SELECTED THEOREMS IN THE GEOMETRY OF CONICS

BSC THESIS IN MATHEMATICS
BY ILLÉS FAZEKAS

SUPERVISOR: GYÖRGY KISS
DEPARTMENT OF GEOMETRY

EÖTVÖS LORÁND UNIVERSITY
FACULTY OF NATURAL SCIENCES

NYILATKOZAT

Név: Fazekas Illés

ELTE Természettudományi Kar, szak: Matematika BSc
NEPTUN azonosító: KXX48Z

Szakdolgozat címe:

Selected theorems in the geometry of conics

A szakdolgozat szerzőjeként fegyelmi felelősségem tudatában kijelentem, hogy a dolgozatom önálló szellemi alkotásom, abban a hivatkozások és idézések standard szabályait következetesen alkalmaztam, mások által írt részeket a megfelelő idézés nélkül nem használtam fel.

Budapest, 2021. 05. 26.

a hallgató aláírása

Contents

1 Introduction 3
2 Classification of conic sections 4
2.1 Definition of conic sections 4
2.2 Classification through Dandelin spheres 6
3 Some basic properties of conics 11
3.1 Alternative characterization of conics 11
3.2 Tangential and focal properties of conic sections 14
4 Unique attributes of conic sections 18
4.1 Tangential triangles of parabolas 18
4.2 A remarkable property of equilateral hyperbolas 25
List of Figures 31
References 32

Acknowledgments

I would like to express my sincere gratitude to my advisor György Kiss, whose dedication, professional guidance and expertise in the field have enabled me to write this thesis. He has continuously supported me all along by constantly reviewing and evaluating preliminaries of my work, sending feedback, making suggestions and remarks, correcting errors.

I would also like to say special thanks to my former English teacher Barbara Ávár in recognition of her efforts into advancing my knowledge of the English language.

1 Introduction

Conic sections have long fascinated mathematicians, forming a center of scientific study. Records of initial investigation into conics date back to as far as the ancient Greeks who instantaneously recognized their distinguished role in geometry. Their efforts were crowned by a well-structured, pioneering treatise written by Apollonius of Perga around 200 BC [5]. Major subsequent contributions to the subject were made by the likes of Blaise Pascal, Gaspard Monge, Charles-Julien Brianchon, Germinal Pierre Dandelin and Jean-Victor Poncelet.

Conics have found many applications in various fields of science. They have proven vital to understanding mechanics, optics and waves. They are crucial in the study of projectile motion and orbits of celestial bodies, transmission and reception of radio signals and reflective properties of specular surfaces.

In this piece of work, we aspire to lay some groundwork upon conics by establishing a number of their elementary yet intriguing properties being of great interest per se, then advance toward formulating more complex, perhaps lesser known, carefully selected theorems with cherry-picked proofs to provide an insight into the diverse, beautiful world of conic sections. Throughout this thesis, we attempt to build, as far as possible, purely synthetic proofs to theorems.

2 Classification of conic sections

A conic section is essentially the intersection of a two-sided infinite cone and a plane. The terms conic and conic section shall be interchangeably used throughout this thesis. A conic section is called non-degenerate if this intersection is not a single point or a line.

In the following, we attempt to classify conic sections according to their angle of attack, i.e. the angle spanned by the dissecting plane and the axis of the cone. To do that, we may first define three planar curves.

2.1 Definition of conic sections

Definition 2.1 An ellipse (see Figure 1) is the locus of points on the plane for which the sum of distances from two fixed points (called foci) is a constant greater than the distance between these points. This constant is called the length of the major axis.

The center of an ellipse is the midpoint of the segment joining the two foci. Extending the line joining the two foci and intersecting it with the ellipse yields its major axis. The minor axis of an ellipse is the chord perpendicular to the major axis in the center.

Figure 1: An ellipse

Definition 2.2 A parabola (see Figure 2) is the locus of points on the plane which are equidistant from a fixed line and a fixed point not incident with the line. The
line is called the directrix of the parabola and the the point is called the focus of the parabola.

Figure 2: A parabola

Definition 2.3 A hyperbola (see Figure 3) is the locus of points on the plane for which the absolute value of the difference of distances from two fixed points (called foci) is a constant less than the distance between these points. This constant is called the length of the real axis.

The segment joining the two foci is the real axis of the hyperbola, and the midpoint of the real axis is the center of the hyperbola.

Figure 3: A hyperbola

2.2 Classification through Dandelin spheres

In this section, we will utilize tangent spheres proprietary to conic sections. The upcoming notions have been sourced from [2] and [4].

Definition 2.4 A Dandelin sphere of a conic section is a sphere that is internally tangent to the cone and touches the conic.

Definition 2.5 The line joining the apex of the conic with any point on the surface of the conic except for the apex is called a generating line.

Theorem 2.6 A non-degenerate conic section is either a circle, a parabola, a hyperbola or an ellipse.

Proof We may first consider the problem from a projective point of view by dissecting a cylinder (i.e. a cone whose apex is at infinity) with a plane that is not perpendicular to the axis of the cylinder (see Figure 4). Let π denote the mentioned plane and γ the intersection of the cylinder and the plane. Consider the two Dandelin spheres internally tangent to the cylinder in circles k_{1} and k_{2} and touching π from opposite sides at points F and G. Let P be an arbitrary point on γ. Drop perpendiculars from P onto circles k_{1} and k_{2} to cut them at points Q and P, respectively. Obviously, $P F=P Q$ and $P G=P T$ as they are tangents drawn to a sphere drawn from a common point. In light of the above, consider the sum:

$$
F P+P G=P Q+P T
$$

which turns out to be the distance between k_{1} and k_{2}, a constant along the perimeter of the cylinder, independent from the choice of P. This means that all points on γ lie on an ellipse with foci F and G.

Figure 4: Dandelin spheres of an ellipse 1

If we dissect a euclidean cone with a plane not perpendicular to the axis and not parallel to any of the generating lines, it also yields an ellipse. The previous reasoning may be transmitted to this configuration by replacing the cylinder with a cone (see Figure 5).

Figure 5: Dandelin spheres of an ellipse 2

Let us now cut the cone with plane π that is parallel to exactly two generating lines of the cone (see Figure 6). Let π intersect the cone in curve γ (obviously γ is not connected, it contains two branches). The two Dandelin spheres belonging to γ are tangent to the cone in circles k_{1} and k_{2} and touch π in points F and G. Let P be an arbitrary point on γ. Let T and Q be the intersections of the generating line going through P and circles k_{1} and k_{2}, respectively. $P F=P Q$ and $P G=P T$ as they are tangents to a sphere drawn from a common point. Consider, in view of our previous claim, the difference

$$
|P G-P F|=|P T-P Q|
$$

which is a constant along the perimeter of the cone, namely the length of the segment k_{1} and k_{2} cut out from any generating line. Consequently, all points on γ lie on a hyperbola of foci F and G.

Figure 6: Dandelin spheres of a hyperbola

The last case to be examined (see Figure 7) is when the dissecting plane is parallel to exactly one generating line (denoted g). Let the dissecting plane $p i$ intersect the cone along curve γ. The (only) Dandelin sphere associated with the conic intersects the cone in circle k and touches π in point F. Let θ be the enveloping plane of k, and s the axis of the cone, cutting through θ in a right angle. Let P be an arbitrary point on γ. Let θ intersect π in line v. Let P^{*} be the perpendicular projection of P onto θ and T the perpendicular projection of P onto v. Let Q be the intersection point of circle k and the generating line incident with P. As $P P^{*} \perp \theta$ and $s \perp \theta$, $P P^{*} \| s$. As $g \| \pi$ and $P T \subset \pi$, it follows that $P T \| g$. As a result,

$$
\angle P^{*} P T=\angle(g, s)
$$

as they are angles with parallel arms. For similar reasons,

$$
\angle P^{*} P Q=\angle(P Q, s)=\angle(g, s) .
$$

Combining the equations yields:

$$
\angle P^{*} P Q=\angle P^{*} P T .
$$

We can now conclude that triangles $\triangle P^{*} P Q$ and $\triangle P^{*} P T$ are congruent as they have the same angles and share a common side opposite to the same pair of angles, giving us:

$$
P T=P Q .
$$

We can also deduce that $P Q=P F$ as they are tangents drawn to a sphere from a common point. Putting together the results yields:

$$
P T=P Q=P F
$$

meaning that any point on γ has a fixed distance from point F and line v, in other words, these points lie a parabola with focus F and directrix v.

Figure 7: Dandelin sphere of a parabola

We may remark that the above three proofs are incomplete in that they only showed that the respective types of conic sections are contained in either an ellipse, a hyperbola or a parabola. To be precise, one would also have to prove inclusion in both directions, i.e. the conics are identical to one of these curves, meaning every point of the curve lies on the conic too, yet a thorough proof of this claim is beyond the limits of this thesis, it may be found in source [2] in its entirety.

3 Some basic properties of conics

It is hereby acknowledged that the following section has greatly utilized source [3].

3.1 Alternative characterization of conics

We shall introduce the subsequent classification to partition the plane.
Definition 3.1 A non-degenerate conic divides the points of the dissecting plane into three classes as follows:

- The intersection of the interior of the cone and the plane, denoted internal points.
- The intersection of the exterior of the cone and the plane, denoted external points.
- The intersection of the surface of the cone and the plane, called simply the points of the conic.

Theorem 3.2 Let F be a point on the plane and v a line or a circle not passing through F. Then the centers of circles tangent to v and passing through F lie on a conic. Namely, the mentioned curve is

- a parabola if v is a line
- a circle if v is a circle and F is its center
- an ellipse if v is a circle and F is any internal point of v except its center
- a hyperbola if v is a circle and F is an external point of v.

Proof Let c be a circle with center P, passing through F, tangent to v in T.
Suppose v is a line (see Figure 8). $P T \perp v$, as $P T$ is a radius drawn at a point of tangency. Therefore, the distance between P and v equals $P T$, and $P T=P F$ as they are radii belonging to the same circle. Consequently, P lies on a parabola of focus F and directrix v.

Figure 8: The directrix is a line

Suppose v is a circle of radius r, and let G denote its center (see Figure 9). If F is an internal point of v, then, as c and v are internally tangent circles,

$$
r=T G=T P+P G=F P+P G
$$

As a result, if F coincides with G, then P lies on a circle of center F and radius $\frac{r}{2}$ and if they differ, then P lies on an ellipse with foci F and G, and major axis r.

Conversely, if S is an arbitrary point on this circle or ellipse, then $S F+S G=r$. Let ray $S G$ cut v in K. Then,

$$
S K=r-S G=S F
$$

and therefore the circle drawn from center S with radius $S F$ internally touches v in K.

Figure 9: The directrix is a circle, F is internal

Finally, suppose F is an external point of v. Then, c is either externally or internally tangent to v as depicted beneath (see Figures 10 and 11). In both cases, the following holds: $P F=P T$, as they are radii of circle c. That yields:

$$
|P F-P G|=|P T-P G|=G T=r,
$$

meaning that P lies on a hyperbola with foci F and G, and real axis r.
In reverse, for an arbitrary point S on the hyperbola, either $S F=S G+r$ or $S G=S F+r$ holds. The first means that the circle drawn from center S with radius $S F$ internally touches v, yet the second implies external tangency.

Figure 10: The directrix is a circle, F is external, case 1

Figure 11: The directrix is a circle, F is external, case 2

Definition 3.3 The line or circle mentioned in the above theorem is called the directrix of the respective conic (in accordance with the previous definition of the parabola), whilst the point is defined to be a focus of the conic.

3.2 Tangential and focal properties of conic sections

Definition 3.4 A circle and a line are said to be orthogonal if the line passes through the center of the circle or, equivalently, if the tangents drawn to the circle at the points of intersection with the line are perpendicular to the line.

Definition 3.5 Let P be a point on a conic γ with directrix v and focus F. Then, the focal rays belonging to P are line FP and the perpendicular dropped from P onto v. We remark that the above perpendicular is line $P G$ when γ is an ellipse or a hyperbola with foci F and G.

Definition 3.6 Let γ be a hyperbola or an ellipse. A line t is said to be tangent to γ at point $P \in \gamma$ if it has no common point with γ other than P.

Let γ be a parabola. A line t is said to be tangent to γ at point P if it has no common point with γ other than P and t is not parallel to the axis of the parabola.

The above distinction is required to distinguish tangents and axial lines cutting through the parabola at a single point. We remark that there is no need for such distinction on the real projective plane where the whole concept would be circumvented by introducing ideal points and defining tangents as lines intersecting conics at a single point, thereby avoiding the ambiguity in the case of parabolas.

Theorem 3.7 Let P be an arbitrary point on a conic γ. Then, the tangent drawn to γ at P bisects the angle between the focal rays belonging to P.

Proof We begin with the case of γ being either an ellipse or a hyperbola (see Figures 12 and 3). Let γ be defined by focus F and directrix v. Let P denote an arbitrary point on γ. According to Theorem 3.2, the circle with center P and radius $P F$ is tangent to v. Let T denote the point of tangency. Let b be the angle bisector of $\angle T P F$ and K be an arbitrary point on b apart from P. As K lies on the angle bisector, $K T=K F$. Therefore, the circle drawn from center K with radius $K F$ (denoted k) passes through T. Nevertheless, T lies on v and $P \neq K$, thus, k cannot be tangent to v. As a result, K does not lie on γ. To sum up, b has exactly one point in common with γ (namely P), thereby implying that the angle bisector is tangent to γ at P.

Figure 12: Tangent of an ellipse bisecting the angle of focal rays

Figure 13: Tangent of a hyperbola bisecting the angle of focal rays

We may finally inspect the parabola (denoted γ) with focus F and directrix v (see Figure 14). Let s be the axis of the parabola, and K be a point different from P lying on the angle bisector of $\angle T P F$ (denoted b). The above reasoning also holds for parabolas, consequently, $b \cap \gamma=P$. For b to be tangent to γ, we have yet to prove that b and s are not parallel. By definition, $s \perp v$ and $P T \perp v$, from which it follows that $s \| P T$. Let us suppose the contrary, i.e. $b \| s$, meaning $b \| P T$. Then, the angle between $P T$ and b is zero. As b bisects $\angle T P F$, we know that the angle between b and $P F$ is also zero. As a result, lines $P T$ and $P F$ coincide. That yields: $F \equiv T$ which is a contradiction because T is incident with the directrix and F, by definition, is not. We have now shown that b cannot be parallel to the axis, so it has to be tangent to γ at P.

Figure 14: Tangent of a parabola bisecting the angle of focal rays

We remark that the aforementioned property is heavily exploited in applications in many fields such as optics, sound technology and and air-to-air signal reception whereby the law of wave reflection in conjunction with this property allows parabola-shaped reflective surfaces to collect waves traveling parallel to the axis in the focus where the receiver may be positioned. These instances include special mirrors, parabolic microphones used for surveillance and parabolic antennas to receive satellite signals.

From the above theorem, we can effortlessly derive an interesting corollary describing a property pertinent to all conics:

Theorem 3.8 The reflection of the focus of a conic with respect to any of its tangents is incident with the directrix.

Proof The statement is obvious considering elementary properties of reflection with respect to an axis, in particular the fact that the angle between the two lines connecting any point on the axis to the original and the reflected point is bisected by the axis (see Figure 15).

Figure 15: A property of reflection

4 Unique attributes of conic sections

In this section, we discuss certain special properties of conic sections whose description has been greatly influenced by source [1].

4.1 Tangential triangles of parabolas

We begin by proving a theorem connecting a tangent triangle of a parabola with its focus. To achieve that, let us first revisit a widely known statement concerning projections of a point onto a triangle's sides.

Lemma 4.1 (Simson's lemma) Let $A B C$ be a triangle and P a point outside it. The projections of P onto lines $A B, B C$ and $A C$ (denoted R, S and T, respectively) are collinear if and only if P lies on the circumcircle of $A B C$.

Although the idea to use this lemma has been suggested by source [1], the proof in its entirety features my work.

Proof Suppose P is on the circumcircle of triangle $A B C$ (see Figure 16). Without loss of generality, we can assume that segment $B C$ separates points A and P. Obviously,

$$
\angle P R B=\angle P S B=\pi / 2
$$

so quadrilateral $P S R B$ happens to be cyclic. $\angle R S B=\angle R P B$ as they are inscribed angles subtended by the same arc.

$$
\angle C T P+\angle C S P=\pi
$$

thus, quadrilateral $C T P B$ is also cyclic. $\angle T S P=\angle T C P$, as they are inscribed angles subtended by the same arc. Quadrilateral $A B P C$ is cyclic by definition, meaning that $\angle T C B=\angle P B A$. The above statements together imply that $\angle T S P=$ $\angle P B S$. As $\angle P R B, \angle R P B$ and $\angle P B A$ are angles of triangle $P R B$, they sum up to π. Consequently, so do angles $\angle T S P, \angle P S B$ and $\angle R S B$, which is equivalent to the collinearity of R, S and T.

Figure 16: The Simson line
Conversely, suppose R, S and T are collinear (see Figure 17). Clearly,

$$
\angle P R B=\angle P S B=\pi / 2
$$

This implies that quadrilateral $P S R B$ is cyclic, from which it follows that $\angle R S B=$ $\angle R P B$ as they are inscribed angles subtended by the same arc. Using the collinearity condition, we can deduce that $\angle T S C=\angle R S B$. For similar reasons, quadrilateral $T C S P$ is cyclic, and $\angle T S C=\angle T P C$. In conclusion, $\angle R P B=\angle T P C$, meaning that triangles $T C P$ and $R P B$ share two angles, so they must also share the third, i.e. $\angle T C P=\angle P B R$. This indicates that $\angle A C P$ and $\angle A B P$ are supplementary angles, which leaves quadrilateral $A B P C$ to be cyclic, therefore P lies on the circumcircle of triangle $A B C$.

Figure 17

We would like to connect the above lemma with a claim we partially proved already, specified for parabolas.

Theorem 4.2 The perpendicular projections of a parabola's focus onto all possible tangents lie on a straight line.

We remark that it suffices to prove this for three arbitrary tangents which determine a so-called tangential triangle of the parabola.

Proof Let $A B C$ be a tangential triangle of a parabola (see Figure 18). By Theorem 3.8 , the reflections of the focus onto all tangents lie on the directrix. In the case of the parabola, that is a straight line (denoted d). Let the perpendicular projections of F onto tangents $A B, B C$ and $A C$ be named P, Q and R, respectively. Let $F P, F R$ and $F Q$ intersect d at points P^{\prime}, R^{\prime} and Q^{\prime} in this sequence. Due to the reflection property, $P F=P P^{\prime}, R F=R R^{\prime}$ and $Q F=Q Q^{\prime}$ hold. Applying the midline theorem to triangles $P^{\prime} F R^{\prime}$ and $R^{\prime} F Q^{\prime}$ warrants that $P R$ and $R Q$ are parallel to d and incident in R. As the line parallel to d and incident with R is unique, P, Q and R are necessarily collinear.

Figure 18

We can now proceed to our main theorem in the section:
Theorem 4.3 The circumcircles of all tangential triangles of a parabola pass through the parabola's focus.

Proof This statement is a direct consequence of the previous two. According to Simson's lemma, if the projections of F onto the sides of triangle $A B C$ (see Figure 18) are collinear (which in this case, they are, please refer to Theorem 4.2), then F must lie on the circumcircle of triangle $A B C$.

We may utilize the above to derive a beautiful corollary known as Miquel's theorem. To do so, we are required to establish some groundwork.

There is a well-known fact about conics that has found many applications, that is, for any five points on the plane in general position (i.e. no three of them are collinear), there is a unique conic containing all of them. Proof of this statement may be omitted as it would well exceed the boundaries of this work, however, we remark that a standard proof would involve a linear algebraic approach using matrices of second-order curves. The dual of this theorem reads as follows: for any five lines on the plane in general position (i.e. no three of them are concurrent), there is a unique conic tangent to all of them.

In a projective approach, we can assume that exactly one of these lines is the line at infinity. In this configuration, the conic is tangent to this line at a point at infinity, that leaves it to be a parabola. This means that for any four euclidean lines in general position (this setting has been named a complete quadrilateral), there is a unique parabola tangent to them. This leads us to Miquel's theorem:

Theorem 4.4 (Miquel's theorem) The circumcircles spanned by the the triangles resulting from the four lines making up a complete quadrilateral pass through a single point (called the Miquel point of the quadrilateral, see Figure 19).

Figure 19: Miquel's theorem

Proof Note that the four triangles determined by the complete quadrilateral are tangential triangles of the inscribed parabola. Invoking Theorem 4.3 assures us that
the circumcircles of these triangles contain the parabola's focus, meaning that these four circles intersect at a single point.

We would also like to mention a beautiful theorem regarding the orthocenter of a tangent triangle of a parabola. To achieve that, we go through two lemmas regarding the Simson line of a triangle.

Lemma 4.5 Let point P lie on the circumcircle of triangle $A B C$. Let B^{\prime} be a point also on the circumcircle such that $A C \perp P B^{\prime}$. Then, the Simson line associated with P is parallel to $B B^{\prime}$ (see Figure 20).

Figure 20

Proof Let P_{b} and P_{c} denote the perpendicular projections of P onto $A C$ and $A B$, respectively. $\angle A P B^{\prime}=A B B^{\prime}$ as they are angles subtended by $\operatorname{arc} A B$. As $\angle A P_{c} P=$ $\angle A P_{b} P=\frac{\pi}{2}$, quadrilateral $A P_{c} P_{b} P$ is cyclic. Therefore,

$$
\angle A P B^{\prime}=\angle A P P_{b}=\pi-\angle A P_{c} P_{b}=\angle B P_{c} P_{b},
$$

implying parallelity of $P_{b} P_{c}$ and $B B^{\prime}$.

Lemma 4.6 Let H be the orthocenter of triangle $A B C$ and P a point on its circumcircle. Then, the Simson line belonging to P bisects segment PH.

Figure 21

Proof Let us suppose that $A B C$ is an acute triangle (see Figure 21). Then, $A B \perp$ $H C$ and $B C \perp A H$, consequently, $\angle A H C$ and $\angle A B C$ are angles with perpendicular arms, meaning that they are either equal or supplementary angles. One is acute, the other is obtuse, this rules out the first case, yielding:

$$
\angle A H C=\pi-\angle A B C .
$$

Let the reflection of H with respect to $A C$ be called H^{\prime}. Due to the reflection,

$$
\angle A H^{\prime} C=\angle A H C=\pi-\angle A B C
$$

meaning that H^{\prime} lies on the circumcircle. As $P B^{\prime}, B H^{\prime} \perp A C$, it follows that $P B^{\prime} \| B H^{\prime}$, thus, quadrilateral $P B^{\prime} B H^{\prime}$ is a cyclic trapezoid, necessarily equilateral, implying symmetry. Let P^{\prime} be the reflection of P with respect to $A C$. Due to symmetry, $P^{\prime} H \| B^{\prime} B$. In light of our previous lemma, $P^{\prime} H$ is parallel to Simson line $P_{b} P_{c}$. Let $P_{b} P_{c}$ intersect $P H$ in T. As $P P_{b}=P_{b} P^{\prime}$ and $P_{b} T \| P^{\prime} H, P_{b} T$ is a midline of triangle $P P^{\prime} H$. This warrants $P T=T H$, completing the proof.

Assuming $A B C$ is obtuse, the above remains true except for H and B reversing roles (see Figure 22).

Figure 22

If $A B C$ is a right triangle (see Figure 23), then it is easy to recognize that B corresponds with H and B^{\prime} corresponds with P^{\prime}, the rest of the previous proof still holds.

Figure 23

To crown our efforts, we return to the main theorem we intend to prove:

Theorem 4.7 The orthocenter of a tangential triangle of a parabola lies on the directrix.

Proof Let triangle $A B C$ be tangent to a parabola with focus F (see Figure ??). Let H denote the orthocenter of $A B C$. According to Theorem 4.3, F lies on the circumcircle of triangle $A B C$, meaning it has a Simson line associated with it. This Simson line bisects segment $F H$ in point T (refer to the previous theorem). Let V be the vertex of the parabola, and D the intersection of the axis and the directrix. As we have a parabola, naturally, $F V=V D$. We have already seen that this Simson line is parallel to the directrix (Theorem 4.2). Taking the above into consideration: $F V=V D$ and $F T=T H$, applying the midline theorem to triangle $D F H$ gives us that $V T \| D H$. Yet the line going through D parallel to $V T$ is unique, this only holds for the directrix, meaning H must lie on it as desired.

Figure 24

4.2 A remarkable property of equilateral hyperbolas

We hereby include an impressive property of equilateral hyperbolas passing through the vertices of a fixed triangle. To accomplish that, we need to make some preparations.

Definition 4.8 The asymptotes of a hyperbola (see Figure 25) are a unique pair of lines intersecting at the hyperbola's center such that, as we move away from the center along one of these lines to infinity, the distance between the line and the hyperbola converges to 0 . We remark that this coincides with the projective geometric definition of asymptotes, i.e. tangents drawn to a hyperbola at its points at infinity.

Figure 25: Asymptotes of a hyperbola

Definition 4.9 A hyperbola is called equilateral if its asymptotes are perpendicular.

We do not prove the following theorem as its complexity reaches out of the bounds of this thesis, but it is vital to our investigation on equilateral hyperbolas.

Theorem 4.10 If a hyperbola passes through a triangle's vertices, then, it will only be equilateral if it also passes through the triangle's orthocenter.

We would like to remark that this claim may be proven using Desargues's involution theorem on a pencil of conics passing through 4 fixed points (5 points determine a conic section). A proof of this theorem may be found in [1].
We may now proceed to the following lemma, of great interest on its own.
Lemma 4.11 Let $A B C$ be a triangle with orthocenter M. Let r denote the radius of the circumcircle of $A B C$. Then, $C M=2 r \cos \angle A C B$ holds.

Proof If $A B C$ is a right triangle, without loss of generality, we can assume that $\angle A C B=\frac{\pi}{2}$. Then, trivially,

$$
2 r \cos \angle A C B=A B \cos \frac{\pi}{2}=0=C M
$$

holds as C and M correspond.
We now move forward to the case of $A B C$ being an acute triangle (see Figure 26). Let the perpendicular line through A to $A B$ intersect the circumcircle in T. Obviously, $A T \| C M$. As quadrilateral $A T C B$ is cyclic, $\angle T A B+\angle T C B=\pi$. With this in mind, we can deduce that $\angle T C B=\frac{\pi}{2}$. That makes $T C$ and $A M$ parallel,
and quadrilateral $A T C M$ a parallelogram. As the opposite sides of a parallelogram are of equal length, $A T=C M$.

In line with the converse of Thales's theorem, $A B=2 r$ holds. According to the law of sines, $A B=2 r \sin \angle A C B$. Applying the Pythagorean theorem to triangle $T A B$ and substituting the above yields:

$$
\begin{gathered}
C M^{2}=A T^{2}=4 r^{2}-A B^{2}=4 r^{2}-4 r^{2} \sin ^{2} \angle A C B \\
=4 r^{2}\left(1-\sin ^{2} \angle A C B\right)=4 r^{2} \cos ^{2} \angle A C B
\end{gathered}
$$

Taking square root results in $C M=2 r \cos \angle A C B$ as proposed.

Figure 26: Distance between vertex and orthocenter, acute case

The proof also works for obtuse triangles with the following alteration in reasoning (see Figure 27):
$\angle T A B=\angle T C B=\frac{\pi}{2}$ as they are subtended by a common arc, $T B$. This implies that $C M \| T A$. The rest applies as formerly outlined.

Figure 27: Distance between vertex and orthocenter, obtuse case

Definition 4.12 It is well known that in any triangle, the midpoints of the sides, the feet of the altitudes and the midpoints of the segments connecting the triangles vertices and the orthocenter lie on a circle. This circle is called the Euler circle of the triangle, also known as the Feuerbach circle and the nine-point circle.

Our work culminates in the following assertion which we only partially prove:
Theorem 4.13 The locus of the centers of all equilateral hyperbolas passing through the vertices of a triangle $A B C$ is the Euler circle of the triangle.

Figure 28: An equilateral hyperbola
Proof Let D denote the fourth intersection point of the circumcircle of $A B C$ with one such hyperbola (see Figure 28). Let $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} be the orthocenters of triangles $B C D, C D A, D A B$ and $A B C$, respectively. As quadrilateral $A B C D$ is cyclic, $\angle B C A=\angle B D A$. Invoking our previous lemma on triangles $A B C$ and $D A B$, and taking into account the equality of angles yields:

$$
C D^{\prime}=2 r \cos \angle B C A=2 r \cos \angle B D A=D C^{\prime} .
$$

As $D^{\prime} C \perp A B$ and $C^{\prime} D \perp A B$, we can conclude that $D^{\prime} C \| C^{\prime} D$. This, in conjunction with $C D^{\prime}=D C^{\prime}$ warrants that quadrilateral $C D C^{\prime} D^{\prime}$ is a parallelogram, therefore, $C^{\prime} D^{\prime} \| C D$ and $C^{\prime} D^{\prime}=C D$. Let the diagonals of $C D C^{\prime} D^{\prime}$ intersect in O. As the diagonals of a parallelogram bisect each other, we have: $O C=O C^{\prime}$ and $O D=O D^{\prime}$. Following the above pattern on orthocenters A^{\prime} and B^{\prime}, we can establish that $O A=O A^{\prime}$ and $O B=O B^{\prime}$. As a consequence of Theorem 4.10, one can deduce that $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} also lie on the hyperbola. As a hyperbola only has one center of symmetry, it must be point O. This implies that quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are centrally symmetric with respect to center O.

As O bisects the segments spanned by the vertices and the respective orthocenters of the four listed triangles, it must be incident with the Euler circle they share.

We may remark that this only proves that the centers lie on the Euler circle. It also needs proving that to every point on this circle belongs an equilateral hyperbola
having this point as its center, but this claim may reach well beyond the limits of this work.

List of Figures

1 An ellipse 4
2 A parabola 5
3 A hyperbola 6
4 Dandelin spheres of an ellipse 1 7
5 Dandelin spheres of an ellipse 2 8
6 Dandelin spheres of a hyperbola 9
7 Dandelin sphere of a parabola 10
8 The directrix is a line 12
9 The directrix is a circle, F is internal 12
10 The directrix is a circle, F is external, case 1 13
11 The directrix is a circle, F is external, case 2 13
12 Tangent of an ellipse bisecting the angle of focal rays 15
13 Tangent of a hyperbola bisecting the angle of focal rays 15
14 Tangent of a parabola bisecting the angle of focal rays 16
15 A property of reflection 17
16 The Simson line 19
17 19
18 20
19 Miquel's theorem 21
20 22
21 23
22 24
23 24
24 25
25 Asymptotes of a hyperbola 26
26 Distance between vertex and orthocenter, acute case 27
27 Distance between vertex and orthocenter, obtuse case 28
28 An equilateral hyperbola 29

References

[1] A. V. Akopyan and A. A. Zaslavsky. Geometry of Conics. Vol. 26. MATHEMATICAL WORLD. American Mathematical Society, 2007. ISBN: 9780821843239.
[2] György Hajós. Bevezetés a geometriába. Nemzeti Tankönyvkiadó, 1971. ISBN: 9631901165.
[3] György Kiss. Amit jó tudni a kúpszeletekről. URL: https://www.komal.hu/ cikkek/2004-11/kupszeletek1.h.shtml.
[4] Rita Kós. Kúpszeletek és Dandelin-gömbjeik. URL: https://www. komal.hu/ cikkek/dandelin/parabola.h.shtml.
[5] WIKIPEDIA. Conic section. URL: https://en.wikipedia.org/wiki/Conic_ section.

