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1 Introduction

1.1 Prelude

We start by surveying the subject and summing up the results presented in this

work. In order to do so in an e�cient way, we assume that the reader is familiar

with mathematical logic. However, for completeness, in Section 1.2 below we will

systematically recall all the notions and concepts we need in later sections.

Model theory and computability theory are traditional sub-disciplines of mathe-

matical logic. In model theory one investigates the relationships between formalized

statements (formulas) and stuctures (or models). One of the main aims is to de-

scribe all structures in which a given theory (i.e. set of �rst order formulas) is true.

At that level of generality this ambitious aim seems to be untractible. Hence, in-

stead of it, model theorists are trying to characterize those theories which have a

structure theorem, that is, whose models can be described in a comprehensive way.

Recenty, related investigations are very active. Along the results of Morley, Shelah,

Hrushovski, Cherlin, Pillay and others, it turned out, that theories have a �structure

theoretic� hierarchy of complexity: in some cases the possible models are relatively

easy to describe, in some other cases this is much more di�cult, while in some other

cases such a complete �comprehensive� description of all models is impossible for

theoretical reasons. This hierarchy is related to di�erent degrees of stability, i.e.

to the size of the Stone�spaces of the theory. Somewhat roughly, but more con-

cretely, categorical theories (which are the simplest ones from structure theoretic

point of view) have small (�nite or countable) Stone�spaces, while the Stone�spaces

of unstable theories are of large (uncountable) cardinality.

Computability theory studies a di�erent kind of complexity. Here, two of the

traditional aims are:

• to study the structure of the partially ordered sets of complexity classes, and

• to develop methods showing that particular subsets of natural numbers have

a large computational complexity (i.e. they are not recursive, not recursively

enumerable, etc.).

By classical results of Rosser, Gödel and Church, it turned out, that there are

�nite sets of formulas whose set of logical consequences is not recursive. In addition,
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the �rst order theories of certain natural structures are much more complicated

in the computational sense. This also gives a natural hierarchy of complexity of

structures: a structure is more complicated than another i� its theory (as a subset

of �nite sequences over a �nite alphabet) has a larger computational complexity.

Beside these two traditional research directions, there is a third one called �re-

cursive model theory�. In recursive model theory one studies countable structures in

which all the basic relations and operations are computable (i.e. recursive) subsets;

such structures are called computable. Computable structures are interesting from

purely theoretical point of view as well as practical purposes: countably in�nite,

but computable structures may be represented and manipulated by computers. By

striking results of Ershov, Arslanov and others, there are many natural examples

known for countable structures which are not isomorphic to any computable struc-

tures. For example, there are countable orderings, Boolean algebras and �elds which

do not have a computable isomorphic copy. Instead of dealing with particular struc-

tures, it would be interesting to obtain results in a higher level of generality: which

theories have �complicated� models (i.e. models without a computable isomorphic

copy).

In the present work we are trying to establish connections between structure

theoretic complexity and computational complexity. Our main new results are as

follows.

In Theorem 3.1 we show that if a theory T is complicated in the model theoretic

sense, that is, at least one of it's Stone spaces is uncountable, then T has a

�complicated� countable model. More precisely, T has a countable model which

is not isomorphic to any computable structure.

In Theorem 3.11 we show, that there exists a theory T which is as simple as

possible from the model theoretic sense (namely, T is ℵ0-categorical, hence

all of its Stone-spaces are �nite), but at the same time the unique countable

model of T does not have a computable isomorphic copy.

As we mentioned, Ershov and Arslanov established natural examples for count-

able structures which do not have computable isomorphic copies. It is also natural

to ask what can be proven if isomorphism is replaced by elementary equivalence.

By theorem 3.11 it follows that there exists a consistent theory T in a �nite lan-

guage which does not have computable models at all. A countable model of T is
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an example for a countable structure which is not elementarily equivalent with any

computable structure.

Our methods are more general: we obtain similar results for models whose basic

relations and operations belong to other, higher complexity classes. For more details

we refer to [9].

In section 1.3 we give a short overview on the concept of complexity that we

will use here. In section 2.1 we de�ne the complexity of a structure and prove a

technical lemma. As a corollary we gain a known result about the existence of a

non-computable ordering on ω. We take a look on in�nite languages as far as our

subject concerned in section 2.2. In section 3.1 and 3.2 we prove our main results

on the non-existence of computable presentation of certain theories. We sketch a

further way of research on this subject in section 4.

1.2 A survey on the basic concepts of model theory

A similarity type or signature is a set of symbols with non-negative integers assigned

to them. A �rst order language is a set of well-formed terms and a set of well-formed

formulas built up from the usual logical symbols, namely the connectives, variables

and miscellaneous symbols, of �rst order logic and non-logical symbols given by a

similarity type. We say that the language is �nite i� the corresponding similarity

type is �nite. The underlying sets of the absolutely free algebras are referred to as

word algebras. The set of terms is the word algebra generated by the variables and

constant symbols considered as the basis and by function symbols as the operations

with the arity given by the similarity type. We deal with languages with a countable

in�nite set of variables which are usually referred to as vi. The set of atomic formulas

consists of all substitutions of terms into relation symbols according to their arity.

Thus an atomic formula is built up from an n-ary relation symbol and an ordered

n-tuple of terms. If equality is in the set of logical symbols then we allow atomic

formulas constructed by equality as a relation symbol. The set of formulas is the

word algebra generated by the atomic formulas and the connectives of the language.

We use the following set of connectives {¬,∨} ∪ {∃vi : i ∈ ω}. The other usual
logical symbols are abbreviations of sequences built up by the use of these.

A structure or model with a given similarity type has the following two ingredi-

ents. A set, which is called the underlying set or universe of the structure, and an

interpretation of the similarity type on the underlying set, in other words, a map
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which assigns functions and relations on the universe to each function and relation

symbol in the type respectively according to the prescribed arity. We denote a

structure with a fraktur letter and the universe of it with a capital latin.

A valuation is a map from the set of variables to the universe of a structure.

The value of a term by means of a valuation is an element of the universe pointed

out by the operations using the values of the valuation map instead of the variables

and the term as a counting plan. In other words, by de�ning the valuation map on

the constant symbols according to the interpretation the valuation map extends to

the free algebra of terms in a unique way, which gives a value to each term. An

atomic formula is true in a structure according to a valuation if the relation which

is the interpretation of the relation symbol used in the atomic formula is held for

the ordered values of terms of the formula. In symbols, A � φ[e].

The truth of a formula according to a valuation is de�ned inductively.

A � (φ ∨ ψ)[e] i� A � φ[e] or A � ψ[e], A � ¬φ[e] i� A 2 φ[e] and �nally A � ∃viφ[e]

i� there exists an element in the universe of A, say a, and an evaluation e′ such that

e(vj) = e′(vj) for j 6= i and e′(vi) = a so as A � φ[e′].

A formula is true in a structure, symbolised as A � φ, i� A � φ[e] for every

possible valuation e.

An occurrence of a variable vi is called bounded if it is in the scope of act of a

connective ∃vi, othewise it is called a free occurrence. A formula is said to be closed

(or sentence) i� there are no variables with free occurance in it. It is easy to verify

that the truth of a closed formula over a structure is independent of valuations. The

set of formulas with free variables only from the set {v1, . . . , vn} is denoted by Fn.

We write A � φ[ai1 , . . . , ain ] instead of A � φ[e] if the only free variables of φ are

vi1 , . . . , vin and e(vij) = aij (j = 1 . . . n).

Let T be a set of formulas. We call it a �rst order theory if it is satis�able or

consistent. These two conditions are equivalent due to the completeness theorem of

Gödel. By A � T , we symbolize the fact that all the formulas of the theory T are

true over A. In this case the structure A is called a model of T . The theory of a

structure is the set of all true formulas over it, Th(A) = {φ : A � φ}. The notation
T � Γ is an abbreviation for ∀A : A � T ⇒ A � Γ.

Two structures of the same similarity type are elementary equivalent, A ≡ B,

i� A � φ ⇔ B � φ for every formula φ, that is Th(A) = Th(B) in short. Two

structures of the same similarity type are isomorphic, A ∼= B, i� there is a bijection
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g : A → B such that g(fA(a1, . . . , an)) = fB(g(a1), . . . , g(an)) and 〈a1, . . . , an〉 ∈ RA

i� 〈g(a1), . . . , g(an)〉 ∈ RB is held for all ai ∈ A and for each function and relation

symbol in the signature. This means that A � φ[e] ⇔ B � φ[g ◦e], for every formula

φ and every valuation e. We say that B is an elementary extension of A, (or that A

is an elementary substructure of B), A ≺ B, i� A is a subalgebra in B furthermore

for every valuation e whose range is in the universe of A (i.e. for every valuation e

over A) and for for every formula φ, we have A � φ[e] ⇔ B � φ[e]. Let us notice the

following consequences of these de�nitions: if A ∼= B then A ≡ B, and if A ≺ B

then A ≡ B.

The Löwenheim�Skolem theorem states that if a theory has a model of an in�nite

cardinality then it has a model of arbitrary in�nite cardinality either. Moreover, the

larger structure can be chosen to be an elementary extension of the smaller.

A theory is κ-categorical i�, up to isomorphism, it has a unique model of cardinal-

ity κ. We say that a structure A is κ-categorical i� its theory Th(A) is κ-categorical.

A set of formulas with an upper bound of free variables, say Γ, is �nitely satis�able

over A i� ∀Γ0 ∈ [Γ]<ω ∃~a ∈ A∀φ ∈ Γ0 : A � φ[~a]. The word � type � is usually

used in a second meaning too, from now on we will consider this second meaning.

De�nition 1.1 An n-type of a structure A is a maximal set of formulas from Fn

that is �nitely satis�able over A.

The set of n-types of A is denoted by Sn(A).

De�nition 1.2 A type p ∈ Sn(A) is realised by an n-tuple of elements ~a ∈ A i�

∀φ ∈ p : A � φ[~a].

De�nition 1.3 The type of tuple ~a over A is tpA(~a) = {φ ∈ Fn : A � φ[~a]}. This

is a type of the structure A indeed.

The type of an element collects all the information that is expressible about it via

the �rst order language of a structure.

De�nition 1.4 An n-type of a theory, say T , is a set of formulas, say p, with the

following properties.

• Every formula is from Fn,
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• every �nite subset of it is realizable that is: ∀ p0 ∈ [p]<ω ∃Ap0 : Ap0 � T, ∃~a ∈
Ap0 ∀φ ∈ p0 : A � φ[~a].

• p is maximal concerning these properties.

The set of n-types over T is denoted by Sn(T ).

Lemma 1.5 For a type p ∈ Sn(T ) there is a structure A such that A � T and p is

�nitely satis�able over A. Hence Sn(Th(A)) = Sn(A). Moreover there is a model of

T over which p is realizable.

Proof. It is enough to prove the last statement. Let p be as in the statement. Add

n pieces of new constant symbols to the signature of T , t′ = t ∪ {~c}. Consider the
theory T ′ = T ∪{

∧
p0(~c) : p0 ∈ [p]<ω}. By the de�nition of Sn(T ) every �nite subset

of this theory has a model so owing to the compactness theorem there is a structure

A � T ′. The interpretations of ~c ∈ A realise p over A. �

De�nition 1.6 A topological space X is a Stone�space i� it is compact, Hausdor�

and has a basis consisting of clopen (i.e. closed and open at the same time) sets.

Let B be a Boolean algebra. B∗ denotes the set of ultra�lters of B. A topology can

be de�ned on B∗ by taking a subbasis {Nb = {U ∈ B∗ : b∈ U}}b∈B. In this way we

associate a topological space to a Boolean algebra. For a topological space X the

subsets [X] constitute a Boolean algebra. X∗ denotes the subalgebra of the clopen

sets.

Theorem 1.7 (Stone) The space B∗ is a Stone�space and the subbasis de�ned

above is a basis. B ∼= B∗∗ (in fact, the mapping b 7→ Nb is an isomorphism) and

X ∼= X∗∗ i� X is a Stone�space.

Lemma 1.8 The n-types form a Stone�space with the basis:

{Nφ = {p ∈ Sn(T ) : φ ∈ p}}φ∈Fn

For more details we refer e.g. to theorem 6.2.3. of Hodges [5].
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De�nition 1.9 Introduce an equivalence relation on Fn relative to a theory T as

follows: for φ, ψ ∈ Fn stipulate φ ≡ ψ i� T � ∀v1 . . . ∀vn(φ ↔ ψ). The equivalence

classes form a Boolean algebra Bn(T ). The operations are given by

(φ/≡) ∧ (ψ/≡)
.
= (φ ∧ ψ)/≡

¬(φ/≡)
.
= (¬φ)/≡

1
.
= (v1 = v1)/≡

0
.
= (v1 6= v1)/≡

These are the so called Lindenbaum�Tarski algebras.

Lemma 1.10 The Stone�space of types Sn(T ) can be identi�ed with the Stone�dual

of the Lindenbaum�Tarski algebra, B∗
n(T ).

Proof. There is a natural pairing between the n-types over T and ultra�lters on

Bn(T ). �

1.3 Complexity

There are many di�erent ways of approaching the concept of computability. We can

raise the question as a membership problem (i.e. whether a given word is a member

of a given language) or as a problem of computing a function with a given input.

A possible way to de�ne a computational method, for instance Turing-machine,

RAM-machine or �nite automaton. We can de�ne a complexity class by choosing a

method and take restrictions on certain sort of resources in terms of the length of the

input (see Papadimitriou [7, Ch. 7. ]). On the other hand we can point out directly

a certain family of functions or languages as an etalon complexity. For instance, it

is a common way to de�ne the family of recurisve functions as a set of complete

maps from �nite power of ω to ω containing addition, multiplication, projection and

closed under substitution and the so called µ-operation (see Csirmaz[4, Ch.10. ]).

By dropping the completeness we obtain the family of partial recursive functions.

We can de�ne new complexity classes by enabling the use of an answer to another

problem in the course of the computing as a simple step. In the other case we

can put a new function to our clone. In other words we can use another problem

as an oracle for our purpose. But we have just distinguished problems up to this

point. To be able to speak about complexity classes we need to compare di�erent
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questions. The suitable tools for this are the di�erent kind of reductions (see [7,

Ch.8. ]). Within recursive problems the polinomial reductions are very usefull. For

our purpose, we do not need such a �ne resolution so we distinguish classes only up

to recursivity. (We refer to Simpson [1, Ch. C.4. ])

De�nition 1.11 Consider two relations on ω, say R1 ⊂ ωn, and R2 ⊂ ωm. We

say that R1 has a reduction to R2, in symbols R1 ≺ R2, i� there exsists a recursive

algorithm or map, say M , such that w ∈ R1 ⇔ M(w) ∈ R2. We say that R1 is

recursive relative to R2.

This de�nition means that R2 is at least as hard problem as R1. If we have a solution

that solves the membership problem for R2 then it may also be utilized to solve the

membership problem for R1 up to recursivity as well. It is easy to see that ≺ is a

re�exive and transitive relation. Consequently � as it is well known � the relation

≺ determines an equivalence relation ∼ via the stipulation: R1 ∼ R2 i� R1 ≺ R2

and R2 ≺ R1.

De�nition 1.12 By a complexity class we mean an equivalence class of relations

of arbitrary arity on ω, under the equivalence relation ∼.

These kind of complexity classes are called Turing degrees or degrees of unsolvability

(see [1]). We denote them by calligraphic letters like D. (If we had used a reduction

with more restrictions we would have obtained a more detailed classi�cation such

as Karp�classes, for example.)

Lemma 1.13 (1) A complexity class is always countable.

(2) The set of all complexity classes has cardinality 2ℵ0.

(3) Comlexity classes are partially ordered by the induced ordering of ≺.
(4) A set of complexity classes has an upper bound (under ≺) i� it is countable.

Proof. For more details we refer to [1]. �

2 Preliminaries

2.1 Presentation of a structure

Let us consider structures of the form B = 〈ω,RB
i 〉i∈L where L is a �nite �rst order

language. Such a structure is de�ned to be computable if RB
i is a recursive subset
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of a direct power of ω for all i ∈ L. It is equivalent to say that the sets de�ned by

atomic formulas of L in B are recursive.

We obtain other notion by changing some words in the above de�nition. Instead

of atomic formulas we can consider a speci�ed set of formulas, say Φ. A structure B

is Φ-decidable if all of the sets de�ned by formulas from Φ are recursive. We simply

say decidable if it is true for all formulas of L. On the other hand we can change the

scope of permitted sets de�ned by the formulas allowing any other complexity class

instead of recursive relations. For instance, recursively enumerable or arithmetical

sets may also be considered. Recall that a subset R of a direct power of ω is de�ned

to be arithmetical i� there is a �rst order formula in the language of arithmetic

de�ning R. It is well known that recursive and recursively enumerable sets are

arithmetical, but arithmetical sets may be much more complicated than recursively

enumerable sets.

De�nition 2.1 Let L be a �nite �rst order language and D be a complexity class.

We say, that an L-structure A has a D-computable presentation if there is a struc-

ture B = 〈ω,RB
i 〉i∈L such that A and B are isomorphic and the relations RB

i are in

D for every i ∈ L.

We can similarly de�ne (D,Φ)-decidable presentations of a structure. It is clear

that such a presentation is D-computable. Since we prove negative results in this

paper we use this strongest form, and for short we omit the word �computable�. In

this situation we also say, that B is D-presented.

Lemma 2.2 Let D be a complexity class. Suppose H is an uncountable family of

pairwise non-isomorphic countable structures. Then there exists A ∈ H such that A

does not have a D-presentation.

Proof. Let H0 = {A ∈ H : A has a D-presentation } and for every A ∈ H0

let D(A) be a D-presented structure such that fA : A → D(A) is an isomorphism

between A and D(A). Observe, that for every distinct A,B we have D(A) 6= D(B),

otherwise (fB)−1 ◦ fA would be an isomorphism between A and B. Hence, the

function α : A 7→ D(A) is injective. In addition, there are only countably many

D-presented structures, so the range of α is countable. It follows, that H0 (which is

the domain of α) is also countable. Consequently, there exists A ∈ H \ H0; this A

does not have a D-presentation. �

11



Corollary 2.3 (1) There is an ordering on ω which does not have a computable

presentation.

(2) There is a well-ordering on ω which does not have an arithmetical presentation.

Proof. Since (2) implies (1), it is enough to show (2). Let H be the set of (iso-

morphism types of) countable well-orderings and let D be the set of arithmetical

relations on ω. Since |H| = ℵ1, the statement follows from Lemma 2.2. �

2.2 Remarks on in�nite languages

Under in�nite language we mean that there are in�nitely many relation and function

symbols in the corresponding similarity type. In this case two di�erent concepts of

representation emerge. Consider the structure B = 〈ω,RB
i 〉i∈ω. We say that this is

D-computable i� the following membership problem is in D: We have the input of

the form: 〈i, {a1, . . . , ani
}〉. The question is, whether the ni-tuple of elements of B

is in the relation RB
i or not (ni is the arity of Ri). By this way of extending the

de�nition of D-computablility for in�nite languages, with a slight modi�cation of

the conditions, the statement of Lemma 2.2 still holds. We say that the structure B

is weak-D-computable i� the membership problem for a tuple and for an arbitrary

�xed relation is in D.
It is easy to construct an uncountable set of pairwise non-isomorphic structures

on ω using an in�nite language. The family is parametrized by the subsets of ω.

For a �xed S ⊂ ω the structure MS is the following:

MS = 〈ω, Ri〉i∈ω where Ri =

{
{1} if i ∈ S
∅ if i 6∈ S

These structures are obviously weak-D-computable for any complexity class D.
On the other hand, Lemma 2.2 implies that there is a non-D-computable structure

in the above de�ned familiy. In addition, as it is easy to see, each MS is ℵ0-

categorical. So there exist continuum many, pairwise non-isomorphic ℵ0-categorical

structures. A natural adaptation of Lemma 2.2 implies, that at least one of them

is not isomorphic to any D-presented structure (in strong sense). On one hand

this result is best possible: ℵ0-categorical structures are the simpliest ones from

structure theoretic point of view, however, the computational complexity of such a

simple structure may be arbitrary large.
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On the other hand, the above result can be considered as a kind of cheating,

since we permitted to use in�nitely many relational symbols in the similarity type,

constructing continuum many pairwise non-isomorphic structures had become rather

easy. Therefore the restriction to �nite languages put sublety into the subject.

3 Results on �nite languages

3.1 Case of large Stone�space

As we mentioned in the introduction, a theory is used to consider �complicated� from

the model theoretic point of view i� at least one of its Stone spaces is of uncountable

cardinality. Among other things, in the present subsection we show that if a theory

T has at least one uncountable Stone�space then T has a countable model which

does not have a computable presentation.

Theorem 3.1 Let D be a complexity class and let T be a �rst order theory in a �nite

language such that there is an n ∈ ω with |Sn(T )| ≥ ℵ1. Then T has a countable

model which is not isomorphic to any D-presented structure.

Proof. We proove the statement by trans�nite recursion. Let us suppose that

we have a countable set of countable structures Aα (α < λ < ℵ1) such that they

are pairwise nonisomorphic and are models of T . Each structure can realize only

countably many types from Sn(T ), since a single element realizes a unique type.

Hence, these countably many structres realize countably many types alltogether.

Let us choose a type p ∈ Sn(T ) which has not been realized yet. By Lemma

1.5 we obtain that there is a structure B which realizes p and is a model of T . By

using the downward Löwenheim�Skolem theorem we obtain that there is a countable

structure B′ such that B′ ≺ B and contains a prescribed countable subset of B.

We require only to contain an element which realizes p. Since B′ is an elementary

part of B containing this element it is still realize p. Thus B′ has the property:

B′ � T, B′ 6∼= Aα (α < λ). In this way we construct ℵ1 many pairwise nonisomorphic

models of T . From Lemma 2.2 the result follows. �

Remark 3.2 It is well-known (see, e.g. theorem 6.3.4. of Hodges [5]) that |Sn(T )| ≥
ℵ1 implies |Sn(T )| = 2ℵ0.
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3.2 Case of small Stone�space

As we already mentioned, from structure theoretic point of view, a theory T is as

simple as possible, i� it is ℵ0-categorical, that is i� T has a unique countable model.

The well known results of Svenonius, Ryll�Nardzewski and others show a connection

between categoricity and the size of the Stone�spaces.

Theorem 3.3 For a theory T the following two conditions are equivalent:

(1) T is ℵ0-categorical,

(2) |Sn(T )| < ω (∀n ∈ ω).

Proof. The proof can be found in many work from the listed references. �

In this subsection we show, that there exists an ℵ0-categorical theory in a �nite

language whose unique countable model does not have a computable isomorphic

copy (that is, altough T is simple from structure theoretic point of view, its unique

countable model is still complicated from computatinal theoretic point of view).

In addition, we also show that there is a countable structure which is not ele-

mentarily equivalent to any computable (or any D-presented) structures, where D
is a given complexity class.

To prove these results �rst we need to recall and establish some connections

between ℵ0-categorical structures and certain permutation groups on ω.

De�nition 3.4 A permutation group G = 〈G, ◦, −1, 1〉 is de�ned to be closed i� for

every permutation f ∈ ωω the following holds:

(?) if for every �nite s ⊆ ω there is gs ∈ G such that f |s = gs|s, then f ∈ G.

The situation in (?) is denoted by gs → f for a series of subsets s ∈ [ω]<ω oredered

by containing.

Equip ω with the discrete topology. Then G is a closed permutation group i� it

is a closed subset of ωω in the corresponding product topology. For more details we

refer to [5].

Clearly, the automorphism group of a �rst order structure is closed: if gn ∈
Aut(A) (for each n) and gn → f then for every tuple ~a there exists an n ∈ ω such

that gn(~a) = f(~a). Since gn is an automorphism of A, ~a satis�es a relation i� f(~a)

does. Thus f ∈ Aut(A).
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De�nition 3.5 A permutation group G on X is said to be oligomorphic i� for every

k ∈ ω the group acts on the k-tuples in a way that the number of orbits is �nite.

If G is an oligomorphic permutation group on X and n ∈ ω then oGn denotes the

number of orbits of G on the set of n-tuples of X.

Lemma 3.6 If G is a closed oligomorphic permutation group on ω then there exists

an ℵ0-categorical structure A on ω with Aut(A) = G.

Altough this theorem is well known, for completeness we include here a proof.

Proof. Firstly, we construct the so called canonical model for G in the form of

A = 〈ω,Ri〉i∈ω. For every n ∈ ω, we introduce a relation symbol Rn with arity

equals to (n · oGn). Let the interpretation as follows: Rn(~a1, . . . , ~aon) ⇔ ~ai is in

the ith orbit of n-tuples for all i. Consider an arbitrary n-tuple ~b. Then there is a

sequence of elements aj
i such that bj = aj

i for a unique i so that Rn(~a) is true in A.

So we can write the elements of ~b into certain slots of Rn. The inclusion G ⊆ Aut(A)

is trivial by our construction. Let f ∈ Aut(A). Obviously, by changing the values

of these slots to the elements of f(~a) then the relation remains true. So ~a and f(~a)

are in the same G orbit too. So there is a g~a ∈ G such that g~a(~a) = f(~a). With

n = {0, . . . , (n − 1)} ⊂ ω the above way de�ned elements of G converge, gn → f .

Since G is closed, f ∈ G. We obtained the fact that G = Aut(A).

Secondly, we have to show that this structure A is ℵ0-categorical. We have A

whose automorphism group is oligomorphic by assumption. Then for every n ∈ ω

there are �nitely many orbits on n-tuples. If two n-tuples, ~a and ~b, are on the same

orbit then tpA(~a) = tpB(~b). Therefore, the structure A realizes only �nitely many

types, namely: p1, . . . , pon ∈ Sn(A). There is a formula for every i 6= j such that

φij ∈ pi\pj. Hence the formula, φi =
∧

i6=j φij is only in pi. Thus A � ∀~x
∨on

i=1 φi(~x),

and for every ψ ∈ pi: A � ∀~x(φi(~x) → ψ(~x)). So for an arbitrary formula θ ∈ Fn it

is true that A � ∀~x∀~y (φi(~x) ∧ φi(~y) −→ (θ(~x) ↔ θ(~y))). Which implies that there

are no other n-types than p1, . . . , pon in Sn(A). This means that all the Stone�spaces

are �nite. Theorem 3.3 implies that A is ℵ0-categorical, which completes the proof.

�

Lemma 3.7 For any sequence {an ∈ ω}n∈ω there is an oligomorphic group G for

which oGn > an for all n ∈ ω.
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Proof. The proof can be found in Cameron [2]. �

We say that two oligomorphic permutation groups F ,G have same orbit struc-

tures i� for every n ∈ ω we have oFn = oGn.

Lemma 3.8 If G is an oligomorphic permutation group on an in�nite set then there

exists an oligomorphic permutation group on ω with the same orbit structure.

Proof. First of all we encode the group and the action in a structure. The universe

will contain the elements of G and the elements of the set the group is act on. The

similarity type consists of the group operations, {◦, −1, 1}, an operation symbol for

the action, {·}, and two unary relation symbols, {g, s} group and set respectively,

in order to distinguish to two sort of elements. In a theory we collect the axioms of

a group and those of the action. The sentence:

∃x1, . . . , xk∀y(s(x1)∧ · · · ∧ s(xk)∧ g(y) → (g ·x1 6= x2)∧ · · · ∧ (g ·xk−1 6= xk)) means

that there are at least k orbits of the group action. Likewise we can express that

there are exactly k orbits via �rst order formulas. In a similar way we can express

the same statement about the orbits of n-tuples.

Let us construct this structure from G. By using the downward Lövenheim�

Skolem theorem we gain a countable model. The orbit structure is �xed by the

theory. After the enumeration of the universe the statement of the Lemma follows.

�

Lemma 3.9 Let G be an oligomorphic permutation group on ω and let Ḡ be its

closure (in the topological sense). Then

(1) Ḡ is an oligomorphic permutation group;

(2) The orbit structures of G and Ḡ are the same.

Proof. (1) is easy; (2) is straightforward. �

Theorem 3.10 There is a �nite similarity type in which there are 2ℵ0 many pair-

wise non-isomorphic ℵ0-categorical structures on ω.

Proof. First we show by trans�nite recursion that there are ℵ1 many oligomorphic

permutation groups with pairwise di�erent orbit structures. To do so, we apply

trans�nite recursion. Let us suppose we have {Gα : α < β} where β is a countable

ordinal, and the Gα's are oligomorphic permutation groups with pairwise di�erent
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orbit structures. So we have β many sequences oα
n which describes pairwise di�erent

orbit structures. For simplicity we ommit the letter G from the notation. Let

ι : ω → α be a surjection. Consider the sequence {1 + o
ι(n)
n }n∈ω as an input for

Lemma 3.7. This lemma produce a new oligomorphic group with at least 1 + o
ι(n)
n

many orbits on n-tuples.

Next, we show that there is a set H′ consisting of 2ℵ0 many oligomorphic per-

mutation groups with pairwise di�erent orbit structures. We build a tree of orbit

structure sequences. We already have ℵ1 many groups and sequences oα
n either. For

arbitrary k there are countably many truncated sequences with length k. There is a

truncated sequence then which is the starting sequence of ℵ1 many orbit structure

sequences. To continue our truncated sequence with one step we have ℵ0 many

possiblities. But we still have ℵ1 many sequences. A one step continuation of the

truncated sequence which is still the starting sequence of ℵ1 many orbit structure se-

quences is called large branching, and which is only a starting sequence of countably

many is called small branching. So there is at least one large branching at this step.

Let us consider all the ω steps. Suppose there is only �nitely many points where

there are at least two large branching continuations. Then there are only �nitely

many complete sequences which pass a large branching. Then apart from these the

remaining small branchings yield only countably many complete sequences. This

is contradictory to the supposition that we have ℵ1 many di�erent orbit structure

sequences alltogether. Thus there are ℵ0 choice points where there are at least

two large branchings. Now we obtain by these points (or large branchings) a tree

whose height is ω which yields 2ℵ0 di�erent orbit structure sequences. Let S be

the set of these sequences (i.e. the complete branches of the above tree). So we

have |S| = 2ℵ0 . By construction, for each sequence {si}i∈ω ∈ S and for arbitrary

k we have an oligomorphic permutation group Gs
k such that o

Gs
k

n = sn i� n < k.

Consider the ultraproduct Gs =
∏

k∈ω Gs
k/U . Since there are co�nitely many groups

with exactly sn many orbits on n-tuples, the well known �os lemma implies that

oGs
n = sn. Hence we obtain the setH′ = {Gs, s ∈ S}. where the Gs's are oligomorphic

permutation groups with pairwise di�erent orbit structures.

By Lemma 3.8, for every Gs ∈ H′ there exists an oligomorphic permutation group

Fs on ω with the same orbit structure, by Lemma 3.9 we may assume Fs is closed as

well. Finally, by Lemma 3.6 there is a countable structure As such that Aut(As) =

Fs. Then H′′ = {As : s ∈ S} is a set of pairwise non-isomorphic, countable, ℵ0-
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categorical structures because their automorphism groups are oligomorphic and have

pairwise di�erent orbit structures.

Suppose t is a similarity type containing a distinguished unary relation symbol P

and let B be a structure of similarity type t. We say, that a structure A is an induced

substructure of B by P i� the universe of A is PB and the de�nable relations of A

coincide with the de�nable relations of B restricted to P . This determines A up to

de�nitional equivalence, only.

By theorem 7.4.8 of Hodges [5] there is a �nite similarity type t containing a

distinguished unary relation symbol P such that every ℵ0-categorical structure A

(possibly having an in�nite language) is an induced substructure of an ℵ0-categorical

structure At by P , where the similariy type of At is t. Let A,B ∈ H′′ be arbitrary,

but di�erent. Then they have di�erent orbit structures, hence At cannot be iso-

morphic to Bt. In other words, the function A 7→ At is injective on H′′. Let

H = {At : A ∈ H′′}; clearly H contains 2ℵ0 many pairwise non-isomorphic ℵ0-

categorical structures of similarity type t, as desired.

�

We note that the proof of Theorem 3.11 would remain correct, if in Theorem 3.10

we would establish the existence of ℵ1 many pairwise non-isomorphic ℵ0-categorical

strucures only. Actually, in the �rst paragraph of Theorem 3.10 we are doing exactly

this. The purpose of the remaining part of the proof of Theorem 3.10 is to establish

the existence of continuum many ℵ0-categorical pairwise non-isomorphic structures.

This stronger result may be useful for further model theoretical investigations.

Theorem 3.11 Let D be a complexity class.

(1) There exists an ℵ0-categorical structure of �nite similarity type which is not

isomorphic to a D-presented structure.

(2) There is a �rst order theory again, in a �nite similarity type which does not

have a D-presented model.

Proof. By Theorem 3.10 there exists a set H of pairwise non isomorphic, countable

ℵ0-categorical structures such that |H| = 2ℵ0 ≥ ℵ1. Now (1) follows from Lemma

2.2.

To show (2), let A be a structure satisfying (1) and let T = Th(A). Since A is

ℵ0-categorical, every countable model of T is isomorphic to A, hence such a model

cannot be D-presented. �
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4 Concluding Remarks

We conclude this work by mentioning a further research direction. After answering

the question for theories with not smaller than ℵ1 and with �nite Stone�spaces, the

case of theories with countably in�nite Stone�spaces is still open. From structure

theoretic point of view this case has �intermediate complexity�. In general, Lemma

2.2 seems unapplicable for them, and at the same time, there do not exist structure

theorems (like Theorem 3.3 and Lemma 3.6) for theories with countable Stone�

spaces.
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