofibrant, so by assumption F (q ◦ i1) and F (q ◦ i2) are
in W. Its 2-out-of-3 property implies that all identity maps of domains and
codomains of maps from Ware included, therefore F (p◦q◦i2) = F (1B) ∈ W.
Then F (p) and finally F (f) = F (p ◦ q ◦ i1) are also in it.

The homotopy category is at first given by the inversion of weak equa-
lences.

Definition 2.1.5. The homotopy category of a model category C is the free
category generated by C∪ W−1 (where W−1 is the dual category of the sub-
category of weak equalences), factored by the relations ww−1 = 1dom w−1,
w−1w = 1dom w, fg = f ◦ g (for all w ∈ W, f, g ∈ C).

It is not trivial, that Ho C is locally small (as the objects might form a
proper class), but it will be proven later. Therefore it is not needed to move
to a higher set theoretical universe.

Proposition 2.1.6. There is γ : C→ Ho C, which is identity on objects,
and takes the arrows of W to isomorphisms. If F : C→ D also takes W to
isos, then there is a unique Ho F : Ho C→ D with (Ho F ) ◦ γ = F . If δ :
C→ E has the same universal property, then there is a unique isomorphism
ϕ : Ho C→ E, such that ϕγ = δ holds.

Proof. γ is identity on C and γ(w−1) = (γw)−1. Ho F |C = F |C and
Ho F (w−1) = (Fw)−1. Therefore γ is the initial object in the category
of functors mapping from C, taking W to isos, so it is unique up to unique
isomorphism.

Definition 2.1.6. The categories C and D are equivalent if there are func-
tors F : C→ D and G : D→ C, such that the compositions are naturally
isomorphic to the identity functors of the domains.

Example 2.1.1. Let A be the skeleton of C (i.e. a full subcategory, where
any object from C is isomorphic to exactly one from A) and let K denote
the inclusion. The isomorphisms θc : c ∼= Tc ∈ A uniquely determine a
functor T : C→ A for which θ is a natural isomorphism from IdC to KT .
TK = IdA, therefore a category is equivalent to its scaleton.

The proof of the following can be found in [4].

Proposition 2.1.7. A functor F : C→ D is part of a weak equivalence, iff
it is bijective on Hom-sets and for all x ∈ D there is an isomorphism x ∼= y
in D, such that y = F (b) for an object b ∈ C.

12



Let Cc, Cf , Ccf denote the full subcategories of C consisting of the
cofibrant, fibrant and both fibrant and cofibrant objects and all morphisms
between them.

For any object A the functorial factorisation of A → ∗ to a trivial cofi-
bration followed by a fibration gives a fibrant object RA, which is weakly
equivalent to it. By functoriality this extends to the fibrant replacement func-
tor R. The dual construction (factorising 0→ A as a cofibration followed by
a trivial fibration) gives the cofibrant replacement functor Q. These induce
equivalence between the related homotopy categories.

Proposition 2.1.8. The categories Ho Cc, Ho Cf ,Ho Ccf and Ho C are
equivalent.

Proof. The inclusion i : Cc → C preserves weak equivalences, so the functor
Ho i : Ho Cc → Ho C can be defined.

Q also preserves them, as it is illustrated here.

QA A

QB B

w.e.

qA

Qf

qB

w.e.

fw.e.
0

Therefore the functor Ho Q : Ho C→ Ho Cc exists.
This picture also shows, that q|Cc : Q ◦ i → 1Cc and q : i ◦ Q → 1C are

natural transformations, whose components are weak equivalences. Therefore
Ho q|Cc : Ho (Q ◦ i) = Ho Q ◦ Ho i → Ho 1C = 1Ho Cc and Ho q :
Ho i ◦Ho Q→ 1Ho C are natural isomorphisms. The rest is similar.

The homotopy category can also be defined through the notion of homo-
topy.

Definition 2.1.7. Let f, g : B → X be morphisms of the model category C.

• A cylinder object for B is an object B′, for which there is a factorisation

of 1∨1 : B∨B → B as B∨B i0∨i1−−−→ B′
s−→ B, where i0∨i1 is a cofibration

and s is a weak equivalence.

• Dually, a path object for X is X ′ if there is a factorisation of 1 × 1 :

X → X ×X as X
r−→ X ′

p0×p1−−−→ X ×X, where r is a weak equivalence
and p0 × p1 is a fibration.

13



• A left homotopy from f to g is a map H : B′ → X, such that Hi0 = f

and Hi1 = g. The notation will be f
l∼ g.

• The dual notion is right homotopy from f to g, which is a map K :
B → X ′, such that p0K = f and p1K = g. For right homotopy we will
write f

r∼ g.

• f is homotopic to g (in symbols: f ∼ g), if f
l∼ g and f

r∼ g. f is a
homotopy equivalence if there is h : X → B, for which hf ∼ 1B and
fh ∼ 1X .

Proposition 2.1.9. The cylinder objects B × I0 that are obtained from the
(α, β) functorial factorisation of 1 ∨ 1 form the object function of a functor
− × I0. For any other cylinder object B′ of B, B × I0 and B′ are weakly
equivalent.

Dually, there is a functorial path object XI0, coming from the (γ, δ) fac-
torisation. It is weakly equivalent to any other path object of X.

Lemma 2.1.10. C is a model category, f, g : B → X are arrows.

1. f
l∼ g, h : X → Y ⇒ hf

l∼ hg.
f

r∼ g, h : A→ B ⇒ fh
r∼ gh.

2. X is fibrant, f
l∼ g, h : A→ B ⇒ fh

l∼ gh.
B is cofibrant, f

r∼ g, h : X → Y ⇒ hf
r∼ hg.

3. B is cofibrant ⇒ l∼ is an equivalence relation on C(B,X).
X is fibrant ⇒ r∼ is an equivalence relation on C(B,X).

4. B is cofibrant, h : X → Y is a trivial fibration/ weak equivalence of

fibrant objects ⇒ h induces a C(B,X)�l∼
∼→ C(B, Y )�l∼ isomorphism (of

sets).
X is fibrant, h : A→ B is a trivial cofibration/ weak equivalence of cofibrant

objects ⇒ h induces a C(B,X)�r∼
∼→ C(A,X)�r∼ isomorphism.

5. B is cofibrant ⇒ if f
l∼ g, then f

r∼ g, and for all X ′ path object there is a
K : B → X ′ right homotopy from f to g.

X is fibrant ⇒ if f
r∼ g, then f

l∼ g, and for all B′ cylinder object there is
an H : B′ → X left homotopy from f to g.

Proof. By duality it is enough to prove statements about left homotopies.

14



1. h ◦ H : B′ → Y is a left homotopy from hf to hg if H was an f
l∼ g

homotopy.

2. The cylinder object of B is given by the factorisation B ∨ B (i0,i1)−−−→
cof

B′
s−−→
w.e.

B. s is assumed to be a trivial fibration; otherwise factor it as

s : B′
s1−−−→

tr.cof
B′′

s2−→
fib

B, where s2 is trivial by the 2-out-of-3 property

and therefore B′′ is a cylinder object. Then there would be a lift H ′ in
the diagram

B′ X

B′′ ∗

H

tr.cof fib
H ′

B ∨B
(i0, i1)

which is also a left homotopy from f to g by commutativity.

Assume A ∨ A j−→ A′
t−→ A gives the cylinder object A′. Now form the

square

A ∨ A B′

A′ B

(i0, i1) ◦ (h, h)

cof j

h ◦ t

tr.fibs
k

The composite H ◦ k is a left homotopy from fh to gh.

3. Using the above notation, fs is a left homotopy from f to f , which
gives reflexivity. For symmetry use the same homotopy H : B′ → X,

but with the factorisation B ∨ B (i1,i0)−−−→ B′
s−→ B. It remains to prove

transitivity.

Let H : B′ → X be a left homotopy from f to g, and H ′ : B′′ → X

from g to h. Form the pushout of B′′
i′0←− B

i1−→ B′. Then the map
t : C → B is induced, as in
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B B′

B′′ C

i1

i′0

B

t

s

s′

Define the maps j0 : B
i0−→ B′ → C and j1 : B

i′1−→ B′′ → C. A

factorisation of 1B ∨ 1B is given by B ∨B (j0,j1)−−−→ C
t−→ B.

The coproduct is equivalently a pushout from 0, using that B is cofi-
brant we get, that the inclusions B → B ∨ B ← B are cofibrations,
hence i1 (the restriction of (i0, i1) to the second component) is also.
s ◦ i1 = 1B, so by the 2-out-of-3 property i1 is a trivial cofibration,
then so is its pushout B′′ → C. s′ is a weak equvalence, so t is a weak
equivalence too.

The pushout

B B′

B′′ C

i1

i′0

X

K

H

H ′

gives a map K : C → X, such that Kj0 = Hi0 = f and Kj1 = H ′i′1 =
h. The problam is, that C is not a cylinder object.

The suitable cylinder object C ′ is given by

B ∨B C

C ′

(j0, j1)

α
cof

β
tr.fib

X

B
t

w.e.

K

Kβ is a left homotopy from f to h.
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4. The case when h is a weak equivalence of fibrant object can be deduced
from the second case (when h is a trivial fibration) and the Ken Brown

lemma, applied to the functor C(B,−)�l∼ : C → Sets which is well

defined by the first and third statement of this lemma. The subcategory
W≤ Sets containes the bijections.

Now assume h is a trivial fibration. The map C(B, h)�l∼ : C(B,X)�l∼ →
C(B, Y )�l∼ is surjective by the existence of the lift f in

0 X

B Y

cof h tr.fib

f ′

f

For injectivity assume H : B′ → Y is a left homotopy from hf to hg.
The lift K in

B ∨B X

B′ Y

(f, g)

(i0, i1) cof h tr.fib

H

K

is a left homotopy from f to g.

5. Let H : B′ → X be a left homotopy from f to g. Using the same
arguments as in 3., we get that i0 : B → B′ is a trivial cofibration. Let

X ′ be a path object via X
r−→ X ′

(p0,p1)−−−−→ X ×X. Form the square

B X ′

B′ X ×X

rg

i1tr.cof (p0, p1)fib

(H, gs)

J

17



Define K = Ji0. Then p0K = p0Ji0 = Hi0 = f and p1K = p1Ji0 =
gsi0 = g, so K is a right homotopy from f to g.

Corollary 2.1.10.1. C is a model category, B is cofibrant, X is fibrant ⇒
l∼=

r∼ is an equivalence relation on C(B,X). If f ∼ g, then any cylinder/
path object realises the homotopy.

Corollary 2.1.10.2. ∼ is an equivalence relation on Arr Ccf , which is com-

patible with composition, hence the category Ccf�∼ exists.

It is worth to discuss the relation between left and right homotopies ex-
plicitely. A × I, A × I ′, etc. will denote arbitrary cylinder objects, while
A × I0 will stand for the functorial one, and the analogous notation will be
used for path objects.

Definition 2.1.8. A correspondence between the left homotopy H : B× I →
X and the right homotopy K : B → XI (both going from f to g) is a map
ϕ : B × I → XI , such that ϕi0 = K, ϕi1 = rg, p0ϕ = H, and p1ϕ = gs.

Corollary 2.1.10.3. Starting from any left homotopy H, there is a corre-
sponding right homotopy K.

Our goal now is to define (generalised) homotopy groups. As a first step,
we discuss (left) homotopies between (left) homotopies. The reason why a
new notion is introduced, is that the cylinder objects are not assumed to
coincide, and also because these homotopies should fix the original maps.

Definition 2.1.9. Let H : B×I → X and H ′ : B×I ′ → X be left homotopies
from f to g, with the usual maps i0, i1, r and i′0, i

′
1, r
′ of the cylinder objects.

Denote the pushout of B × I (i0,i1)←−−− B ∨B
(i′0,i

′
1)

−−−→ B × I ′ by B × I ∨
B∨B

B × I ′.
Factor the map r ∨ r′ into a cofibration followed by a weak equivalence, as

B × I ∨
B∨B

B × I ′ ĩ0∨ĩ1−−−→ B̃
r̃−→ B. A left homotopy from H to H ′ is a map

H̃ : B̃ → B, such that H̃ĩ0 = H and H̃ĩ1 = H ′.

Proposition 2.1.11. As before, H and H ′ are left homotopies, K is a right
homotopy from f to g (f, g : B → X, B is cofibrant, X is fibrant). Assume K
corresponds to H. Then it corresponds to H ′, iff H and H ′ are left homotopic.

Proof. First assume ϕ1 and ϕ2 are correspondences between the above ho-
motopies. Form the square

18



B × I ∨
B∨B

B × I ′ XI

B̃ X

ϕ1 ∨ ϕ2

ĩ0 ∨ ĩ1cof p1 tr.fib

gr̃

ϕ

Then p0ϕ is a left homotopy from H to H ′, as p0ϕĩ0 = p0ϕ1 = H and
p0ϕĩ1 = p0ϕ2 = H ′

Now assume H̃ is a left homotopy from H to H ′. ĩ0 is a cofibration (as
the inclusion B × I → B × I ∨

B∨B
B × I ′ is the pushout of a cofibration)

and it is a weak equivalence (by the 2-out-of-3 property, used for r̃ĩ0 = r).
Therefore there is a lift in

B × I XI

B̃ X ×X

ϕ1

ĩ0tr.cof (p0, p1)fib

(H̃, gr̃)

ϕ′

and ϕ′ĩ1 : B× I ′ → XI is a correspondence from H ′ to K, as p0ϕ
′ĩ1 = H̃ĩ1 =

H, p1ϕ
′ĩ1 = gr̃ĩ1 = gr′, ϕ′ĩ1i0 = ϕ′ĩ0i0 = ϕ1i0 = K, and ϕ′ĩ1i1 = ϕ′ĩ0i1 =

ϕ1i1 = sg

Corollary 2.1.11.1. Left homotopy is an equivalence relation on left homo-
topies from f : B → X to g : B → X (dually: right homotopy on right
homotopies is an equivalence relation), the equivalence classes form a set in
both cases (as any left homotopy corresponds to a right homotopy with fixed
XI), and correspondence gives a bijection between these two sets (denoted by
πl1(B,X; f, g) and πr1(B,X; f, g)).

It will be convenient to illustrate correspondences as

g g

f g

gr

K sg

H
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and in general, any map from a cylinder object to a path object, with lower
(resp. upper) side standing for composition with p0 (resp. p1), and with left
(resp. right) side standing for precomposition with i0 (resp. i1).

Lemma 2.1.12. These squares can be glued together at edges which refer
to the same homotopy (and therefore for vertical gluing the cylinder objects,
for horisontal, the path objects are assumed to coincide); i.e there is a map
B × I ′ → XI′, whose restrictions and projections are the compositions of
homotopies, written on the sides of the rectangle. This composition is defined
in the proof of Proposition 2.1.10, and it is written in the order of application
(unlike the composition of arrows).

Proof. Take the squares

h3

k′1 k′2

h2

k1 k2

h1

ϕ′

ϕ

Form the pullback:

B′ BI

BI′ B

q′0

q1 p1

p′0

Then s and s′ induce s̃, which is a weak equivalence by the pullback
stability of trivial fibrations, and by the 2-out-of-3 property. Take p̃0 = p0q

′
0

and p̃1 = p1q
′
1, then (p̃0, p̃1) ◦ s̃ : B → B ×B is identity in both coordinates.

The maps ϕ and ϕ′ induce Φ : A × I → B̃, with p̃0Φ = p0ϕ = h1 and
p̃1Φ = p1ϕ

′ = h3. The only problam is that B̃ may not be a path object, as
(p0, p1) may not be a fibration. Therefore factor it into a trivial cofibration,
followed by a fibration, as
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B̃ B ×B

B′

(p̃0, p̃1)

γ
tr.cof

δ = (d0, d1)

fib

A× I

B
s̃

w.e.

Φ

Then Φ′ = γΦ : A×I → B′ has a path object as codomain, and d0Φ′ = h1,
d1Φ′ = h3, Φ′j0 = k1k

′
1, and Φ′j1 = k2k

′
2. The last two equivality is by

definition; precomposing j0 in the above diagram results the definition of
composition of right homotopies (whose dual was described in Proposition
2.1.10).

Proposition 2.1.13.

• Composition of left homotopies respects the equivalence classes, i.e.
there is an induced map πl1(A,B; f1, f2)×πl1(A,B; f2, f3)

◦−→ πl1(A,B; f1, f3).
The dual statement also holds.

• If H1 corresponds to K1 (via ϕ1), and H2 corresponds to K2 (via ϕ2),

then H1 ◦H2 corresponds to K1 ◦K2 (where H1 : f1
l∼ f2, H2 : f2

l∼ f3,
K1 : f1

r∼ f2, K2 : f2
r∼ f3).

• (Hom(A,B), ◦) is a grupoid.

Proof.

• The second statement together with Proposition 2.1.11 implies the first
one.

• This is proved by forming the squares

f2r1

k2

k2

f2r1

f3r2

h2

s2f3

k1

s1f2

h1

s1f3

h2

k2r1 ϕ2

ϕ1 s1h2
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• Associativity of composition follows from the fact, that it is defined
through a universal arrow from a pushout. The identity on [f ] is [fr].
It can be seen by

gr

k
k

fr

gr

h

sgkr ϕ

and

gr

k
sg

h

gr

gr

sgϕ sgr

The inverse of h (as it was constructed in Proposition 2.1.10) is the same
map h−1 : A × I → B, but j0 and j1 is reversed in the factorisation
through the cylinder object. Let ϕ1 be a correspondence between h
and k, and ϕ2 be a correspondence between h−1 and k′, and let ϕ′1
and ϕ′2 be the same maps, but with the reversed cylinders as domains.
Then the following squares prove that the composition of [h] and [h−1]
is identity in both ways:

gr

sg k

h−1

gr

h

sgϕ′1 ϕ1
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fr

sf
k′

h

fr

h−1

sfϕ′2 ϕ2

Definition 2.1.10. πA1 (B) = π1(A,B) = π1(A,B; 0, 0) is the first A-homotopy
group of B, where A is cofibrant and B is fibrant. It is a group by the previous
proposition.

The suspension of an object A is the pushout of ∗ ← A∨A (i0,i1)−−−→ A× I0

(this and related concepts will be examined in the next section). This pushout
in the category of pointed topological spaces (Top∗) results the reduced
suspension, therefore it is meaningful to define πn(A,B) as π1(Σn−1A,B). In
the remaining part the notion of homotopy is exposed to further discussion.

It can be proved, that Top∗ admits a model structure, where f is a
weak equivalence iff πn(f) is isomorphism for all n = 0, 1 . . . , all spaces are
fibrant and the cofibrant ones are CW -complexes. Therefore the following is
a generalisation of Whitehead’s theorem.

Theorem 2.1.14. Let C be a model category. A map of Ccf is a weak
equivalence iff it is a homotopy equivalence.

Proof. First assume f : A→ B is a weak equivalence in Ccf . By the previous

lemma f∗ : Ccf�∼(X,A) → Ccf�∼(X,B) is bijective. Taking X = B, there
is a map g : B → A, such that fg ∼ 1B, and this g is unique up to homotopy.
Then fgf ∼ f , taking X = A this means f∗(gf) = f∗(1A) = f , therefore
gf ∼ 1A.

Now take f : A → B to be a homotopy equivalence. Factor it as
A

g−−−→
tr.cof

C
p−→
fib

B. Then C is both fibrant and cofibrant, so g is a ho-

motopy equivalence by the first part of the theorem. Assume the homotopy
inverse of f is f ′ : B → A, and H : B′ → B is a left homotopy from ff ′ to
1B. Observe the square

23



B C

B′ B

gf ′

i0tr.cof p fib

H

H ′

The lift H ′ is a left homotopy from gf ′ to q = H ′i1. We also get pq = Hi1 =
1B.

Let g′ : C → A be a homotopy inverse for g. Then p ∼ pgg′ ∼ fg′,
therefore qp ∼ (gf ′)(fg′) ∼ 1C . Let K : C ′ → C be a left homotopy
from 1C to qp. Ki0 = 1C , i0 and 1C are weak equivalences, so K, and by
that Ki1 = qp are weak equivalences too. The following commutes (with
horisontal composites being identical)

C C C

B C B

p qp p

q p

therefore p is the retract of qp, hence p and f = gp are weak equivalences.

Note, that this generalisation of Whitehead’s theorem has nothing to do
with homotopy groups, although they were introduced for arbitrary cofibrant
A, and natural number n. It would be nice to see, how these notions are
related. The following is an important consequence of the previous theorem.

Proposition 2.1.15. If γ : Ccf → Ho Ccf , δ : Ccf → Ccf�∼ are the evident

canonical functors, then ∃! j : Ccf�∼ → Ho Ccf isomorphism of categories,
such that jδ = γ. j is identity on objects.

Proof. δ takes homotopy equivalences, therefore weak equivalences to isomor-
phisms. It would be enough to see, that it has the same universal property
as γ, then Proposition 2.1.6 is applied.

Let F : Ccf → D be a functor, that takes weak equivalences to isomor-

phisms. Assume A ∨A (i0,i1)−−−→ s−→ A is a cylinder object. Then si0 = si1 = 1A,
s is a weak equivalence, so Fi0 = Fi1 is the inverse of Fs. For a left homo-
topy H : A′ → B from f to g, Ff = (FH)(Fi0) = (FH)(Fi1) = Fg, so F
identifies left (and dually: right) homotopic maps.
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It implies, that F factors through Ccf�∼ as F = Gδ by G : Ccf�∼ → D,
where G([f ]) = Ff . This G is unique and it is idenetity on objects, so δ has
the required universal property.

The main goal of this section was the following theorem.

Theorem 2.1.16. C is a model category.

1. Ccf ↪→ C induces Ccf�∼ ∼= Ho Ccf → Ho C equivalence of categories.

2. There are isomorphisms Ho C(γX, γY ) ∼= C(QRX,QRY )�∼ ∼=
C(RQX,RQY )�∼ ∼= C(QX,RY )�∼ natural in all components. Hence
Ho C is locally small.

3. γ : C→ Ho C identifies left or right homotopic maps.

4. If γf is an isomorphism in Ho C, then f is a weak equivalence.

Proof. The first statement is already seen, the third one is in the proof of
the previous proposition. For the second statement, recall that there is a
natural transformation qr : i ◦ R ◦ Q → 1C, whose components are weak
equivalences. So we get a natural isomorphism from Ho i ◦ Ho R ◦ Ho Q
to 1C, that gives Ho Ccf (γQRX, γQRY ) ∼= Ho C(γX, γY ). Then use the

isomorphism Ccf�∼ ∼= Ho Ccf .
As Ho i◦Ho R◦Ho Q ∼= Ho i◦Ho Q◦Ho R(∼= 1C) we have that γRQX ∼=

γQRX in Ho Ccf . Hence Ho Ccf (γQRX, γQRY ) ∼= Ho Ccf (γRQX, γQRY )
In the functorial factorisations QX → X is a trivial fibration and X →

RX is a trivial cofibration. Using the forth statement of Proposition 2.1.10,

we have C(γQRX, γQRY )�∼ ∼= C(γRQX, γQRY )�∼ ∼= C(γQX, γQRY )�∼ ∼=
C(γQX, γRY )�∼ isomorphisms, natural in both components.

Finally, if γf is an isomorphism in Ho C, then by the commutativity of

X Y

QRX QRY

γf

∼=
QRf

∼=

QRf is an isomorphism in Ho Ccf , therefore in C�∼. So QRf is a homotopy
equivalence in Ccf , hence a weak equivalence. The following shows Rf and
f to be weak equivalences:
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QRX QRY

RX RY

QRf

Rf

X Y
f

2.2 exact sequences

Definition 2.2.1. The category C is pointed, if it has an initial and a ter-
minal object, and the unique map between them is an isomorphism.

Some examples are Top∗ the category of pointed topological spaces, Cat∗
the category of small categories with a distinguished object and base-point
preserving functors, and its full subcategory Grp. In general, one can al-
ways create a pointed category from a category with terminal object (∗) by
concerning maps ∗ → A as objects and commutative triangles as arrows.

In this section all categories are assumed to be pointed.

Definition 2.2.2. The kernel of a map f : A→ B is the equalizer of f and
the zero-map 0 : A→ ∗ → B. Dually, the cokernel of f is the coequalizer of
f and 0.

These (co)limits have equivalent characterisation as the pullback of f
through ∗ → B and dually, as the pushout of f through A → ∗. Motivated
by their realisation in Top, the (co)kernel is also referred as the (co)fibre of
the map, hence the below terminology.

Definition 2.2.3. In a pointed model category, the suspension of an object A
is the cokernel of the cofibration map A∨A→ A× I0 described in Definition
2.1.7.

The loop space of A is the kernel of the (dual) fibration AI0 → A× A.

Proposition 2.2.1. This extends to the suspension and loop functors; Σ,Ω :
Ho C→ Ho C.

Proof. By the commutativity of the left and back face of the cube
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B ∨B ∗

B × I0 ΣB

A ∨ A ∗

A× I0 ΣA

f ∨ f

f × I0 Σf

The outer square in the pushout diagram

A ∨ A ∗

A× I0 ΣA

B × I0 ΣB

commutes, this induces Σf . If f is a weak equivalence, then f × I0 is also,
then by the 2-out-of-3 property so is Σf . Now it follows, that Σ and Ω are
endofunctors of Ho C.

Proposition 2.2.2. Σ is left adjoint to Ω (in Ho C). Moreover, if [A,B]1
is defined as π1(QA,RB), then there are isomorphisms [ΣA,B] = [A,B]1 =
[A,ΩB], natural in all components ([X, Y ] stands for Ho C(X, Y )).

Proof. First assume, that A is cofibrant and B is fibrant. Then the map
ρ : (f : ΣA→ B) 7→ (fπ : A×I0 → B) (where π : A×I0 → ΣA is the cofibre
of A∨A→ A× I0) is a bijection. It is well-defined; i.e. let K : ΣA→ BI be
a right homotopy from f to f ′, and let ϕ be a correspondence between f ′π
and some right homotopy k. Form the squares
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0r

k s0

f ′π

s0 s0

fπ

ϕ

Kπ

This shows, that fπ and f ′π correspond to the same right homotopy k =
(s0)k, hence belong to the same homotopy class.

To see surjectivity take a left homotopy h : A×I0 → B, with h(j0, j1) = 0
(Proposition 2.1.10 and 2.1.11 together imply, that any left homotopy is
homotopic to one which maps from the functorial cylinder object). Then
there is an induced map f : ΣA→ B in the pushout

A ∨ A A× I0

∗ ΣA

(j0, j1)

π

B

f

h

hence h = fπ.
To prove injectivity assume [fπ] = [f ′π], and let H : Ã → B be a left

homotopy between them. Define H ′ : Ã → B by H ′j0 = H ′j1 = fπ. Then
there is a lift in

A× I0 BI

Ã B ×B

sfπ

j0tr.cof (p0, p1) fib

(H,H ′)

K

and Kj1 : A×I0 → BI is a right homotopy from fπ to f ′π, with Kj1(i0, i1) =
0. Therefore it factors through ΣA as K ′π, where p0K

′π = fπ and p1K
′π =
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f ′π. It is enough to see, that π is an epimorphism (i.e. left-cancelable) which
holds, as it is the pushout of an epi (its codomain is the terminal object).

This argument shows, that π1(A,B) is invariant under weak equivalences,
in both variables. To see that π1 : Ho Copc ×Ho Cf → Grp is a functor, one
has to check that for maps a : A′ → A, b : B → B′ the following commutes

π1(A,B) 3 α α(a× I0) ∈ π1(A′, B)

π1(A,B) 3 bα bα(a× I0) ∈ π1(A′, B′)

a∗

b∗ a∗

b∗

associativity of composition in a fixed variable is immediate.
It remains to prove naturality. In the second variable it is automatic, in

the first it follows from the equality A× I0
a×I0−−−→ A′ × I0

π′−→ ΣA′ = A× I π−→
ΣA

Σa−→ ΣA′, which holds by definition.
Finally, we have the natural isomorphisms of functors

[ΣA,B] ∼= [ΣQA,RB] ∼= [A,B]1 ∼= [QA,ΩRB] ∼= [A,ΩB]

which complete the proof

In the case of topological spaces, there is a map m : F × ΩB → F , that
lifts the given loop with the given endpoint, and results the element of F ,
in which the lift ends. The analogous construction is given for any model
category.

Let p : E → B be a fibration with fibre F . A path object of B is given

by B
sB−−→
w.e.

BI (dB0 ,d
B
1 )

−−−−→
fib

B ×B.

Factor 1E ×
B
sB ◦ p×

B
1E as E

sE−−→
w.e.

EI (dE0 ,p
I ,dE1 )

−−−−−−→
fib

E ×
B
BI ×

B
E. Observe the

following pullbacks:

E ×
B
BI

E

BI B

pr′1

p

dB0

E ×
B
BI

BI

E ×
B
BI ×

B
E

dB1

(pr1, pr2)
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By pullback stability (pr1, pr2) is a fibration, hence (pr1.pr2)◦(dE0 , pI , dE1 ) =
(dE0 , p

I) is also. pr′1 is a trivial fibration. In the equation 1E = pr′1◦(dE0 , pI)◦sE
all arrows except (dE0 , p

I) were shown to be weak equivalences, so by the ’2-
out-of-3’ axiom it is a trivial fibration.

Our next goal is to show, that ∃!α, such that

ΩB BI

F ×
E
EI ×

E
F

α

j

pI ◦ pr′′2

commutes, where j is the inclusion of the fibre.

Using the universal property of the defining pullback of ΩB, it is enough
to see, that (dB0 , d

B
1 )◦pI ◦pr′′2 : F ×

E
EI×

E
F → B×B is equal to the zero-map.

From the construction of the functorial path object it follows, that the square

EI BI

E B

dE0 dB0

pI

p

commutes. Therefore (dB0 , d
B
1 )◦pI = p×p◦ (dE0 , d

E
1 ), and (dB0 , d

B
1 )◦pI ◦pr′′2 =

p× p ◦ (dE0 , d
E
1 ) ◦ pr′′2 = p× p ◦ i× i ◦ (pr1, pr3) = 0

It is enough to prove, that the square

F ×
E
EI ×

E
F EI

F × ΩB E ×
B
BI

π = (pr′′1 , α) (dE0 , p
I)

pr′′2

i×
B
j

is a pullback. Then π is a trivial fibration, so there is a map m : F ×
ΩB

γ(π)−1

−−−−→ F ×
E
EI ×

E
F

γ(pr′′3 )
−−−→ F in HoC.
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Definition 2.2.4. A fibre sequence is the functorial image of the defining
pullback of the fibre of a fibration p, and of m : ΩB × F → F at the functor
γ : C→ Ho C.

A cofibre sequence is the induced diagram in Ho C by the defining pushout
of the cofibre, and by the map n : C ∨ ΣA→ C.

In [5] Quillen proves the following result.

Theorem 2.2.3. For a fibre sequence F
i−→ E

p−→ B define the boundary map

as ∂ : ΩB
1B×0−−−→ ΩB × F m−→ F . Then

· · · → [A,ΩE]
(Ωp)∗−−−→ [A,ΩB]

∂∗−→ [A,F ]
i∗−→ [A,E]

p∗−→ [A,B]

is an exact sequence of groups from [A,ΩE] to the left, half exact at all
stages (as a sequence of pointed sets), and

• δ∗(λ1) = δ∗(λ2)⇔ ∃µ ∈ [A,ΩE] : λ1 = λ2 · (Ωp)∗(µ)

• i∗(α1) = i∗(α2)⇔ ∃λ ∈ [A,ΩB] : α1 = α2 · λ

• p−1
∗ (0) = Im(i∗)

Here central dot abbreviates m∗ : [A,ΩB]× [A,F ]→ [A,F ].

For a cofibre sequence A
i−→ X

ψ−→ C with ∂ : C
1C+0−−−→ C + ΣA

n−→ ΣA

. . . [ΣX,B]
(Σi)∗−−−→ [ΣA,B]

∂∗−→ [C,B]
ψ∗−→ [X,B]

i∗−→ [A,B]

is exact in the same sense, except that · stands for the right action n∗ :
[C,B]× [ΣA,B]→ [C,B].

For a straightforward application observe the following model structure
on Cat∗, the category of small pointed categories. The proof is given in [3].

Theorem 2.2.4. There is a model structure on Cat∗, where fibrations are
isofibrations (i.e. whenever there is an isomorphism ϕ : a ∼= b in D, such
that a = F (x), for the isofibration F : C→ D, then there is an isomorphism
ψ in C for which ϕ = F (ψ)) cofibrations are functors, that are injective on
objects and weak equivalences are those, which are part of an equivalence of
categories.

Proposition 2.2.5. In the above model structure homotopy (between func-
tors F,G : C→ D) is natural isomorphism (η), for which ηx0 = 1x0 (x0 is
the base point of C).
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Proof. In the proof of the next corollary the functorial cylinder object is
characterised, then it follows immediately.

Corollary 2.2.5.1. If ϕ : C→ D is a functor that is injective on objects,

ψ : D → D′ = D�< Im ϕ > is the factor map, and [C, D] denotes the

homotopy classes of C→ D functors, then

0→ Hom(Fd′−1,A)
(Σψ)∗−−−→ Hom(Fd−1,A)

(Σϕ)∗−−−→ Hom(Fc−1,A)
∂∗−→

∂∗−→ [D′,A]
ψ∗−→ [D,A]

ϕ∗−→ [C,A]

is an exact sequence of pointed sets. Here A is any (pointed, small) category,
and a, c, d, d′ is the number of connected components of the related categories.

If p : E→ B is an isofibration, and i : Ker p ↪→ E is the inclusion of
the kernel, then

0→ [A, (ker p)Z]
(Ωi)∗−−−→ [A, EZ]

(Ωp)∗−−−→ [A,BZ]
δ∗−→

δ∗−→ [A, ker p]
i∗−→ [A, E]

p∗−→ [A,B]

and

0→ Hom(Fa−1, ker p) −→ Hom(Fa−1, E) −→ Hom(Fa−1,B) −→

−→ [A, ker p]
i∗−→ [A, E]

p∗−→ [A,B]

is exact.

Proof. The following is a pushout square:

C ∗

D D′

ϕ

ψ

Therefore there is a cofibre sequence C
ϕ−→ D

ψ−→ D′ with some suitable ∂.
Define C× I as C ∨ C together with isomorphisms between the two

copies of an object (except x0), such that any square containing two of them
commutes. Then the composition

C∨ C
i−→ C× I pr−→ C
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is a factorisation of 1C ∨ 1C to a cofibration followed by a trivial fibration.
Here pr identifies the two copies of C and maps the vertical isomorphisms to
identities. This is surjective, and by commutativity it is bijective on Hom-
sets, so it is a trivial fibration. It follows, that C× I is a cylinder object.
Then the pushout

C∨ C ∗

C× I Fc−1

i

shows, that the suspension of a category is the free group generated by c− 1
elements, where c is the number of connected components in C.

For any monoid M and category C, Hom(M, C) = [M, C], as in this
case, a natural isomorphism would have only one component, which is the
identity of the base point.

Now we construct the loop object. Let CI be the functor category C↔.

Note, that · · is itself not pointed, the base point of C↔ is the functor,
whose image is the identity of x0 ∈ C. Then

C
i−→ CI

pr−→ C× C

is a decomposition of 1C× 1C to a trivial cofibration followed by a fibration.
Here i maps every object to its identity, and pr takes an isomorphism to its
endpoints.

The following is a pullback:

CZ CI

∗ C× C

pr

Finally, exactness of the last sequence follows by adjointness.

Corollary 2.2.5.2. Hom(−,−) : Mon×Mon→Mon is left-exact in both
variables.

Proof. In the observed model structure every monoid homomorphism is a
cofibration, and the fibrations are those, which are surjective on invertable
elements (arrows). Therefore a short exact sequence is both a fibre and
cofibre sequence, then the above result is applied.
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3 Constructions for model categories

3.1 cofibrantly generated model categories

In this section a possible construction of model structures is considered. The
hardest part is to create functorial factorisation; this motivates the following
technicalities.

Definition 3.1.1. Assume, the category C has all small colimits, and λ is
an ordinal (represented as a category). Then a λ-sequence in C is a colimit-
preserving functor X : λ→ C (i.e. for each limit ordinal γ < λ the induced
map colim

β<γ
Xβ → Xγ is an isomorphism). The map X0 → colim

β<λ
Xβ of the

universal cone is said to be the transfinite composition of the λ-sequence.

Definition 3.1.2. For a cardinal γ, the limit ordinal α is γ-filtered, if A ⊆ α,
|A| ≤ γ ⇒ sup A < α.

Definition 3.1.3. Assume C has all small colimits, D is a collection of
arrows, A is an object, κ is a cardinal. Then A is κ-small rel. D, if for
all κ-filtered ordinal λ and for all λ-sequence X : X0

α0−→ X1
α1−→ . . . , with

αi ∈ D, the induced map ! : colim C(A,Xβ)→ C(A, colim Xβ) is bijective.

C(A,X0) C(A,X1) C(A,X2) . . .

colim C(A,Xβ)

C(A, colim Xβ)

(α0)∗ (α1)∗ (α2)∗
i0

(µ0)∗

Example 3.1.1. Every set A is |A|-small. To see this, take f : A →
colim Xβ. For all a ∈ A there is βa, such that f(a) ∈ im µβa . sup βa = γ < λ,
as λ was |A|-filtered.

Now f(a) ∈ im µγ, for all a ∈ A, as µβa = µγ ◦ αβaγ, therefore f can be

factored as A
g−→ Xγ

µγ−→ colim Xβ = (µγ)∗(g) =!iγ(g), so ! is surjective.
To see injectivity, assume !f1 =!f2, then for all a ∈ A there is βa, such that

f1,βa(a) = f2,βa(a), where fi = µβafi,βa . Then f1,β = f2,β, where β = sup
a∈A

βa.

Therefore f1 = f2.

Example 3.1.2. Every R-module A is |A|(|A|+ |R|)-small. It can be proved
similarly, and the proof is given in [2].
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Definition 3.1.4. I ⊆ Arr C is a subclass.

• I-inj is the class of morphisms, that have r.l.p. wrt. I.

• I-proj is the class of morphisms, that have l.l.p.wrt. I.

• I-cof=(I-inj)-proj

• I-fib=(I-proj)-inj

Proposition 3.1.1. The above classes are subcategories.

Lemma 3.1.2. I ⊆ I-cof, I ⊆ I-fib, (I-cof)-inj=I-inj, (I-fib)-proj=I-proj,
I ⊆ J ⇒ I-inj ⊇ J-inj, I-proj ⊇ J-proj, I-cof ⊆ J-cof, I-fib ⊆ J-fib.

If C is a model category and I is the class of cofibrations, then I-inj is
the class of trivial fibrations and I-cof=I.

If I is the class of fibrations, then elements of I-proj are trivial cofibrations
and I-fib=I.

Example 3.1.3. Take C= Top and let I consist of the boundary inclusions
Sn−1 ↪→ Dn. Then a pushout from I is the attachment of an n-cell;

Sn−1 X

Dn X t
Sn−1

Dn

Take a transfinite composition from these maps, whose domain is a point.
Codomains of such arrows are exactly the CW -complexes.

Definition 3.1.5. I is a subset of Arr C, C has all small colimits. A relative
I-cell complex is a map, that is the transfinite composition of arrows, that
are pushouts from I.

Lemma 3.1.3. All isomorphisms are in I-cell. I-cell ⊆ I-cof.

Proof. An isomorphism f : A
∼−→ B is the transfinite composition of the

sequence whith only one object, A. For the second statement, it is enough
to prove, that I-cof is closed under pushouts and transfinite composition. It
was already seen, that left lifting properties are preserved by pushouts.

Assume g ∈ I-inj, fα ∈ I-cof, (α < λ). Take ϕ0, ϕ1 such that gϕ0 = ϕ1f .
Then the lifts hα (α < λ) exist, and the relations ghα = ϕ1iα, hαfα = ϕ0

hold.
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. . .

f0

f1

f

i0

i1
g

ϕ0

h0

h1

ϕ1

!

Lemma 3.1.4. Take a λ-sequence, where each arrow is from I, or is an
isomorphism. Then its transfinite composition is in I-cell.

Proof. The transfinite composition of isomorphisms is itself an isomorphism.
I.e. it can be choosen to be the first map in the sequence, while the rest of
the arrows of the cone are defined via transfinite recursion. Composing an
isomorphism after a pushout from I is again a pushout.

Lemma 3.1.5. C has all small colimits, I ⊆Arr C is a subset. Then I-cell
is closed under transfinite composition.

Proof. Such a sequence consists of isomorphisms and of transfinite composi-
tions of pushouts from I. Replacing these with the sequence of composable
arrows, the previous lemma can be applied.

Lemma 3.1.6. Pushout of coproduct of maps from I is in I-cell.

Proof. A λ-sequence is created by transfinit recursion, whose composition is
isomorphic to the pushout f : X → Y of tk∈K{gk : Ck → Dk} through
h0 : tkCk → X, and where the cardinality of λ is |K|.

For the recursion define X0 = X, and for the successor ordinal β+ 1 take
the pushout

Cβ Xβ

Dβ Dβ + 1

gβ

where the above vertical map is given by the composition Cβ → tkCk
h0−→

X
i(0,β)−−−→ Xβ. When β is a limit ordinal, take Xβ = colim

α<β
Xα.

Using the universal properties of the defining colimits, we get for each β
a universal map !β : Xβ → Y , such that !βi(0,β) = f . f was also a pushout,

therefore there is a map !̃ : Y → Xλ = colim
α<λ

Xα, making
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tkCk X

tkDk Y

h0

tkgk
h1

f

Xλ

!̃

!

i(0,λ)

tdβ

commute (where dβ is the map Dβ → Xβ+1, appearing in the defining
pushout of Xβ+1, composed with i(β+1,λ)). It is enough to prove that the
triangles including ! =!λ commute, then the outer square can also be proved
to be a pushout, and finally ! turns out to be an isomorphism (hence ! ∈ I-
cell).

Commutativity of the upper triangle is immediate, for the lower note the
commutativity of

Xβ+1 Y

Dβ tDk

!i(β+1,λ) =!β+1

h1

(which follows from the construction of !β+1, using universality of the defin-
ing pushout of Xβ+1). Then composing the edges of the tringle after the
coproduct cocone over the set {Dk}k<λ leads to the desired commutativity,
by the universal property if the coproduct.

Theorem 3.1.7 (Small object argument). C has all small colimits, I ⊆Arr
C is a subset, domains of I are small rel. I-cell. Then there is (γ, δ) func-
torial factorisation, such that ∀f ∈Arr C : γ(f) ∈ I-cell, δ(f) ∈ I-inj.

Proof. Assume κ is a cardinal, such that domains of I are κ-small. Let λ be
a κ-filtered ordinal and take an arrow f : X → Y from C.

First the λ-sequence Zf : λ → C is defined, together with a natural
transformation ρf : Zf →!Y , where !Y is the constant Y functor (i.e. maps
every object to Y and each arrow to 1Y ). It is defined through transfinite
recursion, as

• Zf
0 = X, ρf0 = f
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• for the successor ordinal β + 1:

Take all pairs of arrows (gs, hs) : gs ∈ I (s ∈ S), such that there is a
commutative square

As Zf
β

Bs Y

hs

gs ρfβ

Then the pushout of tgs : tsAs → tsBs through ths : tsAs → Zf
β is

defined to be iβ,β+1 : Zf
β → Zf

β+1, and ρfβ+1 : Zf
β+1 → Y is induced by

the universal property of the pushout. This makes sense even when S
is the empty set; in this case iβ,β+1 = 1Zfβ

.

• When β is a limit ordinal take Zf
β = colim

α<β
Zf
α. It is proved by trans-

finite induction, that the maps ρfα : Zf
α → Y form a cocone, then

ρfβ : Zf
β → Y is the induced morphism of cocones.

Define γ(f) : X → Zf
λ = colim

α<λ
Zf
α as the transfinite composition of

the previous λ-sequence, and δ(f) : Zf
λ → Y as the induced morphism of

cocones. Then f = δ(f)γ(f), and from the previous lemmas it follows that
γ(f) ∈ I-cell.

Now take a commutative square

A Zf
λ

B Y

h

g ∈ I δ(f)

k

Domains of I are κ-small rel. I-cell, therefore h factores through h′ : A→ Zf
β

for some β < λ. The pair (g, h′) is part of a commutative square ending in
Y , so from the definition of Zf

β+1 it follows, that there is a k′ : B → Zf
β+1,

such that everything commutes in
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A Zf
λ

B Y

h

g ∈ I δ(f)

k

Zf
β

Zf
β+1

h′

k′
i

Therefore δ(f) ∈ I-inj.

It remains to prove, that this factorisation is functorial. It is enough to
see, that Z(−) : Arr C → Cat is a functor. In this case a commutative
square

X Y

X ′ Y ′

f

α0 α1

f ′

induces a natural transformation from Zf to Zf ′ , using its components, we
get a cocone over the image of Zf , ending in Z ′λ. Therefore we get a map
Zλ → Z ′λ, that makes the left square commute in

X Y

X ′ Y ′

f

f ′

Zλ

Z ′λ

γ(f)

γ(f ′)

δ(f)

δ(f ′)

To see the commutativity of the right square, whose vertexes are all endings
of cocones over Zf (constructed by the composition of the square’s edges after
the colimiting object Zλ), take the lift Zλ → Y ′, that exists by universality,
and what makes both of the resulting triangles commute.

The required natural transformation is constructed via transfinite recur-
sion, with ϕ0 = α0. First note, that for all s ∈ Sβ there is a commutative
diagram
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As Zf
β

Bs Y

hs

gs X X ′

Zf ′

β

Y ′

ϕβ

therefore there is a commutative outer square, and the universal property of
the pushout induces ϕβ+1:

tsAs Zf
β

tsBs Zf
β+1

hs

gs

Zf ′

β+1

Zf ′

β

ϕβ+1

ϕβ

When β is a limit ordinal, the component ϕβ is induced by the universal
property of the colimiting cocone.

Corollary 3.1.7.1. C has all small colimits, I ⊆Arr C is a subset, domains
of I are small rel. I-cell. Then for all f : A → B ∈ I-cof, there is a
g : A→ C ∈ I-cell, such that f is the retract of g by a map, that fixes A.

Proof. Factor f as h ◦ g, where g is in I-cell and h is in I-inj. f ∈ I-cof,
therefore f has l.l.p. wrt. h, so by the retract argument f is the retract of
g, with 1A in the appearing commutative squares.

Theorem 3.1.8 (Hirschhorn). C has all small colimits, I ⊆Arr C is a
subset, domains of I are small rel. I-cell. Assume A is small rel. I-cell.
Then A is small rel. I-cof.

Proof. Assume A is κ-small rel. I-cell, λ is a κ-filtered ordinal, and X :
λ → C is a λ-sequence from I-cof arrows (fβ). The idea of the proof is to
construct a λ-sequence Y : λ → C from I-cell arrows (gβ), together with
morphisms i : X → Y and r : Y → X, such that ri = 1X . The construction
goes by transfinite recursion.
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Y0 = X0, i0 = r0 = 1X0 . By the retract argument there is a factorisation
of fβrβ : Yβ → Xβ+1 into an I-cell arrow gβ : Yβ → Yβ+1, followed by
rβ+1 : Yβ+1 → Xβ+1, which is in I-inj. As fβ ∈ I-cof, there is a lift iβ+1 in
the square

Xβ Yβ+1

Xβ+1 Xβ+1

gβiβ

fβ rβ+1

iβ+1

When β is a limit ordinal, define Yβ to be colim
α<β

Yα, then (using the

previously constructed iα-s) we have a cocone over X|β, ending in Yβ, now
the induced map Xβ → Yβ defines iβ. The analogous construction using rα-s
(α < β) gives rβ : Yβ → Xβ. It follows from the universal property of the
colimiting cocone over X|β, that the equality rβiβ = 1Xβ holds.

The diagram

C(A, colim
α<λ

Xα) C(A, colim
α<λ

Yα) C(A, colim
α<λ

Xα)

colim
α<λ

C(A,Xα) colim
α<λ

C(A, Yα) colim
α<λ

C(A,Xα)

(colim iα)∗ (colim rα)∗

colim (iα ∗) colim (iα ∗)

∼=

1

1

commutes. To see this, first remove the colimit operations from the lower
line, then remove the hom-functors. Now put them back. The retract of an
isomorphism is also an isomorphism.

Definition 3.1.6. The model category C is cofibrantly generated if there are
subsets I, J of Arr C, such that

• domains of I are small rel. I-cell,

• domains of J are small rel. J-cell,
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• J-inj is the class of fibrations,

• I-inj is the class of trivial fibrations.

I is referred as the set of generating cofibrations, J is the set of generating
trivial cofibrations.

The followings are immediate from the previous results.

Proposition 3.1.9. C, I, J are as before.

• I-cof is the class of cofibrations.

• Every cofibration is the retract of a map from I-cell.

• Domains of I are small relative to cofibrations.

• J-cof is the class of trivial cofibrations.

• Every trivial cofibration is the retract of a map from J-cell.

• Domains of J are small relative to trivial cofibrations.

Finally, the main theorem of this section can be stated.

Theorem 3.1.10. C has all small limits and colimits, W is a subcategory
of C, I and J are subsets of Arr C. Then C is a cofibrantly generated model
category with generating cofibrations I, trivial cofibrations J , and with W

being the category of weak equivalences, iff

• W has the 2-out-of-3 property, and is closed under retracts,

• domains of I are small rel. I-cell,

• domains of J are small rel. J-cell,

• J-cell ⊆ W∩ I-cof,

• I-inj ⊆ W∩ J-inj,

• W∩ I-cof ⊆ J-cof or W∩ J-inj ⊆ I-inj.
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Proof. The implication from the left to the right is already proved. Now,
take J-inj to be the class of fibrations, I-cof to be the class of cofibrations.
These were shown to be subcategories.

Any lifting property is preserved by retracts, and both functorial factori-
sations are given by the small object argument. For the lifting axiom first
assume W∩ I-cof ⊆ J-cof. Then trivial cofibrations have l.l.p. wrt. J-inj,
which are the fibrations. Take a trivial fibration p : X → Y and factor it
as β(p) ◦ α(p), where α(p) ∈ I-cof and β(p) ∈ I-inj. It follows from the
2-out-of-3 property, that α(p) is a trivial cofibration, so p has right lifting
property wrt. it. By the retract argument p is the retract of β(p), so it is in
I-inj. But I-inj =(I-cof)-inj, so p has r.l.p. wrt. cofibrations.

Now, assume W∩ J-inj ⊆ I-inj. This means, trivial fibrations have r.l.p.
wrt. I, which implies wrt. I-cof. Let i : X → Y be a trivial cofibration,
and factor it as δ(i) ◦ γ(i), where γ(i) ∈ J-cell and δ(i) ∈ J-inj, which is a
trivial fibration. So i has l.l.p. wrt. δ(i) and is a retract of γ(i). Therefore
i ∈ J-cof (as it is closed under retracts), then i has l.l.p. wrt. J-inj, which
are the fibrations.

3.2 chain complexes

Let R be a ring with unit element 1. The category Ch(R) consists of chain
complexes as objects (i.e. a Z-indexed family of R-modules and R-module

homomorphisms: . . . Xk
dk+1←−− Xk+1 . . . , such that dn−1◦dn = 0 for all n ∈ Z),

and of chain maps as arrows (i.e. commutative ladders). The n-th homology

group of the chain complex X is defined as Hn = ker dn�im dn+1
. This

category admits a cofibrantly generated model structure:

Definition 3.2.1. Sn(M) is the chain complex, whose n-th module is M ,
the rest is zero. The n − 1-th and n-th module of Dn(M) is M , the rest is
zero, dn−1 is identity. The abbreviations Sn(R) = Sn and Dn(R) = Dn are
used.

I consists of the inclusions Sn−1 → Dn, elements of J are the maps
0 → Dn. The class of fibrations is J-inj, the class of cofibrations is I-cof.
An arrow ϕ is a weak equivalence, iff Hn(ϕ) is an isomorphism for all n ∈ Z.
The weak equivalences trivially form a subcategory.

To prove, that this is a model structure, the requirements of Theorem
3.1.10 must be checked.

Proposition 3.2.1. W has the 2-out-of-3 property, and is closed under re-
tracts.
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Proof. The functorial image of a composition (resp. retract) is again a com-
position (or retract), and this property holds for the class of isomorphisms
in any category.

Proposition 3.2.2. Every object X in Ch(R) is small. Therefore domains
of I are small rel. I-cell, and domains of J are small rel. J-cell.

Proof. Let γ > |R×
⋃
nXn| be an infinite cardinal, λ is a γ-filtered ordinal,

Y : λ→ Ch(R) is a λ-sequence. The induced map ! : colim
α<λ

Hom(X, Yα)→
Hom(X, colim

α<λ
Yα) should be proved to be an isomorphism.

For surjectivity take a chain map f : X → colim
α<λ

Yα. As Xα is γ-

small fβ : Xβ → colim
α<λ

(Yα)β factors through Yαβ . Then f factors through

Yα=sup
β<λ

αβ , by a map g : X → Y , which is a R-module homomorphism

in each coordinate, although may not be a chain map. As for all x ∈ Xk

fk−1(dXk (x)) = dcolim Y
k (fk(x)) holds, there is βx > α, such that g′k−1(dXk (x)) =

d
Yβx
k (g′k(x)), where g′ = iα,βxg and iα,βx : Yα → Yβx is in the λ-sequence Y .

Then f factors through Yβ= sup
x∈

⋃
n Xn

βx as f = µβg
′′
β =!iβ(g′′β).

To see injectivity, assume !f1 =!f2, then (using previous notations) for all
x there is βx, such that g′′1,βx(x) = g′′2,βx(x). Then g′′1,β(x) = g′′2,β(x), where
β = sup

x∈
⋃
nXn

βx. Therefore f1 = f2.

Proposition 3.2.3. p is a fibration, iff for each n, pn is surjective.

Proof. A chain map Dn → Y is completely determined by the image of 1 in
Yn (denoted by yn). Then a lift in the square

0 X

Dn Y

p

means precisely that p−1
n (yn) is nonempty.

Proposition 3.2.4. p : X → Y is a trivial fibration, iff p ∈ I-inj.

Proof. A diagram of the form
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Sn−1 X

Dn Y

p

is in one-to-one correspondence with a pair (y, x) ∈ Yn ⊕ Zn−1X, for which
pn−1x = dy, while a lift is given by z ∈ Xn, such that dnz = x and pz = y.

First assume p ∈ I-inj (i.e. in any of the above squares there is a lift).
For n ∈ N and y ∈ ZnY , the pair (y, 0) has the property pn−10 = dy = 0,
therefore there is a z ∈ Xn, with dz = 0 and pz = y, which means, that

Znp : ZnX → ZnY is surjective. An element of HnY = ker dn�im dn+1
is a

set {y0 + ỹ : ỹ ∈ im dn+1}, where y0 ∈ ZnY . As 0 ∈ im dn+1, if y0 is hit by
Znp, then [y0] is hit by Hnp. Hence Hnp is surjective.

p is also surjective (and therefore it is a fibration). I.e. if y ∈ Yn, then
dy ∈ Zn−1Y , and by the surjectivity of Zn−1X, there is x ∈ Zn−1X, such that
pn−1x = dny. Using the lifting property again, an element z of Xn exists, for
which pz = y.

Let HnX 3 [x] = [x0 + 0], where x0 ∈ ZnX. Hnp([x0]) = 0 means
∃y ∈ Yn+1 : pnx = dn+1y. Therefore there is a z ∈ Xn+1 with dz = x, so
[x] = 0.

Now assume p is a trivial fibration. We have to prove, that whenever
(y, x) is given, and y ∈ Yn, x ∈ Zn−1X, pn−1x = dny holds, one can construct
a z ∈ Xn with pnz = y and dnz = x. As p is a fibration, there is a short
exact sequence

0→ K → X
p−→ Y → 0

p is a weak equivalence, therefore H∗K = 0, as H∗ is an exact functor and
H∗(p) is an isomorphism. Choose w ∈ Xn, for which pnw = y.

p(dw) = d(pw) = dy = px, so p(dw−x) = 0, i.e. dw−x ∈ K. d(dw−x) =
−dx = 0 (as x ∈ Zn−1X) and H∗K = 0 implies, that there is a v ∈ Kn, such
that dv = dw − x. Now let z be w − v. Then pz = y − pv = y (as v ∈ Kn)
and dz = dw − dv = x

It only remains to prove J-cell ⊆ W∩ I-cof. This is proved through
several lemmas.

Lemma 3.2.5. If the chain complex A is cofibrant, then for all n An is a
projective R-module.

Proof. Starting from any surjection q : M � N between the R-modules M

and N , there is a fibration Dn(M)
Dn(q)−−−→ Dn(N), where (Dn(q))k = q for
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k = n, n−1, and all other maps are zero. It is also a weak equivalence, as all
homology groups are trivial. Given f : An−1 → N there is an induced chain
map f ′ : A → Dn(N), with (f ′)n−1 = f and (f ′)n = fdn being the nonzero
maps. The lift in

0 Dn(M)

A Dn(N)

cof Dn(q)tr.fib

f ′

proves that An−1 is projective.

Definition 3.2.2. The chain maps f, g : X → Y are chain homotopic, iff
there are maps Dn : Xn → Yn+1, such that dYn+1Dn +Dn−1d

x
n = fn − gn.

Lemma 3.2.6. If C is a cofibrant chain complex, and all homology groups
of K are trivial, then any chain map f : C → K is chain homotopic to 0.

Proof. Define the chain complex P by Pn = Kn⊕Kn+1 and d(x, y) = (dx, x−
dy) (then d2(x, y) = (d2x, dx− (dx− d2y)) = 0 as required). The projection
p : P → K, given by (x, y) 7→ x is surjective, hence is a fibration. H∗(ker p) =
H∗+1(K) = 0, which shows that p is also a weak equivalence. So there is a
lift in

0 P

C K

cof p tr.fib

f

(f,D)

(f,D) is a chain map, therefore (dPn fn, fn − dKn+1Dn) = (fn−1d
C
n , Dn−1d

C
n ),

equivality of the second coordinates completes the proof.

Proposition 3.2.7. i : A → B is a cofibration, iff for all n in is a split
injection, with cofibrant cokernel.

Proof. First assume i is cofibrant. Then it has l.l.p. wrt. the trivial fibration
Dn+1(An) → 0 (H∗D

n+1(An) = 0). Use it for a square, where the upper
map A→ Dn+1(An) is d in the n+ 1-th dimension and identity in the n-th,
the rest are zero). Then hnin = 1An , so in is a split injection. L.l.p-s are
preserved by pushouts, and 0→coker i is the pushout of i through A→ 0.

Assume in is split injection, and C, the cokernel of i is cofibrant. Then
by Lemma 3.2.5 Cn is projective, therefore Bn can be written as An ⊕ Cn.
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We have to prove that i has l.l.p. wrt. the trivial fibration p : X → Y . Take
a commutative square with horisontal maps f : A→ X and g : B → Y , and
let j : K = ker p ↪→ X denote the inclusion of the kernel.

A X

B = A⊕ C Y

f

i p tr.fib

g

Using that i is a chain map we get, that the differential of B can be written
as d(a, c) = (da+ τc, dc), where dτ + τd = 0. Because of the commutativity
of the given square we can write g(a, c) = pf(a) + σ(c). The fact that g is
also a chain map implies, that pf(da+ τc) + σ(dc) = dpf(a) + dσ(c), hence
dσ = pfτ + σd.

A lift in the above square is given by a pair (f, ν), where pν = σ and
fda + fτc + νdc = dfa + dνc, hence dν = νd + fτ . The goal now is to
construct such ν.

Cn is projective, so there is Gn : Cn → Xn with pnGn = σn. Define
r = dG−Gd− fτ : Cn → Xn−1. As pr = pdG− pGd− pfτ = dσ − dσ = 0,
there is s : Cn → Kn−1 with js = r. dr = −dGd − dfτ = −dGd − fdτ =
−dGd+ fτd = −rd shows that s : C → ΣK is a chain map (where (ΣK)n =
Kn−1 and dΣK = −dK). By Lemma 3.2.6 s is chain homotopic to 0, i.e. there
are arrows Dn : Cn → Kn with −dD + Dd = s. Take ν = G + jD. Then
pν = pG = σ and dν = νd+ fτ , so h = (f, ν) is a lift.

Proposition 3.2.8. i : A → B ∈ J-cof, iff coker i is a projective chain
complex, and in is injective for all n.

Proof. First go from right to left. Take a square

A M

B N

f

i p fib

g

p is a surjection as it is in J-inj. As C is cofibrant, there is r : B → A, such
that ri = 1A. (pfr − g)i = 0, so pfr − g factors through s : C → N . C
is cofibrant, the lift t : C → M exists, then fr − tj is a lift in the original
diagram.
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By Proposition 3.2.3 and 3.2.4 I-inj ⊆ J-inj, therefore J-cof ⊆ I-cof.
Take i ∈ J-cof. Then i is injective, let q : B → C the factor map onto the
cokernel. There is a lift in

A M

B N

0

i p ∈ J-inj

fq

for any surjective p, and hi = 0, so h factors through C as gq. q is an
epimorphism, so the equality pgq = fq implies pg = f , hence C is projective.

Corollary 3.2.8.1. J-cof ⊆ W∩ I-cof.

Proof. Again, take i : A → B ∈ J-cof. Its cokernel C is projective, so it
has l.l.p. wrt. fibrations, so it is cofibrant (i.e. 0 → C ∈ I-cof). Therefore
i : A→ B = A⊕ C is also a cofibration.

It is enough to prove, that H∗C = 0. Define P as in the proof of Lemma
3.2.6. Let p : P → C be projection to the first component; there is a
retraction (1, D) : C → P , where dDx+Ddx = x. If dx = 0 then x = dDx,
so H∗C = 0

This proves, that Ch(R) is a cofibrantly generated pointed model cat-
egory, therefore the previous results can be applied. Now it is possible to
define suspension and loop space for chain complexes, write out the exact se-
quences, or put Whitehead’s theorem and cofibrant replacement in context.
The details are not worked out here.
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