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Introduction

We consider a graph sequence (Gn) and define various notions of convergence in Chapter

2. In the sparse graphs, the convergence notion has been introduced by Benjamini and

Schramm, defined in terms of neighbourhood sampling statistics. We also define it

in terms of the homomorphism frequencies from connected graphs into Gn. By [1],

we show that these two definitions are equivalent. As to the dense graph sequence,

we define the convergence by subgraph density (the number of subgraph in Gn over a

suitable normalization). Gn is convergent if subgraph density from any graph to Gn

is convergent. The convergence of subgraph density leads to the definition of graphon.

It can be comprehended as a symmetric measurable function. It was introduced in [2]

(Fulkerson Prize 2012). In [3], P. Frenkel unifies two definitions in sparse and dense

graph sequence in one. The homomorphism density now relies on the degree bound

parameter.

The spectral (eigenvalue) measure of a graph is the empirical measure of the graph’s

eigenvalue random variables. For example, the spectral measure of the cycle sequence

and path sequence tends to an arcsine distribution. In general, the spectral measure

of bounded degree graph sequence converges weakly and usually goes to non-trivial

distribution. In the dense graph sequence, we inspect the convergence of non-negative

i−th largest eigenvalue and non-positive i−th smallest eigenvalue of the uniformly

convergent graphon sequence (Theorem 2.2). In theorem 2.3, we take the empirical

measure of r largest (smallest) eigenvalue. It also converges to probability measures

supported on [0, 1] ([−1, 0]).

In chapter 3, we rescale the eigenvalue measure by taking eigenvalues divided by

the square root of the degree bounded and study it in some special graph sequences.

The rescaled spectral measure of n− hypercube sequence converges to standard normal

distribution. Or else the rescaled spectral measure of α− regular, large girth graph

sequence tends to Wigner distribution. Because of large girth property, we can consider

the graph sequence as a tree sequence when n is big enough. In a tree, the eigenvalue

measure equals to the matching measure. By using some results in [3], [4] it follows.

In Chapters 2 and 3, we only consider finite graphs while in Chapter 4, we extend

for infinite graphs of bounded degree. In particular, we define the expected spectral

measure for a random rooted graph and prove that it equals the usual spectral measure

in a uniform rooted finite graph. Then we examine the spectral measure of some

infinite graph sequences considered as Cayley graphs. From these conceptions, we show

the pointwise convergence of the expected spectral measure in the special case of Lück

Approximation theorem, the detailed proof we can see in [5].
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1 Some basic notions and preliminaries

In this section, we introduce our preparations. Related monographs include [6], [7], [8].

1.1 Graph notions

Graphs mostly considered in the literature are simple graphs. A simple graph G =

(V,E) consists of the vertex set V (G) with v(G) = |V (G)| vertices and the edge set

E(G) with e(G) = |E(G)| edges.

The adjancency matrix A(G) of the simple graph G is the v(G) × v(G) matrix,

defined by

(AG)ij =

{
1, if ij ∈ E(G)

0, if ij /∈ E(G)

AG is real and symmetric, so its eigenvectors can be chosen to provide an orthonormal

basis for Rv(G). We denote the eigenvalues of AG by λ1 ≥ λ2 ≥ ... ≥ λv(G) and the

corresponding orthonormal eigenvectors by v1, v2, ..., vv(G).

The diameter of a graph is the maximum eccentricity of any vertex in the graph. That

is, it is the greatest distance between any pair of vertices.

X, Y be graphs. A mapping f : V (X) → V (Y ) is a homomorphism if f(X) and

f(Y ) are adjacent in Y whenever x and y are adjacent in X. When X and Y have no

loops, which is our usual case, this definition implies that if x ∼ y then f(x) 6= f(y).

X, Y are isomorphic if there is a bijection, φ say, V (X) → V (Y );x 7−→ φ(X) such

that x ∼ y in X ⇐⇒ φ(x) ∼ φ(y) in Y . We say that φ is an isomorphism from X to

Y .

Automorphism is an isomorphism from a graph X to itself. The set of all auto-

morphisms of X forms a group, which is called the automorphism group of X and

denoted by Aut(X).

A subgraph Y of X is an induced subgraph if two vertices of V (Y ) are adjacent in

Y if and only if they are adjacent in X.

For two finite simple graphs F and G, let hom(F,G) denote the number of homomor-

phisms of F into G, inj(F,G) be the number of injective homomorphisms of F into

G, and ind(F,G) be the number of embeddings of F into G as an induced subgraph.

The girth of a graph is the length of the shortest cycle contained in it. If a graph

contains no cycles, its girth is defined to be ∞.

A k-matching in a graph G is a set of k edges, no two of which have a vertex in

common (i.e., an independent edge set of size k).
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Sn a star graph with n vertices
λ1 =

√
n− 1 ; λn = −

√
n− 1 ; λi = 0 ∀i =

2, 3, ..., n− 1.

Kn

a complete graph with n

vertices
λ1 = n− 1 ; λ2 = −1 with multiplicity n− 1

Cn a cycle graph with n vertices
λi = 2 cos

2π

n
i

Pn a path with n vertices λi = 2 cos
π

n+ 1
i

Qn n− dimensional hypercube λi = n− 2i with multiplicity

(
n

i

)
where i ranges from 0 to n.

Table 1: Some typical graph’s spectra

1.2 Spectra of graphs

We will determine the spectra of some graphs. It is given in the table (1).

Proof. (see [7] 11.1,11.4,11.9 problems)

• The adjancency matrix of Sn

ASn =


0 1 1 · · · 1

1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0


If v = (v1, v2, · · · , vn)T is an eigenvector with eigenvalue λ, then

λv2 = λv3 = · · · = λvn = v1 and v2 + · · ·+ vn = λv1.

If λ 6= 0, that implies (n− 1)/λ = λ , λ = ±
√
n− 1

If λ = 0 then v1 = 0 , v2 + · · ·+ vn = 0. We can choose n− 2 linearly independent

eigenvectors of Sn because dim{(v1, · · · , vn)|v1 = 0, v2 + · · · + vn = 0} = n − 2.

Hence the multiplicity of λ = 0 is n− 2.

• For the complete graph, we have (1, 1, · · · , 1) is an eigenvector with the eigenvalue

n−1 and we also have vi = (1, 0, · · · 0,−1, 0, · · · , 0) (−1 is the (i+1)-th component

and i = 1, 2, · · · , n−1) are (n−1) linearly independent eigenvectors corresponding

to the eigenvalue −1.
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• Let

W =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0


Notice that W k is then the permutation matrix whose first row has a single 1, in

position k+ 1, and whose subsequent rows are shifted to the right as for W . This

makes sense for any k by just taking it modulo k. And

ACn = W +W−1

So if v = (v1, v2, · · · , vn)T is an eigenvector with eigenvalue λ , then we have v1 =

λvn = λ2vn−1 = · · · = λn−1v2 = λnv1. That implies the eigenvalues are among the

n−th roots of unity and λk = e2πik/n = εk with multiplicity 1. Because if we choose

v1 = 1, the equations above give the eigenvector uk = (1, εk, ε2k, · · · , ε(n−1)k).

Because each W k has the same eigenvector for corresponding eigenvalues, we get

the eigenvalues of Cn

ACnuk = Wuk +W−1uk = e2πik/nuk + e−2πik/nuk = 2 cos
2πk

n
uk.

• By taking an eigenvalue of multiplicity 2 of the (2n + 2)-cycle, we get the eigen-

value of Pn. Precisely, let ζ = e
2πij
2n+2 be a (2n + 2)-th root of unity for a

fixed j ∈ {0, 1, . . . , 2n + 1}. Then, the vectors u(ζ) and u(ζ−1) are eigenvec-

tors of C2n+2 having the common eigenvalue 2 cos(πj/(n + 1)). All eigenvectors

have the property that opposite vertices have opposite values. So if one vertex

has value 0 for an eigenvector, then so has the opposite one, and we find an

eigenvector(u(ζ)− u(ζ−1)) for the disjoint union of two paths Pn.

• As to the hypercube, we prove by induction. Denote An = AQn−1 the adjancency

matrix of the n− 1-cubes then

An+1 =

(
An I2n−1

I2n−1 An

)

Let χn(λ) = det(λI2n − An+1) be the characteristic polynomial of the n-dim

hypercube.

Notice for any 2m×2m matrix X(A) of the form

(
A Im

Im A

)
. When A is invertible,

we have: (
A Im

Im A

)(
Im −A−1

0 Im

)
=

(
A 0

Im A− A−1

)
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This implies

detX(A) = det(A) det(A− A−1) = det(A2 − I2m) = det(A− I2m) det(A+ I2m)

Since both side of this identity are polynomials in entries of A, this identity is

true even when A is not invertible.

Apply this to An+1 − λI2n , we immediately obtain:

χn(λ) = χn−1(λ+ 1)χn−1(λ− 1)

So if the roots for the (n − 1)-dim hypercube are n − 1, n − 3, ...,−(n − 1) with

multiplicities (
n− 1

0

)
,

(
n− 1

1

)
,

(
n− 1

2

)
, . . .

then the roots for the n-dim hypercube are n = (n− 1) + 1, n− 2 = (n− 3) + 1 =

(n− 1)− 1, ...,−n with multiplicities

1 =

(
n

0

)
,

(
n

1

)
=

(
n− 1

0

)
+

(
n− 1

1

)
,

(
n

2

)
=

(
n− 1

1

)
+

(
n− 1

2

)
, . . .

�

Lemma 1.1. Let λ1 be the largest eigenvalue of the graph G and let dmin, D be the

minimum and maximum degree of G. Then

max{dmin,
√
D} ≤ λ1 ≤ D.

Proof. Using the classical characterization of the largest eigenvalue λ1 in terms of the

Rayleigh quotient of A where A be the adjancency matrix of G, we have:

λ1 = max
y 6=0

yTAy

yTy

Let e = (1, 1, ..., 1)T all of whose entries are 1. Then λ1 ≥
eTAe

eT e
≥ eTdmine

eT e
= dmin.

Let v1 be eigenvector corresponding to λ1 and we can suppose that all elements of v is

not exceed 1 expect the first element is 1, ie. v1 = (1, v12, ..., v1n) where v12, ..., v1n ≤ 1

then

λ1v1 = Av1 ≤ Ae ≤ De.

Compare the first coordinate (λ1v1)1 = λ1 ≤ D = (De)1

Let G′ be a subgraph of G which is a star graph with D point. Let λ′1 be the largest

eigenvalue of G′, then λ′1 ≤ λ1. The eigenvalues of G′ are ±
√
n− 1 and 0 (n−2 times),

so G′ has the largest eigenvalue is
√
D implies λ1 ≥ λ′1 =

√
D. �

Lemma 1.2. All eigenvalues of a graph belong to the interval [−D;D].
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Proof. Recall the Gershgorin circle theorem, it claims that every eigenvalue of A lies

within at least one of the Gershgorin discs
(
aii,
∑

j 6=i |aij|
)

. Here aii = 0,
∑

j 6=i |aij| be

the degree of the i−th vertex which is bounded by D for all i. So all the eigenvalues

will lie within (0, D) disk. �

Lemma 1.3. Let T be a tree in which every vertex has degree at most D, D ≥ 2. Then,

all eigenvalues of T have absolute value at most 2
√
D − 1.

Proof. Choose aimlessly a vertex to be the root of the tree, and define its height to be

0. For every other vertex vi, define its height, h(vi), to be its distance to the root. Let

H be the diagonal matrix as below

H =


(√

D − 1
)h(v1)

0 · · · 0

0
(√

D − 1
)h(v2) · · · 0

...
...

. . .
...

0 0 · · ·
(√

D − 1
)h(vn)


We know two similar matrices have the same eigenvalues, so the eigenvalues of AT are

the same as the eigenvalues of HATH
−1. Using the Gershgorin circle theorem, we need

to prove that all row sums of HATH
−1 are at most 2

√
D − 1. The sum of i−th row is∑

vivj∈E(G)

(√
D − 1

)h(vi)−h(vj)

If vi is the root, the row of the root has up to D entries that are all 1/
√
D − 1 then the

row’s sum is ≤ D√
D − 1

≤ 2
√
D − 1.

If vi is the intermediate vertex, one entry in their row that equals
√
D − 1 and up to

D − 1 entries that are equal to 1/
√
D − 1, for a total of 2

√
D − 1.

If vi is a leaf (the degree of vi is 1), then its row has only one nonzero entry and this

entry equals
√
D − 1. �

1.3 Convergence of probability measures

Let X be a set with σ−algebra F . We say that µ : F → [0,∞] is a measure if µ(∅) = 0

and µ(
⋃∞
j=1Aj) =

∑∞
j=1 µ(Aj) if Aj

⋂
Ak = ∅ for all j 6= k (σ-additivity). If µ returns

results in the unit interval [0, 1], returning 0 for the empty set and 1 for the entire space,

then µ is called a probability measure.

If X is a metric space and f : X → R is continuous, the support of f is defined by

suppf = {x ∈ X : f(x) 6= 0}. We define the support of a measure µ on X by

supp(µ) = {x ∈ X : µ(B(x)) > 0 for any open neighborhood B(x) of x}

= X \ {x ∈ X : there exists an open neighborhood B(x) of x with µ(B(x)) = 0}
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Convergence of probability measures

Let (S, d) be a metric space with Borel σ−field S = B(S) (the smallest σ-algebra in S

that contains all open subsets of S). Let µ and µn, n ∈ N be probability measures on

(S,S).

A sequence µn is said to converge strongly to a limit µ if limn→∞ µn(A) = µ(A) for all

Borel sets A.

We say that (µn)n∈N converges weakly to µ if∫
f dµn →

∫
f dµ

for all bounded continuous functions h : S → R.

(µn)n∈N converges in variation to µ if

‖µn − µ‖ = sup
A∈S
|µn(A)− µ(A)| −→ 0 for n→∞.

If one thinks of µn, µ as the distributions of S−valued random variables Xn, X, one

often uses instead of weak convergence of µn to µ the terminology that the Xn converge

to X in distribution.

Portmanteau’s Theorem : The following statements are equivalent:

(i) µn→µ weakly.

(ii)
∫
f dµn →

∫
f dµ for all uniformly continuous and bounded f : S → R.

(iii) lim supn→∞ µn(F ) ≤ µ(F ) for all measurable closed subsets F .

(iv) lim infn→∞ µn(U) ≥ µ(U) for all measurable open subsets U .

(v) limn→∞ µn(A) = µ(A) for all measurable A with µ(∂A) = 0.

Wigner semicircle distribution

The Wigner semicircle distribution is the probability distribution supported on the

interval [−R,R] the graph of whose probability density function f is a semicircle of

radius R centered at (0, 0) and then suitably normalized:

f(x) =
2

πR2

√
R2 − x2

for −R ≤ x ≤ R, and f(x) = 0 if |x| > R.

Arcsine distribution

The arcsine distribution is the probability distribution supported on the interval [a, b]

whose cumulative distribution function is

F (x) =
2

π
arcsin

(√
x− a
b− a

)
for a ≤ x ≤ b, and whose probability density function is

f(x) =
1

π
√

(x− a)(b− x)
1x∈(a,b)
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1.4 Spectra of operators

Let (X, ‖· ‖1) and (Y, ‖· ‖2) be normed spaces over the field K (the scalar field here is

either R or C). We say that T : X −→ Y is a bounded linear operator if T satisfies:

(i) linearity: T (ax+ by) = aT (x) + bT (y) for all x, y ∈ X and a, b ∈ K.

(ii) bounded property:

‖T‖ := sup
x 6=0

‖Tx‖2

‖x‖1

<∞

‖T‖ was defined above is the operator norm of T . Let B(X, Y ) denote the set of all

bounded linear operators from X to Y .

A compact operator is a linear operator L from a Banach space X to another Banach

space Y , such that the image under L of any bounded subset of X is a relatively compact

subset (has compact closure) of Y .

Let (H1, 〈· , · 〉)1 and (H2, 〈· , · 〉)2 be Hilbert spaces and T ∈ B(H1, H2). We define the

adjoint T ∗ of T to be the unique operator T ∗ ∈ B(H2, H1) satisfying

〈Tx, y〉2 = 〈x, T ∗y〉1 ∀ x ∈ H1, y ∈ H2

The existence and uniqueness can by proved by the Riesz representation theorem. More-

over, ‖T ∗‖ = ‖T‖.
We say that T : H → H is self-adjoint if T ∗ = T .

A Hilbert–Schmidt operator is a bounded operator T on a Hilbert space H with

finite Hilbert–Schmidt norm

‖T‖2
HS = Tr(T ∗T ) :=

∑
i∈I

‖Tei‖2

where ‖ · ‖ is the norm of H, {ei : i ∈ I} an orthonormal basis of H and Tr is the trace

of a nonnegative self-adjoint operator. Note that the index set need not be countable;

however, at most countably many terms will be non-zero.

Definition 1.1. Let `2(G) = {f : V (G) → C :
∑

v∈V (G) |f(v)|2 < ∞} is the set of

square summable functions on the vertex set of G. Note that if the graph is finite then

`2(G) = CV (G).

Assume that G has a degree bound D. For f ∈ `2(G) and x ∈ V (G) we define the

adjacency operator A : `2(G)→ `2(G) as follows.

(Af)(x) =
∑

(x,y)∈E(G)

f(y).

Lemma 1.4. The adjacency operator A of a graph G with degrees bounded by D is a

self-adjoint, bounded operator with ‖A‖ ≤ D.

11



Proof.

‖Af‖2 =
∑

x∈V (G)

|(Af)(x)|2 =
∑

x∈V (G)

∣∣∣∣∣∣
∑

(x,y)∈E(G)

f(y)

∣∣∣∣∣∣
2

.

By Cauchy-Schwarz inequality,∣∣∣∣∣∣
∑

(x,y)∈E(G)

f(y)

∣∣∣∣∣∣ ≤
∑

(x,y)∈E(G)

|f(y)| ≤

 ∑
(x,y)∈E(G)

12

1/2 ∑
(x,y)∈E(G)

|f(y)|2
1/2

=
√

deg(x)

 ∑
(x,y)∈E(G)

|f(y)|2
1/2

.

Hence,

‖Af‖2 ≤ D
∑

x∈V (G)

∑
(x,y)∈E(G)

|f(y)|2 =D
∑

y∈V (G)

∑
(x,y)∈E(G)

|f(y)|2

≤ D2
∑

y∈V (G)

|f(y)|2 = D2 ‖f‖2 .

This gives ‖A‖ ≤ D. As to self-adjointness,

〈Af, g〉 =
∑

x∈V (G)

(Af)(x)g(x) =
∑

x∈V (G)

∑
(x,y)∈E(G)

f(y)g(x)

=
∑

y∈V (G)

∑
(x,y)∈E(G)

f(y)g(x) =
∑

y∈V (G)

f(y)(Ag)(y) = 〈f, Ag〉 .

�

λ is an eigenvalue of A if there exists v 6= 0, v ∈ H such that Av = λv. Equivalently,

λ is an eigenvalue if and only if (A− λI) is not injective.

The eigenvalues of a self-adjoint operator, A, are real. Indeed, λ 〈v, v〉 = 〈Av, v〉 =

〈v,Av〉 = λ 〈v, v〉.
The resolvent set of T , ρ(T ) is the set of all complex numbers λ such that Rλ(T ) :=

(λI−T )−1 if (λI−T ) is a bijection with a bounded inverse. The spectrum of T , σ(T )

is then given by C \ ρ(T ).

Lemma. The spectrum of a bounded linear operator is a closed and bounded subset

of C. In fact, σ(T ) ⊆ {z ∈ C : |z| ≤ ‖T‖}
The spectral theorem : For any self-adjoint operator A on a separable Hilbert space

H, there is a unique projection-valued measure PA on R such that

A =

∫
R
λdPA(λ)

More generally, for any Borel function f : σ(A)→ C, we can define an operator

f(A) =

∫
R
f(λ)dPA(λ)

12



Let see an example on Hilbert space H = Cn and a square matrix A : H → H. u ∈ H
is an eigenvector of A with corresponding eigenvalue λ ∈ C if Au = λu. The matrix

A = (aij)
n
i,j=1 is said to be Hermitian if aij = aji for all i, j = 1, ..., n, is self-adjoint.

Let λ1 < λ2 < ... < λm (m ≤ n) be the eigenvalues of A. Let ϕ1(λk), ..., ϕrk(λk) be

the eigenvectors corresponding to λk ( rk = 1 if the eigenvalue is simple). Let Hk =

span{ϕj(λk)}j. The spectral theorem then tells us that the eigenvectors {ϕj(λk)}j,k
form an orthonormal basis of H. So any f ∈ H has an expansion

f =
m∑
k=1

rk∑
j=1

〈f, ϕj(λk)〉ϕj(λk)

Af =
m∑
k=1

rk∑
j=1

λk 〈f, ϕj(λk)〉ϕj(λk)

Let P (λk) be the orthogonal projection onto Hk

P (λk)f =

rk∑
j=1

〈f, ϕj(λk)〉ϕj(λk)

Then

1 =
m∑
k=1

P (λk) and A =
m∑
k=1

λkP (λk)

Let PA be the projection-valued measure such that PA(J) =
∑

λk∈J P (λk) for any Borel

set J . Then

1 =

∫
R
dPA(λ) and A =

∫
R
λdPA(λ)

13



2 Local convergence in a graph sequence

2.1 Benjamini-Schramm convergence

Local convergence via neighbourhood sampling

A graph G = (V,E) has degree bound d if degree of any vertex is at most d.

We denote BG(x, r) is the subgraph spanned by {y ∈ V (G), d(x, y) ≤ r}.
A rooted graph (G, o) is a connected graph G = (V (G), E(G)) with a distinguished

vertex o ∈ V (G), the root. Two rooted graphs (G1, o1) and (G2, o2) are isomorphic if

there exists a an isomorphism φ : V (G1)→ V (G2) such that φ(o1) = o2. We will denote

this equivalence relation by (G1, o1) ' (G2, o2).

Definition 2.1. Let (Gn) be a graph sequence and all graphs Gn have degree bound d.

The graph sequence (Gn) is Benjamini-Schramm convergent or locally conver-

gent if and only if for all r and for all rooted graphs (Γ, v) with radius smaller than r,

degree bound d then

P(BGn(x, r) ' (Γ, v))

converges where x is an uniformly random node of Gn.

In other words, the graph sequence (Gn) be convergent if for all r ∈ N the distribu-

tion on rooted r -balls around a randomly selected root of Gn converges when n tends

to ∞.

Example 2.1. (Cycles) The obvious example is graph sequence of cycles with length

tending to infinity. (Γ; v) always is the path graph P2r+1 and P(BGn(x, r) ' (Γ, v)) = 1

for n large enough.

Example 2.2. (Grids) Let Gn be the n× n grid in the plane. If we choose x not far

away from the center of grid and r small enough then B(x, r) actually is (2r+1)×(2r+1)

grid. Let denote (Γ, v) be (2r + 1)× (2r + 1) grid the we calculate

P(BGn(x, r) ' (Γ, v)) =
(n− 2r)2

n2

n→∞−→ 1.

for all other (Γ′, v′) cases we got P(BGn(x, r) ' (Γ′, v′))
n→∞−→ 0. By definition, we say

(Gn) grids local convergent.

Example 2.3. (d− regular trees) Consider a rooted d−regular tree where the root

denoted by o has d children and every child has d− 1 children (see the figure 2). If this
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Figure 1: Distribution on rooted 2-balls around a uniformly random root of the 6 × 6

grid. [9]

Figure 2: 3-regular tree with depth 4 and all rooted 2-balls

tree has depth n it is uniquely defined and we refer to it as Gn.

P(BGn(x, r) ' (Γ, v))

=



d(d− 1)n−1

d(d− 1)n − 2
→ 1

d− 1
if Γ is r-ball at the root v where dis(o, v) = n

d(d− 1)n−2

d(d− 1)n − 2
→ 1

(d− 1)2
if Γ is r-ball at the root v where dis(o, v) = n− 1

d(d− 1)n−3

d(d− 1)n − 2
→ 1

(d− 1)3
if Γ is r-ball at the root v where dis(o, v) = n− 2

· · ·
d(d− 1)r − 2

d(d− 1)n − 2
→ 0 if Γ is d-regular tree with depth r and the root v

Hence, the d− regular tree converges locally.

If (Gn) is a sequence of d–regular graphs and has large girth (see definition 3.4), then

15



(Gn) Benjamini–Schramm converges, since every r−ball of Gn will be isomorphic to the

r−ball of the d−regular tree for large enough n.

Local convergence via homomorphism density

Homomorphisms of some simple graphs into G are related to sampling. We can express

a number of graph parameters as homomorphism numbers into and from the given

graph.

Example 2.4. (Stars) Homomorphisms from stars into G give the k−th power sum

of the degree sequence:

hom(Sk, G) =
∑

vi∈V (G)

deg(vi)
k−1

Example 2.5. (Cycles) hom(Ck, G) is the trace of the of k−th power the adjacency

matrix of the graph G.

hom(Ck, G) = Tr(AkG) =
∑

λki

where λi are the eigenvalues of the adjacency matrix of G.

Definition 2.2. We define the (usual) homomorphism density from F to G

t(F,G) =
hom(F,G)

v(G)v(F )

where F be connected graph and G be bounded degree graph. We define similarly for

the injective and induced homomorphism densities

tinj(F,G) =
inj(F,G)

(v(G))v(F )

, tind(F,G) =
ind(F,G)

(v(G))v(F )

where (v(G))v(F ) = v(G)(v(G) − 1) · · · (v(G) − v(F ) + 1). When v(G) >> v(F )

then(v(G))v(F ) ≈ v(G)v(F )

Definition 2.3. t∗(F,G) is defined as the homomorphism frequency as below:

t∗(F,G) =
hom(F,G)

v(G)

which we consider for connected graph F .

We can interpret the injective and induced homomorphism densities similarly

t∗inj(F,G) =
inj(F,G)

v(G)
, t∗ind(F,G) =

ind(F,G)

v(G)

Definition 2.4. The bounded degree graph sequence (Gn) be local convergent if and

only if the homomorphism frequency is convergent for any connected graph F .

16



The equivalence between 2 definitions

Proposition 2.1. ([1],5.6) Homomorphism densities and neighborhood sampling are

equivalent. Specifically, let G be a bounded degree graph and F be a connected graph.

(a) Each density t∗(F,G) can be expressed as a linear combination (with coefficients

independent of G) of the neighborhood sample densities P(BG(x, r) ' (Γ, v)) with r =

v(F )− 1.

(b) For every r 6= 0 there are a finite number of connected simple graphs F1, · · · , Fm
such that P(BG(x, r) ' (Γ, v)) can be expressed as a linear combination (with coefficients

independent of G) of the densities t∗(Fi, G) .

Proof. (a) Instead of counting the number of homomorphism from F to G, we can count

the number of homomorphisms from F to a ball with fixed root and radius v(F ) − 1,

then sum up with probability. From this we got:

t∗(F,G) =
∑
(Γ,v)

P(BG(x, r) ' (Γ, v)) · hom((F, u), (Γ, v))

where x is a node of G selected uniform randomly, r = v(F )− 1 and u is a fixed node

of F .

So homomorphsim density can be represented by the linear combination of neighbor-

hood sampling distribution with coefficients that do not depend on G.

(b) In reverse, we expect that neighborhood sampling density also can be expressed as

a linear combination of homomorphsim density from some graphs to G. It is not easy

to see directly, we will use induced densities in alternative form.

Recall ind(F,G) be the number of embeddings of F into G as an induced graph. Let

δ : V (F ) → R be the degree of vertices of F in G under a homomorphism then

ind(F, δ,G) is the number of injective homomorphisms ϕ : V (F ) −→ V (G) that also

preserve non-adjancency and the degree of ϕ(v) is δ(v). We determine:

t∗ind(F, δ,G) =
ind(F, δ,G)

v(G)

where t∗(F, δ,G) is called as induced density with δ map.

For a ball Γ of radius r we have:

P(BG(x, r) ' (Γ, v)) =
∑
δ

t∗ind(Γ, δ, G)

aut(Γ)

We can express t∗inj(Fi, G) as a linear combination of t∗(F,G). Indeed, by inclusion-

exclusion principle, induced homomorphism can be obtained via injective homomor-

phism.

ind(F,G) =
∑

F ′⊇F ;V (F ′)=V (F )

(−1)e(F
′)−e(F ) inj(F ′, G)

17



Again by inclusion-exclusion principle, injective homomorphism can be obtained via

homomorphism.

inj(F,G) =
∑
P

µP hom(F/P,G)

where P ranges over all partitions of V (F ), and µp is Möbius functions (see [7] , A.1) �

Convergence of eigenvalue measures

Let G be a graph with degree bound d, eigenvalues of AG are λ1, λ2, ...λv(G). We know

all spectrum of AG belong to [−d, d] interval .For all i we put weight
1

v(G)
on λi to get

a probability distribution µG.

Example 2.6. (Complete graph) The eigenvalues of the adjacency matrix of the

complete graph Kn on n vertices, are n−1 with multiplicity 1 and −1 with multiplicity

n− 1. It follows that

µKn =
1

n
δn−1 +

n− 1

n
δ−1

Notice that µKn converges weakly to δ−1 as n→∞.

Example 2.7. (Cycle) The eigenvalue measure of Cn is

µCn =
1

n

n∑
k=1

δ2 cos 2πk/n

Notice that µCn is supported on [−2, 2] interval. Let x be a number such that −2 ≤
x ≤ 2 then

µCn([−2, x)) =
1

n

n∑
k=1

δ2 cos 2πk/n([−2, x)) =
1

n
#

{
k ∈ {1, · · · , n}|2 cos

2πk

n
< x

}
=

1

n
#

{
k ∈ {1, · · · , n}|2πk

n
∈
(

arccos
x

2
, 2π − arccos

x

2

)}
→ 1− 1

π
arccos

x

2
=

2

π
arcsin

√
x+ 2

4

which is the cumulative distribution function of arcsine distribution on [−2, 2]. Hence,

µCn converges weakly to an arcsine distribution on bounded support [−2, 2]

Example 2.8. (Path) Similarly, as n goes to infinity, µPn converges weakly to a arcsine

distribution on [−2, 2] where

µPn =
1

n

n∑
k=1

δ2 cosπk/n+1

Proposition 2.2. If the graph sequence (Gn) with bounded degree is local convergent

then µGn is weakly convergent.
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Proof. By example 2.5,∫
R
xkdµGn =

1

v(Gn)

n∑
i=1

λki =
Tr(AkGn)

v(Gn)
=

hom(Ck, Gn)

v(Gn)

which is the homomorphism frequency from cycle graph to Gn. By definition of graph

convergence, the homomorphism frequency converges when n→∞. By the Weierstrass

approximation theorem, the convergence of µGn follows. �

2.2 Convergence in dense graphs

A dense graph is a graph in which the number of edges is close to the maximal number

of edges. The opposite, a graph with only a few edges, is a sparse graph. For undirected

simple graphs G, the graph density is defined as:

Den(G) =
2|E|

|V | (|V | − 1)

Convergence via subgraph sampling

Definition 2.5. Let F be a fixed graph and G be a dense graph. We define subgraph

density as:

tsub(F,G) =
#copies of F in G(

v(G)
v(F )

)
Example 2.9. Let G be a complete 3-partite graph of order 3k. (see Figure 3). The

graph density of G is Den(G) = 3k2/
(

3k
2

)
→ 2/3.

Figure 3: A complete 3-partite graph sequence

Definition 2.6. A sequence of graphsGn converges if for each F , the sequence tsub(F,Gn)

converges as n→∞.
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Convergence via graphons

Definition 2.7. A graphon is a bounded measurable function W : [0, 1]2 → R such

that W (x, y) = W (y, x) for all (x, y) ∈ [0, 1]2

Example 2.10. Every finite simple graph G can be represented by a graphon W :

[0, 1]2 → [0, 1]. We will split the interval [0, 1] into v(G) equal intervals J1, J2, · · · , Jv(G)

where Ji =
[

i
v(G)

, i+1
v(G)

]
for i = 1, 2, · · · , v(G). We define a graphon as a function below:

WG(x, y) =

{
1 if ij ∈ E(G)

0 if ij /∈ E(G)

for all x ∈ Ji and y ∈ Jj. We image if we replace the i-th column and j−th row entry in

the adjacency matrix of G by a square of size (1/v(G)× 1/v(G)), and define the value

of the function WG on this square equals the entry of the adjacency matrix.

Figure 4: The 3-cube graph, its adjacency matrix, and its pixel picture

Every graphon W : [0, 1]2 → [0, 1] can be represented by a grayscale picture on the

unit square: the point (x, y) is black if W (x, y) = 1, it is white if W (x, y) = 0, and it

is grey if 0 < W (x, y) < 1. For a graph, this picture gives a black-and-white picture

consisting of a finite number of “pixels”. The origin is in the upper left corner (as for

a matrix). ([10])

Example 2.11. (Half graph) A half graph G is a type of bipartite graph, say G =

(A,B,E(G)) where A = {v1, · · · , vn}; B = {vn+1, ..., v2n} and vivn+j ∈ E(G) whenever

i ≥ j. In figure [5], We represent the pixel picture of the half graph when n = 7 and

n = 1000 and we can guess when n goes to infinity, the ”stairs part” will become a

”smooth slope”.

Example 2.12. (Complete bipartite graph) Note that the function associated with

a graph depends on the ordering of the nodes. Look at an example when we enumerate

the vertices in different ways leads to the limit of each graphon does not look the same.
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Figure 5: Half graph and its pixel picture(n=7, n=1000)

Let G = (A,B,E(G))be a complete bipartite graph of the order 2n. If we embed the

vertice as A = {v1, v2, · · · , vn}; B = {vn+1, ..., v2n} then all complete bipartite graphs

with equal color classes have the same pixel picture see figure ([6] (*)). But if we list

A = {v1, v3, · · · , v2n−1}; B = {v2, v4, · · · , v2n} then its pixel picture look like black-and-

white square stripes and the limit function is a uniformly grey square.

Figure 6: The pixel pictures of a complete bipartite graph

Definition 2.8. Let W be a graphon, F be a simple graph. We define the homomor-

phism density of W

t(F,W ) =

∫
[0,1]|V (F )|

∏
ij∈E(F )

W (xi, xj)
∏

i∈V (F )

dxi

By definition, for every finite simple graph G, t(F,G) = t(F,WG).

In [2], L.Lovász and B. Szegedy proved that if a sequence of dense graphs Gn has the

property that for every fixed graph F , the density of copies of F in Gn tends to a

limit, then there is a natural “limit object”, namely a symmetric measurable function

W : [0, 1]2 → [0, 1]. This limit object determines all the limits of subgraph densities.

Conversely, every such function arises as a limit object.

Theorem 2.1. ([2])For every convergent graph sequence (Gn) there is a W graphon

such that t(F,Gn) → t(F,W ) for every simple graph F . And every graphon W :

[0, 1]2 → [0, 1] arises as the limit of a convergent graph sequence.
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Convergence of eigenvalues of graphon sequence

Definition 2.9. The operator

TW : L2[0, 1]→ L2[0, 1]

TW (f(x)) =

∫ 1

0

W (x, y)f(y)dy

is called kernel operator.

TW is a Hilbert-Schmidt operator which is self-adjoint, so TW has a countable mul-

tiset Spec(W ) of non zero real eigenvalues {λ1, λ2, ...} and λn → 0. More details, it can

be written in the form

W (x, y) ∼
∑
k

λkfk(x)fk(y)

where fk is the eigenfunction corresponding to eigenvalue λk. The ∼ indicates that the

series is convergent in L2 only.

We denote λi(W ) be the non negative i−th largest eigenvalue (included multiplicities),

λ′i(W ) be the non positive i−th smallest eigenvalue (included multiplicities), otherwise

λi = 0(λ′i = 0).We have

t(C2,W ) =

∫
[0,1]n

(W (x, y))2 dxdy = ‖W‖2
2 =

∑
λ∈Spec(W )

λ2

In general, homomorphism densities can be expressed in terms of this spectrum as

t(Cn,W ) =

∫
[0,1]n

W (x1, x2)....W (xn−1, xn)W (xn, x1)dx1....dxn =
∑

λ∈Spec(W )

λn

And from this, we obtain

n∑
i=1

λ3
i ≤ t(C3,W )⇒ λn ≤

(
t(C3,W )

n

)1/3

Theorem 2.2. ([1]) If W1,W2, · · · ,Wn, · · · are bounded graphons which the homo-

morphism densities converge, namely, there exists a graphon W such that t(F,Wn) →
t(F,W ) for all finite simple graphs F , then

λi(Wn)→ λi(W ) and λ′i(Wn)→ λ′i(W )

Proof. Suppose that the statement is not true λi(Wn) 9 λi(W ) or λ′i(Wn) 9
λ′i(W ) . Wn are bounded graphons so eigenvalues are bounded also. By Bolzano–Weierstrass

theorem, there exists a convergent subsequence (nj) ∈ N such that λi(Wnj) converges

for all i. Let

lim
nj→∞

λi(Wnj) := ζi and lim
nj→∞

λ′i(Wnj) := ζ ′i
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For k ≥ 4, we have

lim
nj→∞

∞∑
i=1

λki (Wnj)→
∞∑
i=1

ζki and lim
nj→∞

∞∑
i=1

λ
′k
i (Wnj)→

∞∑
i=1

ζ
′k
i

It is not always true for all k because we need
∑∞

i=1 λ
k
i (Wnj) converges. Because (Wn)

be bounded graphons so let say c be a number such that t(C3,Wn) ≤ c ∀n. Using the

inequality between eigenvalues and the homomorphism density from C3 to a graphon

above, we obtain

∞∑
i=1

λki (Wnj) ≤
∑
m

( c
m

)k/3
≤
∑
m

( c
m

)4/3

= c4/3ζ(4/3) is finite

(W1,W2, ...) converges to W so t(Cn,Wm)→ t(Cn,W ) as n→∞

lim
nj→∞

(
∞∑
i=1

λki (Wnj) +
∞∑
i=1

λ
′k
i (Wnj)

)
→

∞∑
i=1

λki (W ) +
∞∑
i=1

λ
′k
i (W )

Hence
∞∑
i=1

λki (W ) +
∞∑
i=1

λ
′k
i (W ) =

∞∑
i=1

ζki +
∞∑
i=1

ζ
′k
i (*)

We expect to prove λi(W ) = ζi and λ′i(W ) = ζ ′i by induction on i. If i = 1 , WLOG

λ1(W ) = max{λ1(W ), ζ1,−λ′1(W ),−ζ ′1} from (∗) we get:

λk1(W )

(
a+

∞∑
i=a

(
λi(W )

λ1(W )

))k

+ (−λ1(W ))k

(
a′ +

∞∑
i=a′

(
λ′i(W )

−λ1(W )

))k

= λk1(W )

(
b+

∞∑
i=b

(
ζki

λ1(W )

))k

+ (−λ1(W ))k

(
b′ +

∞∑
i=b′

(
ζ
′k
i

−λ1(W )

))k

where λ1 was counted a times with multiplicities in (λ1, λ2, ...) and b times appears

in (ζ1, ζ2, ...) ; −λ1 was counted a′ times with multiplicities in (λ′1, λ
′
2, ...) and b′ times

occurs in (ζ ′1, ζ
′
2, ...).

We take a limit as k →∞ , k is a even numbers sequence then a+ a′ = b+ b′. We also

take a limit as k → ∞ , k is a odd numbers sequence then we get a− a′ = b− b′ . So

a = b ; a′ = b′, hence λ1 = ζ1 implies λ′1 = ζ ′1.

We suppose that λj = ζj ;λ′j = ζ ′j for all j < n and λn(W ) = max{λn(W ), ζn,−λ′n(W ),−ζ ′n}.
With the same definition for a, b, a′, b′ is the number of appearances of λn , we obtain

λkn(W )

(
a+

∞∑
i=n+a

(
λi(W )

λn(W )

))k

+ (−λn(W ))k

(
a′ +

∞∑
i=n+a′

(
λ′i(W )

−λn(W )

))k

= λkn(W )

(
b+

∞∑
i=n+b

(
ζki

λn(W )

))k

+ (−λn(W ))k

(
b′ +

∞∑
i=n+b′

(
ζ
′k
i

−λn(W )

))k

Take the limit on both sides when k is even and odd sequence, we get a = b and a′ = b′

so λn = ζn. �
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2.3 Convergence in general

Definition 2.10. Let F be a connected graph and G be a graph having degree bound

d , d ≥ 1. The homomorphism density from F to G with degree bound d are defined by

t(F,G, d) =
hom(F,G)

v(G)dv(F )−1

And similarly, we define the injective homomorphism density

tinj(F,G, d) =
inj(F,G)

v(G)d(d− 1)v(F )−2

for a connected graph F

Definition 2.11. A bounded degree graph sequence (Gn) by dn is convergent if

t(F,Gn, dn) converges for every connected graph F .

Definition 2.12. We define %G as the normalized eigenvalue measure of G if

%G =
1

v(G)

v(G)∑
i=1

δλi

where δx is the Dirac measure at x.

Definition 2.13. %G,d be the uniform probability measure on the v(G) numbers
λ

d
.

%G,d =
1

v(G)

v(G)∑
i=1

δλi/d

Using lemma 1.2, %G,d is supported on [−1, 1] interval.

Lemma 2.1. (The moments of eigenvalue distribution)

The zeroth moment of %G,d is 1, the first moment is 0 and∫ 1

−1

xkd%G,d(x) =
hom(Ck, G)

v(G)dk
=
t(Ck, G, d)

d

for all k ≥ 2. In case k = 2, C2 is comprehended as K2.

Proof. We will prove that, hom(Ck, G) is the trace of the k− th power of the adjacency

matrix of the graph. That is hom(Ck, G) = Tr(AkG) where AG be the adjacency matrix

of G.

hom(Ck, G) =
∑

x∈V (G)

wG(x, k)

where wG(x, k) denotes the number of walks in G of length k starting and ending at x.

wG(vi1 , k) =
∑

ai1i2ai2i3 ...aiki1 = (AkG)i1,i1
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where (AkG)i1,i1 is the (i1, i1) entry of AkG. So hom(Ck, G) =
∑

i(A
k
G)i,i = Tr(AkG).

If λ1, λ2, ..., λv(G) be eigenvalues of matrix AG then Tr(AkG) =
∑v(G)

i=1 λki∫ 1

−1

xkd%G,d(x) =
1

v(G)

v(G)∑
i=1

(
λi
d

)k
=

1

v(G)dk

v(G)∑
i=1

(λi)
k =

hom(Ck, G)

v(G)dk
=
t(Ck, G, d)

d

�

Subsequent. Let (Gn) be convergent graph sequence bounded by dn and f :

[−1, 1]→ R be continuous, α is a integer number, α ≥ 2. Then

dn

∫ 1

−1

xαf(x)d%Gn,dn(x)

converges when n tends to infinity.

Proof. If f(x) = xk then

dn

∫ 1

−1

xαf(x)d%Gn,dn(x) = dn

∫ 1

−1

xk+αd%Gn,dn(x) = t(Ck+α, Gn, dn) converges .

By Weierstrass approximation, f is a continuous real-valued function on [−1, 1] and if

any ε > 0 is given, then there exists a polynomial P (x) on [−1, 1] such that: |f(x) −
P (x)| < ε ∀x ∈ [−1, 1] . Hence, dn

∫ 1

−1
xαf(x)d%Gn,dn (x) converges. �

Proposition 2.3. Let (Gn) be a graph sequence with all degrees ≤ dn, dn → ∞ then

%Gn,dn converges weakly to the Dirac measure concentrated on 0.

%Gn,dn
w−→ δ0

Proof. For any ε > 0, we have

ε2%G,d({|x| ≥ ε}) ≤
∫ 1

−1

x2d%G,d(x) =
t(K2, G, d)

d
≤ 1

d

Apply this for (Gn) graph sequence and take dn to infinity, we get

%Gn,dn((−ε, ε)) ≥ 1− 1

ε2dn
→ 1

That implies %Gn,dn([−1; 1] r (−ε, ε))→ 0 then %Gn,dn
w−→ δ0. �

Definition 2.14. %G,d,r and %′G,d,r be the uniform probability measure on the v(G)

numbers
λ

d
, where λ runs over the r largest and r smallest eigenvalues, respectively.

%G,d,r =
1

r

r∑
i=1

δλi/d ; %′G,d,r =
1

r

v(G)∑
i=v(G)−r+1

δλi/d
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%G,d,r is supported on

[
λr
d
, 1

]
and %′G,d,r is supported on

[
−1,

λv(G)−r+1

d

]
.

Theorem 2.3. Let (Gn) be a graph sequence, all degrees of Gn vertice small than dn,

dn →∞. For each dn there is given an integer number rn such that
rndn
v(Gn)

→ α ; α >

0. Then %n = %Gn,dn,rn (%′n = %′Gn,dn,rn) weakly convergent to probability measures %( %′)

supported on [0, 1] ([−1; 0]), respectively.

Proof. To prove %n converges, by Portmanteau theorem, we need to show that

lim inf %n([b, 1]) ≤ lim sup %n([b, 1]) ≤ lim inf %n([a, 1]) ≤ lim sup %n([a, 1])

for any 0 < a < b < 1.

Let g : [−1, 1]→ [0, 1] be continuous, non decreasing function and g(a) = 0, g(b) = 1.

If lim inf %n([a, 1]) = 1 then lim sup %n([b, 1]) ≤ 1

If lim inf %n([a, 1]) < 1 then

%n([a, 1]) =
#{λi | λi/dn ∈ [a, 1] ; i ≤ rn}

rn
=

#{λi | λi/dn ∈ [a, 1] }
rn

=
v(Gn)

rn
%Gn,dn([a, 1])

That implies

lim inf %n([a, 1]) ≥ lim inf %n([a, b]) ≥ lim inf

(
dn
α

∫
gd%Gn,dn

)
= lim inf

1

α

(
dn

∫
gd%Gn,dn

)
=

1

α
lim

(
dn

∫
gd%Gn,dn

)
Or then

%n([b, 1]) ≤
∫
gd%n ≤

v(Gn)

rn

∫
gd%Gn,dn

So

lim sup %n([b, 1]) ≤ lim sup

(
dn
α

∫
gd%Gn,dn

)
= lim sup

1

α

(
dn

∫
gd%Gn,dn

)
=

1

α
lim

(
dn

∫
gd%Gn,dn

)
Hence, %n converges weakly to % and we will prove % is supported on [0, 1]. Since all

eigenvalues of G are smaller than d, we have

0 = Tr(AG) =

v(G)∑
i=1

λi =
k∑
i=1

λi +

v(G)∑
i=k+1

λi ≤ k.d+ (v(G)− k)λk

λk
d
≤ k

k − v(G)

Let k = rn then
λrn
d
≤ rn
rn − v(Gn)

∼ α

α− dn
→ 0

Similar proof with %′ measure. �
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3 The rescaled spectral measure

In the section 2.3, when we define the general eigenvalue distribution by put the weight
λ

d
on each vertex. In this section, we will rescale with the weight

λ√
d

and will examine

the convergence of this spectral measure in some special cases.

Definition 3.1. Let ξG,d be the uniform probability measure on the v(G) numbers
λ√
d

.

ξG,d =
1

v(G)

v(G)∑
i=1

δλi/
√
d

It is clear that ξG,d is a probability measure and is supported on [−
√
d,
√
d].

3.1 The hypercube

In case of the hypercube graph sequence Qn, choose dn = n. By table 1, we know the

eigenvalues of Qn are λi = n− 2i with multiplicity
(
n
i

)
.

ξQn,n

(
n− 2i√

n

)
= ξQn,n

(
λi√
n

)
=

1

2n

(
n

i

)

So the probability measure ξQn,n is the distribution of
X√
n

=

∑n
i=1 Yi√
n

where X be the

binomial distribution and Yi are modified Bernoulli distributions with P(Yi = 1) =

P(Yi = −1) = 1/2. By the central limit theorem,

∑n
i=1 Yi√
n
→ N(0, 1) as to t→∞.

Figure 7: 4- dimensional hypercube graph Q4
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3.2 The α− regular, large girth graph sequence

Definition 3.2. Let a graph sequence Gn is bounded by dn. Gn is α- regular if the

degree of vi divided by dn tends stochastically to α where 0 ≤ α ≤ 1, vi is a uniform

random vertex of Gn.

Proposition 3.1. (see [3], proposition 1.19) If the graph sequence Gn is bounded by dn

is α−regular then for all forest F , we have t(F,Gn, dn)→ αe(F ) as n→∞.

Definition 3.3. The graph sequence (Gn) has large girth if for any k ≥ 3 there exists

no(k) such that inj(Ck, Gn) = 0 for all n ≥ no(k). In other words, the length of the

shortest cycle (girth) tends to infinity.

Definition 3.4. Let G be a graph with v(G) vertices and let mk be the number of

k−edge matchings. m0 = 1,m1 = e(G). The matching polynomial is

MG(x) :=
∑
k≥0

(−1)kmkx
v(G)−2k.

Our convention that mo = 1 ensures that this is a polynomial of degree n.

Some properties of the matching polynomial:

(i) MG∪H(x) = MG(x)MH(x)

(ii) MG(x) = xMG\vi(x)−
∑

vivj∈E(G) MG\vi\vj(x)

Example 3.1. If G is a forest, then its matching polynomial is equal to the character-

istic polynomial of its adjacency matrix (see [7],11.4). If G is a path or a cycle, then

MG(x) is a Chebyshev polynomial.

Theorem 3.1. ([11])The roots of the matching polynomial are real and in case of the

bounded graph by d ≥ 2 then all roots in [−2
√
d− 1, 2

√
d− 1].

Proof. Look at the recursion M∅(x) = 1

MG(x) = xMG\vi(x)−
∑

vivj∈E(G)

MG\vi\vj(x)

We prove by induction on v(G) that MG(x) is real-rooted, with distinct simple roots and

MG\vi(x) strictly interlaces MG(x) .That means if y1, y2, ..., yv(G)−1 and x1, x2, ..., xv(G)

be real and distinct roots of MG\vi(x) and MG(x) corresponding then x1 < y1 < x2 <

... < xv(G)−1 < yv(G)−1 < yv(G).

If v(G) = 1 then mG(x) = x and MG\V (G)(x) = 1.

If v(G) = n, define (yi) as above. By the inductive hypothesis,

MG(yi) = xMG\vi(yi)−
∑

vivj∈E(G)

MG\vi\vj(yi) = −
∑

vivj∈E(G)

MG\vi\vj(yi)

28



To prove MG(x) has n real and distinct roots, we will show MG(yi) alternates signs for

i = 1, 2, 3, .... By the inductive hypotesis, MG\vi\vj(x) strictly interlaces MG\vi(x), that

means MG\vi\vj(yi) alternates signs for i = 1, 2, 3, ..., n−1 . All roots of MG\vi\vj(x) is in

the interval [y1, yn−1] and the highest coefficient of MG\vi\vj(x) is 1 then MG\vi\vj(y1) > 0

and (−1)i+1MG\vi\vj(yi) > 0 . This implies that (−1)iMG(x) > 0

The highest coefficient of MG(x) is 1, then limx→∞MG(x) = +∞ and limx→−∞MG(x) =

sign((−1)n)∞. Hence, as MG(x) has exactly n roots interlacing {y1, y2, ..., yn}.
We will summarize what Godsil proved in [12].

• For v a vertex of G, the path tree of G starting at v, written Tv(G) is a tree whose

vertices correspond to paths in G that start at a and do not contain any vertex

twice. One path is connected to another if one extends the other by one vertex.

•
MG\v(x)

MG(x)
=
MTv(G)\v(x)

MTv(G)(x)

• For every vertex v of G, the polynomial MG(v) divides the polynomial MTv(G)(x).

• By lemma 1.3, all eigenvalues of a tree T have absolute value at most 2
√
d− 1

if T is a bounded graph by d. This implies that that matching polynomial of a

graph with all degrees at most d has all of its roots bounded in absolute value by

2
√
d− 1.

�

Definition 3.5. Let xi be all roots of the matching polynomial then κG,d can be defined

as the matching measure of G

κG,d =
1

v(G)

v(G)∑
i=1

δxi/
√
d

Definition 3.6. Let G be a graph with v(G) vertices. The modified matching

polynomial is

M ′
G(x) :=

∑
k≥0

(−1)kmkx
v(G)−k.

Definition 3.7. Let yi be all roots of the modified matching polynomial then κG,d can

be defined as the modified matching measure of G

νG,d =
1

v(G)

v(G)∑
i=1

δyi/d

If λ is a root of M ′
G(x) then λ2 is a root of MG(x).

MG(x2) = xv(G)M ′
G(x)
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By theorem 3.1, the matching measure κGn,dn is supported on the interval [−2; 2] and

that implies the modified matching measure νGn,dn is supported on [0, 4]. And∫ 2

−2

x2kdκGn,dn(x) = 2

∫ 4

0

xkdνGn,dn(x)

Theorem 3.2. If the bounded convergent graph sequence (Gn) has degree bound dn is

α−regular and dn →∞ then the modified matching measure νGn,dn converges weakly.

Proof. The graph sequence (Gn) is convergent so t(F,Gn, dn) converges for any con-

nected garph F . Denote t(F ) = limn→∞ t(F,Gn, dn)

∫ 4

0

xkdνGn,dn(x) =
1

v(G)

∑
M ′Gn (yi)=0

(
yi
dn

)k
=

∑
yki

v(G)dkn

By ([4], 5.6), k−th power sum of the roots of the modified matching polynomial can be

represented by the linear combination of the injective homomorphism density. It also

counts the number of closed tree-like walks of length k in the graph G (see chapter 6

of [12]).
v(G)∑
i=1

yki =
∑

2≤v(F )≤k+1

ck(F ) inj(F,Gn)

=
∑

2≤v(F )≤k+1

ck(F )v(G)dn(dn − 1)v(F )−2tinj(F,Gn, dn)

where F runs over the isomorphism classes of connected graphs, Ck(F ) is constant.

By ([1] ,5.22), the homomorphism and injective homomorphism density are almost the

same in the dense case

t(F,Gn, dn)− tinj(F,Gn, dn) = o

(
1

dn

)
→ 0

So

lim
n→∞

tinj(F,Gn, dn) = lim
n→∞

t(F,Gn, dn) = t(F )

Hence ∫ 4

0

xkdνGn,dn(x) =
∑

2≤v(F )≤k+1

ck(F )(dn − 1)v(F )−2

dk−1
n

tinj(F,Gn, dn)

−→
∑

v(F )=k+1

ck(F )t(F )

The modified matching polynomial has only real roots,this implies νGn,dn converges

weakly. �

Theorem 3.3. If the bounded graph sequence (Gn) has degree bound dn is α−regular

then the matching measure κGn,dn converges weakly Wigner semicircle distribution sup-

ported on [−2
√
α; 2
√
α].
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Proof. The matching measure κGn,dn converges weakly because of the convergence of

the modified matching measure νGn,dn .∫ 2

−2

x2kdκGn,dn(x) = 2

∫ 4

0

xkdνGn,dn(x)→
∑

v(F )=k+1

2ck(F )t(F )

where t(F ) = limn→∞ t(F,Gn, dn) = αk.

and

ck(F ) =
N(F, k)

aut(F )
=

1

k + 1

(
2k

k

)
where N(F, k) is the number of tree-like, closed walk of length 2k which is include all

edges of F . In this case F has k + 1 vertices . By induction, we can prove N(F, 0) =

aut(F ) and N(F, n + 1) aut(F ) =
∑n

i=0N(F, i)N(F, n − i) for n ≥ 0. That imples

ck(F ) equals to Catalan number.

On the other hands, the 2n-th moment of Wigner distribution is(
R

2

)2n
1

n+ 1

(
2n

n

)
and the odd-order moments are zero. Let X have a semicircle distribution with radius

R = 2 then

lim
n→∞

∫ 2

−2

x2kdκGn,dn(x) = αkEX2k = E(
√
αX)2k.

�

Theorem 3.4. Let (Gn, dn) be an α− regular sequence of large girth, dn → ∞. Then

ξGn,dn converges weakly to the Wigner semicircle distribution supported on the interval

[−2
√
α; 2
√
α].

Proof. ∫ √d
−
√
d

xkdξGn,dn =
1

v(Gn)

∑(
λi
dn

)k
Note that Gn has large girth so there is no(k) such that for all n ≥ no(k) , inj(Ck, Gn) =

0. That means Gn does not contain any cycle when n is big enough, we can consider

Gn as a tree because all walks of length k in Gn are not a cycles. So,

1

v(Gn)

∑(
λi
dn

)k
=

1

v(Gn)

∑(
xi
dn

)k
=

∫ 2

−2

xkdκGn,dn

By theorem 3.3, ∫ 2

−2

xkdκGn,dn →
∫ 2

−2

(
√
αx)kw(x)dx

�
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4 Pointwise convergence of the expected spectral

measure

4.1 The expected spectral measure

Let A be the adjacency operator of a bounded degree graph, say G (G can be infinite).

We already proved that A is a self-adjoint, bounded operator and A is independent of

the choice of the root. The spectral theorem for bounded self-adjoint operators gives a

projection valued measure

{PX : `2(G)→ `2(G)|X ⊆ R is a Borel set }

For any Borel function f : σ(A)→ R, it satisfies

f(A) =

∫
R
f(x)dP (x)

The projection PX can be comprehended as the orthogonal projection to the span of

eigenvectors corresponding to the eigenvalues in X. We can define a measure µG,f for

any f ∈ `2(G)

µG.f (X) = 〈PXf, f〉

In case G is finite, if e1, e2, · · · , ev(G) is an orthonormal basis of eigenvectors associated

to eigenvalues λ1, λ2, · · · , λv(G), we can rewrite

µG.f =

v(G)∑
i=1

〈f, ei〉2δλi

Definition 4.1. We define the spectral measure of G at the root o ∈ V (G) as

µG,o = µG,χo

where χo is the characteristic function of o.

Note that for any o1, o2 ∈ V (G), 〈χo1 , Akχo2〉 is the number of paths of length k

from o1 to o2 in G. Hence,∫
xkdµG.o = 〈χo, Akχo〉 = #{closed path of length k starting from o}

Definition 4.2. Let G be a fixed graph and choose a root o uniformly at random from

the vertex set V (G). This defines a random rooted graph. The expected spectral

measure of a random rooted graph G is

µG = E(µG,o)

where o is the root of the graph G.
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It is well-defined for an arbitrary random rooted graph. By the following lemma,

the expected spectral measure recovers the usual spectral measure for finite graphs.

Lemma 4.1. When G is finite and the root is chosen uniformly then

µG =
1

v(G)

v(G)∑
i=1

δλi

Proof. Let (ei) be the orthonormal basis of A. Since G is finite, by the definition of the

spectral measure we get

µG,o =

v(G)∑
i=1

〈χo, ei〉2 δλi =

v(G)∑
i=1

ei(o)
2δλi

By definition of the expected value,

µG = E(µG,o) =
1

v(G)

∑
o∈V (G)

µG,o =
1

v(G)

∑
o∈V (G)

v(G)∑
i=1

ei(o)
2δλi

=
1

v(G)

v(G)∑
i=1

 ∑
o∈V (G)

ei(o)
2

 δλi =
1

v(G)

v(G)∑
i=1

δλi

�

It is shown above that the expected spectral measure equals to the eigenvalue dis-

tribution of G when G is finite.

4.2 The spectral measure of Cayley graphs

Definition 4.3. Let G be a group. Then a subset S ⊆ G is called a generating set for

the group G if every element of G can be expressed as a product of the elements of S

or the inverses of the elements of S. If a group has a finite set of generators, it is called

a finitely generated group.

Definition 4.4. Let G be a group and S be a subset of G not containing the identity

element. Assume S−1 = S. The Cayley graph of a group G with respect to a subset

S, denoted Γ(G,S), is defined as follows:

(i) V (Γ) = G

(ii) E(Γ) = {(g, sg)|g ∈ G, s ∈ S}.

Example 4.1. • If G = Z is the infinite cyclic group and the set S consists of the

standard generator 1 and its inverse (-1 in the additive notation) then the Cayley

graph is an infinite path.
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• Similarly, if G = Zn is the finite cyclic group of order n and the set S consists of

two elements, the standard generator of G and its inverse, then the Cayley graph

is the cycle Cn.

• A d−regular tree is the Cayley graph of a group freely generated by d involutions.

• The d-dimensional hypercube can be constructed as the Cayley graph

Cay{((Z/2Z)d, (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)}

where the group is the set {0, 1}d with the operation of bit-wise xor, and the set

S is the set of bit-vectors with exactly one 1.

A vertex-transitive graph is a graph G in which, given any two vertices v1 and v2 of

G, there is some automorphism f : V (G) → V (G) such that f(v1) = v2. The Cayley

graph is also vertex transitive. Hence, the spectral measure of a vertex-transitive graph

at the root o does not depend on the choice of o. It is then natural to define the spectral

measure of G as µG = µG,o (same notion with the expected spectral measure, but it

only makes sense for vertex-transitive graphs in general).

Example 4.2. (Two-way infinite path) The spectral measure of the bi-infinite path

dµZ(x) =
1

π
√

4− x2
1|x|<2dx

Example 4.3. (Lattice) A lattice is a group which is isomorphic to the additive

group Zn. Let S = {(±1, 0, · · · , 0), (0,±1, 0, · · · , 0), · · · , (0, · · · , 0,±1)} .The Cayley

graph of a lattice with respect to a subset S can be considered as the Cartesian product

n times of the two-way infinite path. By [13], the spectral measure of the Cartesian

product of two graphs equals to convolution of two spectral measures on each graph.

So,

µZn(x) = $ ∗$ ∗ · · · ∗$

where $ is the arcsine distribution on [−2, 2].

Example 4.4. ( d- regular tree) Let Td be the infinite d-regular tree. Td is isomorphic

to the Cayley graph of the free group with d generators. In [14], Kesten has proved

that

dµTd (x) =
d
√

4(d− 1)− x2

2π(d2 − x2)
1|x|≤2

√
d−1dx

4.3 The pointwise convergence of the expected spectral mea-

sure

Theorem 4.1. Let Gn be a sequence of random rooted finite graphs, and Gn has a

common degree bound. Suppose Gn locally converges to G. Then µGn weakly converges
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to µG and

lim
n→∞

µGn({x}) = µG({x})

for any x ∈ R.

Proof. The first part of the statement can be proved similarly to Proposition 2.2. The

k−th moment of µGn equals to the expected value of the number of walks in Gn of length

k and starting and ending at o. Convergence in neighbourhood sampling statistics

implies convergence of k-th moment of µGn .

Since we proved the weak convergence of µGn , by Portmanteau theorem we get

lim supn→∞ µGn({x}) ≤ µG({x})
and lim infn→∞ µGn((x− ε, x+ ε)) ≤ µG((x− ε, x+ ε))

From this we get

lim sup
n→∞

µGn({x}) ≤ µG({x}) ≤ µG((x− ε, x+ ε))

≤ lim inf
n→∞

µGn((x− ε, x+ ε))

≤ lim inf
n→∞

µGn({x}) + lim inf
n→∞

µGn((x− ε, x+ ε) \ {x})

Choose ε such that µGn((x− ε, x+ ε) \ {x})→ 0

Lemma: Let D > 0 be an integer. Then for any x ∈ [−D2, D2] there exists a sequence

εk of positive real numbers converging to 0, such that

µG((x− εk, x+ εk) \ {x}) ≤

√
log(2D2)

log(1/2εk)
+

1

k

Apply this lemma for all Gn and choose ε = εk then

lim sup
n→∞

µGn({x}) ≤ µG({x}) ≤ lim inf
n→∞

µGn({x}) +

√
log(2D2)

log(1/2εk)
+

1

k

−→ lim inf
n→∞

µGn({x}) if k →∞

We omit the lemma’s proof for brevity (see [5],p.9). �
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