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Rövid áttekintés a mechanizmustervezésről

A globalizáció és a növekvő munkamegosztás egyre fontosabbá teszi azt a kér-

dést, hogy az egyes, főként a saját önző érdekei szerint működő piaci szereplők, a

továbbiakban játékosok, hogyan fognak viselkedni a rájuk vonatkozó játékszabályok

függvényében, és hogy milyen szabályokkal tudjuk őket legjobban egy ḱıvánt cél,

például a társadalmi összérdek szolgálatába álĺıtani. A kérdés fontosságát jól jelzi,

hogy az 1996-os és a 2007-es közgazdasági Nobel-d́ıjat is ebben a témában, vagyis a

mechanizmustervezés terén elért eredményekért adták.

A mechanizmustervezés elmélete leginkább olyan piaci, üzleti, fiskális, politikai–

választási játékszabályok kidolgozásával foglalkozik, amelyek alkalmazása révén elő-

re meghatározott, optimális eredményt érhetünk el. Leginkább olyan szituációkat,

üzleti tranzakciókat vizsgál, amelyek során a játékosok között egyenlőtlenül oszla-

nak meg az információk, s ennek eredményeként úgy osztják meg egymás között az

eszközöket, az erőforrásokat vagy az egymásnak nyújtott szolgáltatásokat, ahogy az

például a gazdaság egésze vagy a össztársadalmi jólét szempontjából nem feltétlen

lenne ideális. A cél olyan szabályrendszer kialaḱıtása, amelynek alkalmazása révén a

játékosok a saját profitmaximalizáló stratégiájukkal összességében épp a ḱıvánt célt

érik el. A mechanizmustervezést ezért néha ford́ıtott játékelméletnek is nevezik, hi-

szen mı́g a játékelméletben adott szabályok mellett keressük a létrejövő eredményt,

addig a mechanizmustervezésben adott eredményhez keresünk játékszabályokat.

Eredményem a két, Nobel-d́ıjjal elismert témakör közül inkább az 1996-oshoz

köthető. Ekkor többek között William Vickreynek a második áras aukciókról va-

ló azon eredményét ismerték el, melynek Edward Clarke és Theodore Groves által

továbbfejlesztett változata egy általános sokszereplős játékhoz mutat olyan mecha-

nizmust, amiben minden játékosnak érdemes őszintén elmondani saját információit,

és ezáltal a játékosok összprofitja maximalizálható. Formálisabban, minden játé-

kos rendelkezésére áll a lehetséges cselekvéseinek egy-egy Ai halmaza, és adott egy

u : A1 × ...An → Rn függvény, ami megmondja, hogy attól függően, hogy ki milyen

cselekvést választ, pusztán e cselekvésegyüttesből ki mennyi profitra tehet szert.

Lényeges, hogy Ai és ui az i. játékos privát információja. A mechanizmus ekkor

az, hogy mindenki elmondja saját információit, ebből meghatározzák az összérdek

szerinti optimális stratégiát, végül pedig mindenkit annyi pénzzel kompenzálnak,

hogy a saját profitja megegyezzen azzal, amennyit részvételével hozzátett az össz-

profithoz. Ekkor pedig teljesül az, hogy senki sem jár jobban, ha saját információja

helyett bármi mást mond el a többieknek, feltéve, hogy a többiek őszinték voltak.

Vagyis az őszinte stratégiaegyüttes Nash-egyensúly.
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Az eredmény számos hiányossága közül az egyik legnagyobb, hogy feltételezi,

hogy a játékosok előre meg tudják mondani, hogy hogyan alakulna a munkájuk.

Ezért ez például egy valódi ütemezési problémához nem is használható. Az eredmé-

nyemben egy olyan mechanizmust mutatok, ahol az egyes játékosok munkamenete

sztochasztikus, ezért az optimálisan ütemezett munka is folyamatos egyeztetéseket

igényel, mégis mindenkinek érdeke lesz őszintének lenni, például nem érdemes ne-

hezebbnek beálĺıtani a feladatot vagy optimistábban nyilatkozni a munka aktuális

állásáról, és ezzel elérhető a maximális hatékonyság.
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Efficient design of stochastic mechanisms

Endre Csóka

Eötvös Loránd University, Budapest, Hungary

Abstract

In this paper, we focus on the problem where different risk-neutral players

should cooperate while each of them has an own stochastic working process

as private information, and the efficient cooperation would require the players

to make decisions depending also on this information of others. Scheduling

problems are a typical and important example. We will use the tool of certi-

fiable communication, namely we allow such contracts that specify payments

depending also on the communication between the players. With this tool,

we design a mechanism that implements a fully cooperative behaviour.

1 Introduction

The implementation of stochastic dynamic multi-agent games such as scheduling

problems raises a question that do not occur in other models: what if the desired

hidden decisions of the agents depend on some earlier hidden chance events of other

agents? Or using the classical terminology (e.g. Mas-Colell[5]), what if Nature tells

some private information to some agents not at the beginning but during the process,

and we want to implement such strategy profile in which the actions of the agents

depend on these informations of others, while neither these informations and these

actions can directly be observed? For example, in a scheduling problem, the efficient

coordination of different tasks would require the agents to be interested in telling the

proper information about the actual state of his working process, and depending on

these informations, to urge the agents exactly as much as it is worth according to the

total interest. In this paper, we design a nontrivial stochastic generalization of the

Clarke–Groves mechanism[4], which implements such revelation strategy profile of

the agents that achieves the maximum possible expected total payoff of all players;

and we design its ”first price” version, too, which achieves the very same only in

some circumstances such as in perfect competition, but which is resistant against

coalitions.
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In our model, there is a player called Principal(♀) and she can contract with some

of the other players called agents(♂) to work with. Each agent faces a stochastic

decision tree, as private information, consisting of decision points and chance points

in which the agent and Nature chooses the path to continue, respectively. There

is a result assigned to each leaf to describe what the agent would provide reaching

this leaf. Beyond the monetary transfers by the contracts, Principal gets the utility

corresponding to the set of the achieved results of the agents, and each agent pays

the cost corresponding to the leaf. Communication is allowed thoughout the process

and a contract can be made between Principal and each agent such that specifies a

monetary transfer between them depending on both the achieved result of the agent

and the communication between them. This way the decisions of an agent may be

dependent of the earlier messages he gets from Principal, which may be dependent

of the earlier messages Principal gets from other agents, which may be dependent of

their chance events. So communication gives us the possibility of making the agents

interested in making decisions depending on some earlier chance events of others.

We will use the following mechanism. Principal asks an offer for contract from

each agent and she declares beforehand that she will use the strategy, including both

the choice of the agents to contract with and her communication, that will maximize

her minimum possible payoff. Surprisingly, this simple mechanism makes the agents

interested in truthful strategies that make the mechanism efficient.

Let us first see the honest offer of a very simple stochastic agent, who could have

completed his task either before an earlier event with p probability or only before a

later event with 1-p probability. What he should offer is the following.

”Beyond a fixed fee, I agree that if you say any amount of money x before I start

then if I complete later then I will pay you px, but if earlier then you have to pay

me (1− p)x.”

This way the agent gets p · (1− p)x− (1− p) · px = 0 money beyond the fix fee in

expectedly, so he does not come off badly whichever x is chosen by Principal. On the

other hand, if the earlier completion is better for Principal by equivalent to money

m then Principal should choose x = m, because this way she can be certain to get

the mean of the payoffs of the two results with the weights of their probabilities. So

Principal considers this offer as valueable as an offer for surely achieving the ”mean”

of the results for the same cost. From the point of view of the agent, this is the

same as if Principal ”believes” these probabilities.
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1.1 Example for the process

We consider a project that is very risky, but may gain huge utility. It consists of two

tasks, one application per task must be accepted, and if both succeed in time then

Principal gets a large sum of money, that is 60 here, but if either fails to do it then

the success of the other task has no use. After getting all applications, Principal

evaluates all pairs of them for the different tasks and accepts the pair producing her

the most payoff. This example is only to show the evaluation of such a pair.

The first two trees describe the two applications in the following sense. The

possible courses of the working process are shown by the paths from the root to a

leaf. The solid squares show the decision points, at which the agent offers Principal

to choose a branch to continue. It describes the possible decisions of the agent,

for example choice of faster or cheaper shipment, number of employees, etc. The

other branching points are the chance points. This describes, for example, the effect

of an error, a failure of equipment, weather conditions, illness or simply faster or

slower progress concerning the work. In this example, the path to continue is chosen

randomly with 1/2 probabilities for each branch, and the agent agrees in taking any

risk with 0 expected value. The numbers denote asked payments called costs in the

case of the corresponding branch. At the bottom tick denotes the success and cross

denotes the failure.

The first agent asks 2 units of money beyond his expenses. His task is either

started at the beginning with a cost of 5 and probability of the success of 1/2, or

he makes preparations for a cost of 1, and later if Principal wants then he can try

to complete the task for a cost of 6 with probability 1/2. In the other application,

the cost plus the desired expected payoff of the other task is 7 and the probability

of the success is 1/2. It is important that the timing of the events are represented

by their heights.

The third tree is a ”product” of the two trees; that is, it describes their possible

aggregate execution. We can construct it by following the applications by time, and
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creating an appropriate branching if it occurs in one of them, and then continue this

on both branches. For example, the path to the 5th leaf from the left describes the

pair of the paths to the middle leaf in the first tree and the left leaf in the second

tree. In details, the first agent chooses working by the second way, then the second

agent fails to complete the task and then the first agent does not try to complete

his task. At the bottom, tick denotes the success of both tasks, and cross denotes

the failure of either, and the number shows the total payment asked by the agents.

Let the value of an endstates be 60 if both tasks succeed and 0 otherwise, minus the

total payments.

State means the state of the project at a point in time; it can be represented by

a point in the graph of the third tree. We define the values of all states from the

bottom to the top, and we denote them by italics. Values of states in the same edge

are the same. The value before a decision point is the maximum of the values after.

The value before each chance point is the mean of the values after.

As we will see, when Principal maximizes her minimum possible payoff then she

surely gets the value of the starting state, because at the decision points she asks the

decisions by which the value of the state remains the same, at the chance points she

pays the signed difference between the values of the states after and before, and at

the end she gets the value of the endstate. As for each agent, he gets the costs of his

process, the extra payment he asked for and some random payment with expected

value 0.

For the first agent this means that Principal asks him – a bit surprisingly – to

work in the second way, that is to make only preparations, and then Principal either

asks him to do nothing and he gets 3, or she ask him to try to complete the task,

and he gets 9 and ±30 for the risk, so he gets 39 if he succeeds, and he pays 21 if he

fails. For the second agent this means that he gets 12 besides his costs if he succeeds

(that is 19 in total), but Principal deducts 12 from his payment (that is he pays 5)

in the case he fails.

(Note that these extremly high risks are the peculiarity more of this simple and

risky example than of the mechanism. You can consider this project as an instance

of many identical projects that should be made in parallel.)

2 General notions

For any symbol x, the definition of xi-s will also define x as the vector of all mean-

ingful xi-s. x−j means the vector of all except xj.

The term of actions of a player refers to what the player effectively does, and
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when he does them. The term of information of a player refers to what he knows

and believes at a particular point in time. This point in time is always included in

his information. His information in all points in time is called as his information

history. The strategy set of a player is the set of all functions that assign some

feasible action to each possible information. Therefore, a game can be defined by

the players, their possible actions, information histories and payoffs. A subgame

means the game from a point in time, given the earlier history. The outcome oG(s)

of a game G with a strategy profile s means the execution of the game, as a function

of the other parameters of the game. The preference is a partial ordering on the

outcomes or on the probability distributions of the outcomes. The preference of

a player p is denoted by �p. A strategy profile is a Nash equilibrium if for any

strategy s′p of each player p, oG(s−p, s
′
p) �p oG(s). To be interested in a strategy

will mean that this gains him �p outcome than any other strategy.

For the sake of transparency and gender neutrality, we use feminine or masculine

pronouns depending on the gender (♀ or ♂) assigned to the player, and masculine

pronouns for a not specified player.

3 The basic model

We model the problem as the following game G.

Players. There are a player C called Principal(♀) and some players a1, ...an

called agents(♂). In subscripts, we use i instead of ai.

Each agent has a stochastic decision tree, which is a rooted branching tree

structure consisting of the following terms. The inner nodes of the tree are of two

kinds: the chance points and the decision points. For each chance point, there

is a probability assigned to each edge leaving it, with the sum of 1. The third kind

of nodes are the leaves. Each of them has a result and a real cost assigned. There

is a positive real point in time assigned to every node, and for each edge the time

assigned to the parent is not later than to the child. For the sake of simplicity, we

assume that all such points in time are different.

Working according to the decision tree of an agent means the following. The

possible courses of his working process are the paths from the root to a leaf. In the

case of a path, the result of the leaf is achieved at its time for the cost of the leaf.

At a decision point, he can choose on which path to continue. At a chance point,

the path is chosen randomly with the assigned probabilities, and the agent learns

this choice. We call these choices as chance events. All chance events of all agents

are independent. We denote the result and the cost of the reached leaf of such an

10



agent ai who has been working by ri and ci, respectively.

The actions of the players are described by the following process, in chronological

order. For the sake of lucidity, this description includes the main events about getting

information.

• Principal makes her strategy public. (Roughly speaking, she can define the

rules.)

• Principal learns a utility function u : {all possible sets of results} → R and

each agent learns his decision tree.

After these initial steps, each agent can send any costless certifiable time-stamped

instant messages to Principal and vica versa.1 Beyond this, the process of the game

is the following.

• Until time 0, each agent tells to Principal whether he stays in the game.

• At time 0, Principal chooses some of those agents who stay in the game.

• Each chosen agent works according to his decision tree.

• Principal observes the results of the agents and pays some money to the chosen

agents, which can also be negative.

The payoffs are determined as follows. Beyond the monetary transfers at the

end, Principal gets u(r), and each chosen agent ai pays ci. The payoffs of the not

chosen agents are 0.

The informations of the players are defined only after the two initial steps. The

basic information of an agent at any point in time consists of his decision tree, all

messages he recieved earlier from Principal, whether Principal already allowed him

to work and his chance events up to and including this time. The basic information

of Principal at a point in time is her utility function u, the agents’ decisions (if

already made) about whether they stay in the game and the earlier messages she

got. All we assume about the informations of the players are the followings.

• The information of each player includes his basic information.

• The chance event of each reached chance point at any time t has the prob-

ability distribution described in the decision tree, and given this description,

conditionally independently of the informations of all other players until t and

the information of this agent before t.

1To avoid some analytical problems, we only allow strategies by which the player surely sends
finitely many messages.
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Expectation E is taken only over the chance events. By default, the pref-

erence of each agent is to achieve higher expected payoff. (Namely, oG(s) �i oG(s′)

iff with any feasible way of getting informations of all players depending on their

earlier actions and not later chance events, the expected payoff of ai is not smaller

with the strategy profile s than with s′.)

3.1 Interpretation of the model

At the beginning, Principal designs the mechanism by declaring her strategy. Then

she can negotiate with each agent, and they can agree on the terms (using her

predefined protocol). If they do so then the agent can start to work.

Each agent can affect his work, for example by using more or less workers or be

more hurry for some more fatigue – equivalent to some more cost. Furthermore, the

agent gets feedbacks from his work, such as about unexpected failures, or simply

faster or slower progress. The dynamics of them is described by his decision tree.

The players cannot completely observe the executions of other agents; for exam-

ple, it can be happen that no other player can be sure that a later completion of

the task of an agent was achieved by a fast and expensive work but with bad luck

or by a slow and cheap work with average luck. We handle this aspect by the term

of result.

The result can be interpreted so as the certifiable aspects of the execution of the

task. So we assume that the certifiable aspects of the works of the agents determine

the utility of the overall result for Principal. To put it the other way around, let us

call some possible executions of a particular task equivalent if the utility is always

the same with both executions, independently of the executions of others. Then

the results are the equivalence classes of the executions, and the model requires the

result to be certifiable.

In the model, the agents have seperate decision trees. However, in many cases like

in scheduling problems, the work of an agent may restrain the actions of another

one. For example, one cannot start building the roof of a house before someone

completes the walls. To resolve this problem, we say that one could start building

the roof before the walls are completed, but the result would be extremely bad.

We formalise this through the utility function u, namely, we consider u be infty

at all sets of executions that is impossible in reality. As u is defined not for sets

of executions but for sets of results, this formalism implies the restricting and the

restricted events to be certifiable. For the example, this means that each result of

the agent building the walls must contain the completion time tc, each result of

12



the agent building the roof must contain the starting time ts, and if ts < tc then

u = −∞.

To sum up, this model can be applied also in such cases when one’s possible

decisions can be restricted by some certifiable actions of other agents.

3.2 The goal

Definition 1. We call the sum of the payoffs of all players the payoff of the

system, and we denote it by ps. Clearly, ps = u(r) −
∑

ci. The preference of

the system is to achieve higher E(ps).

Based on the game G, we define the following game G(1) describing the case

when all players in G were the same. This game is to define the fully cooperative

behaviour.

• There is only 1 player(♀).

• Her actions are choosing some of the decision trees and making the decisions

during the working processes according to these trees.

• Her information is the utility function u, all decision trees and the not later

chance events in all chosen trees.

• Her payoff is ps = u(r)−
∑

ci.

Fixing u and the trees, ps is a function of her strategy and the chance events, so

E(ps) depends only on her strategy. As she can simulate any strategy profile in G,

the maximum E(ps) on all strategies in G(1) is an upper bound of E(ps) in G. The

similar statement holds with any subgame H of G, and we denote the maximum

E(ps) in the corresponding one-player game H(1) by f(H) (as a function of u and

the trees).

The upper bound of the information of an agent is called his extended infor-

mation, which consists of the followings.

• In the subgame from the actual time, how the outcome depends on the chance

events and on the strategies of the players;

• his chance event at the actual time;

• the probability distributions of the other chance events described in the deci-

sion trees.
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So the information of an agent must be between his basic and extended informa-

tion. Let his strategy set with basic or extended information mean his strategy set

provided that he has basic or extended information history.

Definition 2. With a fixed strategy of Principal, we call a strategy profile of the

agents consisting of strategies with basic information as an information-invariant

Nash equilibrium, if each agent is interested in keeping his strategy among his

strategy set with extended information.

Our main goal is to (weakly) information-invariantly Nash implement f(G) as

E(ps), namely to find a mechanism and a strategy profile by which

• E(ps) = f(G);

• the strategy profile is an information-invariant Nash equilibrium in the mech-

anism.

4 The mechanism

The mechanism means the subgame after Principal declares her strategy.

Definition 3. An application of ai is a function appi : {all possible results}×{all
possible further communications between him and Principal} → R, describing his

asked payments in the different cases.

We call the following subgame the first price mechanism. The process is the

following.

1. Each agent ai submits an application appi.

2. Principal accepts or rejects each application.

3. Agents with accepted applications can work according to their decision trees,

and each of them can communicate with Principal.

Let Acc = {i|appi is accepted}. At the end, the payoff p of a rejected agent is 0.

If the communication between ai and Principal at step 3 is denoted by comi, then

• p(ai) = appi(ri, comi)− ci if i ∈ Acc,

• p(C) = u(r)−
∑

i∈Acc

appi(ri, comi).
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Let comi→C and comC→i denote the communication from ai to Principal and

from Principal to ai, respectively. (Thus com→C = (comi→C |i ∈ Acc) and comC→ =

(comC→i|i ∈ Acc).) The above description still does not define Principal’s choices of

Acc and comC→. From now on, Principal’s strategy means her strategy on these

actions (which is also common knowledge). Denote her strategy for comC→ by sc.

After step 1, p(C) depends only on sc, com→C and r. Principal chooses a

strategy by which min
com→C ,r

p(C) is maximal. Maximin payoff will refer to

this value.

We assume that this rule determines a unique set of applications to accept, that

there are no such ties.

4.1 Second price mechanism

Definition 4. For any set S of applications, we define the value from the ap-

plications, denoted by vf(S), as Principal’s maximin payoff if she recieves these

applications. Surplus value of an application appi means v+(appi) = vf(app)−
vf(app−i).

The second price mechanism2 is the same as the first price one but Principal

pays v+(appi) more to each agent with application appi.

So, denoting the payoffs in the second price mean by p2,

• p2(ai) = appi(ri, comi) + v+(appi)− ci,

• p2(C) = u(r)−
k∑

i=1

(appi(ri, comi) + v+(appi)).

By default, we consider the first price mechanism, and payoff refers to the first

price payoff p.

5 Prime cost and fair strategies of agents

We define the cost price application pc(ai) of an agent ai as the application

which can be interpreted as follows. The agent shows his decision tree and defines

the following communication protocol between him and Principal. At each decision

point, Principal chooses a branch to continue and sends it to the agent. Before each

chance point, Principal sends to the agent such real assignments to the branches

that’s mean weighted by the probabilities is 0. At each chance point, the agent

chooses a branch to continue and sends it to Principal. At the end, Principal has to

2the name comes from the analogy to the second price sealed bid auctions of Vickey[7].
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pay the cost of the leaf plus for each reached chance point, the money assigned to

the chosen branch; and the agent has to deliver the result corresponding to the leaf

in time. (If any player deviates from the protocol then, for example, he pays ∞.)

fair(ai, x) = pc(ai)+x is called a fair application for any x ∈ R called profit.

Fair strategy Fx of an agent ai means submitting fair(ai, x), and in the case

of acceptance, choosing the decisions corresponding to Principal’s choice at each

decision point, and sending the corresponding message at each chance point. Fair

agent means an agent with fair strategy, and F0 is called the cost price strategy.

Clearly, fair strategies use basic imformation.

5.1 Evaluation of fair strategies

In this section, we describe more precisely the evaluation shown in the introductory

example (1.1).

Consider each agent with fair application with profit x as an agent with x more

cost in each leaf of his tree, and with cost price application.

We use the term of the combined decision tree of a set of agents. We can con-

struct it by following the trees of the agents, and creating an appropriate branching

in the combined tree if it occurs in one of the trees, and then we continue on all

branches. Each result of the combined tree is equivalent to the set of the appropriate

results.

Principal evaluates all subsets of app, and accepts all applications in the best

set. Consider the evaluation of such a subset. We handle the set as a combined

application meaning the offer for contract with all in the set. Notice that the

combined application of cost price applications is the cost price application of the

combined decision tree. (Combined applications can easily be written in the form

of application, but we omit the details.)

A state of the combined decision tree means a point (not necessarily vertex) of

the graph of the tree, like in the third tree in Figure 1.

Definition 5. For any state T and expression X, let X|T denote X in the imagined

case when the only application Principal accepts is the cost price application of the

subtree from T . Let the value of the state be v(T ) = max
sc|T

min
(com→C |T ),r

p(C)|T .

Notice that accepting this application is equivalent to accepting all cost price

applications of the corresponding subtrees of the agents, and the value of the starting

state is Principal’s maximin payoff provided that she accepts this set of applications.

Theorem 1. The values of the states can be calculated by backward recursion using

the followings.

16



Step 1. The value of an endstate is u(r)−
∑

ci

Step 2. Values of states in the same edge are the same.

For each inner node, denote the state just before, and the states just after the

node by T and T1, ...Tn. For chance points, denote the probabilities by w1, ...wn,

respectively.

Step 3. For a decision point, v(T ) = max
i

v(Ti).

Step 4. For a chance point, v(T ) =
∑

wiv(Ti).

Furthermore, Principal gets the value of the starting state as a fix payoff.

Proof It is clear that these steps enable us to use backward recursion. The first

two steps are right by definition.

Step 3. At the only message before the decision point, Principal should ask the

corresponding agent for choosing a specified branch to continue. That is why,

v(T ) = max
sc|T

min
(com→C |T ),r

p(C)|T = max
i

max
sc|Ti

min
(com→C |Ti),r

p(C)|Ti = max
i

v(Ti).

Step 4. Let x =
∑

wiv(Ti). At the only message before the chance point,

Principal should send the assignment vector t = (t1, ...tn) to the branches with

(
∑

witi =)wt = 0. Then, at the point in time of the chance point, the agent should

reply a branch. That is why,

v(T ) = max
sc|T

min
(com→C |T ),r

p(C)|T = max
t|wt=0

min
i

max
sc|Ti

min
(com→C |Ti),r

((p(C)|Ti)−ti) = max
t|wt=0

min
i

(v(Ti)−ti).

(1)

ti = v(Ti)− x satisfies

∑
witi =

∑
wi(v(Ti)− x) = (

∑
wiv(Ti))− x = 0,

so using this t at (1), we get

v(T ) ≥ min
i

(v(Ti)− (v(Ti)− x)) = min
i

x = x. (2)

On the other hand,

v(T ) = max
t|wt=0

min
i

(v(Ti)−ti) ≤ max
t|wt=0

∑
wi(v(Ti)−ti) = max

t|wt=0

∑
wiv(Ti)−

∑
witi = x.

(3)

So from (2) and (3), we get v(T ) = x =
∑

wiv(Ti).
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This recursion also shows that Principal gets the value of the starting state as a

fix payoff.

5.2 Efficiency of cost price or fair strategies

Lemma 2. The expected payoff of an accepted agent ai with fair strategy and ac-

cepted application fair(ai, x) is the profit x.

Proof At each chance point, given its probability distribution described in the de-

cision tree, Principal’s assignments to the branches are conditionally independent of

the chance event, so the expected value of the assignment to the chosen branch is 0.

That is why E(p(ai)) is independent of these assignments, so let us consider them

as 0 at each branch. In this case, ai gets from Principal his cost plus the profit x,

that is why his payoff is x. To E(p(ai)) = x.

Proposition 3. Consider the subgame G− of either the first or second price mech-

anism, starting after the choice of Acc. In this game, if all agents use fair strategy

then E(ps) = f(G−) and p(C) is fixed.

Proof Let ai use the strategy Fxi
. Let us denote the subgame starting from a state

T by GT . We can determine f(GT ) by the same backward recursion as at Theorem 1.

At each endstate, the payoffs of the players are fixed, so instead of Step 1., we have

that for each endstate T ,

f(GT ) = E(ps)|T = p(C)|T +
∑

p(ai)|T = v(T ) +
∑

xi.

Steps 2., 3. and 4. are valid with f(GT ) instead of v(T ), too. And it is easy to

check that using these steps, we get by induction that f(GT ) = v(T ) +
∑

xi holds

for every T , including the starting state T0. Thus,

f(G−) = f(GT0) = v(T0) +
∑

xi ≤ p(C) +
∑

E(p(ai)) = E(ps). (4)

On the other hand, f(G−) ≥ E(ps), so f(G−) = E(ps), and equality holds at

(4), thus p(C) is fixed.

Theorem 4. If all agents use cost price strategy then E(ps) = f(G).

Proof Because of the previous theorem, what we only have to show is Principal

chooses the best set of agents according to the preference of the system. Whichever

set is chosen by Principal, the expected payoff of each agent is 0, so E(ps) = p(C).
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That is why, when Principal chooses such set of agents by which her minimum payoff

becomes the largest possible, then she chooses the set by which E(ps) becomes the

largest possible.

6 Interest in cost price strategy in the second

price mechanism

Theorem 5. In the second price mechanism, cost price strategy profile is an information-

invariant Nash equilibrium.

Proof 1 The outline of the proof is as follows. We consider an agent which we

denote by a1 and assume that all other agents use cost price strategy. Then we will

prove that E(p2(a1)) ≤ f(G) − vf(app−1), and equality holds if a1 also uses cost

price strategy. As the right side is independent of the strategy of a1, this will prove

the equilibrium.

Consider a mixed mechanism that is second price for a1 and first price for the

other agents, namely the payoffs of the players are the followings:

• p∗(a1) = app1(r1, com1) + v+(app1)− c1, or 0 if rejected;

• p∗(ai) = appi(ri, comi)− ci for all i 6= 1, or 0 if rejected;

• p∗(C) = u({ri|i ∈ Acc})−
∑

i∈Acc

appi(ri, comi)− v+(app1).

Clearly, the payoff and the preference both of a1 and of the system are the same

here as in the second price mechanism. Lemma 2 shows that p∗(ai) = p(ai) = 0

for all i 6= 1. Theorem 4 shows that if a1 uses cost price strategy then E(ps) is the

largest possible.

p∗(C) = p(C)− v+(app1) ≥ vf(app)− (vf(app)− vf(app−1)) = vf(app−1),

and equality holds when a1 is fair. Consequently,

E(p∗(a1)) = E(ps)−E(p∗(C))−
∑
i6=1

E(p∗(ai)) = E(ps)−E(p∗(C)) ≤ f(G)−vf(app−1),

and equality holds if a1 also uses cost price strategy.

Proof 2 We use the same solution concept. Using the equations

min
com→C ,r

(p2(C)) = vf(app)−
∑

v+(appi) (5)
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and if appi = pc(ai) then E(p2(ai)) = v+(appi), we get

E(ps)− E(p2(a1)) = E(p2(C)) +
∑
i6=1

E(p2(ai)) ≥ min
com→C ,r

(p2(C)) +
∑
i6=1

E(p2(ai))
(5)
=

vf(app)−
∑

v+(appi) +
∑
i6=1

E(p2(ai)) = vf(app)− v+(app1) = vf(app−1),

so

E(p2(a1)) ≤ f(G)− vf(app−1).

Corollary 6. The second price mechanism information-invariantly Nash imple-

ments f(G) as E(ps).

7 Interest in fair strategy in the first price mech-

anism

Definition 6. The value v of an application is Principal’s maximin payoff on

her such strategies by which she accepts this application; that is

v(appi) = max
(Acc|i∈Acc),sc

min
com→C ,r

p(C)

v(appi) ≤ vf(app), with equality iff appi is accepted. Furthermore, appi is ac-

cepted iff v(appi) > vf(app−i). That is why v+(appi) = max(0, v(appi)−vf(app−i)).

The value of a fair application is the value of the cost price application minus the

profit. So for a particular agent, there is exactly one fair application with a given

value.

Theorem 7. For an arbitrary agent ai and value x, if every other agent is fair then

the fair strategy of ai gains him the highest expected payoff among all those strategies

that use an application of this value.

Proof Consider again the profits of the other agents as constant costs, so their

strategies are considered to be cost price strategies; it does not modify the preference

of the system. As the acceptance depends on the value, we should consider only the

case when the value is big enough to accept. Let us increase the cost of each leaf

of the tree of ai by as much as makes the value of his cost price application x. It

decreases his payoff by a fix amount, so it does not modify his preference.
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E(ps − p(ai)) = E(p(C)) +
∑
j 6=i

E(p(aj)) = E(p(C)) ≥ min
com→C ,r

(p(C)) = v(appi),

so E(ps)− v(appi) ≥ E(p(ai)). If ai uses cost price strategy then equality holds and

Theorem 4 shows that it makes E(ps) the largest possible. That is why, the best

for ai among such strategies is his cost price strategy. With the original costs, this

means that the best for him is his fair strategy of the value.

First we describe the result more intuitively, then we present the formal results

in the subsections.

For a strategy si with application appi, and for a real number x, let si + x mean

the same strategy as si but with application appi +x, and let the emphstrategy form

Form(si) = {si + x|x ∈ R}. Let F = {Fx|x ∈ R} called the fair strategy form.

Let us fix everything in the game except the chance events and the strategy of

ai. Let pi(si) mean E(p(ai)) if he uses the strategy si. If both applications appi and

appi+x would be accepted then pi(si+x)+v(appi+x) = (pi(si)+x)+(v(appi)−x) =

pi(si) + v(appi),
3 so this sum depends only on the strategy form. We call this sum

as the value of the strategy form v(Form(si)).

In each strategy form Form there exists an only strategy si, using application

appi, for which appi − x would be accepted if x > 0 and rejected if x < 0. Then

pi(si − x) = {0 if x < 0; v(Form(si))− x if x > 0}.
pi(si) ≤ v(Form(si)), so his strategy form with the greatest value gains to ai the

highest potential for his expected payoff. Another question is expectedly how much

he could exploit this potential, in the Bayesian mean.

Theorem 7 implies that the fair strategy form has the greatest value. Moreover,

pi(Fx) = {x if v(F ) > x; and 0 otherwise}, which is a quite efficient way for the

exploitation of this potential.

7.1 Interest in cost price strategy with perfect competition

Principal accepts the applications with the greatest values. This justifies the follow-

ing definition.

Definition 7. We define the perfect competition as the mechanism with the

following preferences of the agents. Each agent prefers the case when his expected

payoff would be nonnegative if Principal chose her maximin strategy on her such

3In fact, we assume here that the actions of the other agents are independent of the choice of x.
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strategies by which she accepts the application of this agent. Of those, he prefers

submitting an application with the greater value.

Theorem 8. In first price mechanism with perfect competition, cost price strategy

of all agents is an information-invariant Nash equilibrium.

Proof Assume that every agent except ai uses cost price strategy. What we have

to prove is ai is interested in using cost price strategy, as well. If p(ai) ≥ 0 then

v(appi) = min
com→C ,r

(p(C)) ≤ E(p(C)) = E(ps)−
∑
j 6=i

p(j) = E(ps)− p(ai) ≤ f(G),

and equality holds if ai also uses cost price strategy. So this inequality gives an upper

bound for his preference, which can always be achieved with cost price strategy.

Corollary 9. The first price strategy information-invariantly Nash implements f(G)

as E(ps) with perfect competition.

7.2 First price mechanism with imperfect competition

We use some imprecise descriptions when it is unambiguous and the precise way

would be too broad.

We assume here that the information of each agent ai contains a feasible proba-

bility distribution on everything in the game including the strategies of others, and

we use probability Pi and expected value Ei also on this probability distribution.

Definition 8. Let the signed surplus value of an application appi be v±(appi) =

v(appi)− vf(app−i).

Clearly, v+(appi) = max(v±(appi), 0) and v±(appi) > 0 iff appi is accepted.

With a fixed agent ai and application appi, let (value) V = v±(pc(ai)), (differ-

ence) D = V − v±(appi) = v(pc(ai))− v(appi) and e = Ei(D|D < V ).

In practice, V and D are almost independent and both have ”natural” distribu-

tions, so Pi(e < V ) = P (Ei(D|D < V ) < V ) is usually not smaller than Pi(D < V ).

This observation shows the importance of the following theorem.

Theorem 10. If Pi(Ei(D|D < V ) < V ) ≥ Pi(D < V ) holds for any i and appi, and

this is common knowledge among the agents then a fair strategy profile is a Nash

equilibrium.

Proof Denote the strategy of ai by si using application appi and let g(si) =

Ei(p(ai)|si) and x be the number by which g(Fx) is the largest possible. So if

g(Fx) ≥ g(si) for all si then ai is interested in using fair strategy.
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We prove that if all but an agent ai use fair strategy then ai is interested in

using a fair strategy. Theoretically, let us allow only for ai to submit an application

fair(appi) in which he submits the fair application with the same value as which

v(appi) would be if he submitted appi instead. Denote the fair strategy but with

application fair(appi) by F (appi).

appi is accepted iff v±(appi) > 0, or equivalently, D < V . From

g(si) = Pi(i ∈ Acc) · Ei(p(ai)|si, i ∈ Acc),

we get g(Fe) = Pi(e < V )e, and g(F (appi)) = Pi(D < V )e, whence we can simply

get that

g(Fx)− g(si) = (Pi(e < V )− Pi(D < V ))e + (g(F (appi))− g(si)) + (g(Fx)− g(Fe))

• If e ≤ 0 then g(si) ≤ 0 = g(F0) ≤ g(Fx) so si cannot be a better strategy.

That is why assume that e > 0. In this case, (Pi(e < V )− Pi(D < V ))e ≥ 0.

If si is fair then D is constant, so both sides are the same.

• Proposition 3 implies that g(F (appi))− g(si) ≥ 0.

• g(Fx)− g(Fe) ≥ 0 by the definition of x.

To sum up, g(Fx)− g(si) ≥ 0, which proves the equilibrium.

7.3 Coalitions

In this section, we consider the case when we have disjoint sets of agents, called

coalitions, and each agent in a coalition prefers the higher total expected payoff of

all in his coalition.

Submitting more applications by the same agent is equivalent to submitting one

application in which the agent shows all and offers Principal to choose some of

them. That is why if a coalition played as one agent, called consortium, with their

combined decision tree, their overall information and the default preference, then

this consortium would be able to simulate the case of playing so as different agents

in a coalition. So if allowed, each coalition would better forming a consortium, by

which we get the original game with this new set of agents.

As a consequence, if the competition remains perfect with this new set of players

then the mechanism remains efficient.
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7.4 Reliance in Principal

Assume that Principal knows that all agents use fair strategy. Then, with the corre-

sponding modifications, she can consider them as agents with cost price strategies.

In this case the expected payoffs of all agents are 0. That is why E(p(C)) = E(ps) ≤
f(G), and Theorem 4 shows that equality holds if Principal uses her declared strat-

egy. To sum up, Principal is interested in choosing her declared strategy. (Even if

Principal is risk-averse because she gets f(G) as a fix payoff.)

8 Conclusion

In the second price mechanism, the revelation strategy profile is an information-

invariant Nash equilibrium, and this way the expected payoff of the system is the

largest possible, including the possibilities of making one’s decision depending on

the earlier chance events of others.

In the first price mechanism, with some assumption (or approximation), there

is a Nash equilibrium consisting of the same strategies but with asking a constant

more money – his expected payoff in the case of acceptance – in each application.

The disadvantage of the first price mechanism over the second price one is that

it requires a competition on each task, and it is fully efficient only with perfect

competition.

The advantages of the first price mechanisms are

1. forming cartels of agents does not worsen the process as long as it does not

decrease the competition, while in the second price mechanism, if two agents can

submit such applications that are useless without each other then they may get as

much payoff as they want (see 10.1);

2. the agents need (almost) no reliance in Principal.

9 Extensions and consequences of the model

9.1 When Principal also has a decision tree

Consider the extension of the model when Principal also has a decision tree, and

the utility depends on her result, too. Consider here this Extended Principal(♀) as

two players, one is considered as an indispensable agent with the decision tree who

declares that he uses cost price strategy, and the other is Principal in the original

meaning with her strategy of the first or second price mechanism. In the second
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price mechanism, we omit paying the surplus value of the application of this fictive

agent. Then the expected payoff of Extended Principal and Principal are the same,

and all statements hold with this new set of players, that is why this mechanism

in the extended model is the same good as the original mechanism in the original

model.

Using this strategy of Extended Principal is equivalent to choosing the strategy

by which her minimum expected payoff only on her own chance events is the highest

possible.

9.2 When agents also have utility functions

Consider the extension of the model when some agent ai has a utility function ui

which is 0 if ai is rejected, and may depend on the work of others if ai is accepted,

that is p(ai) = ai(ri, comi) + ui(o)− ci. Let us allow making such applications and

contracts that specify the payment depending also on the results of other contracted

agents. Then we define cost price application by the same way, but decreased by ui.

This way, with some corresponding changes, all that we have shown above remains

true.

9.3 Modifications during the process

In practice, the decision trees can be extremely difficult, that is why submitting the

precise fair applications is not expectable. Therefore, they can present it only in

a simplified, approximating way. Generally, such inaccuracies do not significantly

worsen the optimality, nevertheless, this loss can be much more reduced by the

following observation.

Assume that someone whose application has been accepted can refine his decision

tree during the process. It would be beneficial to allow him to carry out such

modifications. The question is: on what conditions?

The answer is for us to allow modifications of applications, if the agent pays

the difference between the values of the actual states with the original and the new

applications. From another point of view, considering the possible applications with

the restriction of the earlier communication, an agent can exchange his application to

another one with the same value in the restricted mean. As it is shown at Theorem 7,

exchanging to his true fair application is in his interest, and such modifications gains

him as much more expected payoff as to the system.

Equivalently, each possible modification can be handled so as a chance point in

the original application with 1 and 0 probabilities for continuing with the original
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and the modified application, respectively. (Or more precisely, as the limit of the

cases when these probabilities tend to 1 and 0.) Because at such chance point,

Principal assigns 0 to the branch of not modifying and the difference between the

values of the states after and before, to the modification.

It may happen that in the beginning it is too costly for some agent to explore the

many improbable branches of his decision tree, especially if he does not yet know

whether his application will be accepted; but later however, it would be worth ex-

ploring better the ones that became probable. This kind of in-process modifications

is what we want to make possible. We show that the interest of each agent in better

scheduling of these modifications is about the same as the interest of the system in

it.

The expected payoff of an agent with an accepted fair application is fixed and for

a nearly fair agent, the small modifications of the other applications have negligible

effect. As the modifications of each agent have no influence on Principal’s payoff

and only this negligible influence on the expected payoff of other agents, the change

of the expected payoff of the system is essentially the same as the change of the

expected payoff of this agent. This confirms the above statement.

On the other hand, it is clear that if the utility function alters somewhat then

everything can be rescheduled according to the new goals. Moreover, Principal is

interested in describing her utility function in the same schedule as which is the best

according to the preference of the system.

10 Further theoretical observations

10.1 Coalitions in the second price mechanism

In the second price mechanism, consider the case when two agents can submit such

applications that are useless without each other. Assume that their cost price ap-

plications would be accepted. If either of them decreased the cost of his application

by x then the surplus value of both application would increase by x, so totally they

get 2x compensation, by which they get x more total payoff. Using this trick, these

players can get as much payoff as they want.

10.2 Simplifications and the case with no parallel tasks

The messages Principal sends depend only on the earlier messages she got. That is

why if an agent ai is sure that Principal recieves no message from anyone else in the
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time interval I = [t1, t2] then, without decreasing the value of his application, ai can

ask Principal (in the application) to send at t1 that what messages she would send

during I depending on the messages she would have got from ai before. Similarly, if

Principal surely does not send any message to anyone else during I then the agent

can send all his messages only until t2, and during I, and Principal should send to

ai that which messages he would send depending on the messages he would have got

before.

As an application, consider the following project. It consists of two tasks, and

the second task can only be started after the first one accomplished. The result of

each agent for the first task (called first agent) consists of his completion time C1.

The result of each second agent consists of his starting time S2 and the time C2 he

completes; and his decision tree starts with doing nothing until an optional point in

time that is S2, and then he can start his work. The utility function is of the form

f(C2) for some decreasing function f : {time} → {money} if C1 ≥ S2, and −∞
otherwise. In this case, Principal always communicates only with the agent who is

just working at the time. So using the above observation, we can make simplified

applications of the following form with the same values as of the fair applications.

In short, the first agents tell that for how much money would they complete the

first task depending on the penalty, and the applied penalty for the chosen second

agent is the loss form the delayed completion, and the penalty for the first agent is

how much more the second agent asks if he can start later. Principal chooses the

pair that gains her the most payoff.

Formally, the form of the application of the first agents is ”We ask h(C1)− g1(h)

money for any h : {time} → {money} that is chosen by Principal at the beginning”,

and for the second agents this is ”We ask f(C2)− g2(S2) money if we can start our

work at S2 and we complete it at C2”. h(C1) and f(C2) describe the penalties here.

In the simplified fair applications, g1 and g2 are chosen in such a way that make their

expected payoff independent of the arguments, if the agents use their best strategies

afterwards.

If all applications are so then Principal chooses a pair for which g1(g2) is the

greatest. Then she chooses h = g2 for the first agent, and this way Principal gets

f(C2)− (g2(C2)− g1(g2))− (f(C2)− g2(S2)) = g1(g2) payoff.

If a first agent has no choice in his decision tree, that is his completion time C1

is a simple random value, then he should choose g1(h) = E(h(C1)) − c, where c is

the cost plus the profit.
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10.3 Controlling and controlled players

For an example, consider a task of building a unit of railroad. An agent a1 can

make this task for a cost of 100, but with 1% probability of failure, which would

cause a huge loss 10, 000. Another agent a2 could inspect and in the case of failure,

correct the work of a1 under the following conditions. The inspection costs 1. If

the task was correct then he does nothing else. If not, he detects and correct the

failure with 99% probability for a further cost 100, but he does not detect, so he

does nothing with 1% probability. If both of them use cost price strategy and they

are the accepted agents for the task then the mechanism works in the following way.

At the end, ai gets 101.99 but pays 199 (totally he pays 97.01) compensation if

he fails. a2 gets 1 if he correctly finds the task to be correct, he gets 200 if the task

was wrong but he corrects it, but he pays 9800 if he misses correcting it.

Of course, with fair applications each of them gets his profit more payment. It

can be checked that the expected payoff of each agent is his profit independently of

the behaviour of the others, and Principal’s payoff is fixed.

10.4 Omitting Principal’s assignments

The fair agents make no use of Principal’s assignments at the chance points. Let us

investigate what if we skipped these messages from the mechanism. In this case, the

payment to each agent ai no longer depends only on ri and comi but it also depends

on com→C . That is why it would require from the agents much more reliance in

Principal. But everything else we have shown remained true without the use of

these messages.

10.5 A consequence for 2-player cooperation

Consider the case when a player a simply wants to make an offer for cooperation

with another player c. We can consider a as an extended agent as in Section 9.2, c

as an extended principal as in Section 9.1 and the offer of a as an application. Then

c should accept or reject the application depending only on her expected payoff if

she accepted it. By definition, this payoff equals the value of the application, and

Theorem 7 shows that the fair application of all applications with the same value

gains to a the highest expected payoff in the case of acceptance.
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11 Observations for application

11.1 Necessity of being informed about the own process

We assumed that none of the chosen players knew better anything about any chance

event of any other chosen agent. We show here an example that fails this requirement

and it makes the mechanism wrong. Consider two agents a and b that will surely

be accepted. Assume that a believes the probability of an unfavourable event in

his work to be 50 %, but another one, called B knows that the probability is 60%,

he knows the estimation of a and he also knows that at a particular decision point

of him, he will be asked for the decision corresponding to this chance event. It

can be checked that if the application of a is fair then if b increases his costs in his

application of the more probable case by an amount of money and decrease the costs

in the other case by the same amount then the value of his application remains the

same but this way, he bets 1 : 1 with b on an event of 60% probability.

In order to restrain such losses, a could rightfully say that larger bet can only

be increased on worse conditions. Submitting reasonable application with concave

valuability function makes something similar, that is another reason to use this.

11.2 Risk-averse agents

Assume that an agent ai has a strictly monotone valuability funcion g : R → R
and he wants to maximize E(g(p(ai))). We have seen safety use of the case when g

is concave in Section 11.1.

Definition 9. We define an application reasonable as the same as the fair appli-

cation with the only difference that at the end, Principal pays

g−1(g(cost of the leaf) +
∑

chance event

(assigned value to the chosen branch)).

By a reasonable application, in the case of acceptance, the expected valuability

of the utility of the agent is independent of Principal’s choices. If all applications are

reasonable then Principal’s payoff remains fixed. If the agent is risk-neutral then the

reasonable application is fair. These are some reasons why reasonable applications

work ”quite good”. We do not state that it is optimal in any sense, but a reasonable

application may be better than a fair application in the risk-averse case.

We note that if g(x) = a− b · e−λx then the evaluation works in almost the same

way as with fair applications.
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11.3 Agents with limited funds

This section is only a suggestion for the cases with such agents, and it is not optimal

in any sense.

Our mechanism requires each agent to be able to pay so much money as the

maximum possible damage he could have caused. But in many cases, there may

be a plenty of agents who cannot satisfy this requirement. However, accepting such

agent a may be a good decision, if a is reliable to some degree.

To solve this problem, a should find someone who has enough funds, and who

takes the responsibility, for example for an appropriate fee. If the agent is reliable

to some degree then he should be able to find such insurer player b. (It can be even

Principal, but considered as another player.) This method may also be used when

a has enough funds, but he is very risk-averse.

Here, a and b work similarly as a controlled and a controlling parties in Sec-

tion 10.3. The difference is that b does not work here, and he knows the probability

distribution of the result of a not from his own decision tree but from his knowledge

about the reliability of a. This shows that the role of b can be combined with his

role in Section 10.3.

11.4 Risk level

If all agents are fair then at each chance point, the money assigned to each branch

is the difference between the expected payoffs of the system after and before. That

is why, in many cases, the risks of the agents are acceptable. For example, in an

ordinary case, being late can cause at most as much penalty as much loss could be

caused by this much more late in the project.

11.5 Communication

The model requires the communication to be certifiable. This can simply be made

using a cryptographic communication protocol.

11.6 Applications in genetic programming

This second price mechanism may also be useful in genetic programming, when

we want to find an efficient algorithm for such a problem that can be distributed

into slightly dependent subproblems, while the subprograms for these subproblems

should cooperate, and their overall achievement is what we can evaluate. In this case

we should experiment such subprograms parallelly that also submits applications,
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and we simulate here a competitive market with a Principal that uses our second

price mechanism.

If the form of all possible cost price applications for each subproblem is simple

enough then we may need to experiment less parameters in each subproblems than

in the original problem, and that is why this method converges faster.
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