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1 Introduction

I would like to thank Gábor Sági, for his help and guidance. This thesis would be

nowhere without him.

1.1 Introduction

According to some classical results of mathematical logic if a structure has infinitely

many elements it cannot be described, up to isomorphism, by first order properties.

Indeed, an ultrapower B of an infinite structure A may have arbitrarily large cardi-

nality and still satisfies exactly the same formulas as A. Hence it is natural to take

a closer look on those theories which determine their models up to isomorphism and

cardinality: if κ is a cardinality then a theory T is defined to be κ-categorical if and

only if, up to isomorphism, T has a unique model of cardinality κ.

Since the middle of the 20th century, there has been a considerable effort to study

infinitely categorical theories. ℵ0-categorical structures had been described early

on by Svevonius and Ryll-Nardzewski. Later on, Morley showed in his celebrated

theorem that a (countable, first order) theory T is ℵ1-categorical if and only if it is

κ-categorical for all uncountable κ, see e.g. [11] or Theorem 7.1.14 of [1].

Morley’s theorem implies that from the structure theoretic point of view ℵ1

categorical theories are the simplest ones: their models can be identified with a

single cardinality parameter, namely with the cardinality of their universe. Vaught

asked whether infinitely categorical theories are simple from the axiomatic point

of view. This became one of the most important questions of model theory which

finally had been solved independently by Zilber (see [14] and [15]) and by Cherlin-

Lachlan-Harrington (see [3]). Both proofs are long and overtake serious technical

difficulties. The answer is negative: an infinitely categorical theory cannot be finitely

axiomatized (hence, it is necessarily complicated in some sense). For more recent

related results we refer to Cherlin-Hrushovski, [2].

These results are based on studying finite substructures of stable structures. It

turned out that if the original structure is “very stable” then it has finite structures

with a highly transitive group of automorphisms and this contradicts finite axiom-

atizability. Constructing highly homogeneous finite structures (i.e. finite structures
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with highly transitive automorphism groups) seems interesting as an independent

combinatorial problem, for results in this direction we refer to [9], [6] and [7].

In this work we establish a new method to construct highly homogeneous finite

substructures of certain structures. This method is based on extending partially

elementary mappings of ultraproducts of finite structures in a way that the resulted

extension is decomposable, that is, it acts coordinatewise (in a sense). Throughout

this procedure, stability (or rather the non-existence of long splitting chains) plays

an important role. We present two applications of our method. These applications

are the main results of this work and are as follows.

First we extend Morley’s categoricity theorem to finite cardinalities: under cer-

tain additional technical conditions, if T is ℵ1-categorical then its large enough finite

fragments have a unique n-element model for all finite n (thus these finite fragments

are n-categorical for some sense for all n ∈ ω). This finitary extension of Morley’s

theorem is completely new and seem to be related to, and applicable in complexity

theoretical aspects of finite model theory; see subsection 4.3.

As a second application we provide a simple approach related to a special case

of the Zilber–Cherlin-Lachlan-Harrington theorem: again under some additional

technical conditions, non-finite axiomatizability of infinitely categorial (even an ℵ0-

categorical, ℵ0-stable) theories are equivalent with the existence of highly homoge-

neous finite models. We are also trying to push the limits of our approach beyond

ℵ0-stability; in this respect our results are considered to be new ones. For both

applications we refer to [5] and [4].

The structure of the paper is as follows. In the rest of the introduction we

summarize our notations and the needed basic definitions and facts from model

theory. In Section 2 we investigate first the connection between stability and splitting

chains, and then we show how to use stability to “understand the big from the small.”

A new method to extend certain mappings is described in Section 3. Finally we give

the applications of the method in Section 4.
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1.2 Notation

In this section we are summing up our system of notation.

Sets

Throughout ω denotes the set of natural numbers and for every n ∈ ω we have

n = {0, 1, . . . , n − 1}. If A and B are sets, then AB denotes the set of functions

from A to B, |A| denotes the cardinality of A, and P(A) denotes the power set of

A. In addition for a cardinal κ we use [A]κ and [A]<κ to denote the sets {x ∈ P(A) :

|x| = κ} and {x ∈ P(A) : |x| < κ}, respectively. We use the standard notations for

cardinals, i.e. ℵ0 = |ω| and c = 2ℵ0 .

Sequences of variables or elements will be denoted by overlining, for instance

x̄ denotes an n-tuple 〈x0, x1, . . . , xn−1〉 for a given n ∈ ω. The length of the se-

quences (in this case n) will always be clear from the context. For a function

f let us denote the domain and the range of f by dom(f) and ran(f), respec-

tively. For simplicity, by a slight abuse of notation, we will write x̄ ∈ A in place

of ran(x̄) ⊆ A, particularly x̄ ∈ dom(f) expresses that f is defined on every

member of x̄, that is ran(x̄) ⊆ dom(f). For a subset X ⊆ dom(f), we define

f [X] = {f(x) : x ∈ X} ⊆ ran(f).

Languages

Let L be a first order language. Throughout we assume that L contains finitely

many relation symbols and no function symbols, however we note that many of the

theorems remain true for an arbitrary (but countable) language. The set of all for-

mulas of L is denoted by Form(L). In addition At(L) and Form∆(L) are the sets of

atomic and quantifier-free formulas, respectively. We use ϕ(v̄) to denote a formula ϕ

all of whose free variables occur among v̄. For a given set X we can extend our lan-

guage with constant symbols denoting elements of X. This extended language is LX .

Structures

By a structure we understand a set A = 〈A, fAi , rAj 〉i∈I,j∈J , where fAi and rAj are the

interpretations of the function and relation symbols fi and rj, respectively. If L is a

first order language containing the relation and function symbols ri and fj, then A
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is said to be an L-structure. We will use the convention, that structures (models)

are denoted by calligraphic letters, and the underlying set of a given structure (the

universe of a given model) is always denoted by the same latin letter. We use the

standard validity relation |=, that is, for a formula ϕ(v̄) and ā ∈ A, the statement

A |= ϕ[ā] means that ϕ is true in A under the valuation v̄ = ā. ϕ is valid in A if it

is true under all valuations. This last assertion is denoted by A |= ϕ. The set of all

valid formulas in A is Th(A). Conversely, if Σ is a set of formulas then the class of

structures in which all the members of Σ are valid is denoted by Mod(Σ).

If A is a model for a language L and R0, . . . , Rn−1 are relations on A then

〈A, R0, . . . , Rn−1〉 denotes the expansion of A whose similarity type is expanded

by n new relation symbols (with the appropriate arities) and the interpretation of

the new symbols are R0, . . . , Rn−1, respectively. Similarly if L′ ⊆ L and A is an

L-structure, then A|L′ is the structure obtained by forgetting the functions and

relations of Lr L′. This is called the L′-reduct of A.

Two structures A and B are elementary equivalent (A ≡e B) if Th(A) = Th(B).

When A is isomorphic to B we write A ∼= B.

1.3 Basic definitions and preliminaries

This section overviews some background. Since the mentioned results are well

known, we do not present proofs here.

1.3.1 Types and the Stone topology

LetA be a structure, X ⊆ A and ā ∈ A. We would like to understand the connection

between ā and X. In first order logic all we can express are sentences in the extended

language LX which are true in A substituing ā onto the free variables. This motives

the following definition.

Definition 1.1 Let v̄ = 〈v0, . . .〉 be a sequence of variables, A a structure, and

X ⊆ A. Then p ⊆ Form(LX) is said to be a v̄-type over X in A, iff the following

stipulations hold:

• all the free variables of formulas from p are in v̄;

• A |= ∃v0∃v1 . . . ∧ p0 for all p0 ∈ [p]<ω;
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• if ϕ is a formula with free variables only from v̄ then ϕ ∈ p or ¬ϕ ∈ p.

The set of v̄-types over X in A is denoted by SAv̄ (X).

The type of ā in A over X ⊆ A is defined as usual:

tpA(ā/X) = {ϕ(v̄) ∈ Form(LX) : A |= ϕ[ā]}.

If X = ∅ we omit it, if A is clear from the context then we also omit it. Clearly

tpA(ā/X) ∈ SAv̄ (X) and this is all we can say about the connections between a and

X in A.

The definition of types fairly resembles to that of the ultrafilters. This is not

a coincidence, as we will see it. Consider a structure A a subset X ⊆ A and a

formula ϕ(v̄) ∈ Form(LX). Then ϕ defines a relation on A in a natural way, namely

the relation ||ϕ||A = {s ∈ v̄A : A |= ϕ[s]}. Clearly these kind of relations form a

Boolean algebra B =
〈
{||ϕ||A : ϕ ∈ Form(LX)},∩,∪

〉
. Now the types p ∈ SAv̄ (X)

can be identified with the ultrafilters of B. Hence types form a filter-space which is

called Stone-space. It will be important in the latter sections that Stone-spaces are

compact, Hausdorff topological spaces with the clopen base {Nϕ : ϕ ∈ Form(LX)},
where Nϕ = {p ∈ SAv̄ (X) : ϕ ∈ p}.

Similarly we may define types restricted to a given set of formulas. For instance

if Φ is a set of formulas then tpAΦ(ā/X) = {ϕ(v̄, c̄) ∈ p : ϕ(v̄, w̄) ∈ Φ}. When

Φ = Form∆(L) we speak about quantifier-free types.

1.3.2 Saturation and ultraproducts

A type p ∈ SAv̄ (X) is said to be realizable if p = tpA(ā/X) for some ā ∈ A. For

example, the statements

∀y(y2 < 2 =⇒ y < x) and ∀y((y > 0 ∧ y2 > 2) =⇒ y > x)

describe the square root of 2. This set of formulas extends to a type not realized

in the model of arithmetic consisting of the rational numbers, but is realized in the

reals. We formulate this phenomena in the next definition.

Definition 1.2 Let A be a structure and κ a cardinal. Then A is κ-saturated iff for

all X ∈ [A]<κ any type p ∈ SA(X) can be realized in A. We say that A is saturated

if it is |A|-saturated.
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Saturated models exist: for instance 〈Q, <〉 and the countable random graph are

saturated (in fact, they are ℵ0-categorical). We note that if A is infinite, then the

set {v 6= a : a ∈ A} of formulas is finitely satisfiable, hence it extends to a type

over A in A. Clearly this type is not realizable in A, thus it follows that an infinite

structure A can not be |A|+-saturated. We also note that a structure is κ-saturated

for all cardinal κ if and only if it is finite.

We would like to construct highly-saturated structures. For this, we use ultra-

products. First recall the definitions.

Definition 1.3 Let 〈Ai : i ∈ I〉 be L-structures. Then B = Πi∈IAi is the direct

product structure iff

• B = Πi∈IAi;

• (fB(b̄))i = fAi(b̄(i)) for all f ∈ L and i ∈ I;

• b̄ ∈ rB ⇐⇒ (∀i ∈ I)b̄(i) ∈ rAi for all r ∈ L.

Definition 1.4 Let B = Πi∈IAi and let F be an ultrafilter over I. Then a, b ∈ B
are equivalent iff {i ∈ I : a(i) = b(i)} ∈ F (in symbols: a ≡F b). The equivalence

class of a ∈ B is a/F = {b ∈ B : a ≡F b}. Now, A = Πi∈IAi/F is an ultraproduct

if the followings hold:

• A = {a/F : a ∈ B};
• fA(ā/F) = fB(ā)/F = 〈fAi(ā(i)) : i ∈ I〉/F ;

• ā/F ∈ rA ⇐⇒ {i ∈ I : ā(i) ∈ rAi} ∈ F .

Forming ultraproducts is a basic tool constructing a “bigger” model from sev-

eral “smaller” ones in such a way that the obtained structure reflects the average

properties. The following Lemma makes this idea precise.

Theorem 1.5 ( Loś lemma) For every ϕ ∈ Form(L) we have

Πi∈IAi/F |= ϕ⇐⇒ {i ∈ I : Ai |= ϕ} ∈ F .

Let F be an ultrafilter over I and let κ be a cardinal. A function f : [κ]<ω → F
is said to be monotone iff for all s1, s2 ∈ [κ]<ω one has s1 ⊆ s2 ⇒ f(s1) ⊇ f(s2) and

f is said to be additive iff f(s1 ∪ s2) = f(s1)∩ f(s2). In addition if f, g : [κ]<ω → F
are functions, then f is defined to be smaller then g iff for all s ∈ [κ]<ω one has
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f(s) ⊆ g(s). The ultrafilter F is defined to be λ-good iff for every κ < λ and for

every monotone f : [κ]<ω → F there is an additive g : [κ]<ω → F such that g is

smaller than f .

We recall the following facts from [1]. By Theorem 6.1.4 of [1], there are count-

ably incomplete |I|+-good ultrafilters over every infinite set I; in addition, by Theo-

rem 6.1.8 of [1], ultraproducts modulo countably incomplete, κ-good ultrafilters are

κ-saturated. We note that this is true for any ultraproduct, particulary, if we extend

the language of our structures with one new relation symbol then the ultraproduct

(modulo a countably incomplete κ-good ultrafilter) of these extended structures still

remain κ-saturated.

Turning back to ultraproducts, we need the following definitions (see also [12]).

Definition 1.6 Let 〈Ai : i ∈ I〉 be a sequence of sets, F an ultrafilter on I, and

Ri ⊆ kAi given relations. Then Πi∈IRi/F is defined as:

Πi∈IRi/F = {s/F ∈ k
(
Πi∈IAi/F

)
: {i ∈ I : si ∈ Ri} ∈ F}.

Definition 1.7 We say that a relation R ⊆ k
(
Πi∈IAi/F

)
is decomposable iff

R = Πi∈IRi/F

for some Ri ⊆ kAi.

1.3.3 Categoricity and stability

Let T be a set of formulas (T is called a theory) in a first order language L. How

does T determine its models? On the one hand by the Löwenheim-Skolem theorems

it follows that if T has an infinite model, then for all κ ≥ ℵ0 it has a model with

cardinality κ. On the other hand we might ask whether T has a unique model on a

given cardinal? In more detail, let I(T, κ) be the number of non-isomorphic models

of T , having cardinality κ. A theory T is said to be κ-categorical, if I(T, κ) = 1.

The classical example is the theory of algebraically closed fields of a given charac-

teristic: these are categorical of size ℵ1. The spectrum problem is to describe the

possible behaviours of I(T, κ) as a function of κ. Several results are known: for

example I(T, ω) is finite, or equals to ℵ0 or ℵ1 or c. By results of Ryll-Nardzewski,
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Svevonius and others (see Theorem 2.3.13 of [1]), the case I(T,ℵ0) = 1 is completely

characterized in terms of the automorphims of A. For larger cardinals, the key is

in stability theory, which became a separate part of mathematical logic by works of

Morley, Shelah, Hrushovski, Pillay, Lascar, Zilber and Baldwin.

Definition 1.8 Let T be a consistent theory, and let λ ≥ ℵ0 be a cardinal. Then

(i) T is λ-stable if for all A |= T and X ∈ [A]λ one has | SA1 (X)| ≤ λ;

(ii) T is stable if it is λ-stable for some cardinal λ;

(iii) T is superstable if T is λ-stable for all λ > µ for some µ;

(iv) T is unstable if it is not stable.

A structure A is said to be stable (unstable) iff Th(A) is stable (unstable). Exam-

ples of both stable and unstable structures are well known. For example algebraically

closed fields (of a given characteristic) are ℵ0-stable. We note that a stable structure

is also stable for all cardinals with the property λ = λ|Form(L)|. This fact is estab-

lished by the spectrum-theorem, see Theorem I.2.2 (1)-(8) of [13]. It follows that

for a countable language, stable structures are c-stable which will be important for

us. Now, we draw up some well known implications on stability and categoricity;

for the proofs, we refer to [1].

Theorem 1.9 Let T be a theory in a countable language.

(i) If T is ℵ0-stable then it is stable for all infinite cardinals

(see Lemma 7.1.3. of [1]);

(ii) If T is λ-categorical for λ ≥ ℵ1 then it is ℵ0-stable

(see Lemma 7.1.4 of [1]);

(iii) If T is ℵ0-stable then T has a κ-saturated model with cardinality λ,

for Form(L) ≤ κ ≤ λ, κ is regular (see Lemma 7.1.6 of [1]).

Theorem 1.10 (Upward-Morley, see Lemma 7.1.7 and Theorem 7.1.14 of [1] or

Theorem 6.1.1 of [10]). Let T be an ℵ1-categorical theory. Then

(1) Every non-countable models of T are saturated;

(2) T is κ-categorical for all κ > ℵ0.

Two structures A, B are defined to be a Vaughtian pair iff B is a nontrivial

elementary substructure of A and there exists an infinite definable relation in B
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which cannot be realized in A r B. By a theorem of Baldwin and Lachlan, a

structure A is uncountably categorical iff it is ℵ0-stable and its models does not

contain Vaughtian pairs. For the details we refer to Theorem 6.1.18 of [10]. Actually

we will only make use of the “easier” direction of the Baldwin-Lachlan theorem: if

a theory T is uncountably categorical then its models does not contain Vaughtian

pairs - otherwise, by a standard two cardinals theorem (see e.g. Theorem 3.2.9 of

[1]) one could construct two non-isomorphic models of T with cardinalities ℵ1.

1.3.4 Homogeneity

By a partial isomorphism between two relational structures A and B (with the same

similarity type) we mean a partial function f : A → B which is an isomorphism

between the substructures corresponding to the domain and the range of f . Clearly

such a function preserves all the quantifier-free formulas, that is for all ā ∈ dom(f)

one has tpA∆(ā) = tpB∆(f(ā)). If a (partial) function f preserves all the formulas of

Form(L) then it is said to be an elementary mapping. Similarly if Φ ⊆ Form(L) is a

set of formulas, then f is called to be Φ-elementary iff it preserves all the formulas

from Φ, that is tpAΦ(ā) = tpBΦ(f(ā)) for all ā ∈ dom(f). The difference between

elementary functions and partial isomorphisms is that the latter are not sensitive of

the connections with elements outside of the domain.

In the latter sections we will deal with extending certain types of partial func-

tions.

Definition 1.11 Let κ be a cardinal, let A be a structure, and let X ∈ [A]<κ. Then

A is defined to be

• partially κ-homogeneous iff for every partial isomorphism f : X → A and

a ∈ A there is a partial isomorphism g which extends f and a ∈ dom(g);

• κ-homogeneous iff every partial isomorphism f : X → A extends to an auto-

morphism of A;

• homogeneous iff it is |A|-homogeneous;

• strongly κ-homogeneous iff every f : X → A partial elementary mapping ex-

tends to an automorphism of A;

• strongly homogeneous iff it is strongly |A|-homogeneous.
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There is a strong connection between saturatedness and homogeneity which we

now recall from [1] (see Proposition 5.1.9 of [1]).

Proposition 1.12 Every saturated structure is strongly homogeneous, in fact, a

structure is saturated if and only if it is universal and strongly homogeneous.

2 More on stability

In this section we examine first the connection between stability and splitting chains,

later we introduce the mirroring principle which will be used in extending decom-

posable mappings.

2.1 Splitting chains

Definition 2.1 Let p ∈ SA(X) and Y ⊆ X. Then p splits over Y if there exist

ā, b̄ ∈ X and ϕ ∈ Form(L) such that tpA(ā/Y ) = tpA(b̄/Y ), but ϕ(v, ā) ∈ p and

¬ϕ(v, b̄) ∈ p.

Lemma 2.2 (see Lemma I.2.7 of [13]). Let A be a λ-stable structure. Then there

does not exist an increasing sequence 〈Ai : i ≤ λ〉 and p ∈ SA(Aλ) such that p|Ai+1

splits over Ai for all i < λ.

The non-existence of long splitting chains play a central role in our method of

extending decomposable mappings. By the previous lemma we may conclude that

if a structure is stable then there are no long splitting chains in it. It is natural to

ask whether the converse is true. We show that from the assumption that there is

no long splitting chain, stability follows.

Proposition 2.3 Suppose A is a structure such that there does not exists an in-

creasing sequence 〈Ai : i ≤ λ〉 and p ∈ SA(Aλ) such that p|Ai+1
splits over Ai for all

i < λ. Then A is 22λ
-stable.

Proof. Let X ⊆ A with |X| ≤ 22λ
. We have to show that | SA(X)| ≤ 22λ

. Taking

an |X|+-saturated elementary extension of A we may assume that every type over X

is realized. Using the assumption that there is no long splitting chain, for all a ∈ A,
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first we construct a set A(a) ⊆ X by transfinite recursion such that the following

two conditions hold:

(1) |A(a)| ≤ λ;

(2) tp(a/X) does not split over A(a).

To this end let a ∈ A be fixed, let p = tp(a/X), and set A0 = ∅. Let β be an ordinal

and suppose for all α < β that Aα ⊆ X such that |Aα| ≤ |α|+ ℵ0.

I. In the first case suppose β is successor, say β = α + 1. If p splits over Aα, then

by definition there exist x̄, ȳ ∈ X and ϕ ∈ Form(L) such that tp(x̄/Aα) = tp(ȳ/Aα),

but ϕ(v, x̄) ∈ p and ¬ϕ(v, ȳ) ∈ p. In this case let Aβ = Aα ∪ {x̄, ȳ}. If p does not

split over Aα then the construction is complete.

II. In the second case suppose β is a limit ordinal. Then let Aβ = ∪α<βAα.

Now observe that p|Aα+1 splits over Aα for all α < β, consequently by our assumption

the transfinite construction stops at a level β < λ. Finally let A(a) = Aβ.

Similarly there exists a set B(a) ⊆ X with

(3) A(a) ⊆ B(a);

(4) |B(a)| ≤ 2λ;

(5) for all x̄ ∈ X there exists ȳ ∈ B(a) such that tp(x̄/A(a)) = tp(ȳ/A(a)).

For this, choose an arbitrary realization of each type over A(a) and let their collection

be B(a). Then (3) and (5) clearly holds. To show that (4) holds observe that by

(1) we have | Si(A(a))| ≤ 2λ, and thus

|B(a)| ≤ ℵ0 · |
⋃
i∈ω

Si(A(a))| ≤ ℵ0 ·
∑
i∈ω

2λ = ℵ2
0 · 2λ = 2λ

To end the proof we only have to show that

(?) if a0, a1 ∈ A with B(a0) = B(a1) and tp(a0/B(a0)) = tp(a1/B(a1))

then tp(a0/X) = tp(a1/X).

It is sufficient to establish (?) since there are only (22λ
)2λ

= 22λ
possibilities to

choose B(a0), and thus by (?) there are only 22λ
many types over X.

To see (?), let c̄ ∈ X be arbitrary. By (5) there exists c̄′ ∈ B(a0) such that

tp(c̄/A(a0)) = tp(c̄′/A(a0)). Now tp(a0/X) 3 ϕ(v, c̄) ⇐⇒ A |= ϕ(a0, c̄) ⇐⇒
A |= ϕ(a0, c̄

′)
(2)⇐⇒ A |= ϕ(a1, c̄

′) ⇐⇒ A |= ϕ(a1, c̄) ⇐⇒ ϕ(v, c̄) ∈ tp(a1/X).
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2.2 Mirroring principle

We will deal with extending partial elementary mappings of certain ultraproducts.

It is well known that every saturated structure A is strongly homogeneous: every

elementary mapping f of A with |f | < |A| can be extended to an automorphism

of A; for more details, we refer to Proposition 5.1.9 of [1]. The basic idea of the

proof of this theorem is that by saturatedness, if f : A→ A is a “small” elementary

mapping, and a /∈ dom(f), then the type f [tpA(a/dom(f))] can be realized outside

of ran(f). The problem is that it is not only the “small” mappings which we would

like to extend. For instance if A is an ultraproduct and f is decomposable then

|f | might be as big as |A|, and since A can not be |A|+-saturated we can not hope

anything like above.

However, stability saves the situation. We show that one can choose a subset,

which is small enough for our intentions and even catches all the first order proper-

ties. More precisely, our Lemma 2.5 guarantees sets A(a) and B(a), which determine

the type of a over certain subsets of A. This technique may be considered as a kind

of mirroring: we understand the connections of an element and a subset by mirroring

the properties onto a smaller subset. First we need the following proposition.

Proposition 2.4 Suppose A is a stable structure, D ⊂ A and 〈A, D〉 is c+-saturated.

Then there exist AD ⊆ D, pD ∈ S(AD), and aD ∈ A r D, such that |AD| < c, aD

realizes pD, and if c ∈ ArD realizes pD then tpA(c/D) does not split over AD.

Proof. We apply transfinite recursion. Let a0 ∈ A r D be arbitrary, A0 = ∅ and

p0 = tpA(a0/A0). Let β be an ordinal and suppose for all α < β that aα, Aα ⊆ D,

and pα are already defined, such that pα ∈ S(Aα), |Aα| ≤ |α| + ℵ0, and aα realizes

pα.

I. β is successor, say β = α+1. First, suppose there exists c ∈ ArD which realizes pα

but tpA(c/D) splits over Aα (it may happen that c = aα). Then by definition there

exist d̄0, d̄1 ∈ D and ϕ such that tpA(d̄0/Aα) = tpA(d̄1/Aα), but ϕ(v, d̄0) ∈ tpA(c/D)

and ϕ(v, d̄1) /∈ tpA(c/D). Let Aβ = Aα ∪ {d̄0, d̄1}, pβ = tpA(c/Aβ), and aβ = c. If

there are no c ∈ A r D with tpA(c/D) splitting over Aα, then Aβ, pβ and aβ are

undefined, and the transfinite construction is complete.
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II. β is a limit ordinal. Let Aβ = ∪α<βAα and pβ = ∪α<βpα. By assumption 〈A, D〉
is c+-saturated hence there exists aβ ∈ ArD which realizes pβ.

III. Clearly, for each α, pα+1 splits over Aα, hence by Lemma 2.2 this construction

stops at a level β < c. Let AD = Aβ, pD = pβ, and aD = aβ.

Lemma 2.5 Let A be stable, and D ⊂ A such that 〈A, D〉 is a c+-saturated struc-

ture. Then there exist a ∈ ArD and sets A(a) ⊆ B(a) ⊆ D such that

(1) |A(a)| ≤ c and tpA(a/D) does not split over A(a);

(2) |B(a)| ≤ c and every type over A(a) can be realized in B(a);

(3) for all b ∈ ArD the following holds:

tpA(a/B(a)) = tpA(b/B(a)) =⇒ tpA(a/D) = tpA(b/D).

Proof. (1) Let AD, pD and aD be as in Proposition 2.4, and let A(a) = AD and

a = aD. Then tpA(a/D) does not split over A(a).

(2) Choose an arbitrary realization of each type over A(a), and let their collection

be B(a). By (1) we know that |A(a)| ≤ c, hence by stability

|B(a)| ≤ ℵ0 · |
⋃
i∈ω

SAi (A(a))| ≤ ℵ2
0c = c.

Clearly A(a) ⊆ B(a), and every type over A(a) can be realized in B(a).

(3) We prove that B(a) fulfills (3). Suppose tpA(a/B(a)) = tpA(b/B(a)) and

ϕ(v, d̄) ∈ tpA(a/D). We have to show ϕ(v, d̄) ∈ tpA(b/D). By (2) there exists

d̄′ ∈ B(a) such that tpA(d̄/A(a)) = tpA(d̄′/A(a)). By (1) tpA(a/D) does not

split over A(a) hence ϕ(v, d̄′) ∈ tpA(a/B(a)) = tpA(b/B(a)). Since b realizes pD,

Proposition 2.4 implies that tpA(b/D) does not split over A(a) as well. Therefore

ϕ(v, d̄) ∈ tpA(b/D), as desired.
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3 Extending decomposable mappings

In this section we are presenting a method for constructing so called decomposable

isomorphisms between certain ultraproducts. A function f : Πi∈IAi/F → Πi∈IBi/F
is called decomposable if f “acts coordinatewise,” that is, if for all i ∈ I there are

functions fi : Ai → Bi such that f = Πi∈Ifi/F . Our construction will extend partial

decomposable mappings through a transfinite recursion. In the inner steps we have

to guarantee that we can continue the partial function with some element. To this

end we formulate several principles (so called continuation principles) above.

3.1 Continuation principles

Definition 3.1 Let I be an arbitrary set and F an ultrafilter over I. Then

〈Φi : i ∈ I〉

is a finite distribution of formulas iff the following stipulations hold:

(i) (∀i ∈ I) Φi ∈ [Form(L)]<ω;

(ii) for every i ∈ I if ϕ is a subformula of an element of Φi then ϕ ∈ Φi;

(iii) for every formula ϕ we have {i ∈ I : ϕ ∈ Φi} ∈ F , where Φ is the set of all

formulas equivalent to a suitable boolean combination of members of Φ.

Lemma 3.2 Let f = 〈fi : i ∈ I〉/F : A → B be a decomposable elementary

mapping between A = Πi∈IAi/F and B = Πi∈IBi/F . Then for every ϕ ∈ Form(L)

there exists J = J(ϕ) ∈ F such that fi preserves ϕ for all i ∈ J .

Proof. Fix ϕ and suppose, seeking a contradiction that {i ∈ I : fi preserves ϕ} /∈
F . It follows that there exist āi ∈ dom(fi) such that {i ∈ I : Ai |= ϕ[āi]⇐⇒/ Bi |=
ϕ[fi(āi)]} ∈ F . Now let ā = 〈āi : i ∈ I〉/F . Observe that f(ā) = 〈fi(āi) : i ∈ I〉/F .

Then by  Lós lemma A |= ϕ[ā] ⇐⇒/ B |= ϕ[f(ā)] which contradicts the fact that f

is elementary.

Definition 3.3 Let A = Πi∈IAi/F and B = Πi∈IBi/F be two ultraproducts, let f =

Πi∈Ifi/F : A→ B be a decomposable elementary mapping, and let ∇ = 〈Φi : i ∈ I〉
be a finite distribution of formulas.
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• We say that 〈A,B, f〉 has the elementary-decomposition property (EDP) with

respect to ∇ iff {i ∈ I : fi preserves Φi} ∈ F .

•We say that 〈A,B〉 has the universal elementary-decomposition property (UEDP)

with respect to ∇ iff for any decomposable elementary mapping f , the triplet 〈A,B, f〉
has EDP (w.r.t. ∇).

•We say that 〈A,B, f〉 has the strict elementary-decomposition property (SEDP)

with respect to ∇ iff {i ∈ I : dom(fi)
ran(fi)

is a Φi-elementary substructure in Ai

Bi
} ∈ F .

Lemma 3.4 SEDP implies EDP. In more detail if f = Πi∈Ifi/F : A → B is

a decomposable elementary mapping between A = Πi∈IAi/F and B = Πi∈IBi/F
such that 〈A,B, f〉 has SEDP then 〈A,B, f〉 has EDP (with respect to the same

distribution of formulas).

Proof. Suppose 〈A,B, f〉 has SEDP with respect to ∇ = 〈Φi : i ∈ I〉. If R is a

relation symbol in our language L then denote by %(R) the arity (the number of

variables) of R. Let Φ = {R(v0, ..., v%(R)−1) : R ∈ L is a relation symbol}. By con-

vention Φ is finite, thus by Lemma 3.2 we have J0 = {i ∈ I : fi preserves Φ} ∈ F ,

and by SEDP, J = {i ∈ J0 : dom(fi)
ran(fi)

is a Φi-elementary substructure of Ai

Bi
} ∈ F .

Consequently, to complete the proof it is enough to show that

(∗) fi preserves Φi for every i ∈ J .

To do so, we fix an i ∈ I and we apply induction on complexity of members of Φi.

Since i ∈ J it follows that (∗) is true for atomic formulas. Now suppose that (∗) is

true for ϕ, ψ ∈ Φi and let ā ∈ dom(fi) be arbitrary.

• Assume ¬ϕ ∈ Φi. Then Ai |= ¬ϕ(ā) iff Ai 6|= ϕ(ā) iff (by induction) Bi 6|= ϕ(fi(ā))

iff Bi |= ¬ϕ(fi(ā)), so (∗) holds for ¬ϕ as well.

• Assume ϕ ∧ ψ ∈ Φi. Then Ai |= ϕ(ā) ∧ ψ(ā) iff Ai |= ϕ(ā) and Ai |= ψ(ā)

iff (by induction) Bi |= ϕ(fi(ā)) and Bi |= ψ(fi(ā)) iff Bi |= ϕ(fi(ā)) ∧ ψ(fi(ā)), so

(∗) holds for ϕ ∧ ψ as well.

• Finally assume ∃vϕ ∈ Φi. Then Ai |= ∃vϕ(v, ā) iff there exists b ∈ Ai with

Ai |= ϕi(b, ā). By the construction of J , dom(fi) is a Φi-elementary substructure of
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Ai so the last condition is equivalent with (∗∗) below:

(∗∗) there exists b ∈ dom(fi) with Ai |= ϕ(b, ā).

By induction (∗∗) holds if and only if Bi |= ϕ(fi(b), f(ā)), whence Bi |= ∃vϕ(v, fi(ā))

follows. Conversely, if Bi |= ∃vϕ(v, f(ā)) then, since ran(fi) is a Φi-elementary sub-

structure of Bi, it follows that there exists b ∈ dom(fi) with Bi |= ϕ(fi(b), f(ā)).

Hence, by induction (∗∗) follows, and the proof is complete.

Definition 3.5 Suppose A = Πi∈IAi/F and B = Πi∈IBi/F are two ultraproducts,

∇ is a finite distribution of formulas, and f : A→ B is a decomposable elementary

mapping.

(CP1) 〈A,B, f〉 is said to admit the first continuation principle iff Ardom(f) 6=
∅ and there exist a ∈ Ar dom(f), b ∈ B r ran(f) and a partial function g : A→ B

such that f ∪ {〈a, b〉} ⊆ g and g is still elementary.

(CP2) 〈A,B〉 is said to admit the second continuation principle iff whenever

〈A,B, f〉 has EDP and A r dom(f) 6= ∅ then there exist a ∈ A r dom(f), b ∈
Br ran(f) and a partial function g : A→ B such that f ∪{〈a, b〉} ⊆ g and 〈A,B, g〉
still has EDP.

(CP3) 〈A,B〉 is said to admit the third continuation principle iff whenever

〈A,B, f〉 has SEDP and A r dom(f) 6= ∅ then there exist a ∈ A r dom(f),

b ∈ B r ran(f) and a partial function g : A → B such that f ∪ {〈a, b〉} ⊆ g

and 〈A, g〉 still has SEDP.

3.2 Conditions on continuation

In this section we provide sufficient conditions implying CP1,CP2,CP3 and EDP.

We start by a simple case, namely we show that if A = Πi∈IAi/F has a finite

elimination base then EDP follows.

Proposition 3.6 Let A = Πi∈I/AiF and B = Πi∈IBi/F be elementarily equivalent

structures having a finite elimination base, and let f : A → B be a decomposable

elementary mapping. Then 〈A,B, f〉 has EDP.

Proof. We shall prove, that there is a finite distribution of formulas 〈Φi : i ∈ I〉,
such that for any decomposable elementary mapping f = Πi∈Ifi/F : A → B, one
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has {i ∈ I : fi preserves Φi} ∈ F . Let Φ be a finite elimination base, and for all

i ∈ I let Φi be the smallest set of formulas containing Φ and closed under subfor-

mulas (thus Φi does not depend on i). This will be a good distribution of formulas.

According to Lemma 3.2 for every ϕ ∈ Φ there is a set J(ϕ) such that fi preserves

ϕ for all i ∈ J(ϕ). Now let J = ∩ϕ∈ΦJ(ϕ) ∈ F . Then for all i ∈ J , fi preserves Φi.

Actually, the previous proof establishes the following somewhat stronger obser-

vation.

Corollary 3.7 Let A = Πi∈I/AiF and B = Πi∈IBi/F be elementarily equivalent

structures having a finite elimination base. Then 〈A,B〉 has UEDP.

Theorem 3.8 Suppose A and B are elementarily equivalent, their common theory

is uncountably categorical, f : A → B is an elementary mapping such that D =

dom(f) 6= A, R = ran(f) and 〈A, D〉, 〈B, R〉 are c+-saturated. Then there exists

an elementary mapping f ′ strictly extending f .

The point here is, that our statement may also apply to cases when | dom(f)| =
|A|, so ordinary saturation cannot be used.

Proof. We distinguish two cases.

Case 1: D = dom(f) is not an elementary substructure of A. Then by the  Loś-

Vaught test, there is a formula ψ, and constants d̄ ∈ D, such that A |= ∃vψ(v, d̄),

but there is no such v ∈ D. Since A is uncountably categorical, it is ℵ0-stable.

Hence, the isolated types over D are dense in SA1 (D). Consequently, there is an

isolated type p ∈ SA(D) containing ψ(v, d̄). Let a ∈ A be a realization of p (such

a realization exists since p is isolated). Then A |= ψ(a, d̄), so a 6∈ D. Let b ∈ B

be a realization of f [p] in B. Again, since f [p] is isolated, b exists. Finally let

f ′ = f ∪ {〈a, b〉}. Clearly, f ′ is an elementary mapping strictly extending f .

Case 2: D ≺ A is an elementary substructure. Let a ∈ ArD, A(a) ⊆ B(a) ⊆ D

as in Lemma 2.5. It is enough to show that p = f [tpA(a/B(a))] can be realized in

Br ran(f) because if b realizes p in Br ran(f) then f ′ = f ∪〈{a, b}〉 is the required
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elementary mapping strictly extending f .

Adjoin a new relation symbol R to the language of B and interpret it in B as

ran(f). By saturatedness it is enough to show that each φ ∈ p can be realized in

B r R. Let φ ∈ p be arbitrary, but fixed. By assumption, D is an elementary

substructure of A, so it follows that a is not algebraic over D. Hence, because of

f is elementary, the relation defined by φ in B is infinite as well. In addition, B is

uncountably categorical, consequently 〈B, f [D]〉 is not a Vaughtian pair (see, for ex-

ample, Theorem 6.1.18 of [10]). Thus the relation defined by φ in B can be realized

in B rR, therefore ¬R(v) ∧ φ(v) can be satisfied in B, for all φ ∈ p.

Now we turn to provide a sufficient condition for CP3. Recall, that we have

fixed a first order language L containing finitely many relation symbols and does

not contain function-symbols. Here we also fix an enumeration 〈ϕn : n ∈ ω〉 of first

order formulas of L. If A is an L-structure and B is a substructure of it, then

εA(B) = sup{n ∈ ω : B is a ϕk-elementary substructure of A for all k ≤ n}.

Roughly speaking, ε measures that B is how close to being an elementary substruc-

ture of A. Clearly, εA(B) = ω if and only if B is an elementary substructure.

Theorem 3.9 Suppose A = Πi∈IAi/F and B = Πi∈IBi/F are elementarily equiv-

alent, uncountably categorical structures, F is c+-good, f = 〈fi : i ∈ I〉/F : A→ B

is a decomposable elementary mapping and a ∈ A r dom(f), b ∈ B r ran(f) with

f [tpA(a/ dom(f))] = tpB(b/ ran(f)). Suppose, in addition, that the following stipu-

lations hold.

(1) For every n ∈ ω we have {i ∈ I : εAi(dom(fi)) ≥ n} ∈ F and

(2) there is a natural number N such that for every i ∈ I there exists Ci ⊆ Ai

with |Ci r dom(fi)| ≤ N, dom(fi) ⊆ Ci, ai ∈ Ci and εAi(Ci) ≥ εAi(dom(fi)).

Then there exists a decomposable elementary mapping g = 〈gi : i ∈ I〉/F : A → B

extending f with dom(gi) = Ci for every i ∈ I.

Proof. Let D = dom(f) and let C = Πi∈ICi/F . By assumptions (1) and (2), C

determines an elementary substructure of A (because {i ∈ I : Ci is n-elementary

in Ai} ∈ F holds for every n ∈ ω). Applying N times consecutively Theorem 3.8
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to C,B and f , it follows, that f can be extended to an elementary mapping g with

dom g = C.

To complete the proof, we have to show that g is decomposable. First observe,

that by assumption (2) we have |C − D| ≤ N . Consequently, g r f is finite and

therefore is decomposable. Hence g = f ∪ (g r f) itself is also decomposable.

Definition 3.10 Let A = Πi∈IAi/F and B = Πi∈IBi/F be two ultraproducts. The

pair 〈A,B〉 is defined to be relatively κ-homogeneous iff the following holds: for every

decomposable elementary mapping f : A → B, for every a ∈ A r dom(f) and for

every C ∈ [dom(f)]<κ the type f [tpA(a/C)] can be realized in B r ran(f).

This concept can be considered as an adaptation of κ-homogeneity (in which

instead of decomposability of f we require | dom(f)| < κ and C = dom(f); for more

details we refer e.g. to the Remark before Proposition 5.1.9 of [1]).

Proposition 3.11 Suppose A = Πi∈IAi/F and B = Πi∈IBi/F are stable structures

such that 〈A,B〉 is relatively c+-homogeneous. Let f = Πi∈Ifi/F : A → B be

a decomposable elementary mapping such that A r dom(f) 6= ∅. Then 〈A,B, f〉
admits the continuation principle CP1.

Proof. Let D = dom(f) and R = ran(f). As supposed, D = 〈Di : i ∈ I〉
is decomposable, hence 〈A, D〉 = Πi∈I〈Ai, Di〉/F is c+-saturated. So there exist

a ∈ A r D, A(a) and B(a), satisfying the conclusion of Lemma 2.5, and by rela-

tive c+-homogeneity, there exists a corresponding b ∈ B r R, such that b realizes

f
[

tpA(a/B(a))
]
.

First we claim that f ∪ {〈a, b〉} is elementary. Suppose A |= ψ(a, d̄) for d̄ ∈
D. Consider tpA(d̄/A(a)). By Lemma 2.5 (2), there exist d̄′ ∈ B(a) such that

tpA(d̄′/A(a)) = tpA(d̄/A(a)). Now A |= ψ(a, d̄′), because by Lemma 2.5 (1),

tpA(a/D) does not split over A(a). By the choice of b, A |= ψ(a, d̄′) ←→ B |=
ψ(b, f(d̄′)).

If tpB(b/R) does not split over f [A(a)], then B |= ψ(b, f(d̄′)) ←→ ψ(b, f(d̄)),

hence f
[

tpA(a/D)
]

= tpB(b/R), that is f ∪ {〈a, b〉} is elementary, as promised. So

it remained to show that tpB(b/R) does not split over f [A(a)].
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Suppose, seeking a contradiction, that there exist f(c̄), f(c̄′) ∈ f [D] and ϕ,

such that tpB(f(c̄)/f [A(a)]) = tpB(f(c̄′)/f [A(a)]), but ϕ(v, f(c̄)) ∈ tpB(b/R) and

ϕ(v, f(c̄′)) /∈ tpB(b/R). Now, f−1 is also elementary, b /∈ dom(f−1), hence again

by relative c+-homogeneity, f−1[tpB(b/f [B(a)] ∪ {c̄, c̄′})
]

can be realized by a′ /∈
ran(f−1) = D. Clearly, tpA(a′/B(a)) = tpA(a/B(a)), but f−1(c̄), f−1(c̄′) and ϕ

shows, that tpA(a′/D) 6= tpA(a/D), which contradicts the choice of a, and Lemma

2.5 (3).

There is a special case when we can also guarantee CP2. Namely if 〈A,B〉
has UEDP. According to Corollary 3.7 this is the situation if there exists a finite

elimination base (e.g. if the common theory of the structures admits quantifier

elimination). We formulate this fact for the future purposes. The point here is that

we can extend a decomposable mapping coordinatewise keeping EDP.

Proposition 3.12 Suppose A = Πi∈IAi/F and B = Πi∈IBi/F are elementarily

equivalent stable structures, and also assume that 〈A,B〉 is relatively c+-homogeneous

and has UEDP. Then 〈A,B〉 admits the second continuation principle CP2.

Proof. Let f : A→ B be a decomposable elementary mapping with Ar dom(f) 6=
∅. By Proposition 3.11 there exists a ∈ A and b ∈ B such that f ∪ {〈a, b〉} is also

elementary.

As supposed f is decomposable, and a /∈ dom(f), b /∈ ran(f), therefore

J = {i ∈ I : ai /∈ dom(fi), bi /∈ ran(fi)} ∈ F .

Now let

hi =

{
fi ∪ {〈ai, bi〉} if i ∈ J
fi otherwise

.

Then Πi∈Ihi/F is elementary, thus by UEDP, J1 = {i ∈ I : gi preserves Φi} ∈ F .

Now setting the function

gi =

{
fi ∪ {〈ai, bi〉} if i ∈ J ∩ J1

fi otherwise

it preserves Φi.
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3.3 Extending decomposable mappings

Theorem 3.13 Let A = Πi∈IAi/F and B = Πi∈IBi/F be two ultraproducts and let

g : A→ B be a decomposable elementary mapping. Suppose |Ai| = |Bi| < ℵ0 for all

i ∈ I. Suppose in addition that either (1) or (2) below hold.

(1) 〈A,B, g〉 has EDP and 〈A,B〉 has CP2;

(2) 〈A,B, g〉 has SEDP and 〈A,B〉 has CP3

(according to the finite distribution of formulas ∇ = 〈Φi : i ∈ I〉 ).

Then g extends to a decomposable isomorphism.

Proof. We will distinguish two cases: in the first case we assume (1), that is, we

assume 〈A,B〉 has CP2 while in the second case we assume (2), that is, we assume

〈A,B〉 has CP3. During this proof, we will handle these cases simultaneously.

We apply transfinite recursion. Let A, B and g be as in the theorem. By

assumption, g is decomposable, that is, there is a sequence of representatives 〈gi :

i ∈ I〉 such that g = Πi∈Igi/F . By EDP in the first case, J = {i ∈ I : gi preserves

Φi} ∈ F . Similarly, by SEDP in the second case J = {i ∈ I : dom(gi)
ran(gi)

is a Φi-

elementary substructure of Ai

Bi
} ∈ F . Let f 0 = g and

f 0
i =

{
gi if i ∈ J
∅ otherwise.

Let β be an ordinal, and suppose fα = 〈fα
i : i ∈ I〉/F have already been defined

for every α < β such that the following stipulations hold:

• fα : A→ B is a decomposable elementary mapping;

• fγ
i ⊆ f ν

i for γ < ν and all i ∈ I;

• in the first case fα
i preserves all the members of Φi for all i ∈ I (particularly,

〈A,B, fα〉 has EDP);

• in the second case dom(fα
i )

ran(fα
i )

is a Φi-elementary substructure of Ai

Bi
, for all i ∈ I

(particularly, 〈A,B, fα〉 has SEDP).

I. Successor case

(Extending) Suppose β = α+. For simplicity, denote fα, dom(fα) and ran(fα) by

f , D and R, respectively. We may assume A r D 6= ∅, since otherwise fα would

be a decomposable isomorphism extending g. According to CP2 or CP3, there exist
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a ∈ ArD, b ∈ B rR and a partial function h : A→ B such that fα ∪ {〈a, b〉} ⊆ h

and

• in the first case 〈A,B, h〉 has EDP;

• in the second case 〈A,B, h〉 has SEDP.

(Giving representants) We would like to keep all the stipulations given in the be-

ginning of our transfinite construction. Hence we define fβ via its representatives

〈fβ
i : i ∈ I〉. As supposed, h is decomposable, say h = 〈hi : i ∈ I〉/F and 〈A,B, h〉

has EDP (respectively, 〈A,B, h〉 has SEDP). In the first case J = {i ∈ I : fi ⊆ hi

and hi preserves Φi} ∈ F , while in the second case J = {i ∈ I : fi ⊆ hi and dom(hi)
ran(hi)

is a Φi-elementary substructure of Ai

Bi
} ∈ F . Now let

fβ
i =

{
hi if i ∈ J
fα

i otherwise.

Then fβ = Πi∈If
β
i /F is as desired.

II. Limit case

(Extending) Set fβ
i =

⋃
α<β f

α
i for all i ∈ I, and fβ = 〈fβ

i : i ∈ I〉/F . We show

that fβ is still elementary. For this it is enough to prove, that fβ
i preserves Φi for

all i ∈ I. Fix i ∈ I and let ϕ ∈ Φi with parameters d̄ from dom(fβ
i ), and suppose

Ai |= ϕ(d̄). By definition, there exists α < β such that d̄ ∈ dom(fα
i ). Now observe

that fβ
i |dom(fα

i ) = fα
i . In the first case it was stipulated, that fα

i preserves all the

members of Φi; while in the second case we stipulated that dom(fα
i ) and ran(fα

i )

are Φi-elementary substructures, whence, by the proof of Lemma 3.4, it also follows

that fi is Φi-elementary. Hence Ai |= ϕ(d̄) iff Bi |= ϕ(fα
i (d̄)). Since i was arbitrary,

fβ
i preserves Φi for all i ∈ I. By construction, fβ is decomposable. It is easy to

see, that the other stipulations given in the beginning of the transfinite construction

hold, as well.

III. Summing up

The construction above stops at an ordinal β, such that fβ is a decomposable el-

ementary mapping, for which dom(fβ) = A. Since each Ai is finite and has same
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cardinality as Bi, it follows, that fβ is a decomposable isomorphism.

Now we formulate this theorem in a special case.

Corollary 3.14 Let A = Πi∈IAi/F and B = Πi∈IBi/F be elementarily equivalent

stable structures with |Ai| = |Bi| < ℵ0 for all i ∈ I, where F is a countably in-

complete c+-good ultrafilter. Suppose also that 〈A,B〉 is relatively c+-homogeneous

having UEDP. Then any decomposable elementary mapping g : A → B extends to

a decomposable isomorphism.

Proof. By Proposition 3.12, 〈A,B〉 admits the second continuation principle CP2,

hence Theorem 3.13 (1) finishes the proof.

4 Fruits of the approach

4.1 Morley’s Theorem to the finite

As it is well known, Morley’s theorem states that a theory is ℵ1-categorical if and

only if it is categorical on all uncountable cardinals. Our aim is to extend (a special

case) of this theorem to finite cardinals as well.

We show that finite fragments of certain ℵ1-categorical theories T are also cat-

egorical in the following sense: for all finite subsets Σ of T there exists a finite

extension Σ′ of Σ, such that up to isomorphism, Σ′ can have at most one n-element

model Σ′-elementarily embeddable into models of T , for all n ∈ ω. For details, see

Theorem 4.3, which is the main theorem of this section

We start by a theorem, stating, that under some additional technical conditions,

an ℵ1-categorical structure can be uniquely decomposed to ultraproducts of its finite

substructures. Fix an enumeration 〈ϕn : n ∈ ω〉 of first order formulas of L, and

denote its n-th initial segment by Φn.
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Definition 4.1 A theory T is defined to be tight iff all A |= T satisfy the following

stipulations.

• for every finite X ⊆ A and i ∈ ω, there exists a finite Φi-elementary substruc-

ture A0 of A with X ⊆ A0;

• there exists N ∈ ω such that for any n ∈ ω, any algebraically closed Φn-

elementary substructure A0 of A containing an ℵ0-saturated elementary substruc-

ture of A and any a ∈ A there exists a Φn-elementary substructure B of A with

A0 ⊆ B, a ∈ B and |B r A0| ≤ N .

A structure is defined to be tight iff its theory is tight.

Theorem 4.2 (Unique Factorization Theorem.)

Suppose C is uncountably categorical, tight and F is countably incomplete and c+-

good. If the ultraproducts A = Πi∈IAi/F and B = Πi∈IBi/F are elementarily

equivalent with C, for every i ∈ I we have |Ai| = |Bi| < ℵ0 and for every n ∈ ω

{i ∈ I : Ai is a Φn − elementary substructure of C} ∈ F ,

then {i ∈ I : Ai is isomorphic to Bi} ∈ F .

Proof. We may assume that C is countable and ℵ0-saturated. Fix an increasing

sequence 〈Cn : n ∈ ω〉 of finite structures such that for every n ∈ ω, Cn is a Φn-

elementary substructure of C and C = ∪n∈ωCn. Since F is countably incomplete,

it is non-principal, in particular it is ℵ0-regular whence A and B are ℵ1-universal.

Hence C can be elementarily embedded into A and B; let f and g be such elementary

embeddings. For every a ∈ A and b ∈ B fix representatives â ∈ a and b̂ ∈ b (that is,

â ∈ Πi∈IAi is such that â/F = a; and similarly for b and b̂). Let 〈In ∈ F : n ∈ ω〉
be a descending chain with ∩n∈ωIn = ∅ and for each n ∈ ω let

Jn = {i ∈ In : Ai is a Φn − elementary substructure of C and

{f̂(x)(i) : x ∈ Cn} and {ĝ(x)(i) : x ∈ Cn} are isomorphic to Cn}.

Clearly, Jn ∈ F for every n ∈ ω. For each i ∈ I let ν(i) = max{n ∈ ω : i ∈
Jn}. Then for every i ∈ I there exists an isomorphism fi mapping {f̂(x)(i) : x ∈
Cν(i)} onto {ĝ(x)(i) : x ∈ Cν(i)}. Clearly, dom(fi) is a Φν(i)-elementary substructure

of C and hence of Ai as well. Finally let f = Πi∈Ifi/F and let ∇ = 〈Φν(i) : i ∈ I〉
be a finite distribution of formulas. If for almost every i ∈ I we have dom(fi) = Ai

then the statement of the theorem follows. So we may assume dom(f) 6= A. Next,
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we claim, that

(∗) 〈A,B〉 has CP3 according to ∇.

To see this, let g : A → B be a decomposable elementary mapping such that 〈A,B, g〉
has SEDP and Ar dom(g) 6= ∅. In order to keep notation simpler, throughout the

proof dom(g) and ran(g) will be denoted by D and R, respectively. Since 〈A,B, g〉
has SEDP, it follows that D is an elementary substructure of A, and since D is

decomposable, it is ℵ1-universal. Hence D contains an elementary substructure

isomorphic to C. By Theorem 3.8 there exists a ∈ ArD, b ∈ BrR with g[tp(a/D)] =

tp(b/R). Tightness of C implies that all the conditions of Theorem 3.9 are fulfilled,

hence there exists a decomposable elementary mapping g′ with g∪{〈a, b〉} ⊆ g′ and

〈A,B, g′〉 having SEDP. Hence (∗) holds.

Finally applying Theorem 3.13, it follows that f (constructed in the first para-

graph of the proof) can be extended to a decomposable isomorphism between A and

B, which completes the proof.

At this point, everything is given, to prove the main result of this section: an

extension of Morley’s categoricity theorem to the finite.

Theorem 4.3 Let C be an ℵ1-categorical and tight structure, let Th(C) = {ϕi : i ∈
ω} and denote the i-th initial segment of Th(C) by Φi. Then there exists N = N(C)
such that ∀n > N , if A,B are finite Φn-elementary substructures of C and |A| = |B|,
then A ∼= B.

Proof. Suppose, seeking a contradiction, for all N ∈ ω there exist (at least) two

non-isomorphic equinumerous finite models AN ,BN which are ΦN -elementary sub-

structures of C. Let F be a countably incomplete, c+-good ultrafilter on a suit-

able set I and let f : I → ω be a function such that for every n ∈ ω we have

{i ∈ I : f(i) ≥ n} ∈ F (such an f may be easily constructed using that F is count-

ably incomplete). Finally let A = Πi∈IAf(i)/F , and B = Πi∈IBf(i)/F . But then

Theorem 4.2 implies, that {i ∈ I : Ai
∼= Bi} ∈ F ; this contradicts to the choices of

AN ,BN .
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Theorem 4.4 Let T = {ϕi : i ∈ ω} be an ℵ1-categorical complete theory having a

finite elimination base. Denote the i-th initial segment of T by Ti. Then there exists

N = N(T ) such that ∀n > N , if A,B |= Tn, and |A| = |B|, then A ∼= B.

Proof. By way of contradiction, suppose for all N ∈ ω there exist (at least) two

non-isomorphic equinumerous (finite) models AN ,BN |= TN . Let A = Πi∈ωAi/F ,

and B = Πi∈ωBi/F (where F is a countably incomplete, good ultrafilter). Clearly

A,B |= T , therefore A ≡e B, hence by categoricityA ∼= B. Since the common theory

of A and B have (the same) finite elimination base, there exists a finite distribution

of formulas simultaneously witnessing UEDP for 〈A,B〉.
As an easy consequence of Theorem 3.8 and Corollary 3.14 it follows that there is

a decomposable isomorphism between A and B. Particularly {i ∈ I : Ai
∼= Bi} ∈ F

which leads to contradiction. Thus we can conclude that there exists N ∈ ω such

that up to isomorphism there is at most one n-element model of Ti for all N ≤ i

and n ∈ ω.

We note that Theorem 4.4 may also be derived (in a completely different way)

from earlier results of Zilber and Cherlin.

4.2 On the Zilber-Cherlin-Harrington-Lachlan Theorem

In this section we investigate homogeneity of finite substructures of stable (and not

necessary ℵ0-stable) structures. Particularly, we give a simple proof related to the

converse of a special case of the Zilber-Cherlin-Lachlan-Harrington theorem.

Definition 4.5 For a structure A, a set Φ of formulas, and ā ∈ A,

EΦ,A
ā (x, y)

def⇐⇒ tpAΦ(x/ā) = tpAΦ(y/ā), that is,

for all ϕ ∈ Φ we have A |= ϕ(x, ā) iff A |= ϕ(y, ā). When Φ or A is clear from the

context, we omit them.

Definition 4.6 Let A be a structure, Φ a set of formulas, and l ∈ ω. Then A is

said to have the (Φ, l)-equivalence property iff the following holds: if ā, b̄ ∈ lA and

tpAΦ(ā/∅) = tpAΦ(b̄/∅) then 〈A, ā, EΦ
ā 〉 ∼=g 〈A, b̄, EΦ

b̄
〉 such that for every x ∈ A we

have g[tpΦ(x/ā)] = tpΦ(g(x)/b̄).
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Lemma 4.7 Let A = Πi∈IAi/F be an ultraproduct of finite structures such that

〈A,A〉 has UEDP, with the corresponding distribution 〈Φi : i ∈ I〉, where F is a

countably incomplete, c+-good ultrafilter. Suppose for every n ∈ ω we have

{i ∈ I : Ai has the (Φi, n)− equivalence property} ∈ F .

Then 〈A,A〉 is relatively c+-homogeneous.

Proof. Let f : A → A be a decomposable elementary mapping, a /∈ dom(f) and

C ∈
[

dom(f)
]≤c

. We have to prove, that f
[

tpA(a/C)
]

can be realized by a suitable

element b ∈ Ar ran(f).

Let p = f
[

tpA(a/C)
]

= {ϕ(v, f(c̄)) : ϕ(v, c̄) ∈ tpA(a/C)}. Since |C| ≤ c by

saturatedness there exists b ∈ A which realizes p. We show, that b can be chosen

outside of ran(f).

Let fi and Di (i ∈ I) be a decomposition of f and dom(f), respectively. Because

a /∈ dom(f) it follows, that J0 = {i : ai /∈ Di} ∈ F . Adjoin a new relation symbol

R to the language of A and interpret it as ran(f). f is decomposable, hence R

is also decomposable, say R = 〈Ri : i ∈ I〉/F . Since F is c+-good, it follows that

Πi∈I〈A, Ri〉/F is c+-saturated as well. So, because of p is closed under conjunctions,

it is enough to show that ¬R(v) ∧ ϕ(v, d̄) can be satisfied in A, for every ϕ ∈ p.
To do so, let ϕ(v, f(c̄)) ∈ p, with c̄ = 〈c̄i : i ∈ I〉/F . Since f is an elementary

mapping, f0 = {〈c, f(c)〉 : c ∈ c̄} ⊆ f is also elementary. Note, that f0 is finite,

hence by Theorem 3.13 [12] it is decomposable. Therefore UEDP implies J1 = {i ∈
I : tpAi

Φi
(c̄i/∅) = tpAi

Φi
(fi(c̄i)/∅)} ∈ F . Particularly, fi preserves all ψ ∈ Φi, for every

i ∈ J1.

So by assumption

J2 = J0 ∩ J1 ∩ {i ∈ I : 〈Ai, E
Φi
c̄i
〉 ∼=gi 〈Ai, E

Φi

fi(c̄i)
〉} ∈ F .

For every i ∈ J2 we have ai ∈ ai/E
Φi
c̄i

rDi, particularly, since Ai is finite,∣∣ai/E
Φi
c̄i

∣∣ > ∣∣(ai/E
Φi
c̄i

) ∩Di

∣∣.
Since gi is an isomorphism, there is an ei ∈ Ai with gi

[
ai/E

Φi
c̄i

]
= ei/E

Φi

fi(c̄i)
. It

follows, that ∣∣ei/E
Φi

fi(c̄i)

∣∣ > ∣∣fi

[
ai/E

Φi
c̄i
∩Di

]∣∣ =
∣∣ei/E

Φi

fi(c̄i)
∩Ri

∣∣.
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Hence, there exists b′i ∈ ei/E
Φi

fi(c̄i)
rRi. Then clearly

fi

[
tpAi

Φi
(ai/c̄i)

]
= tpAi

Φi
(b′i/fi(c̄i)).

Since i ∈ J2 was arbitrary, there exists b ∈ A such that {i : bi = b′i} = J2 ∈ F , and

obviously b /∈ ran(f).

Now by assumption, ϕ is equivalent to a boolean combination of suitable mem-

bers of Φi in a big set of indices. As we have seen, fi

[
tpAi

Φi
(ai/c̄i)

]
= tpAi

Φi
(bi/fi(c̄i)),

consequently b satisfies ϕ outside R, as desired.

Theorem 4.8 Let A = Πi∈IAi/F be a stable structure such that 〈A,A〉 has UEDP,

where |Ai| < ℵ0 for all i ∈ I, and F is a countably incomplete, good ultrafilter. Then

the following are equivalent:

(i) (∀n ∈ ω) {i ∈ I : Ai has the (Φi, n)-equivalence property} ∈ F .

(ii) Any decomposable elementary mapping g : A→ A extends to a decomposable

automorphism of A.

Proof. We start by showing (ii)⇒(i). Suppose, seeking a contradiction, there exists

n ∈ ω such that, in a big set of indices tpAi
Φ (āi/∅) = tpAi

Φ (b̄i/∅) but 〈Ai, āi, E
Φi
āi
〉 �

〈Ai, b̄i, E
Φi

b̄i
〉 for some āi, b̄i ∈ Ai. Let ā = 〈āi : i ∈ I〉/F and b̄ = 〈b̄i : i ∈ I〉/F .

Then tpA(ā/∅) = tpA(b̄/∅), thus the function f mapping a onto b is elementary. By

Theorem 3.13 (b) of [12], f is decomposable, and by (ii), f extends to a decom-

posable automorphism fa,b ∈ Aut(A). But then (fa,b)i is an isomorphism between

〈Ai, āi, E
Φi
āi
〉 and 〈Ai, b̄i, E

Φi

b̄i
〉 in a big set of indices, which is a contradiction.

Now we turn to the implication (i)⇒(ii). By (i) and Lemma 4.7, 〈A,A〉 is rela-

tively c+-homogeneous, hence by Theorem 3.14, (ii) follows.

Our main goal is to prove the following theorem.

Theorem 4.9 If an ultraproduct of finite structures is relatively c+-homogeneous,

ℵ0-stable and tight then it has the UEDP.

We cut the proof of Theorem 4.9 into the following two lemmas.
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Lemma 4.10 Let A = Πi∈IAi/F and let f = 〈fi : i ∈ I〉/F be a decomposable

elementary mapping on A such that dom(f) is an elementary substructure of A.

Then there exists J ⊆ I such that fi is an elementary mapping for every i ∈ J .

Proof. By Lemma 3.2 for every relation symbol R there exists J(R) such that fi

preserves R for every i ∈ J(R). Let J = ∩R∈LJ(R). Then fi preserves every atomic

formula for every i ∈ J . Taking into consideration that dom(f) is an elementary

substructure of A, the statement follows from a straightforward induction on the

complexity of formulas.

Lemma 4.11 Suppose f is a decomposable elementary mapping on A = Πi∈IAi/F
where each Ai is finite. Suppose in addition, that A is ℵ0-stable, tight and relatively

c+-homogeneous. Then f can be extended to a decomposable elementary mapping f ′

such that dom(f ′) is an elementary substructure of A.

Proof. Let 〈ϕn : n ∈ ω〉 be an enumeration of all first order formulas and let

Φn = {ϕk : k < n}. By tightness, there exist dom(f) = D0 ⊆ D1 ⊆ D2 ⊆ · · · such

that Di+1rDi is finite and Dn is a Φn-elementary substructure of A. It is easy to see

that dom(f) ∪ ∪n∈ωDn is an elementary substructure of A hence by ℵ0-stability it

contains a prime model D+ over dom(f). Clearly, D+ rdom(f) is countable. In ad-

dition, there is a prime model R+ over ran(f). Since f is elementary, it follows from

uniqueness of prime models in ℵ0-stable theories that f can be extended to an ele-

mentary mapping f+ : D+ → R+. Let fn = f+|dom(f)∪Dn . Since each Dn r dom(f)

is finite, each fn is decomposable and elementary. Hence, by Lemma 3.2 for every

n ∈ ω there exists Jn ∈ F such that for every i ∈ Jn, the i-th coordinate of fn is

Φn-elementary in Ai. Now the statement follows from a diagonalization argument.

Now Theorem 4.9 can be obtained by combining the above lemmas.

Originally, Zilber in [15], and independently Cherlin-Lachlan-Harrington in [3]

obtained their non-finite axiomatizability theorem for totally categorical theories by

showing that models A of such theories are n-approximable for all n ∈ ω; this means
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that for every n ∈ ω, every finite substructure A0 of A can be extended to a finite

B ⊆ A such that n-tuples of B lying in the same orbit of Aut(A) also lie in the

same orbit of Aut(B). The next theorem verifies, that this approach was necessary,

at least in the following special case.

Theorem 4.12 Suppose A is stable and it has a finite elimination base Φ. Then

the following are equivalent.

(1) A is pseudo-finite (that is, elementarily equivalent with an ultraproduct of its

finite substructures) such that almost every factor has the (Φ, n)-equivalence property

for all n ∈ ω;

(2) A is n-approximable for all n ∈ ω.

Proof. As supposed A has a finite elimination base, thus by Corollary 3.7 it follows

that the pair 〈A,A〉 has UEDP. Assume (1), then A can be elementarily embedded

in an ultraproduct B of finite structures in which, by Theorem 4.8 each decomposable

elementary mapping extends to a decomposable automorphism. Now fix n ∈ ω and

let A0 be a finite substructure of A. If two n-tuples ā, b̄ ∈ A0 have same type in A
then they determine a decomposable elementary mapping f : ā 7→ b̄ which may be

extended to a decomposable automorphism fā,b̄ ∈ Aut(B). Let

RB = {〈ā, b̄, x, fā,b̄(x)〉 : tpB(ā/∅) = tpB(b̄/∅), x ∈ B} ⊆ 2n+2B.

Since A has a finite elimination base, there exists a formula τn, for which

B |= τn(ā, b̄)⇐⇒
(

tpB(ā/∅) = tpB(b̄/∅)
)
.

The assertion that “RB is an automorphism” (as a graph of a function on the last

two coordinates) is first order expressible. Extend our language L with a single

2n+ 2-ary relation symbol R, and interpret it as RB. Let

ϕ = (∀ā, b̄)(τn(ā, b̄) −→ ”R(ā, b̄, ·, ·) is an automorphism”).

Now B |= ϕ, which means that if the types of ā and b̄ are the same, then there exists

an automorphism of B, which moves ā to b̄. It is enough to prove that RB is de-

composable. If tpB(ā/∅) = tpB(b̄/∅), then Jā,b̄ = {i ∈ I : Ai |= τn(āi, b̄i)} ∈ F , and

as above, the corresponding automorphism is decomposable, fā,b̄ = 〈f i
ā,b̄

: i ∈ I〉/F .
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By  Loś lemma, we may assume that f i
ā,b̄

is an automorphism of Ai for every i ∈ Jā,b̄.

Let

Rā,b̄
i =

{
{〈āi, b̄i, xi, f

i
ā,b̄

(xi)〉 : xi ∈ Ai} if i ∈ Jā,b̄

∅ otherwise
,

and let RAi =
⋃
{Rā,b̄

i : tpA(ā/∅) = tpA(b̄/∅)}. Then RA = Πi∈IR
Ai/F . It fol-

lows that there exists a big set of indices where ϕ is true, that is, all the elementary

functions of size ≤ n had been extended, specially there exists a finite substructure

B of A such that A0 ≤ B, and if n-tuples of A0 lying in the same orbit of Aut(A)

then they also lie in the same orbit of Aut(B), consequently A is n-approximable.

Since n ∈ ω was arbitrary, (2) follows.

Conversely, assume (2). Since Th(A) has a finite elimination base, it is ℵ0-

categorical, hence it can be axiomatized by ∀∃-formulas. To show (1), it is enough

to prove that every finite set of ∀∃-formulas true in A is also true in a finite sub-

structure of A. So let Φ be a finite set of ∀∃-formulas true in A, let n be an upper

bound for the lengths of the ∀-blocks of elements of Φ and let k be an upper bound

for the ∃-blocks. Since A is ℵ0-categorical, there exists a finite set X ⊆ A such that

every n-type over ∅ of A may be realized in X and there exists a finite Y ⊆ A such

that X ⊆ Y and every k-type over X of A can be realized in Y . Then, by (2), there

exists an n-homogeneous finite substructure B of A containing Y . We claim, that

B |= Φ. To see this, let ϕ = ∀x̄∃ȳψ where ψ is quantifier-free and let ā ∈ B be

arbitrary. Then there exists ā′ ∈ X such that tpA(ā/∅) = tpA(ā′/∅). But then there

is an automorphism f of B mapping ā′ onto ā. In addition, since A |= ϕ, there exists

b̄ ∈ Y with B |= ψ(ā′, b̄). Applying f , we obtain B |= ψ(ā, f(b̄)). Finally observe

that since Φ is an elimination base, if B is a finite n-homogeneous substructure of

A then B has the (Φ, n)-equivalence property.
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4.3 Future plans: the isomorphism problem

Finally in this section we sketch up a model-theoretical approach based on the con-

structions of subsections 3.3 and 4.1. We hope that using our techniques we will be

able to prove some interesting theorems related to the complexity of the isomorphism

problem, at least in a special class of finite structures. We must emphasize that there

is no evidence for the success, but after all the approach may be interesting for its

own.

The “isomorphism problem” is to decide algorithmically whether given to finite

relational structures (for example, graphs) are isomorphic. This problem has been

intensively studied because of it arises in a variety of practical applications such

that circuit designs and molecular biology, and because its theoretical importance,

as well. The complexity of the isomorphism problem is known to be in NP, but it

resisted all the attempts to be classified as belonging to P or to be NP-complete.

To obtain results about finite structures first we construct infinite ultraproducts

of finite structures and study these. This approach is similar in spirit to that of

[16]. The basic idea is the following. If there would exist a property pn of pairs of

structures for all n ∈ ω, such that the following stipulations hold:

(1) if An and Bn are finite structures having the property pn then ∅ extends to

a decomposable isomorphism between ΠAn/F and ΠBn/F (for suitable ultraprod-

ucts);

(2) if An
∼= Bn then they also have property pn;

(3) for all n ∈ ω, pn can be checked in polynomial time,

then (similarly to the proof of Theorem 4.3) there would exists N ∈ ω such that two

finite structures are isomorphic if and only if they have the property pN . The first

stipulation formulated above suggests using our method described in the previous

sections. In order to do this, we have to find a property which guarantees all the

conditions we need to extend partial isomorphisms to decomposable isomorphisms.

It seems that completing this approach needs a considerable amount of further

investigations which we are planning to carry out later.

32



References

[1] C.C. Chang, H.J. Keisler, Model Theory, North–Holland, Amsterdam (1990).

[2] G. Cherlin, E. Hrushovski, Finite structures with few types. Annals of Mathematics

Studies, 152. Princeton University Press, Princeton, NJ, 2003. vi+193 pp.

[3] G. Cherlin, A. Lachlan, L. Harrington, ℵ0-categorical, ℵ0-stable structures, Ann.

Pure Appl. Logic 28 (1985), no. 2, 103–135.
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