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1 INTRODUCTION

1 Introduction

Conic sections have long fascinated mathematicians, forming a center of scien-

tific study. Records of initial investigation into conics date back to as far as the

ancient Greeks who instantaneously recognized their distinguished role in geometry.

Their efforts were crowned by a well-structured, pioneering treatise written by Apol-

lonius of Perga around 200 BC [5]. Major subsequent contributions to the subject

were made by the likes of Blaise Pascal, Gaspard Monge, Charles-Julien Brianchon,

Germinal Pierre Dandelin and Jean-Victor Poncelet.

Conics have found many applications in various fields of science. They have

proven vital to understanding mechanics, optics and waves. They are crucial in the

study of projectile motion and orbits of celestial bodies, transmission and reception

of radio signals and reflective properties of specular surfaces.

In this piece of work, we aspire to lay some groundwork upon conics by establish-

ing a number of their elementary yet intriguing properties being of great interest per

se, then advance toward formulating more complex, perhaps lesser known, carefully

selected theorems with cherry-picked proofs to provide an insight into the diverse,

beautiful world of conic sections. Throughout this thesis, we attempt to build, as

far as possible, purely synthetic proofs to theorems.
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2 CLASSIFICATION OF CONIC SECTIONS

2 Classification of conic sections

A conic section is essentially the intersection of a two-sided infinite cone and a

plane. The terms conic and conic section shall be interchangeably used throughout

this thesis. A conic section is called non-degenerate if this intersection is not a

single point or a line.

In the following, we attempt to classify conic sections according to their angle of

attack, i.e. the angle spanned by the dissecting plane and the axis of the cone. To

do that, we may first define three planar curves.

2.1 Definition of conic sections

Definition 2.1 An ellipse (see Figure 1) is the locus of points on the plane for

which the sum of distances from two fixed points (called foci) is a constant greater

than the distance between these points. This constant is called the length of the major

axis.

The center of an ellipse is the midpoint of the segment joining the two foci.

Extending the line joining the two foci and intersecting it with the ellipse yields its

major axis. The minor axis of an ellipse is the chord perpendicular to the major

axis in the center.

Figure 1: An ellipse

Definition 2.2 A parabola (see Figure 2) is the locus of points on the plane which

are equidistant from a fixed line and a fixed point not incident with the line. The
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2 CLASSIFICATION OF CONIC SECTIONS

line is called the directrix of the parabola and the the point is called the focus of the

parabola.

Figure 2: A parabola

Definition 2.3 A hyperbola (see Figure 3) is the locus of points on the plane for

which the absolute value of the difference of distances from two fixed points (called

foci) is a constant less than the distance between these points. This constant is called

the length of the real axis.

The segment joining the two foci is the real axis of the hyperbola,and the mid-

point of the real axis is the center of the hyperbola.
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2 CLASSIFICATION OF CONIC SECTIONS

Figure 3: A hyperbola

2.2 Classification through Dandelin spheres

In this section, we will utilize tangent spheres proprietary to conic sections. The

upcoming notions have been sourced from [2] and [4].

Definition 2.4 A Dandelin sphere of a conic section is a sphere that is internally

tangent to the cone and touches the conic.

Definition 2.5 The line joining the apex of the conic with any point on the surface

of the conic except for the apex is called a generating line.

Theorem 2.6 A non-degenerate conic section is either a circle, a parabola, a hy-

perbola or an ellipse.

Proof We may first consider the problem from a projective point of view by dis-

secting a cylinder (i.e. a cone whose apex is at infinity) with a plane that is not

perpendicular to the axis of the cylinder (see Figure 4). Let π denote the mentioned

plane and γ the intersection of the cylinder and the plane. Consider the two Dan-

delin spheres internally tangent to the cylinder in circles k1 and k2 and touching

π from opposite sides at points F and G. Let P be an arbitrary point on γ. Drop

perpendiculars from P onto circles k1 and k2 to cut them at points Q and P , respec-

tively. Obviously, PF = PQ and PG = PT as they are tangents drawn to a sphere

drawn from a common point. In light of the above, consider the sum:

FP + PG = PQ+ PT

6



2 CLASSIFICATION OF CONIC SECTIONS

which turns out to be the distance between k1 and k2, a constant along the perimeter

of the cylinder, independent from the choice of P . This means that all points on γ

lie on an ellipse with foci F and G.

Figure 4: Dandelin spheres of an ellipse 1

If we dissect a euclidean cone with a plane not perpendicular to the axis and

not parallel to any of the generating lines, it also yields an ellipse. The previous

reasoning may be transmitted to this configuration by replacing the cylinder with a

cone (see Figure 5).
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2 CLASSIFICATION OF CONIC SECTIONS

Figure 5: Dandelin spheres of an ellipse 2

Let us now cut the cone with plane π that is parallel to exactly two generating

lines of the cone (see Figure 6). Let π intersect the cone in curve γ (obviously γ is

not connected, it contains two branches). The two Dandelin spheres belonging to γ

are tangent to the cone in circles k1 and k2 and touch π in points F and G. Let P

be an arbitrary point on γ. Let T and Q be the intersections of the generating line

going through P and circles k1 and k2, respectively. PF = PQ and PG = PT as

they are tangents to a sphere drawn from a common point. Consider, in view of our

previous claim, the difference

|PG− PF | = |PT − PQ|

which is a constant along the perimeter of the cone, namely the length of the segment

k1 and k2 cut out from any generating line. Consequently, all points on γ lie on a

hyperbola of foci F and G.
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2 CLASSIFICATION OF CONIC SECTIONS

Figure 6: Dandelin spheres of a hyperbola

The last case to be examined (see Figure 7) is when the dissecting plane is parallel

to exactly one generating line (denoted g). Let the dissecting plane pi intersect the

cone along curve γ. The (only) Dandelin sphere associated with the conic intersects

the cone in circle k and touches π in point F . Let θ be the enveloping plane of k,

and s the axis of the cone, cutting through θ in a right angle. Let P be an arbitrary

point on γ. Let θ intersect π in line v. Let P ∗ be the perpendicular projection of P

onto θ and T the perpendicular projection of P onto v. Let Q be the intersection

point of circle k and the generating line incident with P . As PP ∗ ⊥ θ and s ⊥ θ,

PP ∗ ‖ s. As g ‖ π and PT ⊂ π, it follows that PT ‖ g. As a result,

∠P ∗PT = ∠(g, s)

as they are angles with parallel arms. For similar reasons,

∠P ∗PQ = ∠(PQ, s) = ∠(g, s).

Combining the equations yields:

∠P ∗PQ = ∠P ∗PT.

We can now conclude that triangles 4P ∗PQ and 4P ∗PT are congruent as they

have the same angles and share a common side opposite to the same pair of angles,

giving us:

PT = PQ.
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2 CLASSIFICATION OF CONIC SECTIONS

We can also deduce that PQ = PF as they are tangents drawn to a sphere from a

common point. Putting together the results yields:

PT = PQ = PF,

meaning that any point on γ has a fixed distance from point F and line v, in other

words, these points lie a parabola with focus F and directrix v.

Figure 7: Dandelin sphere of a parabola

We may remark that the above three proofs are incomplete in that they only

showed that the respective types of conic sections are contained in either an ellipse,

a hyperbola or a parabola. To be precise, one would also have to prove inclusion in

both directions, i.e. the conics are identical to one of these curves, meaning every

point of the curve lies on the conic too, yet a thorough proof of this claim is beyond

the limits of this thesis, it may be found in source [2] in its entirety.
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3 SOME BASIC PROPERTIES OF CONICS

3 Some basic properties of conics

It is hereby acknowledged that the following section has greatly utilized source

[3].

3.1 Alternative characterization of conics

We shall introduce the subsequent classification to partition the plane.

Definition 3.1 A non-degenerate conic divides the points of the dissecting plane

into three classes as follows:

� The intersection of the interior of the cone and the plane, denoted internal

points.

� The intersection of the exterior of the cone and the plane, denoted external

points.

� The intersection of the surface of the cone and the plane, called simply the

points of the conic.

Theorem 3.2 Let F be a point on the plane and v a line or a circle not passing

through F . Then the centers of circles tangent to v and passing through F lie on a

conic. Namely, the mentioned curve is

� a parabola if v is a line

� a circle if v is a circle and F is its center

� an ellipse if v is a circle and F is any internal point of v except its center

� a hyperbola if v is a circle and F is an external point of v.

Proof Let c be a circle with center P , passing through F , tangent to v in T .

Suppose v is a line (see Figure 8). PT ⊥ v, as PT is a radius drawn at a point

of tangency. Therefore, the distance between P and v equals PT , and PT = PF as

they are radii belonging to the same circle. Consequently, P lies on a parabola of

focus F and directrix v.
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3 SOME BASIC PROPERTIES OF CONICS

Figure 8: The directrix is a line

Suppose v is a circle of radius r, and let G denote its center (see Figure 9). If F

is an internal point of v, then, as c and v are internally tangent circles,

r = TG = TP + PG = FP + PG.

As a result, if F coincides with G, then P lies on a circle of center F and radius r
2

and if they differ, then P lies on an ellipse with foci F and G, and major axis r.

Conversely, if S is an arbitrary point on this circle or ellipse, then SF +SG = r.

Let ray SG cut v in K. Then,

SK = r − SG = SF

and therefore the circle drawn from center S with radius SF internally touches v in

K.

Figure 9: The directrix is a circle, F is internal
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3 SOME BASIC PROPERTIES OF CONICS

Finally, suppose F is an external point of v. Then, c is either externally or

internally tangent to v as depicted beneath (see Figures 10 and 11). In both cases,

the following holds: PF = PT , as they are radii of circle c. That yields:

|PF − PG| = |PT − PG| = GT = r,

meaning that P lies on a hyperbola with foci F and G, and real axis r.

In reverse, for an arbitrary point S on the hyperbola, either SF = SG + r or

SG = SF +r holds. The first means that the circle drawn from center S with radius

SF internally touches v, yet the second implies external tangency.

Figure 10: The directrix is a circle, F is external, case 1

Figure 11: The directrix is a circle, F is external, case 2
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3 SOME BASIC PROPERTIES OF CONICS

Definition 3.3 The line or circle mentioned in the above theorem is called the di-

rectrix of the respective conic (in accordance with the previous definition of the

parabola), whilst the point is defined to be a focus of the conic.

3.2 Tangential and focal properties of conic sections

Definition 3.4 A circle and a line are said to be orthogonal if the line passes

through the center of the circle or, equivalently, if the tangents drawn to the circle

at the points of intersection with the line are perpendicular to the line.

Definition 3.5 Let P be a point on a conic γ with directrix v and focus F . Then,

the focal rays belonging to P are line FP and the perpendicular dropped from P

onto v. We remark that the above perpendicular is line PG when γ is an ellipse or

a hyperbola with foci F and G.

Definition 3.6 Let γ be a hyperbola or an ellipse. A line t is said to be tangent

to γ at point P ∈ γ if it has no common point with γ other than P .

Let γ be a parabola. A line t is said to be tangent to γ at point P if it has no

common point with γ other than P and t is not parallel to the axis of the parabola.

The above distinction is required to distinguish tangents and axial lines cutting

through the parabola at a single point. We remark that there is no need for such

distinction on the real projective plane where the whole concept would be circum-

vented by introducing ideal points and defining tangents as lines intersecting conics

at a single point, thereby avoiding the ambiguity in the case of parabolas.

Theorem 3.7 Let P be an arbitrary point on a conic γ. Then, the tangent drawn

to γ at P bisects the angle between the focal rays belonging to P .

Proof We begin with the case of γ being either an ellipse or a hyperbola (see Figures

12 and 3). Let γ be defined by focus F and directrix v. Let P denote an arbitrary

point on γ. According to Theorem 3.2, the circle with center P and radius PF is

tangent to v. Let T denote the point of tangency. Let b be the angle bisector of

∠TPF and K be an arbitrary point on b apart from P . As K lies on the angle

bisector, KT = KF . Therefore, the circle drawn from center K with radius KF

(denoted k) passes through T . Nevertheless, T lies on v and P 6= K, thus, k cannot

be tangent to v. As a result, K does not lie on γ. To sum up, b has exactly one point

in common with γ (namely P ), thereby implying that the angle bisector is tangent

to γ at P .
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3 SOME BASIC PROPERTIES OF CONICS

Figure 12: Tangent of an ellipse bisecting the angle of focal rays

Figure 13: Tangent of a hyperbola bisecting the angle of focal rays

We may finally inspect the parabola (denoted γ) with focus F and directrix v

(see Figure 14). Let s be the axis of the parabola, and K be a point different from

P lying on the angle bisector of ∠TPF (denoted b). The above reasoning also holds

for parabolas, consequently, b ∩ γ = P . For b to be tangent to γ, we have yet to

prove that b and s are not parallel. By definition, s ⊥ v and PT ⊥ v, from which it

follows that s ‖ PT . Let us suppose the contrary, i.e. b ‖ s, meaning b ‖ PT . Then,

the angle between PT and b is zero. As b bisects ∠TPF , we know that the angle

between b and PF is also zero. As a result, lines PT and PF coincide. That yields:

F ≡ T which is a contradiction because T is incident with the directrix and F , by

definition, is not. We have now shown that b cannot be parallel to the axis, so it has

to be tangent to γ at P .
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3 SOME BASIC PROPERTIES OF CONICS

Figure 14: Tangent of a parabola bisecting the angle of focal rays

We remark that the aforementioned property is heavily exploited in applications

in many fields such as optics, sound technology and and air-to-air signal recep-

tion whereby the law of wave reflection in conjunction with this property allows

parabola-shaped reflective surfaces to collect waves traveling parallel to the axis in

the focus where the receiver may be positioned. These instances include special mir-

rors, parabolic microphones used for surveillance and parabolic antennas to receive

satellite signals.

From the above theorem, we can effortlessly derive an interesting corollary de-

scribing a property pertinent to all conics:

Theorem 3.8 The reflection of the focus of a conic with respect to any of its tan-

gents is incident with the directrix.

Proof The statement is obvious considering elementary properties of reflection with

respect to an axis, in particular the fact that the angle between the two lines con-

necting any point on the axis to the original and the reflected point is bisected by

the axis (see Figure 15).
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3 SOME BASIC PROPERTIES OF CONICS

Figure 15: A property of reflection
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4 UNIQUE ATTRIBUTES OF CONIC SECTIONS

4 Unique attributes of conic sections

In this section, we discuss certain special properties of conic sections whose de-

scription has been greatly influenced by source [1].

4.1 Tangential triangles of parabolas

We begin by proving a theorem connecting a tangent triangle of a parabola with

its focus. To achieve that, let us first revisit a widely known statement concerning

projections of a point onto a triangle’s sides.

Lemma 4.1 (Simson’s lemma) Let ABC be a triangle and P a point outside it.

The projections of P onto lines AB, BC and AC (denoted R, S and T , respectively)

are collinear if and only if P lies on the circumcircle of ABC.

Although the idea to use this lemma has been suggested by source [1], the proof in

its entirety features my work.

Proof Suppose P is on the circumcircle of triangle ABC (see Figure 16). With-

out loss of generality, we can assume that segment BC separates points A and P .

Obviously,

∠PRB = ∠PSB = π/2,

so quadrilateral PSRB happens to be cyclic. ∠RSB = ∠RPB as they are inscribed

angles subtended by the same arc.

∠CTP + ∠CSP = π,

thus, quadrilateral CTPB is also cyclic. ∠TSP = ∠TCP , as they are inscribed

angles subtended by the same arc. Quadrilateral ABPC is cyclic by definition,

meaning that ∠TCB = ∠PBA. The above statements together imply that ∠TSP =

∠PBS. As ∠PRB, ∠RPB and ∠PBA are angles of triangle PRB, they sum up

to π. Consequently, so do angles ∠TSP , ∠PSB and ∠RSB, which is equivalent to

the collinearity of R, S and T .
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4 UNIQUE ATTRIBUTES OF CONIC SECTIONS

Figure 16: The Simson line

Conversely, suppose R, S and T are collinear (see Figure 17). Clearly,

∠PRB = ∠PSB = π/2.

This implies that quadrilateral PSRB is cyclic, from which it follows that ∠RSB =

∠RPB as they are inscribed angles subtended by the same arc. Using the collinearity

condition, we can deduce that ∠TSC = ∠RSB. For similar reasons, quadrilateral

TCSP is cyclic, and ∠TSC = ∠TPC. In conclusion, ∠RPB = ∠TPC, meaning

that triangles TCP and RPB share two angles, so they must also share the third, i.e.

∠TCP = ∠PBR. This indicates that ∠ACP and ∠ABP are supplementary angles,

which leaves quadrilateral ABPC to be cyclic, therefore P lies on the circumcircle

of triangle ABC.

Figure 17
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4 UNIQUE ATTRIBUTES OF CONIC SECTIONS

We would like to connect the above lemma with a claim we partially proved

already, specified for parabolas.

Theorem 4.2 The perpendicular projections of a parabola’s focus onto all possible

tangents lie on a straight line.

We remark that it suffices to prove this for three arbitrary tangents which determine

a so-called tangential triangle of the parabola.

Proof Let ABC be a tangential triangle of a parabola (see Figure 18). By Theorem

3.8, the reflections of the focus onto all tangents lie on the directrix. In the case of

the parabola, that is a straight line (denoted d). Let the perpendicular projections of

F onto tangents AB, BC and AC be named P , Q and R, respectively. Let FP , FR

and FQ intersect d at points P ′, R′ and Q′ in this sequence. Due to the reflection

property, PF = PP ′, RF = RR′ and QF = QQ′ hold. Applying the midline

theorem to triangles P ′FR′ and R′FQ′ warrants that PR and RQ are parallel to d

and incident in R. As the line parallel to d and incident with R is unique, P , Q and

R are necessarily collinear.

Figure 18

We can now proceed to our main theorem in the section:

Theorem 4.3 The circumcircles of all tangential triangles of a parabola pass through

the parabola’s focus.

Proof This statement is a direct consequence of the previous two. According to

Simson’s lemma, if the projections of F onto the sides of triangle ABC (see Figure

18) are collinear (which in this case, they are, please refer to Theorem 4.2), then F

must lie on the circumcircle of triangle ABC.
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4 UNIQUE ATTRIBUTES OF CONIC SECTIONS

We may utilize the above to derive a beautiful corollary known as Miquel’s

theorem. To do so, we are required to establish some groundwork.

There is a well-known fact about conics that has found many applications, that

is, for any five points on the plane in general position (i.e. no three of them are

collinear), there is a unique conic containing all of them. Proof of this statement may

be omitted as it would well exceed the boundaries of this work, however, we remark

that a standard proof would involve a linear algebraic approach using matrices of

second-order curves. The dual of this theorem reads as follows: for any five lines on

the plane in general position (i.e. no three of them are concurrent), there is a unique

conic tangent to all of them.

In a projective approach, we can assume that exactly one of these lines is the

line at infinity. In this configuration, the conic is tangent to this line at a point at

infinity, that leaves it to be a parabola. This means that for any four euclidean lines

in general position (this setting has been named a complete quadrilateral), there

is a unique parabola tangent to them. This leads us to Miquel’s theorem:

Theorem 4.4 (Miquel’s theorem) The circumcircles spanned by the the trian-

gles resulting from the four lines making up a complete quadrilateral pass through a

single point (called the Miquel point of the quadrilateral, see Figure 19).

Figure 19: Miquel’s theorem

Proof Note that the four triangles determined by the complete quadrilateral are

tangential triangles of the inscribed parabola. Invoking Theorem 4.3 assures us that

21



4 UNIQUE ATTRIBUTES OF CONIC SECTIONS

the circumcircles of these triangles contain the parabola’s focus, meaning that these

four circles intersect at a single point.

We would also like to mention a beautiful theorem regarding the orthocenter of a

tangent triangle of a parabola. To achieve that, we go through two lemmas regarding

the Simson line of a triangle.

Lemma 4.5 Let point P lie on the circumcircle of triangle ABC. Let B′ be a point

also on the circumcircle such that AC ⊥ PB′. Then, the Simson line associated with

P is parallel to BB′ (see Figure 20).

Figure 20

Proof Let Pb and Pc denote the perpendicular projections of P onto AC and AB,

respectively. ∠APB′ = ABB′ as they are angles subtended by arc AB. As ∠APcP =

∠APbP = π
2
, quadrilateral APcPbP is cyclic. Therefore,

∠APB′ = ∠APPb = π − ∠APcPb = ∠BPcPb,

implying parallelity of PbPc and BB′.

Lemma 4.6 Let H be the orthocenter of triangle ABC and P a point on its cir-

cumcircle. Then, the Simson line belonging to P bisects segment PH.

22



4 UNIQUE ATTRIBUTES OF CONIC SECTIONS

Figure 21

Proof Let us suppose that ABC is an acute triangle (see Figure 21). Then, AB ⊥
HC and BC ⊥ AH, consequently, ∠AHC and ∠ABC are angles with perpendicular

arms, meaning that they are either equal or supplementary angles. One is acute, the

other is obtuse, this rules out the first case, yielding:

∠AHC = π − ∠ABC.

Let the reflection of H with respect to AC be called H ′. Due to the reflection,

∠AH ′C = ∠AHC = π − ∠ABC,

meaning that H ′ lies on the circumcircle. As PB′, BH ′ ⊥ AC, it follows that

PB′ ‖ BH ′, thus, quadrilateral PB′BH ′ is a cyclic trapezoid, necessarily equi-

lateral, implying symmetry. Let P ′ be the reflection of P with respect to AC. Due

to symmetry, P ′H ‖ B′B. In light of our previous lemma, P ′H is parallel to Simson

line PbPc. Let PbPc intersect PH in T . As PPb = PbP
′ and PbT ‖ P ′H, PbT is a

midline of triangle PP ′H. This warrants PT = TH, completing the proof.

Assuming ABC is obtuse, the above remains true except for H and B reversing

roles (see Figure 22).
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4 UNIQUE ATTRIBUTES OF CONIC SECTIONS

Figure 22

If ABC is a right triangle (see Figure 23), then it is easy to recognize that B

corresponds with H and B′ corresponds with P ′, the rest of the previous proof still

holds.

Figure 23

To crown our efforts, we return to the main theorem we intend to prove:
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4 UNIQUE ATTRIBUTES OF CONIC SECTIONS

Theorem 4.7 The orthocenter of a tangential triangle of a parabola lies on the

directrix.

Proof Let triangle ABC be tangent to a parabola with focus F (see Figure ??).

Let H denote the orthocenter of ABC. According to Theorem 4.3, F lies on the

circumcircle of triangle ABC, meaning it has a Simson line associated with it. This

Simson line bisects segment FH in point T (refer to the previous theorem). Let V

be the vertex of the parabola, and D the intersection of the axis and the directrix.

As we have a parabola, naturally, FV = V D. We have already seen that this Simson

line is parallel to the directrix (Theorem 4.2). Taking the above into consideration:

FV = V D and FT = TH, applying the midline theorem to triangle DFH gives us

that V T ‖ DH. Yet the line going through D parallel to V T is unique, this only

holds for the directrix, meaning H must lie on it as desired.

Figure 24

4.2 A remarkable property of equilateral hyperbolas

We hereby include an impressive property of equilateral hyperbolas passing

through the vertices of a fixed triangle. To accomplish that, we need to make some

preparations.

Definition 4.8 The asymptotes of a hyperbola (see Figure 25) are a unique pair

of lines intersecting at the hyperbola’s center such that, as we move away from

the center along one of these lines to infinity, the distance between the line and the

hyperbola converges to 0. We remark that this coincides with the projective geometric

definition of asymptotes, i.e. tangents drawn to a hyperbola at its points at infinity.
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4 UNIQUE ATTRIBUTES OF CONIC SECTIONS

Figure 25: Asymptotes of a hyperbola

Definition 4.9 A hyperbola is called equilateral if its asymptotes are perpendicu-

lar.

We do not prove the following theorem as its complexity reaches out of the

bounds of this thesis, but it is vital to our investigation on equilateral hyperbolas.

Theorem 4.10 If a hyperbola passes through a triangle’s vertices, then, it will only

be equilateral if it also passes through the triangle’s orthocenter.

We would like to remark that this claim may be proven using Desargues’s involution

theorem on a pencil of conics passing through 4 fixed points (5 points determine a

conic section). A proof of this theorem may be found in [1].

We may now proceed to the following lemma, of great interest on its own.

Lemma 4.11 Let ABC be a triangle with orthocenter M . Let r denote the radius

of the circumcircle of ABC. Then, CM = 2r cos∠ACB holds.

Proof If ABC is a right triangle, without loss of generality, we can assume that

∠ACB = π
2
. Then, trivially,

2r cos∠ACB = AB cos
π

2
= 0 = CM

holds as C and M correspond.

We now move forward to the case of ABC being an acute triangle (see Figure

26). Let the perpendicular line through A to AB intersect the circumcircle in T .

Obviously, AT ‖ CM . As quadrilateral ATCB is cyclic, ∠TAB+∠TCB = π .With

this in mind, we can deduce that ∠TCB = π
2
. That makes TC and AM parallel,
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and quadrilateral ATCM a parallelogram. As the opposite sides of a parallelogram

are of equal length, AT = CM .

In line with the converse of Thales’s theorem, AB = 2r holds. According to the

law of sines, AB = 2r sin∠ACB. Applying the Pythagorean theorem to triangle

TAB and substituting the above yields:

CM2 = AT 2 = 4r2 − AB2 = 4r2 − 4r2 sin2∠ACB

= 4r2(1− sin2∠ACB) = 4r2 cos2∠ACB

Taking square root results in CM = 2r cos∠ACB as proposed.

Figure 26: Distance between vertex and orthocenter, acute case

The proof also works for obtuse triangles with the following alteration in reason-

ing (see Figure 27):

∠TAB = ∠TCB = π
2

as they are subtended by a common arc, TB. This implies

that CM ‖ TA. The rest applies as formerly outlined.
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Figure 27: Distance between vertex and orthocenter, obtuse case

Definition 4.12 It is well known that in any triangle, the midpoints of the sides,

the feet of the altitudes and the midpoints of the segments connecting the triangles

vertices and the orthocenter lie on a circle. This circle is called the Euler circle of

the triangle, also known as the Feuerbach circle and the nine-point circle.

Our work culminates in the following assertion which we only partially prove:

Theorem 4.13 The locus of the centers of all equilateral hyperbolas passing through

the vertices of a triangle ABC is the Euler circle of the triangle.
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Figure 28: An equilateral hyperbola

Proof Let D denote the fourth intersection point of the circumcircle of ABC with

one such hyperbola (see Figure 28). Let A′, B′, C ′ and D′ be the orthocenters

of triangles BCD, CDA, DAB and ABC, respectively. As quadrilateral ABCD is

cyclic, ∠BCA = ∠BDA. Invoking our previous lemma on triangles ABC and DAB,

and taking into account the equality of angles yields:

CD′ = 2r cos∠BCA = 2r cos∠BDA = DC ′.

As D′C ⊥ AB and C ′D ⊥ AB, we can conclude that D′C ‖ C ′D. This, in con-

junction with CD′ = DC ′ warrants that quadrilateral CDC ′D′ is a parallelogram,

therefore, C ′D′ ‖ CD and C ′D′ = CD. Let the diagonals of CDC ′D′ intersect in

O. As the diagonals of a parallelogram bisect each other, we have: OC = OC ′ and

OD = OD′. Following the above pattern on orthocenters A′ and B′, we can estab-

lish that OA = OA′ and OB = OB′. As a consequence of Theorem 4.10, one can

deduce that A′, B′, C ′ and D′ also lie on the hyperbola. As a hyperbola only has

one center of symmetry, it must be point O. This implies that quadrilaterals ABCD

and A′B′C ′D′ are centrally symmetric with respect to center O.

AsO bisects the segments spanned by the vertices and the respective orthocenters

of the four listed triangles, it must be incident with the Euler circle they share.

We may remark that this only proves that the centers lie on the Euler circle. It

also needs proving that to every point on this circle belongs an equilateral hyperbola
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having this point as its center, but this claim may reach well beyond the limits of

this work.
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cikkek/2004-11/kupszeletek1.h.shtml.
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