
NYILATKOZAT

Név:

ELTE Természettudományi Kar, szak:

NEPTUN azonosító:

Szakdolgozat címe:

A szakdolgozat szerzőjeként fegyelmi felelősségem tudatában kijelentem, hogy a

dolgozatom önálló szellemi alkotásom, abban a hivatkozások és idézések standard

szabályait következetesen alkalmaztam, mások által írt részeket a megfelelő idézés

nélkül nem használtam fel.

Budapest, 20 _______________________________

 a hallgató aláírása

Pham Viet Hung

BSc Matematika

YSOUT0

A machine learning project: New York City Airbnb price prediction

20.12.07.

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

BACHELOR OF SCIENCE THESIS

A machine learning project: New York
City Airbnb price prediction

Author:
Viet Hung Pham

Supervisor:
Tamás Prőhle

A thesis submitted in fulfilment of the requirements
for the degree of Bachelor of Science in Mathematics

in the

Department of Probability Theory and Statistics
Institute of Mathematics

December 6, 2020

https://www.elte.hu/
https://www.linkedin.com/in/phamvh95/
https://www.math.elte.hu/en/people/?uid=M9AS10
https://www.math.elte.hu/en/

iii

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

Abstract
Faculty of Natural Science
Institute of Mathematics

Bachelor of Science in Mathematics

A machine learning project: New York City Airbnb price prediction

by Viet Hung Pham

Machine learning gives computers the ability to learn without being explicitly pro-
grammed. It uses algorithms to find patterns in massive amounts of data to make
accurate predictions when new data fed or discover new relationships between fea-
tures. Nowadays, it is a hugely expanding field which is used in all segments of life,
ranging from predicting patient medical conditions to face-recognition technologies.
In this thesis, the object is to show an example of an end-to-end ML project. I would
like to present some mathematics behind those machine learning algorithms and
findings of predicting the prices of New York Airbnb’s for one night. The data set
comes from Kaggle:
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data.
Firstly, I analysed and visualised the data to get a better understanding of the Airbnb
market in New York. Then I did some data preprocessing, which includes data clean-
ing and imputations, and feature engineering to adjust our data set to better perform
on those algorithms. As it is about predicting prices, it is considered as a regression
task, which is a subclass of supervised learning. After separating data set into train-
ing and test set, I trained the data on Linear Regressions, Support Vector Machine,
and various Ensemble learning algorithms while hyperparameter tuning them. The
next step is to evaluate those models by using cross-validation. Finally, the best
model is chosen to test on the unseen test set data. It turns out that Ensemble and
Support Vector Machine learning algorithms are the best-performing ones. In the
end, I would like to contemplate about how my project could be further developed
and how it may be implemented in a real-world scenario.

HTTPS://WWW.ELTE.HU/
https://ttk.elte.hu/
https://www.math.elte.hu/en/
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data

v

Acknowledgements
First and foremost, I would like to pronounce my greatest thanks and gratitude to
Tamás Prőhle for his guidance and continuous help throughout the thesis process.
I am also grateful to Olivér Kiss, my colleague at Central European University Mi-
croData Group, for his invaluable insights. I also owe tremendous gratitude to my
parents. My late father was the one who introduced me to the world of mathematics
at a very early age and encouraged me to pursue it. I cannot be more grateful to my
mother, who always supports me in both good and bad times. I am also thankful
for working together in the previous semester with Dóra Kinorányi and Krisztina
Hegyi on a machine learning project for the ’Data Mining’ course from which my
thesis is inspired. Finally, I would like to thank my friends for their constant sup-
port throughout my bachelor degree.

vii

Contents

Abstract iii

Acknowledgements v

1 Machine Learning Project Checklist 1
1.1 Overview and defining the problem . 1
1.2 Getting the data . 1
1.3 Exploratory Data Analysis . 2
1.4 Preparing the data for ML algorithms to uncover patterns 2
1.5 Discovering and selecting the best performing models 3
1.6 Fine-tuning the selected models . 3
1.7 Further improvement opportunities . 3

2 Overview of the Project 5
2.1 Framework . 5
2.2 Performance Measurement . 6
2.3 ML Questions . 6
2.4 ML Hypothesis . 7

3 The Data 9
3.1 Overview of the data . 9
3.2 Observations from histograms . 10

4 Exploratory Data Analysis 13
4.1 Training, dev, and test set . 13
4.2 The analysis of the target variable . 13
4.3 The analysis of feature variables . 14
4.4 Outliers . 16
4.5 Tinkering with features . 18
4.6 Correlation . 18
4.7 Some miscellaneous analysis . 19

5 Data Preprocessing 21
5.1 Data Cleaning . 21
5.2 Transformation Pipeline and Feature Scaling 22
5.3 Yeo-Johnson transformation . 22
5.4 Analysis of the transformed data . 23

6 Model Training and Testing 25
6.1 Dimensionality Reduction . 25

6.1.1 Feature Selection . 25
6.1.2 Factor Analysis . 26

Principal Component Analysis 26
Multiple Correspondance Analysis 27

viii

Factor Analysis of Mixed Data 27
6.2 Linear Regression . 29

6.2.1 Vanilla Linear Regression . 29
6.3 Regularised Linear Regression . 30
6.4 Support Vector Machine . 31
6.5 Gradient Boosting – XGBoost . 31
6.6 Bagging and Pasting . 31
6.7 Voting Regression . 31
6.8 Results of the Model Training . 32
6.9 Final Model and Testing . 33

7 Further Development Opportunities 35
7.1 Other Learning Algorithms . 35
7.2 More features . 35
7.3 Implementation in real life . 35

A Technical Details 37
A.1 Linear Regression . 37

A.1.1 Gradient Descent . 37
Batch Gradient Descent . 37
Stochastic Gradient Descent . 38

A.1.2 Normal Equation . 38
A.1.3 Probabilistic interpretation . 40
A.1.4 Shrinkage Methods . 41

A.2 Kernel Methods . 43
A.2.1 Feature Maps . 43
A.2.2 Kernel Trick . 43

Some well-known kernels . 44
Necessary and sufficient conditions for kernel validity 45

A.3 Support Vector Regression . 45

B Dimensionality Reduction 47
B.1 Feature Selection . 47

B.1.1 Filter Methods . 47
Pearson’s Correlation . 47

B.1.2 Wrapper methods . 47
The algorithm of the SBFS . 48

B.1.3 Embedded methods . 48
B.2 Factor Analysis . 49

B.2.1 PCA . 49
B.2.2 Direction with Maximal Variance 50
B.2.3 M-dimensional Subspace with Maximal Variance 51

C Python Codes 55
C.1 Codes from Section 5.2 . 55
C.2 Codes from Section 6.1 . 57
C.3 Codes from Section 6.8 . 57
C.4 Codes from Section 6.9 . 58

ix

List of Figures

1.1 Machine Learning Project Roadmap . 4

2.1 Supervised Learning . 5
2.2 Online Learning . 6

3.1 Missing Values . 10
3.2 Yeo-Johnson transformed price . 10
3.3 Histograms . 11

4.1 Y-J prices and neighbourhood groups’ distribution 14
4.2 Histograms of Neighbourhood Group and Room Types 15
4.3 Room Type based on Neighbourhood Group 15
4.4 Room Types’ distribution over NYC . 16
4.5 Neighbourhood group and its availability 16
4.6 Boxplots of the numerical variables . 17
4.7 Correlation Matrix Heatmap . 19
4.8 Top 5 neighbourhoods . 20

5.1 Correlation Matrix Heatmap on the Y-J transformed data 24

6.1 FAMD illustration . 28

A.1 Ridge Regression . 42
A.2 Lasso . 42

B.1 PCA illustration . 50

xi

List of Tables

3.1 Features, their contents and types . 9

4.1 Prices . 14
4.2 Neighbourhood group . 14
4.3 Room types . 14
4.4 Feature variables’ correlations with price 18

5.1 Data Cleaning (code) . 21
5.2 Data transformation and feature scaling (code) 22

6.1 Filter vs. Wrapper vs. Embedded methods 26
6.2 Training and CV RMSE errors of the learning models 33

B.1 Filter methods . 47

C.1 Numerical Variable Transformer (code) 55
C.2 Target Variable Transformer (code) . 56
C.3 Concatenation of numerical and categorical features (code) 56
C.4 Factor Analysis of Mixed Data implementation (code) 57
C.5 SVR with Gaussian Kernel Training (code) 57
C.6 SVR with Gaussian Kernel Cross-Validation (code) 58
C.7 SVR with Gaussian Kernel Training (code) 58

xiii

List of Abbreviations

Dev Set Development set
Train Set Training set
ML Machine Learning
MSE Mean Square Error
RMSE Root Mean Square Error
SVC Support Vector Classification
SVM Support Vector Machine
SVR Support Vector Regression
RBF Radial Basis Function
Y-J Yeo-Johnson
PCA Principal Component Analysis
MCA Multiple Correspondance Analysis
FAMD Factor Analysis of Mixed Data
i.i.d Independent Identically Distributed
LMS Least Mean Squares
OLS Ordinary Least Squares
SVD Singular Value Decomposition
GD Gradient Descent
BGD Batch Gradient Descent
SGD Stochastic Gradient Descent
Lasso Least Absolute Shrinkage and Selection Operator
XGBoost EXtreme Gradient Boosting
GBRT Gradient Boosted Regression Tree
CV Cross-Validation

xv

Dedicated to my late father. . .

1

Chapter 1

Machine Learning Project
Checklist

My project is following mostly the ML project checklist proposed by Geron (2019)
that I wish to present here. The eight main themes of an ML project are:

1. Overviewing and defining the problem.

2. Getting the data.

3. Gaining insights from the data set.

4. Preparing the data for ML algorithms to uncover patterns.

5. Discovering and selecting the best performing models.

6. Fine-tuning the selected models.

7. Further improvement opportunities.

1.1 Overview and defining the problem

1. Defining the (business) objective.

2. How should the problem be framed?

3. How should the performance be measured?

4. Listing (all) the questions regarding the projects.

5. Listing (all) the assumptions that have been made so far.

1.2 Getting the data

1. Listing all the data sources where they are downloaded.

2. How much space will the data take?

3. Putting the data into a format with which it can be easily worked without
changing the data itself.

2 Chapter 1. Machine Learning Project Checklist

1.3 Exploratory Data Analysis

1. Sampling a test set, putting it aside for the later purpose of evaluating our best
model(s).

2. Creating a copy of the data for exploration.

3. Creating a Jupyter/Jupyterlab/Google Colab notebook to keep track of data
exploration.

4. Scrutinising characteristics of variables:

. Name

. Type (integer/float, categorical, text, boolean, etc.)

. Percentage of missing values

. Noisiness and type of noise such as outliers

. Usefulness for the task

. Type of distributions

5. Identifying the target attribute(s).

6. Visualising the data.

7. Examining correlations between attributes.

8. Identifying the most promising transformations that could be used on the data.

1.4 Preparing the data for ML algorithms to uncover patterns

1. Data cleaning:

. Fixing or removing outliers (optional).

. Filling in missing values (e.g., with zero, mean, median. . .) or drop their
rows (or columns).

2. Feature selection (optional):

. Dropping the feature(s) which do not provide useful information for the
task by using algorithms such as PCA, Sequential Backward Selection,
etc...

3. Feature engineering (if needed):

. Discretising continuous features.

. Decomposing features (e.g., categorical, date/time, etc.).

. Adding promising transformations for features.

. Aggregating variables into promising new features.

4. Feature scaling:

. Using transformation(s) for the ML algorithm to better work on the data
such as standardisation or normalisation.

1.5. Discovering and selecting the best performing models 3

It is highly recommended to keep the original data set intact and only work on
the copied version. It is also advised to modularise all the data transformation into
functions because of the following reasons:

• More comfortable to develop and debug new program features introduced to
our program.

• When getting a new or updated data set, it is easier to prepare them and apply
those transformations in the future.

• Cleaning and preparing the test set.

• Cleaning and preparing new data instances once a solution is live.

1.5 Discovering and selecting the best performing models

1. Training many quick-and-dirty ML models from different categories such as
Linear Regression, Support Vector Machine, Ensemble models, and so on.

2. Measuring and comparing their performance:

. Training the ML models on the training set (train set) and either evalu-
ating on the development set (dev set) or using k-fold cross-validation
and compute the mean and standard deviation of the performance mea-
sure on the k folds.

3. Analysing the types of errors the models make.

4. Shortlist the top-performing models, preferring ones that make different types
of errors.

1.6 Fine-tuning the selected models

1. Fine-tune the hyperparameters using cross-validation:

. Using Grid Search Cross-Validation when there are very few hyperpa-
rameter values.

. Otherwise, using Random Search Cross-Validation makes sense.

2. After finishing with carrying out the steps above, select the final model based
on the performance and run it on the test set to estimate the generalisation
error.

1.7 Further improvement opportunities

• Further comments on the project.

• What other ML algorithms and feature could be used and collected?

• Improving performances and alternatives.

• Real-world application opportunities.

4 Chapter 1. Machine Learning Project Checklist

The following flowchart sums up the whole ML project roadmap.

FIGURE 1.1: ML Project Roadmap (Raschka, Mirjalili, 2019)

5

Chapter 2

Overview of the Project

Our purpose with this project is to predict price/night (from now on merely price)
of New York Airbnb accommodations based on its 2019 data. We aim to develop a
model that can effectively and efficiently do this job.

2.1 Framework

Our task is a supervised (Figure 2.1), regression learning task because having a price
tag label for each instance. Price (our target variable) is continuous.

FIGURE 2.1: Supervised Learning (Raschka, Mirjalili, 2019)

Since it is small data (approximately 7MB), batch learning is going to be applied.
Batch learning means that the whole data set will be fed into system without learning
anymore in contrast to online learning which a technique used to situations when
data set are massive and cannot fit in a computer’s main memory. Online learning
algorithms operate in a way that it loads part of the data, runs training on the ’partial
data’, and does this again until all data is trained. When new data comes in, it will
keep learning.

6 Chapter 2. Overview of the Project

Here is the figure summing up the online-learning algorithm.

FIGURE 2.2: Big data set handled by online learning (Geron, 2019)

Technical Details

In this ML project, codes were implemented in Python 3 was used heavily with the
Sklearn (Pedregosa et al., 2011), Pandas (McKinney et al., 2010), NumPy (Harris et
al., 2020), and Matplotlib/Seaborn (Hunter, 2017) packages.

2.2 Performance Measurement

Measuring the performance of a regression learning task is often done by either of
the following cost functions:

J(θ) =
1
2

m

∑
i=1

(hθ(x(i))− y(i))2 (2.1)

RMSE(X, hθ) =

√
1
m

m

∑
i=1

(hθ(x(i))− y(i))2 , (2.2)

where (x(i), y(i)) is the ith instance of a training set and the corresponding ith target
variable. The θ is the parameter of either of the cost functions J(θ) or RMSE(X, hθ).
hθ is the hypothesis function. From now on, instead of hθ , the short-handed h will be
used. J(θ) and RMSE(X, hθ) can be regarded as equivalent cost functions because
the ’1/2’ used in the former formula are just there for the sake of taking a derivative
easier. Later on, J(θ) is going to be used in the derivation of gradient descent algo-
rithms, but the RMSE is applied for model evaluation in our Python program.

2.3 ML Questions

• What kind of learning algorithms will be used?

2.4. ML Hypothesis 7

• Minimalise or maximise our chosen cost function?

• How should we dissect our data set for the subsets being more representative?

• How should we clean or transform the data so that the ML algorithms work
well on it?

• How should we avoid overfitting/underfitting?

These question will be answered shortly.

2.4 ML Hypothesis

• price variable does not follow the normal distribution.

• Multicollinearity occurs among some feature variables.

• There are a considerable amount of outliers.

9

Chapter 3

The Data

In this part, the general overview and observations of the data are going to be dis-
cussed. The aim is to get a sound grasp of our data set before delving into a more
in-depth analysis.

3.1 Overview of the data

The New York City Airbnb data is from the Kaggle:
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data.

• 48895 instances with 16 variables, including the target variables.

• Two attributes are text-based, one is date, three are categorical, remaining 10
are numbers.

• The following table sums up the general knowledge about the variables:

Features Contents of the features Types
id a unique id integer

name name of the accommodation text
host_id unique id of the host integer

host_name name of the host text
neighbourhood_group neighbourhood group categorical

neighbourhood neighbourhood categorical
latitude latitude float

longitude longitude float
room_type room type categorical

price price in dollar float
minimum_nights min # of nights spent integer

number_of_reviews # of reviews integer
last_review date of the last review date

reviews_per_month reviews per month integer
calculated_host_listings_count # of listings of a host integer

availability_365 # of days available integer

TABLE 3.1: Features, their contents and types

• There are some missing values in our data set: 16 from name, 21 from neigh-
bourhood_group, 10052 from last_review and reviews_per_month. Assume that the
data are missing completely at random (MCAR). The following table summarises
this in ascending order:

https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data

10 Chapter 3. The Data

FIGURE 3.1: Missing values of the variables

3.2 Observations from histograms

Histograms used for explaining observations are from Figure 3.2 and Figure 3.3:

• Most histograms tend to skew to the left. That is they present heavy-tailed
distributions.

• The range of values of some of the features is wide.

• To this end, we need to transform our data set so that those variables will be
standardised and resemble something like the normal distribution. It is an
essential step for the ML algorithms to better work on the data.

• Latitude and Longitude follow the normal distribution. It means that most of
the accommodations concentrate in central New York City.

• The transformation used will be Yeo-Johnson (Y-J) and be discussed later on.
Look at the example of the power of the Y-J transformation through the price
variable.

(A) Price without Y-J (B) Price with Y-J

FIGURE 3.2: Y-J transformation on the Price variable

3.2. Observations from histograms 11

FIGURE 3.3: Histograms of numerical variables

13

Chapter 4

Exploratory Data Analysis

In this chapter, splitting of the original data set is going to occur based on stratified
sampling. From Section 4.2 - 4.7 details of variables is uncovered.

4.1 Training, dev, and test set

• 64% of the data set will be used for training, 16% is distributed to the dev set
and 20% for running the best performing model on the test set. It is achieved
by dissecting first 80% - 20% in favour of train + dev set, and from that 80%,
we subdivide it to 80%-20% in favour of the train set.

• The reason why the dev set is needed is that we can evaluate our trained model
on the dev set. If further adjustment and optimisation are necessary, we do it
on the dev set rather than the test set. For our purpose, it is mainly useful
when training quick-and-dirty ML models.

• The alternative, which is used in the project, is to perform k-fold cross-validation,
which will be discussed in Section 6.8. Generally, it is preferred over using the
dev set for validation. However, cross-validation is computationally a much
more expensive process.

• The test set has the purpose of running the best final fine-tuned model on it to
see the generalisation error of our model on the unseen data.

• It is vital that all of the subsets are representative of the whole data set, so
that is why stratified sampling is used when dissecting the data set. In other
words, data points are allocated to their respective homogeneous subgroups
called strata, and the appropriate number of data entries are sampled from
each stratum. In the end, representativeness can be ensured.

• Stratified sampling is carried out according to neighbourhood_group because the
location of a property greatly influence the price people can rent it out. These
five strata are Brooklyn, Manhattan, Queens, Staten Island, Bronx.

After the split, there are 39116 instances in the train + dev set with 13, 14, 8062,
8062 missing values from name, host_name, last_review, reviews_per_month, respec-
tively. Creating a copy of this set is essential because, in Section 4.5, there will be
some tinkering with the variables.

4.2 The analysis of the target variable

The following table shows the average, minimum and maximum prices for a night:

14 Chapter 4. Exploratory Data Analysis

Average $152.72
Median $107.00
Minimum $0
Maximum $10000

TABLE 4.1: Prices

An interesting thing could be observed from the table is that there are $0 Airbnb
properties. Analysing together with Figure 3.2 and 4.6, it could be noticed that the
range where prices fluctuate is comprehensive. The average, median, maximum
values are $152.72, $107.00, $10000, respectively. The two figures below show the
distribution of Y-J prices and neighbourhood groups over the map of New York
City. It can be clearly seen that in general, the most expensive accommodations
can be found in Manhattan and the cheapest ones are in the Bronx.

FIGURE 4.1: Y-J transformed prices and neighbourhood groups’ dis-
tribution in NYC

4.3 The analysis of feature variables

The following tables and figures represent the possible values for neighbourhood_group,
room_type and their number of occurrences. The most number of properties can be
found in Manhattan followed by Brooklyn, Queens, Bronx and Staten Island. The
last three together have significantly lower proportions of all properties in New York
City. Regarding the room type, entire home and private home dominate the New
York City Airbnb offer with a tiny number of shared rooms can be rented.

Neighbourhood group Quantity
Manhattan 21661
Brooklyn 20104
Queens 5666
Bronx 1091
Staten Island 373

TABLE 4.2: Neigh-
bourhood group

Room Types Quantity
Entire home/apt 25409
Private room 22326
Shared room 1160

TABLE 4.3: Room
types

4.3. The analysis of feature variables 15

FIGURE 4.2: Histograms of Neighbourhood Group and Room Types

In the next figure, it could be observed that what room types are popular in which
neighbourhood groups. It could be seen that renting entire homes are popular in
Manhattan and Brooklyn, but in the latter, private rooms are slightly ahead of entire
homes. Shared room renting is significantly lower in all of the room types.

FIGURE 4.3: The distribution of room types among the neighbour-
hood group

16 Chapter 4. Exploratory Data Analysis

The same conclusion could be drawn from the map of New York City.

FIGURE 4.4: Room Types’ distribution over NYC map

An interesting boxplot worth showing is the availability of neighbourhood groups
during the year. What is striking, the median value of Staten Island regarding the
availability is just under 250 days. Properties in Manhattan are high in demand.

FIGURE 4.5: Availability of NYC Airbnb according to each neighbour-
hood group

4.4 Outliers

We could see the boxplots of all variables from Figure 4.6:

4.4. Outliers 17

FIGURE 4.6: Boxplots of the numerical variables

18 Chapter 4. Exploratory Data Analysis

What can be observed from these host of boxplots is that it just confirmed our hy-
pothesis from Figure 3.3 that lots of features are skewed and follow tail-heavy distri-
butions. In addition, there are a considerable amount of outliers in some attributes.
There are several techniques to handle outliers, but I opt for the Y-J transformation,
which will be discussed in the next chapter. As mentioned earlier, it is essential to
manage outliers due to the fact that it can negatively influence the effectiveness of
the ML algorithms on our data.

4.5 Tinkering with features

In this subsection, we are going to do some simple cleaning, imputation, feature ex-
traction on the copied data set. The appropriate data preprocessing will be carried
out in Chapter 5. Some attributes should be removed due to being irrelevant not
only for the correlation analysis but for the whole prediction. These variables are
id, host_id, name, host_name, last_review. As it is known, there are 8062 missing val-
ues from the reviews_per_month that should be somehow treated. There are several
methods to deal with this problem, but in this case, the most appropriate one is to
fill missing values by the median value of the reviews_per_month. Using median is
more robust to the outliers in this variable than applying mean value to fill missing
values. After that, one attribute can be established and added to the data set, namely
the months. It is created by dividing number_of_reviews with reviews_per_month, and
its purpose is to measure the number of months people writing reviews about a
specific Airbnb property.

4.6 Correlation

We wish to see how the price target variable correlates with (continuous) numerical
feature variables. The table below shows all these relationships:

Features Correlation Coefficient with price

availability_365 0.086939
calculated_host_listings_count 0.060829

latitude 0.035996
minimum_nights 0.028761

reviews_per_month -0.038919
months -0.040933

number_of_reviews -0.049548
longitude -0.161296

TABLE 4.4: Feature variables’ correlations with price

It can be recognised that none of these variables has strong predictive power for
the price in a linear space as they are relatively uncorrelated to the price. Even the
attribute longitude with the highest correlation coefficient in absolute value is fairly
weakly correlated with the price. However, it does not mean that none of those
features has a weak relationship with our target variable in a learning algorithm op-
erating in higher dimensions.

4.7. Some miscellaneous analysis 19

Another interesting question is how feature variables are correlated with each other.
Are there any signs of multicollinearity in our data set which could weaken ML
algorithms? Let’s find out. Here is the correlation matrix heatmap:

FIGURE 4.7: Correlation Matrix Heatmap showing linear relation-
ships between the features

It can be noticed that reviews_per_month and number_of_reviews fairly correlate
with each other with the correlation coefficient of 0.57. It may be an option to re-
move the number_of_reviews because reviews_per_month and months do not correlate
too much with each other in contrast to number_of_reviews with months. It can be as-
sumed that even in a higher dimension, reviews_per_month and number_of_reviews are
quite strongly related due to the fact that they are very similar measures. In this case,
Occam’s razor principle is more or less applicable later on ML models meaning that
given all other things being equal, a shorter explanation for observed data should be
favoured over a lengthier explanation. As we can see from Section 5.4, after appro-
priate transformations those correlations become more robust, so it is suggested to
remove number_of_reviews.

4.7 Some miscellaneous analysis

There are 221 unique neighbourhoods in the train + dev set. Here are the top 5
neighbourhoods in this data set:

20 Chapter 4. Exploratory Data Analysis

FIGURE 4.8: Top 5 neighbourhoods in New York City

There are 3098 properties in Williamsburg, 2948 in Bedford-Stuyvesant, 2117 in
Harlem, 1986 in Bushwick, 1568 in Hell’s Kitchen. In the 4.1, neighbourhood_group
was chosen to be the basis for the stratified sampling. This neighbourhood variable
could have been a better option if there had been enough accommodations in the
data set. It means that for example, there are neighbourhoods with only one instance
such as Fort Wadswoth or New Drop. The reason why neighbourhood would have
been more suitable for our purpose is that even inside a neighbourhood_group there
are a considerable amount of variabilities in terms of prices. Being more specific in
terms of territory could have given more leverage to predict prices. For this reason,
we should drop neighbourhood variables before applying a learning algorithm.

21

Chapter 5

Data Preprocessing

In this chapter, I am going to walk through the data processing steps, namely, data
cleaning, handling categorical variables, imputation, feature selection and extrac-
tion with Python code examples that I created for this purpose. Before doing any
data preprocessing, it is essential at this point in this project to separate the target
variables from the train and dev sets.

5.1 Data Cleaning

In the following code snippet, we could see some initial data cleaning steps before
delving into further data preprocessing:

def dropUnnecessary(df, df_target, dropList):
df_new = df.drop(dropList, axis=1)
return df_new, df_target

def dropCategorical(df):
dropList1 = df.select_dtypes(include=[’object’]).columns
df_num = df.drop(dropList1, axis=1)
return df_num

def puredVersion(df, df_target, dropList):
imputed, imputed_target = dropUnnecessary(df, df_target, dropList)
imputed_num = dropCategorical(imputed)

return imputed, imputed_num, imputed_target

TABLE 5.1: Data cleaning before any transformations on the data set

In the puredVersion function, we aim to create 3 data sets. imputed data frame
includes only the relevant features parametrised by dropList list containing user-
defined useless features. imputed_num only contains numerical variables from im-
puted. imputed_target accommodate our target variable, the price. In our case,
dropList contains the following features:

dropList = [’name’,’host_name’,’last_review’,’neighbourhood’,’host_id’,
’id’]

These attributes, as discussed in the previous chapter, are not particularly useful for
the regression task for different reasons, so it is advisable to dump them.

22 Chapter 5. Data Preprocessing

5.2 Transformation Pipeline and Feature Scaling

def df_proccessed(df, df_target, dropList, desired_cat_attr, full_pipeline1
= None, full_pipeline2 = None, pT = None):

imputed, imputed_num, imputed_target = puredVersion(df, df_target,
dropList)

imputed_target, targetTransform = target_var_transformer(imputed_target,
pT)

strategies = [’imputer’, ’y-j’]
for strategy in strategies:

if strategy == ’imputer’:
imputed_num, fittedColumnTransform1 =

num_var_transformer(imputed_num, full_pipeline1, strategy)
else:

imputed_num, fittedColumnTransform2 =
num_var_transformer(imputed_num, full_pipeline2, strategy)

imputed_concat = concat_num_cat_var(imputed, imputed_num,
desired_cat_attr)

imputed_concat.drop([’latitude’], axis=1, inplace=True)

return imputed_concat, imputed_target, fittedColumnTransform1,
fittedColumnTransform2, targetTransform

TABLE 5.2: Data transformation and feature scaling according to Yeo-
Johnson

df_processed is our data transformation function which encapsulates puredVer-
sion (Table 5.1), target_var_transformer (Table C.2), num_var_transformer (Table
C.1), and concat_num_cat_var (Table C.3) functions. Details about their Python
codes can be found in Appendix C. In short, what df_processed function does is that
firstly, it imputes the missing values in an attribute by using median values of that
feature. The reason for preferring median to mean values is using median values for
imputation would make that attribute more robust to outliers compared to applying
mean values. Then in case of the train set, it fits then transforms numerical and
target variables using Yeo-Johnson transformation. In case of the dev and test set, it
only transforms those two types of variables using the transformation pipelines de-
fined by fittedColumnTransform1, fittedColumnTransform2, and targetTransform when
fitting data on the train set. At the same time, when carrying out Y-J transformation,
standardisation is implemented, that is applying zero-mean, unit-variance normal-
isation to the transformed data. df_processed also one-hot encodes categorical vari-
ables controlled by the desired_cat_attr list parameter and concatenate it with the Y-J
transformed numerical variables. In the end, latitude feature is dropped for a reason
discussed in Section 5.4

5.3 Yeo-Johnson transformation

Data transformation, which is defined on R for reducing skewness and making a
distribution normal-like, has a significant role in regression tasks (Weisberg, 2001;

5.4. Analysis of the transformed data 23

Yeo & Johnson, 2000). Brief detail about the Box-Cox transformation should be out-
lined, because the Yeo-Johnson transformation is just the extension of the Box-Cox
transformation for non-positive variables.

The transformation made by Box & Cox (1964) is the ψBC given by:

ψBC(λ, xi) =

{
(xλ

i − 1)/λ if λ 6= 0,
log(xi) if λ = 0,

(5.1)

for positive xi. Those two are the data point in our data set for all i.
The transformation proposed by Yeo & Johnson (2000):

ψYJ(λ, xi) =


((xi + 1)λ − 1)/λ if λ 6= 0, xi ≥ 0,
log(xi + 1) if λ = 0, xi ≥ 0,
−[(−xi + 1)2−λ − 1]/(2− λ) if λ 6= 2, xi < 0,
−log(−xi + 1) if λ = 2, xi < 0,

(5.2)

where xi is the data point in our data set for all i, and λ is the parameter approxi-
mated by the Maximum Likelihood Estimation. The Yeo-Johnson transformation is the
same as the Box-Cox transformation of (xi + 1) when xi is positive. However, when
xi is negative, the Yeo-Johnson transformation is the same as the Box-Cox transfor-
mation of (−xi + 1) with the power of (2− λ). When λ equals either 0 or 2, a similar
method applies to them but now with the log transformation. It is also important to
notice that +1 at both xi and −xi. Therefore, the case when xi is equal to 0 can be
handled. The power of the Yeo-Johnson transformation is that it enables us to ex-
tend the notion of normality approximation to variables containing 0 and negative
values.

5.4 Analysis of the transformed data

After transforming the data frame to the desired form, the following could be no-
ticed using:

• All the values of latitude variable are transformed into 0. The reason is that
in the train + dev set the untransformed maximum and minimum values in
that feature are 40.499790 and 40.913059, respectively. So after the Yeo-Johnson
transformation, those values are translated into 0 across all instances. To this
end, latitude can be dropped from the transformed data set as it has no predic-
tive power for this regression task.

• Figure 5.1 1 shows that number_of_reviews has strong correlations to both months
and reviews_per_month after the transformation. The decision is to remove
number_of_reviews from our data set.

1The Figure 5.1 contains the number_of_reviews and latitude but the implementation Python code
C.1 and 5.2 do not.

24 Chapter 5. Data Preprocessing

FIGURE 5.1: Correlation Matrix Heatmap on the Y-J transformed data

25

Chapter 6

Model Training and Testing

In this chapter, a brief introduction of dimensionality reduction along with feature
selection and factor analysis is presented. It is also shown how key steps of Prin-
cipal Component Analysis (PCA) are carried out in practice, and what technique
should be used when dealing with data containing both numerical and categorical
variables. After that, we will delve into the details of training models and their eval-
uation. Some examples of models that are used in this chapter: Linear Regression,
Ridge/Lasso Regression, SVR with different kernels, Ensemble models. Mathemat-
ical backgrounds of some of those methods are contained in Appendix A. Our main
goal is to find the most promising models after doing evaluation either on the dev
set or through k-fold cross-validation for further hyperparameter optimisation. In
the end, the performance of our models is displayed, and among them, the best
performing one is going to be run on the unseen test set.

6.1 Dimensionality Reduction

Working with high-dimensional data often comes with challenges as it is hard to
analyse, interpret, and visualise. Still, it usually has properties that can be harnessed.
In most real-world problems, training instances are not spread out uniformly across
all dimensions. For example, many dimensions/features are almost constant, while
others can be expressed by a combination of the remaining ones. As a consequence,
all training instances may lie within (or close to) a much lower-dimensional sub-
space. (Geron, 2019; Deisenroth et al., 2020). We deal with two types of dimension-
ality reduction techniques: feature selection and feature extraction.

6.1.1 Feature Selection

In Iuhaniwal’s article (2019) states that in order to carry out ML task in high dimen-
sional data, feature selection becomes essential. Some attributes may be irrelevant
or less important to the target variable, so their inclusion to the model would lead
to:

• Increase in complexity of a model and makes it harder to interpret.

• Increase in time complexity for a model to get trained.

• May result in an unreliable model with less accurate predictions.

These reasons give rise to the use of feature selection in ML. For a dataset with d-
dimensional feature space, the feature selection process reduces to a k feature space
such that k < d, where k is the number of a smaller set of significant features.
The benefits of feature selections are:

26 Chapter 6. Model Training and Testing

• Training an ML algorithm is much faster.

• Complexity reduction of a model.

• More interpretable models.

• Better prediction power of a more sensible model.

• Reduction in overfitting.

There are three main types of feature selection methods: Filter, Wrapper and Em-
bedded methods.

In Table 6.1, the comparison of the three feature selection methods’ properties is
highlighted.

Filter methods Wrapper methods Embedded methods

A generic set of methods
not including a specific

ML algorithm.

Evaluating on a specific
ML algorithm to find

optimal features.

Embedding (fix) features
during model building

process. Feature selection
is done by observing

each iteration of a model
training phase.

A lot faster than
Wrapper methods.

High computation time
for a dataset with

many features.

Sits between Filter and
Wrapper methods in
computation time.

Less susceptible to
overfitting.

High chances of
overfitting due to

involving training of
ML models with

different combinations
of attributes.

Reducing overfitting
by penalising

coefficients of a
model being too large.

Pearson’s Corr.,
χ2, LDA, etc..

Sequential Forward/
Backward Selection, etc...

Lasso/Ridge
Regression,

Elastic Net, etc..

TABLE 6.1: Filter vs. Wrapper vs. Embedded methods

In the project, only some of the Embedded methods will be used. For more de-
tailed information about these three feature selections methods, please refer to Ap-
pendix B.1.

6.1.2 Factor Analysis

Another method for avoiding the curse of dimensionality is the factor analysis. The
Principal Component Analysis (PCA), Multiple Correspondence Analysis (MCA), and
Factor Analysis of Mixed Data (FAMD) are going to be discussed briefly. In the project,
FAMD is applied, which is the combination of PCA and MCA.

Principal Component Analysis

The mathematical details behind this concept are discussed in Appendix B.2. Here,
only the algorithm of the PCA is outlined (Raschka et al., 2019; Deisenroth et al.,
2020):

6.1. Dimensionality Reduction 27

1. Computing the mean µ of the dataset and subtracting it from every data point.
It leads to the dataset having 0 as mean. This process may help in avoiding the
risk of numerical problems. (Optional step)

2. Dividing the data points by the standard deviation σd of the dataset for every
dimension d = 1, . . . , D. The data is unit-free, and has variance 1 along each
axis.

3. Computing then decomposing the data symmetric covariance matrix into its
eigenvalues and corresponding eigenvectors.

4. Sorting those eigenvalues by decreasing order to rank the corresponding eigen-
vectors.

5. Selecting the explained variance ratio that is applied to the data. It will result in
k eigenvectors, where k(< d) is the dimension of the new feature subspace.

6. Constructing B, the projection matrix from the best k eigenvectors.

Multiple Correspondance Analysis

MCA is often considered as a categorical analogy of Principal Component Analysis.
According to Greenacre (2007), MCA is concerned with the relationships amongst
(or within) a set of variables which can be recoded as dummy variables. As a result,
it is going to form an indicator matrix a.k.a a one-hot encoded matrix. It has as many
rows as cases and as many columns as categories of response. MCA is obtained by
applying a standard correspondence analysis (CA) on this indicator matrix. The re-
sult is a linear combination of rows (also referred to as factors) that best describe the
data. Similarly, as in the Principal Component Analysis, the first axis is the most im-
portant dimension, the second axis the second most important, and so on, in terms of
the amount of variance they capture. The number of axes to be retained for analysis
is determined by calculating modified eigenvalues.

Factor Analysis of Mixed Data

FAMD is the extension of MCA by including quantitative variables. It makes it pos-
sible to analyse the similarity between individuals by taking into account mixed
types of variables. Additionally, one can explore the association between all vari-
ables, both quantitative and qualitative variables.
The criterion for FAMD (Pages, 2014):

Let’s define RI as the variables’ space or the space of functions on I (a func-
tion on I attributes a numerical/categorical value to each individual i).
Let a centred unit vector be v of RI (of which the ith coordinate vi is the
value function v for individual i. As a result, v is a quantitative func-
tion. It turns out that within the same space of functions on I, it is highly
useful to involve both numerical and categorical variables as the mea-
surement of (the intensity of) the relationship between two variables of
different types is expressed simply in this space. It is vital for analysing
these two types of variables concurrently in FAMD.

Let the data include K1 (k1 = 1, . . . , K1) standardised quantitative vari-
ables and K2 (k2 = 1, . . . , K2) indicators for qualitative variables. There-
fore, K = K1 + K2 is the total number of quantitative and indicator vari-
ables. It is known that:

28 Chapter 6. Model Training and Testing

• r(k1, v) is the correlation coefficient between variables k1 and v.

• η2(k2, v) is the squared correlation ratio between variables k2 and v.

In the PCA of K1, the objective is to find the function on I that is the most
correlated to all K1 variables:

max ∑
k1

r2(k1, v) (6.1)

In case of the MCA of K2, the aim is to look for the function on I that is
the most related to all K2 variables:

max ∑
k2

η2(k2, v) (6.2)

For FAMD {K1, K2}, the objective is to find the function on I that is the
most related to all K1 + K2 variables:

max
(

∑
k1

r2(k1, v) + ∑
k2

η2(k2, v)
)

(6.3)

The following figure summarises the PCA, the MCA, and the FAMD:

FIGURE 6.1: Illustration of the factor analysis (Pages, 2011)

The implementation of FAMD can be found in C.4. It turns out from the code
implementation that ten components are retained, and they account for around 95%
of the explained variance. In the next several sections, some learning models are
introduced with their background information. Those learning models are used in

6.2. Linear Regression 29

this project. The decision to include only those learning models comes after train-
ing many quick-and-dirty ML models and evaluate them without hyperparameter
optimisation.

6.2 Linear Regression

6.2.1 Vanilla Linear Regression

Section 6.2, 6.3 and the corresponding Appendix A.1 are based on Andrew Ng’s
CS229 lecture note about supervised learning (2020), and Hastie, Tibsherani and
Friedman’s book about statistical learning (2009). One of the most broadly used
supervised learning models for regression tasks is Linear Regression. It assumes
that the target variable y is a function of inputs with ε residual error that captures
either unmodeled effect or random noise.

y(x) = θTx + ε =
d

∑
i=0

θjxj + ε (6.4)

Let’s introduce some notations for future uses (not just for Linear Regression):

• n : number of training instances

• d : number of features

• θ: Parameters of a model

• θj: the parameter of the jth feature variable

• J(θ): (Least-squares) cost function

• x(i)j : The jth feature variable of the ith instance

• y(i): Corresponding target variable of the ith in the training set

• (x(i), y(i)) : ith training example

• {(x(i), y(i)); i = 1, . . . , n}: training set

• X : Input Space

• Y : Output Space

• hθ(x) or h(x): Hypothesis function

Given the training set, our goal is to learn the function h : X 7→ Y . It means that
h(x) approximates the corresponding value of y as closely as possible. So the corre-
sponding equation of the y in Equation (6.4) is almost the same except the lack of the
presence of the error term

h(x) = θTx =
d

∑
i=0

θjxj, (6.5)

where θj’s are the parameters parameterising the above mentioned linear mappings,
and we let x0 = 1 (the intercept term).

The measurement of the difference between the y(i) and h(x(i)) is done by the
cost function:

J(θ) =
1
2

n

∑
i=1

(hθ(x(i))− y(i))2 (6.6)

30 Chapter 6. Model Training and Testing

or equivalently in norm form

J(θ) =
1
2

n

∑
i=1
‖y(i) − θTx(i)‖2. (6.7)

Our aim is to
min

θ
J(θ), (6.8)

that is minimising the cost function when approximating the y(i) with h(x(i)) by
choosing the appropriate θ parameter, which can found in many ways. The first
method for finding the optimal θ when training a model is by using the normal equa-
tion, the closed-form solution, which does the trick in one step.

θ̂ = arg min
θ

J(θ) = (XTX)−1 XTy, (6.9)

which is the OLS estimator for θ. X ∈ Rn×(d+1) design matrix given a training set.
This approach may not work if XTX is not invertible. For those cases, calculating
θ̂ = X+y is the way forward, where X+ is the pseudoinverse of X (Moore-Penrose in-
verse). This method harnesses the power of the Singular Value Decomposition (SVD).
Using pseudoinverse is more efficient than the normal equation, and it also handles
non-invertible X cases well (Geron, 2019). The drawback of these two one-step so-
lutions is that they are computationally expensive, especially when the number of
features grows fast. In the normal equation, inverting the XTX matrix takes about
O(n2.4) to O(n3), while using SVD costs "only" O(n2).
Other methods for minimising J(θ) is using the gradient descent algorithm, which is
more suitable for cases when there are lots of features or too many training examples
to fit in memory. More details can be found in Appendix A.1.

6.3 Regularised Linear Regression

We specifically mention three shrinkage methods: Ridge Regression, Lasso Regres-
sion (Least Absolute Shrinkage and Selection Operator Regression), and Elastic Net
(a mixture of the Ridge and the Lasso). The common feature of all these techniques
is that they add regularisation term to their respective cost functions to avoid over-
fitting. They are also a part of the embedded feature selection methods because the
regularisation term penalises the parameter θ being too big. As a result, they influ-
ence the feature subset used for model training. Using Equation (6.7), the regularised
cost functions are

JRidge(θ) = J(θ) +
λ

2
‖θ‖2

2 (6.10)

JLasso(θ) = J(θ) + λ‖ θ‖1 (6.11)

JElastic(θ) = J(θ) + r λ ‖θ‖1 + (1− r)
λ

2
‖θ‖2

2 , (6.12)

where ‖θ‖2
2 = ∑n

i=1 θ2
i , ‖θ‖1 = ∑n

i=1 |θi| , λ is the hyperparameter controlling the
regularisation of a model, and r is the mix ratio between Ridge and Lasso Regression
(Geron, 2019).

6.4. Support Vector Machine 31

6.4 Support Vector Machine

The aim of the Support Vector Classification (SVC) is to insert the widest possible
road between two classes. At the same, it wishes to minimise the margin violation.
In other words, the number of data points to include on that road or on the wrong
side of the road. However, the objective of the Support Vector Regression (SVR) is to
try to fit as many instances as possible on the street while limiting margin violations,
that is instances off the road. Therefore, the objectives of SVR and SVC are opposite.
In this project, we only tackle the SVR. In the case of SVR, the width of the road is
controlled by a parameter, ε. Including more training examples within the margin
does not affect the model’s predictions. That is why SVR is considered to be an ε-
sensitive model. To overcome nonlinear regression tasks, the way to go is to use a
kernelised SVM model (Geron, 2019). The mathematical details of kernel methods,
SVR and their relationship can be found in Appendix A.2 and A.3.

6.5 Gradient Boosting – XGBoost

The general idea of boosting is to train all the predictors one-by-one consequently, so
the next predictor tries to correct the drawbacks of the preceding ones. XGBoost (Ex-
treme Gradient Boosting) is an optimised implementation of the Gradient Boosting.
In contrast to Adaboost, Gradient Boosting does not tinker with the weight of new
instances. It tries to fit the new predictor on the residual error caused by the previ-
ous predictor(s) (Geron, 2019). The base regressor for the XGBoost is a decision tree,
which is also called in this context as Gradient Boosted Regression Trees (GBRT).

6.6 Bagging and Pasting

Bagging and Pasting is an Ensemble learning method which uses the same basic
learning algorithm such as a decision tree for every predictor and trains them on
different subsets of the training set. When sampling with replacement, it is called
Bagging. If it is done without replacement, it is called Pasting. That is, Bagging and
Pasting allow training instances to be sampled several times across multiple predic-
tors. Still, only Bagging enables training instances to be sampled several times for
the same predictor. Once all predictors are trained, the ensemble can predict for a
new instance by simply aggregating the predictions of all predictors. The aggrega-
tion function for the regression task is the average. Each predictor has a higher bias
than if it were trained on the original training set, but aggregation reduces both bias
and variance. In the end, typically the result of Bagging and Pasting has an effect of
having a lower variance than a single predictor trained on the original training set
with a similar bias. (Geron, 2019)

6.7 Voting Regression

Voting Regression is an Ensemble learning method that fits several base regressors,
each on the whole data set. Then it averages the individual predictions to form a final
prediction. Well-chosen weakly dependent (ideally independent) diverse regressors
could uncover and smooth each other’s disadvantages, therefore boost the overall
performance of the Voting Regression.

32 Chapter 6. Model Training and Testing

6.8 Results of the Model Training

In this section, the above-mentioned learning models are hyperparameter tuned and
cross-validated on the training set. From now on, the meaning of the training set is
the train + dev set together. Grid Search Cross-Validation technique is an exhaustive
hyperparameter searching and optimising method coupled with cross-validation.
Grid Search CV experiments with all the hyperparameter values provided by the
user, then it uses cross-validation to evaluate all the possible combinations of hy-
perparameter values. In this project, Grid Search CV is only used on Regularised
Linear Regression and XGBoost Regression because of the time and memory con-
straints. All the others are hyperparameter tuned by hand.
Hyperparameters of all those models are:

• Regularised Linear Regression (with SGD):
{ ’alpha’: 0.005, ’epsilon’: 0.01, ’eta0’: 0.01, ’learning_rate’: ’optimal’, ’loss’:
’squared_loss’, ’penalty’: ’l2’, ’random_state’: 69}
It turns out that after doing Grid Search CV, the Regularised Linear Regression
becomes Ridge Regression because of the ’l2’ penalty among the hyperparam-
eter values.

• SVR with Gaussian Kernel:
{ ’kernel’: ’rbf’, ’C’ : 2.0, ’gamma’ : 0.2, ’epsilon’: 0.5 }

• Bagging:
{ ’base_estimator’: ’DecisionTreeRegressor()’, ’n_estimators’ : 200,
’max_samples’ : 1000, ’bootstrap’: ’True’ }

• Voting Regression:
{ ’estimators’: [(’xgb’, xgb2_reg), (’svmGauss’, svmGauss1),
(’bagging’, bagging1_reg)]},
where svmGauss1 is the SVR regressor with the hyperparameters above, bag-
ging1_reg is the Bagging regressor with the hyperparameters above, and xgb2_reg
is an XGBoost regressor (not the final one!) defined by the hyperparameters as
follows:
{ ’max_depth’: 5, ’learning_rate’: 0.05, ’objective’: ’reg:squarederror’,
’n_estimators’: ’200’, ’booster’: ’gbtree’, ’gamma’: ’10’, ’subsample’: 0.9}

• XGBoost Regression:
{ ’booster’: ’gbtree’, ’gamma’: 5, ’learning_rate’: 0.1, ’max_depth’: 5,
’n_estimators’: 500, ’objective’: ’reg:squarederror’, ’subsample’: 0.9 }

As it is mentioned in Section 2.2, the performance measurement unit is the RMSE.
6-fold cross-validation is used to evaluate the performance of the learning models.
It means that the training set is dived into six subsets. Five of them are subsets on
which a learning model is trained, and the evaluation happens on the sixth one. This
process is done on all the six subsets being an evaluation subset after training on the
other five subsets. Then the system averages all the six RMSE values given by the
standalone evaluation subsets.

6.9. Final Model and Testing 33

The result of the training and cross-validation RMSE of the learning models are
summarised in the following table:

Model Training RMSE CV RMSE
Ridge 0.71539861 0.71389930

SVR w/ RBF kernel 0.64375725 0.65615193
Bagging 0.66090620 0.67705554
Voting 0.64708188 0.66379841

XGBoost 0.62054892 0.66705217

TABLE 6.2: Training and CV RMSE errors of the learning models

The best performing model, according to the CV RMSE, is the SVR with Gaus-
sian (RBF) kernel after hyperparameter tuning. Therefore, the final model is the SVR
with Gaussian kernel with the appropriate hyperparameter values, which is going
to be tested on the unseen test set data. The Python code of the winning model can
be found in C.5 and C.6.

6.9 Final Model and Testing

Running the SVR with Gaussian (RBF) kernel learning model on the unseen test data
yields us RMSE of 0.66589135, which is slightly worse than the 6-fold CV RMSE.
Still, it is kind of expected because the hyperparameters are tuned on the validation
sets and not on the unseen data. The Python code can be found in C.7.

35

Chapter 7

Further Development
Opportunities

There are a lot of things that could have been implemented in the project to make
predictions better or to extend it at a greater scale. In the following sections, these
issues are discussed.

7.1 Other Learning Algorithms

In Keras and Tensorflow libraries, Artificial Neural Network (ANN) and Deep Learn-
ing (DL) algorithms could have been carried out on the NYC Airbnb data set. How-
ever, more computational power may be needed to implement those more complex
learning algorithms than what I had on Google Colab.

7.2 More features

Generally speaking, it would have been useful if we had more data. However, better
additional features would have been much more appreciated for our project. Some
suggestions for those attributes are:

• The median income in a neighbourhood_group.

• Some crime statistics.

• Public transport availability around accommodations on the scale of 5, where
1 is the worst and 5 is exceptionally good.

• Property prices around accommodations in terms of either m2 or f t2.

• Distribution of types of shops around accommodations.

• Distances to some prominent sightseeing places.

• Time Series statistics for the changes in prices for accommodations.

7.3 Implementation in real life

Hypothetically, if we are ready with our models, it could be developed into the pro-
duction environment as a part of a wide-scale system. It could be done in a web
application where a user gives some inputs such as price category or the name of
a neighbourhood. Then it sends this query to a web server which would call the
model’s predict() method and direct the answer back to the user. Furthermore, by

36 Chapter 7. Further Development Opportunities

having advanced technologies in cloud computing, it could be implemented in ei-
ther on the Google Cloud AI Platform, AWS (Amazon Web Service) or Microsoft
Azure. However, it is not the end of the story by implementing our model in a pro-
duction environment. For the model’s performance to be consistent and adaptive,
an appropriate program should be written to check models’ real live performance as
more and more data coming into the system. (Geron, 2019) The system should send
an alert if the performance dropped significantly for some reasons such as outdated
data or matters which do not relate to the model itself. Continuous data collection,
training and hyperparameter tuning are needed for this kind of system. Some hu-
man raters may be required for tagging labels in case of classification models where
the models could be unstable due to lack of data. A platform for such raters is, for
example, the Amazon Mechanical Turk.

37

Appendix A

Technical Details

A.1 Linear Regression

A.1.1 Gradient Descent

Our purpose is to minimise J(θ). Now, an iterative method is shown, namely the
gradient descent algorithm, which takes a step in the steepest descent direction of the
objective function. It starts with some initial θ, and iteratively performs the update
for all values of j = 0, . . . d at the same time:

θj := θj − α
∂

∂θj
J(θ), (A.1)

where α is the learning rate. Before going into deeper in the algorithm, the partial
derivative part has to be discussed in the previous update rule for the gradient de-
scent. For a single training example (x, y), the cost function is J(θ) = 1/2 (h(x)− y)2.

∂

∂θj
J(θ) =

∂

∂θj

1
2
(h(x)− y)2

=
1
2
· 2(h(x)− y)2 ∂

∂θj
(h(x)− y)2

= (h(x)− y)
∂

∂θj

(d

∑
i=0

θixi − y
)

= (h(x)− y) xj

(A.2)

Therefore the update rule for only one training example

θj := θj + α
(

y(i) − h(x(i))
)

x(i)j (A.3)

This update rule is known as the least mean squares (LMS) update rule (also called as
Widrow-Hoff learning rule). Tweaking this LMS rule for considering the whole data
set would give us batch gradient descent (BGD) and stochastic gradient descent
(SGD).

Batch Gradient Descent

Repeat until convergence {
For j = 0, 1, . . . , d (iterating over the number of features)

38 Appendix A. Technical Details

θj := θj + α
n

∑
i=1

(
y(i) − h(x(i))

)
x(i)j (A.4)

}

By putting all θj updates into a vector θ, Equation (A.4) can be rewritten in the fol-
lowing way:

θ := θ + α
n

∑
i=1

(
y(i) − h(x(i))

)
x(i) (A.5)

It is the batch gradient descent (BGD) on the cost function J(θ). The reason why this
is batch is that algorithm above consider every example in the entire training set on
every step. In general, gradient descent (GD) can be susceptible to a local minimum,
but fortunately, the cost function for the Linear Regression happens to be convex. It
means that it has only one global minimum point, so the GD will always converge
to that minimum point (unless the learning rate α is not too large).

Stochastic Gradient Descent

Repeat until convergence {
For i = 1, . . . , n (iterating over the number of training instances)

For j = 0, 1 . . . , d (iterating over the number of features)

θj := θj + α
(

y(i) − h(x(i))
)

x(i)j (A.6)

}

Similarly, Equation (A.6) can be expressed concisely:

θ := θ + α
(

y(i) − h(x(i))
)

x(i) (A.7)

It is the stochastic gradient descent (SGD) algorithm. The advantage of the SGD over
the BGD for a more extensive training set is that BGD has to take into account the
entire training set before taking any single step. It is costly for a massive number
of training instances. Whereas SGD at any single step, it just takes an instance and
carries on with it for that step. Usually, SGD gets θ close to the optimum signifi-
cantly faster than BGD, but unlike BGD, it may never converge to that optimum. θ
might just jump around (oscillate) the minimum of J(θ). Despite this fact, the SGD
algorithm will approximate θ to the true minimum surprisingly well.

A.1.2 Normal Equation

Let X ∈ Rn×(d+1) design matrix that include training instances’ input values in its
rows:

X =


(
x(1)
)T(

x(2)
)T

...(
x(n)

)T

 (A.8)

A.1. Linear Regression 39

Let y ∈ Rn×1 include all the target values from the training set:

y =


y(1)

y(2)
...

y(n)

 (A.9)

Because of h(x(i)) =
(

x(i)
)T

θ, it can be recognised that

Xθ − y =


(
x(1)
)T

θ(
x(2)
)T

θ
...(

x(n)
)T

θ

−


y(1)

y(2)
...

y(n)



=

 h
(
x(1)
)
− y(1)

...
h
(
x(n)

)
− y(n).


(A.10)

By using the dot product property of aTa = ∑i a2
i for a vector a:

1
2
(Xθ − y)T(Xθ − y) =

1
2

n

∑
i=1

(h(x(i))− y(i))2

= J(θ)
(A.11)

To minimise J(θ), differentiate J(θ) with respect to θ and set this derivative to
zero:

0 = ∇θ J(θ) = ∇θ
1
2
(Xθ − y)T(Xθ − y)

=
1
2
∇θ

(
(Xθ)T Xθ − (Xθ)T y− yT (Xθ) + yTy

)
=

1
2
∇θ

(
θT(XTX)θ − 2 yT(Xθ)

)
=

1
2
∇θ

(
θT(XTX)θ − 2 (XTy)T θ

)
=

1
2

(
2 XTXθ − 2 XTy

)
= XTXθ − XTy

(A.12)

So after reconstructing Equation (A.12), we get:

XTXθ = XTy (A.13)

θ̂ = arg min
θ

J(θ) = (XTX)−1 XTy (A.14)

So the closed-form normal equation gives us θ̂, the value that minimises the cost
function J(θ).

40 Appendix A. Technical Details

A.1.3 Probabilistic interpretation

In this section, we give another interpretation of why J(θ) makes sense, which is the
probabilistic interpretation. For a single training instance, rewriting Equation (6.4)
gives us

y(i) = θTx(i) + ε(i). (A.15)

Suppose that ε(i) are i.i.d and ε(i) ∼ N (0, σ2). So the density function of ε(i) is

p(ε(i)) =
1√
2πσ

exp

(
− (ε(i))2

2σ2

)
. (A.16)

Plugging Equation (A.15) (rearranged for ε(i)) into (A.16)

p(y(i)|x(i); θ) =
1√
2πσ

exp

(
− (y(i) − θTx(i))2

2σ2

)
, (A.17)

which equivalently means that y(i)|x(i); θ ∼ N (θTx(i), σ2). For the whole training set
X given by (A.8), the density function of y given by (A.9) is p(y|X; θ). If we look at
this function as a function of the unknown parameter of θ, it is called the likelihood
function. Owing to our assumption about the ε(i), we can express it as

L(θ) = L(θ; X, y) = p(y|X; θ)

=
n

∏
i=1

p(y(i)|x(i))

=
n

∏
i=1

1√
2πσ

exp

(
− (y(i) − θTx(i))2

2σ2

)
.

(A.18)

We would like to find the best θ̂ that maximises this L(θ) function. This process is
called Maximum Likelihood Estimation. However, instead of using this strictly increas-
ing L(θ), let’s use the log-likelihood l(θ)

l(θ) = log L(θ)

= log
n

∏
i=1

1√
2πσ

exp

(
− (y(i) − θTx(i))2

2σ2

)

=
n

∑
i=1

log
1√
2πσ

exp

(
− (y(i) − θTx(i))2

2σ2

)

= n log
1√
2πσ

− 1
σ2 ·

1
2

n

∑
i=1

(
y(i) − θTx(i)

)2
.

(A.19)

It can be seen that maximising l(θ) is the same as

min
θ

1
2

n

∑
i=1

(
hθ(x(i))− y(i)

)2
= min

θ
J(θ). (A.20)

A.1. Linear Regression 41

A.1.4 Shrinkage Methods

Here we discuss only Lasso and Ridge. The optimum θ̂s that minimise the cost func-
tions of JRidge(θ) (6.10) and JLasso(θ) (6.11) (separately) are

θ̂ Ridge = arg min
θ

{
J(θ) + λ‖θ‖2

2
}

= arg min
θ

{
1
2

n

∑
i=1
‖y(i) − θTx(i)‖2 +

λ

2
‖θ‖2

2

}

= arg min
θ

{
n

∑
i=1
‖y(i) − θTx(i)‖2 + λ‖θ‖2

2

} (A.21)

θ̂ Lasso = arg min
θ

{J(θ) + λ‖θ‖1}

= arg min
θ

{
1
2

n

∑
i=1
‖y(i) − θTx(i)‖2 + λ‖θ‖1

}
.

(A.22)

λ ≥ 0 is the parameter controlling the amount of shrinkage. The larger the value of
λ, the greater the amount of shrinkage. The coefficients are shrunk toward zero (and
each other).

The equivalent way to express (A.21) and (A.22) are

θ̂ Ridge = arg min
θ

{
n

∑
i=1
‖y(i) − θTx(i)‖2

}

s.t. ‖θ‖2
2 ≤ t

(A.23)

θ̂ Lasso = arg min
θ

{
1
2

n

∑
i=1
‖y(i) − θTx(i)‖2

}

s.t. ‖θ‖1 ≤ t.

(A.24)

There is a one-to-one correspondence between the parameters λ (in (A.21) and (A.22))
and t (in (A.23) and (A.24)). When there is a lot of high correlation between variables
in the Linear Regression model, their coefficients can have significantly less predic-
tive power. Therefore, the model is going to overfit. A similarly large negative
coefficient can cancel a wildly large positive coefficient on one variable on its corre-
lated cousin. By imposing a size constraint on the coefficients, this problem can be
alleviated.

As we can see the constraint/penalty terms of Ridge and Lasso are in L2 and L1
respectively. Because the penalty term of Lasso makes the solutions nonlinear in the
y(i), there is no closed-form expression as in the case of Ridge. So using the matrix
form as in Section A.1.2 for the Ridge provides us

JRidge(θ) = (Xθ − y)T(Xθ − y) + λ θTθ (A.25)

42 Appendix A. Technical Details

So the solution for the equation above is

θ̂ Ridge = arg min
θ

JRidge(θ) = (XTX + λI)−1 XTy. (A.26)

With the choice of quadratic penalty θTθ, the Ridge solution is a linear function of y.

FIGURE A.1: Geometric Interpretation of the Ridge Regression
(Raschka et al., 2019)

FIGURE A.2: Geometric Interpretation of the Lasso (Raschka et al.,
2019)

A.2. Kernel Methods 43

A.2 Kernel Methods

This section is based on Andrew Ng’s lecture note about kernel methods and SVM
(2020), Bishop’s book about machine learning (2007). It is a basis for some techniques
in machine learning, such as Support Vector Machine (SVM) or Kernelised Principal
Component Analysis (KPCA).

A.2.1 Feature Maps

Let’s define φ : Rd 7→ Rp be a feature space map that maps attribute x ∈ Rd to the
features φ(x) ∈ Rp. Let’s demonstrate on the BGD and SGD, which are all based on
LMS. Gradient descent algorithm is constructed for fitting the model θT φ(x). The
equivalent forms of the BGD (A.5) and SGD (A.7) respectively are

θ := θ + α
n

∑
i=1

(
y(i) − θTx(i)

)
x(i) (A.27)

θ := θ + α
(

y(i) − θTx(i)
)

x(i). (A.28)

Replacing x(i) in the algorithms above with φ(x(i)) provides us

θ := θ + α
n

∑
i=1

(
y(i) − θTφ(x(i))

)
φ(x(i)) (A.29)

θ := θ + α
(

y(i) − θTφ(x(i))
)

φ(x(i)). (A.30)

A.2.2 Kernel Trick

Let’s define the kernel function K : X × X 7→ R corresponding to the feature map φ
as

k(x, z) = φ(x)T φ(z) = 〈φ(x), φ(z)〉, (A.31)

where k(x, z) ≥ 0 and symmetric.
The kernel trick is now demonstrated on the cost function of the Ridge Regres-

sion. Equation (6.10) could be written as follows using the feature map φ:

JRidge(θ) =
1
2

n

∑
i=1

(
θT φ(x(i))− y(i)

)2
+

λ

2
θTθ, (A.32)

where λ ≥ 0. Setting ∇θ J(θ) = 0 gives us

θ̂ = − 1
λ

n

∑
i=1

(
θT φ(x(i))− y(i)

)
φ(x(i)) =

n

∑
i=1

βiφ(x(i)) = ΦT β, (A.33)

where Φ is the design matrix, whose nth row is given by φ(x(i))T. It can be easily
recognised that θ̂ is a linear combination of the vectors φ(x(i)) with coefficients β
that are functions of θ. The vector β = (β1, . . . , βn) is defined as

βi = −
1
λ

(
θT φ(x(i))− y(i)

)
. (A.34)

44 Appendix A. Technical Details

Instead of using the parameter θ in the cost function, it can be expressed in terms of
the vector β, which gives space for dual representation. Plugging θ = ΦT β into J(θ)
provides us

JRidge(β) =
1
2

βT ΦΦTΦΦT β− βT ΦΦT y +
1
2

yTy +
λ

2
βT ΦΦT β, (A.35)

where y = (y(1), . . . , y(n)). Let’s define the Gram matrix K = ΦΦT, which is an d× d
symmetric matrix with elements

Kij = φ(x(i))Tφ(x(j)) = k(x(i), x(j)), (A.36)

where the right-hand side of the equality is the kernel function defined at (A.31). The
(A.35) cost function can be rewritten using the Gram matrix in the following way:

JRidge(β) =
1
2

βT KKβ− βT Ky +
1
2

yTy +
λ

2
βT Kβ. (A.37)

Setting ∇β J(β) = 0 gives us

β̂ = (K + λI)−1 y. (A.38)

Substituting this back to the hypothesis function of the Ridge Regression model we
get the following prediction for a new input x

h(x) = θT φ(x) = βT Φ φ(x) = k(x)T (K + λI)−1 y, (A.39)

where the vector k(x) is defined with elements kn(x) = k(xn, x). Or equivalently

h(x) = θT φ(x) =
n

∑
i=1

βi φ(x(i))T φ(x) =
n

∑
i=1

βi k(x(i), x). (A.40)

The idea is if having an algorithm devised in a way that the input vector x enters
only in the form of inner product, that inner product can be substituted for some
kernel function. So instead of calculating with the multidimensional φ, it is enough
to know its existence, because k encapsulates the corresponding φ.

Some well-known kernels

• Linear Kernel
k(x, z) = xTz (A.41)

• Polynomial Kernel
k(x, z) = (δxTz + r)m (A.42)

• Gaussian Kernel or Radial Basis Function (RBF) Kernel

k(x, z) = −exp
(
−‖x− z‖2

2σ2

)
(A.43)

These kernels could be used in the context of Support Vector Regression (SVR). The
question is how we know whether the kernel is valid or not. The Mercer theorem
would ensure the validity of a kernel.

A.3. Support Vector Regression 45

Necessary and sufficient conditions for kernel validity

Theorem A.2.1 (Mercer). Let K : Rd 7→ Rd be given. For K to be a valid / Mercer kernel,
it is necessary and sufficient that for any {x(1), . . . , x(n)} (n < ∞), the corresponding kernel
matrix is symmetric and positive semi-definite.

A.3 Support Vector Regression

This section is based on Murphy’s (2012) book.
As mentioned in Section 6.4, SVR is an ε-sensitive model. To this end, the following
epsilon insensitive loss function is defined as (Vapnik et al., 1997)

Lε(y, ŷ) =

{
0 if|y− ŷ| < ε

|y− ŷ| − ε otherwise,
(A.44)

where let ŷ = h(x). In other words, this loss function represents the fact that if any
point lying inside an ε-tube (street), the prediction is not penalised.

The corresponding objective function is

J(θ) = C
n

∑
i=1

Lε

(
y(i), ŷ(i)

)
+

1
2
‖θ‖2, (A.45)

where C = 1/λ is a regularisation constant. The objective function is convex and
unconstrained, but not differentiable, owing to the absolute value function in the loss
term. One way to unlock this problem is to redefine the objective as a constrained
optimisation problem. Let’s introduce slack variables to depict the degree to which
each point lies outside the ε-tube :

y(i) ≤ ŷ(i) + ε + ξ+i (A.46)

y(i) ≥ ŷ(i) − ε− ξ−i (A.47)

By using them, the objective can be rewritten as follows:

J(θ) = C
n

∑
i=1

(
ξ+i + ξ−i

)
+

1
2
‖θ‖2, (A.48)

where ξ+i and ξ−i are non-negative constants. With this knowledge, the optimisation
problem can be formulated as:

min
θ

J(θ) = min
θ

C
n

∑
i=1

(
ξ+i + ξ−i

)
+

1
2
‖θ‖2

s.t y(i) ≤ ŷ(i) + ε + ξ+i

y(i) ≥ ŷ(i) − ε− ξ−i
ξ+i ≥ 0
ξ−i ≥ 0

(A.49)

46 Appendix A. Technical Details

It is a standard quadratic program in 2n + d + 1 variables. Shoelkopf and Smola
(2002) show that the optimal solution is in the form of

θ̂ =
n

∑
i=1

βix(i), (A.50)

where βi ≥ 0. It can be proved that β is a sparse vector (that is a vector with a lot
of 0 elements) because errors smaller than ε are ignored. The x(i) vectors for which
βi > 0 are called the support vectors. These form the street for which errors lie on or
outside the ε tube.

After a model is trained, the prediction made by the usual hypothesis function
formula, that is:

h(x) = ŷ(x) = θ̂ Tx (A.51)

Plugging θ̂ determined in the formula (A.50) into the hypothesis function gives us

h(x) = ŷ(x) =
n

∑
i=1

βi〈x(i), x〉. (A.52)

Replacing 〈x(i), x〉 with k(x(i), x) to get a kernelised solution

h(x) = ŷ(x) =
n

∑
i=1

βi k(x(i), x). (A.53)

47

Appendix B

Dimensionality Reduction

B.1 Feature Selection

B.1.1 Filter Methods

It is usually applied as a preprocessing step as it has been done in Section 5.4 with
Pearson’s correlation before any model building. Despite being less accurate, it is
fast compared to the other two methods. Usually, various statistical tests are per-
formed, and the features selected for model building are based on the resulting sta-
tistical scores. Some examples of filter methods include:

Feature\Response Continuous Categorical

Continuous Pearson’s Correlation LDA
Categorical ANOVA χ2

TABLE B.1: Filter methods

These are the primary filter methods even though some other statistical tests
related to this method exist.

Pearson’s Correlation

This method is applied when quantifying linear dependence between two continu-
ous variables is the question to answer. The possible range of values is from −1 to
1, where −1 means perfect negative correlation, 0 stands for uncorrelatedness, and
1 represents a perfect positive correlation. It is defined by (Blitzstein et al., 2019):

Corr(X, Y) =
Cov(X, Y)

σxσy
(B.1)

where X and Y are random variables, σxσy are the variance of X and Y, respectively.
Cov(X, Y) is the covariance of X and Y defined by:

Cov(X, Y) = E[(X− E[X])(Y− E[Y])] (B.2)

B.1.2 Wrapper methods

In these methods, a specific ML algorithm fitting on a given dataset determines the
feature selection process. Wrapper methods are a family of greedy search algorithms
in which possible combinations of attributes are tested against the evaluation crite-
rion. The evaluation criterion is the performance measure, which depends on the
type of ML task. For regression tasks, the evaluation criterion is usually the RMSE,

48 Appendix B. Dimensionality Reduction

but it could be R2, p-values, MAE, and so on. In the end, it selects the combination
of attributes giving the optimal result for the appropriate ML algorithm (Iuhani-
wal, 2019). Some well-known wrapper methods are sequential forward (floating)
selection, sequential backward (floating) selection, exhaustive selection. Now, only
sequential backward floating selection (SBFS) is discussed at some length. The float-
ing version is just an extension to the SFS and SBS. The floating algorithms have an
additional exclusion or inclusion step to remove features once they were included
(or excluded) so that a larger number of feature subset combinations can be sam-
pled. It is important to emphasize that this step is conditional and only occurs if the
resulting feature subset is assessed as "better" by the criterion function after removal
(or addition) of a particular feature. (Raschka, 2020)

The algorithm of the SBFS

The algorithm proposed below is based on Rasckha’s mlextend package about Se-
quential Feature Selection (2020)
Input: the set of all features, Y = y1, y2, . . . , ym
Output: Xk = xj | j = 1, 2, . . . , k; xj ∈ Y, where k = (0, 1, 2, . . . , m)
Initialisation: X0 = Y, k = m
Step 1 (Exclusion):

x− = argmax J(xk − x), where x ∈ Xk
Xk−1 = Xk − x−

k = k− 1
Go to Step 2

• x− is the feature that maximizes our criterion function on removal, that is, the
feature that is associated with the best regression performance it is removed
from Xk.

• Repeat this procedure until the termination criterion is satisfied.

Step 2 (Conditional Inclusion): - (Extra step for the SBFS)
x+ = argmax J(xk + x), where x ∈ Y− Xk
If J(Xk + x) > J(Xk) :

Xk+1 = Xk − x+

k = k− 1
Go to Step 2

• In Step 2, we search for features that improve the classifier performance if they
are added back to the feature subset. If such features exist, we add the feature
x+ for which the performance improvement is maximised. If k = 2 or an
improvement cannot be made (i.e., such feature x+ cannot be found), go back
to step 1; else, repeat this step.

Termination: k = p

• We add features from the feature subset Xk until the feature subset of size k
contains the number of desired features p that we specified a priori.

B.1.3 Embedded methods

Embedded methods integrate the feature selection process within the construction of
the machine learning algorithm itself. That is, they perform feature selection during

B.2. Factor Analysis 49

the model training. They find the feature subset for the algorithm being trained.
The advantage of this method is that it considers the relationships between features
like in the case of wrapper methods but much faster than them and more accurate
than filter methods. There are several examples which are shown in Chapter 6, such
as regularisation based methods (Ridge/Lasso), or tree-based algorithms (Decision
Tree, Random Forest, XGBoost).

B.2 Factor Analysis

There are several factor analysis techniques. In the project, FAMD is used, which is
the combination of PCA and MCA. In the following section, only the mathematics
behind the PCA is detailed.

B.2.1 PCA

This section is based on the Mathematics for Machine Learning by Deisenroth et al.
(2020). There are several version of PCA such as Probabilistic PCA (PPCA), Kernel
PCA (KPCA), but here only the vanilla PCA is discussed.

Principal Component Analysis (PCA) is a linear dimensionality reduction method
proposed by Pearson and Hotelling and mainly used for features extractions and
dimensionality reduction. It projects the data to the hyperplane that is closest to
the data by identifying the axis that preserves the greatest amount of variance in
the training set. Finding projections x̃n of data points xn that are as similar to the
original data points as possible with a considerably lower intrinsic dimensionality is
our chief goal.

Consider an i.i.d. dataset X = {x1, x2, . . . , xn} (xn ∈ RD), with mean 0 and
the corresponding covariance matrix (For more details, please consult the Remark
section):

S =
1
N

N

∑
n=1

xnxT
n . (B.3)

Now assume that there exists a low-dimensional compressed representation (code)

zn = BTxn ∈ RM (B.4)

of xn, where the projection matrix B is defined as follow:

B := [b1, b2, . . . , bM] ∈ RD×M (B.5)

As we know the columns of B form a basis of the M-dimensional subspace in which
the projected data lie in x̃ = BBTx ∈ RD. Assume that these columns of B are
orthonormal. M-dimensional subspace U ⊆ RD (dim(U) = M < D) is looked for,
where data is projected onto this U subspace. The projected data x̃n ∈ U and their
coordinates (with respect to the basis vector of b1, . . . , bM of U) are zn. The goal is to
find x̃ ∈ RD, or in other words, the codes zn and the basis vectors b1, . . . , bM. As a
result, they would be similar to the original data xn and minimize the loss because
of the compression. z is the lower-dimensional representation of the compressed
data x̃, which is in the original data space but has an intrinsic lower-dimensional
representation than x. z also directs the amount of information flowing between x
and x̃. In PCA, for a suitable linear mapping B, z = BTx and x̃ = Bz are the linear
relationship between z and x, and between x̃ and z, respectively. B acts as a decoder

50 Appendix B. Dimensionality Reduction

FIGURE B.1: PCA illustration

mapping the low-dimensional code z ∈ RM back into the original data space RD.
BT encodes the original data x as a low-dimensional, compressed code z.

Remark
In Equation (B.3), we assumed centred data with µ mean:

Var[z] = Var[BT(x− µ)] = Var[BTx− BTµ] = Var[BTx] (B.6)

In other words, the variance of the low dimension code z does not depend on the
mean of the data. So without the loss of generality, data with µ = 0 can be assumed
for the rest of this section. Given this knowledge, the expectation value of z is:

E[z] = E[BTx] = BTE[x] = 0 (B.7)

B.2.2 Direction with Maximal Variance

The aim is to maximise the variance of the low-dimensional code using a sequential
approach. Let’s start by searching for a vector b1 ∈ RD maximising the variance
of the projected data. That is, maximise the variance of the first coordinate z1 of
z ∈ RD:

V1 := Var[z1] =
1
N

N

∑
n=1

z2
1n (B.8)

is maximised, where i.i.d assumption of the data and z1n are harnessed (the first
coordinate of the low-dimensional representation zn ∈ RM of xn ∈ RD). The first
component of zn is z1n, and it is the coordinate of the orthogonal projection of xn
onto the one-dimensional subspace spanned by b1:

z1n = bT
1 xn (B.9)

Substituting Equation (B.9) into Equation (B.8) gives us

V1 =
1
N

N

∑
n=1

(bT
1 xn)

2 =
1
N

N

∑
n=1

bT
1 xnxT

n b1 (B.10)

= bT
1

(
1
N

N

∑
n=1

xnxT
n

)
b1 = bT

1 Sb1. (B.11)

B.2. Factor Analysis 51

It is vital to normalize b1, that is ‖b1‖ = 1, otherwise increase in b1 would lead to
increase V1 in the factor of a square. With this restriction, the following constrained
optimisation problem is proposed in terms of b1, which points in the direction of
maximum variance:

max
b1

V1 = max
b1

bT
1 Sb1

s.t. ‖b1‖2 = 1
(B.12)

We could write this problem in terms of Lagrange multipliers to solve the optimisa-
tion problem:

L(b1, λ) = bT
1 Sb1 + λ1(1− bT

1 b1) (B.13)

∂L
∂b1

= 2bT
1 S− 2λ1bT

1 ,
∂L
∂λ1

= 1− bT
1 b1 (B.14)

Setting these to 0 yields us:

Sb1 = λ1b1 (B.15)

bT
1 b1 = 1 (B.16)

From Equation (B.15), b1 is an eigenvector of the data covariance matrix S, and
the Lagrange multiplier λ1 is the corresponding eigenvalue. With the help of Equa-
tion (B.15) and the optimisation problem (B.12), Equation (B.8) could be written as
follow:

V1 = bT
1 Sb1 = λ1bT

1 b1 = λ1 (B.17)

What this rewritten variance objective represents is the variance of the data pro-
jected onto a one-dimensional subspace equals the eigenvalue that is associated with
the basis vector b1 that spans this subspace. To maximise the variance of the low-
dimensional code, the basis vector associated with the largest eigenvalue of the data
covariance matrix should be chosen. This eigenvector b1 is called the first principal
component. In order to decode z1n coordinate back to the original data space, which
provides us with the projected data point, the following process is necessary:

x̃n = b1z1n = b1 bT
1 xn ∈ RD (B.18)

B.2.3 M-dimensional Subspace with Maximal Variance

Let’s suppose that the first m− 1 principal components have found that is the m− 1
eigenvectors of S that are associated with the largest m− 1 eigenvalues. Because of
the symmetric matrix S, the spectral theorem can be applied.

Theorem B.2.1 (Spectral Theorem). If A ∈ Rn×n is symmetric, there exists an orthonor-
mal basis of the corresponding vector space V consisting of eigenvectors of A, and each
eigenvalue is real.

For our case, it means that an orthonormal eigenbasis of an (m− 1)-dimensional
subspace of RD can be built by the eigenvectors of the symmetric matrix S. By and
large, the mth principal component can be calculated by subtracting the effect of the
first m− 1 principal components b1, . . . bm−1 from the data. As a result of that, the

52 Appendix B. Dimensionality Reduction

aim is to find principal components which compress the rest of the information.

X̃ := X−
m−1

∑
i=1

bi bT
i X = X− Bm−1 X, (B.19)

where X̃ := [x̃1, . . . x̃N] ∈ RD×N contains the information in the data that has not yet
been compressed, and Bm−1 matrix projects onto the subspace spanned by b1, . . . , bm−1.

To find the mth principal component the following corresponding variance has
to be maximised in a similar way as in Equation B.12

Vm := Var[zm] =
1
N

N

∑
n=1

(bT
m x̃n)

2 = bT
m S̃ bm

s.t. ‖bm‖2 = 1,

(B.20)

where S̃ is the data covariance matrix of the transformed dataset χ̃ := {x̃1, . . . x̃N}.
Analogously, after solving this constrained optimisation problem, it turns out that
the optimal solution bm is the eigenvector of S̃ that is associated with the largest
eigenvalue of S̃. Moreover, bm is also an eigenvector of S. It can also be shown that
the sets of eigenvectors of S and S̃ are identical. However, if the eigenvectors of S are
part of the (m− 1) dimensional principal subspace (the case of i < m), the associated
eigenvalue of S̃ is 0. In other words,

S̃bi = 0bi, (B.21)

that is, b1, . . . bm−1, which are also eigenvectors of S̃, span the null space of S̃ because
of being associated with the eigenvalue 0. If an eigenvector that is not among the
first m− 1 principal component (the case of i ≥ m) it is orthogonal to the first m− 1
principal components, and S̃bi = λibi Suppose the mth is not among first m − 1
principal component, then

S̃bm = Sbm = λmbm. (B.22)

This bm is an eigenvector of both S̃ and S. Furthermore, λm is the largest eigenvalue
of S̃ and the mth largest eigenvalue of S, and their corresponding eigenvector is bm.
Using Equation B.22 and bT

m bm = 1, the variance of the data projected onto the mth
principal component is

Vm = bT
m S bm = λmbT

m bm = λm. (B.23)

To find an M-dimensional subspace of RD retaining as much information as pos-
sible, we need to add up the eigenvalues associated with the first M principal com-
ponents (those eigenvalues are also the M largest eigenvalues at the same time) of
the data covariance matrix S to reach the maximum amount of variance the PCA can
exploit.

VM =
M

∑
m=1

λm. (B.24)

Therefore, the variance lost by data compression via PCA is

JM :=
D

∑
j=M+1

λj = VD −VM. (B.25)

B.2. Factor Analysis 53

The alternative variance lost measurement is the relative variance/explained vari-
ance ratio which is given in the form of

explained variance ratio =
VM

VD
. (B.26)

55

Appendix C

Python Codes

The most important code snippets are shown here. For the complete implementa-
tion, please consult my project implementation on my GitHub page.

C.1 Codes from Section 5.2

def num_var_transformer(imputed_num, full_pipeline, strategy):
if strategy == ’imputer’:

num_pipeline = Pipeline([(’imputer’, SimpleImputer(strategy="median"))])
elif strategy == ’y-j’:

num_pipeline = Pipeline([(’y-j’,
PowerTransformer(method=’yeo-johnson’))])

num_attr = list(imputed_num)

if full_pipeline is None:
full_pipeline = ColumnTransformer([

("num", num_pipeline, num_attr)])

fittedColumnTransform = full_pipeline.fit(imputed_num)
imputed_num_array = fittedColumnTransform.transform(imputed_num)
imputed_num_ready = pd.DataFrame(imputed_num_array, columns =
imputed_num.columns, index = imputed_num.index)

if (strategy == ’imputer’) and (’number_of_reviews’ not in dropList):
imputed_num_ready[’months’] = imputed_num_ready[’number_of_reviews’]

/ imputed_num_ready[’reviews_per_month’]
imputed_num_ready.drop([’number_of_reviews’], axis=1, inplace=True)

else:
fittedColumnTransform = full_pipeline
imputed_num_array = fittedColumnTransform.transform(imputed_num)
imputed_num_ready = pd.DataFrame(imputed_num_array, columns =
imputed_num.columns, index = imputed_num.index)

if (strategy == ’imputer’) and (’number_of_reviews’ not in dropList):
imputed_num_ready[’months’] = imputed_num_ready[’number_of_reviews’]

/ imputed_num_ready[’reviews_per_month’]
imputed_num_ready.drop([’number_of_reviews’], axis=1, inplace=True)

return imputed_num_ready, fittedColumnTransform

TABLE C.1: Numerical Variable Transformation

https://github.com/pvh95/ML-Projects/blob/master/PVH_BSc_Thesis_Nyc_Airbnb_ML_project.ipynb

56 Appendix C. Python Codes

def target_var_transformer(imputed_target, pT):
if pT is None:

pT = preprocessing.PowerTransformer(method=’yeo-johnson’) #transforming
the target variable
targetTransform = pT.fit(imputed_target)
imputed_target_ready_array = targetTransform.transform(imputed_target)
imputed_target_ready = pd.DataFrame(imputed_target_ready_array, columns
= imputed_target.columns, index = imputed_target.index)

else:
targetTransform = pT
imputed_target_ready_array = targetTransform.transform(imputed_target)
imputed_target_ready = pd.DataFrame(imputed_target_ready_array, columns
= imputed_target.columns, index = imputed_target.index)

return imputed_target_ready, targetTransform

TABLE C.2: Target Variable Transformation

def concat_num_cat_var(imputed, imputed_num, desired_cat_attr):
temp_cat_df = imputed[desired_cat_attr]
imputed_concat = copy.deepcopy(imputed_num)

imputed_concat = pd.concat([imputed_concat, temp_cat_df], axis = 1)

return imputed_concat

TABLE C.3: Concatenation of numerical and categorical features after
one hot encoding categorical variables

C.2. Codes from Section 6.1 57

C.2 Codes from Section 6.1

#############Train FAMD fit and transform
import prince

dropList = [’name’,’host_name’,’last_review’,’neighbourhood’, ’host_id’,
’id’]

desired_cat_attr = [’room_type’,’neighbourhood_group’]
#desired_cat_attr = [’room_type’]
nycAB_ready, nycAB_imputed_target, fittedColumnTransform1_tr_dev,

fittedColumnTransform2_tr_dev, targetTransform_tr_dev =
df_proccessed(nycAB, nycAB_target, dropList, desired_cat_attr,
full_pipeline1 = None, full_pipeline2 = None, pT = None)

fitTransfromFAMD_tr_dev = prince.FAMD(n_components = 10, n_iter=10, engine
= ’auto’, random_state = randState).fit(nycAB_ready)

nycAB_ready = fitTransfromFAMD_tr_dev.transform(nycAB_ready)

sum(fitTransfromFAMD_tr_dev.explained_inertia_) ###explained variance is
0.9511413328166206

##############Test FAMD fit transform
X_test_ready, Y_test_ready, _, _, _ = df_proccessed(X_test, Y_test,

dropList, desired_cat_attr, full_pipeline1 =
fittedColumnTransform1_tr_dev, full_pipeline2 =
fittedColumnTransform2_tr_dev, pT = targetTransform_tr_dev)

X_test_ready = fitTransfromFAMD_tr_dev.transform(X_test_ready)

TABLE C.4: Factor Analysis of Mixed Data implementation

C.3 Codes from Section 6.8

svmGauss1 = SVR(kernel="rbf", C=2.0, gamma = 0.2, epsilon=0.5)
svmGauss1.fit(nycAB_ready, nycAB_imputed_target)

Y_trPred_svmGauss1 = svmGauss1.predict(nycAB_ready)
svmGauss1_trPred_mse = mean_squared_error(nycAB_imputed_target,

Y_trPred_svmGauss1)
svmGauss1_trPred_rmse = np.sqrt(svmGauss1_trPred_mse)

print("SVM w/ Gaussian Kernel Train RMSE:", svmGauss1_trPred_rmse) ####
0.6437572536668337

TABLE C.5: Support Vector Regression with Gaussian Kernel Train-
ing

58 Appendix C. Python Codes

svmGauss1_scores = cross_val_score(svmGauss1, nycAB_ready,
nycAB_imputed_target, scoring="neg_mean_squared_error", cv=6)

svmGauss1_rmse_scores = np.sqrt(-svmGauss1_scores)

display_scores(svmGauss1_rmse_scores) #### 0.65615193

TABLE C.6: Support Vector Regression with Gaussian Kernel Cross-
Validation

C.4 Codes from Section 6.9

final_pred = svmGauss1.predict(X_test_ready)

final_mse = mean_squared_error(Y_test_ready, final_pred)
final_rmse = np.sqrt(final_mse)
print(final_rmse) #### 0.6658913507277759

TABLE C.7: Support Vector Regression with Gaussian Kernel Train-
ing

59

Bibliography

Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd
Edition). O’Reilly Media, Incorporated.

Raschka, S., & Mirjalili, V. (2017). Python Machine Learning: Machine
Learning and Deep Learning with Python, scikit-learn, and TensorFlow (2nd Edition).
Packt Publishing.

Yeo, I., & Johnson, R. (2000). A New Family of Power Transforma-
tions to Improve Normality or Symmetry. Biometrika, 87(4), 954-959.
http://www.jstor.org/stable/2673623

Box, G., & Cox, D. (1964). An Analysis of Transformations. Journal
of the Royal Statistical Society. Series B (Methodological), 26(2), 211-252.
http://www.jstor.org/stable/2984418

Weisberg, S. (2001). Yeo-Johnson Power Transformations. https://www.st
at.umn.edu/arc/yjpower.pdf.

McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pan-
das, NumPy, and IPython (2nd Edition). O’Reilly Media

Deisenroth, M. P., Faisal, A. A., Ong, C. S. (2020). Mathematics for Ma-
chine Learning. Cambridge University Press. https://mml-book.github.io/boo
k/mml-book.pdf

Pedregosa et al. (2011). Scikit-learn: Machine Learning in Python. JMLR
12, pp. 2825-2830.

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. (2020). Array pro-
gramming with NumPy. Nature 585, 357–362

McKinney, W., & others. (2010). Data structures for statistical computing in
python. In Proceedings of the 9th Python in Science Conference (Vol. 445, pp.
51–56).

Hunter, J.D. (2017). Matplotlib: A 2D Graphics Environment, Computing
in Science & Engineering, 9, 90-95.

Raschka, S. (2020). Sequential Feature Selector. http://rasbt.github.io/
mlxtend/user_guide/feature_selection/SequentialFeatureSelector/

http://www.jstor.org/stable/2673623
http://www.jstor.org/stable/2984418
https://www.stat.umn.edu/arc/yjpower.pdf
https://www.stat.umn.edu/arc/yjpower.pdf
https://mml-book.github.io/book/mml-book.pdf
https://mml-book.github.io/book/mml-book.pdf
http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/

60 BIBLIOGRAPHY

Luhaniwal, V. (2019). Feature selection using Wrapper methods in Python.
https://towardsdatascience.com/feature-selection-using-wrapper-met
hods-in-python-f0d352b346f

K. Blitzstein, J., Hwang, J. (2019). Introduction to Probability (2nd Edi-
tion). https://projects.iq.harvard.edu/stat110/home

Greenacre, M. (2007). Correspondence Analysis in Practice, (2nd Edition).
Chapman & Hall/CRC Interdisciplinary Statistics

Pages, J. (2014). Multiple Factor Analysis by Example Using R. Chapman
& Hall/CRC The R Series

Pages, J. (2011). Factorial analysis of qualitative and quantitative data Facto-
rial analysis of qualitative and quantitative data both mixed and structured according
to a hierarchy. Theory and Application of High-dimensional Complex and
Symbolic Data Analysis in Economics and Management Science. Beijing, China
October 27-29, 2011. http://www.modulad.fr/sda11/HCSDA11-Pages.pdf

Ng, A. (2020). CS29 Lecture Notes 1: Supervised Learning. http:
//cs229.stanford.edu/notes2020fall/notes2020fall/cs229-notes1.pdf

Ng, A. (2020). CS29 Lecture Notes 3: Kernel Methods and SVM. http:
//cs229.stanford.edu/notes2020fall/notes2020fall/cs229-notes3.pdf

Hastie, T., Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The ele-
ments of statistical learning: Data mining, inference, and prediction (2nd Edition).
New York: Springer. https://web.stanford.edu/~hastie/ElemStatLearn/pri
ntings/ESLII_print12_toc.pdf

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction
to statistical learning: With applications in R. http://faculty.marshall.usc.edu
/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cam-
bridge, MA: MIT Press.

Vapnik, V., S. Golowich, and A. Smola (1997). Support vector method for
function approximation, regression estimation, and signal processing. In NIPS

Schoelkopf, B. and A. Smola (2002). Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press.

https://towardsdatascience.com/feature-selection-using-wrapper-methods-in-python-f0d352b346f
https://towardsdatascience.com/feature-selection-using-wrapper-methods-in-python-f0d352b346f
https://projects.iq.harvard.edu/stat110/home
http://www.modulad.fr/sda11/HCSDA11-Pages.pdf
http://cs229.stanford.edu/notes2020fall/notes2020fall/cs229-notes1.pdf
http://cs229.stanford.edu/notes2020fall/notes2020fall/cs229-notes1.pdf
http://cs229.stanford.edu/notes2020fall/notes2020fall/cs229-notes3.pdf
http://cs229.stanford.edu/notes2020fall/notes2020fall/cs229-notes3.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12_toc.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12_toc.pdf
http://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf
http://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf

