
Algebraic Coding Theory

Degree Thesis

BY
Brickner Ferenc Péter

BSc Mathematics

Mathematical Analyst Specialization

Supervisor: Kiss Emil

Head of Department

Department of Algebra and Number Theory
Eötvös Loránd University, Faculty of Science

Budapest
2019

Acknowledgement

I would like to very strongly emphasize the tremendous amount of help that I have been given
by Kiss Emil. Without his conspicuous contribution this work could not have been �nished that
well. He was not only an excellent supervisor, but an outstanding mentor as well.

Additionally, everyone needs to be given credit who contributed to the obtainment of my capa-
blilites throughout my journey. I am indeed enormously grateful for every bit of knowledge that
I was capable of acquiring because of those individuals.

2

Contents

1 Introduction 6

2 Fundamental concepts, general discussion about codes 7

2.1 Fields, Matrices, Polynomials . 7

2.1.1 Fields . 7

2.1.2 Exponentiation over �elds . 10

2.1.3 Absolute value function over a �eld . 11

2.1.4 Matrices . 12

2.1.5 Determinant . 14

2.1.6 Vandermonde matrices and Vandermonde determinants 15

2.1.7 Polynomials over a �eld . 16

2.1.8 The fundamental theorem of algebra . 17

2.2 Vector Spaces . 18

2.2.1 De�nition and elementary properties . 18

2.2.2 Subspaces . 21

2.2.3 Generating system, basis, dimension . 21

2.2.4 Linear independence and rank . 22

2.2.5 Linear maps . 23

2.2.6 Linear span . 25

2.2.7 Bilinear maps, scalar product . 25

2.2.8 Norms and normed vector spaces . 26

2.3 Finite Fields and Finite Vector spaces . 27

2.3.1 De�nition and some easy examples . 27

2.3.2 Prime numbers, number of elements in a �nite �eld 28

2.3.3 Multiplicative order, primitive elements 29

2.3.4 Construction of Fpk from polynomials . 30

2.3.5 The Fp �eld . 30

2.4 Codes, Examples . 31

2.4.1 Repetition codes . 32

2.5 Hamming distance, weight, errors, and some basic consequences 32

2.5.1 Metric spaces . 32

2.5.2 Hamming distance, minimal distance, Hamming weight, weight of codes . 34

2.5.3 Connection with metric spaces and normed vector spaces 36

2.5.4 Spheres, error-detecting and error-correcting 39

2.5.5 Hamming bound and Singleton bound . 41

3

2.5.6 Understanding Hamming and Singleton bounds, the concept of perfect codes 42

2.6 Linear codes, generator matrices, controll matrices, dual codes 43

2.6.1 Linear codes, generator matrices, controll matrices 43

2.6.2 Weight and distance of linear codes . 43

2.6.3 Dual and self-dual codes . 44

2.6.4 Connection between distance and linear independence 47

2.6.5 Parameters of a speci�c family of codes 47

2.7 Standard form, code parameters, equivalence of codes 48

2.8 Polinomials and Codes . 49

2.9 Cyclic Codes . 50

2.9.1 Cyclic shift . 50

2.9.2 Connection between cyclic codes and polynomials 51

2.9.3 Examples, connection with repetition codes 52

3 Reed-Muller Codes 54

3.1 Recursive de�nition, examples, some elementary attributes 54

3.1.1 Recursive de�nition and examples for x=1 54

3.1.2 Parameters of Reed-Muller codes for x=1, weight of codewords 56

3.1.3 Higher order Reed-Muller codes . 56

3.1.4 Parameters of higher order Reed-Muller codes and connection with bino-
mial coe�icients . 57

3.2 Generator matrices and duals of Reed-Muller codes 58

3.2.1 Recursive construction of generator matrices 58

3.2.2 Duals of Reed-Muller codes . 59

3.3 Reed Decoding . 59

3.4 Decoding with Hadamard Matrices, relationship with Kronecker Product 61

3.4.1 Introduction to Kronecker product . 61

3.4.2 Kronecker product for more variables . 62

3.4.3 Hadamard matrices . 63

3.4.4 Size of Hadamard matrices . 64

3.4.5 Construction of larger Hadamard matrices 65

3.4.6 The decoding algorithm . 67

3.4.7 Introduction to Conference matrices . 68

3.4.8 Constructing Hadamard matrices of higher orders with conference matrices 69

3.4.9 Conference matrices of higher order . 70

3.5 Relationship with �nite geometry . 71

3.6 Reed-Muller codes and multilinear polynomials 72

4

4 Generalized Reed-Muller Codes 75

4.1 De�nition, examples, fundalemtal properties . 75

4.2 Complex numbers . 75

4.2.1 Possible conceptualizations . 76

4.2.2 Polar form and exponential form . 77

4.2.3 Roots of unity, primitive roots of unity . 77

4.3 Connection with CCC. 78

4.3.1 Aperiodic autocorrelation and aperiodic cross-correlation function 78

4.3.2 GCS and CCC . 79

4.3.3 Construction of CCC codes via Generalized Reed-Muller codes 80

5 Other Codes 84

5.1 Reed-Solomon Codes . 84

5.1.1 De�nition, examples, encoding . 84

5.1.2 Distance of Reed-Solomon codes . 85

5.1.3 Common applications . 85

5.2 BCH Codes . 86

5.3 Hamming Codes . 86

5.3.1 Hamming codes are perfect codes . 88

Bibliography88

5

1 Introduction

The main idea behind this work is to capture the fundamental moments which were leading me
towards acquiring a basic understanding of algebraic coding theory. I opted for this topic because
of the fact that it is versatile in terms of possibilities for modern utilization. Furthermore I do
have a personal emotional connection to this �eld of study.

Despite being a degree thesis, I am certainly hoping that people can use this work as a material
for studying. Furthermore, I intentionally structured this work so that readers could utilize it as
a source of learning. It means that for new concepts I have provided a plethora of examples, and
a little bit longer intruduction.

This work is intended to present a short overview of Algebraic Coding Theory with the purpose
of elaborating on a speci�c type of code, contemplating the possibility of its generalization, and
then later brie�y mentioning what kind of other codes exist. In the next section, the funda-
mental conceps concerning Algebraic Coding Theory will be elaborated on. These are easy to
understand ideas, essential for developing a knowledge in this �eld of study. After that, an entire
section dedicated only to Reed-Muller codes will follow. Di�erent possible conceptualizations and
de�nitions will be explored in depth. We will show the connection with Hadamard matrices and
Conference matrices. We will explore the connection between geometry and Reed-Muller codes.
The next section will provide an insight to a possible generalization of Reed-Muller codes. The
last section of this work will demonstrate some of the other codes have been utilized by humanity
in a brief manner.

6

2 Fundamental concepts, general discussion about codes

2.1 Fields, Matrices, Polynomials

The sources I have utilized to construct this subsection are [1],[2],[3], [4] and [6].

Since for the entirety of this work we will rely on the concept of �elds, we brie�y introduce it.
The cited sources elaborate on these topics at length.

2.1.1 Fields

It will be obviously assumed that the reader is familiar with these fundamental concepts.

De�nition Let
F = (K, 0, 1,+, ∗, -,−1)

be an ordered 7-tuple where
0 ∈ K ∧ 1 ∈ K ∧ 0 6= 1

furthermore
+ : K ×K → K

and
∗ : K ×K → K

are binary operations,
- : K → K

and
−1 : K \ {0} → K

are unary operations. The 7-tuplet F is called a �eld by de�nition if any only if the following
criteria are met:

• The operations + and ∗ are commutative, associative.

• The operation ∗ is distributive over operation +.

• For all x ∈ K the element -x is the inverse of x with respect to operation +.

• For all x ∈ K \ {0} the element x−1 is the inverse of x with respect to operation ∗.

• The 0 is the neutral element of operation + and 1 is the neutral element of operation ∗.

The element 0 is said to be additive identitiy or zero, and the element 1 is themultiplicative
identity or one. For + and ∗ we will utilize the in�x convention, for - the pre�x notation will be
used, and for −1 we will use the post�x one. Obviously we can de�ne subtraction and division
over a �eld as well

− : K ×K → K

/ : K ×K \ {0} → K

by the following formulas
∀(x, y) ∈ K ×K x− y = x+ (-y)

∀(x, y) ∈ K ×K \ {0} a/b = a ∗ (b−1).

7

Also the operations + and ∗ can be generalized so that they can have more than two or less
than two variables. They are denoted by

∑
and

∏
respectively. What we have to consider while

de�ning them is to pay attention to the 0-variable case, notably: and∑
x∈∅

x = 0

∏
x∈∅

x = 1

If K” ⊆ K is a system in K such that Card(K) ∈ N+ then there exists a x̂ ∈ K” element and
the

∑
and

∏
operators are de�ned as

∑
x∈K”

x =

[∑
x∈K”\{x̂}

x

]
+ x̂

∏
x∈K”

x =

[∏
x∈K”\{x̂}

x

]
∗ x̂.

Theorem 2.1 Let F = (K, 0, 1,+, ∗, -,−1) be a �eld.

• The additive identity and the multiplicative identity are unique:

∀z ∈ K [∀x ∈ K x+ z = x]→ z = 0

∀z ∈ K [∀x ∈ K x ∗ z = x]→ z = 1

• The addivite inverse and the multiplicative inverse of an element are unique.

∀z ∈ K x+ z = 0→ z = -x

∀z ∈ K x ∗ z = 1→ z = x−1

• The cancellative property holds.

∀x ∈ K ∀y ∈ K ∀z ∈ K x+ y = x+ z ↔ y = z

∀x ∈ K \ {0} ∀y ∈ K ∀z ∈ K x ∗ y = x ∗ z ↔ y = z

• For all y ∈ K elements the K → K oprerations

x 7→ x+ y

x 7→ x− y

x 7→ y − x

are bijections.

• For all y ∈ K the K → K operation

x 7→ x ∗ y

is a bijection if and only if y ∈ K \ {0}.

8

• For all y ∈ K \ {0} the K → K operation

x 7→ x/y

is a bijection.

• For all y ∈ K the K \ {0} → K operation

x 7→ y/x

is a bijection if and only if y ∈ K \ {0}.

• The K → K functions

x 7→ x/1

x 7→ x− 0

are the identity function.

• Forall x ∈ K we have 1/x = x−1.

• The elements 1 ∈ K and -1 ∈ K are �xed points of the K \ {0} operator

x 7→ x−1.

(these two elements are not necesseraly distinct)

• For all x ∈ K \ {0}
1/(1/x) = x

(x−1)−1 = x

x/x = 1

hold.

• For all x ∈ K it holds that

-(-(x)) = x

and

x− x = 0.

• For all (x, y) ∈ K ×K the statement

-(x− y) = y − x

is true.

• For all (x, y) ∈ (K \ {0})× (K \ {0}) the equality

(x ∗ y)−1 = x−1 ∗ y−1

holds.

• For all (x, y) ∈ K × (K \ {0}) we have

y ∗ (x/y) = x.

Proof All of these trivially follow from the de�nition of �elds and the de�nition of subtraction
and division. �

9

Theorem 2.2 Let F = (K, 0, 1,+, ∗, -,−1) be a �eld, and let K” ⊆ K be such that Card(K”) ∈
N+. In this case ∏

x∈K”

x = 0↔ ∃ y ∈ K” y = 0.

Proof It is su�cient to show that the statement

∀(a, b) ∈ K ×K a ∗ b = 0↔ a = 0 ∨ b = 0

holds, our theorem follows from it by induction. ← Because 0 is the additive identity, we have
0 = 0 + 0. Multiplying this equation by a we have that a ∗ 0 = a ∗ (0 + 0) from which because of
the distributivity of ∗ over + we have a ∗ 0 = 0 + a ∗ 0 = a ∗ 0 + a ∗ 0. Because of the cancellative
property of + we obtain that a ∗ 0 = 0.

→ Let a ∗ b = 0. If a = 0, then our proof is �nished. If a 6= 0, then a ∈ Dom(−1) = K \ {0}, and
we obtain a−1 ∗ (a ∗ b) = a−1 ∗ 0. The right side of the equation is zero because of ← and the left
side of the equation is b because of the associativity of ∗ and the fact that a−1 ∗ a = 1 and 1 is
the multiplicative identity, therefore b = 0.�

2.1.2 Exponentiation over �elds

We will see a lot of cases in this work when we will use exponentiation, for instance in5.1.2
therefore it is needed to mention them at least brie�y. From now, Z symbol in the lower index
will denote the following elements of and operations over Z: addition, subtraction, multiplication,
additive identity, multiplicative identity. The sum operator over Z will be denoted by

∑(Z).

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld. The

ˆ: K × N→ K (x, n) 7→ xn

is de�ned in the following two steps:

∀x ∈ K : x0Z = 1

∀x ∈ K ∀n ∈ N \ {0Z} : xn = x ∗ xn−Z1Z .

The exponentiation can be generalized to negative exponents as well, but in this case x 6= 0.

∀x ∈ K \ {0} ∀n ∈ Z \ N : xn = 1/x-Zn.

This operation along with the generalization is called exponentiation over the �eld F . The
element x ∈ K is called the base, the n ∈ Z element is called the exponent, and xn is the
power.

Theorem 2.3 Let F = (K, 0, 1,+, ∗, -,−1) be a �eld. The following are the exponential identities.

• ∀x ∈ K : x1Z = x

• ∀n ∈ Z : 1n = 1

• ∀n ∈ N \ {0Z} : 0n = 0

• If x ∈ K and H ⊂ Z are such that Card(H) ∈ N and for all h ∈ H the power xh is de�ned,

then we have ∏
h∈H

xh = x
∑(Z)
h∈H h

10

• If K” ⊆ K and n ∈ Z are such that Card(K”) ∈ N and xn is de�ned for all x ∈ K” then

we have [∏
x∈K”

x

]n
=
∏
x∈K”

xn.

• If (xn)m is de�ned, then (xn)m = xn∗Zm.

• ∀x ∈ K \ {0} : x-Z1Z = x−1 = 1/x

Proof All of them trivially follow from the de�nition. �

2.1.3 Absolute value function over a �eld

Absolute value over a �eld is required to talk about normed spaces which is paramount when
dealing with coding theory. Ineed linear codes 2.6.1 will form a normed space 2.2.8 with the
weight function 2.5.2.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld. Let ∗R denote the mutliplication over R and
+R denote the addition over R. Additionally let ≤R be the ordering over R. The

|.| : K → R

function is called an absolute value function over F by de�nition if and ony if the conditions

1. ∀x ∈ K : |x| = 0R ↔ x = 0 (uniqueness of the root)

2. ∀(x, y) ∈ K ×K : |x ∗ y| = |x| ∗R |y| (multiplicativity)

3. ∀(x, y) ∈ K ×K : |x+ y| ≤R |x|+R |y| (triangle inequality)

4. ∀x ∈ K : |x| ≥R 0R (nonnegativity)

are met.

The trivial absolute value function shows us that for every �eld there is an absolute value function.
It is de�ned by

|.|triv : K → R

[∀x ∈ K |x|triv = 1R ↔ x 6= 0] ∧ |0|triv = 0R.

By substituting x = y = 1 to the multiplicativity condition we obtain that

|1| = 1R

from which
∀x ∈ K : |1/x| = (1R)/R|x|

comes easily, and by substituting x = y = −1 we have

| − 1| = 1R

from which one can show without di�culties that

∀x ∈ K : |-x| = -R|x|

11

holds, where 1R is the multiplicative identity over the �eld of real numbers, and the /R function
is the division of real numbers, furthermore -R is the operation which creates the additive inverse
of a real number. From the multiplicativity of the absolute value function it can be proven via
induction by Card(K”) that if K” ⊆ K is a system of elements such that Card(k”) ∈ N we have∣∣∣∣∣ ∏

x∈K”

x

∣∣∣∣∣ =

(R)∏
x∈K”

|x|

where
∏(R) is the multivariable multiplication over real numbers. Similarly it can be deduced

from the triangle inequality that ∣∣∣∣∣ ∑
x∈K”

x

∣∣∣∣∣ ≤R

(R)∑
x∈K”

|x|

where
∑R is the summation over real numbers. An example to be remembered from high school

is the Euclidean absolute value
|.|Eucl. : R→ R

de�ned by

∀x ∈ R : |x|Eucl. = Max{x, 0R}+ Max{−x, 0R} = Max{x, 0R} −Min{x, 0R}.

Another example which is not di�cult to relate to is the complex absolute value function

|.| : C→ R

de�ned by
∀z ∈ C : |z| =

√
Re(z) ∗R Re(z) +R Im(z) ∗R Im(z).

From the multiplicativity attribute it follows by induction that

∀x ∈ K ∀n ∈ N : |xn| = |x|n.

It can also be shown that for all |.| absolute value functions we have

∀(x, y) ∈ K ×K : ||x| −R |y||Eucl. ≤R |x− y|.

This one is well-known from high school.

2.1.4 Matrices

In this work a plethora of di�erent matrices will appear for a variety of speci�c purposes, therefore
they need to have at least a short introduction.

De�nition If S1, S2 and S3 are sets, the

M : S1 × S2 → S3

operations are called matrices over S3.

The most obvious example for a matrix is the function

∅ × ∅ → ∅.

The operation
Z× Z→ Z

12

(x, y) 7→ x+Z y

is a matrix over Z. The binary function

{0, 1} × {0, 1} → {0, 1}

(a, b) 7→ a ∧ b = Min(a, b)

is a matrix over {0, 1}. Now we will only focus on matrices over �elds, especially �nite �elds
when dealing with coding theory.

De�nition Let
F = (K, 0, 1,+, ∗, -,−1)

be a �eld. Let
N≤n = N ∩ [1, n].

The operation
M : N≤n × N≤k → K

is called a matrix over the �eld F. We utilize the notation

M(i, j) = Mij .

We also use the notation

Fn×k = {M |M : N≤n × N≤k → K}.

The elements of Image(M) are called the entries of a matrix. The elements of the sequence
(Mij)i∈N≤n are called the rows of the matrix and the elements of (Mij)j∈N≤k are the columns

of the matrix. The addition of the matrices happen entrywise. Let M ∈ Fn×k and N ∈ F k×s.
Then the MN matrix is de�ned by its entries in the following way

(MN)ij =

k∑
γ=1

MiγNγj .

The operation de�ned in this way is called matrix multuplication and is a

Fn×k × F k×s → Fn×s

binary operation. The multiplication of matrices by a scalar is de�ned entrywise. In the
case of n = k the matrix is called a square matrix.

Obviously the multiplication of matrices is associative but not commutative. The addition of
matrices is both associative and commutative. The distributivity attribute holds as well both for
matrix multiplication and scalar multiplication. The additive identity is the zero matrix, whose
entries are all zeros. As an example, look at the matrix En de�ned by its entries as

Enij = 0↔ i 6= j ∧ Enij = 1↔ i = j.

It is clear that
∀M ∈ Fn×n : MEn = EnM = M.

We will now look at the concept of the transpose matrix. It will appear in this work later on, for
example in 2.26.

13

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld. The F : Fn×k → F k×n function is de�ned as

∀M ∈ Fn×k : ∀(i, j) ∈ N≤n × N≤k : MF
ij = Mji ∈ F k×n

The matrix MT ∈ F k×n is said to be by de�nition the transpose of the matrix M .

Now we will formulate some of the most elementary properties of transpose matrices.

Theorem 2.4 Let F = (K, 0, 1,+, ∗, -,−1) be a �eld.

• ∀M ∈ F k×n : (MT)T = M

• Let ~
∏

denote the the multivariable matrix multiplication now. Let (Mγ)tγ=1 a �nite sequence

of matrices where the multiplication is de�ned, furthermore t ≥ 1. The statement[~t∏
γ=1

Mγ

]T
=

~t∏
γ=1

MT
t+1−γ

holds.

•
∀(M,N) ∈ Tn×k × T k×s : (MN)T = NTMT

(this is the t = 2 special case of the previous one)

• Let ~
∑

denote the multivariable matrix addition now. Let M” a �nite set of matrices with

the same size, additionally Card(M”) ≥ 1. Then we have[
~∑

M∈M”

M

]T
=

~∑
M∈M”

MT

• Let ~+ denote the addition of matrices now. The same notation will be utilized for vector

spaces in general concerning the �rst part of the �rst section.We have

∀(M,N) ∈ Fn×k × F k×s : (M~+N)T = MT ~+NT .

(this is the t = 2 special case of the previous one)

• ∀λ ∈ K ∀M ∈ Fn×k : (λM)T = λMT

• ∀n ∈ N \ {0} : ETn = En.

2.1.5 Determinant

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld. Let P (N≤n) denote the set of all permutations
on N≤n. Consider the operation

Det : Fn×n → K

de�ned by the formula

Det(M) =
∑

σ∈P (N≤n)

(-1)f(σ)

[∏
i∈N≤n

Miσ(i)

]

where f : P (N≤n)→ N is the function which tells us how many inversions does the permutation
have. The

DetM ∈ K
element is the determinant of the matrix M .

14

Theorem 2.5 Let λ ◦γ M mean that the γ-th row of M is multiplied by λ. For all λ ∈ K and

for all γ indices, furthermore for all M matrix we have

Det(λ ◦γ M) = λ ∗Det(M).

Theorem 2.6 Let the multivariable matrix multiplication be denoted by ~∏ If M” is a system of

matrices of same size and Card(M) ≥ 1 the statement

Det

(
~∏

M∈M”

M

)
=

∏
M∈M”

Det(M)

holds.

We note that the theorem works for the empty system of matrices as well if the empty products
are de�ned so that ~

∏
M∈∅M = En and

∏
x∈∅ = 1 It can also be shown that

∀M ∈ Fn×n : Det(M) = Det(MT).

2.1.6 Vandermonde matrices and Vandermonde determinants

Vandermonde matrices and determinans are mentioned because of their presence in this work,
for instance in 2.8.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) a �ield, and let

K” = (λ1, λ2, . . . λn) ⊆ K

be a sequence of elements. The matrix

Vandermonde(K”) =


1 λ1 λ2

1 . . . λn−1
1

1 λ2 λ2
2 . . . λn−1

2
...

...
... . . .

...
1 λn λ2

n . . . λn−1
n


is called a Vandermonde matrix. The determinant of the Vandermonde matrix is called Van-
dermonde determinant. The elements

λ1, λ2, . . . λn

are called the generators of the Vandermonde matrix/determinant.

It is not di�cult to show that

Det(Vandermonde(K”)) =
∏

1≤γ1<γ2≤n
[λγ1 − λγ2]

holds.

Theorem 2.7 The Vandermonde determinant is zero if and only if there are two generators

with the same value.

15

Proof Because of 2.2 the value of ∏
1≤γ1<γ2≤n

[λγ1 − λγ2]

is zero if and only if there is an (γ1, γ2) pair of indices so that γ1 6= γ2 and λγ1−λγ2 = 0, which is
equivalent with the statement that there are generators λγ1 and λγ2 such that λγ1 = λγ2 , proving
the statement. �

The type of matrix we will have in 2.8 has the following form. Let F = (K, 0, 1,+, ∗, -,−1) be a
�eld and K” = (λ1, λ2, . . . λn) ⊆ K be a system of elements. Furthermore let

Ψ = (Ψ1,Ψ2, . . .Ψn) ⊆ K

be a sequence of elements as well. Then our matrice is de�ned as

M(Ψ,Vandermonde(K”)) =


Ψ1 Ψ1 ∗ λ1 Ψ1 ∗ λ2

1 . . . Ψ1 ∗ λn−1
1

Ψ2 Ψ2 ∗ λ2 Ψ2 ∗ λ2
2 . . . Ψ2 ∗ λn−1

2
...

...
... . . .

...
Ψn Ψn ∗ λn Ψn ∗ λ2

n . . . Ψn ∗ λn−1
n

 .

Theorem 2.8

Det(M(Ψ,Vandermonde(K”))) =
n∏
γ=1

Ψγ

∏
1≤γ1<γ2≤n

[λγ1 − λγ2]

Proof The matrixM(Ψ,Vandermonde(K”)) is obtained from Vandermonde(K”) by multiplying
the γ-th row by Ψγ . Using 2.5 and the explicit formula for the Vandermonde determinant the
statement follows immediately. �

Theorem 2.9

Det(M(Ψ,Vandermonde(K”))) = 0↔ ∃γ Ψγ = 0 ∨ ∃(γ1, γ2) λγ1 = λγ2 ∧ γ1 6= γ2

Proof The statement follows easily from 2.2 and 2.8. �

2.1.7 Polynomials over a �eld

A lot of polinomials will appear when elaborating on codes, therefore it is obligatory to mention
them. Note that there is a di�erence between polynomials and polynomial functions, but making
a distinction is not needed for our purposes.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld. Let S(K) denote the set of all sequences over
K. The set

F [X] = {s | s ∈ S(K) ∧ Card{s′ ∈ s | s′ 6= 0} ∈ N}

is called the set of polynomials over the �eld F . An f ∈ F [X] is called a polynomial over
F . The elements of the sequence are called the coe�cients of the polynomial. The polinomial
whose coe�cients are all 0 is called the zero polynomial and is now denoted by f = ~0.

In other words the polynomials over a �eld are exactly those sequences which contain only a
�nite number of nonzero elements.

16

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and f ∈ F [X] be a polynomial. If the

Max{i ∈ N | ai 6= 0} ∈ N

element exists, then we call it the degree of the polynomial f and we write

Deg(f) = Max{i ∈ N | ai 6= 0} ∈ N.

We can easily observe that aside from the polynomial f = ~0 all polynomials have an unique
degree, meaning that

Deg : F [X] \ {~0} → N

is a well-de�ned function. The nonzero

f = (fi)i∈N

polynomial is often depicted by the unary operation

K → K

f(X) =

Deg(f)∑
γ=0

fiX
i.

We can also evaluate the polynomial for a x ∈ K element

f(x) =

Deg(f)∑
γ=0

fix
i ∈ K.

The addition and multiplication by scalar is de�ned coe�cientwise. Multiplication of polynomials
comes naturally as well. Obviously the addition of polynomials is commutative and associative,
the multiplication by scalar and multiplication of polynomials are distributive over the operation
of the addition of polynomials.Obviously the polynomial ~0 is the neutral element of the addition
of polynomials, and the 1 ∈ K scalar is the neutral element of scalar multiplication. The poly-
nomial represented by the function f(X) = X0 is the neutral element of the multiplication of
polynomials.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld. Let f(X) ∈ F [X] be a polynomial over F .
The x ∈ K element is said to be the root of the polynomial by de�nition if and only if f(x) = 0.
A polynomial is said to be monic by de�nition if and only if

fDeg(f) = 1.

2.1.8 The fundamental theorem of algebra

The following theorem is not only paramount when we are trying to comprehend algebra in
general, but we will use it in this work for example in 5.1.2. This theorem is known as the
fundamental theorem of algebra.

Theorem 2.10 Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and f(X) ∈ F [X] a monic polynomial.

Let the multivariable multiplication of polynomials be denoted by ~∏. Then

Card{x ∈ K | f(x) = 0} ≤ Deg(f)

17

holds. In other words, a polynomial over a �eld cannot have more roots than its degree. Further-

more if

Card{x ∈ K | f(x) = 0} = Deg(f)

then we have

f(X) =
~∏
x∈K:f(x)=0

(X − x).

The example f(X) = X2 + 1 over C is easy to relate to. Indeed, the roots of f are ±i and

f(X) = X2 + 1 = (X − i)(X + i)

The theorem cannot necessarily be generalized to polynomials over any structure. For example
the polynomial f(X) = X2 over the ring of dual numbers have a degree of 2, but has in�nite
roots, for example

f(a ∗D ε) = (a ∗D ε)2 = a2 ∗D ε2 = a2 ∗D 0D = 0D

for all a ∈ R real number.

2.2 Vector Spaces

For this subsection I utilized the following sources: [2], [1], [5].

2.2.1 De�nition and elementary properties

De�nition Let
F = (K, 0, 1,+, ∗, -,−1)

be a �eld. Let
W = (V, F,~0, ~+,~∗,~-)

be a 6-tuple, where V is a set
~0 ∈ V

is an element of the set and
~+ : V × V → V

and
~∗ : K × V → V

are a binary operatios and
~- : V → V

is a unary operation. The 6-tuple W is called a vector space by de�nition if and only if the
following criteria are met.

• The operation ~+ is commutative and associative.

• The element ~0 ∈ V is the identity element of the operation ~+.

• The element 1 ∈ K is the left identity element of the operation ~∗.

• For all v ∈ V the element ~-v is the inverse of v with respect to operation ~+. (additive
inverse)

18

• For all
(λ1, λ2, v) ∈ K ×K × V

triplets we have
(λ1 + λ2)~∗v = λ1~∗v~+λ2~∗v

and
λ1~∗(λ2~∗v) = (λ1 ∗ λ2)~∗v.

• For all
(λ, v1, v2) ∈ K × V × V

triplets we have
λ~∗(v1~+v2) = λ~∗v1~+λ~∗v2.

The elements of K are called scalars and the elements of V are called vectors The element ~0
is called the zero vector. the operation ~+ is called the addition of vectors and the binary
operation ~∗ is called the scalar multiplication of vectors. Of course we can de�ne subtraction
of vectors as well

~− : V × V → V

by the formula
∀(v1, v2) ∈ V × V : v1~−v2 = v1~+(~-v2)

We can also say that W is a vector space over �eld F . Sometimes the notation is WF . Obviously
the function ~+ can be generalized to more or less variables and is denoted by ~∑ with te empty
sum being

~∑
x∈∅

x = ~0

and if V ” ⊆ V is a system of vectors such that Card(V ”) ∈ N+ then there is a v̂ ∈ V ” vector
and our de�nition is

~∑
v∈V ”

v =

[
~∑

v∈V ”\{v̂}

v

]
~+v̂.

As an easy example if F = (K, 0, 1,+, ∗, -,−1) is a �eld, then

W = (K,F, 0,+, ∗, -)

is a vector space. Now we will examine some of the fundamental properties of vector spaces.

Theorem 2.11 LetW = (V, F,~0, ~+,~∗,~-) be a vector space over the �eld F = (K, 0, 1,+, ∗, -,−1).
The following hold.

• The additive identity is unique, meaning that

∀v1 ∈ V : [∀v2 ∈ V v1~+v2 = v2]→ v1 = ~0.

• The lef identity of ~∗ is unique, meaning that

∀λ ∈ K : [∀v ∈ V λ~∗v = v]→ λ = 1.

19

• For all v2 ∈ V the functions

v1 7→ v1~+v2

and

v1 7→ v1~−v2

and

v1 7→ v2~−v1

are bijective.

• For all λ ∈ K the function

v 7→ λ~∗v

is a bijection if and only if λ ∈ K \ {0}.

• For all v ∈ V the function

λ 7→ λ~∗v

is a bijection if and only if v 6= ~0.

• For all (v1, v2) ∈ V × V we have

~-(v1~−v2) = v2~−v1.

• For all v ∈ V we have ~-v = (-1)~∗v.

Proof All of these follow immediately from the de�nition of vector spaces and subtraction and
the fundamental properties of �elds. �

Theorem 2.12 LetW = (V, F,~0, ~+,~∗,~-) be a vector space over the �eld F = (K, 0, 1,+, ∗, -,−1).
For all

(λ, v) ∈ K × V

we have

λ~∗v = ~0↔ λ = 0 ∨ v = ~0.

Proof Indeed
0~∗v = (0 + 0)~∗v = 0~∗v~+0~∗v

from where because of the uniqueness of additive identity it is obtained that 0~∗v = ~0. Now it is
easy to be deduced that

λ~∗~0 = λ~∗(~0~+~0) = λ~∗~0~+λ~∗~0

from which because of the very same reason we get λ~∗~0 = ~0. Now let λ~∗v = ~0. If λ = 0, then we
have arrived to our conclusion. If λ 6= 0 then λ ∈ Dom(−1), consequently

v = 1~∗v = (λ−1 ∗ λ)~∗v = λ−1~∗(λ~∗v) = λ−1~∗0 = ~0

�nishing our proof.�

20

2.2.2 Subspaces

Now we will brie�y mention the concept of subspaces. Since linear codes 2.6.1 will be subspaces
of a vector �eld, they require at least a short indroduction.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and W = (V, F,~0, ~+,~∗,~-) a vector space. If

Ŵ = (V̂ , F,~0, ~̂+, ~̂∗,~̂-)

is also a vector space and V̂ ⊆ V furthermore ~̂+ is the restriction of + to the set V̂ × V̂ and ~̂∗ is
the restriction of ~∗ to the domain K × V̂ additionally ~̂- is the restriction of ~- to the domain ~̂V .
In this case we say that Ŵ is the subspace or linear subspace of W and we write Ŵ ≤W .

Obviously every vector space is a subspace of itselfW ≤W meaning that ≤ is a re�exive relation.
The relation is also transitive ̂̂

W ≤ Ŵ ∧ Ŵ ≤W → ̂̂
W ≤W.

One can easily see that the relation is antisymmetric

Ŵ ≤W ∧W ≤ Ŵ →W = Ŵ .

We can observe without di�culties that

({0}, F,~0, ~+,~∗,~-) ≤W

holds as well. Furthermore if̂̂
W ≤ Ŵ ≤W ∧ ̂̂W = W → ̂̂

W = Ŵ = W.

Indeed, these properties are all consequences of the fundamental properties of ⊆ relation. A very
easy to understand example would be

QQ ≤ RQ ≤ CQ.

2.2.3 Generating system, basis, dimension

Now we will examine brie�y the concept of dimension, which is paramount when dealing with
coding theory.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and W = (V, F,~0, ~+,~∗,~-) a vector space. The
B ⊆ V det is called a basis set of W by de�nition if and only if for every v ∈ V there is exactly
one

λv : B → K

function that

v =
~∑
b∈B

λv(b)~∗b

holds. The G ⊆ V set is called a generating set of W by de�nition if and only if for every
v ∈ V there is at least one

λv : B → K

function that satis�es

v =
~∑
g∈G

λv(g)~∗g.

21

The B = (bi)
n
i=1 ⊆ V system is called a basis of W by de�nition if and only if for every v ∈ V

there exists exactly one λni=1 ⊆ K system which satis�es the condition

v =
~n∑
i=1

λi~∗bi.

The B = (bi)
n
i=1 ⊆ V system is called a generating system of W by de�nition if and only if

for every v ∈ V there exists at least one λni=1 ⊆ K system which satis�es the condition

v =
~n∑
i=1

λi~∗bi.

One can prove that for every generating system G there is a G′ ⊆ G system such that G \G′ is
a basis. It can be shown as well that if B1 is a basis of F and B2 is a basis of F as well then

Card(B1) = Card(B2)

holds. It can also be shown pretty easily that every vector space has at least one basis, so the
concept of dimension is well-de�ned.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and W = (V, F,~0, ~+,~∗,~-) a vector space and
let B(W) be a basis ofW . The dimension of a vector space is the number of elements contained
by B(W). We use the notation

Dim(W) = Card(B(W)).

From now we will only discuss vector spaces where Dim(W) ∈ N. It can be seen fairly e�ortlessly
that

Ŵ ≤W → Dim(Ŵ) ≤N Dim(W)

It is easily observed that matrices of a given size form a vector space over a �eld. Furthermore

Ŵ ≤W ∧Dim(Ŵ) = Dim(W)→ Ŵ = W

holds as well. A plethora of elementary consequences can be deduced merely by looking at the
above de�nitions. For example it can be seen that if B is a basis, then ~0 /∈ B.

2.2.4 Linear independence and rank

Linear independence is an insurmountable-to-avoid concept when dealing with coding theory. It
appears in a plethora of di�erent contexts in this work, for example in 2.26.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and W = (V, F,~0, ~+,~∗,~-) a vector space. The
V ” ⊆ V subset is called a set of linearly independent vectors by de�nition if and only if for
every

λ : V ”→ K

function if
~∑

v∈V ”
λ(v)~∗v = ~0

then we have
λ ≡ 0.

22

The V ” = (vi)
n
i=1 ⊆ V system of vectors is called a system of linearly independent vectors

if and only if for every (λi)
n
i=1 ⊆ K sequence of scalars we have

~n∑
i=1

λi~∗vi = ~0→ ∀i : λi = 0.

It can be easily shown that if V ” ⊆ V is a linearly independent system and

Card(V ”) = Dim(W) ∈ N

then V ” is a basis of W . Another elementary attribute of linearly independent systems is that
they cannot contain the zero vector. Given a linearly independent system V ” for all v ∈ V ” the
system V ” \ {v} is also a linearly independent set. A speci�c case appears if the rows or columns
of a matrix over a �eld are regarded as vectors of a vector space.

De�nition The rank of a matrix is the maximum number of linearly independent rows that
can be selected from its rows.

We note that the very same approach works with columns as well and gives us entirely the same
concept.

De�nition The n×n matrix N i s said to be invertible by de�nition if and only if there exists
an M−1 matrix so that

MM−1 = M−1M = En

holds. The matrix M−1 is by de�nition called the inverse of the matrix M .

The matrixM is invertible if and only if Det(M) 6= 0 which is equivalent with the condition that
the rows/columns of the matrix are linearly independent.

2.2.5 Linear maps

Linear maps and bilinear maps occur everywhere in coding theory in a wide range of contexts,
therefore we will have a closer look on them. Furthermore the image and kernel of a linear map
are paramount concepts to mention as well, since we will encounter them a lot, for instance in
2.6.1.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and

W = (V, F,~0, ~+,~∗,~-)

Ŵ = (V̂ , F,~̂0, ~̂+, ~̂∗,~̂-)

two vector spaces. The function
Lin : V → V̂

is called a linear map by de�nition if and only if the following two conditions are satis�ed:

∀(λ, v) ∈ K × V : Lin(λ~∗v) = λ~̂∗ Lin(v)

∀(v1, v2) ∈ V × V : Lin(v1~+v2) = Lin(v1)~̂+Lin(v2).

The kernel of a linear map is the set de�ned by

Ker(Lin) = {v ∈ V | Lin(v) = ~̂0} ⊆ V.

23

In other words the kernel is the set of those vectors which are sent to the zero vector of the
second vector space by the linear function. The image of a linear map is the set de�ned by

Im(Lin) = {Lin(v) | v ∈ V } = {u ∈ V̂ | ∃v ∈ V : Lin(v) = u} ⊆ V̂ .

Two linear maps can be added pointwise and multiplied with a scalar pointwise.

It can be shown by induction that if (vi)i∈I is a �nite system of vectors and (λi)i∈I is a �nite
system of scalars then

Lin

(
~∑
i∈I

λi~∗vi

)
=
∑
i∈I

λi~̂∗ Lin(vi).

We can easily see that linear maps for the pointwise addition and pointwise multiplication by
scalar along with the zero map form a vector space. It is usually denoted by

Hom(W, Ŵ).

We can also observe without di�culties that

Ker(Lin) ⊆ V

forms a subspace of W . Now we will denote this subspace by

KER(Lin) ≤W.

It can be deduced fairly easily that
Im(Lin) ⊆ V̂

forms a subspace of Ŵ . This subspace will be denoted now by

IM(Lin) ≤ Ŵ .

It can be shown that

Dim(KER(Lin)) + Dim(IM(Lin)) = Dim(W).

It can be deduced e�ortlessly that

Lin(~0) = ~̂0.

It comes naturally from the �rst condition and from the elementary properties of vector spaces
that

Lin(~0) = Lin(0~∗~0) = 0~̂∗ Lin(~0) = ~̂0.

The same fact can be seen from the second condition and from the fact that only the zero vector
is the additive identity in a vector space, so we have

Lin(~0~+~0) = Lin(~0)~̂+Lin(~0)→ Lin(~0) = Lin(~0)~̂+Lin(~0)→ Lin(~0) = ~̂0.

We can also obtain that
∀v ∈ V : Lin(~-v) = ~̂- Lin(v)

and additionally that

∀(v1, v2) ∈ V × V : Lin(v1~−v2) = Lin(v1)~̂−Lin(v2).

24

2.2.6 Linear span

Now we will continue our brief introduction to vector spaces with the concept of linear span.
They will appear in this work as well, for instance in 5.3 and obviously everywhere in linear
algebra.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and letW = (V, F,~0, ~+,~∗,~-) be a vector space.
Let V ” ⊆ V be a system of vectors. The

LC(V ”) =

{
~∑

∀v∈V ”

λ(v)~∗v | ∀ λ : V ”→ K

}
⊆ V

set contains the linear combinations of the elements of V ”. This forms a vector space with
the restriced operations, which is usually denoted by Span(V ”) or by writing the elements of
V ” between the symbols < and >. The subspace is often referred to as the linear span of V ”.
Formally, if the restricted operations are denoted with the symbol ∩ in the lower index, then

Span(V ”) = (LC(V ”), F,~0, ~+∩,~∗∩,~-∩) ≤W.

From the de�nition of a basis and a generating system it is clear that if B is a basis and G is a
generating system of W , then

Span(B) = Span(G) = Span(V) = W

Of course
V ” ⊆ V ”2 → Span(V ”) ≤ Span(V ”2)

holds. For example if W is the vector space of planar vectors, then < (0, 1), (1, 0) > will be the
entire vector space, and < (1, 1) > is the subspace of those vectors whose two coordinates are the
same, and < (0, 0) > is the vector space whose only vector is ~0. The subspace < (1, 1), (2, 2) >
is not the entire space, because (1, 1) and (2, 2) are not linearly independent. Furthermore it is
not di�cult to observe that

LC(V ”) =
⋂

V ”⊆J⊆V ∧'J forms a vector space with the restricted operations'

J

which means that the linear combinations of these vectors can be obtained as an intersection
of all those subsets which contain the aforementioned vectors and forms a subspace with the
operarations restricted.

2.2.7 Bilinear maps, scalar product

Bilinear maps will appear for instance in 2.6.3 and in 3.4.1, therefore they deserve a short
discussion.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and let

W = (V, F,~0, ~+,~∗,~-)

Ŵ = (V̂ , F,~̂0, ~̂+, ~̂∗,~̂-)̂̂
W = (

̂̂
V , F,

̂̂
~0,
̂̂
~+,
̂̂
~∗,̂̂~-)

be three vector spaces. The function

BLN : V × V̂ → ̂̂
V

is called a bilinear map by de�nition if the following criteria are met.

25

• For all v ∈ V the u 7→ BLN(v, u) univariable function is a linear map.

• For all v ∈ V̂ the u 7→ BLN(u, v) univariable function is a linear map.

In other words a bilinear map is a function with two variables which when restricted to any of its
variables then becomes a linear map. The scalar product is a special example we will see along
with the Hadamard product. The Hadamard product will be elaborated on in 3.4.1.

De�nition F = (K, 0, 1,+, ∗, -,−1) be a �eld and let W = (V, F,~0, ~+,~∗,~-) be a vector space. Of
course W = (K,F, 0,+, ∗, -) is a vector space as well, because every �eld is a vector space over
itself. The

〈, 〉 : V × V → K

function de�ned by the foormula

∀(v, w) ∈ V × V : 〈v, w〉 =
∑

∀i∈N≤Dim(W)

coordi(v) ∗ coordi(w)

is called scalar product. The v and w vectors are said to be orthogonal by de�nition if and
only if 〈v, w〉 = 0 and is denoted by v ⊥ w.

Obviously the scalar product is a bilinear map. Furthermore because of the commutativity of ∗
we get

∀(v, w) ∈ V × V : 〈v, w〉 =
∑

∀i∈N≤Dim(W)

coordi(v) ∗ coordi(w) =

=
∑

∀i∈N≤Dim(W)

coordi(w) ∗ coordi(v) = 〈w, v〉.

2.2.8 Norms and normed vector spaces

Norms will be used a lot when elaborating on coding theory.

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and W = (V, F,~0, ~+,~∗,~-) be a vector space.
Let the |.| : K → R function be an absolute value function over F . The

‖.‖ : V → R

function is a norm on W by de�nition if and only if the following criteria are met:

• ∀v ∈ V : ‖v‖ ≥R 0R (nonnegativity)

• ∀λ ∈ K ∀v ∈ V : ‖λ~∗v‖ = |λ| ∗R ‖v‖ (homogenity)

• ∀v1 ∈ V ∀v2 ∈ V : ‖v1~+v2‖ ≤R ‖v1‖+R ‖v2‖ (triange inequality)

• ∀v ∈ V : ‖v‖ = 0R ↔ v = ~0 (uniqueness of the root)

We say that ‖.‖ is homogeneous with respect to |.|. The ordered pair

(W, ‖.‖)

is called in this case a normed vector space.

26

For instance the �eld F = (K, 0, 1,+, ∗, -,−1) is a vector space over itself W = (K,F, 0,+, ∗, -),
so a |.| : K → R absolute value function will be a norm as well. From this example it can be
observed that the concept of norm is a generalization of the concept of absolute value function.
Our other example is located in 2.5. It is not di�cult to deduce that every norm is homogeneous
with respect to exactly one absolute value function for Card(V) 6= 1, since from

∀λ ∈ K ∀v ∈ V : ‖λ ∗ v‖ = |λ|1 ∗R ‖v‖ = |λ|2 ∗R ‖v‖

substituting v 6= ~0 we have
|.|1 ≡ |.|2.

From the triangle inequality we can obtain the generalized triangle inequality. For the V ” ⊆ V
system of vectors ∣∣∣∣∣

∣∣∣∣∣ ~∑
v∈V ”

v

∣∣∣∣∣
∣∣∣∣∣ ≤R

(R)∑
v∈V ”

||v||.

Obviously
∀(v1, v2) ∈ V × V : | ||v1|| −R ||v2|| |Eucl. ≤R ||v1~−v2||.

We note that the aforementioned four criteria in the de�nition of norms are redundant, since the
nonnegativity of a norm can be proven from the three others by

∀v ∈ V : 0R = ‖~0‖ = ‖v~−v‖ = ‖v~+(~-v)‖ ≤R ‖v‖+R ‖~-v‖ = ‖v‖+R ‖v‖ = 2R ∗R ‖v‖ →

→ ∀v ∈ V : ‖v‖ ≥R 0R

Furthermore half of the the fourth condition is redundant as well, since ‖~0‖ = 0R can be proven
from the homogenity condition.

2.3 Finite Fields and Finite Vector spaces

2.3.1 De�nition and some easy examples

Since throughout the entire work we will discuss concepts based on �nite �lelds and �nite vector
spaces, it is paramount to properly explain them. In this subsection I cite [1], [2] and [6].

De�nition Let F = (K, 0, 1,+, ∗, -,−1) be a �eld. The �eld F is said to be a �nite �eld by
de�nition if and only if

Card(K) ∈ N

holds. Let W = (V, F,~0, ~+,~∗,~-) be a vector space. The vector space W is called a �nite vector
space if and only

Card(V) ∈ N

is true.

The simplest case of a �nite �eld is

F2 = ({0, 1}, 0, 1,+, ∗, -,−1)

where
0 ∗ 0 = 1 ∗ 0 = 0 ∗ 1 = -0 = 0 + 0 = 1 + 1 = 0

and
1 ∗ 1 = 0 + 1 = 1 + 0 = 1−1 = -1 = 1

27

Another simple example for �nite �elds is

F3 = ({0, 1, 2}, 0, 1,+, ∗, -,−1)

where
0 + 0 = 1 + 2 = 2 + 1 = -0 = 0

1 + 0 = 0 + 1 = 2 + 2 = -2 = 1

2 + 0 = 0 + 2 = 1 + 1 = -1 = 2

and
0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0 ∗ 2 = 2 ∗ 0 = 0

1 ∗ 1 = 2 ∗ 2 = 1−1 = 1

2 ∗ 1 = 1 ∗ 2 = 2−1 = 2

Further example is a �eld with four elements

F4 = ({0, 1, A,B}, 0, 1,+, ∗, -,−1).

Obviously 0 + x = x for all x ∈ {0, 1, A,B} is obvious. Furthermore let 1 + 1 = 0. What will be
the value of A+ 1? It certainly cannot be A, because 1 = 0 would follow. It cannot be 1 either,
because then we would get A = 0. The value of A + 1 cannot be 0 either, because then A = 1
would follow. The only remaining option is A + 1 = B. What would be the value of A ∗ B? It
cannot be A, because then B = 1 would follow. For the same reason it cannot be B either. We
have already seen that two nonzero element multiplied cannot result in zero, therefore we must
de�ne A ∗ B = 1 if we want to have a �eld. By following this type of logic we can calculate the
following:

0 + 0 = 1 + 1 = A+A = B +B = -0 = 0

1 + 0 = 0 + 1 = A+B = B +A = -1 = 1

A+ 0 = 0 +A = 1 +B = B + 1 = -A = A

B + 0 = 0 +B = 1 +A = A+ 1 = -B = B

and
0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0 ∗A = A ∗ 0 = 0 ∗B = B ∗ 0 = 0

1 ∗ 1 = A ∗B = B ∗A = 1−1 = 1

A ∗ 1 = 1 ∗A = B ∗B = B−1 = A

B ∗ 1 = 1 ∗B = A ∗A = A−1 = B.

It can be easily shown that the structure we de�ned here is indeed a �eld, and the only �eld with
four elements.

2.3.2 Prime numbers, number of elements in a �nite �eld

From now - for the sake of better readibility- �elds will be referred to with a symbol such as
F not making a distinction between the structure and the set containing the elements when it
does not cause ambiguity. Furthermore, again for the sake of readibility we will utilize the same
notation for addition over N and a vector space or a �eld when it does not lead to ambiguity.
The same can be said for additive and multiplicative identities as well. In the remaining part of
the subsection we will look at some pivotal attributes and concepts of �nite �elds.

28

De�nition The set

P = {p ∈ N | Card{k ∈ N | p ≡ 0 (mod k)} = 2}

is called the set of prime numbers.

It is not di�cult to show that
Card(P) = Card(N).

Theorem 2.13 Let F be a �nite �eld. Then

∃ (p, k) ∈ P× N+ : Card(F) = pk

holds.

The �nite �eld with the number of elements q will be denoted as Fq and the n-dimensional vector
space over Fq, furthermore the set containing the vectors will be shortly referred to by the symbol
Fnq .

2.3.3 Multiplicative order, primitive elements

Primitive elements of a �nite �eld will occur in this work, for instance in 5.1.2, so they will be
mentioned brie�y.

De�nition Let Fq be a �nite �eld. The multiplicative order of an element x ∈ Fq is de�ned
by

Ord(Fq, x) = Card{xγ | γ ∈ N}.

The element a ∈ Fq is called a primitive element by de�nition if and only if

Ord(Fq, a) = q − 1

holds.

For instance
Ord(F2, 1) = 1 = 2− 1

which means that 1 ∈ F2 is a primitive element. Let us see another example over F3. The powers
are 1, 2, 1, 2 . . . indicating that

Ord(F3, 2) = 2 = 3− 1

consequently 2 ∈ F3 is a primitive element, but 1 ∈ F3 is not a primitive element, since

Ord(F3, 1) = 1 6= 2 = 3− 1.

Another example is
Ord(F4, A) = 3

Ord(F4, B) = 3

since A1 = A, A2 = A ∗ A = B, A3 = A2 ∗ A = B ∗ A = 1, A4 = A and B1 = B, B2 = A,
B3 = B2 ∗ B = A ∗ B = 1, B4 = B. Consequently A,B ∈ F4 are primitive elements. Now we
will observe some attributes of the �nite �elds expressed with the notion of multiplicative order
and primitive elements.

Theorem 2.14 Every �nite �eld has a primitive element.

29

2.3.4 Construction of Fpk from polynomials

Theorem 2.15 For all (p, k) ∈ P×N+ there is a unique �nitie �eld which contains pk elements.

Let Fq be a �nite �eld, and x ∈ Fq \ {0}. We have

xq−1 = 1

and

q − 1 ≡ 0 (mod Ord(Fq, x)).

Furthermore we have

Xq−1 − 1 =
∏

x∈Fq\{0}

(X − x)

and

Xq −X =
∏
x∈Fq

(X − x) = X
∏

x∈Fq\{0}

(X − x) = X(Xq−1 − 1)

2.3.5 The Fp �eld

Despite everyone being familiar with the congruence relation and in spite of the fact that it was
already utilized in this work, for the sake of completness we give a formal de�nition speci�cally
over Z.

De�nition Let Ψ ∈ Z be an integer. The

≡ (mod Ψ) ⊆ Z× Z

relation de�ned by the formula

∀(x, y) ∈ Z× Z : (x, y) ∈≡ (mod Ψ)↔ Ψ | x−Z y

is called the modulo Ψ congruence relation on Z. If (x, y) ∈≡ (mod Ψ) then we usually write
that

x ≡ y (mod Ψ)

instead.

One can e�ortlessly deduce that this relation is an equivalence relation. The equivalence classes
are as follow

[x]Ψ = {y ∈ Z : y ≡ x (mod Ψ)}.

The partition is
Z/ ≡ (mod Ψ) = {[x]Ψ : x ∈ Z}.

Let now p ∈ P be a prime number. Consider the 7-tuple

Fp = (Z/ ≡ (mod p), [0Z]p, [1Z]p,+p, ∗p, -p,−1p)

where [0Z]p is the equivalence class represented by the element 0Z ,[1Z]p is the equivalence class
represented by the element 1Z, furthermore

+p : (Z/ ≡ (mod p))× (Z/ ≡ (mod p))→ Z/ ≡ (mod p)

−p : (Z/ ≡ (mod p))× (Z/ ≡ (mod p))→ Z/ ≡ (mod p)

-p : Z/ ≡ (mod p)→ Z/ ≡ (mod p)

30

−1p : Z/ ≡ (mod p) \ {[0Z]p} → Z/ ≡ (mod p)

are operations de�ned by the formulas

∀([x], [y]) ∈ (Z/ ≡ (mod p))× (Z/ ≡ (mod p)) : [x]p +p [y]p = [x+Z y]p

∀(x, y) ∈ (Z/ ≡ (mod p))× (Z/ ≡ (mod p)) : [x]p ∗p [y]p = [x ∗Z y]p

∀[x] ∈ (Z/ ≡ (mod p)) : −p[x]p = [−Zx]p

∀[x] ∈ (Z/ ≡ (mod p)) \ {[0Z]p} (mod p) : ([x]p)−1p = [xp−Z2]p.

It can be shown that the aforementioned functions are well-de�ned and that this 7-tuple forms
a �eld. Furthermore it is not di�cult to deduce that for p /∈ P this construction will not form a
�eld.

2.4 Codes, Examples

To comprehend the basics being represented in this subsection, I was solely utilizing [1]. In this
subsection we will de�ne codes and see some elementary examples. Additionally, we will meet a
special category of codes, the repetition codes.

The symbol Fnq shortly signi�es the vector space where the �eld is the �nitie �eld with q elements,
the set of vectors is Fnq and the operations are de�ned coordinatewise.

De�nition Let us consider the vector space Fnq , and let C ⊆ Fnq be such as

∃k ∈ N+ : Card(C) = qk

holds. In this case the subset C is said to be by de�nition a code with parameters

(n, k) = (n, logq(Card(C))).

The �nite �eld Fq is said to be the alphabet. Let

φ : Fkq → Fnq

be an injection such as

Im(φ) = {y ∈ Fnq | ∃x ∈ Fkq φ(x) = y} = C

is true. The elements of the set Im(φ) = C are called the codewords. We say that the elements
of Fnq are the words. The process of applying the function φ is termed encoding. The parameter
n is called the length of the code. When it is needed for the sake of preciseness, we can refer to
the ordered pair

Φ = (φ,C)

as a code.

One of the most trivial examples of a code can be considered as q = 2, k = 1, n = 1, and our
injection φ : F1

2 → F1
2 be de�ned in a way that φ(0) = 0 and φ(1) = 1, meaning that φ ≡ id. If we

want to send the message 0 0 1, it will be encoded and sent as 0 0 1. If the message 0 0 0 is received
and we assume that there is an error in at least one coordinate because of the transmission, we
cannot �nd out what the original message should have been. Let us see some more elementary
examples. let q = 2, k = 1, n = 2. This means that we have an injection φ : F1

2 → F2
2. Let us

de�ne φ in a way that φ(0) = (0, 0) and φ(1) = (1, 1). This means that whenever we see the
coordinate 0, we will send (0, 0) instead, and whenever it would be 1, the characters (1, 1) will

31

be sent. The message 0 0 1 will be encoded and sent in the form 00 00 11. Consqequently if the
it is received that 00 00 01, we know that an error has happened, and in the case of exactly one
error, either 000 or 001 was the original message. Let us now examine another example. If q = 2,
k = 1, n = 3 and φ(0) = (0, 0, 0) and φ(1) = (1, 1, 1) the original message 0 0 1 will be sent as
000 000 111. If it is received by us that 000 000 011 and we assume that exactly one error has
occured, the only possible orginal message can be 0 0 1. This example clearly shows that codes
can have di�erent capabilities in terms of error-detection. This elementary idea will be quanti�ed
by the concept of Hamming distance and elaborated on in 2.5. But if the case is that either one
or two errors could have occured, we cannot show where the error was, and the original message
could easily have been either 0 0 0 or 0 0 1. The pattern becomes somewhat obvious, and we
know that we can correct even two errors by q = 2, k = 1, n = 2 and φ(0) = (0, 0, 0, 0, 0) and
φ(1) = (1, 1, 1, 1, 1). If it is received by us that 00000 00000 00111, then it can be clearly seen
that the original message must have been 0 0 1 in the case of at most two errors. But again, if
we would like to deal with up to three errors,then the original message either was 0 0 0 or 0 0 1.
These codes are called repetition codes and will be the special cases of Reed-Muller codes, which
will be introduced in 3. Now the concept of (binary) repetition codes will be formalized.

2.4.1 Repetition codes

De�nition Let q = 2, k = 1,
φ(0) = (0, 0, . . . 0)

and
φ(1) = (1, 1, . . . 1).

In this case our code is called by de�nition a repetition code of length n denoted by RC(n).

Let us compare now two codes with the same length. The �rst is the repetition code of length
three, the second is de�ned by q = 2, k = 1, φ(0) = (0, 0, 0) and φ(1) = (0, 0, 1). If the received
message is in the case of the second code 000 000 000 and it is assumed that at most one error
occured, the original message could have been 000, 001, 010, 100. If the received message is
000 000 000 in the case of the repetition code, and it is assumed that at most one error occured,
we do know that the number of errors is exactly zero. This elementary example clearly shows
the di�erence of error detecting and correcting capabilities between codes of same length.

2.5 Hamming distance, weight, errors, and some basic consequences

For this subsection I cite [1], [2], [3] [8], [11] and [13].

2.5.1 Metric spaces

Metric spaces are brie�y mentioned since they will be appearing a lot in this subsection. The
concept of metric spaces and normed vector spaces allow us to later handle codewords as points,
meaning that they are paramount in coding theory.

De�nition Let (S, d) be an ordered pair, where S is a set and

d : S × S → R

is a function with two variables. The (S, d) pair is called ametric space and d is called ametric
on the set S by de�nition if and only if the conditions

∀(x, y) ∈ S × S : d(x, y) = 0R ↔ x = y

32

∀(x, y) ∈ S × S : d(x, y) = d(y, x)

∀(x, y, z) ∈ S × S × S : d(x, y) +R d(y, z) ≥R d(x, z)

are satis�ed. (Later we will see that we can write d : S × S → R+ instead.) For the sake of
simplicity we can say that the real number d(x, y) is the distance of the points x and y.

We can see that the third condition is basically the idea of the triangle inequality, and
roughly/informally speaking re�ects on the idea that when we talk about distance, we tend
think that the "straight line" is the shortest between two points. Sometimes this condition is
referred to as subadditivity. The second condition expresses that we want distance to be sym-
metrical.The presence of the �rst condition is fairly obvious. From these three conditions it can
be proven that the distance of two points can never be negative.

Theorem 2.16 Let (S, d) be a metric space. We have

∀(x, y) ∈ S × S : d(x, y) ≥R 0R.

In other words the distance of any two points cannot be negative.

Proof Let us substitute z = x to the triangle inequality. It is obtained that

∀(x, y) ∈ S × S : d(x, y) +R d(y, x) ≥R d(x, x).

Utilizing the condition of symmetry the above condition is transformed into

∀(x, y) ∈ S × S : d(x, y) +R d(x, y) ≥R d(x, x).

From the �rst condition we know that the right side of the inequality is 0R. We get to the
inequality

∀(x, y) ∈ S × S : 2R ∗R d(x, y) ≥R 0R

which is equivalent to
∀(x, y) ∈ S × S : d(x, y) ≥R 0R

because 2R is a positive real number. �

The following theorem will emphasize the connection between norms and distances.

Theorem 2.17 Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and W = (V, F,~0, ~+,~∗,~-) be a vector

space. Let (W, ‖.‖) be a normed space. Let the d : V × V → R function de�ned as

∀(v1, v2) ∈ V × V : d(v1, v2) = ‖v2~−v1‖.

In this case (V, d) is a metric space. Furthermore

∀v ∈ V d(~0, v) = d(v,~0) = ‖v‖

holds as well.

Proof From the de�nition of d and the de�nition of norms we have We have

d(v1, v2) = 0R ↔ ‖v2~−v1‖ = 0R ↔ v2~−v1 = ~0↔ v1 = v2.

The symmetry condition easily follows from the very fact that the additive inverse of a vector
has the same norm as the original vector, so we have

d(v1, v2) = ‖v2~−v1‖ = ‖~-(v2~−v1)‖ = ‖~-v2~+v1‖ = ‖v1~−v2‖ = d(v2, v1).

33

The triangle inequality comes from the triangle inequality of norms, so

d(v1, v3) = ‖v3~−v1‖ = ‖v3~−v2~+v2~−v1‖ ≤R ‖v3~−v2‖+R ‖v2~−v1‖ = d(v3, v2) +R d(v2, v1).

This proves that d is really a distance function. For the second claim we have

∀v ∈ V d(v,~0) = d(~0, v) = ‖v~−~0‖ = ‖v‖

completing our proof. �

An example will appear in 2.5.2.

Theorem 2.18 Let F = (K, 0, 1,+, ∗, -,−1) be a �eld and |.| : K → R be an absolute value

function over the �eld. The d : K ×K → K function de�ned by

∀(x, y) ∈ K ×K : d(x, y) = |y − x|.

In this case (K, |.|) is a metric space and we have

d(0, x) = d(x, 0) = |x|.

Proof Trivial from the previous proof. �

2.5.2 Hamming distance, minimal distance, Hamming weight, weight of codes

De�nition Let us consider the function d : Fnq × Fnq → R de�ned by

d(u, v) = Card{i | ui 6= vi}

for every ordered pair. The real number d(u, v) is said to be by de�nition theHamming distance
of u and v. Let C ⊆ Fnq be a code. In this case the real number

Inf{d(u, v) | (u 6= v) ∧ (u, v ∈ C)}

is called by de�nition the minimal distance of the code C and is denoted with the symbol
d(C). We will de�ne the function

wt : Fnq → R

by the formula
wt(u) = d(u, 0)

which means that wt(u) is the number of nonzero coordinates in u, and is called the Hamming
weight of the word. Expressing this by formula we have

wt(u) = Card{i | ui 6= 0}.

The number
wt(C) = Inf{wt(u) | (wt(u) 6= 0) ∧ (u ∈ C)}

is called the weight of the code C by de�nition.

Indeed it is convenient to phrase

d(u, v) =
∑
∀i
I(ui 6= vi) =

∑
∀i

(1− I(ui = vi))

where I is the indicator function. The wt function for F1
q becomes the trivial absolute value

function, which is zero for the zero element, and 1 otherwise.

34

Theorem 2.19 For all u ∈ Fn2 the equality

wt(u+ v) = wt(u) + wt(v)− 2wt(u ∗ v)

holds, where ∗ is understood as a component-wise multiplication.

The source of this theorem is [12]. The proof was not detailed in the reference literature.

Proof For the sake of clarity and better readibility let the lower index 2n refer to the operations
of Fn2 , the lower index 2 refer to the modulo 2 operations and every operation without a lower
index will denote an operation over R. Moreover 02 will be the addtive neutral element of F2 and
similarly 12 will be the multiplicative neutral element of F2.

So what is needed to be shown is

∀(u, v) ∈ Fn2 × Fn2 : wt(u+2n v) = wt(u) + wt(v)− 2wt(u ∗2n v)

Let wt2 : F2 → R be the weight function restricted to the coordinates, meaning that

wt(02) = 0

and
wt(12) = 1.

The idea is that we need to observe the coordinates separately. First with a chart we will show
that

∀(a, b) ∈ F2 × F2 : wt2(a+2 b) = wt2(a) + wt2(b)− 2wt2(a ∗2 b)

a b A B C D E F G H

1 1 0 1 1 1 0 1 2 0
1 0 1 0 1 0 1 0 1 1
0 1 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0

In the chart the notations
A = a+2 b

B = a ∗2 b

C = wt2(a)

D = wt2(b)

E = wt2(a+2 b)

F = wt2(a ∗2 b)

G = wt2(a) + wt2(b)

H = wt2(a) + wt2(b)− 2wt2(a ∗2 b)

are utilized. Furthermore for better aesthetics we have used the notations 1 = 12 and 0 = 02. It
can be observed easily that

∀u ∈ Fn2 : wt(u) =

n∑
i=1

wt2(ui)

holds. From this because of the linearity of the mapping u 7→ ui and the linerarity of the
∑

operator we can see that

35

wt(u+ v) =
n∑
i=0

wt2((u+2 v)i) =
n∑
i=0

wt2(ui +2 vi) =

=
n∑
i=0

(wt2(ui) + wt2(vi)− 2wt2(uivi)) =

=
n∑
i=0

wt2(ui) +
n∑
i=0

wt2(vi)−
n∑
i=0

2wt2(uivi) =

=
n∑
i=0

wt2(ui) +
n∑
i=0

wt2(vi)− 2
n∑
i=0

wt2(uivi) =

=
n∑
i=0

wt2(ui) +
n∑
i=0

wt2(vi)− 2
n∑
i=0

wt2((uv)i) =

= wt(u) + wt(v)− 2wt(u ∗ v)

meaning that our proof is complete. �

2.5.3 Connection with metric spaces and normed vector spaces

It comes without di�culty to observe that the ordered pair (Fnq , d) forms a metric space. We can
see that

d(u, v) = 0↔ Card{i | ui 6= vi} = 0↔6 ∃i : ui 6= vi ↔ ∀i : ui = vi ↔ u = v

and because of the simmetry of the 6= relation that

d(u, v) = Card{i | ui 6= vi} = Card{i | vi 6= ui} = d(v, u)

furthermore

d(u, v) = Card{i | ui 6= vi} ≤ Card{i | ui 6= wi}+ Card{i | wi 6= vi} =

= d(u,w) + d(w, v)

holds. To see why

Card{i | ui 6= vi} ≤ Card{i | ui 6= wi}+ Card{i | wi 6= vi}

is true, we will �rst consider the case of F1
q . Now we have only one index and one coordinate.The

number Card{i | ui 6= vi} could be greater than

Card{i | ui 6= wi}+ Card{i | wi 6= vi}

only if
Card{i | ui 6= vi} = 1 ∧ Card{i | ui 6= wi}+ Card{i | wi 6= vi} = 0

which would imply that

Card{i | ui 6= wi} = 0 ∧ Card{i | wi 6= vi} = 0

which means that
∀i : ui = wi ∧ wi = vi

36

from there because we have only one coordinate

u1 = w1 ∧ w1 = v1

from where the transitivity of equality it is obtained that

u1 = v1

implying in our case that
∀i : ui = vi

which result in
Card{i | ui 6= vi} = 0

contradicting the initial assumption that

Card{i | ui 6= vi} = 1.

Now we can easily utilize similar thoughts for Fnq for n > 1, we just have to consider the vectors
by individual coordinates, thereby reducing the problem to that of F1

q . The

∀(u, v) : d(u, v) ≥ 0

fact comes from the triangle inequality and the symmetry proterty, but can be seen by the
nonnegativity of cardinality as well. Furthermore can be concluded that

d(u, v) = wt(u− v)

is an universal equality. Because of the linearity of the function u 7→ ui we can deduce that

d(u, v) = Card{i | ui 6= vi} = Card{i | ui − vi 6= 0} =

= Card{i | (u− v)i 6= 0} = d(u− v, 0) = wt(u− v)

holds. Additionally, we can clearly see that we could have de�ned d by simply utilizing the
aforementioned formula and de�ning wt beforehand.This can remind us to the fact that if (V, ‖.‖)
is a normed space, then the

∀(x, y) : d(x, y) = ‖x− y‖

formula de�nes a distance function. Now let us examine why exactly is wt a norm over Fnq .
Because of the fact that (Fnq , d) forms a metric space we obtain

wt(u) = 0↔ d(u, 0) = 0↔ d = 0.

Now utilizing the fact that translation both points with a vector does not alter their distance
and we get that

wt(u+ v) = d(u+ v, 0) = d(u+ v − v,−v) = d(u,−v) ≤

≤ d(u, 0) + d(0,−v) = d(u, 0) + d(−v, 0) = wt(u) + wt(−v) = wt(u) + wt(v).

Furthermore for any nonzero scalar λ ∈ Fq

wt(λu) = d(λu, 0) = d(u, 0) = wt(u) = |λ|trivu

where
|.|triv : Fq → R+

0

is the trivial absolute value function. Indeed, any norm is homogeneous with respect to exactly
one absolute value function if the vector space contains at least two vectors.. The fact that wt

37

is only homogeneous with respect to |.|triv could be easily seen from the fact that restricted to
F1
q the function wt gives us the trivial absolute value function. The nonnegativity comes from

the triangle inequality and the facts that wt(0) = 0 and wt(u) = wt(−u), but can be easily seen
from the nonnegativity of cardinality and from the fact that wt has been de�ned by using the
Hamming distance. As an example, look at

d(RC(n)) = wt(RC(n)) = n

since
d((0, 0, . . . 0), (1, 1, . . . , 1)) = n

obviously holds. As another example

d(Fnq) = (Fnq) = 1

since for all unit vector e ∈ Fnq it holds that

wt(e) = 1

and the weight of a code cannot be zero. From the de�nition of the weight of a code it can be
seen that wt(C) 6= 0. This also means that

wt({0}) = Inf{wt(u) | (wt(u) 6= 0) ∧ (u ∈ {0})} =

= Inf{wt(u) | (wt(u) 6= 0) ∧ (u = 0)} =

= Inf{wt(u) | (wt(u) 6= 0) ∧ (wt(u) = 0)} = Inf(∅)

does not exist. It comes naturally that we can infer everything to wt which generally holds for
all norms, for example

wt(u+ v) ≥ |wt(b)− wt(a)|Eucl.
where |.|Eucl. is the R→ R+

0 Euclidean absolute value function.

Theorem 2.20 Let Fnq be vector space over a �nite �eld and (u(i))hi=1 a system of words. The

inequality

wt

(
h∑
i=1

u(i)

)
≥ sup

(0≤j≤h)∧(ei,j=0↔i=j)∧(ei,j=1↔i 6=j)

h∑
i=1

(−1)ej,iwt(u(i))

holds.

We note that instead of wt we could have written any norm over any normed vector space
meaning that ∥∥∥∥∥

h∑
i=1

u(i)

∥∥∥∥∥ ≥ sup
(0≤j≤h)∧(ei,j=0↔i=j)∧(ei,j=1↔i 6=j)

h∑
i=1

(−1)ej,i

∥∥∥∥∥u(i)

∥∥∥∥∥.
These simple we conclude by generalizing the formula well-known by everyone from high school

∀(x, y) ∈ R× R : |x− y| ≥ ||x| − |y|| = max(|x| − |y|, |y| − |x|).

Proof What we have to notice is that the triangle inequality can be generalized like

wt

(∑
i∈I

v(i)

)
≤
∑
i∈I

wt(v(i))

38

where I ⊆ is a �nite set of indices and (v(i))i∈I is a system of words.

wt(u(j)) = wt

(
u(j) +

∑
1≤i≤h∧i 6=j

u(i) −
∑

1≤i≤h∧i 6=j
u(i)

)
=

= wt

(∑
1≤i≤h

u(i) −
∑

1≤i≤h∧i 6=j
u(i)

)
≤ wt

(∑
1≤i≤h

u(i)

)
+ wt

(
−

∑
1≤i≤h∧i 6=j

u(i)

)
=

= wt

(∑
1≤i≤h

u(i)

)
+ wt

(∑
1≤i≤h∧i 6=j

u(i)

)
≤ wt

(∑
1≤i≤h

u(i)

)
+

∑
1≤i≤h∧i 6=j

wt(u(i))

from where because of the transitivity of inequality and equality it is obtained that

wt(u(j)) ≤ wt

(∑
1≤i≤h

u(i)

)
+

∑
1≤i≤h∧i 6=j

wt(u(i))

which is equivalent with the inequality

wt(u(j))−
∑

1≤i≤h∧i 6=j
wt(u(i)) ≤ wt

(∑
1≤i≤h

u(i)

)

and can be expressed as

∑
1≤i≤h

(−1)ei,jwt(u(i)) ≤ wt

(∑
1≤i≤h

u(i)

)

where
ei,j = 0↔ i = j ∧ ei,j = 1↔ i 6= j

holds. Since we did not use any special trait of j

∀(1 ≤ j ≤ h) :
∑

1≤i≤h
(−1)ei,jwt(u(i)) ≤ wt

(∑
1≤i≤h

u(i)

)

is true. But if

wt

(∑
1≤i≤h

u(i)

)
is greater than or equal to all those expressions, it is greater than or equal to the maximum of
those as well meaning that

wt

(
h∑
i=1

u(i)

)
≥ sup

(0≤j≤h)∧(ei,j=0↔i=j)∧(ei,j=1↔i 6=j)

h∑
i=1

(−1)ej,iwt(u(i))

holds, which we wanted to show.

2.5.4 Spheres, error-detecting and error-correcting

De�nition For a triplet
(q, n, α) ∈ N+ × N+ × N

and for a given u ∈ Fnq we can de�ne the sphere

Sphere(q, n, α, u) = {v ∈ Fnq | d(u, v) ≤ α}.

39

This concept will appear in the future when proving the Hamming bound in 2.5.5. The fact
that we introduced these basic concepts so far allows us to formalize and elaborate on the error-
detecting and error-correcting capabilities of a code.

De�nition Let C be a code and θ, θ′ be a positive integer. The code C is ad de�nitionem called
to be θ-error-detecting if and only if for every word in C if altered in at least 1 but at most θ
coordinates, the resulting word is not a codeword. The code C is by de�nition said to be exactly-
θ-error-detecting, if and only if C is θ-error-detecting and C is not (θ+1)-error-detecting. The
code C is called θ′-error-correcting if and only if for every (u, v) pair of distinct words each
altered in θ′ number of positions the two resulting words cannot be the same element of Fnq . The
code C is by de�nition exactly-θ-error-correcting if and only if C is θ-error-correcting and
not (θ + 1)-error correcting.

In the following theorem we will summarize some elementary results about error-detecting and
error-correcting capabilities. Furthermore, we will see exactly how the the connection between
the concept of Hamming distance and that of the error-detecting and correcting are formulated.

Theorem 2.21 Let C be a code and θ, θ′ be positive integers.

1. The code C is θ-error-detecting if and only if

d(C) ≥ θ + 1

and θ′-error-correcting if and only if

d(C) ≥ 2 ∗ θ + 1.

2. The code C is exactly (d(C)− 1)-error-detecting and exactly

b(d(C)− 1)/2c

-error-correcting.

Proof 1. Let code C be such as d(C) ≥ θ+1. The smallest possible distance between two words
in C is θ+ 1, consequently altering any word in at least 1 and at most θ positions cannot result
in a word from C, leaving us with the conclusion that C is θ-error-detecting. Now let us assume
that C is θ-error-detecting. If C is θ-error-detecting, then altering any words in at least 1 and at
most θ coordinates cannot generate a new word in C, therefore the minimal distance of C is at
least θ+ 1. Now we will prove the second statement. Let us �rst assume that d(C) ≥ 2 ∗ θ+ 1. If
u and u′ are such as altering both in at least1 and at most θ coordinates result in the code word
u′′, we have that

d(u, u′′) + d(u′, u′′) ≤ θ + θ = 2 ∗ θ.
By the utilization of the triangle inequality and the transitivity of inequality we consequently
deduce that

d(u, u′) ≤ 2 ∗ θ,
contradicting the fact that the minimal distance in C is at least 2 ∗ θ + 1. This contradiction
proves that C is θ-error-correcting. Now we assume that C is θ-error-correcting. If the minimal
distance of C were at most 2 ∗ θ, then by de�nition there were an ordered pair (u, u′) such as
d(u, u′) = d ≤ 2 ∗ θ. One can deduce without di�culties that we can alter θ coordinates of u and
d − θ ≤ θ coordinates of u′ in such a way, that we result in the same word. This contradiction
shows us that the minimal distance of C is at least 2 ∗ θ + 1.

2. These statements immediately follow from 1., if we substitute "≤" to "=" and we reach the
desired equalities. �

40

It becomes clear that the repetition code of length is ecactly (n − 1)-error-detecting and b(n −
1)/2c-error-correcting. The code {000, 001} is exactly 0-error-detecting and exactly 0-error-
correcting.

2.5.5 Hamming bound and Singleton bound

The following theorem will quantify the connection between certain code parameters. The theo-
rem will consist of two really elementary inequalities, featuring d(C), q, Card(C), n. After the
theorem we will examine why establishing those inequalities are important, furthermore we will
derive some other concepts based on their results.

Theorem 2.22 Let C ⊆ Fnq be a code. For every α ≤ b(d− 1)/2c we have

qn−k =
qn

qk
=
Card(Fnq)

Card(C)
≥

α∑
i=0

(
n

i

)
(q − 1)i.

Furthermore the inequality

qn−k =
qn

qk
=
Card(Fnq)

Card(C)
≥ qd(C)−1

holds as well.

The �rst inequality is called theHamming bound and the second one is the Singleton bound.

Proof Let us consider the spheres

Sphere(q, n, α, u) = {v ∈ Fnq | d(u, v) ≤ α}.

Because of the fundamental properties of the �oor function and those of the inequality relation
we obtain that α ≤ b(d − 1)/2c is equivalent with the inequality 2 ∗ α < d. It means that the
radii of the spheres are actually so small that even the two closest centered ones cannot reach
each other. By the aforementioned observation, we can easily obtain that the spheres are actually
pairwise disjoint. Of course we have exactly Card(C) of those spheres. It is obvious that in Fnq
the points contained by a sphere is not depending on the center of the sphere, only on the radius.
Let us introduce the notion

w(α) = Card(Sphere(q, n, α, u)).

Those spheres do not necessarily cover all the points in Fnq , consequently

Card(C) ∗ Card(Sphere(q, n, α, u)) ≤ Card(Fnq).

Rearranging this inequality the form

Card(Fnq)

Card(C)
≥ Card(Sphere(q, n, α, u))

is obtained. We will now show that the Sphere(q, n, α, u) contains exactly

α∑
i=0

(
n

i

)
(q − 1)i

points, and then the proof of the �rst inequality is complete. From the center of the sphere u, we
can get the other points of the sphere by simply altering i coordinates of, where i ≤ α. For every

41

coordinate we have q possible values, therefore there is q−1 possibilities for the coordinates to be
transformed to, which is altogether (q−1)i options. But we also has to choose which coordinates
are to be altered, leaving us with

(
n
i

)
∗ (q − 1)i options. By the summation of these expressions

the desired form is obtained, completing the proof of the �rst inequality. Now we are to verify
the second inequality. We will prove that

Card(C) ≤ qn−d(C)+1,

and from this form by simpy rearranging the inequality we obtain the original statement. So we
need to show that the code C contains at most qn−d(C)+1 codewords. Let

C ′ ⊆ Fn−d(C)+1
q

be a code for which there is a f : C → C ′ function such as f(c) ∈ C ′ is composed of the last
n− d+ 1 coordinates of c. We will show that f is a bijection, consequently

Card(C) = Card(C ′) = qn−d(C)+1,

thereby completing the proof. To reiterate what has been said, the only thing remaining to be
proven is that f is a bijection. It can be easily inferred that f is surjective, since the c′ ∈ C ′
codeword is in the image of f , because if c is such as its �rst d−1 coordinates are 0, and the other
coordinates are exactly the same in c and c′, we have f(c) = c′. But it can be concluded that f
is an injection as well, since if there were di�erent u and v codewords in C such as f(u) = f(v),
then f(u) and f(v) would be the same in n − d + 1 positions, consequently u and v could only
di�er in

n− (n− d(C) + 1) = d(C)− 1

positions, thereby implying d(u, v) = d− 1, which would in turn contradict to the fact that d(C)
is by de�nition the smallest possible distance in C. �

2.5.6 Understanding Hamming and Singleton bounds, the concept of perfect codes

The importance of the aforementioned bounds are connected with the following considerations:

1. We want a code to possess good error-correcting and error-detecting capabilities. Conse-
quently, we need that the distance of the code be greater. We have already seen in the
proof that

Card(C) = qk ≤ qn−d(C)+1,

which is equivalent with the inequality

k ≤ n− d(C) + 1,

and when rearranged we are lead to

d(C) ≤ n− k + 1.

One can conclude without di�culties that for a code with great distance n must be great
relative to k. It is easy to observe that the previous inequality follows immediately from
the Singleton bound.

2. We want the platform to be utlizied with high e�cacy. Since the length of the message in
the general case becomes longer by n/k, it can be inferred that we are seeking for a code
when n is relatively small compared to k.

42

When considering the aforementioned two desires, we can see that those ideas clearly appear in
the bounds proven above. Now we will brie�y examine the case when in the bounds equality holds.
When equality holds in the Hamming or in the Singleton bound, we see that n−k is maximalized,
which in turn implies that the code under consideration follows the �rst desire, roughly speaking
we have a good code in terms of error-detecting and error-correcting capabilities. Furthermore,
we have that the union of the spheres are containing all points of Fnq .

De�nition Let C ⊆ Fnq be a code. We say that C is a perfect code by de�nition if and only
if the union of the spheres mentioned in the proof of the Hamming bound are containing every
point of Fnq . The rate of a code is R = k

n .

We can easily deduce that a θ-error-correcting code is perfect code if and only if for every word
there exists a codeword not further than θ.

2.6 Linear codes, generator matrices, controll matrices, dual codes

In this subsection, my sources were [1], [10] and [12].

2.6.1 Linear codes, generator matrices, controll matrices

De�nition Let C ⊆ Fnq be a code. We call C a linear code by de�nition if and only if C is a

subspace of Fnq . The matrix GC ∈ Fn∗kq is called the generator matrix of the linear code C by
de�nition if and only if

C = {GC ∗ u | u ∈ Fnq },

in other words if
C = Im(GC).

The matrix PC ∈ F(n−k)∗n
q is said to be the by de�nition controll matrix of the linear code C

if and only if
C = {u ∈ Fnq | PC(u) = 0},

or equivalently if
C = Ker(PC).

The dimension of the linear code C is by de�nition the dimension of the sub�eld C ≤ Fnq .
Linear codes are often referred to by the triplet featured with lower index

C = [n, k, d(C)]q = [n, logq Card(C), d(C)]q.

Note that in this case C is a vector space, and therefore not only the (C, d) pair is a metric space
but (C,wt) is a normed vector space as well. We can immediately observe from the de�nition
that a matrix with the proper dimensions A is a generator matrix of code C if and only if the
columns of A form a basis of C.

2.6.2 Weight and distance of linear codes

Now we will highlight one of the most important attribute of linear codes, then we will explore
some elementary connections between generator matrices and controll matrices.

Theorem 2.23 For a linear code C we have d(C) = wt(C).

43

I understood this basic concept from [12] and relied solely on it as a source.

Proof By the de�nition of the weight of C we know that there are words u and v in C that
d(u, v) = d(C). Since C is a linear code, s = u − v is also a codeword in C. Because of the
equality chain

wt(s) = wt(u− v) = d(u, v) = d(C)

we know that there is a codeword s in C with a weight at of d(C), consequently we obtain that
the weight of the whole code is at most d(C), in other words wt(C) ≤ d(C). Now we only have
to prove that wt(C) ≥ d(C). By the de�nition of the weight of a code there is a codeword u in
C such as

wt(C) = wt(u) = d(u, 0).

Since C is a linear code, 0 is contained by C. According to the equality above we have two
codewords in C with a distance wt(C), meaning that wt(C) ≥ d(C). �

2.6.3 Dual and self-dual codes

Now we will de�ne and elaborate on a concept which is highly attached to that of generator and
controll matrices.

De�nition Let C ⊆ Fnq be a linear code. The linear code C⊥ is called by de�nition the dual
code of the code C. The linear code C is said to be self-dual by de�nition if and only if C is a
dual code of C.

Theorem 2.24 Let C ≤ Fn2 be a a linear code. If C is self-dual, then

n ≡ 0 (mod 2)

holds. Furthermore

Card{u ∈ C | wt(u) ≡ 0 (mod 4)} =

(
3

4
± 1

4

)
n

is true as well.

Proof Because of the de�nition of self-dual codes we have C = C⊥ from where

Dim(C) = Dim(C⊥)

obviously follows. It is also trivial that

Dim(C) +Dim(C⊥) = n.

Combining these two aforementioned facts it is obtained that

n = Dim(C) +Dim(C⊥) = Dim(C) +Dim(C) = 2Dim(C)

and by the transitivity of equality
n = 2Dim(C)

implying that
n ≡ 0 (mod 2).

Now we will prove the second claim. If

C ′ = {u ∈ C | wt(u) ≡ 0 (mod 4)} = C

44

then the proof is complete. If
∃u ∈ C : wt(u) 6≡ 0 (mod 4)

then consider that all codewords either belong to C ′ or u+C ′. Now it is clear that all codewords
in C have even weight. The ones which have a weight divisible by 4 will go to C ′ and the others
to u + C ′ meaning that we have found a partition of C. It implies that C ′ is a subgroup of C
with index 2, containing exactly half of the words. �

It can be easily seen that the statement does not hold for any Fnq . For example in F2
5 the code

generated by (1, 2) is self dual since

〈λ1(1, 2), λ2(1, 2)〉 = λ1λ2〈(1, 2), (1, 2)〉 = λ1 ∗ λ2 ∗ 0 = 0

and because of
C = {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}

it can be seen that all the nonzero codewords have a weight of 2. This fact could be easily
observed from

∀λ 6= 0 : wt(λ(1, 2)) = wt(1, 2) = 2

as well.

Theorem 2.25 Let C ≤ Fnq be a linear code, and let wt(C) = 1. In this case the statement

6 ∃v ∈ c⊥ : wt(v) = n

holds.

Proof Since wt(C) = 1, there exists a codeword u ∈ C such that

wt(u) = wt(C) = 1

is true. In this case there exists uniquely a 1 ≤ i ≤ n index and a 0 6= λ ∈ Fq scalar such that
u = λei, where ei is the vector whose i coordinate is 1 and the other ones are 0. Let us indirectly
assume that there is a v ∈ C⊥ codeword such that wt(v) = n, Now there uniquely exists a
sequence of (λi)

n
j=1 ∈ Fnq scalars such that

v =

n∑
j=0

λjej

and
6 ∃j : λj = 0

hold. Since C and C⊥ are by de�nition orthogonal to each other, the scalar product of u and v
should be 0. Now it can be obtained that

〈u, v〉 =

〈
λei,

n∑
j=0

λjej

〉
=

n∑
j=0

〈
λei, λjej

〉
=

=

n∑
j=0

λλj〈ei, ej〉 = λλi〈ei, ei〉 = λλi

from which because u and v are orthogonal to each other we get λλi = 0. It means that λ =
0 ∨ λi = 0. It cannot be the case that λ = 0, since wt(u) = 1 and λ = 0 is impossible, since
wt(v) = n. This contradiction means that the indirect assumption is false, completing our proof.

45

Theorem 2.26 Let C be a linear code with parameters (n, k).

1. The matrix A is a controll matrix of the code C if and only if AT is a generator matrix of

C⊥.

2. For every generator matrix and controll matrix of C we have

PC ∗GC = 0.

3. The matrix A ∈ F(n−k)∗n
q is a controll matrix of C if and only if Rank(A) = n − k and

A ∗GC = 0.

4. The matrix A ∈ Fn∗kq is a generator matrix of C if and only if Rank(A) = k and PG∗A = 0.

5. The codes C1 and C2 are duals of each other if and only if

GTC1
∗GC2 = 0

and Rank(GC1) +Rank(GC2) = n.

6. The code C is self-dual if and only if GC ∗GTC = 0.

7. The code C is self-dual if and only if PC ∗ P TC = 0.

Proof 1. First let us assume that A is a controll matrix of C. In this case every word in C is
orthogonal to every row of A, therefore the matrix A only contains rows, which are orthogonal to
words in C. But A is a controll matrix of C, which means that it has n− k linearly independent
rows. All these rows are from C⊥, and Dim(C⊥) = n− k, which means that the rows of A form
a basis of C⊥. This means that the columns of AT form a basis of C⊥ But we have already seen
that having basis as columns means a generator matrix, in this case for the subspace C⊥. All
implications are indded equivalences in the aforementioned proof, meaning that the converse is
also proven.

2. Let GC be a generator matrix of C and PC be a controll matrix of C. Because of the �rst
statement of the theorem we know that P TC is a generator matrix of C⊥, implying that the
columns of P TC form a basis of C⊥, rendering the rows of PC to be a basis of C⊥. But the
columns of the generator matrix GC form a basis of C by de�nition, causing the rows of PC and
the columns of GC to be pairwise orthogonal with each other. Considering that in the result of
PC ∗ GC there are only the pairwise scalar products of the rows of PC and the columns of GC ,
we are forced to conclude that PC ∗GC = 0.

3. If A is a controll matrix of C, then AT is a generator matrix of C⊥, which means that

n− k = Dim(C⊥) = Rank(AT) = Rank(A).

Additionally, A∗GC = 0 follows because of the second point of the theorem. If Rank(A) = n−k,
we have that A has a maximal rank. Furthermore if A ∗ GC = 0, we obtain that the rows of
A are pairwise orthogonal to the columns of GC , implying that the rows of A form a linearly
independent system of vectors in C⊥. But considering the full rank of A we obtain that the rows
of A form a basis of C⊥, which means that the columns of AT are a basis for C⊥, therefore AT

is a generator matrix of the code C⊥. Because of the �rst point of the theorem we can easily
obtain that A is a controll matrix of the code C.

4. Very similar to the proof of 3.

5. Let C1 and C2 be duals of each other. It is clear that

GTC1
∗GC2 = (P TC2

)T ∗GC2 = PC2 ∗GC2 = 0.

The converse follows easily as well.�

The statements 6. and 7. follow easily from the previous ones.

46

2.6.4 Connection between distance and linear independence

Now we will explore the connection between the distance of the code and the linearly dependent
and independent columns of the controll matrix.

Theorem 2.27 Let C be a linear code, and PC the controll matrix of C.

1. The distance of C is at least d if and only if every system of d− 1 columns of PC forms a

linearly independent system.

2. The distance of C is exactly d if and only if the smallest system of columns to be linearly

dependent in PC contains d columns.

3. The distance of C is at most d if and only if there exists a system of d columns in PC which

form a linearly dependent system.

Proof We only have to consider, that if we have a word with a weight x, then x rows of PC
will be linearly dependent. It comes immediately after taking into account that by de�nition
PC ∗ v = 0, and while multiplying we create linear combinations of the columns. Moreover it can
be inferred that there is a codeword with weight x if and only if there is a system of x linearly
dependent columns in PC .

1. Let us assume that the distance of C is d. If there were a system of d− 1 columns which were
linearly dependent, then there would be a codeword with weight d−1, which is impossible, since
the minimum distance of C is d by the assumption.

2. If the distance of the code is exactly d, then of course there is a codeword with distance
d, meaning that there will be a system of d linearly dependent columns in PC . And it will
be the smallest one, because if there were a system of dependent columns containing fewer
than d vectors, then there were a code with a distance smaller than d, contradicting the initial
assumption. Conversely, if the smallest system of columns to be linearly dependent in PC contains
d vectors, then there is a codeword with weight d, but there cannot be codeword with smaller
weight, implying that the distance of C is d.

3. Let us assume that the distance of C is at most d. If all system of d columns in PC formed a
linearly independent system, then the smallest possible dependent system would contain at least
d + 1 columns, meaning that the smallest weight among the codewords is at least d + 1. But it
would contradict to the initial assumption that the distance of the code is d. Conversely if there
exists a system of d columns which is linearly dependent, then there is a codeword with weight
d, meaning that the minimal distance of the code cannot be greater than d. �

2.6.5 Parameters of a speci�c family of codes

Theorem 2.28 Let C1 = [n, k1, d(C1)]q and C2 = [n, k2, d(C2)]q be two codes. Let us de�ne

C = {(u, u+ v) | (u ∈ C1) ∧ (v ∈ C2)}.

In this case we have a code

C = [2n, k1 + k2,min(2d(C1), d(C2))]q.

Proof 1. Since we concatenate two codewords each containing n characters, we have that the
new word does contain n+ n = 2n characters.

47

2. The codeword c ∈ C has a form c = (u, u+ v). We have qk1 options for u and qk2 options for
v, consequently the number of overall choices are

qk = Card(C) = Card(C1 × C2) = qk1qk1 = qk1+k2 ,

implying that k = k1 + k2.

3. First we will show that d ≥ min(2d(C1), d(C2)). For this to happen it is su�cient to verify
that all nonzero weight in C in greater or equal than min(2d(C1), d(C2)). Let (u, u + v) be a
nonzero codeword in C. If v = 0 then u must be nonzero. In this case

wt((u, u+ v)) = wt((u, u)) = 2wt(u) ≥ 2wt(C1) =

= 2d(C1) ≥ min(2d(C1), d(C2)).

If v is nonzero

wt((u, v)) = wt(u) + wt(u+ v) ≥ wt(u) + (wt(v)− wt(u)) =

= wt(v) ≥ min(2d(C1), d(C2)).

Now we only need to verify that d ≥ min(2d(C1), d(C2)), and we will arrive to our desired
conclusion. By de�nition there exists an u ∈ C1 such as wt(u) = d(C1), and a v ∈ C2 such as
wt(v) = d(C2). The words (u, u) and (0, v) are codewords in C, and wt((u, u)) = 2d(C1) and
wt((0, v)) = d(C2), implying that the smallest possible weight is at most

min(2d(C1), d(C2)),

which completes our proof. �

2.7 Standard form, code parameters, equivalence of codes

I would like to cite [1] as my sole source for this subsection.

De�nition The codes C,C ′ ⊆ Fnq are said to be equivalent codes by de�nition if and only if C ′

can be derived from C by permutating the coordinates and then multiplying speci�c coordinates
by a non-zero scalar. Let GC be a generator matrix of the code C. The matrix GC is by de�nition
in the standard form if there is a matrix X such as

GC =

(
Ek
X

)
holds. The PC controll matrix is said to be in the standard form by de�nition if there exists a
matrix Y such as

PC =
(
Y En−k

)
We can easily observe from the de�nition that by permutating the coordinates and multiplying
with a non-zero scalar does not alter n, k, and d(C). In the following we will represent how the
newly introduced concepts are related to each other.

Theorem 2.29 For every code C uniquely exists a code C ′ such as there is a generator matrix

GC′ which is in standard form and C is equivalent with C ′.

Proof Utilizing Gaussian elimination we obtain the reduced column echelon form of GC , then
we permutate the columns in order to obtain the form mentioned in the de�nition of standard
form. �

48

Now we will see a method to create a controll matrix from a generator matrix.

Theorem 2.30 Le C be a code.If the

GC =

(
Idk
X

)
generator matrix is in standard form, then the matrix

A =
(
−X En−k

)
is a controll matrix of C in standard form.

Proof One can easily see that A ∗ GC = 0. We also can observe that Rank(A) is maximal,
meaning that A is controll matrix of the code C. The matrix is obviously in standard form.�

2.8 Polinomials and Codes

As a source I refer to [1] for this subsection.

There is a conspicuous connection between linear codes and certain polynomials. Let [n, k, d(C)]q ≤
Fnq be a linear code.The mapping

v = (v1 . . . vn) 7→
n−1∑
i=0

vi+1x
i+1

is between two vector spaces which are isomorphic with each other, consequently we can regard
the codewords and the corresponding polynomials as conceptually the same.

De�nition Let g(x) ∈ Fq[x] be a �xed polynomial and

deg(g(x)) = m− n.

Let U ≤ Fq[x] denote the subspace of polynomials with degree at most n, including the zero
polynomial. It is easy to see that the function

W : U → Fq[x]

de�ned by
W : u 7→ ug

is an injective linear mapping, consequently Im(W) will de�ne a linear subspace of polinomials
of Fq[x] with a degree of at most m, with

Dim(Im(W)) = n.

Thus we obtained a polynomial code Im(W) with a generator polynomial W .

Theorem 2.31 Let C = Im(W) the polynomial code generated by the polynomial g. Let Fq ≤ F
be a �eld extension, and α ∈ F is such that Ord∗α ≥ m. If g is such that there exists a number

d ≤ m and a number j that the consecutive powers

αj . . . αj+d−2

are roots of g, we have d(C) ≥ d.

49

Proof Since now the codewords are the polynomials themselves, the Hamming distance is ob-
viously calculated by the coe�cients. We must verify that for every nonzero codeword the ug
polynomials have at least d nonzero coe�cients. The elements αj . . . αj+d−2 are roots of g, there-
fore they will be roots of the ug polynomials as well. We will indirectly assume that there exitsts
a nonzero polynomial code with nonzero coe�cients fewer than d, and we will get to a contra-
diction, proving our initial claim. Let v be a polynomial code

v =

l∑
i=0

vmii ,

where l < d. Now consider the matrix

M =


αjm1 αjm2 . . . αjml

α(j+1)∗m1 α(j+1)∗m2 . . . α(j+1)∗ml

...
...

...

α(j+l−1)∗m1 α(j+l−1)∗m2 . . . α(j+l−1)∗ml


and the vector v containing the coe�cients of the polynomial v. Since the αj . . . αj+d−2 are roots
of v, we have Mv = 0. We know that all columns of M contains a geometric progression, conse-
quently Det(M) is a nonzero scalar multiplied by a Vandermonde determinant with generators
αj ∗ mi. But since Ord∗α ≥ l, these generators are pairwise distinct, consequently Det(M) is
nonzero, meaning that Mv = 0 implies v = 0. This contradiction proves our initial point.�

2.9 Cyclic Codes

To understand cyclic codes I relied on [7].

2.9.1 Cyclic shift

De�nition Let
v = (v0, v1, . . . , vn−1)

denote an n-tuple. Te operation

(v0, v1, . . . , vn−1)(1) = (vn−1, v0, . . . vn−2)

is called the cyclic shift of v. Let us denote

(v0, v1, . . . , vn−1)(Ψ) = (vn−Ψ, vn−Ψ+1, . . . vn−Ψ−1)

which is shifting Ψ places to the right. The indices are to be understood modulo n.

Indeed, it comes naturally that

v(Ψ1) = v(Ψ2) ← Ψ1 ≡ Ψ2 (mod n)

The converse does not necessarily hold, since for instance in the case of

e3 = (1, 1, 1)

e
(1)
3 = e

(2)
3 = (1, 1, 1) = e3

but
¬(1 ≡ 2 (mod 3))

50

is true. One can easily see that shifting a vector Ψ places to the right is equivalent with shifting
it n−Ψ places to the left. For example

en = (1, 1, . . . 1)

is a �xed point of this operator for all n. One can observe without di�culties that

∀v : v(0) = id(v) = v

2.9.2 Connection between cyclic codes and polynomials

De�nition Let C be a code. We say that C is cyclic by de�nition if and only if C is closed
under the operation v(Ψ) meaning that

∀c ∈ C ∀Ψ ∈ Z c(Ψ) ∈ C

holds as well.

Indeed, we will represent these codes in their polynomial form so that we can comprehend them
more easily and we can perform operations more conveniently. The polynomial corresponting to
v is

v(X) =
n−1∑
γ=0

vγX
γ

and the polynomial which corresponds to v(Ψ) is

v(Ψ)(X) =
n−1∑
γ=0

vn−Ψ+γX
γ .

It is fairly obvious that

XΨv(X) = XΨ
n−1∑
γ=0

vγX
γ =

n−1∑
γ=0

vγX
γXΨ =

n−1∑
γ=0

vγX
γ+Ψ

holds. We can easily rewrite

XΨv(X) = q(X)(Xn + 1) + v(i)(X)

in the binary case, and when discussing generaly

XΨv(X) = q(X)(Xn − 1) + v(i)(X).

In the following part of this subsection, we will only be concerned about binary codes.

Theorem 2.32 A polynomial g generates a cyclic code if and only if

g ≡ 0 (mod Xn + 1)

holds.

51

2.9.3 Examples, connection with repetition codes

The following example will help one comprehend the concept. We do indeed know that g(X) =
1 +X +X2 generates a cyclic code, since

g(X) = 1 +X +X2 ≡ 0 (mod X3 + 1)

because
X3 + 1 = (1 +X)(X2 +X + 1).

We simply get
0 · (X2 +X + 1) = 0

1 · (X2 +X + 1) = X2 +X + 1

meaning that
φ(0) = (000)

φ(1) = (111)

which is obviously the repetition code of length 3 denoted by RC(3). We can simply observe that

g(x) =

n−1∏
γ=0

Xγ = 1 +X + · · ·+Xn−1

generates a cyclic code as well. For this it is su�cient to see the binary version of the identity
well-known from high school

Xn + 1 = (1 +X)

n−1∏
γ=0

Xγ = (1 +X)(1 +X + · · ·+Xn−1)

implying that

g(x) =

n−1∏
γ=0

Xγ = 1 +X + · · ·+Xn−1 ≡ 0 (mod Xn + 1).

Obviously

0 ·
n−1∏
γ=0

Xγ = 0

1 ·
n−1∏
γ=0

Xγ =
n−1∏
γ=0

Xγ

therefore
φ(0) = (00 . . . 0)

φ(1) = (11 . . . 1)

meaning that we obtained the repetition code of length n denoted by RC(n).

For our third example et us consider the polinomial

g(X) = 1 +X +X3.

We know that
X7 + 1 = (1 +X)(1 +X +X3)(1 +X2 +X3)

consequently
g(X) = 1 +X +X3 ≡ 0 (mod X7 + 1)

52

is true, therefore g(X) generates a cyclic code. Obviously

0 · (1 +X +X3) = 0

1 · (1 +X +X3) = 1 +X +X3

X · (1 +X +X3) = X +X2 +X4

(1 +X) · (1 +X +X3) = 1 +X2 +X3 +X4

X2 · (1 +X +X3) = X2 +X3 +X5

(1 +X2) · (1 +X +X3) = 1 +X +X2 +X5

(X +X2) · (1 +X +X3) = X +X3 +X4 +X5

(1 +X +X2) · (1 +X +X3) = 1 +X4 +X5

X3(1 +X +X3) = X3 +X4 +X6

(1 +X3) · (1 +X +X3) = 1 +X +X4 +X6

(X +X3) · (1 +X +X3) = X +X2 +X3 +X6

(1 +X +X3) · (1 +X +X3) = 1 +X2 +X6

(X2 +X3) · (1 +X +X3) = X2 +X4 +X5 +X6

(1 +X2 +X3) · (1 +X +X3) = 1 +X +X2 +X3 +X4 +X5 +X6

(X +X2 +X3) · (1 +X +X3) = X +X5 +X6

(1 +X +X2 +X3) · (1 +X +X3) = 1 +X3 +X5 +X6

therefore the generated codewords with the original message are the following

φ(0000) = (0000000)

φ(1000) = (1101000)

φ(0100) = (0110100)

φ(1100) = (1011100)

φ(0010) = (0011010)

φ(1010) = (1110010)

φ(0110) = (0101110)

φ(1110) = (1000110)

φ(0001) = (0001101)

φ(1001) = (1100101)

φ(0101) = (0111001)

φ(1101) = (1010001)

φ(0011) = (0010111)

φ(1011) = (1111111)

φ(0111) = (0100011)

φ(1111) = (1001011).

For the message (abcd) we multiplied g(X) with a+bX+cX2 +dX3 and obtained the codeword.

53

3 Reed-Muller Codes

3.1 Recursive de�nition, examples, some elementary attributes

3.1.1 Recursive de�nition and examples for x=1

This subsection utilizes [14],[16], [17] and [18].

Reed-Muller codes can be de�ned in various ways, for example by their generator matrices. We
will utilize the recursive way for now. Later a plethora of other ways to de�ne/understand Reed-
Muller codes will be detailed in this work. Let us note that we will only be elaborating on the
concept of binary Reed-Muller codes, and whenever we mention Reed-Muller codes, we want to
refer to binary Reed-Muller codes. Otherwise we will say "Generalized Reed-Muller codes".

De�nition For y ≥ 0 let
RM(0, y) = RC(2y)

be the the repetition code with length 2y. These codes are called the zeroth orrder Reed-

Muller codes. The �rst order Reed-Muller codes are de�ned in two steps. First we have

RM(1, 1) = F2
2,

and second we have

RM(1, y + 1) = {(u, u) | u ∈ RM(1, y)} ∪ {(u, u+ e) | u ∈ RM(1, y)}

for y ≥ 1, where e denotes a vector whose every coordinate is 1. The higher order Reed-Muller
codes are de�ned by the recursive formulae

RM(x, x) = F2x

2

if x is at least 2 and

RM(x, y) = {(u, u+ v) | (u ∈ RM(x, y − 1)) ∧ (v ∈ RM(x− 1, y − 1))}

if x and y are di�erent and x, y ≥ 2. The code RM(x, y) is by de�nition said to be a Reed-
Muller code of order x.

Let us examine how the most basic Reed-Muller codes really look like. It follows immediately
from the de�nition that

RM(1, 1) = {00, 01, 10, 11}.

To obtain RM(1, 2) we need to concatenate codewords of RM(1, 1) with themselves and con-
catenate every codeword with the version of itself added to the vector whose every coordinate is
1. Consequently it follows that

RM(1, 2) = {0000, 0101, 1010, 1111, 0011, 0110, 1001, 1100}

holds. By now one has a clear idea about that the fact that the number of codewords doubles in
every iteration concerning the �rst order Reed-Muller codes.

RM(1, 3) =


00000000, 01010101, 10101010, 11111111
00110011, 01100110, 10011001, 11001100
00001111, 01011010, 10100101, 11110000
00111100, 01101001, 10010110, 11000011



54

Next example of �rst order Reed-Muller codes is

RM(1, 4) =



0000000000000000, 0101010101010101
1010101010101010, 1111111111111111
0011001100110011, 0110011001100110
1001100110011001, 1100110011001100
0000111100001111, 0101101001011010
1010010110100101, 1111000011110000
0011110000111100, 0110100101101001
1001011100101100, 1100001111000011
0000000011111111, 0101010110101010
1010101001010101, 1111111100000000
0011001111001100, 0110011010011001
1001100101100110, 1100110000110011
0000111111110000, 0101101010100101
1010010101011010, 1111000000001111
0011110011000011, 0110100110010110
1001011001101001, 1100001100111100


from where we can start to get an impression how �rst order codes really operate. Our last
example has a high signi�cance, since the code RM(1, 5) has been utilized by Mariner 9 to
send back black and white pictures from the surface of Mars. The code has been selected because
of the fact that it can be decoded really rapidely. More than 7000 pictures has been sent back
to Earth and approximately 85 percent of the surface of Mars has been mapped. We note that

55

the year of the successful mission was 1971.

RM(1, 5) =



00000000000000000000000000000000
01010101010101010101010101010101
10101010101010101010101010101010
11111111111111111111111111111111
00110011001100110011001100110011
01100110011001100110011001100110
10011001100110011001100110011001
11001100110011001100110011001100
00001111000011110000111100001111
01011010010110100101101001011010
10100101101001011010010110100101
11110000111100001111000011110000
00111100001111000011110000111100
01101001011010010110100101101001
10010111001011001001011100101100
11000011110000111100001111000011
00000000111111111111111100000000
01010101101010101010101001010101
10101010010101010101010110101010
11111111000000000000000011111111
00110011110011001100110000110011
01100110100110011001100101100110
10011001011001100110011010011001
11001100001100110011001111001100
00001111111100001111000000001111
01011010101001011010010101011010
10100101010110100101101010100101
11110000000011110000111111110000
00111100110000111100001100111100
01101001100101101001011001101001
10010110011010010110100110010110
11000011001111000011110011000011


3.1.2 Parameters of Reed-Muller codes for x=1, weight of codewords

The next theorem will highlight some elementary attributes of �rst order Reed-Muller codes.

Theorem 3.1 Let y be at least 1.

1. RM(1, y) = [2y, y + 1, 2y−1]2.

2. The Reed-Muller code RM(1, y) contains only even weighted words with length 2y.

3. Every codeword in RM(1, y) except from 0 and e has a weight 2y−1.

3.1.3 Higher order Reed-Muller codes

Now we will see two examples of higher order Reed-Muller codes. Let us see an instance where
x and y are the same. It is reasonable to select a small number, since the cardinality of the code

56

will be of course 22x . By the de�nition we obtain that

RM(2, 2) = F22

2 = F4
2 =


0000, 0001, 0010, 0011
0100, 0101, 0110, 0111
1000, 1001, 1010, 1011
1100, 1101, 1110, 1111


holds. If we want to determine how RM(2, 3) looks like, we have to concatenate the codeswords
of RM(2, 2) with the codewords of RM(2, 2) added to the codewords of RM(1, 2).

RM(2, 3) =



00000000, 00000101, 00001010, 00001111
00000011, 00000110, 00001001, 00001100
00010001, 00010100, 00011011, 00011110
00010010, 00010111, 00011000, 00011101
00100010, 00100111, 00101000, 00101101
00100001, 00100100, 00101011, 00101110
00110011, 00110110, 00111001, 00111100
00110000, 00110101, 00111010, 00111111
01000100.01000001, 01001110, 01001011
01000111, 01000010, 01001101, 01001000
01010101, 01010000, 01011111, 01011010
01010110, 01010011, 01011100, 01011001
01100110, 01100011, 01101100, 01101001
01100101, 01100000, 01101111, 01101010
01110111, 01110010, 01111101, 01111000
01110100, 01110001, 01111110, 01111011
10001000, 10001101, 10000010, 10000111
10001011, 10001110, 10000001, 10000100
10011001, 10011100, 10010011, 10010110
10011010, 10011111, 10010000, 10010101
10101010, 10101111, 10100000, 10100101
10101001, 10101100, 10100011, 10100110
10111011, 10111110, 10110001, 10110100
10111000, 10111101, 10110001, 10110111
11001100, 11001001, 11000110, 11000011
11001111, 11001010, 11000101, 11000000
11011101, 11011000, 11010111, 11010010
11011110, 11011011, 11010100, 11010001
11101110, 11101011, 11100100, 11100001
11101101, 11101000, 11100111, 11100010
11111111, 11111010, 11110101, 11110000
11111100, 11111001, 11110110, 11110011


The code RM(3, 3) would contain 223 = 28 = 256 codewords.

3.1.4 Parameters of higher order Reed-Muller codes and connection with binomial

coe�icients

The RM(2, 3) was our last example of higher order Reed-Muller codes. Now we will explore some
of the easier features of the Reed-Muller codes in general.

57

Theorem 3.2 For all x and y we have

RM(x, y) =

[
2y,

x∑
i=0

(
y

i

)
, 2y−x

]
2

.

Proof 1. It immediately follows from 2.28.

2. We can see from 2.28 that k is additive. Considering the identities(
y

0

)
=

(
y − 1

0

)
= 1

and (
y − 1

i− 1

)
+

(
y − 1

i

)
=

(
y

i

)
.

it can be obtained that
x∑
i=0

(
y − 1

i

)
+
x−1∑
i=0

(
y − 1

i

)
=

x∑
i=0

(
y

i

)
,

proving what we initially wanted.

3. Again by utilizing 2.28 we get that

d(RM(x, y)) = min(2d(RM(x, y − 1)), d(RM(x− 1, y − 1))).

Induction will show us that

d(RM(x, y)) = min(2 ∗ 2y−1−x, 2y−1−(x−1)) = min(2y−x, 2y−x) = 2y−x.

�

3.2 Generator matrices and duals of Reed-Muller codes

I relied only on [17] and [18] in this subsection.

3.2.1 Recursive construction of generator matrices

From the recursive de�nition of Reed-Muller codes the generator matrices come really easily. If
the matrices GRM(x,y−1) and GRM(x−1,y−1) are de�ned, we have

GRM(x,y) =

(
GRM(x,y−1) 0

GRM(x,y−1) GRM(x−1,y−1)

)
.

The other cases are fairly easy as well. If GRM(1,y−1) is de�ned, we have

GRM(1,y) =

(
GRM(1,y−1) 0

GRM(1,y−1) 1 . . . 1

)
.

Furthermore

GRM(1,1) =

(
1 0
1 1

)
.

58

3.2.2 Duals of Reed-Muller codes

Theorem 3.3 1. The Reed-Muller codes RM(x, y) and RM(y − x − 1, y) are dual codes of

each other.

2. The Reed-Muller code RM(x, y) is self dual if y = 2x− 1.

3. The converse of these also hold, namely RM(x1, y1) and RM(x2, y2) are duals if and only

if y2 = y1 and x2 = y1−x1−1, furthermore RM(x, y) is self dual if and only if y = 2x−1.

Proof The second claim follows from the �rst one immediately. The �rst claim will be proven
by induction. Let y = 2. In this case the codes RM(x, y) and RM(y − x − 1, y) both exists if
and only if x = 0 or x = 1. If x = 0 and y = 2 our two codes are RM(0, 2) and RM(1, 2). If
x = 1 and y = 2 the two codes in question are RM(0, 2) and RM(1, 2), therefore the two cases
give us the same pair of codes. We know that

RM(0, 2) = {0000, 1111}

and
RM(1, 2) = {0000, 0101, 1010, 1111, 0011, 0110, 1001, 1100}

from the de�nition. Since in RM(1, 2) all codewords have even weight and RM(0, 2) is the
repetition code with length of codewords 4, they will be orthogonal to each other. Because of
2.26 we only need to show that

GTRM(x,y) ∗GRM(x−y−1,y) = 0,

meaning that the columns of GRM(x,y) are orthogonal to the columns of GRM(x−y−1,y), and that

Rank(GRM(x,y)) +Rank(GRM(x−y−1,y)) = y.

We will utilize induction by y. We assume that the theorem holds to y− 1. The orthogonality of
the columns comes from the induction hypothesis and the claim concerning the rank is derived
from the identity

x∑
i=0

(
y

i

)
+

y−x−1∑
i=0

(
y

i

)
=

x∑
i=0

(
y

i

)
+

y∑
i=x+1

(
y

i

)
= 2y.

In the case of the third claim we only have to consider that the dual of a code is unique and that
the dual of RM(x1, y1) is RM(y1 − x1 − 1, y1). �

3.3 Reed Decoding

The cource I claim to utilize to present Reed Decoding is [17].

In this section we will show an algorithm to decode Reed-Muller codes with the involvement of
simple elementary tools. This particular algorithm is called the Reed Decoding. We will show
the algorithm in practice by the example of RM(1, 3). A possible generator matrix of RM(1, 3)
is

GRM(1,3) =



1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
1 1 0 1
1 0 1 1
1 1 1 1


.

59

The columns of GRM(1,3) form a basis of RM(1, 3), let us call them vi. For any codeword v ∈
RM(1, 3) there is a tuple (a0, a1, a2, a3) such as

v = a0v0 + a1v1 + a2v2 + a3v3

Now we obtain

v =



a0

a0 + a1

a0 + a2

a0 + a1 + a2

a0 + a3

a0 + a1 + a3

a0 + a2 + a3

a0 + a1 + a2 + a3


.

Let us assume, that the vector we receive is

w =
(
w0 w1 w2 w3 w4 w5 w6 w7

)
.

Let us examine �rst the case when no error occurs. In this case the equations

1. a0 = w0

2. a1 = w0 + w1 = y2 + w3 = w4 + w5 = w6 + w7

3. a2 = w0 + w2 = w1 + w3 = y4 + w6 = w5 + w7

4. a3 = w0 + w4 = w1 + w5 = w2 + w6 = w3 + w7

hold, and we can easily determine what the intended message really is. Now assume that we have
exactly one error. In this case in the last three lines exactly one value will be di�erent from the
others. If we ignore those values and solve the remaining equations, we can easily decode the
message. We can aslo easily obtain, that a0 is the most frequent component of

Q = w + a1v1 + a2v2 + a3v3 =



w0

w1 + a1

w2 + a2

w3 + a1 + a2

w4 + a3

w5 + a1 + a3

w6 + a2 + a3

w7 + a1 + a2 + a3


.

First let us assume that the error is in w0, meaning that w0 6= a0, and the other characters are
intact. In this case We can easily obtain that

Q =



y0

a0 + a1 + a1

a0 + a2 + a2

a0 + a1 + a2 + a1 + a2

a0 + a3 + a3

a0 + a1 + a3 + a1 + a3

a0 + a2 + a3 + a2 + a3

a0 + a1 + a2 + a3 + a1 + a2 + a3


=



w0

a0

a0

a0

a0

a0

a0

a0


,

which means that the most frequent coordinate will be a0. Now following this example we can
show that if the error is in wi, then row i will not give a0, but all the others will. Let us observe
how the algorithm operates in a simple case. Say that the codeword vT = (1, 1, 1, 1, 1, 1, 1, 1) is
received as wT = (0, 1, 1, 1, 1, 1, 1, 1). Considering 3.3 it is obtained that

60

1. a1 = 1 = 0 = 0 = 0

2. a2 = 1 = 0 = 0 = 0

3. a3 = 1 = 0 = 0 = 0.

We will omit those values which do not agree with the others and we can infer that a1, a2, a3 = 0.
Since

Q = w + a1v1 + a2v2 + a3v3 =



0
1 + 0
1 + 0

1 + 0 + 0
1 + 0

1 + 0 + 0
1 + 0 + 0

1 + 0 + 0 + 0


=



0
1
1
1
1
1
1
1


we know that the error was in w0. It can be obtained without di�culties that

v = a0v0 + a1v1 + a2v2 + a3v3 = v0 = (1111111)T .

3.4 Decoding with Hadamard Matrices, relationship with Kronecker Product

For the contemplation of the connection between Hadamard matrices and Reed-Muller codes I
rely on [15], [18] and [19].

3.4.1 Introduction to Kronecker product

De�nition Let A and B be matrices. The Kronecker product of A and B is de�ned as

A⊗B = (aijB)kl.

More explicitly we can write

A⊗B =


a11B a12B . . . a1qB
a21B a22B . . . a2qB
... . . .

... . . .
ap1B ap2B . . . apqB


or even more explicitly

A⊗B =



a11b11 a11b12 . . . a11b1s a12b11 a12b12 . . . a1qb1s
a11b21 a11b22 . . . a11b2s a12b11 a12b22 . . . a1qb2s

... . . .
...

...
a11br1 a11br2 . . . a11brs a12br1 a12br2 . . . a1qbrs

... . . .
...

...
ap1b(r−1)1 ap1b(r−1)2 . . . ap1b(r−1)s ap2b(r−1)1 ap2b(r−1)2 . . . apqb(r−1)s

ap1br1 ap1br2 . . . ap1brs ap2b11 ap2b12 . . . apqbrs


.

It comes naturally from the de�nition that the Kronecker product is not a commutative operation.
For instance consider (

1 1
1 1

)
⊗
(

1 2
3 4

)
=


1 2 1 2
3 4 3 4
1 2 1 2
3 4 3 4



61

and (
1 2
3 4

)
⊗
(

1 1
1 1

)
=


1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4


as a simple counter-example. One can easily consider that for all A matrices

E1 ⊗A = A = A⊗ E1

holds. Furthermore if 0A denotes the zero matrix which has exactly the size of matrix A then

0E1 ⊗A = 0A = A⊗ 0E1

follows as well. The Kronecker product is bilinear, since

Ψ(A⊗B) = Ψ((aijB)kl) = (Ψ(aijB))kl = ((ΨaijB))kl = (ψA)⊗B

Ψ(A⊗B) = Ψ((aijB)kl) = (Ψ(aijB))kl = (aij(ΨB))kl = A⊗ (ΨB)

furthermore
A⊗ (B + C) = (aij(B + C))kl = (aijB + aijC)kl =

= (aijB)kl + (aijC)kl = A⊗B +A⊗ C

for the right variable, and

(A+B)⊗ C = ((A+B)ijC)kl = ((aij + bij)C)kl =

= (aijC + bijC)kl = (aijC)kl + (bijC)kl = A⊗ C +B ⊗ C

for the left variable.

Indeed, the associativity of the operation can also be discovered fairly easily merely from the
de�nition and raw calculation.

(A⊗B)⊗ C = (aijB)kl ⊗ C = (aijbklC)mn

A⊗ (B ⊗ C) = A⊗ ((bklC)mn) = (aijbklC)mn

Additionally, the Kronecker product is a special case of the tensor product, and has a plethora of
interesting properties. We now would like to explore how it contributes to decoding Reed-Muller
codes.

3.4.2 Kronecker product for more variables

For our decoding algorithm we will need to build large Hadamard matrices 3.4.3, so we need to
generalize the kronecker product for more variables 3.4.5.

De�nition For the empty Kronecker product

⊗i∈∅Mi = E1 =
(
1
)
.

Let I ⊆ N be a set of indices so that Card(I) ∈ N+. Let (Mi)i∈I be a sequence of matrices. Let

j = Max(I).

The multivariable Kronecker product is de�ned as

⊗i∈I = (⊗i∈I\{j}Mi)⊗Mj .

62

For instance if I = {1} and (M1) is a sequence containing only one matrix, then

⊗i∈{1}Mi = (⊗i∈{1}\{1}Mi)⊗M1 = (⊗i∈∅Mi)⊗M1 =
(
1
)
⊗M1 = M1

If I = {1, 2} and our matrices are (M1,M2), then

⊗i∈{1,2}Mi = (⊗i∈{1}Mi)⊗M2 = M1 ⊗M2.

For I = {1, 2, 3} we have

⊗i∈{1,2,3}Mi = (⊗i∈{1,2}Mi)⊗M3 = (M1 ⊗M2)⊗M3 = M1 ⊗ (M2 ⊗M3) = M1 ⊗M2 ⊗M3.

Because of the associativity of the Kronecker product, there is no need to write parentheses. We
can also write

⊗i∈{1,2,...n}Mi = ⊗ni=1Mi = M1 ⊗M2 ⊗ · · · ⊗Mn

3.4.3 Hadamard matrices

De�nition Let Hn be an n× n matrix whose all elements are either 1 or −1, and moreover

HnH
T
n = nEn.

These matrices are by de�nition called Hadamard matrices of order n.

H1 =
(
1
)
.

H2 =

(
1 1
1 −1

)
.

H4 = H2 ⊗H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

It is clear from the de�nition that −Hn is also a Hadamard matrix, since

(−Hn)((−Hn)T) = (−Hn)(−HT
n) = HnH

T
n = nEn.

Therefore for instance the matrices
Ĥ1 =

(
−1
)
.

Ĥ2 =

(
−1 −1
−1 1

)
.

Ĥ4 =


−1 −1 −1 −1
−1 1 −1 1
−1 −1 1 1
−1 1 1 −1

 .

are Hadamard matrices as well. Furthermore, the matrix obtained by the permutation of rows
and columns is also a Hadamard matrix, consequently for instance

̂̂
H2 =

(
1 −1
1 1

)
.

is a Hadamard matrix as well. We also have that if Hn is a Hadamard matrix then HT
n is a

Hadamard matrix as well, since

HnH
T
n = nEn ↔ HT

nHn = nEn ↔ HT
n (HT

n)T = nEn

63

therefore for instance ̂̂̂
H2 =

(
1 1
−1 1

)
.

is a Hadamard matrix as well.

It is also not di�cult to consider that

Det(Hn) = ±n
n
2

since

HnH
T
n = nEn → Det(HnH

T
n) = Det(nEn)↔ Det(Hn)Det(HT

n) = nnDet(En)↔

↔ Det(Hn)Det(Hn) = nn ↔ Det(Hn)2 = nn ↔ Det(Hn) = ±
√
nn ↔ Det(Hn) = ±n

n
2 .

De�nition The Hadamard matrices H and H ′ are by de�nition said to be equivalent if and
only H ′ can be obtained from H by permutating rows or columns or by multiplying by −1. The
Hadamard matrix H is said to be normalized by de�nition if and only if the �rst row of H and
the �rst column of H only contains 1.

It comes without di�culties to deduce that the equivalence of Hadamard matrices is an equiva-
lence relation. It is obvious that evey Hadamard matrix is equivalent with a normalized Hadamard
matrix. The algorithm under consideration will decode RM(1, y) and will involve H2y .

3.4.4 Size of Hadamard matrices

The following theorem with its proof will highlight and summarize some of the most elementary
attributes of Hadamard matrices.

Theorem 3.4 Let Hn be a Hadamard matrix of order n. We have n ≤ 2 or n ≡ 0 (mod 4).

Proof First we have to obtain that the order of a Hadamard matrix cannot be 3. This case can
be easily done by manually checking all possibilities. This comes without di�culties and huge
e�ort, since if Hn is not a Hadamard matrix, we do not have to check −Hn and all the H ′n
matrices derived from Hn by permutating rows and columns and we do not have to check HT

n

either. Let now n ≥ 4. We can assume without the loss of generality that Hn is in normalized
form. The �rst and the second row is orthogonal to each other and the �rst only contains ones, the
second one contains n/2 ones and n/2 minus ones. We can assume without the loss of generality
that the �rst n/2 elements are 1, and the last n/2 are −1. Let us now examine row 3. Let us
denote with a the number of 1's where there is an 1 in the �rst and the second row above, let b
denote the number of −1's, where there is a 1 in the �rst and the second row above, let c be the
number of 1's where there is a 1 in the �rst and a −1 in the second row above, and let d be the
number of −1's where there is a 1 in the �rst and −1 in the second row above. We know that
a+ b = n/2 and c+ d = n/2. Now we calculate the scalar product of the �rst and the third row,
and it is obtained that

a− b+ c− d = 0.

If we calculate the inner product of the second and the third row we get

a− b− c+ d = 0.

The obtained system is really easy to solve, we can infer that

a = b = c = d = n/4

which implies that n ≡ 0 (mod 4).�

64

Note that from this theorem we can conclude that the determinant of Hadamard matrices is
always a natrual number

Det(Hn) = ±n
n
2 ∈ N

and for n ≥ 2 we have

Det(H4k) = ±(4k)
4k
2 = ±(4k)2k = ±16k · k2k

for every Hadamard matrix.

3.4.5 Construction of larger Hadamard matrices

Since for the decoding algorithm we need H2y , we need an algorithm to construct it rapidly.

Theorem 3.5 Let I be a �nite index set. Let Hi Hadamard matrices, where i ∈ I. We have

⊗i∈IHni = H∏
i∈I ni

.

In other words the product of Hammad matrices is also a Hadamard matrix, and the order will

be the product of the orders.

Proof It is su�cient to show the Card(I) = 2 case, the other cases can be proven by induction
on Card(I). First we will prove that

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

We have
(A⊗B)(C ⊗B) = (aijB)ij(cklD)kl = (aijcklBD)

and
(AC)⊗ (BD) = (aijckl)⊗ (BD) = (aijcklBD)

by the de�nition of Kronecker product and matrix multiplication. It is also clear that

(A⊗B)T = AT ⊗BT

since
(A⊗B)T = (aijB)Tij = (ajiB

T)ji

and
AT ⊗BT = (aji)ji ⊗BT = (ajiB

T)ji.

One can see without di�culties that Em ⊗ En = Emn and consequently

(mEm)⊗ (nEn) = mnEmn.

Let A = C = Hm and B = D = Hn. It is obtained that

(Hm ⊗Hn)(Hm ⊗Hn)T = (Hm ⊗Hn)(HT
m ⊗HT

n) =

= (HmH
T
m)⊗ (HnH

T
n) = (mEm)⊗ (nEn) = mnEmn

completing the proof.�

65

Theorem 3.6 Let

H2 =

(
1 1
1 −1

)
.

Construct the matrices

M
(i)
2y = E2y−i ⊗H2 ⊗ E2i−1

for 1 ≤ i ≤ y. We have

H2y =

y∏
i=1

M
(i)
2y = M

(1)
2y M

(2)
2y . . .M

(y)
2y .

In other words if we multiply the matrices constructed above, we obtain a Hadamard matrix of

order 2y.

Proof We will utilize induction by y. First let us examine the y = 1 case. We have only the
matrix

M1
2 = M

(1)
21

= E20 ⊗H2 ⊗ E20 = E1 ⊗H2 ⊗ E1 = H2 ⊗ E1 = H2

and

H2 = H21 =

1∏
i=1

M
(i)
21

= M1
2

Now let y > 1. It is easily obtained that for 0 ≤ i ≤ y

M
(i)
2y+1 = E2y+1−i ⊗H2 ⊗ E2i−1 = E2 ⊗ E2y−i ⊗H2 ⊗ E2i−1 = E2 ⊗M (i)

2y .

It is also clear that
My+1

2y+1 = H2 ⊗ E2y .

We have already seen the formula

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

We now need the generalized version of this, namely

∏
i∈I

(Ai ⊗Bi) =

(∏
i∈I

Ai

)
⊗

(∏
i∈I

Bi

)
.

Utilizing this we can infer that

y+1∏
i=1

M
(i)
2y+1 =

(
y∏
i=1

M
(i)
2y+1

)
My+1

2y+1 =

(
y∏
i=1

E2M
(i)
2y

)
H2E2y =

= H2 ⊗

(
y∏
i=1

M
(i)
2y

)
= H2 ⊗H2y = H2y+1

thereby completing our proof.�

Now it is clear that we have a fast method to create H2y . It can be inferred that

H2y+1 = H2 ⊗H2y =

(
H2y H2y

H2y −H2y

)
and more generally

H2n = H2 ⊗Hn =

(
Hn Hn

Hn −Hn

)
.

66

3.4.6 The decoding algorithm

Now we will examine the algorithm iself which will claim use of the method elaborated. Assume
that the message is

u = (u0, u1 . . . u2y−1)T ,

the encoded version is
v = GRM(1,y)u = (v0, v1 . . . v2y−1)T ,

and we receive
w = (w0, w2 . . . w2y−1)T .

Now our goal is do decode w. Let

W = ((−1)w0 , (−1)w1 , . . . (−1)w2y−1).

Let c be the largest absolute value coordinate of WH2y . If c = 2m, then w = u. If c 6= 2m, then
there is a series (c1, c2, . . . cy) that

|c| =
y∑
i=1

ci2
i−1.

Let coli(M) denote the i-th column of the matrix M . If c > 0, the codeword is

k =

y∑
i=1

cicoly+2−i(GRM(1,y)),

Otherwise the codeword is k + e. Now we will see an example for this algorithm in the case of
RM(1, 3). Say that the codeword

vT = (1, 1, 0, 0, 0, 0, 1, 1)

is received as the word
wT = (1, 0, 0, 0, 0, 0, 1, 1)

. It comes without di�culties that

W = (−1, 1, 1, 1, 1, 1,−1,−1).

Now we need to calculate the Hadamard matrix described in the abstract algorithm. It is obtained
that

H23 = H8 = H2 ⊗H4 =

(
H4 H4

H4 −H4

)
=

=



+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1


from where WH8 = (2, 2,−2,−2, 2,−6,−2, 2,−4), implying that c = −6 and |c| = 6. Since
−6 < 0 and c1 = 0, c2, c3 = 1 we conclude that the correct codeword is

e+ 0 ∗ (0, 1, 0, 1, 0, 1, 0, 1) + 1 ∗ (0, 0, 1, 1, 0, 0, 1, 1) + 1 ∗ (0, 0, 0, 0, 1, 1, 1, 1) =

= (1, 1, 0, 0, 0, 0, 1, 1).

This algortihm shows the importance of Hadamard matrices of higher orders. Now we will exam-
ine another method to create Hadamard matrices of higher orders. To do this we will introducte
a concept similar to that of the Hadamard matrices.

67

3.4.7 Introduction to Conference matrices

De�nition The n× n matrix Cn is by de�nition called a conference matrix of order n if and
only if its diagonal only contains zeros, its other elements are either 1 or −1 and

CnC
T
n = (n− 1)En.

Obviously
C1 =

(
0
)
.

Let us �nd conference matrices of order 2. Let a, b = ±1. We have(
0 a
b 0

)(
0 b
a 0

)
=

(
a2 0
0 b2

)
= (2− 1)E2 = E2 =

(
1 0
0 1

)
meaning that exatly the following are the Conference matrices of order 2

C2 =

(
0 1
1 0

)

Ĉ2 =

(
0 1
−1 0

)
̂̂
C2 =

(
0 −1
1 0

)
̂̂̂
C2 =

(
0 −1
−1 0

)
.

If Cn is a Conference matrix, then −Cn is a conference matrix as well, since

(−Cn)(−Cn)T = (−Cn)(−CTn) = CnC
T
n = (n− 1)En

directly from the de�nition. If Cn is a Conference matrix, then CTn is also a conference matrix,
since

CnC
T
n = (n− 1)En ↔ CTnCn = (n− 1)En ↔ CTn (CTn)T = (n− 1)En.

The determinant of a Conference matrix is

Det(Cn) = ±(n− 1)
n
2

because
CnC

T
n = (n− 1)En → Det(CnC

T
n) = Det((n− 1)En)↔

↔ Det(Cn)Det(CTn) = (n− 1)n ↔ Det(Cn)Det(Cn) = (n− 1)n ↔

↔ (Det(Cn))2 = (n− 1)n ↔ Det(Cn) = ±
√

(n− 1)n ↔ Det(Cn) = ±(n− 1)
n
2 .

It can be seen from the de�nition that every pair of di�erent rows/columns are orthogonal. The
inner product of two di�erent rows are zero, meaning that the ones and minus ones cancell each
other. Considering that in the main diagonal each row has exactly one zero, it means that n− 2
elements are nonzero, meaning that n−2

2 ones and n−2
2 minus ones are present, consequently

n− 2

2
∈ N↔ n− 2 ≡ 0 (mod 2)↔ n ≡ 0 (mod 2)

68

which means that if Cn is a conference matrix, then n must be even. For the sake of completeness
we provide the following two examples:

C6 =



0 +1 +1 +1 +1 +1
+1 0 −1 +1 +1 −1
+1 −1 0 −1 +1 +1
+1 +1 −1 0 −1 +1
+1 +1 +1 −1 0 −1
+1 −1 +1 +1 −1 0



C10 =



0 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 0 −1 −1 −1 +1 +1 −1 +1 +1
+1 −1 0 −1 +1 −1 +1 +1 −1 +1
+1 −1 −1 0 +1 +1 −1 +1 +1 −1
+1 −1 +1 +1 0 −1 −1 −1 +1 +1
+1 +1 −1 +1 −1 0 −1 +1 −1 +1
+1 +1 +1 −1 −1 −1 0 +1 +1 −1
+1 −1 +1 +1 −1 +1 +1 0 −1 −1
+1 +1 −1 +1 +1 −1 +1 −1 0 −1
+1 +1 +1 −1 +1 +1 −1 −1 −1 0


3.4.8 Constructing Hadamard matrices of higher orders with conference matrices

Theorem 3.7 Let Cn,s be a symmetric conference matrix of order n. It holds that

H2n =

(
Cn,s + En Cn,s − En
Cn,s − En −Cn,s − En

)
meaning that we have obtained a Hadamard matrix of order 2n. Let Cn,as be an antisymmetric

conference matrix of order n. In this case we have

Hn = Cn,as + En.

Furthermore

H2n =

(
Cn,as + En Cn,as + En
Cn,as + En −Cn,as − En

)
.

Proof One can easily see that

C2
n,s = Cn,sCn,s = Cn,sC

T
n,s = (n− 1)En.

It is also clear that
(Cn,s + En)2 + (Cn,s − En)2 =

= C2
n,s + Cn,sEn + EnCn,s + E2

n + C2
n,s − Cn,sEn − EnCn,s + E2

n =

= 2C2
n,s + 2E2

n = 2(n− 1)En + 2En = 2nEn.

Using the aforementioned identities and the de�nition of conference matrices and Hadamard
matrices we obtain that(

Cn,s + En Cn,s − En
Cn,s − En −Cn,s − En

)
∗
(
Cn,s + En Cn,s − En
Cn,s − En −Cn,s − En

)T
=

=

(
Cn,s + En Cn,s − En
Cn,s − En −Cn,s − En

)
∗
(
Cn,s + En Cn,s − En
Cn,s − En −Cn,s − En

)
=

69

=

(
(Cn,s + En)2 + (Cn,s − En)2 0

0 (Cn,s + En)2 + (Cn,s − En)2

)
=

=

(
2nEn 0

0 2nEn

)
= 2n

(
En 0
0 En

)
= 2nE2n

holds which proves the �rst claim. For the second claim we can observe

−C2
n,as = −Cn,asCn,as = Cn,asC

T
n,as = En

By easy calculation we infer that

(Cn,as + En)(Cn,as + En)T = (Cn,as + En)(CTn,as + ETn) =

= (Cn,as + En)(−Cn,as + En) = −C2
n,as + Cn,asEn − Cn,asEn + E2

n =

−C2
n,as + E2

n = (n− 1)En + En = nEn.

The third claim can be proven utilizing the second claim and the identity H2n = H2 ⊗Hn. We
have

H2n = H2 ⊗Hn =

(
Hn Hn

Hn −Hn

)
=

=

(
Cn,as + En Cn,as Cn,as + En Cn,as
Cn,as + En Cn,as −(Cn,as + En Cn,as)

)
=

=

(
Cn,as + En Cn,as + En
Cn,as + En −Cn,as − En

)
.

�

By the aforementioned theorem we have gained two formulas for H2y+1 as well. Firstly for sym-
metric matrices we have

H2y+1 =

(
C2y ,s + E2y C2y ,s − E2y

C2y ,s − E2y −C2y ,s − E2y

)
and for antisymmetric matrices the formula is

H2y =

(
C2y ,as + E2y C2y ,as + E2y

C2y ,as + E2y −C2y ,as − E2y

)
.

3.4.9 Conference matrices of higher order

Now we will brie�y show how larger order conference matrices can be created by utilizing the
theory of �nite �elds. Detailful examination is not our purpose now. De�ne f : Fq → {−1, 0, 1}
in the following way:

1. f(0)=0,

2. if u 6= 0 and u is a square of an element, then f(u) = 1,

3. for all other cases f(u) = −1.

70

Denote the elements of Fq by z0, z1 . . . zq−1, where z0 = 0. The�ne the matrix Z(Fq) in by the
formula

zij = f(zi − zj)

where 0 ≤ i, j ≤ q − 1. Paley has shown in 1933 that

Z ′(Fq) =


0 1 · · · 1
±1
... Z(Fq)
±1


is a conference matrix of order q+1 where we chose the ± signs in a manner that if q ≡ 1 (mod 4)
then Z ′(F) is symmetric, and if q ≡ −1 ≡ 3 (mod 4) then Z ′(F) then Z(F) is antisymmetric.
Now with this knowledge we can infer several things about the existence of certain Hadamard
matrices. This is formally known as Paley's Theorem. If q ≡ 1 (mod 4) then we have

H2(q+1) =

(
Z ′(Fq) + Eq+1 Z ′(Fq)− Eq+1

Z ′(Fq)− Eq+1 −Z ′(Fq)− Eq+1

)
but if q ≡ 3 (mod 4) we have

Hq+1 = Z ′(Fq) + Eq+1.

3.5 Relationship with �nite geometry

For this subsection I rely on [14] and [17]. Now we will examine that where the patterns of
Reed-Muller codes appear in geometry.

De�nition Let F be a �eld and V be a vector space over F . We can examine the geometric
properties of the set

AG(V) = {v + U | (v ∈ V) ∧ (U ≤ V)}.

This set is referred to as the a�ne geometry of V . Equivalently this is the set of all cosets
over all subspaces of V. By de�nition

Dim(v + U) = Dim(U),

and we by de�nition we say that v+U is a Dim(v+U)-�at of AG(V). Let Ia,b(AG(V)) denote
the incidence matrix of a-�ats and b-�ats of AG(V).

The concept of points in Euclidean geometry are represented here by 0-�ats, the lines are
represented by 1-�ats, and the planes by 2-�ats. Now we will show some examples for this
concept. The most trivial one would be AG(F2). The de�nition clearly shows us that there are
two points, namely {0} and {1}. The only line will be {0, 1}. This means that we have two
points and a line between them. How will AG(F2

2) will look like? First let us �nd the points
of this geometry. By de�nition we have to look for the 0 − flats, and consequently we need to
examine all the 0 dimensional subspaces. The only one is {00}, consequently our points are {00},
{01}, {10}, {11}. The one dimensional subspaces are {00, 01}, {00, 10} and {00, 11}, therefore our
lines will be {00, 01}, {10, 11}, {00, 10}, {01, 11}, {00, 11}, {01, 10}. The only two dimensional
subset is {00, 01, 10, 11}, therefore the only plane will be {00, 01, 10, 11}. One can easily see that
AG(F2

2) can be described as a square, where points corresponds to the vertices of the square ,the
lines correspond to the sides and the diagonals of the squares. The only plane contains all the
points and lines. Considering this observation it becomes easier to give point-line the incidence

71

matrix of AG(F2
2). This incidence matrix is easy to calculate, because we know that each line

contains exactly two points and for every pair of points there is exactly one line to contain them.

I0,2−1(AG(F2
2)) =



0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0

 .

We have already seen in 3, that the vectors of I(AG(F2
2)) all belong to RM(1, 2). If we take the

span of those vectors, we obtain exactly the vectors of RM(1, 2). Let us see another example. It
becomes clear that in the case of AG(F3

2) the 8 points will correspond to the vertices of a cube,
the lines will be the face diagonals, the space diagonals and the edges of the cube and the planes
will be the faces of the cube and the planes containing the space diagonals. This perspective
appears to be really practical when trying to �gure out the point-plance incidence matrix of
AG(F3

2).

I0,3−1(AG(F3
2)) =



1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1
1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0


.

Again, we have seen in 3, that these rows of I0,3−1(AG(F3
2)) are all from RM(1, 3). The span of

these vetors of course will give us the entire RM(1, 3).

Theorem 3.8 The codewords of RM(x, y) with minimum weight are exactly the rows of I0,y−x(AG(Fy2)).
Furthermode the rows of I0,y−x(AG(F2, y)) span the entire RM(x, y).

3.6 Reed-Muller codes and multilinear polynomials

In this subsection the used source is [16].

Now we will look at an alternative view about Reed-Muller codes and thereby eleborating on the
relationship with multilinear polynomials.

De�nition Let Fq be a �nite �eld and let I denote the ideal

(X2
1 −X1, X

2
2 −X2, . . . X

2
x −Xy)

in Fq[X1, X2, . . . Xy]. The elements of the set

ML(Fq, y) = {f mod I | f ∈ Fq[X1, X2, . . . Xy]}

are called by de�nition multilinear polynomials over Fq. In other words multilinear polyno-
mials are multivariable polynomials whose every monomial is such that any Xi is at most at �rst
exponent. Let

V : F2[X1, X2, . . . Xy]→ F2y

2

be the function of substituting all elements of Fy2. Reed-Muller codes can be de�ned by

RM ′(x, y) = {V (f) | (f ∈ML(F2, y)) ∧ (deg(f) ≤ x)}.

72

Because of the �rst isomorphism theorem we know that

Im(V) = F2y

2
∼= F2[X1, X2, . . . Xy]/I ∼= ML(F2, y).

Theorem 3.9 The two de�nition of the Reed-Muller codes are equivalent, meaning that they

give the same codes. In other words for every (x, y) ordered pair we have

RM(x, y) = RM ′(x, y).

Proof We only need to prove that

RM ′(x, y) ⊆ RM(x, y)

and that

dim(RM ′(x, y)) = dim(RM(x, y)) =
x∑
i=0

(
y

i

)
.

The statement concerning the dimension comes easily by using elementary combinatorics. For a
basis of RM ′(x, y) can be constructed by monomials of degree s, where 0 ≤ s ≤ y. The quantity
of basis vector monomials with degree i is given by

(
y
i

)
, since we have y variables, and i of them

needs to be selected. The �rst claim is equivalent with the statement that for all elements of
RM ′(x, y) the recursion stated in the de�nition of RM(x, y) holds. For R(x, x) we have all the
multilinear polynomials with x variables and with a degree at most x, therefore we obtain the
entire ML(F2, x). Substituting the elements of Fx2 into the polynomial we obtain F2x

2 as stated
in the recursion. The (u, u + v) construction comes from the fact that for every f ∈ ML(F2, x)
polynomial there is a pair

(g, h) ∈ML(F2, x− 1)×ML(F2, x− 1)

such as
f(X1, X2, . . . Xy) = Xxg(X1, X2, . . . Xy−1) + h(X1, X2, . . . Xy−1)

holds.If we substitute to f the word (u, u + v) is obtained, where u ∈ RM ′(x, y − 1) and v ∈
RM ′(x− 1, y − 1) can be seen from the degree of the polynomials. �

Now we will examine how a proof looks when starting from the polynomial de�nition and not
from the recursive one. This might provide a di�erent insight.

Theorem 3.10 For all x and y we have

d(RM ′(x, y)) = 2x−y.

Proof Now we will prove that d(RM ′(x, y)) = 2x−y. The weight of the codeword V (f) by
de�nition will be the number of points P ∈ Fx2 for which f(P) 6= 0. We can clearly see that

wt(RM ′(x, y)) ≤ wt

(
y∏
i=1

Xi

)
= 2x−y

since we are talking about those points whose �rst y coordinates are 1, and for the every other
coordinates we have 2 choices independently. This means that

d(RM ′(x, y)) = wt(RM ′(x, y)) ≤ 2x−y.

73

Now we only need to show that every nonzero codeword has a weight of at least 2x−y. Equivalently
it is needed to be proven that for every nonzero element of

ML(F2, x)

with a degree not greater than y there is at least 2x−y element in Fx2 such that the evaluation in
those point is not zero. We will induct on x and y. If y = 0, then we are talking about nonzero
constant polynomials, consequently all points of Fx2 is good for us, therefore we have at least
2x−y = 2x−0 = 2x points in which the polynomials are not evaluated zero. Assume that the
theorem hold for polynomials with degree lesser than x or number of variables lesser than y. Let
f be a multilinear polynomial with x− 1 variables and deg(f) = y. Then there exists an

(g, h) ∈ML(F2, y − 1)×ML(F2, y − 1)

ordered pair of polynomials that

f(X1, X2, . . . Xy) = Xxg(X1, X2, . . . Xy−1)− h(X1, X2, . . . Xy−1)

where
deg(g) ≤ x− 1 ∧ deg(h) ≤ x

holds. The �rst case is when h ≡ 0. In this case g 6≡ 0 since f 6≡ 0. Then because of the induction
hypothesis there are at least 2(x−1)−(y−1) = 2x−y points of Fy−1

2 for which the evaluation in g
does not give zero. utilizing the

(v1, v2, . . . vy−1) 7→ (v1, v2, . . . vy−1, 1)

function, we have gained at least 2x−y points in Fy2 which does not give zero evaluation in the
case of f . The second case is when g − h ≡ 0. Because of g ≡ h we have

f(X1, X2, . . . Xy) = (Xy − 1)g(X1, X2, . . . Xy−1).

Because of the induction hypothesis we have at least 2x−y elements of Fy−1
2 which does not give

zero in g. Using
(v1, v2, . . . vy−1) 7→ (v1, v2, . . . vy−1, 0)

we have obtained at least 2x−y elements of Fy2 which does not give zero on f . The third case is
when h 6≡ 0 and g − h 6≡ 0. For Xm = 0, then

f(X1, X2, . . . Xy) = −h(X1, X2, . . . Xy−1),

therefore there are at least 2x−1−y appropriate point because of the induction hypothesis. For
the Xm = 1 case

f(X1, X2, . . . Xx) = g(X1, X2, . . . Xx−1)− h(X1, X2, . . . Xx−1)

holds, and because of the induction hypothesis, there are at least 2x−1−y appropriate points.
Since

2x−1−y + 2x−1−y = 2 ∗ 2x−1−y = 2x−y

our proof is complete. �

74

4 Generalized Reed-Muller Codes

4.1 De�nition, examples, fundalemtal properties

To understand Generalized Reed-Muller codes I only claim to utilize [9].

De�nition Let
RMgen(q, x, y) ≤ F2y

q

denote the linear code de�ned by its generator matrix, which is the same as in the case of binary
Reed-Muller codes, meaning that

GRMgen(q,x,y) = GRM(x,y).

It comes really easily from the de�nition that

RMgen(2, x, y) = RM(x, y).

For every q

GRMgen(q,1,1) = GRM(1,1) =

(
1 0
1 1

)
so to obtain our code we need to multiply this matrix with vectors of F2

q . Every element of F2
q

will be obtained, since the system

a ≡ a1 (mod q) ∧ a+ b ≡ a2 (mod q)

always has a solution mod q. But the fact that

RMgen(q, 1, 1) = F2
q

can be seen from
RMgen(q, 1, 1) ≤ F2

q

and
Card(RMgen(q, 1, 1)) = Card(F2

q) = q2.

Let us see how RMgen(3, 1, 3) ⊆ F23
3 = F8

3 looks like. We know that

GRMgen(3,1,3) = GRM(1,3) =



1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
1 1 0 1
1 0 1 1
1 1 1 1


.

It means that to obtain RMgen(3, 1, 3), we need to multiply GRMgen(3,1,3) with the vectors of F4
3,

therefore we obtain 81 codewords.

4.2 Complex numbers

For this subsection I used the following sources: [1], [2], [4]. Since the entire subsection 4.3.1
heavily relies on complex numbers, we will give a very brief summary of them.

75

4.2.1 Possible conceptualizations

Complex numbers can be comprehended and elaborated on a plethora of di�erent ways. We will
brie�y summarize some of them.

• First, we can build the �eld of complex numbers from the �eld of real numbers. Let the
set of real numbers be denoted by R. The additive identity of the real numbers now will
be denoted by 0R and the multiplicative identity by 1R. All the operations over R will be
indicated by the R symbol in the lower index. Consider the 7-tuple

C = (R× R, (0R, 0R), (1R, 0R),+C, ∗C, -C,−1C)

with the operations
+C : (R× R)× (R× R)→ (R× R)

∗C : (R× R)× (R× R)→ (R× R)

-C : R× R→ R× R
−1C : (R× R) \ {(0R, 0R)} → R× R

de�ned in the following way:

∀((a1, a2), (a3, a4)) ∈ (R× R)× (R× R) : (a1, a2) +C (a3, a4) = (a1 +R a3, a2 +R a4)

∀((a1, a2), (a3, a4)) ∈ (R× R)× (R× R) :

(a1, a2) ∗C (a3, a4) = (a1 ∗R a3 −R a2 ∗R a4, a1 ∗R a4 +R a2 ∗R a3)

∀(a1, a2) ∈ R× R : -C(a1, a2) = (-Ra1, -Ra2)

∀(a1, a2) ∈ (R× R) \ {(0R, 0R)} :
(a1, a2)−1C = (a/R(a ∗R a+R b ∗R b), -R(b/R(a ∗R a+R b ∗R b)))

One can simply show that this 7-tuple is indeed a �eld. De�ne the functions

Re : (R× R)→ R

Im : (R× R)→ R

in the following way:
∀(a1, a2) ∈ (R× R) Re((a1, a2)) = a1

∀(a1, a2) ∈ (R× R) Im((a1, a2)) = a2.

The Re((a1, a2)) = a1 ∈ R number is called the real part of the complex number. The
Im((a1, a2)) = a1 ∈ R number is called the imaginary part of the complex number.

Obviously
(a1, a2) = (Re((a1, a2)), Im((a1, a2))).

The operation
Conj : R× R→ R→ R

de�ned by
∀(a1, a2) ∈ R× R : Conj((a1, a2)) = (a1, -Ra2)

is the complex conjugate. One can deduce without di�culty that

|.|C : (R× R)→ R

|(a1, a2)|C = Re[(a1, a2) ∗C Conj((a1, a2))]

is an absolute value function over the �eld C.

76

• We can easily understand the �eld of complex numbers as a �eld extension of the real �eld.
If R denotes the �eld of real numbers, then

C = R(i)

In this case we can write the elements as

z = a+ bi = Re(z) + Im(z)i where a, b ∈ R ∧ i2 = −1.

• The �eld of complex numbers can also be obtained as the

R[X]/(X2 + 1)

quotient ring, which will behave as a �eld. In this case we create the modulo X2 − 1
congruence classes and we build the arithmetic of C with those equivalence classes.

• The �eld of complex numbers can also be understood as a subring of R2×2 which behaves
as a �eld. The matrices whose ring we need to observe are those contained by the set

H =

{(
Ψ −Ψ̂

Ψ̂ Ψ

)
| Ψ, Ψ̂ ∈ R

}
.

Obviously the isomorphism is

z 7→
(
Re(z) −Im(z)
Im(z) Re(z)

)
=

(
Length(z) · cos(Arg(z)) −Length(z) · sin(Arg(z))
Length(z) · sin(Arg(z)) Length(z) · cos(Arg(z))

)
.

4.2.2 Polar form and exponential form

Let us be reminded that he complex number in polar form is given as

z = Length(z) ·
[
cos(Arg(z)) + i · sin(Arg(z))

]
.

Furthermore let us also be reminded that the exponential form of a complex number is given by
the formula

z = Length(z) · exp(Arg(z · i)).

4.2.3 Roots of unity, primitive roots of unity

Now let C denote the set of complex numbers and the �eld of complex numbers at the same
time.

De�nition The ζn ∈ C number is called an nth complex root of unity by de�nition if and
only if ζn is a solution of the equation xn = 1. The ζn ∈ C number is called an nth complex
primitive root of unity by de�nition if and only if ζn is a complex root of unity and the
condition

∀ 1 ≤ k < n : ζkn 6= 1

is satis�ed.

Obviously the set

Zn =

{
ζn = cos

(
2kπ

n

)
+ i · sin

(
2kπ

n

)
| k ∈ N≤n

}
contains exactly the nth roots, and the set

Ẑn =

{
ζn = cos

(
2kπ

n

)
+ i · sin

(
2kπ

n

)
| k ∈ N≤n ∧Gcd(k, n) = 1

}
contains exactly the nth primitive roots.

77

4.3 Connection with CCC.

The purpose of this subsection is to demonstrate an advanced theorem in connection with gen-
eralized Reed-Muller codes. On this subsection I was solely relying on [9].

4.3.1 Aperiodic autocorrelation and aperiodic cross-correlation function

De�nition Let a, b ∈ Znq be two sequences,

a = (a0, a1, . . . an−1)

and
b = (b0, b1, . . . bn−1).

Let us de�ne the function

ρcross : Znq × Znq × ([−n+ 1, n− 1] ∩ Z)→ C

by

ρcross(a, b, u) =

n−1−u∑
i=0

ζ
ai+u−bi
q

if 0 ≤ u ≤ n− 1 and

ρcross(a, b, u) =
n−1+u∑
i=0

ζ
ai−bi−u
q

otherwise, where
ζq = exp(2πi/q)

is a primitive complex root of unity with order q. This function is called an aperiodic cross-
correlation function, and we say that u is the displacement. The

ρauto(a, u) = ρcross(a, a, u)

two variable function is by de�nition called an aperiodic autocorrelation function.

Examine this new concept with a really simple example. If q = 2, we have the only primitive
complex root of unity

ζ2 = exp(2πi/2) = exp(πi) = −1.

Select n = 2. Now our function looks

ρcross : Z2
2 × Z2

2 × {−1, 0, 1} → C

de�ned by

ρcross(a, b, u) =

1−u∑
i=0

(−1)ai+u−bi

if u = 0 or u = 1. and

ρcross(a, b, u) =

1+u∑
i=0

(−1)ai−bi−u

for u = −1. Select u = 1, and let our two sequences be (1, 0) and (1, 1).

ρcross((1, 0), (1, 1), 1) = (−1)0 = 1.

78

Now calculate the value for displacement u = 0.

ρcross((1, 0), (1, 1), 0) = (−1)0 + (−1)1 = 0.

In the case of displacement u = −1

ρcross((1, 0), (1, 1),−1) = (−1)0 = 1.

Roughly speaking the cross-correlation function is the degree of similarity between two series
quanti�ed. The variable u concerns the "lag" between the two series. If there is no lag, it is
substituted that u = 0. So if there is no "lag", we have

ρcross(a, b, 0) =
n−1∑
i=0

ζai−biq

so we are comparing the two series element by element with no displacement, and we are quanit-
fying the degree similarity. If the two series are utterly the same, we get

ρcross(a, a, 0) = ρauto(a, 0) =
n−1∑
i=0

ζai−aiq =
n−1∑
i=0

ζ0
q =

n−1∑
i=0

1 = n.

Moreover because of the triangle inequality

∣∣ρcross(a, b, u)
∣∣ =

∣∣∣∣∣
n−1−u∑
i=0

ζ
ai+u−bi
q

∣∣∣∣∣ ≤
n−1−u∑
i=0

∣∣ζai+u−biq

∣∣ =

n−1−u∑
i=0

1 = n− u

and ∣∣ρcross(a, b, u)
∣∣ =

∣∣∣∣∣
n−1+u∑
i=0

ζ
ai−bi−u
q

∣∣∣∣∣ ≤
n−1+u∑
i=0

∣∣ζai−bi−uq

∣∣ =
n−1+u∑
i=0

1 = n+ u

and equality holds if and only if the two series are the same with the consideration of the
displacement.

4.3.2 GCS and CCC

De�nition Let s(N,n) = {s0, s1, . . . sN−1} be a set of sequences, where every sequence is has
n elements. s(N,n) is by de�nition called a GCS of order N if and only if

N∑
j=0

ρ(sj , 0) = Nn

and for every u 6= 0 the equality
N∑
j=0

ρ(sj , u) = 0

holds. Let
S(N,N, n) = {s0(N,n), s1(N,n), . . . sN−1(N,n)} =

= {{s0
0, s

0
1, . . . sN−1}, {s1

0, s
1
1, . . . s

1
N−1}, . . . {sN−1

0 , sN−1
1 , . . . sN−1

N−1}}.
The set S(N,N, n) is called a CCC of order N if and only if every set in the set is a GCS and
for every distinct GCS the equality

N−1∑
j=0

ρ(sj1j , s
j2
j , u) = 0

holds in the case of any pair of valid indices and displacement.

79

4.3.3 Construction of CCC codes via Generalized Reed-Muller codes

The following theorem will show a not elementary connection between CCC and the cosets of
RMgen(q, x, y), namely how to construct CCCs from those aforementioned cosets.

Theorem 4.1 We will utilize the notation

Nw = {n ∈ N+ | n ≤ w}.

Let Fq be a �nitie �eld, and y be a positive integer. Let k ≤ y also be a positive integer, and the

sets

I1, I2, . . . Ik

be a partition of Ny. Let
πα : NCard(Iα) → Iα

be a bijection for all valid α. Utilize the notation

A = (q/2) ∗
k∑

α=1

Card(Iα)−1∑
β=1

vπα(β)vπα(β+1)+

+

k∑
α=2

Card(Iα)∑
β=1

2α−1−1∑
τ=0

λα,β,τvπα(β)

α−1∏
γ=1

v
τγ
πγ(Card(Iγ))

where the other notation

vi = (0, 0, 0, . . . 0, 1, 1, 1, . . . , 1, 0, 0, 0, . . . 0, 1, 1, 1 . . . 1, 0, 0, 0, 1)

where the consecutive sequences contain 2i−1 same characters and 1 ≤ i ≤ y, and λα,β,τ ∈ Fq.
and the τi sequence denote the individual numbers in the binary representation of τ . Let

(n1, n2, . . . nk)

be the binary representation of n and

(p1, p2, . . . pk)

the binary representation of p. For all

c ∈ A+RMgen(q, 1, y)

codeword with the notation

cpn = c+ (q/2) ∗

(
k∑

α=1

nαvπα(1) +

k∑
α=1

pαvπα(Card(Iα))

)

where

0 ≤ n, k ≤ 2k − 1

and

Gp = {cp0, c
p
1, . . . c

p
2k−1
},

the set

{G0, G1, . . . , G2k−1}

forms a a CCC of order 2k and length 2y.

80

Proof We only have to check whether the set G = {G0, G1, . . . , G2k−1} satis�es the criteria for
being a CCC. Since the de�nition has been uttered in a form of two criteria, we will represent
our proof in two parts. In the �rst part of the proof we will show that for all valid index the set
Gp is a GCS of order 2k. In the second part of the proof we will prove that any pair of distinct
sets satis�es the criteria concerning the cross-correlation function. So �rst let us check whether
our sets are GCS. We only need to establish our case for u ≥ 0, since

σ1,auto(d, u) = σ2,auto = (d,−u).

What we have to show is

∑
d∈Gp

σauto(d, u) =
∑
d∈Gp

2y−1−u∑
i=0

ζ
di+u−di
q =

2y−1−u∑
i=0

∑
d∈Gp

ζ
di+u−di
q = 0.

We will substitute j = i+ u. Also we will refer to the binary representation of i as (i1, i2, . . . iy)
and the binary representation of j as (j1, j2, . . . jy). If there exists an 0 ≤ α ≤ k index for which
iπα(1) 6= jπα(1) holds, then for all d ∈ Gp sequence there is a sequence d′ ∈ Gp which satis�es the
conditions

d′ = (d′0, d
′
1, . . . d

′
2y−1) = d+ q/2(vπα(2))

and
dj − di − d′j + d′i = q/2

(
iπα(1) − jπα(1)

)
=q q/2.

At this point one can easily see that

ζ
dj−di
q /ζ

d′j−d′i
q = ζ

dj−di−(d′j−d′i)
q = ζ

dj−di−d′j+d′i
q = ζ

q/2
(
iπα(1)−jπα(1)

)
q =

= ζq/2q = −1

from where it is obtained that

ζ
dj−di
q = −ζ

d′j−d′i
q

which leads us to

ζ
dj−di
q + ζ

d′j−d′i
q = 0

by which
2y−1−u∑
i=0

∑
d∈Gp

ζ
di+u−di
q =

2y−1−u∑
i=0

0 = 0

can be inferred. Now let us examine the case when it is true that for all α indices iπα(1) = jπα(1) .
Let

α̂ = Inf
{
α | (∃β)

(
iπα(β) 6= jπα(β)

)}
and

β̂ = Inf
{
β | iπα̂(β) 6= jπα̂(β)

}
.

Let i′ be an integer which di�ers from i in the binary representation in only the position πα̂(β̂−1)
and let j′ be an integer which di�ers from j in the position πα̂(β̂ − 1). Now equivalently

i′
πα̂(β̂−1)

= 1− ii′
πα̂(β̂−1)

and
j′
πα̂(β̂−1)

= 1− ji′
πα̂(β̂−1)

.

81

Let j′ = i′ + u. By the de�nition of G we get that for all p and for all d ∈ Gp there exists a
sequence (gk)

y
k=0 such that

d = A+

y∑
k=0

gkvk

holds. First let us look at the case when β ≥ 3. From utilizing the de�nition of A formulated in
the theorem and considering that i and i′ di�er in their binary representation only in the position
πα̂(β̂ − 1) with a raw calculation we get to

d′i − di = (q/2) ∗
(
i
πα̂(β̂−2)

i′
πα̂(β̂−1)

− i
πα̂(β̂−2)

i
πα̂(β̂−1)

+ i′
πα̂(β̂−1)

i
πα̂(β̂)

−

−i
πα̂(β̂−1)

i
πα̂(β̂)

)
+

2α̂−1∑
τ

λ
α̂,β̂−1,τ

i′πα̂(β̂ − 1)

α̂−1∏
γ=1

i
τγ
πγ(Card(Iγ))−

−
2α̂−1∑
τ

λ
α̂,β̂−1,τ

iπα̂(β̂ − 1)
α̂−1∏
γ=1

i
τγ
πγ(Card(Iγ)) + g

πα̂(β̂−1)
i′
πα̂(β̂−1)

− g
πα̂(β̂−1)

i
πα̂(β̂−1)

=q

=q (q/2) ∗ (i
πα̂(β̂−2)

+ i
πα̂(β̂)

) + g
πα̂(β̂−1)

(1− 2i
πα̂(β̂−1)

)+

+

2α̂−1∑
τ

λ
α̂,β̂−1,τ

(1− 2i
πα̂(β̂−1)

)

α̂−1∏
γ=1

i
τγ
πγ(Card(Iγ))

Now let us see the β̂ = 2 case. The previous calculation can be adapded with the change that we
will omit β̂ − 2 from everywhere it appears. By the de�nition of β̂ we know that for any index
smaller than β̂ the characters in the binary representation of i and j will be the same, meaning
that

i
πα̂(β̂−2)

= j
πα̂(β̂−2)

and
i
πα̂(β̂−1)

= j
πα̂(β̂−1)

furthermore because of the de�nition α̂ we know that for smaller numbers the characters of i an
j are the same for every β, meaning that

iπγ(Card(Iγ)) = jπγ(Card(Iγ))

for all γ < α̂ index. It can be seen now easily that most terms will be annihillated. We get

dj − di − d′j − d′i = (q/2) ∗ (i
πα̂(β̂)

− j
πα̂(β̂)

) =q q/2

and because of the reasons seen in the �rst case it can be concluded that every Gp is a GCS.
Now we have arrived to the second part of the proof. Let us utilize the notation

cpn = (cpn,0, c
p
n,1, . . . c

p
n,2y−1).

What is needed to be shown is that for every GCS the equality

2k−1∑
n=0

ρcross(c
p1
n , c

p2
n , u) =

2k−1∑
n=0

2y−1−u∑
i=0

ζ
c
p1
n,i+u−c

p2
n,i

q =
2y−1−u∑
i=0

2k−1∑
n=0

ζ
c
p1
n,i+u−c

p2
n,i

q = 0

holds for every positive displacement. Now let us �rst examine the case when there exists anα
number such that

iπα(1) 6= jπα(1)

82

holds. Then for p ∈ {p1, p2} there exist sequences c′pn such that both

cpn′ = cpn + (q/2)vπα(1) ∈ Gp

and
cp1n,j − c

p2
n,i − c

p1
n′,j + cp2n′,i = (q/2) ∗ (iπα(1) − jπα(1)) =q q/2

hold. Now similarly to the �rst case of the �rst part we arrive to our conclusion. Let us examine
the case when

iπα(1) = jπα(1)

hold for all indices. We will utilize the same notations as in the second part of the �rst case. It
comes from a raw calculation similar to that in the second case of the �rst part that

cp1n,j − c
p2
n,i − c

p1
n,j′ + cp2n,i′ =q q/2.

It follows then that

ζ
c
p1
n,j−c

p2
n,i

q /ζ
c
p1
n,j′−c

p2
n,i′

q = ζ
c
p1
n,j−c

p2
n,i−(c

p1
n,j′−c

p2
n,i′)

q =

ζ
c
p1
n,j−c

p2
n,i−c

p1
n,j′+c

p2
n,i′

q = ζq/2q = −1

implying that

ζ
c
p1
n,j−c

p2
n,i

q = −ζ
c
p1
n,j′−c

p2
n,i′

q

meaning that
2k−1∑
n=0

ρcross(c
p1
n , c

p2
n , u) =

2y−1∑
i=0

2k−1∑
n=0

(ζ
c
p1
n,j−c

p2
n,i

q + ζ
c
p1
n,j′−c

p2
n,i′

q) = 0

The u < 0 case comes similarly. We now only need to establish our case for zero displacement,
in formula

2k−1∑
n=0

ρcross(c
p1
n , c

p2
n , 0) =

2k−1∑
n=0

2y−1∑
i=0

ζ
c
p1
n,i−c

p2
n,i

q .

Let
(p1,1, p1,2, . . . p1,k)

be the binary representation of p1 and

(p2,1, p2,2, . . . p2,k)

be the binary representation of p2. For all n ≤ 2k it holds that

cp1n − cp2n =p (q/2) ∗

((
k∑
j=1

(p1,k + p2,k)vπk(Card(Ik))

)
mod 2

)

and wt(d) = 2y−1, consequently it comes easily that

Card
{

(cp1n,i, c
p2
n,i) | ζ

c
p1
n,i−c

p2
n,i

q = ζq/2q = −1 ∧ (0 ≤ i ≤ 2y − 1)
}

= 2y−1

and

Card
{

(cp1n,i, c
p2
n,i) | ζ

c
p1
n,i−c

p2
n,i

q = ζ0
q = 1 ∧ (0 ≤ i ≤ 2y − 1)

}
= 2y−1

consequently the elements in the sum

2k−1∑
n=0

ρcross(c
p1
n , c

p2
n , 0)

are annihillating each other, completing our proof. �

83

5 Other Codes

This entire section is dedicated to give a very brief inshight to other types of codes.

5.1 Reed-Solomon Codes

For this subsection I utilized [16].

5.1.1 De�nition, examples, encoding

The Reed-Solomon Codes are a speci�c case of the Reed-Muller codes, although because of their
conspicuous historical and mathematical relevance they need to be mentioned as a separate one.
The generalization occurs by extending the code to multivariable polynomials.

De�nition Let n ∈ N and k ∈ [1, n[∩N. Let F be a �eld with Card(F) ≥ n and

S = {ai | 1 ≤ i ≤ n} ⊆ F.

The Reed-Solomon code is de�ned in the following way:

RSF,S [n, k] = {(p(a1), . . . , p(an)) ∈ Fn | p ∈ F[X] ∧ deg(p) ≤ k − 1}

The Reed-Solomon codes are linear codes over F. Let the original message to be

m = (m0,m1, . . .mk−1) ∈ Fk.

The polynomial corresponding to the message is

p(m)(X) =
k−1∑
γ=0

mγX
γ = m0 +m1X + · · ·+mk−1X

k−1 ∈ F[X].

Then for all i we calculate

p(m)(ai) =

k−1∑
γ=0

mγa
γ
i = m0 +m1ai + · · ·+mk−1a

k−1
i ∈ F[X]

consequently the encoded version has the form(
k−1∑
γ=0

mγa
γ
i

)n
i=1

=

(
k−1∑
γ=0

mγa
γ
1 ,

k−1∑
γ=0

mγa
γ
2 , · · ·

k−1∑
γ=0

mγa
γ
n

)
.

Evaluating our polynomial on points a1, a2, . . . an is equivalent to multiplying with

GRSF,S [n,k] =


1 a1 a2

1 . . . ak−1
1

1 a2 a2
2 . . . ak−1

2
...

...
...

...
...

1 an a2
n . . . ak−1

n


meaning that the message m will be encoded as

1 a1 a2
1 . . . ak−1

1

1 a2 a2
2 . . . ak−1

2
...

...
...

...
...

1 an a2
n . . . ak−1

n




m0

m1
...

mk−1

 =


∑k−1

γ=0mγa
γ
1∑k−1

γ=0mγa
γ
2

...∑k−1
γ=0mγa

γ
n

 .

Now we will brie�y examine some elementary properties of Reed-Solomon codes.

84

5.1.2 Distance of Reed-Solomon codes

Theorem 5.1

d(RSF,S [n, k]) = n− k + 1

Proof We only have to look at how many zeros can a codeword have at maximum. This is
obviously equivalent to the question that how many roots can an univariable polynomial over F
have. Our polynomials are non-zero and have a degree at most k−1. It immediately implies that
such polynomial can have at most k − 1 roots over F, meaning that our codeword has at most
k − 1 zero coordinates. Since n− (k − 1) = n− k + 1, it can be inferred that our codeword has
at least n− k+ 1 nonzero elements, from which one can easily see that the codeword containing
the most zeros has at least n− k + 1 nonzero elements, meaning that

d(RSF,S [n, k]) ≥ n− k + 1.

The equality part can be obtained directly from the singleton bound. �

Theorem 5.2

Dim(RSF,S [n, k]) = k

Proof This one easily follows from the fact that Rank(GRSF,S [n,k]) = k. �

It can be shown as well that

RSF,S [n, k] =

{
(c0, c1, . . . cn−1) ∈ Fn | c(X) =

n−1∑
γ=1

cγX
γ ∧ ∀ 1 ≤ γ ≤ n− k : c(aγ) = 0

}

where a ∈ F \ {0} is a primitive element

S = {1, a, . . . an−1}

furthermore
Card(F) = n+ 1.

It means that the polynomials which correspond to the codewords of a Reed-Solomon code are
exactly those which vanish at the

1, a, a2 . . . an−k

powers of the primitive element a.

5.1.3 Common applications

Reed-Solomon codes were and are utilized in a plethora of di�erent scenarios. Some of them will
be listed below.

• Storage devices such as CDs, DVDs, HDDs still use them.

• They are still utilized in space transmission.

• Bar codes use them as well.

• It has indirect applications stemming from its generalized versions, for instance the Reed-
Muller codes.

85

5.2 BCH Codes

For this subsection I relied on solely [16]. The BCH Codes are indeed a generalization of the
Reed-Solomon Codes.

De�nition Let
n = 2m − 1

and d be the distance of the code, furthermore let

a ∈ F2m \ {0}

be a primitive element. Te binary BCH Code can be de�ned as

BCH[n, d] =

{
(c0, c1, . . . cn−1) ∈ Fn2 | c(X) =

n−1∑
γ=0

cγX
γ ∧ 1 ≤ ∀ γ ≤ d− 1 : c(aγ) = 0

}

The BCH codes have a plethora of really interesting properties. For instance it holds that

BCH[n, d] = RSF,F\{0}[n, n− d+ 1] ∩ Fn2

Furthermore it can be shown that

Dim(BCH[n, d]) ≥ n−

⌊
d− 1

2

⌋
log(n+ 1)

BCH codes have a plethora of di�erent applications just as Reed-Solomon codes.

5.3 Hamming Codes

I used only [20] for this subsection.

De�nition Let FΨ
q a �nite vector space over the �nite �eld Fq. Let

vs = v1, v2, . . . vn

be a sequence of vectors such that all of these vectors form an one-dimensional subspace. Then
the Hamming codes are de�ned as

HAMMING(Fq,Ψ, vs) =

{
(λ1, λ2, . . . λn) ∈ Fnq |

n∑
γ=0

λγvγ = 0

}

Indeed, it comes easily that

n =
qΨ − 1

q − 1
=

Ψ−1∑
γ=1

qγ = 1 + q + · · ·+ qΨ−1

since
Card(FΨ

q \ {0}) = qΨ − 1

and we have
Card(Fq \ {0}) = q − 1.

86

We can infer without di�culties that

n =
2Ψ − 1

2− 1
= 2Ψ − 1 =

Ψ−1∑
γ=1

2γ = 1 + 2 + · · ·+ 2Ψ−1

holds for binary Hamming Codes. Let us consider an elementary example. Our �inite �eld will
be

F4 = {0, 1, A,B}

and we will have Ψ = 2. Since q = 4 we have

n =
42 − 1

4− 1
=

15

3
= 5

meaning that we will need 5 vectors. Obviously we have

v1 = (0, 1)

v2 = (1, 0)

v3 = (1, 1)

v4 = (1, A)

v5 = (1, B)

and
vs = ((0, 1), (1, 0), (1, 1), (1, A), (1, B)).

Since
(0, 1) + (1, A) + (1, B) = (1 + 1, A+B + 1) = (0, 1 + 1) = (0, 0)

(1, 0) +B(1, A) +A(1, B) = (1, 0) + (B, 1) + (A, 1) = (1 +B +A, 1 + 1) = (1 + 1, 0) = (0, 0)

(1, 1)+A(1, A)+B(1, B) = (1, 1)+(A,B)+(B,A) = (1+A+B, 1+B+A) = (1+1, 1+1) = (0, 0).

Additionally we can easily �gure out that the codewords now obtained from these linear combi-
nations span the entire code. It means that our code is three dimensional and a basis is

(1, 0, 0, 1, 1)

(0, 1, 0, B,A)

(0, 0, 1, A,B).

HAMMING(F4, 2, ((0, 1), (1, 0), (1, 1), (1, A), (1, B))) =< (1, 0, 0, 1, 1), (0, 1, 0, B,A), (0, 0, 1, A,B) >

Now we will look at how the simpler Hamming Codes look like. Choose our �eld to be F2 and
Ψ = 2. In this case we have

n =
22 − 1

2− 1
= 3

vectors. These vectors are indeed
v1 = (0, 1)

v2 = (1, 0)

v3 = (1, 1)

And the only nonzero codeword is
(1, 1, 1)

87

since
(0, 1) + (1, 0) + (1, 1) = (0 + 1 + 1, 1 + 0 + 1) = (0, 0)

is the only nontrivial linear combination which gives back the zero vector. Now not only we have
found the basis of the Hamming code, we found all nonzero codes as well. Obviously

RC(3) = HAMMING(F2, 2, ((0, 1), (1, 0), (1, 1))) = {(0, 0, 0), (1, 1, 1)}

obtaining the repetition code of length 3. Let us observe a more trivial Hamming code. Now our
�eld will be F2 again, but Ψ = 1. It means that

n =
21 − 1

2− 1
= 1

which means that we will have only one vector, namely v1 = (1). It means that we will have no
nonzero codewords, therefore every message will be decoded as 0. Indeed, one can easily see that
the dimension of the Hamming code is

Dim(HAMMING(Fq,Ψ, vs)) = n−Ψ =
qΨ − 1

q − 1
−Ψ.

Indeed we can see as well that d = 3.

5.3.1 Hamming codes are perfect codes

Theorem 5.3 The Hamming codes are perfect codes.

Proof Since the dimension of the Hamming code is n − Ψ and it is a vector space over Fq, we
have qn−Ψ codewords. The disjoint spheres will be exactly those whose radius is 1. We can alter
exactly one coordinate to remain within the sphere. Altering two coordinates would get us to
the 1-radius sphere of another codeword, since altering three coordinates would result in another
codeword. So if we want to remain the 1 radius sphere of the codeword, we can only modify 1
coordinate. Since every codeword has n letters, we have n options. For every position the letter
can be q di�erent letter, consequently we have q − 1 ways to alter it. Altogether it means that
we can modify the codeword n(q − 1) di�erent ways to remain within the 1 radius sphere. We
can do it for all the codewords, resulting in

n(q − 1)qn−Ψ

vectors to be covered aside from the centers. If we calculate the centers as well, we have

n(q − 1)qn−Ψ + qn−Ψ

points that the disjoint circles cover. Simplifying the expression we obtain

n(q − 1)qn−Ψ + qn−Ψ =
qΨ − 1

q − 1
(q − 1)qn−Ψ + qn−Ψ = (qΨ − 1)qn−Ψ + qn−Ψ =

= qΨqn−Ψ − qn−Ψ + qn−Ψ = qΨqn−Ψ = qΨ+n−Ψ = qn

meaning that all qn vectors of the vector space is covered by the disjoint spheres. By de�nition
it means that the Hamming codes are perfect codes. �

88

References

[1] Kiss Emil Bezetetés az Algebrába. Typotex, Budapest, Hungary, 2007. https://people.inf.
elte.hu/nebsabi/2011-2012-1/Algebra/Kiss%20Emil%20-%20Algebra.pdf

[2] Kristóf János A Matematikai analízis alapjai http://web.cs.elte.hu/~krja/analyse/a0.

pdf

[3] Kristóf János A Matematikai analízis elemei I. http://web.cs.elte.hu/~krja/analyse/

a1.pdf

[4] Kiss Emil Freely Available Notes for the course Algebra1 http://ewkiss.

web.elte.hu/wp/wordpress/oktatas/faliujsag/a-regebbi-felevek-anyagai/

eloadas-algebra1-normal-2017-osz/

[5] Kiss Emil Freely Available Notes for the course Algebra2 http://ewkiss.

web.elte.hu/wp/wordpress/oktatas/faliujsag/a-regebbi-felevek-anyagai/

eloadas-algebra2-normal-2018-tavasz/

[6] Professor G. David Forney EE392D - Channel Coding: Techniques, Analysis and Design

Principles - Winter 2007 https://web.stanford.edu/class/ee392d/Chap7.pdf

[7] Institute of Communications Engineering, National Sun Yat-sen University, Notes Be-
longling to Wireless Information Transmission System Lab. Chapter 5: Cyclic Codes

http://apwcs2014.nsysu.edu.tw/course/pdfdownload/95_2/%E9%8C%AF%E8%AA%A4%E6%

9B%B4%E6%AD%A3%E7%A2%BC/CC-04-CyclicCode.pdf

[8] Sarah A. Spence Introduction to Algebraic Coding Theory Supplementary mate-

rial for Math 336 Cornell University. https://pdfs.semanticscholar.org/2581/

928b53ea8f374d4a32d1b1ba53814cc9d29b.pdf Cornell University, 2002, Freely available
PDF teaching/studying material

[9] Chao-Yu Chen, Chung-Hsuan Wang, and Chi-chao Chao Complete Complementary Codes

and Generalized Reed-Muller Codesl. https://ir.nctu.edu.tw/bitstream/11536/8230/1/
000260956700017.pdf IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 11, NOVEM-
BER 2008

[10] SIDDHARTHA BISWAS INTRODUCTION TO CODING THEORY: BASIC CODES

AND SHANNON'S THEOREM. http://www.math.uchicago.edu/~may/VIGRE/

VIGRE2008/REUPapers/Biswas.pdf

[11] Henk C.A. van Tilborg Coding Theory : A First Course. 1993, Freely available PDF teach-
ing/studying material http://hyperelliptic.org/tanja/teaching/CCI11/CODING.pdf

[12] Yehuda Lindell Introduction to Coding Theory Lecture Notes. Department of Computer
Science Bar-Ilan University, Israel, January 25, 2010 http://u.cs.biu.ac.il/~lindell/

89-662/coding_theory-lecture-notes.pdf

[13] SAN LING and CHAOPING XING Coding Theory A First Course. http://site.iugaza.
edu.ps/mashker/files/coding-theory-a-first-course.pdf

https://www.cambridge.org/hu/academic/subjects/mathematics/

discrete-mathematics-information-theory-and-coding/coding-theory-first-course?

format=HB&isbn=9780521821919 Cambridge University Press 2004, National University of
Singapore

89

https://people.inf.elte.hu/nebsabi/2011-2012-1/Algebra/Kiss%20Emil%20-%20Algebra.pdf
https://people.inf.elte.hu/nebsabi/2011-2012-1/Algebra/Kiss%20Emil%20-%20Algebra.pdf
http://web.cs.elte.hu/~krja/analyse/a0.pdf
http://web.cs.elte.hu/~krja/analyse/a0.pdf
http://web.cs.elte.hu/~krja/analyse/a1.pdf
http://web.cs.elte.hu/~krja/analyse/a1.pdf
http://ewkiss.web.elte.hu/wp/wordpress/oktatas/faliujsag/a-regebbi-felevek-anyagai/eloadas-algebra1-normal-2017-osz/
http://ewkiss.web.elte.hu/wp/wordpress/oktatas/faliujsag/a-regebbi-felevek-anyagai/eloadas-algebra1-normal-2017-osz/
http://ewkiss.web.elte.hu/wp/wordpress/oktatas/faliujsag/a-regebbi-felevek-anyagai/eloadas-algebra1-normal-2017-osz/
http://ewkiss.web.elte.hu/wp/wordpress/oktatas/faliujsag/a-regebbi-felevek-anyagai/eloadas-algebra2-normal-2018-tavasz/
http://ewkiss.web.elte.hu/wp/wordpress/oktatas/faliujsag/a-regebbi-felevek-anyagai/eloadas-algebra2-normal-2018-tavasz/
http://ewkiss.web.elte.hu/wp/wordpress/oktatas/faliujsag/a-regebbi-felevek-anyagai/eloadas-algebra2-normal-2018-tavasz/
https://web.stanford.edu/class/ee392d/Chap7.pdf
http://apwcs2014.nsysu.edu.tw/course/pdfdownload/95_2/%E9%8C%AF%E8%AA%A4%E6%9B%B4%E6%AD%A3%E7%A2%BC/CC-04-CyclicCode.pdf
http://apwcs2014.nsysu.edu.tw/course/pdfdownload/95_2/%E9%8C%AF%E8%AA%A4%E6%9B%B4%E6%AD%A3%E7%A2%BC/CC-04-CyclicCode.pdf
https://pdfs.semanticscholar.org/2581/928b53ea8f374d4a32d1b1ba53814cc9d29b.pdf
https://pdfs.semanticscholar.org/2581/928b53ea8f374d4a32d1b1ba53814cc9d29b.pdf
https://ir.nctu.edu.tw/bitstream/11536/8230/1/000260956700017.pdf
https://ir.nctu.edu.tw/bitstream/11536/8230/1/000260956700017.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2008/REUPapers/Biswas.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2008/REUPapers/Biswas.pdf
http://hyperelliptic.org/tanja/teaching/CCI11/CODING.pdf
http://u.cs.biu.ac.il/~lindell/89-662/coding_theory-lecture-notes.pdf
http://u.cs.biu.ac.il/~lindell/89-662/coding_theory-lecture-notes.pdf
http://site.iugaza.edu.ps/mashker/files/coding-theory-a-first-course.pdf
http://site.iugaza.edu.ps/mashker/files/coding-theory-a-first-course.pdf
https://www.cambridge.org/hu/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/coding-theory-first-course?format=HB&isbn=9780521821919
https://www.cambridge.org/hu/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/coding-theory-first-course?format=HB&isbn=9780521821919
https://www.cambridge.org/hu/academic/subjects/mathematics/discrete-mathematics-information-theory-and-coding/coding-theory-first-course?format=HB&isbn=9780521821919

[14] Sebastian Raaphorst Carleton University Reed-Muller Codes http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.115.3214&rep=rep1&type=pdf May 9, 2003

[15] YANG WANG Hadamard Matrices and Reed-Muller Codes https://www.math.ust.hk/

~yangwang/Course/2016FSMath4999/Kin%20Li/Capstone2016.pdf. Department of Mathe-
matics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, +852 2358-7412 (W), yangwang@ust.hk

[16] Eric Blais and Venkat Guruswami Introduction to Coding Theory CMU: Spring 2010. https:
//www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes6.pdf Notes 6: Reed-
Solomon, BCH, Reed-Muller, and concatenated codes February 2010

[17] Bill Cherowitzo Reed-Muller Codes http://www-math.ucdenver.edu/~wcherowi/courses/

m7823/reedmuller.pdf

[18] Massoud Malek Reed-Muller Codes http://www.mcs.csueastbay.edu/~malek/Class/

Reed-Muller.pdf California State University, East Bay

[19] Hadamard and conference matrices Peter J. Cameron Hadamard and conference matrices

University of St Andrews and Queen Mary University of London http://www.maths.qmul.

ac.uk/~whitty/LSBU/MathsStudyGroup/cameron-oct14.pdf

[20] Robert A. Wilson The Golay code 01/12/08, QMUL, Pure Mathematics Seminar http:

//www.maths.qmul.ac.uk/~raw/talks_files/Golay.pdf

90

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3214&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3214&rep=rep1&type=pdf
https://www.math.ust.hk/~yangwang/Course/2016FSMath4999/Kin%20Li/Capstone2016.pdf
https://www.math.ust.hk/~yangwang/Course/2016FSMath4999/Kin%20Li/Capstone2016.pdf
https://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes6.pdf
https://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes6.pdf
http://www-math.ucdenver.edu/~wcherowi/courses/m7823/reedmuller.pdf
http://www-math.ucdenver.edu/~wcherowi/courses/m7823/reedmuller.pdf
http://www.mcs.csueastbay.edu/~malek/Class/Reed-Muller.pdf
http://www.mcs.csueastbay.edu/~malek/Class/Reed-Muller.pdf
http://www.maths.qmul.ac.uk/~whitty/LSBU/MathsStudyGroup/cameron-oct14.pdf
http://www.maths.qmul.ac.uk/~whitty/LSBU/MathsStudyGroup/cameron-oct14.pdf
http://www.maths.qmul.ac.uk/~raw/talks_files/Golay.pdf
http://www.maths.qmul.ac.uk/~raw/talks_files/Golay.pdf

	Introduction
	Fundamental concepts, general discussion about codes
	Fields, Matrices, Polynomials
	Fields
	Exponentiation over fields
	Absolute value function over a field
	Matrices
	Determinant
	Vandermonde matrices and Vandermonde determinants
	Polynomials over a field
	The fundamental theorem of algebra

	Vector Spaces
	Definition and elementary properties
	Subspaces
	Generating system, basis, dimension
	Linear independence and rank
	Linear maps
	Linear span
	Bilinear maps, scalar product
	Norms and normed vector spaces

	Finite Fields and Finite Vector spaces
	Definition and some easy examples
	Prime numbers, number of elements in a finite field
	Multiplicative order, primitive elements
	Construction of Fpk from polynomials
	The Fp field

	Codes, Examples
	Repetition codes

	Hamming distance, weight, errors, and some basic consequences
	Metric spaces
	Hamming distance, minimal distance, Hamming weight, weight of codes
	Connection with metric spaces and normed vector spaces
	Spheres, error-detecting and error-correcting
	Hamming bound and Singleton bound
	Understanding Hamming and Singleton bounds, the concept of perfect codes

	Linear codes, generator matrices, controll matrices, dual codes
	Linear codes, generator matrices, controll matrices
	Weight and distance of linear codes
	Dual and self-dual codes
	Connection between distance and linear independence
	Parameters of a specific family of codes

	Standard form, code parameters, equivalence of codes
	Polinomials and Codes
	Cyclic Codes
	Cyclic shift
	Connection between cyclic codes and polynomials
	Examples, connection with repetition codes

	Reed-Muller Codes
	Recursive definition, examples, some elementary attributes
	Recursive definition and examples for x=1
	Parameters of Reed-Muller codes for x=1, weight of codewords
	Higher order Reed-Muller codes
	Parameters of higher order Reed-Muller codes and connection with binomial coeffiicients

	Generator matrices and duals of Reed-Muller codes
	Recursive construction of generator matrices
	Duals of Reed-Muller codes

	Reed Decoding
	Decoding with Hadamard Matrices, relationship with Kronecker Product
	Introduction to Kronecker product
	Kronecker product for more variables
	Hadamard matrices
	Size of Hadamard matrices
	Construction of larger Hadamard matrices
	The decoding algorithm
	Introduction to Conference matrices
	Constructing Hadamard matrices of higher orders with conference matrices
	Conference matrices of higher order

	Relationship with finite geometry
	Reed-Muller codes and multilinear polynomials

	Generalized Reed-Muller Codes
	Definition, examples, fundalemtal properties
	Complex numbers
	Possible conceptualizations
	Polar form and exponential form
	Roots of unity, primitive roots of unity

	Connection with CCC.
	Aperiodic autocorrelation and aperiodic cross-correlation function
	GCS and CCC
	Construction of CCC codes via Generalized Reed-Muller codes

	Other Codes
	Reed-Solomon Codes
	Definition, examples, encoding
	Distance of Reed-Solomon codes
	Common applications

	BCH Codes
	Hamming Codes
	Hamming codes are perfect codes

	Bibliography

