Eötvös Loránd Tudományegyetem Természettudományi kar

Porubszki Dóra

Operátorszeletelési eljárások vizsgálata

BSc Szakdolgozat Matematikai elemző

Témavezető:

Dr. Csomós Petra egyetemi adjunktus

Alkalmazott Analízis és Számítás
matematikai Tanszék $% {\mathbb Z}^{n}$

Budapest, 2019

Tartalomjegyzék

Bevezetés					
1.	Közönséges differenciálegyenletek és numerikus megoldásuk	4			
	1.1. Közönséges differenciálegyenletek	4			
	1.2. Numerikus megoldások	7			
	1.3. Butcher-féle fák	9			
2.	Operátorszeletelési eljárások vizsgálata	12			
	2.1. Operátorszletelések bemutatása	12			
3.	3. Alkalmazás				
Ös	sszefoglalás	30			
A.	. A dolgozat során használt Matlab programkódok	31			
	A.1. Explicit-Euler módszerhez tartozó kód	31			
	A.2. A szekvenciális szeleteléshez tartozó kód	33			
	A.3. Ábrák elkészítéséhez használt kód	34			
Irc	Irodalomjegyzék				

Köszönetnyílvánítás

Ezúton szeretnék köszönetet mondani témavezetőmnek, Dr. Csomós Petrának, aki figyelmembe ajánlotta ezt az érdekes témát, és szakértelmével, hasznos tanácsaival hozzájárult dolgozatom létrejöttéhez.

Hálámat szeretném kifejezni a családomnak, akik tanulmányaim során végig támogattak. Köszönöm továbbá barátomnak, Noelnak, akitől rengeteget tanultam, és aki segített túljutni a nehezebb időszakokon, biztatott és mindig támogatott.

Bevezetés

Számos természeti jelenséget, gazdasági folyamatot differenciálegyenletek segítségével tudunk modellezni. Ha a differenciálegyenlet ismeretlen függvénye egyváltozós, közönséges differenciálegyenletekről, ha pedig többváltozós, parciális differenciálegyenletekről beszélünk. A differenciálegyenletek azonban csak a legegyszerűbb esetekben oldhatók meg analitikusan, az esetek többségében nem tudjuk meghatározni a pontos megoldást. Ennek a problémának orvosolására használjuk a numerikus módszereket, amikkel közelítő megoldást tudunk adni.

Ebben a dolgozatban a közönséges differenciálegyenletek numerikus megoldásával és az úgynevezett operátorszeletelési eljárással foglalkozunk. Az első fejezetben a közönséges differenciálegyenletekkel kapcsolatos lényegesebb definíciók és tételek kerülnek bemutatásra, ahol az [1], [2] és [3] könyv volt segítségünkre, ezt követően pedig a numerikus megoldásuk során felmerülő alapvető fogalmakat tisztázzuk. Az első fejezet harmadik alfejezetében a Butcher-fa megközelítés lényegét járjuk körbe, ehhez a [4] könyv és az [5] könyv III. fejezete volt segítségünkre.

A második fejezetben az operátorszeletelési eljárásról (angolul: operator splitting) lesz szó. Ez egy széleskörben elterjedt módszer, melynek segítségével bonyolult, időfüggő feladatokat egyszerűbb feladatok sorozatára vezethetünk vissza. Az alkalmazott matematika számos területén használják, mint például a légszennyezés terjedésének modellezése (advekciós-diffúziós problémák) vagy a biomatematika. A módszer ötletének születése az 1950-es évekre tehető. Feltehetőleg 1957-ben használta először Bagrinovskii és Godunov a [6] könyvben, parciális differenciálegyenletek megoldására. Ezt a fejezetet legfőképp a [7] és az [5] könyv II.5. fejezete motiválta. A harmadik fejezetben egy konkrét példán keresztül nézzük meg az ismertetett operátorszeletelési eljárás használatát. A fonalinga mozgását vizsgáljuk meg szeletelés nélküli Explicit-Euler módszerrel és operátorszeletelési eljárással alkalmazott Explicit-Euler módszerrel, majd összehasonlítjuk a kapott eredményeket. Ezen fejezet megírásához a [8] és a [9] könyvek voltak segítségünkre. A dolgozatban megjelenő, hivatkozás nélküli ábrák az InkScape programmal készültek az [5] könyvnek megfelelően, és a programokat a Matlab szoftver segítségével hoztuk létre.

1. fejezet

Közönséges differenciálegyenletek és numerikus megoldásuk

A közönséges differenciálegyenlet olyan egyenlet, mely egy ismeretlen, egyváltozós függvény és annak deriváltjai közötti kapcsolatot írja le. Ebben a fejezetben mutatjuk be azokat a lényegesebb definíciókat és tételeket, amelyekre szükségünk lesz a dolgozat további részeiben. Ezt követően pedig a differenciálegyenletek numerikus megoldási módszereivel foglalkozunk.

1.1. Közönséges differenciálegyenletek

A dolgozatban közönséges differenciálegyenletek numerikus megoldásával foglalkozunk, azonban mielőtt ezekre rátérünk, tekintsünk át néhány alapdefiníciót és tételt a differenciálegyenletekre vonatkozóan.

1.1. Definíció. Legyen $n \in \mathbb{N}$ és $F : \mathbb{R}^{n+1} \to \mathbb{R}$ folytonos függvény és $Y : \mathbb{R} \to \mathbb{R}$ n-szer folytonosan differenciálható függvény. Ekkor n-edrendű explicit közönséges differenciálegyenletnek nevezzük az

$$Y^{(n)}(t) = F(t, Y(t), Y'(t), \dots, Y^{(n-1)}(t))$$

alakú egyenletet, ahol $t \in \mathbb{R}$.

1.2. Definíció. Legyen $n \in \mathbb{N}$ és $f : \mathbb{R}^{n+1} \to \mathbb{R}^n$ folytonos függvény, $t_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}^n$ adottak. Ekkor az

$$\begin{cases} \dot{y}(t) = f(t, y(t)), \ t > t_0 \\ y(t_0) = y_0 \end{cases}$$
(1.1)

feladatot az elsőrendű közönséges differenciálegyenlet kezdetiérték-problémájának (másnéven Cauchy-feladatnak) nevezzük az $y: \mathbb{R} \to \mathbb{R}^n$ folytonosan differenciálható ismeretlen függvényre vonatkozóan.

A differenciálegyenletek elméleti vizsgálata során sokszor hasznosnak bizonyul annak a lehetősége, hogy egy n-ed rendű explicit közönséges differenciálegyenletet átalakíthatunk egy elsőrendű n ismeretlenes közönséges differenciálegyenlet-rendszerré. Ennek megfelelően az 1.1. és 1.2. Definíciók között az alábbi tétel teremt kapcsolatot.

1.3. Tétel (Átviteli elv). *Minden explicit n-ed rendű közönséges differenciálegyenlet megfeleltethető egy elsőrendű, n ismeretlenes közönséges differenciálegyenletrendszernek a következő módon:*

$$Y^{(n)}(t) = F(t, Y(t), Y'(t), \dots, Y^{(n-1)}(t))$$

n-ed rendű explicit differenciálegyenlet alapján vezessünk be új ismeretlen függvényeket az alábbi megfeleltetések szerint:

$$y_{0} := Y(t) \to y'_{0} = Y'(t) \equiv y_{1}$$

$$y_{1} := Y'(t) \to y'_{1} = Y''(t) \equiv y_{2}$$

$$\vdots$$

$$y_{n-2} := Y^{(n-2)}(t) \to y'_{n-2} = Y^{(n-1)} \equiv y_{n-1}$$

$$y_{n-1} := Y^{(n-1)} \to y'_{n-1} = Y^{(n)} \equiv F(t, y_{0}, y_{1}, \dots, y_{n-1}).$$
(1.2)

Az így megadott módon bármely n-ed rendű explicit differenciálegyenlet egyértelműen megfeleltethető egy n db egyenletből álló elsőrendű közönséges differenciálegyenletrendszernek. **1.4. Következmény.** A magasabb rendű explicit közönséges differenciálegyenleteket mindig átírhatjuk elsőrendű közönséges differenciálegyenletrendszerre, így az elsőrendű egyenletekre vonatkozó tételek a magasabb rendű egyenletekre is igazak.

Abban az esetben, ha az (1.1) Cauchy-feladat egy természetben lejátszódó vagy gazdasági folyamat matematika modellje, alapvető elvárás, hogy létezzen egyértelmű megoldása. A következő tétel ezt biztosítja.

1.5. Tétel (Picard-Lindelöf). Ha az (n + 1) változós valós f függvény az (n + 1)dimenziós tér valamely korlátos zárt H halmazán folytonos, és ezen a halmazon legfeljebb az első változó kivételével minden változójában eleget tesz a Lipschitzfeltételnek, azaz $L \ge 0$ állandó mellett $||f(y, u_1) - f(y, u_2)|| \le L||u_1 - u_2||$ $\forall (y, u_1), (y, u_2) \in H$, akkor az (1.1) kezdetiérték-probléma $(t_0, y_0) \in H$ esetén egyértelműen megoldható.

Most pedig éljünk azzal a feltételezéssel, hogy a differenciálegyenletnek az y(t)megoldása egyértelműen létezik. Mivel ez a megoldás függ az időtől, vagyis t-től, és a kezdeti feltételtől, vagyis y_0 -tól, így $y(t) = \varphi_t(y_0)$ alakban írható, ahol φ_t : $\mathbb{R}^n \to \mathbb{R}^n \ \forall t > 0$ egy kétváltozós függvény és folyamnak nevezzük (angolul: flow). Megmutatható, hogy φ_t -re igaz a következő tulajdonság:

$$\varphi_{t_1+t_2}(y_0) = \varphi_{t_2}(\varphi_{t_1}(y_0)) \quad \forall y_0.$$
 (1.3)

Az 1.1. ábrán szemléltetjük az (1.3) tulajdonságot, miszerint az, hogy y_0 kezdeti feltételből megyünk $(t_1 + t_2)$ -t megegyezik azzal, hogy y_0 -ból megyünk t_1 -et, majd $y(t_1)$ -ből, mint új kezdeti feltételből megyünk t_2 -t a fázistérben.

1.1. ábra. Folyam ábrázolása fázistérben

1.2. Numerikus megoldások

A természetben előforduló valós problémákat leíró differenciálegyenleteknek csak néhány speciális f függvény esetén létezik analitikus megoldásuk. Ez motivál minket arra, hogy differenciálegyenleteket numerikus úton próbáljunk megoldani. A numerikus módszerek vizsgálatakor szokás a Taylor-sorfejtést alkalmazni, amiről az alábbiakban olvashatunk egy rövid összefoglalót.

1.6. Definíció. Tegyük fel, hogy az $f : \mathbb{R}^n \to \mathbb{R}^n$ függvény $x_0 \in \mathbb{R}^n$ pont egy környezetében akárhányszor differenciálható. Ekkor a

$$T_{N,f,x_0}(x) := \sum_{k=0}^{N} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

hozzárendeléssel megadott polinomfüggvényt az f függvény x_0 pont kürüli N-edfokú Taylor-polinomjának, a

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

hatványsort pedig az f függvény x_0 pont körüli Taylor-sorának nevezzük.

1.7. Tétel. (Taylor-formula Lagrange-féle maradéktaggal)

Tegyük fel, hogy az $f : \mathbb{R}^n \to \mathbb{R}^n$ függvény (N+1)-szer differenciálható és analitikus az $x_0 \in \mathbb{R}^n$ pont egy környezetében. Ebben a környezetben fekvő tetszőleges x pontra

$$f(x) = \sum_{k=0}^{N} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(N+1)}(\xi)}{(N+1)!} (x - x_0)^{N+1}$$

teljesül alkalmasan választott $\xi \in (x, x_0)$ elem esetén.

Most pedig térjünk át a numerikus módszerekre, és nézzük át a legfontosabb definíciókat és tételeket. Az (1.1) alakú probléma y(t) megoldását szeretnénk közelíteni. Ehhez választunk egy h > 0 lépésközt, és minden $n \in \mathbb{N}_0$ esetén definiáljuk a $t_n = nh$ időrétegeket, amelyeken a közelítő megoldást számítani fogjuk. A pontos megoldás közelítésére a t_n időrétegen az y_n jelölést alkalmazzuk, azaz $y(nh) \approx y_n$. Az y_n értéket a gyakorlatban leggyakrabban csak az azt megelőző érték segítségével számítják. Ezeket a módszereket egylépéses módszereknek nevezzük. Általános alakjuk az alábbiak szerint írható:

$$y_{n+1} = \Phi_h(t_n, y_n),$$

ahol a Φ_h alakja függ az (1.1) problémában szereplő f függvény alakjától.

1.8. Definíció. Az (1.1) probléma y megoldását közelítő numerikus módszert konzisztensnek nevezzük, ha adott időrétegen a pontos megoldásból indított numerikus módszer eredménye a lépésköz csökkentésével a pontos megoldáshoz tart, azaz

$$\lim_{h \to 0} \|y(t_{n+1}) - \Phi_h(t_n, y(t_n))\| = 0.$$

Továbbá azt mondjuk, hogy a numerikus módszer p-ed rendben konzisztens, ha léteznek olyan $p \in \mathbb{N}, C > 0$ állandók, melyekre teljesül, hogy

$$||y(t_{n+1}) - \Phi_h(t_n, y(t_n))|| \le Ch^{p+1}.$$

1.9. Definíció. Jelölje ω_h a t_n időrétegek halmazát, azaz

$$\omega_h = \{t_n = nh, n \in \mathbb{N}_0\}.$$

Azt mondjuk, hogy a numerikus módszer konvergens a $t \in \omega_h$ pontban, ha $\lim_{h \to 0} ||y(t) - y_n|| = 0 \text{ teljesül minden } nh = t \text{ esetén.}$

1.10. Definíció. A numerikus megoldást stabilnak nevezzük, ha $||y_{n+1}|| \leq ||y_n||$ teljesül minden $n \in \mathbb{N}_0$ esetén.

1.11. Tétel. Ha egy numerikus módszer konzisztens és stabil akkor konvergens is és a konvergencia rendje egybeesik a konzisztencia rendjével.

A konvergenciára vagyunk kíváncsiak, vagyis hogyha finomítjuk a felosztást, akkor pontosabb megoldást kapunk-e. Tehát a konvergencia bizonyításához elengedhetetlenül szükséges a konzisztencia vizsgálata. Valamely rögzített időpontbeli közelítést az egylépéses módszer esetén egy azt megelőző időpontbeli közelítés felhasználásával határozunk meg. 1.12. Példa. (Explicit Euler-módszer)

Az első numerikus módszert Leonhard Euler matematikus dolgozta ki 1768-ban a [10] könyvében. Az Explicit Euler-módszernél Φ_h alakját az alábbiak szerint írhatjuk:

$$\Phi_h(t_n, y_n) = y_n + hf(t_n, y_n).$$

A következőkben megvizsgáljuk az explicit Euler-módszer konzisztencia rendjét:

$$\Phi_h = \mathrm{id} + h \cdot f\varphi_h = \varphi_0 + \left(\frac{\mathrm{d}}{\mathrm{d}h}\varphi_h\right)|_{h=0} \cdot h + \left(\frac{\mathrm{d}^2}{\mathrm{d}h^2}\varphi_h\right)|_{h=0} \cdot \frac{\xi^2}{2}, \ \xi \in [0,h].$$

A pontos megoldásból kivonjuk a kiszámolt numerikus megoldást, amiből azt kapjuk, hogy a módszer előrendben konzisztens.

$$\left\|\varphi_h(y_0) - \Phi_h(y_0)\right\| = \left\|\left(\frac{\mathrm{d}^2}{\mathrm{d}h^2}\varphi_h\right)|_{h=0}\right\| \cdot \frac{\xi^2}{2} \leqslant c \cdot h^2.$$

Ezt a módszert azért nevezik explicitnek, mert a t_n pontbeli érték ismeretéből közvetlenül, csupán egy egyszerű függvény behelyettesítéssel kiszámítható a t_{n+1} pontbeli közelítés.

1.3. Butcher-féle fák

Ebben a fejezetben tárgyalásra kerülő témakör Butcher [4] könyvének és az [5] könyv gondoltamentetét követik.

Az egyszerűség kedvéért az (1.1) helyett vegyünk egy autonóm kezdetiértékfeladatot (olyan speciális alakú elsőrendű egyenletet, amelyeknek a jobb oldalán szereplő függvény nem függ a t független változótól közvetlenül), vagyis:

$$\dot{y} = f(y(t)), \ t > t_0$$

 $y(t_0) = y_0,$
(1.4)

ahol $f: \mathbb{R}^n \to \mathbb{R}^n$ folytonos függvény. Az (1.1) kezdetiérték-feladatot felírhatjuk a fenti formában a $\dot{t} = 1$ segítségével.

Mivel az (1.1) problémában szereplő f függvény $\mathbb{R}^m \to \mathbb{R}^n$ képező függvény (ahol nemautonom esetben m = n + 1, míg autonom esetben m = n), annak k-dik

deriváltja megfeleltethető egy $(\mathbb{R}^m)^k$ -ból a megfelelő terek közötti folytonos lineáris leképezések terébe képező leképezésnek. Ez alapján a követező tagokat írhatjuk:

$$\begin{split} \dot{y} &= f(y) \\ \ddot{y} &= f'(y)\dot{y} \\ y^{(3)} &= f'(y)\ddot{y} + f''(y)(\dot{y},\dot{y}) \\ y^{(4)} &= f'(y)y^{(3)} + f''(y)(\ddot{y},\dot{y}) + f''(y)(\ddot{y},\dot{y}) + f''(y)(\dot{y},\ddot{y}) + f^{(3)}(y)(\dot{y},\dot{y},\dot{y}) = \\ &= f'(y)y^{(3)} + 3f''(y)(\ddot{y},\dot{y}) + f^{(3)}(y)(\dot{y},\dot{y},\dot{y}). \end{split}$$
(1.5)

Minden esetben felhasználva a már előzőleg kiszámolt tagokat a fenti formulában az alábbi, már csak az f függvény deriváltjait tartalmazó alakba rendezhetjük:

$$\dot{y} = f
\ddot{y} = f'f
y^{(3)} = f'f'f + f''(f, f)
y^{(4)} = f'f'f'f + f'f''(f, f) + 3f''(f'f, f) + f'''(f, f, f),$$
(1.6)

ahol az (y) argumentumot nem írjuk ki a továbbiakban. Láthatjuk, hogy már a negyedik derivált is milyen sok és bonyolult tagot tartalmaz, tehát problémát jelentene magasabb renddel foglalkozni ilyen formában. Ezt Butcher is észrevette, és rájött, hogy sokkal egyszerűbb, ha ezeket geometriailag ábrázoljuk. A gráfelméletből jól ismert gyökeres fák lesznek ebben segítségünkre.

Az (1.6) formulában megjelenő kifejezéseket $F(\tau)$ -val jelöljük, és elemi differenciáloknak nevezzük. Ezek mindegyikét egy alkalmas gráf segítségével ábrázolhatjuk a következő szabályok szerint: az f-eket társítjuk a levelekhez, az f'-t olyan csúcshoz, melyből egy él fut ki, az f''-t olyan csúcshoz, melyből két él fut ki, és így tovább, míg az $f^{(k)}$ pedig olyan csúcshoz tartozik, melyből k darab él fut ki felfelé mutatva. Az 1.2 ábrán látható fák az f''(f'f, f) kifejezést szemléltetik, ugyanis ennek az elemi differenciálnak két ekvivalens reprezentációja van, azaz mindegy, hogy az f''-ből jobbra indul az f és balra az f', vagy fordítva. Az 1.3 ábrán láthatunk további példákat.

1.2. ábra. Az $f^{\prime\prime}(f^\prime f,f)$ elemi differenciálnak megfelelő Butcher-fák

A fák csúcsainak száma alapján tudjuk meghatározni az általuk reprezentált kifejezések rendjét, amit az 1.3 ábrán $|\tau|$ jelöl. Tehát az 1.2 ábrán szereplő fák egy negyedrendű kifejezésnek felelnek meg. Az 1.3. ábrán szereplő $\alpha(\tau)$ az együtthatókat jelöli, melyek az (1.6) kifejezésben találhatók.

$ \tau $	gráf	$\alpha(\tau)$	F(au)
1	•	1	f
2	1	1	f'f
3	.V	1	f''(f,f)
3	\rangle	1	f'f'f
4	Y	1	$f^{\prime\prime\prime}(f,f,f)$
4	$\dot{\mathbf{v}}$	3	$f^{\prime\prime}(f^{\prime}f,f)$
4	Ţ	1	f'f''(f,f)
4		1	f'f'f'f

1.3. ábra. Fák, elemi differenciálok, együtthatók

2. fejezet

Operátorszeletelési eljárások vizsgálata

Az operátorszeletelés egy nagyon hatékony eljárás absztrakt Cauchy-feladatok megoldására. Bonyolult problémák egyszerűbb sorozatokra bontásán alapul.

2.1. Operátorszletelések bemutatása

Az operátorszeletelés ötlete teljesen más megközelítésben vizsgálódik, mint a jól ismert Runge–Kutta módszer. Szétbontja a vektorteret integrálható részekre és külön kezeli azokat.

2.1. ábra. Vektortér szétbontása (szeletelése) (ábra forrása: [5])

Tekintsünk egy tetszőleges $\dot{y} = f(y)$ rendszert \mathbb{R}^n -ben. Tegyük fel, hogy az f függvényt az alábbi módon szétválaszthatjuk:

$$f(y) = f_1(y) + f_2(y).$$
(2.1)

Tegyük fel, hogy ismerjük külön az $\dot{y} = f_1(y)$ egyenlet pontos megoldásához tartozó $\varphi_t^{[1]}$ folyamot, és külön az $\dot{y} = f_2(y)$ egyenlet pontos megoldásához tartozó $\varphi_t^{[2]}$ folyamot. Tegyük fel, hogy valamiért az $\dot{y} = f_1(y) + f_2(y)$ egyenlet pontos megoldásához tartozó φ_t -t nem ismerjük. Ilyen esetben nagyon hasznosnak bizonyulnak az ebben a fejezetben bemutatásra kerülő módszerek.

Fontos kihangsúlyozni, hogy a választott numerikus módszerek egymástól eltérőek is lehetnek, hiszen gyakran éppen ez az operátorszeletelés alkalmazásának célja. Nyílvánvalóan a gyakorlatban nem ismerjük a $\varphi_t^{[1]}$ -et és $\varphi_t^{[2]}$ -t, hanem őket is közelíteni kell. Például advekciós-diffúziós egyenlet esetén léteznek olyan numerikus módszerek, melyek jól működnek diffúzióra, és vannak olyanok, amik pedig advekcióra adnak szép eredményt, így a részfeladatokra a nekik legmegfelelőbb numerikus módszert tudjuk alkalmazni, majd belőlük megalkotjuk az eredeti probléma megoldását.

2.1. Definíció. Legyen Φ_h numerikus módszer. Ennek adjungáltja $\Phi_h^* := \Phi_{-h}^{-1}$, azaz az eredeti módszer inverz leképezése ellentétes időlépéssel.

Ha az $\dot{y} = f^{[1]}(y)$ és $\dot{y} = f^{[2]}(y)$ rendszernek $\varphi_t^{[1]}$ és $\varphi_t^{[2]}$ folyamai kiszámíthatók explicit módon, akkor y_0 kezdeti értékkel a rendszerből meghatározzuk a 2.2 ábrán $y_{1/2}$ -del jelölt értéket, majd ennek segítségével a második rendszerből kiszámoljuk y_1 -et. Ezzel pedig megadtunk két numerikus módszert, ahol az egyik adjungáltja a másiknak. Ez az úgynevezett Lie–Trotter módszer, vagy másnéven szekvenciális módszer, melyet a 2.2. ábra szemléltet, és a következő módon tudjuk felírni:

$$\begin{aligned}
\Phi_h^* &:= \varphi_h^{[2]} \circ \varphi_h^{[1]} \\
\Phi_h &:= \varphi_h^{[1]} \circ \varphi_h^{[2]}
\end{aligned}$$
(2.2)

2.2. ábra. Lie–Trotter módszer (ábra forrása: [5])

Taylor-sorfejtés segítségével könnyen belátható, hogy a módszer elsőrendben pontos. Az alábbiakban $\mathcal{O}(h^p)$ jelenti azt a függvényt, amely h^p -vel osztva korlátos marad. Első lépésként az 1.7. Tételt felhasználva h = 0 körüli Taylor-sorfejtéssel közelítjük a numerikus megoldáshoz szükséges $\varphi_h^{[1]}$ -et és $\varphi_h^{[2]}$ -t:

$$\begin{split} \varphi_{h}^{[1]} &= \varphi_{0}^{[1]} + \left(\frac{\mathrm{d}}{\mathrm{d}h}(\varphi_{h}^{[1]})\right)\Big|_{h=0} \cdot h + \left(\frac{\mathrm{d}^{2}}{\mathrm{d}h^{2}}(\varphi_{h}^{[1]})\right)\Big|_{h=0} \cdot \frac{1}{2}h^{2} + \mathcal{O}(h^{3}) = \\ &= \mathrm{id} + f_{1}h + f_{1}'f_{1}h^{2} + \mathcal{O}(h^{3}) \\ \varphi_{h}^{[2]} &= \varphi_{0}^{[2]} + \left(\frac{\mathrm{d}}{\mathrm{d}h}(\varphi_{h}^{[2]})\right)\Big|_{h=0} \cdot h + \left(\frac{\mathrm{d}^{2}}{\mathrm{d}h^{2}}(\varphi_{h}^{[2]})\right)\Big|_{h=0} \cdot \frac{1}{2}h^{2} + \mathcal{O}(h^{3}) = \\ &= \mathrm{id} + f_{2}h + f_{2}'f_{2}h^{2} + \mathcal{O}(h^{3}). \end{split}$$
(2.3)

Most pedig vesszük a kompozíciójukat:

$$\begin{split} \varphi_h^{[1]} \circ \varphi_h^{[2]} &= (\mathrm{id} + f_1 h + \frac{1}{2} f_1' f_1 h^2 + \mathcal{O}(h^3)) \circ (\mathrm{id} + f_2 h + \frac{1}{2} f_2' f_2 h^2 + \mathcal{O}(h^3)) = \\ &= \mathrm{id} \circ (\mathrm{id} + f_2 h + \frac{1}{2} f_2' f_2 h^2 + \mathcal{O}(h^3)) + f_1 h \circ (\mathrm{id} + f_2 h + \frac{1}{2} f_2' f_2 h^2 + \mathcal{O}(h^3)) + \\ &+ \frac{1}{2} f_1' f_1 h^2 \circ (\mathrm{id} + f_2 h + \frac{1}{2} f_2' f_2 h^2 + \mathcal{O}(h^3)). \end{split}$$

A kompozíciók kifejtése identitás körüli Taylor-sorfejtéssel történik. A tagokat másodrendig írjuk, így a hibát is meg tudjuk majd határozni:

$$id + f_2h + \frac{1}{2}f'_2f_2h^2 + hf_1(id) + hf'_1(id)(hf_2 + \mathcal{O}(h^2)) + \\ + \mathcal{O}(h^3) + \frac{1}{2}f'_1f_1h^2(id) + \mathcal{O}(h^3) = \\ = id + f_2h + \frac{1}{2}f'_2f_2h^2 + f_1h + f'_1f_2h^2 + \frac{1}{2}f'_1f_1h^2 + \mathcal{O}(h^3) = \\ = id + (f_1 + f_2)h + \frac{1}{2}(f'_2f_2 + 2f_1f_2 + f'_1f_1)h^2 + \mathcal{O}(h^3).$$

A pontos megoldást hasonló módon számíthatjuk, mint a (2.3) formulában:

$$\phi_{h} = \phi_{0} + \left(\frac{\mathrm{d}}{\mathrm{d}h}(\phi_{h})\right)\Big|_{h=0} \cdot h + \left(\frac{\mathrm{d}^{2}}{\mathrm{d}h^{2}}(\phi_{h})\right)\Big|_{h=0} \cdot \frac{1}{2}h^{2} + \mathcal{O}(h^{3}) = = \mathrm{id} + fh + \frac{1}{2}f'fh^{2} + \mathcal{O}(h^{3}).$$
(2.4)

A módszer pontosságát úgy kaphatjuk meg, hogy a numerikus megoldásból kivonjuk a pontos megoldást. A fejezet elején feltettük, hogy f felírható $f_1 + f_2$ alakban, tehát az alábbi eredményt kapjuk:

$$\begin{aligned} (\varphi_h^{[1]} \circ \varphi_h^{[2]}) - \phi_h &= \mathrm{id} + (f_1 + f_2)h + \frac{1}{2}(f_2'f_2 + 2f_1f_2 + f_1'f_1)h^2 + \mathcal{O}(h^3) - \\ &- (\mathrm{id} + fh + f'fh^2 + \mathcal{O}(h^3)) = \frac{1}{2}(f_2'f_2 + 2f_1f_2 + f_1'f_1)h^2 - f'fh^2 + \mathcal{O}(h^3) = \\ &= (\frac{1}{2}(f_2'f_2 + 2f_1f_2 + f_1'f_1) - (f_1 + f_2)'(f_1 + f_2))h^2 + \mathcal{O}(h^3) = \\ &= (\frac{1}{2}(f_2'f_2 + 2f_1f_2 + f_1'f_1) - (f_1'f_1 + f_1'f_2 + f_2'f_1 + f_2'f_2))h^2 + \mathcal{O}(h^3). \end{aligned}$$

Ebből látszik, hogy a konstansok és a *h*-ban lineáris tagok kiejtik egymást, viszont a h^2 -et tartalmazó tagok megmaradnak. Ha ezt a számolást a módszer adjungáltjával hajtjuk végre, azaz $\varphi_h^{[2]} \circ \varphi_h^{[1]}$ -t vesszük a numerikus módszernek, akkor is ugyanezt az eredményt kapjuk. Tehát a Lie–Trotter módszer mindkét esetben elsőrendű közelítést ad a (2.1) megoldására. Azaz,

$$(\varphi_h^{[1]} \circ \varphi_h^{[2]})(y_0) = \varphi_h(y_0) + \mathcal{O}(h^2),$$
$$(\varphi_h^{[2]} \circ \varphi_h^{[1]})(y_0) = \varphi_h(y_0) + \mathcal{O}(h^2).$$

Továbbá a módszer hibáját is fel tudjuk írni:

$$\left(\frac{1}{2}(f_2'f_2 + 2f_1f_2 + f_1'f_1) - (f_1'f_1 + f_1'f_2 + f_2'f_1 + f_2'f_2)\right)h^2$$

Most lineáris esetben vesszük a módszer hibáját a számolás egyszerűsétésének céljából, azonban a kívánt eredményt így is megkapjuk. Legyen $f_1 = f'_1 = A$, $f_2 = f'_2 = B$, ekkor a hiba A és B kommutátora lesz:

$$\left(\frac{1}{2}(B^2 + 2AB + A^2) - (A^2 + AB + BA + B^2)\right)h^2 = (AB - BA)h^2.$$
(2.5)

Egy másik operátorszeletelési eljárás az úgynevezett Strang–Marchuk módszer, melyet a 2.3. ábrán láthatunk, és az alábbi módon írhatunk fel:

$$\Phi_{h}^{[S]} = \varphi_{h/2}^{[1]} \circ \varphi_{h}^{[2]} \circ \varphi_{h/2}^{[1]}.$$

2.3. ábra. Strang–Marchuk módszer (ábra forása: [5])

Vegyük észre, hogy a Strang–Marchuk operátorszeletelés a Lie–Trotter módszernek és annak az adjungáltjának a kompozíciója feles lépésközzel:

$$\Phi_{h}^{[S]} := \Phi_{h/2} \circ \Phi_{h/2}^{*} = (\varphi_{h/2}^{[1]} \circ \varphi_{h/2}^{[2]}) \circ (\varphi_{-h/2}^{[1]} \circ \varphi_{-h/2}^{[2]})^{-1} =
= (\varphi_{h/2}^{[1]} \circ \varphi_{h/2}^{[2]}) \circ ((\varphi_{-h/2})^{-1} \circ (\varphi_{-h/2})^{-1}) =
= \varphi_{h/2}^{[1]} \circ \varphi_{h/2}^{[2]} \circ \varphi_{h/2}^{[2]} \circ \varphi_{h/2}^{[1]} = \varphi_{h/2}^{[1]} \circ \varphi_{h}^{[2]} \circ \varphi_{h/2}^{[1]}.$$
(2.6)

Így megmutattuk, hogy a felírt Strang–Marchuk módszer megadható a Lie–Trotter módszer és annak adjungáltja segítségével.

A Strang–Marchuk módszer rendjének meghatározásához a (2.3) Taylor-sorfejtést ismét felhasználjuk, azonban harmadrendig fejtjük ki, és az ott lévő $\varphi_h^{[1]}$ -et $\frac{1}{2}$ lépésközzel vesszük, majd a kompozíciójuk felírása következik. Az alábbi jelölések bevezetése a számolás megkönnyítésére szolgál:

Legyen
$$a = \left(\operatorname{id} + \frac{1}{2} f_1 h + \frac{1}{8} f_1' f_1 h^2 + \frac{1}{48} (f_1'' f_1^2 + (f_1')^2 f_1) h^3 + \mathcal{O}(h^4) \right).$$

Legyen $b = \left(\operatorname{id} + f_2 h + \frac{1}{2} f_2' f_2 h^2 + \frac{1}{6} (f_2'' f_2^2 + (f_2')^2 f_2) h^3 + \mathcal{O}(h^4) \right).$
Legyen $c = \left(\operatorname{id} + \frac{1}{2} f_1 h + \frac{1}{8} f_1' f_1 h^2 + \frac{1}{48} (f_1'' f_1^2 + (f_1')^2 f_1) h^3 + \mathcal{O}(h^4) \right).$

A numerikus módszer rendjének meghatározásához $a \circ b \circ c$ kompozíciót kell kiszámonunk, majd Taylor-sorba fejtenünk az identitás függvény körül. A következőkben csak másodrendig fejtjük a tagokat, mivel arra vagyunk kíváncsiak, hogy a négyzetes tagok kiejtik-e egymást. Első lépésben számoljuk ki $a \circ b$ -t:

$$id \circ \left(id + f_2h + \frac{1}{2}f'_2f_2h^2 + \frac{1}{6}(f''_2f_2^2 + (f'_2)^2f_2)h^3 + \mathcal{O}(h^4) \right) + + \frac{1}{2}f_1h \circ \left(id + f_2h + \frac{1}{2}f'_2f_2h^2 + \frac{1}{6}(f''_2f_2^2 + (f'_2)^2f_2)h^3 + \mathcal{O}(h^4) \right) + + \frac{1}{8}f'_1f_1h^2 \circ \left(id + f_2h + \frac{1}{2}f'_2f_2h^2 + \frac{1}{6}(f''_2f_2^2 + (f'_2)^2f_2)h^3 + \mathcal{O}(h^4) \right) = = id + f_2h + \frac{1}{2}f'_2f_2h^2 + \frac{1}{2}hf_1(id) + \frac{1}{2}hf'_1(id)\left(hf_2 + \frac{1}{2}f'_2f_2h^2 + \mathcal{O}(h^3)\right) + + \frac{1}{8}h^2f'_1f_1(id).$$

Második lépés, hogy meghatározzuk $(a \circ b) \circ c\text{-t:}$

$$\begin{split} \mathrm{id} &+ \frac{1}{2} f_1 h + \frac{1}{8} f_1' f_1 h^2 + h f_2(\mathrm{id}) + h f_2'(\mathrm{id}) (\frac{1}{2} f_1 h) + \frac{1}{2} h^2 f_2' f_2(\mathrm{id}) + \frac{1}{2} f_1 h(\mathrm{id}) + \\ &+ \frac{1}{2} h f_1'(\mathrm{id}) (\frac{1}{2} f_1 h) + \frac{1}{2} h^2 f_1' f_2(\mathrm{id}) + \frac{1}{8} h^2 f_1' f_1(\mathrm{id}) + \mathcal{O}(h^3). \end{split}$$

A kompozíciók kifejtéséből az alábbi eredményt kapjuk:

$$\begin{split} &\mathrm{id} + \frac{1}{2}f_1h + \frac{1}{8}f_1'f_1h^2 + f_2h + \frac{1}{2}f_2'f_1h^2 + \frac{1}{2}f_2'f_2h^2 + \frac{1}{2}f_1h + \frac{1}{4}f_1'f_1h^2 + \frac{1}{2}f_1'f_2h^2 + \\ &+ \frac{1}{8}f_1'f_1h^2 + \mathcal{O}(h^3). \end{split}$$

Végül összevonjuk az elsőrendű és másodrendű tagokat:

$$\mathrm{id} + \left(\frac{1}{2}f_1 + f_2 + \frac{1}{2}f_1\right)h + \left(\frac{1}{8}f_1'f_1 + \frac{1}{2}f_2'f_1 + \frac{1}{2}f_2'f_2 + \frac{1}{4}f_1'f_1 + \frac{1}{2}f_1'f_2 + \frac{1}{8}f_1'f_1\right)h^2.$$

A lineáris esetet vesszük, az előző eredményekkel, mert így leegyszerűsödik a számolás, azonban a kívánt eredményt így is megkapjuk, ahogyan azt már a Lie-Trotter módszernél is láthattuk a (2.5)-ben. Legyen $f_1 = f'_1 = A$, $f_2 = f'_2 = B$:

$$id + (A+B)h + \left(\frac{1}{8}A^2 + \frac{1}{2}BA + \frac{1}{2}B^2 + \frac{1}{4}A^2 + \frac{1}{2}AB + \frac{1}{8}A^2\right) = = id + (A+B)h + \left(\frac{1}{2}A^2 + AB + \frac{1}{2}B^2\right)h^2.$$

A pontos megoldás, amit a (2.4)-ben számoltunk, az alábbiak szerint átalakul:

$$\phi_h = \mathrm{id} + fh + f'fh^2 + \mathcal{O}(h^3) = \mathrm{id} + (A+B)h + \frac{1}{2}(A+B)^2h^2 + \mathcal{O}(h^3).$$

Hasonló módon, mint ahogyan azt a Lie–Trotter eljárásnál csináltuk, a rend meghatározásához ki kell vonnunk a pontos megoldást a numerikusból:

$$(\varphi_{h/2}^{[1]} \circ \varphi_h^{[2]} \circ \varphi_{h/2}^{[1]}) - \phi_h = \mathrm{id} + (A+B)h + (\frac{1}{2}A^2 + AB + \frac{1}{2}B^2)h^2 + \mathcal{O}(h^3) + -\mathrm{id} + (A+B)h + \frac{1}{2}(A+B)^2h^2 + \mathcal{O}(h^3) = \mathcal{O}(h^3).$$

Láthatjuk, hogy másodrendig kiejtik egymást a tagok, tehát a Strang–Marchuk módszer másodrendben konzisztens.

$$(\varphi_{h/2}^{[1]} \circ \varphi_h^{[2]} \circ \varphi_{h/2}^{[1]})(y_0) = \varphi_h(y_0) + \mathcal{O}(h^3).$$

Megjegyezzük, hogy a fent említett két szeletelési eljáráson kívűl még számos más,

sikeresen alkalmazott eljárás is létezik.

Láttuk, hogy már $y : \mathbb{R} \to \mathbb{R}$ esetben is bonyolult tagokat kaptunk a módszerek rendjének vizsgálatakor, azonban $y : \mathbb{R} \to \mathbb{R}^n$ esetben még tovább bonyolódnak, és operátorszeletelésnél nem csak f-ek – ahogyan ezt az (1.6)-ban láttuk–, hanem f_1 ek és f_2 -k is szerepelnek bennük. Ebben az esetben is jelentősen leegyszerűsíthető a felírásuk, hasonló módon, mint ahogyan az 1.3 alfejezetben, csak most a fák csúcsait színezni kell.

Nézzünk erre két egyszerű példát. Jelölje f_1 -et fekete csúcs (•), f_2 -t fehér csúcs (\circ).

2.4. ábra. Színezett fák

A 2.4a ábrán szereplő színezett fa az $f_1'''(f_2, f_1, f_1''(f_2, f_2))$ elemi differenciálnak felel meg. Mivel f_1''' szerepel az elején, ezért három él fut fel a fekete gyökérből. A zárójelben lévő első f_2 -t jelöli a bal oldali fekete csúcs, f_1 -et pedig a középső fehér. Ezekhez nem tartozik más, ezért belőlük már nem fut ki több él. A jobb oldali fekete csúcs az f_1'' -t ábrázolja, amihez két f_2 tartozik, amiket az ebből kifutó további két fehér csúcs jelöl.

A 2.4b ábrán lévő fa az $f_1''(f_1, f_2'f_1''(f_2, f_2))$ elemi differenciál színezett Butcher-fája. Az f_1'' a fa fekete gyökerének felel meg, amiből balra az f_1 -et jelölő fekete csúcsba fut él, jobbra pedig az f_2' -be, amiből f_1'' -be, ahonnan pedig további két f_2 -be futnak élek. A Strang–Marchuk módszert általánosíthatjuk a következő módon:

$$\Psi_h = \Phi_{\alpha_s h} \circ \Phi^*_{\beta_s h} \circ \dots \circ \Phi_{\alpha_2 h} \circ \Phi^*_{\beta_2 h} \circ \Phi_{\alpha_1 h} \circ \Phi^*_{\beta_1 h}, \qquad (2.7)$$

ahol Φ adott numerikus módszer, Φ^* pedig annak adjungáltja. Φ -vel és
 Φ^* -gal összesen h-t lépünk, azaz

$$\sum_{j=1}^{s} (\alpha_j + \beta_j) = 1,$$

de felosztjuk $\alpha_j h$ és $\beta_j h$ részekre, ahol $\alpha_j \in [0, \frac{1}{2}], \beta_j \in [0, \frac{1}{2}], j = 1, 2, ..., s$. A (2.6) levezetésben láthattuk, hogyan írható fel a Strang–Marchuk módszer a Lie–Trotter módszer, és annak adjungáltja segítségével úgy, hogy mindkettőt $\frac{1}{2}$ -es lépésközzel vettük. Az általános formulában hasonló módon járunk el, mint ahogyan azt a 2.3 ábán láthattuk, annyi különbséggel, hogy most y_0 és y_1 pont között többször lépünk és kisebbeket.

Ha a Lie–Trotter módszert és annak adjungáltját helyettesítjük be a (2.7) kifejezésbe, akkor a következő általános operátorszeletelési eljárást kapjuk eredményül:

$$\Psi_{h} = \varphi_{a_{s+1}h}^{[1]} \circ \varphi_{b_{s}h}^{[2]} \circ \varphi_{a_{s}h}^{[1]} \circ \dots \circ \varphi_{b_{2}h}^{[2]} \circ \varphi_{a_{2}h}^{[1]} \circ \varphi_{b_{1}h}^{[2]} \circ \varphi_{a_{1}h}^{[1]}, \qquad (2.8)$$

ahol

$$b_i = \alpha_i + \beta_i \quad \text{és} \quad a_i = \alpha_{i-1} + \beta_i \tag{2.9}$$

a következő konvenciókkal: $\alpha_0 = 0$ és $\beta_{s+1} = 0$. Könnyen látható, hogy a (2.7)-ből valóban megkapjuk a Lie–Trotter módszer felhasználásával a (2.8) operátorszeletelési eljárást. A (2.6)-os össefüggések alapján a következő módon fejtjük ki az a_i és b_i együtthatókat α és β segítségével:

$$a_1 = \alpha_0 + \beta_1 = \beta_1$$

$$b_1 = \alpha_1 + \beta_1$$

$$a_2 = \alpha_1 + \beta_2$$

$$b_2 = \alpha_2 + \beta_2$$

$$\vdots$$

$$a_s = \alpha_{s-1} + \beta_s$$

$$b_s = \alpha_s + \beta_s$$

$$a_{s+1} = \alpha_s + \beta_{s+1} = \alpha_s.$$

Behelyettesítjük ezeket a (2.8) egyenletben felírt módszerbe:

$$\Psi_h = \varphi_{\alpha_s h}^{[1]} \circ \varphi_{(\alpha_s + \beta_s)h}^{[2]} \circ \varphi_{(\alpha_{s-1} + \beta_s)h}^{[1]} \circ \ldots \circ \varphi_{(\alpha_2 + \beta_2)h}^{[2]} \circ \varphi_{(\alpha_1 + \beta_2)h}^{[1]} \circ \varphi_{(\alpha_1 + \beta_1)h}^{[2]} \circ \varphi_{\beta_1 h}^{[1]}.$$

A kompozíció egyes tagjainak kibontásához felhasználjuk az (1.3) tulajdonságot, hiszen a végeredmény szempontjából teljesen mindegy, hogy először α_s vagy β_s lépésközt haladunk, ha összességében $\alpha_s + \beta_s$ távolságot kell megtennünk:

$$\Psi_{h} = \varphi_{\alpha_{s}h}^{[1]} \circ \varphi_{\alpha_{s}h}^{[2]} \circ \varphi_{\beta_{s}h}^{[2]} \circ \varphi_{\beta_{s}h}^{[1]} \circ \dots \circ \varphi_{\beta_{2}h}^{[2]} \circ \varphi_{\beta_{2}h}^{[1]} \circ \varphi_{\alpha_{1}h}^{[1]} \circ \varphi_{\alpha_{1}h}^{[2]} \circ \varphi_{\beta_{1}h}^{[2]} \circ \varphi_{\beta_{1}h}^{[1]}.$$

Itt pedig már egyértelműen látszik a (2.2) felírás alapján, hogy a (2.8) operátorszeletelési eljárás speciális esete a (2.7) kompozíciónak.

Ha numerikus módszerek rendjével foglalkozunk, felírjuk a Taylor-sorát a pontos megoldásnak, valamint felírjuk a Taylor-sorát a numerikus megoldásnak is, és ha azt akarjuk, hogy az első p tag megegyezzen, akkor ahhoz p feltételre lesz szükségünk. Rendfeltételek kompozíciós módszerekre harmadrendig:

Első rend:
$$\sum_{k=1}^{s} (\alpha_k + \beta_k) = 1$$

Második rend:
$$\sum_{k=1}^{s} (\alpha_k^2 - \beta_k^2) = 0$$
 (2.10)
Harmadik rend:
$$\sum_{k=1}^{s} (\alpha_k^3 + \beta_k^3) = 0$$

2.2. Tétel. Ha az operátorszeletelési módszer rendje nagyobb vagy egyenlő, mint 3, általános f_1 -re és f_2 -re, akkor az a_i számok közül legalább egy, és a b_i számok közül is legalább egy szigorúan negatív.

Bizonyítás. Harmadrendre vonatkozó feltételek a (2.10) alapján:

$$\sum_{k=1}^{s} (\alpha_k^3 + \beta_k^3) = 0, \quad \text{vagy mashogy:} \quad \sum_{k=1}^{s+1} (\alpha_{k-1}^3 + \beta_k^3) = 0$$

A bal oldali kifejezés megegyezik a jobb oldalival, ugyanis $\alpha_0 = 0$ és $\beta_{s+1} = 0$, ahogy azt a (2.9)-ben bevezettük. Tudjuk, hogy ha $x^3 + y^3 < 0$, akkor x + y < 0. Ezt alkalmazzuk a harmadrendre vonatkozó feltételeinkre, majd összevetjük a (2.9) formulával.

Ha $\alpha_i^3 + \beta_i^3 < 0$, akkor $\alpha_i + \beta_i < 0$, ahol $\alpha_i + \beta_i = b_i < 0$.

Ha $\alpha_{i-1}^3 + \beta_i^3 < 0$, akkor $\alpha_{i-1} + \beta_i < 0$, ahol $\alpha_{i-1} + \beta_i = a_i < 0$.

A 2.5. ábra szemlélteti a negatív lépéseket. Nyílvánvaló, hogy $\alpha_k = \beta_k = 0 \quad \forall k = 1, \ldots, s$ esetén egy helyben maradunk, hiszen ha megnézzük a (2.7) formulát, láthatjuk, hogy h együtthatói nullák lesznek, tehát nem lépünk a módszerrel.

2.5. ábra. Negatív lépések szemléltetése

3. fejezet

Alkalmazás

Ebben a fejezetben megvizsgáljuk, hogyan lehet modellezni a matematikai inga mozgását. Tekintsük a 3.1. ábrán látható modellt, ahol l > 0 hosszúságú, elhanyagolható tömegű fonal egyik végét felfüggesztjük, a másik végére pedig egy kisméretű, m > 0 tömegű testet helyezünk. A modell felállítása során a gravitációs erőt és a közegellenállást vesszük figyelembe.

3.1. ábra. Matematikai inga mozgása közegben. Az ábrán jelölve az ingára ható erők és az inga sebessége.

A differenciálegyenlet felírásához Newton II. törvényét használjuk, miszerint:

$$F = ma_{\pm}$$

ahol F a testre ható erők összege, m a test tömege, a pedig a gyorsulása. Figyelembe véve a gravitációs erőt és a közegellenállást a 3.1. ábrának megfelelően, az inga kitérését leíró mozgásegyenlet a következő alakot ölti:

$$ml\ddot{\varphi} = -mg\sin\varphi - k\dot{\varphi},\tag{3.1}$$

ahol l az inga hossza, g a gravitációs gyorsulás, k pedig a közegellenállási együttható. Rendezve a (3.1) egyenletet, és bevezetve a $\mu = \frac{k}{ml}$ jelölést, az alábbi differenciálegyenletet kapjuk:

$$\ddot{\varphi}(t) = -\frac{g}{l}\sin\varphi(t) - \mu\dot{\varphi}(t).$$
(3.2)

Első lépésként az 1.3. Tételnek megfelelő módon átalakítjuk a (3.2) másodrendű differenciálegyenletet egy kétismeretlenes elsőrendű differenciálegyenlet-rendszerré:

$$\dot{\varphi} = \omega$$

$$\dot{\omega} = -\frac{g}{l}\sin\varphi - \mu\omega,$$
(3.3)

ahol bevezettük az ω szögsebességet.

A továbbiakban a (3.3) differenciálegyenlet-rendszert fogjuk vizsgálni két numerikus módszerrel is. Az egyik az Explicit-Euler módszer, melyet az 1.12. Példában ismertettünk, és a függelékben található kód is ez alapján készült. A másik a szekvenciális operátorszeletelési eljárás Explicit-Euler módszerrel, mellyel a 2.1. fejezetben ismerkedtünk meg. Ehhez azonban először érdemes a következő jelöléseket bevezetnünk: a továbbiakban a φ szögkitérést, és az ω szögsebességet az alábbi módon egy vektorba foglaljuk:

$$y(t) = \begin{pmatrix} \varphi(t) \\ \omega(t) \end{pmatrix},$$

abol $y : \mathbb{R} \to \mathbb{R}^2$.

Ennek segítségével az inga mozgását leíró egyenletet az alábbi alakban írhatjuk:

$$\dot{y} = f_1(y) + f_2(y).$$

Láthatjuk, hogy ez az alak megegyezik a (2.1)-ban lévő alakkal. Ezért $f_1(y)$ -t és $f_2(y)$ -t a következő módon definiáljuk:

$$f_1(y) = \begin{pmatrix} \omega \\ -\frac{g}{l}\sin\varphi \end{pmatrix}, \qquad f_2(y) = \begin{pmatrix} 0 \\ -\mu\omega \end{pmatrix}$$

Ily módon a mozgást leíró differenciálegyenletet két operátor összegére bontottuk fel. Ezek segítségével $f_1(y)$ a csillapítatlan mozgást végző ingához tartozó tag, $f_2(y)$ pedig a közegellenállással kapcsolatos tagot tartalmazza.

A függelékben közölt A.1 és A.2 kódok segítségével megoldottuk az egyenleteteket. Ezekhez a megoldásokhoz tartozó fázisteret találjuk a 3.2. ábrán. A vártaknak megfelelően láthatjuk, hogy a közegellenállás miatt a trajektóriák az origóhoz tartanak. Ugyanis az origó jelenti a $\varphi = 0, \omega = 0$ állapotot, amikor az inga nyugalomban van, és nyílvánvalóan csillapított esetben a mozgás ehhez az állapothoz tart.

3.2. ábra. Csillapított inga fázistere. Kezdőfeltételek: $[\varphi_0,\omega_0]=[1,1.77],\,\mu=0.1$

Szemmel látható különbség ebben az esetben nincs a két módszer között. Épp ezért érdemes a két megoldás különbségét vizsgálnunk. E célból a szögsebességek különbségét ábrázoltuk a kitérések különbségének függvényében és láthatjuk, hogy valóban a két módszer közötti különbség 3 nagyságrenddel kisebb. Természetesen ezt vártuk, hiszem mindkét módszer nullához tart, így a kettő különbsége is.

3.3. ábra. Megoldások különbsége

A 3.4. ábrán különböző kezdőfeltételek mellett láthatjuk a fázisteret. Az origóhoz közel eső kezdeti feltételből indított inga trajektóriája ellipszis, ami a csillapított harmanikus rezgőmozgás trajetóriájának felel meg közelítőleg, ugyanis ilyen feltételek mellett a mozgásegyenletekben sin $\varphi \approx \varphi$. Különböző kezdőfeltételekből indítjuk őket, azaz különböző sebességgel, de mindegyiket ugyanabból a szögből. Az origótól távol eső kezdőfeltételből indított inga átfordul.

3.4. ábra. Csillapított inga fázistere több kezdőfeltételből indítva

A 3.5. ábra bal oldalán az energiát határoztuk meg az idő függvényében két különböző módszer segítségével. A kék vonal mutatja a szeletelés nélküli Explicit-Euler módszer eredményeit, a piros szaggatott vonal pedig a szekvenciális szeleteléssel alkalmazott Explicit-Euler módszer eredményeit. A közegellenállás nulla volt, ezért azt várjuk, hogy azonosak legyenek. A jobb oldalon lévő ábrán az Explicit-Eulerből és a szekvenciális módszerből számolt energiák különbségeit ábrázoljuk az idő függvényében, és láthatjuk valóban nulla.

3.5. ábra. Energia közegellenállás nélkül

Végül a 3.6. ábrán meghatároztuk csillapított esetben az energiát az idő függvényében. A kék vonal jelöli a szeletelés nélküli Explicit-Euler módszer eredményeit, a piros szaggatott vonal pedig a szekvenciális szeleteléssel alkalmazott Explicit-Euler módszer eredményeit. Látjuk, hogy az energia csökken az idő függvényében, ahogyan azt vártuk tőle.

3.6. ábra. Energia csillapított esetben

Összefoglalás

Dolgozatomban a közönséges differenciálegyenletek numerikus megoldásával foglalkoztam. Első lépésként áttekintettünk néhány alapdefiníciót és tételt, amiket a későbbi munka során felhasználtunk. Példaként bemutatásra került az explicit Euler módszer, melyből megmutattuk, hogy első rendben konzisztens.

Ezt követően betekintést nyertünk a Butcher-féle fák világába, melyek megkönnyítik a numerikus módszerek rendjének felírását és vizsgálatát, és pár egyszerűbb példán láthattuk a deriváltakban szereplő kifejezések geometriai szemléltetését.

A szakdolgozatom fő fejezete ezek után következett. Megismerkedtünk az úgynevezett operátorszeletelési numerikus eljárással, melynek lényege abban rejlett, hogy az $\dot{y} = f(y)$ rendszert átalakítottuk $\dot{y} = f_1(y) + f_2(y)$ -ra. Ha azzal a feltételezéssel élünk, hogy f_1 és f_2 folyamát $\varphi_t^{[1]}$ -et és $\varphi_t^{[2]}$ -t külön ismerjük, akkor bonyolult és összetett feladatok megoldásáról is lesz információnk. Beláttuk, hogy az első módszer, a Lie–Trotter eljárás elsőrendben konzisztens, a Strang–Marchuk módszer pedig másodrendben. A bonyolult differenciálegyenletek leegyszerűsítésén kívűl egy másik nagy előnye az operátorszeletelésnek az átlátható leprogramozása, ami miatt nagy modellekben előszeretettel használják. Azonban a hátrányáról sem szabad megfeledkeznünk, ami a szeletelési hiba.

Végezetül pedig a csillapított matematikai inga mozgását vizsgáltuk a dolgozatban bemutatott Explicit-Euler módszer és a szekvenciális szeleteléssel alkalmazott Explicit-Euler módszer segítségével.

A. függelék

A dolgozat során használt Matlab programkódok

A.1. Explicit-Euler módszerhez tartozó kód

```
1 function [t,y,E] = Euler(t0,y0,h,N,alpha)
2
      y=zeros(N,2);
3
       y(1,:) = y0;
4
      t=zeros(1,N);
\mathbf{5}
      t(1)=t0;
6
      E=zeros(1,N);
\overline{7}
       E(1) = 0.5 * y0(2)^2 - cos(y0(1));
8
       for i = 2:N
9
           y(i,:) = y(i-1,:) + h*Novekmeny(y(i-1,:),alpha);
10
           t(i) = t(i-1) + h;
11
           E(i) = 0.5 * y(i,2)^2 - \cos(y(i,1));
12
       end
13
14
15 end
16 %% A novekmeny fuggveny
17 function dy = Novekmeny(y,alpha)
```

```
function[t,y,E] = Splitting(t0,y0,h,N,alpha)
1
2
       t = zeros(N, 1);
3
       y = zeros(N, 2);
^{4}
       yhalf=zeros(N-1,2);
5
       t(1) = t0;
6
       y(1,:) = y0;
\overline{7}
8
       E=zeros(1,N);
9
       E(1) = 0.5 * y0(2)^2 - cos(y0(1));
10
11
       for i=2:N
12
           yhalf(i-1,:) = y(i-1,:) + h*Novekmeny1(y(i-1,:));
13
           y(i,:) = yhalf(i-1,:) + h*Novekmeny2(yhalf(i-1,:),alpha);
14
           t(i) = t(i-1) + h;
15
           E(i) = 0.5 * y(i, 2)^2 - \cos(y(i, 1));
16
       end
17
18
19 end
20
21 %% Az elso novekmeny fuggveny
22 function dy1 = Novekmeny1(y)
       dy1 = zeros(1, 2);
23
       dy1(1) = y(2);
24
       dy1(2) = -sin(y(1));
25
26 end
27 %% A masodik novekmeny fuggveny
28 function dy2 = Novekmeny2(y,alpha)
       dy2 = zeros(1,2);
29
       dy2(1) = 0.0;
30
       dy2(2) = -alpha*y(2); % kozegellenallas;
31
32 end
```

A.3. Ábrák elkészítéséhez használt kód

```
1 function figures(alpha,YorE)
2
3 %% alpha = kozegellenallasi egyutthao (nemnegativ szam)
4 %% YorE = megoldasok vagy energiak ("Y" vagy "E")
5
   t0 = 0.0;
6
   h = 0.001;
\overline{7}
    axismax = 5;
8
9
10 %Kezdofeltetel
    Y = [1, 1.77];
11
    N = 50000;
12
13
14 %Kezdofeltetelek
   %Y = [1,0;1,0.5;1,1;1,1.5;1,1.7;1,1.75;1,1.78;1,1.8;1,1.9;1,2];
15
   %N = 7000;
16
17
    for j=1:size(Y,1)
18
19
    y0 = Y(j,:);
20
21
22
     [t,y_Euler,E_Euler] = Euler(t0,y0,h,N,alpha);
     [t,y_Spl,E_Spl] = Splitting(t0,y0,h,N,alpha);
23
24
     if YorE=='Y'
25
26
      subplot (1,2,1)
27
      plot(y_Euler(:,1),y_Euler(:,2),'linestyle','-',...
28
      'color', 'b', 'linewidth',1)
29
      title('Szeleteles nelkul')
30
      axis([-axismax, axismax, -axismax, axismax])
31
      xlabel('szog')
32
      ylabel('sebesseg')
33
34
      hold on
35
```

```
36
37
      subplot(1,2,2)
      plot(y_Spl(:,1),y_Spl(:,2),'linestyle','-','color',...
38
      'r', 'linewidth',1)
39
      title('Szekvencialis szeletelessel')
40
      axis([-axismax, axismax, -axismax, axismax])
41
      xlabel('szog')
42
      ylabel('sebesseg')
43
44
      hold on
45
46
      figure
47
48
      plot(y_Euler(:,1)-y_Spl(:,1),y_Euler(:,2)-y_Spl(:,2))
49
     else %% azaz YorE = "E"
50
51
      subplot(1,2,1)
52
      plot(t,E_Euler, 'b-', 'linewidth',2)
53
      hold on
54
      plot(t,E_Spl,'r-','linewidth',2)
55
      title('Energia szeletelessel es nelkule')
56
      xlabel('ido')
57
      ylabel('energia')
58
59
      hold on
60
61
      subplot(1,2,2)
62
      plot(t,E_Euler-E_Spl,'k-','linewidth',2)
63
      title('Energia ertekek kulonbsege')
64
      xlabel('ido')
65
      ylabel('energia')
66
67
     hold on
68
69
     end
70
    end
71
   hold off
72
73 end
```

Irodalomjegyzék

- Simon L. Péter és Tóth János. Differenciegyenletek/Bevezetés az elméletbe és az alkalmazásokba. Typotex Kft, 2005.
- [2] Simon L. Péter. Differenciálegyenletek előadásjegyzet. 2017. tavasz.
- [3] Faragó István. Alkalmazott analízis 2 előadásjegyzet. 2018. ősz.
- [4] John Charles Butcher and Nicolette Goodwin. *Numerical methods for ordinary differential equations*, volume 2. Wiley Online Library, 2008.
- [5] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, volume 31. Springer Science & Business Media, 2006.
- [6] KA Bagrinovskii and SK Godunov. Difference methods for multidimensional problems. In Dokl. Akad. Nauk SSSR, volume 115, pages 131–133, 1957.
- [7] Faragó István. Operátorszeletelési eljárások és vizsgálatuk. 2009.
- [8] Tasnádi Péter Bérces György és Skrapits Lajos. Mechanika i. általános fizika,
 i. 1. Dialóg Campus, Budapest, 103, 2004.
- [9] Csomós Petra. Folytonos modellezés előadásjegyzet. 2018. tavasz.
- [10] Leonhard Euler. Institutionum calculi integralis volumen primum... 1768.