
Eötvös Loránd University

Faculty of Science

Node embedding algorithms and their
evaluation through link prediction

BSc Thesis

Katalin Nicole Petro-de Chalendar

Mathematics BSc.

Supervisor:

András Benczúr, Ph.D.

Department of Operational Research

Budapest, 2020.

STATEMENT

Name: Katalin Nicole Petro-de Chalendar

Neptun ID: NDV6LN

ELTE Faculty of Science: Mathematics BSc.

Specialization: Mathematical Analyst Specialization

Title of diploma work: Node embedding algorithms and their evaluation through link

prediction

As the author of the diploma work I declare, with disciplinary responsibility that my thesis is
my own intellectual product and the result of my own work. Furthermore I declare that I have
consistently applied the standard rules of references and citations.

I acknowledge that the following cases are considered plagiarism:
– using a literal quotation without quotation mark and adding citation;
– referencing content without citing the source;
– representing another person’s published thoughts as my own thoughts.

Furthermore, I declare that the printed and electronical versions of the submitted diploma work
are textually and contextually identical.

Budapest, 2020 _______________________________
 Signature of Student

Petuoldatalin

2

Acknowledgement

I wish to express my deepest gratitude to my supervisor, András Benczúr for
his guidance throughout the last months, for introducing me to the field of node
embeddings and making it possible for me to work on a state-of-the-art topic. His
patience, kindness, help and motivation made this entire process very instructive
and pleasant.

I am particularly grateful for the assistance given by Ferenc Béres during the
implementation part of this dissertation, thanks to his kind help it was fascinating.

I would like to thank my professors at the university for helping me acquire
the knowledge I gained in the last four years. I wish to express a special gratitude
to István Fekete for introducing me to the world of graph algorithms.

I would like to thank for the invaluable assistance that Kitti Varga provided me
during my studies. She inspired me throughout all these years with her knowledge,
motivation and kindness.

I wish to pay special regards to Roland Molontay who often gave me guidance
during my studies and also helped me choose the field of my thesis work.

I owe a special thank you to Anna Ország as well who helped me a lot at the
beginning of this process with a lot of technical information.

My family has been by my side throughout all the years of my studies. They
comforted and encouraged me whenever I needed it. I would like to express my
great appreciation to my mother and father, the biggest supporters of my dreams
and of everything I do, to my grandmother who spent a lot of time with me
during this period and was a very big support, to my brother who is always one
of my biggest help whatever it comes to and to Maria who gave me a very strong
emotional support during good and bad times as well.

Finally, I am particularly grateful for all of my friends from the university and
from MCC for making these years so much fun and for always being there for me.

3

Contents

1 Introduction 6

2 Link prediction problem 8
2.1 Link prediction methods . 8
2.2 Local predictors . 9
2.3 Global predictors . 10

2.3.1 Shortest-path distance . 10
2.3.2 PageRank . 11
2.3.3 SimRank . 11

2.4 Online link prediction . 12

3 Vector space representation of words 14
3.1 Word2vec . 14
3.2 CBOW model . 15

3.2.1 One-word context . 15
3.2.2 Multi-word context . 17

3.3 Skip-Gram model . 18
3.3.1 Stochastic Gradient Descent (SGD) 19

3.4 Heuristic gradient computation . 21
3.4.1 Hierarchical Softmax . 21
3.4.2 Negative Sampling . 22

4 Node embedding algorithms 23
4.1 The process of node embedding . 23
4.2 Laplacian Eigenmaps for Embedding 24
4.3 Neighborhood similarity . 25

4.3.1 Adjacency-based similarity 25
4.3.2 Neighborhood overlap . 26
4.3.3 The LINE algorithm . 26

4.4 DeepWalk . 27
4.5 Node2vec . 28

4

5 Node embedding in dynamic graphs 30
5.1 Time-preserving node embedding 30

5.1.1 Embedding with temporal walks 30
5.2 Online node embedding . 31

5.2.1 StreamWalk . 31
5.2.2 Online Second Order node similarity 34

6 Evaluation of static models through link prediction 38
6.1 Rozenberczki’s network embedding framework 38

6.1.1 Node embedding algorithms with karateclub 39
6.2 Dribbble . 40

6.2.1 Preprocessing . 40
6.3 Link prediction task . 40
6.4 Evaluation of the models with DCG and running time 42

7 Conclusion 46
7.1 Future work . 46

8 Appendix 49
8.1 Python code of the evaluation . 49

5

Abstract

The purpose of this dissertation is to provide insights into the study of node
embeddings by machine learning algorithms and to evaluate static node embedding
models from Rozenberczki’s general purpose community detection and network
embedding library Python package karateclub through a link prediction task on
the Dribbble dataset.

The aim of node embedding is to map each node of a graph to a low-dimensional
vector to then use them as inputs for mining and learning algorithms such as link
prediction. In this paper, we will present several static and online graph embed-
ding methods such as Laplacian Eigenmaps, DeepWalk, Node2vec, StreamWalk
and Online Second Order Similarity.
Keywords: node embedding, Word2Vec, link prediction, dynamic graphs,
online node embedding, Dribbble.

1 Introduction

The use of graphs is widespread in many different scientific fields. Social networks
are large graphs that represent people’s acquaintances, biologists also use them to
illustrate protein interactions, but any network that describes relationships or de-
pendencies are representable with graphs. As a result, interest in machine learning
on graphs has increased significantly.

Machine learning is a method for building models automatically by learning to
identify patterns from data sets. The main idea is that the systems can then make
decisions without human assistance. The primary challenge in this area is how
to represent graphs, since mathematical and statistical operations on graphs and
the direct application of machine learning methods are limited. The new approach
consisting of learning how to place graphs in low-dimensional vector spaces has
emerged over the past decade. Online machine learning of graphs, which is about
evaluating different algorithms in a time-sensitive manner, has also become more
widespread. In these models new data points are made available to the model in
chronological order.

6

This dissertation will start with the elaboration of the standard link prediction
task followed by the time-variant online link prediction problem. We will then focus
on the vector space representation of words, the Word2Vec method that serves
as basis for many node embedding methods. When describing node embeddings,
we first enumerate methods that work on static graphs. These can be used for
dynamic graph embedding as well by considering the sequence of snapshots in
time, however it has been shown that time-preserving and online methods that
update the node representations at the arrival of every new edge often perform
better. These methods learn time-dependent embeddings on temporal networks
that include edges with unique timestamps that mark when the given edge is
active, see Figure 1.

Definition 1 (Temporal Network or Time-varying Network). A given temporal
network G = (V,E, τ) consists of a set of vertices V , a set of edges E, and a
function τ that assigns a singular timestamp t to each edge ei = (u, v).

v1 v2

v4

v5

v3

v6

1

3.
5

4
7

8

10
11

Figure 1: Time-varying Network

The last part of this dissertation will focus on the evaluation of static node
embedding models from Rozenberczki’s general purpose community detection and
network embedding library Python package karateclub [28] to see how they per-
form on a link prediction task on the Dribbble dataset. Dribbble is a social network
functioning as a self-promotion and networking platform for graphic and web de-
signs, illustrations and photographs.

7

2 Link prediction problem

One of the main object of study in data analysis is the evolution of graphs and
networks. A core problem is link prediction: considering an older or partial snap-
shot of a graph at a given time we aim to predict the edges that will appear in
the graph until a given future time. Link prediction can be applied in a large
variety of scientific fields. The capacity to predict interactions between data ob-
jects is fundamental for prediction of genetics and protein interactions, product
recommendation on platforms like Amazon or Ebay, friendship recommendation
on social networks and a wide range of data mining tasks.

?

?
?

X

X

x

Figure 2: Link prediction problem

Before using node embedding methods to predict interactions between vertices,
several approaches have been introduced in [1] that analyze network topology to
answer the question of the link prediction problem.

2.1 Link prediction methods

In the following methods, the input consists of a graphG = (V,E) and a timestamp
function t over E where E is the multi-set of edges and V is the set of nodes. The
edge e = (u, v) represents an interaction between node u and v with the timestamp
t(e) when the interaction happened.

Definition 2 (Link prediction problem). Given four times t1 < t′1 < t2 < t′2 and
the subgraph G[t1, t

′
1] that contains all the edges with timestamps between t1 and

t′1, we wish to create an algorithm that outputs a list of edges that do not appear
in G[t1, t

′
1] but are likely to be present in G[t2, t

′
2]. In this case [t1, t

′
1] is considered

the training interval and [t2, t
′
2] the test interval [1].

8

The link prediction methods described in this chapter all allocate a score to
every node pair according to the input graph and then create a decreasing ranked
list of the scores to determine the next linkage, see Figure 3.

DATA

Training

Test

Predicted

Test

Results
Evalu

ation
Prediction

Figure 3: Link prediction process: First we separate the training and test data.
We build predictions based on the training data, which we evaluate over the test
network. Prediction consists of a score for each node pair turned into a ranked list
of the potential linkages. We evaluate by using the test network as ground truth
[4]

.

In the following sections, we will present several algorithms and functions that
can be used for link prediction.

2.2 Local predictors

Local predictor approaches are based on the idea of neighbourhood similarity: the
more the neighborhood of two nodes overlap, the more likely they will be linked
in the future.

Figure 4: Neighbourhood overlap

Let Γ(u) denote the set of neighbors of node u. The following functions are
defined to implement link prediction based on neighbourhood similarity.

9

The Common neighbours method defines the scores with the number of
neighbors that node pairs have in common.

score(u, v) = |Γ(u) ∩ Γ(v)|

Neighbourhood overlap can also be defined with the Jaccard coefficient

score(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

,

the Adamic-Adar index

score(u, v) =
∑

w∈Γ(u)∩Γ(v)

1

log |Γ(w)|
,

the Resource allocation index

score(u, v) =
∑

w∈Γ(u)∩Γ(v)

1

|Γ(w)|
,

and the Preferential attachment

score(u, v) = |Γ(u)| · |Γ(v)|.

2.3 Global predictors

Global predictors are based on the idea that a linkage can appear in a graph
between two nodes that do not share any common neighbours.

2.3.1 Shortest-path distance

The most intuitive approach to calculate a score for node pairs is to measure the
length of the shortest path between them. In case there are multiple shortest path
between node pairs that have an equal length, we randomly choose between them.

score(u, v) =
1

d(u, v)
,

where d(u, v) is the length of the shortest path between node u and node v. If we
take the tie strength between nodes into account, the scores can be calculated as
the following:

score(u, v) =

(
d∑
i=1

1

wi

)−1

,

10

where wi is the strength of the ith connection of a shortest path of length d between
nodes u and v. Node pairs that have a shortest-path distance of 1 are connected by
an edge that belongs to the training edge set and thus are not taken into account.

Katz [6] introduces similarity by the sum of paths with the help of a parameter
0 < β < 1 that controls the contribution of each path by giving larger weight to
shorter paths.

score(u, v) =
∞∑
l=1

βl ·
∣∣∣paths(l)

u,v

∣∣∣ .
2.3.2 PageRank

Let us take a random walker that randomly chooses a neighbor of the vertex on
which they are currently standing in every step, however there is always a chance
that the walker will be transported to another random node in the network. Let
(0 < α < 1) denote the probability that the walk will move to a random neighbor
and 1 − α the probability that it will be transported to another random node in
the network. Rooted PageRank is a variant of this where the walker starting at
node u can be transported back with 1 − α probability only to the starting node
u. The score of the node pair (u, v) is measured by the stationary probability of
node v in the random walk with the transition probabilities described above.

score(u, v) = πu,v,

(for symmetry: score(u, v) = πu,v + πv,u),

where
πu,v = (1− α)

∑
w:u→v

Pw · αd(w).

The summation happens over all walks w going from node u to node v. Pw∗ de-
scribes the chance of traveling walk w∗ in the graph. For a walk w∗ = (x0, x1, . . . xk)

Pw∗ is defined as
∏k−1

i=0
1

|Γ(xi)| .

2.3.3 SimRank

The idea behind the SimRank approach is that two nodes are similar if their
neighborhood is similar. We assume that all vertices are similar to themselves, i.e.,

11

similarity(u, u) = 1. The score(u, v) is defined as similarity(u, v) which is calculated
with the following recursion:

similarity(u, v) =
c

|Γ(u) ∩ Γ(v)|
·
∑
a∈Γ(u)

∑
b∈Γ(v)

similarity(a, b),

where c ∈ [0, 1] is a factor that controls how fast similarities decrease.

2.4 Online link prediction

The link prediction methods presented so far were based on static graphs, or,
in time, fixed snapshots of a dynamic graph. We now want to solve the time-
aware variant of the link prediction problem and process dynamic graphs edge by
edge. The aim is to be able to predict the next linkage based on all the edges that
appeared before this specific time. The evaluation of online link prediction happens
with the prequential evaluation framework. At the arrival of a new edge uv, this
framework tries to predict this edge and reveals it to the model only afterwards.
It then updates the model with the help of this new edge. This ensures that that
the information of the most recent edges will also be included in the model.

Some of the static models presented earlier in this section can be extended
to temporal models. For example, the static PageRank or Katz centrality can be
modified by considering only temporal walks instead of all possible walks.

Definition 3 (Temporal walk). Given a temporal network G = (V,E, τ), a tem-
poral walk from v1 to vj is a sequence of edges (v1v2, v2v3, . . . , vj−1vj), where
τ(vivi+1) ≤ τ(vi+1vi+2) for all 1 ≤ i ≤ j − 1.

v1 v2

v4

v5

v3

v6

1

3.
5

4
7

8

10
5

Figure 5: Examples of Temporal Walks: The pink walk v1v2v3v6 forms a valid
temporal walk whereas the blue walk v3v4v5v6 is not valid since edge e = (v4, v5)

appears anterior to edge e = (v5, v6) in the graph.

12

To create a temporal random walk, we first select an initial edge ei = (v1, v2);
let t be its timestamp. The next node will be chosen from the neighborhood of
v2 but only from nodes that can be reached through an edge whose timestamp is
greater than t. Let us call this multiset temporal neighborhood.

Definition 4 (Temporal Neighborhood). The temporal neighborhood of a node u
at time t is

Γt(u) = {w | e = (u,w) ∈ E, τ(e) > t}.

Note that since several edges can appear between two vertices, temporal neigh-
borhoods are multisets.

13

3 Vector space representation of words

Before discussing the embedding of nodes with the help of neural networks, we
will present two models for word representation in a vector space which are the
antecedents of node embeddings. When processing text using machine learning
and neural network algorithms, we have the difficulty that these algorithms re-
quire numerical inputs to set up classification, regression or other models. Thus, it
is necessary to represent words numerically. Vector space representations encode
words according to their similarity in a vector space, thus helping learning algo-
rithm achieve better results in natural language processing tasks. There are several
model architectures for representing words as continuous vectors. All of them have
the aim of maximizing accuracy while also minimizing computational complexity.

3.1 Word2vec

Word2vec models represent each word in a given vocabulary by a vector. The
models learn the semantic similarities of words and place them in a vector space
in a way that words with high similarity will be closer to each other. Two vectors
are similar if their enclosed angle is small, more precisely:

similarity
(

~word1, ~word2

)
=

~word1 · ~word2

‖ ~word1‖ · ‖ ~word2‖
.

In the following chapter, we will present two Word2vec models, the Continuous
Bag Of Words (CBOW) and the Continuous Skip-Gram architectures.

The choice of the word embedding models depend on the final prediction task.
We can use CBOW if we predict a word based on its context, while Skip-Gram if
we want to predict the words surrounding the current one. Figure 6 illustrates the
structural difference between the two models.

14

...

...

...

...

Input

Input context
words

Hidden
layer

Output

Predicted word

Input

Input word

Hidden
layer

Output

Predicted
context words

CBOW Skip-Gram

Figure 6: CBOW and Skip-Gram model architectures: The CBOW model
uses a context to make a prediction for a specific word. (For example using the
surrounding words in a sentence it predict the one in the middle). The Skip-Gram
model on the other hand predicts the context using an input word. Both of these
models use neural networks with a hidden layer.

3.2 CBOW model

3.2.1 One-word context

We introduce CBOW by describing the simplest version when the context consists
of a single word. In this case, based on a single other word, we want to predict
another (not necessary adjacent) word, which we call the focus word.

wIV

wIV −1

...
wIk

...
wI2

wI1

uV

uV−1

...
uk

...
u2

u1

...

...

Input Hidden Output

h

wI u

EV ×N DN×V

Figure 7: CBOW model for a one-word context

15

As Figure 7 shows, this model consists of three layers, an input, a hidden,
and an output one. In this configuration, the size of our vocabulary V is V and
the number of neurons in the hidden layer is N . The input layer is the 1-of-V -
coding column vector wI of the context word. The weights between the input and
the hidden layers are represented by matrix E of size D × N , while the weights
between the hidden and output layers are represented by matrix D of size N × V .
Row i of the weight matrix E is an N dimensional vector representation vw for a
given input word w. The hidden layer h can be calculated from the input layer as:

h> := w>I E.

We use vector h and weight matrix D to determine the output layer from the
hidden layer, which assigns a score to each word in the dictionary

u := hD.

To obtain the 1-of-V -coding of the output word wO, we first need to make a prob-
ability vector y from vector u. For this purpose we apply the softmax activation
function. It is a function that normalizes an input vector to a probability distri-
bution.

Definition 5. The following function is called the softmax activation function:

F (xi) =
exi∑
j e

xj

If uj denotes the score of the j-th word in the dictionary and p(wj|wI) approx-
imates the probability that given a one-word context wI the output word is wj,
than applying this activation function to vector u will result in a probability vector
y.

yTj = p(wj|wI) =
euj∑
i e
ui

The most likely element in the vector y indicates what the model predicts as the
focus word from the dictionary (wO).

16

softmax function

F (xi) = exi∑
i e

xi

wTI h u yT

D
E

Figure 8: CBOW model operation for a one-word context

Notice that the column vectors v′w of the weight matrix D also correspond to
a vector representation of the word w. Hereinafter, vw is called the first vector
representation, v′w is called the second vector representation of word w. Each word
has two vector representations; vw and v′w. Using these notations:

yTj = p(wj|wI) =
e
v′>wj

vwI∑V
k=1 e

v′>wk
vwI

By training the model, the aim is to create matrices E and D that give accurate
predictions.

3.2.2 Multi-word context

In general, we do not make predictions based on a single-word, but rather on a
multi-word context. Compared to the simplified model, a more accurate one applies
the weight matrix E to all input words. The model takes the average of the input
vectors:

hT =
1

K

(
w>1 + w>2 + ...w>K

)
E =

1

K
(vw1 + vw2 + ...+ vwK

) ,

where K is the number of words in the context, w1, ...wK are the 1-of-V -coding
vectors of the context words and vw is the first vector representation of a word w.

17

EV ×N

wK

EV ×N

w2

...

EV ×N

w1

uV

uV−1

...
uk

...
u2

u1

...

...

h

u

DN×V

Figure 9: Multi-word CBOW model

During training, the model seeks to maximize the loss function

1

K
log

K∑
k=1

P(wk|{wk−t . . . wk+t} \ {wk})

where we predict the center word wk, given the context {wk−t . . . wk+t} \ {wk}.

3.3 Skip-Gram model

Counter to the CBOW model, the continuous Skip-Gram model wishes to maxi-
mize the probability of accurately predicting a context of words from a given word,
(see Figure 10). During the following computations we use the assumption that
the words appear independently from each other in the text.

P({wj−t . . . wj+t} \ {wj}|wj) =

j+t∏
k=j−t,
k 6=j

P(wk|wj).

Rather than maximizing the probability as a product, we maximize the log-likelihood

1

K

K∑
j=1

j+t∑
k=j−t,
k 6=j

logP(wk|wj).

18

Optimization is computed by minimizing a loss function which in this case is

ΛSG = − 1

K

K∑
j=1

j+t∑
k=j−t,
k 6=j

logP(wk|wj).

Using

P(wk|wj) ≈
ev
′>
wk
vwj∑V

i=1 e
v′>wi

vwj

we approximate the loss function ΛSG with

LSG = − 1

K

K∑
j=1

j+t∑
k=j−t,
k 6=j

log
ev
′>
wk
vwj∑V

i=1 e
v′>wi

vwj

.

DV ×N

uK

DV ×N

u2

...

DV ×N

u1

wIV

wIV −1

...
wIk

...
wI2

wI1

...

...

h

wI

EN×V

Figure 10: Skip-Gram model

3.3.1 Stochastic Gradient Descent (SGD)

When performing the Skip-Gram algorithm, we wish to minimize an empirical risk
that occurs on the training data. In order to do this we often use the Gradient
Descent (GD) method, which iteratively moves in the direction of the negative

19

gradient of the function at the current point to find a local minimum. In the
Skip-Gram algorithm, the objective function takes the form of a sum:

f(x) =
1

n

n∑
i=1

fi(x),

where x is the parameter we look for in order to minimize f(x). In these cases,
we use the stochastic gradient descent (SGD), where we approximate ∇f(x) by
∇fi(x).

If f(x) = 1
n

∑n
i=1 fi(x) is the function we wish to minimize, x is the initial

parameter of the function and α is the learning rate, the SGD method will perform
the following computation n times in a shuffled order of {1, . . . n}:

x← x− α · ∇fi(x)

The Skip-Gram algorithm follows the steps of the the SGD algorithm described
above on the function LSG as the following:

Algorithm 1: Basic Skip-Gram(t, R,D)
Input: dictionary D, window size t, current vector representations R
for i ∈ D do

for k = j − t . . . j + t, k 6= j do

Li,k(V) = − log e
v′>wk

vwj∑R
i=1 e

v′>wi
vwj

R← R− α · ∂Li,k
∂R

end

end

Note that in the above basic Skip-Gram algorithm, the gradient step involves
the vectors corresponding all other words in the vocabulary, which makes the gra-
dient step computationally very expensive. The basic algorithm can be enhanced
by techniques to speed up the computation of the gradient that we will describe
in the following section.

20

3.4 Heuristic gradient computation

In this section, we give two heuristics to speed up the gradient computation. We
saw earlier in section 3.2.1 that each word in the dictionary has two vector space
representation: the first vector vw from the rows of the weight matrix E and the
second vector v′w from the column vectors of the weight matrix D. Learning the
second vector representation v′w is computationally complex since we have to it-
erate through every word of the vocabulary [11]. To speed up the output vector
computation, Word2vec models use Hierarchical Softmax or Negative Sampling
heuristics. Both reduce complexity by updating only the most influential output
vectors.

3.4.1 Hierarchical Softmax

Hierarchical Softmax is a technique for approximating the softmax function to
reduce the computational cost of training the network. It encodes all the words
of the dictionary in a binary tree. The V words appear as leaf units and can be
explicitly represented by the path from the root to that leaf. If the tree is balanced,
any word can be defined by a sequence of O(log V) binary decisions. This model
uses a Huffmann binary tree [13], which takes the frequency distribution of each
word into account. Rare words are down at a deeper level while frequent words are
at a shallower level. There are V − 1 internal nodes (including the root). For the
inner nodes, we use the following annotation: n(w, k) is the k-th unit on the path
from the root to word w. Figure 11 shows an example where the output word is
w3.

n(w3, 1)

n(w3, 2)

. . .
w1 w2

w3 wV−1 wV

Figure 11: An example for hierarchical softmax model

21

In this model there is no output vector representation for the words. We are
going to associate each row of our output matrix with one of the internal nodes.
Let v′n(w,k) be the output vector for inner node n(w, k). The hierarchical softmax
model defines p(wj|wI) as

p(wj|wI) =

L(w)−1∏
l=1

σ(Jn(wj, l + 1) = ch(n(wj, l))K · v′>n(wj ,l)
vwI

),

where σ(x) = 1
1+ex

, L(w) is the length of the path from the root to word w, JxK is
1 if x is true and −1 otherwise, and ch(n) is the left child of unit n [10].

By using the hierarchical softmax model, the computational complexity per
training instance per context word can be reduced from O(V) to O log(V).

3.4.2 Negative Sampling

Negative Sampling is a more intuitive approach for improving the computational
complexity. Instead of updating every output vector at every training instance, we
update only a sample of them. During training, we keep the correct output word
wO in the sample and we determine the negative samples with a probabilistic
distribution that we call noise distribution. We minimize the negative sampling
loss function

E = − log σ(v′>wO
h)−

∑
wj∈Wneg

log σ(−v′>wj
h),

where h = 1
K

∑K
k=1 vwk

in the CBOW model and h = vwI
in the Skip-Gram model,

since when using negative sampling for the Skip-Gram model, we need to use this
equation one at a time for each word that appears in the context [11].

22

4 Node embedding algorithms

Mining and machine learning algorithms on graphs start with the exploration of
their structural features. In the last decade a new and computationally efficient
representation learning technique emerged called node embedding. Given an undi-
rected and weighted graph G = (V,E,A), where E is the set of edges, V is the
set of nodes and A is the adjacency matrix, node embedding algorithms place
the vertices of the graph in a d-dimensional vector space by learning a V → Rd

function that maps each node to a vector that represents well the structural prop-
erties of the vertices [18]. These vectors can then be used as inputs for mining and
learning algorithms such as node classification, link prediction and network simi-
larity. In this chapter we will present some of the most widespread node embedding
algorithms: Laplacian Eigenmaps, Large-Scale Information Network Embedding,
Deepwalk and Node2vec.

node u

f : u −→ Rd

vector representation of node u in Rd

Figure 12: The aim of node embedding

4.1 The process of node embedding

Node embedding consists of four components: a pairwise node similarity function
SG : V × V −→ R+ that defines the similarity in the original graph, an embedding
emb(x) that maps the nodes to vectors, an embedding similarity function that
defines the similarity in the vector space, and a loss function Λ along which we
will optimize and train the node embedding model [16]. The difference between
the various techniques is how we interpret these components. In this dissertation,
similarity between two embedding vectors is defined as their dot product.

The input of the embedding is a one-hot encoded vector u and the output is
the vector representation zu of the given node: emb(u) = zu.

23

u

v

emb(u)

emb(v)

zu

zv

Embedding vector spaceOriginal graph

Figure 13: Illustration of node embedding

The aim is to represent the nodes as low dimensional vectors such as that
similarity in the vector space reflects similarity in the original graph.

SG(u, v) ≈ z>u zv

The algorithms learn a matrix Z ∈ Rd×|V | and each column vector z of the ma-
trix represents the embedding of a specific node, where the vector space is d-
dimensional, and V is the set of vertices in the graph.

4.2 Laplacian Eigenmaps for Embedding

The first node embedding method presented in this work defines the embedded
vectors with the help of eigenvalues and eigenvectors of the Laplacian matrix of
the graph [23]. We consider the following generalized eigenvector problem:

Lx = λDx,

where D ∈ R|V |×|V | is the diagonal weight matrix and L ∈ R|V |×|V | is the Laplacian
matrix of the graph;

Li,j =


deg(ui) if i = j,

−1 if i 6= j and ∃ edge(ui, uj),

0 otherwise.

Let x0, x1 . . . xk−1 denote the solutions of the above equation where λ0 ≤ λ1 ≤ . . . ≤
λk−1. It can be proved that 0 is the smallest eigenvalue with eigenvector (1, . . . , 1),
i.e., λ0 = 0 and the vector is constant over the nodes. As seen in Figure 14, after

24

removing the constant and keeping the first few eigenvectors, the embedding of
node ui into the lower dimensional space Rm is defined by the vector emb(ui) =

(x1(i), x2(i)...xm(i)).

x0 x1 x2 xm xk−1

.

1
...
1
...
1

i emb(ui)

|V |

Figure 14: Illustration of node embedding with Laplacian Eigenmaps:
The vector representation of node ui is (x1(i), x2(i)...xm(i)). We do not use the
first column since it is (1,. . . ,1).

4.3 Neighborhood similarity

In this subsection, we discuss several different node similarity functions. We often
base the measure of similarity between nodes on features of their neighborhoods.
We present similarity algorithms through adjacency, k-hop adjacency, neighbor-
hood overlap, and their combination.

4.3.1 Adjacency-based similarity

The adjacency-based similarity function is the edge weight between two nodes in
the original graph zTu zv ≈ weight(u, v). We want to learn a matrix Z ∈ Rd×V in a
way that minimizes the following loss function:

Λ =
∑

(u,v)∈V×V

‖z>u zv − Au,v‖2,

where A is the weighted adjacency matrix [17].
If we want to consider the k-hop neighbors, the loss function changes to the

following:

Λ =
∑

(u,v)∈V×V

‖z>u zv − Aku,v‖2,

25

4.3.2 Neighborhood overlap

In real-world graphs, adjacency is sometimes insufficient to present the global
structure. In some cases, nodes that share neighbors are likely to be similar. If we
look at social media for example, people whose connections are very similar tend
to share interests and other properties. In the example of Figure 15, vertices v1

and v3 are connected, and so they should be placed closely in the vector space.
Though there is no edge between vertices v1 and v2, they share all their neighbors,
hence their embedding vectors should also appear close to each other.

v1

v2

v3

v4

v5

v6

v7

Figure 15: Shared neighbors in a graph

In this case the loss function we wish to minimize is the following:

Λ =
∑

(u,v)∈V×V

‖z>u zv − NOu,v‖2,

where NOu,v is the neighborhood overlap between nodes u and v that can be
measured with the Jaccard coefficient, Adamic-Adar index and other methods
mentioned in Section 2.3.1.

4.3.3 The LINE algorithm

There are methods that combine different neighborhood similarity measures. The
LINE (Large-Scale Information Network Embedding) algorithm creates an embed-
ding that preserves first- and second-order proximity of a graph as well by modeling
them separately and then concatenating the embedded vectors for each node [21].

26

4.4 DeepWalk

Another option to interpret node similarity is if they co-occur on randomly gener-
ated short walks in the original graph. In this section, we introduce the DeepWalk
algorithm that learns the node embedding with the help of random walks.

Definition 6. A Random walk is a sequence of vertices in a graph starting with a
given node and following a randomly selected neighbor at every vertex.

The DeepWalk algorithm consists of two steps: it first generates a multiset B
that contains node-context vertex pairs and then trains the Skip-Gram model on
multiset B. See Skip-Gram algorithm in Section 3.3.

Algorithm 2: DeepWalk(R,L, T) [19]
Input:
Graph G(V,E)

R: number of random walks
L: length of random walks
t: window size
for i = 1, 2 . . . R do

Select w1
ui

root note for random walk i with a probability distribution;
Produce a node sequence of length L by a random walk: {w1

ui
, . . . , wLui};

for k = 1, 2 . . . R− t do
for r = 1, 2 . . . t do

Add vertex-context pair (wkui , w
k+r
ui

) to multiset B.
Add vertex-context pair (wk+r

ui
, wkui) to multiset B.

end

end

end
Run Skip-Gram model on multiset B. (See Skip-Gram algorithm in
Section 3.3)

Let Wui indicate the random walk rooted at the node ui (i = 1, 2, . . . R). The
nodes appearing in random walkWui are {w1

ui
, w2

ui
, . . . , wLui} where w

j+1
ui

is a vertex
randomly chosen from the neighbors of wjui .

27

4.5 Node2vec

The Node2vec algorithm is different from DeepWalk in that it introduces two new
parameters P and Q that bias the random walk.

There are two classic strategies to sample the neighbourhood of j nodes of a
given vertex: breadth-first search (BFS) and depth-first search (DFS).

u

u1

u3
u2

u4

u5

u6

u7

u8

u9

DFS
BFS

Figure 16: Difference between breadth-first search and depth-first search from node
u if j = 4

BFS sampling explores a node’s immediate neighbourhood, while DFS explores
at an increasing distance from the node. For example, in Figure 16 the BFS sample
is {u1, u2, u3, u4} and the DFS sample is {u5, u6, u7, u8} [20]. As we will describe,
the Node2vec algorithm uses a sampling strategy that lies in between BFS and
DFS.

Let us consider a random walk that steps from node us to node u∗ (Figure
17). We now want to determine the next step. Let µu∗xi denote the transition
probabilities from node u∗ to its neighbors (x1, x2, . . . xNu∗) and set them to µu∗xi =

αPQ(us, xi) · wu∗xi , where wu∗xi is the weight of edge (u∗xi),

αPQ(us, xi) =


1/P if dusxi = 0,

1 if dusxi = 1,

1/Q if dusxi = 2,

and dusxi is the shortest path from node us to node xi. Parameter P and Q deter-
mine the the walk, since dusxi can only take the values {0, 1, 2}.

28

us

x1

x3

x2

u∗

α
=

1
P

α
=

1

α
=

1
Q

α
=

1
Q

Figure 17: Illustration of Node2vec on an example

Parameter Q controls how far we can travel from node us, while parameter P
gives the probability of revisiting the node us. The Node2vec model is close to a
BFS sampling if both P > 1 and Q > 1. In this case, the highest weight αPQ from
node u∗ is 1, which means that the walk tends to visit the neighbors of node us.
If P takes a high (> 1) and Q a low (< 1) value, the model will be similar to DFS
sampling, since the highest weight αPQ from node u∗ is 1

Q
.

29

5 Node embedding in dynamic graphs

In the previous sections, we focused on the embedding of static snapshots, ignor-
ing the time-dependency and dynamics of real-world graphs that evolve over time
with new edges and nodes appearing and disappearing. The embedding methods
described earlier can all be adapted to dynamic networks by considering the se-
quence of snapshots in time where we define static snapshot graphs as G1, . . . GT ,
where Gi = (V,Et) and the edge set Et are present in the time period [ti−1, ti].
The computation of these models are very time-consuming since they create a new
representation for every snapshot.

In the following chapter we will discuss methods that learn time-preserving
embeddings online. To simplify the model, from now on we will work with directed
graphs but optionally we can add each new edge in both directions to make it
undirected.

5.1 Time-preserving node embedding

In this section we describe methods that learn time-dependent embeddings on
temporal networks (see Definition 1).

5.1.1 Embedding with temporal walks

Similarly to the DeepWalk model, we will interpret node similarity with the help
of randomly generated short walks in the original graph, but this time with the
use of temporal random walks where the edges are in a time respecting order (see
Definition 3).

Since the edges arrive in a time-preserving order in the temporal walk, we do
not expect a fixed length for the walks. We define a minimum length ω and a
maximum length L. A temporal random walk Rti is valid if ω ≤ Rti ≤ L. We
now sample a set of temporal walks and run the Skip-Gram algorithm presented
in Section 3.3 on the multiset, where the context window is the minimum length
ω of the temporal walks.

30

5.2 Online node embedding

We talk about online embedding algorithms when the model continuously updates
embeddings after the arrival of (almost) every arriving edge as we process the
graph stream.

5.2.1 StreamWalk

The goal of StreamWalk is to update the embedding of the node v after the ap-
pearance of edge uv in order to be similar to the vector representations of the
vertices that can reach u through recently appeared edges. This online algorithm
is based on the idea of temporal walks described in Section 5.1.1. StreamWalk
samples temporal walks and optimizes the embedding for the similarity of the new
node u and the source node, see Figure 18.

w

u v

et1 et4

et6

et

et2

et3

et5

time embedding space

emb(v)

emb(w)

update

update
tem

por
al w

alk

Figure 18: Illustration of the main idea of StreamWalk: The algorithm will
update the embedding of the source node w of a sampled temporal walk and node
v to be similar to each other if the latest arriving edge uv is the last edge of the
temporal walk with t1 < t2 < t3 < t4 < t5 < t6 < t.

To ensure that we generate temporal walks, we start from node u and step back-
wards. We always select the next edge taking the waiting time into consideration.
For example, in Figure 18, we first select edge et6 , then et4 .

To define the weight of a walk, we use the weighting function γ(t) := e−c·t,
which takes the delay t of two adjacent edges as a parameter. This time-aware

31

function is exponential to give a greater weight to walks where the edges appeared
more recently. We can now define the weight of a walk $ = (e1, e2, . . . ek) with
timestamps t1 < t2 < . . . < tk at a time t > tk as

p($, t) = α|$|
k∏
i=1

γ(ti+1 − ti) = α|$| · e−c(t−tk) · . . . · e−c(t2−t1) = α|$| · e−c(t−t1),

where tk+1 = t and 0 < α ≤ 1 is a parameter that controls the length of the walk.
StreamWalk uses two procedures during implementation: UpdateWalk(u, v) re-

cursively updates the weights of all the temporal walks ending with edge uv, and
SampleWalk(u, t) samples a temporal walk that ends in node u at time t.

Let p(v, τ(uv)) denote the sum of weights of all walks that end in node v (but
the last edge of the walk is not necessarily uv) at the arrival time τ(uv) of edge
uv. UpdateWalk calculates this sum recursively by dividing the walks ending in v
into three categories and summing their weights:

• the new single edge walk uv

• the walks which terminate with the edge uv

• the walks ending before the arrival of the edge uv.

The weight of the walk of the first category is obviously α. If tu denotes the
timestamp of the last edge entering node u before τ(uv), then the total weight of
the walks of second type is

α · p(u, tu) · e−c(τ(uv)−tu).

The total weight of the third category walks is

p(v, tv) · e−c(τ(uv)−tv),

where similarly as before tv is the timestamp of the last edge entering node v before
τ(uv). Thus,

p
(
v, τ(uv)

)
= α + α · p(u, tu) · e−c

(
τ(uv)−tu

)
+ p(v, tv) · e−c

(
τ(uv)−tv

)
,

see Figure 19. UpdateWalk brings to date the value of p(v, τ(uv)) after the arrival
of every edge.

32

u v
new single edge

α

α · p(u, tu) · e−c(t(uv)−tu) p(v, tv) · e−c(t(uv)−tv)

Figure 19: Illustration of the recursive method of UpdateWalk.

SampleWalk is the procedure that samples a temporal random walk in the
graph after updating the weights of the temporal walks with algorithm Update-
Walk. It generates a random walk backwards starting from node u after the arrival
of the last edge τ(uv). To select a backward edge u1u we use the weight of the
walks ending with this edge

p(u1u) = α ·
(

1 + p(u1, tu1) · e
−c
(
t(u1u)−tu1

))
,

thus, the probability of selecting edge u1u is

p(u1u) · e−c
(
τ(uv)−τ(u1u)

)
p
(
u, τ(u, v)

) .

Let us terminate the sampled temporal walk some node u∗ at some time t∗ with
probability

1

1 + p(u∗, tu∗) · e−c(t∗−tu∗)
.

We can also end the walk after reaching a predefined length. SampleWalk algorithm
gives as output the source node w of the generated temporal random walk.

For each new arriving edge uv, the StreamWalk algorithm first updates the
weights of the temporal walks with UpdateWalk, then samples a random walk
with SampleWalk and optimizes the embedding for the similarity of node v and the
source node w of the sampled walk with stochastic gradient descent as presented
in Section 3.3.1. We train the model by sampling k walks per edge.

33

Algorithm 3: StreamWalk(u, v)

UpdateWalk(u, v)

Repeat k times:
w :=SampleWalks(u, now)

Optimize the embedding emb(v) and emb(w) of node u and w with SGD.

5.2.2 Online Second Order node similarity

The next online algorithm presented in this section optimizes the node embeddings
to preserve second order similarity by using a time-aware variant of the Jaccard
similarity described in Section 2.2. At the arrival of a new edge uv, we optimize
the vector representations of the node pairs (u, v∗), where v∗ are the in-neighbors
of node v (see Figure 20).

u v

u1

u2

u3

v1

v2

embedding space

emb(u)

emb(v1)

update
update

Figure 20:The aim of online second order similarity. Our goal is to separately
optimize the vector representations of the node pair (u, v1) and (u, v2).

Let N(u, t) denote the neighborhood of a node u at a time t and let

$(uv) := e−c
(
t−τ(uv)

)
be the weight of an edge uv, where τ(uv) is the timestamp of the edge uv. To
accentuate the influence of newer edges, let us dispose of a node u1 ∈ N(u, t) with

34

probability 1−$(u1). More precisely let N∗(u, t) be the pruned neighborhood of
node u after the arrival of edge uv.

We wish to optimize for the squared error[
q>u qv1 − sim(u, v1)

]2
,

where we will define sim(u, v1) later as the time-aware Jaccard similarity. In fact,
sim will be a MinHash fingerprint approximation of the Jaccard similarity to avoid
the costly exact computation.

Min-hashing is a procedure for the representation of large sets of data and
the assessment of similarity between items. Let π1, π2, . . . , πk be random and in-
dependent permutations of the node set. Let us define the fingerprints of a set A
as:

hi(A) := min
a∈A

πi(a), i = 1 . . . k.

It is easy to see that given two sets A and B:

P
(
hi(A) = hi(B)

)
=
|A ∩B|
|A ∪B|

.

Let us use the MinHash fingerprinting for the pruned neighborhood N∗(u, t) of a
node u at time t:

hi(u, t) := hi
(
N∗(u, t)

)
.

To approximate the time-aware Jaccard similarity of a node pair (u, v) at time t,
we use the following function [26]:

sim(u, v, t) ≈ 1

k

k∑
i=1

I[hi(u, t) = hi(v, t)].

After the arrival of a new egde uv, the online second order similarity algorithm
first updates the fingerprints of node u with the procedure UpdateFingerprints(u, v).

To avoid the recomputation of the fingerprints of node u at every time, in some
cases we give hi(u, t) the value of its new neighbor v. See an illustration of how
the fingerprints of node u are updated in Figure 21.

35

v2 v3

u v

v1

v5

v4

v6

v7

t1

t2

t3 t∗

π1 = {7, 6, 5, 2, 4, 1, 3}
π2 = {6, 3, 2, 4, 7, 5, 1}
π3 = {2, 1, 4, 3, 6, 7, 5}

t = t3 t = t∗

N∗(u, t)

I. h1(u, t)

II. h2(u, t)

III. h3(u, t)

{v1, v4, v5} {��ZZv1 , v4, v5, v3}

min{7, 2, 4} = 2 π1(v1) = 7, π1(v3) = 5
not the minimum → 2

min{6, 4, 7} = 4 πi(v) < πi
(
hi(u, tu)

)
)

→ 3

min{2, 3, 6} = 2 the minimum is too old
and removed → 3

Figure 21: Illustration of UpdateWalk procedure at the arrival of a new
edge uv: The neighbors of node u arrive in time t1 < t2 < t3 < t∗ and we have
three random independent permutations π1, π2, π3 over the node set. In the second
column we can see the MinHash fingerprints of node u before the arrival of the
new edge. Let us say that in this example the oldest node v1 gets removed from the
pruned neighborhood N∗(u, t3). We check if the removed edge or the new edge has
the minimum hash value. In the first case neither so h1(u, t) maintains its former
value 2. In the second case (II.) the hash value of node v is smaller than h1(u, t3) so
we set hi(u, t∗) with the new value of v. If the removed old edge was the minimum
like in the third case (III.), we also give hi(u, t∗) the value of v.

Algorithm 4: UpdateFingerprints(u, v) [26]

for i = 1, 2 . . . k do
if hi

(
u, τ(uv)

)
is old or πi(v) < πi

(
hi(u, tu)

)
then

hi
(
u, τ(uv)

)
:= v

end

36

After updating the fingerprint of u, for all in-neighbors v∗ of node v we compute
the number of fingerprints l that are equal to the fingerprints of u and take the
value of v. We then optimize l times the vector representations of nodes v∗ and u
by using the squared error loss function

[
q>u qv∗ − sim(u, v1)

]2, see Algorithm 5.

Algorithm 5: OnlineSecondOrderSimilarity(u, v) [26]
UpdateFingerprints(u, v), see Algorithm 4.
for all in neighbors v∗ of node v that are not too old do

l := 0

for i = 1, 2 . . . k do
if hi

(
u, τ(uv)

)
= hi

(
v∗, τ(uv)

)
= v then

l := l + 1

Optimize qu and qv∗ l times by using
[
q>u qv∗ − sim(u, v∗)

]2.
end

end

The purpose of the dissertation was to give an overview of different node em-
bedding, there are many other static and online node embedding models besides
the one presented in the previous chapters.

37

6 Evaluation of static models through link predic-

tion

In the following chapter we evaluate the static node embedding methods of the
Python framework karateclub [28] by examining how they perform on a link
prediction task.

6.1 Rozenberczki’s network embedding framework

We use the Python framework karateclub that contains 30 graph mining algo-
rithms for community detection, node embedding, and whole graph embedding and
summarization. The node embedding models of this package include factorization-
based techniques that use matrix factorization on adjacency or proximity matrices
along with graph-sampling based techniques that sample pairs of nodes from in-
put graphs via random walks and then use the Skip-Gram model to output the
embeddings. The models evaluated in this dissertation are: DeepWalk, Role2Vec,
NodeSketch, GraphWave, NMFADMM, GraRep, BoostNE, NetMF and Walklets.
GraphWave, GraRep, NMFADMM and BoostNE are all factorization-based models
while similarly to the DeepWalk algorithm Walklets and Role2Vec both use sam-
pled random walks to create the node embeddings. Walklets generates paths with
fixed lengths by skipping steps in the random walks and Role2Vec uses attributed
random walks that differentiate edges according to vertex attributes and struc-
tural features. There are also models that combine the two techniques: NetMF
for example is a model that unifies DeepWalk, Node2Vec and LINE through a
matrix factorization framework. NodeSketch tries to improve the two technique’s
computational complexity. It is a node embedding method that preserves k-order
proximity by first creating low-order embeddings from the Self-Loop-Augmented
adjacency matrix with a random hash function and recursively generates the higher
order embeddings. These algorithms are presented in more detail in the papers col-
lected in [31].

38

6.1.1 Node embedding algorithms with karateclub

The node embedding models of the karateclub framework place each node of the
input graph in a 128-dimensional vector space. To illustrate how it works we will
first use a small social network, Zachary’s karate club which represents connections
between 34 members of a university karate club outside of the club, see Figure 22.

Figure 22: Illustration of Zachary’s karate club network using the Python NetworkX

package.

By using for example the DeepWalk algorithm of the karateclub package as
the following:

as a result we get an array that contains the 128-dimensional embedded vector
representation of each of the 34 nodes:

39

6.2 Dribbble

In this experiments we used the Dribbble dataset [27]. Dribbble is a social network
for graphic and web designs, illustrations and photographs. We use the following
dataframe as input:

Figure 23: Each row of this dataframe represents a like interaction between two
users: at timestamp user_id liked shot_id created by user_id_creator. You can
see here the first two rows of the dataset that contains likes between 2009 and
2017.

During the link prediction task we are going to predict likes that originally
happened between users and shots but to avoid working with bipartite user-shot
graphs we work with user-user graphs. By using the NetworkX package we create
graphs where the nodes are users, and each edge represents an interactions between
the users (in this case likes).

6.2.1 Preprocessing

The first part of the implementation process is to prepare the dataset. For this
evaluation we will only consider interactions that happened in 2010 and 2011. We
drop rows with missing values, loops and duplicates, thus edges will now only
appear once in the dataset.

6.3 Link prediction task

Based on the weekly interactions we wish to predict the likes that will occur
during the following week. We group the likes and create graphs for each week
with NetworkX. Figure 24 shows the number of weekly interactions in 2010 and
2011.

40

Weeks
0

10000

20000

30000

40000

50000

Nu
m

be
r o

f l
ik

es
Number of interactions per week in 2010 and 2011

Figure 24: Number of interactions per week in 2010 and 2011

Since karateclubmodels only work on undirected, connected graphs where the
indexes of the nodes are integers we convert the names of the nodes to integers for
each week and if the graphs are not connected we consider the largest connected
subgraphs.

During the link prediction each weekly graph serves as training dataset and
the graph created from the following week’s data as test dataset. We use a node
embedding algorithm from the karateclub package and place the nodes of the
training graph in a 128-dimensional vector space.

For each node of a training graph we create a ranked list of all the other nodes.
We rank the nodes in the list in descending order based on the dot product of the
embeddings of the current vertex and the other vertices in the graph. For example
the first element of the ranked list of a specific node is the user that is closest
to the examined node according to their dot product. For each edge of the test
dataset where the nodes appear in the training graph we look up the index of the
node user_id_creator in the ranked list of the node user_id. Figure 25 shows
the first five rows of the dataframe we get as a result.

41

Figure 25: The dataframe contains the IDs and the converted IDs of the users
along with the rank of user_id_creator in the ranked list of user_id for every
edge of the test dataset.

During the preprocessing we dropped all duplicates from the dataset so that
edges only appear once, thus we only make predictions for edges not seen before.
When making recommendations for the source node of the current edge in the test
data we will only recommend users with which the current source node previously
did not form an edge in the test data. We also do not recommend users with whom
it already formed an edge in the previous weeks.

As some of the these models have a random factor (for example DeepWalk is
based on random walks) to get a comprehensive result we performed each evalua-
tion ten times for every model.

6.4 Evaluation of the models with DCG and running time

To evaluate and compare the different models, we use the discounted cumulative
gain (DCG) metric, which is capable of evaluating online machine learning algo-
rithms [30]. For each interaction we calculate the DCG as

DCG =
1

log2(rank + 1)

Figure 26: An example of the calculated DCG

42

The overall evaluation of each model is the average of the DCG values over all
interactions and samples. If we look at Figure 27 we can see that the performances
of the models are mostly similar with GraRep outperforming the other models.

gr
ar

ep

wa
lk

le
ts

ro
le

2v
ec

nm
fa

dm
m

ne
tm

f

de
ep

wa
lk

no
de

sk
et

ch

bo
os

tn
e

gr
ap

hw
av

e
model

0.00

0.02

0.04

0.06

0.08

0.10

0.12

DC
G

Average DCG in 2010 and 2011 of each model
dcg

Figure 27: Average DCG in 2010 and 2011 of each model over all interactions and
samples.

GraRep which appears to be the best model to solve this link prediction task
is a factorization-based method that generates the node embeddings by the fac-
torization of the k-step transition probability matrix Ak, where

A = D−1S

if S is the adjacency matrix and D is the degree matrix of the input graph.

D =


∑

l Sil if i = j,

0 if i 6= j.

43

We can also examine performance tendencies by computing the weekly averages
of the DCG. Figure 28 illustrates the weekly average DCG of each model.

Weeks

0.10

0.15

0.20

0.25

0.30

DC
G

Average DCG per week in 2010 and 2011
DeepWalk
NodeSketch
NetMF
NMFADMM
Role2Vec
Walklets
GraRep
GraphWave
BoostNE

Figure 28: Weekly averages in 2010 and 2011 for each model

If we look at Figure 28 and 29 it is easy to see that as the graphs get bigger
the performance of the models decrease on the link prediction task.

Weeks
0

2000

4000

6000

8000

10000

Nu
m

be
r o

f n
od

es

(a) Number of nodes

Weeks
0

10000

20000

30000

40000

Nu
m

be
r o

f e
dg

es

(b) Number of edges

Figure 29: Measurements of the largest connected components per week in 2010
and 2011

44

When evaluating different models another important aspect is the time nec-
cessary for its execution. Figure 30 shows that there is a much bigger difference
between the models when it comes to running time.

gr
ap

hw
av

e

gr
ar

ep

wa
lk

le
ts

ro
le

2v
ec

no
de

sk
et

ch

de
ep

wa
lk

bo
os

tn
e

nm
fa

dm
m

ne
tm

f

Model

0

10000

20000

30000

40000

50000

60000

70000

se
co

nd
s

Average running time of the models
Average_running_time

(a) Linear scale
gr

ap
hw

av
e

gr
ar

ep

wa
lk

le
ts

ro
le

2v
ec

no
de

sk
et

ch

de
ep

wa
lk

bo
os

tn
e

nm
fa

dm
m

ne
tm

f

Model

103

104

se
co

nd
s

Average running time of the models on a logarithmic scale
Average_running_time

(b) Logarithmic scale

Figure 30: Average running time of the models on a linear and a logarithmic scale

45

7 Conclusion

In this dissertation we introduced the predecessor of node embedding methods; the
vector space representation of words and several static node embedding methods
along with online algorithms as well. The final part of the dissertation included
the evaluation of static methods from the Python package of [28] based on their
performance on a link prediction task using the Dribbble dataset. We measured
these models by using weekly interactions as training and test dataset.

The experiment showed that the performance of these models decreases as the
size of the training dataset increases. When examining the models DCG averages
we could see that the models perform similarly but with very different running
times.

7.1 Future work

Bigger differences between the models and better results could be achieved if the
link prediction task would use for example several weeks data to make the pre-
diction for the following week’s interactions. However, the running time of these
models would also considerably grow. Future work would include finding the best
performing training and test dataset size and comparing the methods of [28] to
online algorithms as well.

46

References

[1] David Liben-Nowell and Jon Kleinberg, The Link Prediction Problem for Social Networks,
https: // www. cs. cornell. edu/ home/ kleinber/ link-pred. pdf (2004).

[2] Zan Huang and Dennis K.J. Lin, The Time Series Link Prediction Problem with Ap-
plications in Communication Surveillance, https: // pdfs. semanticscholar. org/ f8a2/
6c822984681075491ee6601a66e6675d0e63. pdf .

[3] Alexandru Mara, Jefrey Lijffijt, and Tijl De Bie, EvalNE: A Framework for Evaluating
Network Embeddings on Link Prediction, http: // ceur-ws. org/ Vol-2436/ article_ 2.
pdf (2004).

[4] Raf Guns, Link prediction, https: // www. researchgate. net/ publication/ 312813875_
Link_ Prediction/ link/ 5bd1840f92851cabf2661399/ download (2014).

[5] Muhan Zhang and Yixin Chen, Link prediction, LinkPredictionBasedonGraphNeuralNetworks
(2018).

[6] Leo Katz, A new status index derived from sociometric analysis, http: // people. cs. vt.
edu/ ~badityap/ classes/ cs6604-Fall15/ readings/ katz-1953. pdf (1953).

[7] Liyan Dong, Yongli Li, Han Yin, Huang Le, and Mao Rui, The Algorithm of Link
Prediction on Social Network, http: // downloads. hindawi. com/ journals/ mpe/ 2013/
125123. pdf (2013).

[8] Polina Rozenshtein and Aristides Gionis, Temporal PageRank, https: // research. aalto.
fi/ files/ 26626013/ temporal_ pagerank. pdf (2016).

Rozenshtein, Polina; Gionis, Aristides

[9] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean, Efficient estimation of word
representations in vector space, https: // arxiv. org/ abs/ 1301. 3781 (2013).

[10] Tomas Mikolov, Ilya Sutskever, Kai Chen, Grag S Corrado, and Jeff Dean, Distributed
representations of words and phrases and their compositionality, https: // arxiv. org/
abs/ 1310. 4546 , 2013.

[11] Xin Rong, word2vec Parameter Learning Explained, https: // arxiv. org/ pdf/ 1411.
2738. pdf (2016).

[12] Janod Killian, Mohamed Morchid, Richard Dufour, and Georges Linares, A Log-Linear
Weighting Approach in the Word2vec Space for Spoken Language Understanding, http:
// mohamedmorchid. free. fr/ articles/ slt2016_ janod. pdf (2016).

[13] Hao Peng, Jianxin Li, Yangqiu Song, and Yaopeng Liu, Incrementally Learning the Hierar-
chical Softmax Function for Neural Language Models, https: // pdfs. semanticscholar.
org/ 28c7/ 430273a7f65b547f7a7e9c55eb5fde75dc3a. pdf (2016).

47

https://www.cs.cornell.edu/home/kleinber/link-pred.pdf
https://pdfs.semanticscholar.org/f8a2/6c822984681075491ee6601a66e6675d0e63.pdf
https://pdfs.semanticscholar.org/f8a2/6c822984681075491ee6601a66e6675d0e63.pdf
http://ceur-ws.org/Vol-2436/article_2.pdf
http://ceur-ws.org/Vol-2436/article_2.pdf
https://www.researchgate.net/publication/312813875_Link_Prediction/link/5bd1840f92851cabf2661399/download
https://www.researchgate.net/publication/312813875_Link_Prediction/link/5bd1840f92851cabf2661399/download
Link Prediction Based on Graph Neural Networks
http://people.cs.vt.edu/~badityap/classes/cs6604-Fall15/readings/katz-1953.pdf
http://people.cs.vt.edu/~badityap/classes/cs6604-Fall15/readings/katz-1953.pdf
http://downloads.hindawi.com/journals/mpe/2013/125123.pdf
http://downloads.hindawi.com/journals/mpe/2013/125123.pdf
https://research.aalto.fi/files/26626013/temporal_pagerank.pdf
https://research.aalto.fi/files/26626013/temporal_pagerank.pdf
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/pdf/1411.2738.pdf
https://arxiv.org/pdf/1411.2738.pdf
http://mohamedmorchid.free.fr/articles/slt2016_janod.pdf
http://mohamedmorchid.free.fr/articles/slt2016_janod.pdf
https://pdfs.semanticscholar.org/28c7/430273a7f65b547f7a7e9c55eb5fde75dc3a.pdf
https://pdfs.semanticscholar.org/28c7/430273a7f65b547f7a7e9c55eb5fde75dc3a.pdf

[14] Andriy Mnih and Geoffrey Hinton, A Scalable Hierarchical Distributed Language Model,
https: // www. cs. toronto. edu/ ~amnih/ papers/ hlbl_ final. pdf (2008).

[15] Rasmus Hallén, A Study of Gradient-Based Algorithms, http: // lup. lub. lu. se/ luur/
download? func= downloadFile& recordOId= 8904399& fileOId= 8904400 (2017).

[16] William L Hamilton, Rex Ying, and Jure Leskovec, Representation learning on graphs:
Methods and applications, https: // arxiv. org/ pdf/ 1709. 05584. pdf (2018).

[17] Jure Leskovec, Representation Learning on Networks, http: // snap. stanford. edu/
proj/ embeddings-www/ (2018).

[18] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena, DeepWalk: Online Learning of Social
Representations, https: // arxiv. org/ pdf/ 1403. 6652. pdf (2014).

[19] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang, Network
Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, https:
// arxiv. org/ pdf/ 1710. 02971. pdf (2018).

[20] Aditya Grover and Jure Leskovec, node2vec: Scalable Feature Learning for Networks, https:
// arxiv. org/ pdf/ 1607. 00653. pdf (2016).

[21] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang, Network Representation Learn-
ing: A Survey, https: // arxiv. org/ pdf/ 1801. 05852. pdf (2018).

[22] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei, LINE:
Large-scale Information Network Embedding, https: // arxiv. org/ pdf/ 1503. 03578.
pdf (2015).

[23] Mikhail Belkin and Partha Niyogi, Laplacian Eigenmaps and Spectral Techniques for Em-
bedding and Clustering, http: // web. cse. ohio-state. edu/ ~belkin. 8/ papers/ LEM_
NIPS_ 01. pdf (2001).

[24] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, and
Sungchul Kim, Continuous-Time Dynamic Network Embeddings, https: // dl. acm. org/
doi/ abs/ 10. 1145/ 3184558. 3191526 (2018).

[25] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu, Embedding
Temporal Network via Neighborhood Formation, https: // dl. acm. org/ doi/ 10. 1145/
3219819. 3220054 (2018).

[26] András A. Benczúr, Róbert Pálovics, Domokos M. Kelen, and Ferenc Béres,
Node embeddings in dynamic graphs, https: // link. springer. com/ article/ 10. 1007/
s41109-019-0169-5 (2019).

[27] Johannes Wachs, Anikó Hannák, András Vörös, and Bálint Daróczy, Why do men get
more attention? Exploring factors behind success in an online design community, https:
// arxiv. org/ abs/ 1705. 02972 (2017).

48

https://www.cs.toronto.edu/~amnih/papers/hlbl_final.pdf
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8904399&fileOId=8904400
http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8904399&fileOId=8904400
https://arxiv.org/pdf/1709.05584.pdf
http://snap.stanford.edu/proj/embeddings-www/
http://snap.stanford.edu/proj/embeddings-www/
https://arxiv.org/pdf/1403.6652.pdf
https://arxiv.org/pdf/1710.02971.pdf
https://arxiv.org/pdf/1710.02971.pdf
https://arxiv.org/pdf/1607.00653.pdf
https://arxiv.org/pdf/1607.00653.pdf
https://arxiv.org/pdf/1801.05852.pdf
https://arxiv.org/pdf/1503.03578.pdf
https://arxiv.org/pdf/1503.03578.pdf
http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NIPS_01.pdf
http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NIPS_01.pdf
https://dl.acm.org/doi/abs/10.1145/3184558.3191526
https://dl.acm.org/doi/abs/10.1145/3184558.3191526
https://dl.acm.org/doi/10.1145/3219819.3220054
https://dl.acm.org/doi/10.1145/3219819.3220054
https://link.springer.com/article/10.1007/s41109-019-0169-5
https://link.springer.com/article/10.1007/s41109-019-0169-5
https://arxiv.org/abs/1705.02972
https://arxiv.org/abs/1705.02972

[28] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar, An API Oriented Open-source Python
Framework for Unsupervised Learning on Graphs, https: // arxiv. org/ abs/ 2003. 04819
(2020).

[29] Kalervo Jarvelin and Jaana Kekalainen, Cumulated Gain-Based Evaluation of IR Tech-
niques, https: // www. cc. gatech. edu/ ~zha/ CS8803WST/ dcg. pdf .

[30] Róbert Pálovics, András Benczúr, Levente Kocsis, András Benczúr, Tamás Kiss, and Erzsé-
bet Frigó, Exploiting temporal influence in online recommendation, https: // dms. sztaki.
hu/ sites/ dms. sztaki. hu/ files/ file/ 2014/ recsys. pdf (2014).

[31] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar, Karate Club Python package documen-
tation, https: // karateclub. readthedocs. io/ en/ latest/ notes/ resources. html#
neighbourhood-based-node-embedding (2020).

8 Appendix

8.1 Python code of the evaluation

1 import json , time , math
2 import scipy as sp
3 import pandas as pd
4 import numpy as np
5 import networkx as nx
6 from datetime import datetime
7

8 def convert_ids(G):
9 user_map = dict(zip(list(G.nodes()), range(G.number_of_nodes ()

)))
10 G_new = nx.Graph ()
11 new_edges = [(user_map[src], user_map[trg]) for src , trg in G.

edges()]
12 G_new.add_edges_from(new_edges)
13 return G_new , user_map
14

15 def dot_ranking(user , others , row , M):
16 index = list(range(M.shape [1]))
17 # remove observed nodes from the toplist
18 index.remove(user)
19 for node in others:

49

https://arxiv.org/abs/2003.04819
https://www.cc.gatech.edu/~zha/CS8803WST/dcg.pdf
https://dms.sztaki.hu/sites/dms.sztaki.hu/files/file/2014/recsys.pdf
https://dms.sztaki.hu/sites/dms.sztaki.hu/files/file/2014/recsys.pdf
https://karateclub.readthedocs.io/en/latest/notes/resources.html#neighbourhood-based-node-embedding
https://karateclub.readthedocs.io/en/latest/notes/resources.html#neighbourhood-based-node-embedding

20 index.remove(node)
21 # dot product is negated for ascending sort
22 dists = -M[row ,index]
23 distances = list(zip(index ,dists))
24 distances.sort(key=lambda x: x[1])
25 ranked_nodes = [a_tuple [0] for a_tuple in distances]
26 return ranked_nodes
27

28 def dcg(arr):
29 return 1.0 / np.log2(arr+1)
30

31 def fit_model(karate_obj , G):
32 start_time = time.time()
33 karate_obj.fit(G)
34 embedding_arr = karate_obj.get_embedding ()
35 end_time = time.time()
36 return embedding_arr , end_time - start_time
37

38 def preprocess_test(test , train_nodes , user_map):
39 new_test = test[test[’user_id ’].isin(train_nodes) & test[’

user_id_creator ’].isin(train_nodes)]
40 new_test = new_test.reset_index ()
41 new_test[’user_id_converted ’] = new_test[’user_id ’]. apply(

lambda x: user_map[x])
42 new_test[’user_id_creator_converted ’] = new_test[’

user_id_creator ’].apply(lambda x: user_map[x])
43 return new_test [[’timestamp ’,’user_id_converted ’,’

user_id_creator_converted ’,"user_id","user_id_creator"]]. copy()
44

45 def eval_model(history_dict , training , test , model):
46 # preprocessing
47 G_train = nx.from_pandas_edgelist(training , ’user_id ’, ’

user_id_creator ’, create_using=nx.Graph ())
48 if nx.is_connected(G_train) == False:
49 GCC = sorted(nx.connected_components(G_train), key=len ,

reverse=True)
50 G_train=G_train.subgraph(GCC [0])
51 H, user2idx = convert_ids(G_train)
52 # training model

50

53 embedding , elapsed_training_time = fit_model(model , H)
54 # link prediction
55 train_nodes = nx.nodes(G_train)
56 ranking_df = preprocess_test(test , train_nodes , user2idx)
57 users_unique=list(ranking_df.user_id_converted.unique ())
58 M = np.dot(embedding[users_unique ,:], embedding.T)
59 ranking_dict ={}
60 ranks = []
61 edges_list = list(zip(ranking_df[’user_id_converted ’],

ranking_df[’user_id_creator_converted ’], ranking_df[’user_id ’],
ranking_df[’user_id_creator ’]))

62 for user , creator , user_global_id , creator_global_id in
edges_list:

63 # prepare to observe unseen user
64 if not user_global_id in history_dict:
65 history_dict[user_global_id] = set()
66 # extract recommendation for unseen user
67 if not user in ranking_dict:
68 others = []
69 for u_id in history_dict[user_global_id]:
70 if u_id in user2idx:
71 others.append(user2idx[u_id])
72 ranking_dict[user] = dot_ranking(user , others ,

users_unique.index(user), M)
73 # query rank
74 ranks.append(ranking_dict[user]. index(creator))
75 # update toplist
76 ranking_dict[user]. remove(creator)
77 # store interaction for the upcoming time intervals
78 history_dict[user_global_id].add(creator_global_id)
79 # evaluation metrics
80 ranking_df[’rank_of_creator ’] = np.array(ranks) + 1
81 ranking_df["dcg"] = ranking_df["rank_of_creator"]. apply(dcg)
82 mean = ranking_df["dcg"].mean()
83 return ranking_df , mean , elapsed_training_time

Listing 1: Python code of the evaluation of the models

51

1 import pandas as pd
2 from link_prediction import *
3 from karateclub import Diff2Vec , Role2Vec , DeepWalk , Walklets ,

NetMF , BoostNE , GraRep , LaplacianEigenmaps , HOPE , NodeSketch ,
NMFADMM , GraphWave

4 from tqdm import tqdm
5 import pandas as pd
6 import numpy as np
7 import sys
8

9 def run(algo , time_column , sample_id="0"):
10 # choose node embedding
11 if algo == "diff2vec":
12 model = Diff2Vec ()
13 elif algo == "role2vec":
14 model = Role2Vec ()
15 elif algo == "deepwalk":
16 model = DeepWalk ()
17 elif algo == "walklets":
18 model = Walklets ()
19 elif algo == "netmf":
20 model = NetMF ()
21 elif algo == "boostne":
22 model = BoostNE ()
23 elif algo == "grarep":
24 model = GraRep ()
25 elif algo == "laplacian":
26 model = LaplacianEigenmaps ()
27 elif algo == "hope":
28 model = HOPE()
29 elif algo == "nodesketch":
30 model = NodeSketch ()
31 elif algo == "nmfadmm":
32 model = NMFADMM ()
33 elif algo == "graphwave":
34 model = GraphWave ()
35 else:
36 raise ValueError("Invalid algorithm!")
37 # load data

52

38 likes = pd.read_csv(’/mnt/idms/home/petrok/szakdolgozat/
likes_2010_11.csv’)

39 # split data over time
40 parts = []
41 for group in likes.groupby(time_column):
42 #print(group [0])
43 parts.append(group [1])
44 print("Number of intervals:", len(parts))
45 # run experiment
46 history_dict = {}
47 ranks_arr , dcg_arr , time_arr = [], [], []
48 if algo == "laplacian" and time_column == "week":
49 # eigenvalue error for the first interval
50 from_index = 2
51 else:
52 from_index = 1
53 for i in tqdm(range(from_index ,len(parts))):
54 tmp_ranks , tmp_dcg , tmp_time = eval_model(history_dict ,

parts[i-1], parts[i], model)
55 # new columns are needed for easier result aggregation

later
56 tmp_ranks["model"] = algo
57 tmp_ranks["setting"] = time_column
58 tmp_ranks["sample_id"] = sample_id
59 ranks_arr.append(tmp_ranks)
60 dcg_arr.append(tmp_dcg)
61 time_arr.append(tmp_time)
62 tmp_ranks.to_csv(’%s_%s_%i_%i_sample%s.csv’ % (algo ,

time_column , i-1, i, sample_id))
63 return np.mean(dcg_arr), np.sum(time_arr)
64

65 if __name__ == "__main__":
66 if len(sys.argv) == 4:
67 algo = sys.argv [1]
68 time_column = sys.argv [2]
69 # in order to differentiate outputs of the same algorithm
70 sample_id = sys.argv [3]
71 mean_dcg , total_time = run(algo , time_column , sample_id)
72 print("Arguments:", algo , time_column , sample_id)

53

73 print("Mean DCG: %.4f" % mean_dcg)
74 print("Total training time: %.2f" % total_time)
75 with open("runtime_%s_%s_sample%s.txt" % (algo ,

time_column , sample_id), ’w’) as f:
76 f.write("%.2f\n" % total_time)
77 else:
78 print("Usage: <algo_type > <time_column > <sample_id >")

Listing 2: Running the evaluation algorithm from the console

54

	Introduction
	Link prediction problem
	Link prediction methods
	Local predictors
	Global predictors
	Shortest-path distance
	PageRank
	SimRank

	Online link prediction

	Vector space representation of words
	Word2vec
	CBOW model
	One-word context
	Multi-word context

	Skip-Gram model
	Stochastic Gradient Descent (SGD)

	Heuristic gradient computation
	Hierarchical Softmax
	Negative Sampling

	Node embedding algorithms
	The process of node embedding
	Laplacian Eigenmaps for Embedding
	Neighborhood similarity
	Adjacency-based similarity
	Neighborhood overlap
	The LINE algorithm

	DeepWalk
	Node2vec

	Node embedding in dynamic graphs
	Time-preserving node embedding
	Embedding with temporal walks

	Online node embedding
	StreamWalk
	Online Second Order node similarity

	Evaluation of static models through link prediction
	Rozenberczki's network embedding framework
	Node embedding algorithms with karateclub

	Dribbble
	Preprocessing

	Link prediction task
	Evaluation of the models with DCG and running time

	Conclusion
	Future work

	Appendix
	Python code of the evaluation

