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Abstract

My aim is to study a transport equation on an ergodic network and related

questions using a probabilistic approach. The process described by the transport

equation can be regarded as a linear extension of a random process on the

network. This enables me to use tools and results from probability theory (in

particular Markov chain theory) to describe the asymptotic behaviour of the �ow

on the network. I show that the linear operator mapping the initial distribution

to the asymptotic distribution is strongly linked to a suitable factorization of

the underlying graph, thereby answering a question raised by Prof. R. Nagel. I

also exploit the probabilistic approach to prove that controlling the system at a

single vertex, there is only need for a �nite time control. The general idea and

the basic methods are �rst presented on a simple network, and are then adapted

to allow the treatment of the general case.
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PREFACE

Consider a closed system of pipelines in which some material �ows with constant

speed. There are some nodes at which some of the pipelines meet and then split

again. We suppose that there is no loss of material, neither along the pipelines,

nor at the nodes. We would like to understand how this system behaves in the

long run, and �nd out which parameters of the network determine its asymptotic

behaviour.

This is the physical setting that has led to the study of �ows in networks

as a dynamic process rather than the traditional graph theoretical approach in

which one looks for optimal solutions to a transportation problem with capaci-

ties and costs assigned to the edges and nodes of the graph. The case of �ows as

a dynamic process on �nite networks has already been treated by E. Sikolya in

[5], where the �ow is viewed as a solution to a transport equation on the edges

with a boundary condition at the nodes that re�ects the material conservation

during the process. This PDE setting allowed for a treatment of the problem

with tools from semigroup theory, and led to a description of the asymptotic

behaviour of the system. While answering questions about asymptotic period-

icity, the question of how to determine the exact periodic or stationary state

the system converges to with a given initial state remained open, and Prof. R.

Nagel asked at the Hungarian-German Workshop on Evolution Equations on

Dobogók® in March 2007 whether the mapping from the initial states to the

corresponding asymptotic state � which was proven to induce a direct sum

decomposition of the state space � could be linked to some appropriate fac-

torisation of the network.

As mentioned, discrete or combinatorial processes in networks have been

systematically studied for several decades, and this question suggested that an

attempt should be made to exploit the results in those �elds to bring new insight

to the question of asymptotic behaviour of �ow on networks. The discrete process

of �nite Markov chains was the one which to me seemed the most promising

in this aspect, and I would in this thesis like to present on the special case of

strongly connected networks how Markov chain theory and the corresponding

probabilistic interpretation of the �ow in networks can be used to reproduce

many of the results obtained with semigroup methods, but also to answer the

above question about the connection between asymptotic behaviour and network

factorisation. This is also a good example of how very di�erent, both continuous
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and discrete parts of mathematics � operator semigroup theory, probability

theory and graph theory � come together in a physically motivated problem.

In Chapter 1, we �rst present the de�nitions and results from Markov chain

theory needed later, with some notions being generalised to allow the handling

of L1-functions rather than only probability vectors. Then we formulate the

probabilistic interpretation of �ows in networks that will constitute the founda-

tion on which will be based our treatment of the asymptotic behaviour of �ows

in networks. The process that in [5] is described by a transport equation will be

reformulated as the linear extension of an appropriate stochastic process in the

network motivated by the original physical process.

In Chapter 2, we show how simple ergodic networks with unit edge lengths

can be transformed to allow the application of convergence results from Markov

chain theory presented in Chapter 1 to reproduce the results on asymptotic

behaviour obtained by semigroup theory (see [5]).

In Chapter 3, we exploit the methods previously presented to fully char-

acterise the e�ects of one-vertex control of an ergodic network with unit edge

lengths, and show that any asymptotically reachable state is in fact exactly

reachable by bounded-time control.

In Chapter 4, we generalise the results of Chapter 2 to ergodic networks

with rationally dependent cycle lengths. To this end we introduce a set-valued

distance function on these networks that will help take the idea of network

transformation one step further, allowing us to transform these networks into

the simpler ones treated in Chapter 2 without changing their asymptotic be-

haviour. This distance function is also what will allow us to de�ne the factor

network whose �ow semigroup captures the asymptotic behaviour of the �ow

semigroup of the original network and answer the question raised by Prof. R.

Nagel. All this time we use probabilistic (and some graph theoretical) methods

to produce semigroup theory results, but at the end, in connection with ergodic

networks with rationally independent cycle lengths, we turn this around and

use a semigroup theory result to formulate a limit theorem for the stochastic

process.



1. DEFINITIONS AND PRELIMINARIES

1.1 Finite Markov Chains

In this section we start by summarising notions and results from �nite Markov

chain theory, mainly based on the monograph [4], but see also [3] and [2].

De�nition 1.1.1. A �nite Markov chain (MC) is a discrete-time (T = N0)

stochastic process {Xt} with �nite state space V = {v1, . . . , vn} for which the

probability of entering a certain state only depends on the last state occupied,

i.e.

P(Xt = vj |X0 = vi0 , X1 = vi1 , . . . , Xt−1 = vit−1) = P(Xt = vj |Xt−1 = vit−1).

The probabilities pij,t := P(Xt = vj |Xt−1 = vi) (i, j ∈ 1, n) are called the

transition probabilities at time t ∈ N+.

We are here only going to use MC-s with time-independent transition prob-

abilities. Let {Xt} be an MC and let P denote its transition matrix, i.e. the

matrix (pij)i,j ∈ Rn×n

Remark. In this section, in accordance with the usual probability theory nota-

tion, we use P to denote the transition matrix. However, for the sake of sim-

plicity, P will in subsequent sections denote the transposed transition matrix.

The probabilities p
(t)
ij := P(Xt = vj |X0 = vi) are called the t-step transition

probabilities. The state vj is said to be reachable from state vi if there exists a

time t ∈ T for which the t-step transition probability p
(t)
ij is non-zero.

A Markov chain may be represented as a weighted directed graph D(V,
−→
E )

where
−→
E is the set of directed edges {−−→vivj : i, j ∈ 1, n, pij > 0}, the edge

eα = −−→vivj having weight wα := pij . We shall later see that the similarity of this

graph representation to a network is not without reason.

We introduce a partial ordering R ⊂ V × V on the set of states de�ned by

(vi, vj) ∈ R ⇔ ∃t ∈ T : p
(t)
ij > 0. It may easily be veri�ed that (vi, vi) ∈ R and

((vi, vj) ∈ R) ∧ ((vj , vk) ∈ R) ⇒ (vi, vk) ∈ R. This partial ordering induces an

equivalence relation ∼:

vi ∼ vj ⇔ ((vi, vj) ∈ R) ∧ ((vj , vi) ∈ R)
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on the set V , partitioning it into the set of equivalence classes
�
V 1, . . . , V m

	
.

This set inherits an induced partial ordering, and we write V a ≤ V b if there are

elements va ∈ V a and vb ∈ V b such that (va, vb) ∈ R.

De�nition 1.1.2.

• The irreducible sets of the chain are the maximal classes with respect to R,

(i.e. the maximal elements of the partition with respect to ≤).
• States that do not belong to an irreducible set are called transient. The set of

transient states is called the transient part of the MC.

• vi ∈ V is an absorbing state if {vi} is a maximal class.

De�nition 1.1.3. • An absorbing chain is a Markov chain in which each irre-

ducible set consists of a single absorbing state.

• An irreducible/ergodic chain is a Markov chain for which V is an irreducible

set.

Remark. It can be shown that a Markov chain is irreducible i� the correspond-

ing transition matrix is irreducible, and this is also equivalent to the underlying

graph being strongly connected (i.e. for any ordered pair of vertices there is a

directed path connecting the �rst to the second).

We shall often need the following theorem about the transition matrix of

ergodic MC-s (see e.g. Theorem 11.10 in [2] ).

Theorem 1.1.1. For an ergodic MC with transition matrix P , there is a unique

probability vector πP such that πP P = πP . πP is strictly positive, and any P -

invariant row vector is a multiple of πP .

For a state vi of an irreducible set, we may consider the number

di := gcd{k : P(Xk = vi|X0 = vi) > 0},

called the period of the state. It is known that this period is in fact independent

of the state considered within the irreducible set, and the common period d is

called the period of the set.

De�nition 1.1.4. There are two types of irreducible sets with respect to their

structure:

-cyclic sets, for which d > 1
-regular sets, for which d = 1.

For cyclic MC-s we have a partition of the set 1, n � and through it of the

set of states � into d sets de�ned by:

Im :=
¦
j ∈ 1, n : P(Xm+k·d = vj |X0 = v1) > 0 for a su�ciently large k ∈ N

©
and Vm := {vi : i ∈ Im} (m ∈ 0, d− 1). These sets of states are all invariant

under the d-th iterate of the original MC (i.e. under the stochastic process
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Xd

t

©
:= {Xtd}, t ∈ T ), and as such constitute isolated regular MC-s with

transposed transition matrix Pm := (P d)Im×Im . To each of these matrices there

belongs a stationary probability row vector πPm
.

We shall also need the following theorem about the asymptotic behaviour

of ergodic MC-s (for the �rst part see e.g. Corollary 4.1.5 in [4], for the second

apply the �rst part using the above mentioned).

Theorem 1.1.2. For an ergodic MC with transition matrix P the following

holds:

- If the MC is regular, then (P a)∞a=1 converges exponentially to a matrix A

which has identical rows equal to πP , i.e.

‖P a −A‖ ≤ b · ra

with suitable constants b ∈ R+, r ∈ (0, 1), and thus for any probability row

vector p we have

∀a ∈ N0 : ‖pP a − πP ‖1 ≤ b · ra

- If the MC has period d > 1, then for any probability row vector p there

exists a unique P d-invariant probability row vector ep that satis�es

∀a ∈ N0 : ‖pP a − epP a‖1 ≤ b · ra

with suitable constants b ∈ R+, r ∈ (0, 1). In addition we have (ep)Im =
(
P

j∈Im pj)πPm for all m ∈ 0, d− 1.

By the linearity of P , these results may be extended to arbitrary complex

vectors:

Corollary 1.1.3. For an ergodic MC with transition matrix P the following

holds:

-If the MC is regular, then for any vector v ∈ Cn we have

∀a ∈ N0 : ‖vP a − (
nX

j=1

vj)πP ‖1 ≤ (
nX

j=1

|vj |) · b · ra

with suitable constants b ∈ R+, r ∈ (0, 1)
- If the MC has period d > 1, then for any vector v ∈ Cn there exists a

unique P d-invariant vector ev ∈ Cn that satis�es

∀a ∈ N0 : ‖vP a − evP a‖1 ≤ (
nX

j=1

|vj |) · b · ra

with suitable constants b ∈ R+, r ∈ (0, 1). In addition we have (ev)Im =
(
P

j∈Im vj)πPm for all m ∈ 0, d− 1.
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1.2 L1 Markov Chains

In order to be able to link the behaviour of networks to that of Markov chains,

we have to generalise the convergence theorem for ergodic MC-s to L1-classes

of ergodic MC-s with common transition matrix.

Note that from now on, P denotes the transposed transition matrix of a

given MC.

Let (X, A , µ) be a measure space, and for each x ∈ X let us take a reg-

ular MC with given transposed transition matrix PX and an initial (column)

vector vx ∈ Cn such that (x 7→ (vx)j) ∈ L1(X, A , µ) for all j ∈ 1, n. We

shall be interested in the joint behaviour of these Markov chains, i.e. in the

functions (x 7→ (P avx)) where a ∈ N0. PX being a linear operator, the coordi-

nate functions will remain in L1(X, A , µ), and it thus makes sense to speak of

L1-convergence.

We know by Corollary 1.1.3 that for all x ∈ X there exists a unique vectorfvx ∈ Cn such that

‖P a
Xvx −fvx‖1 ≤ (

nX
j=1

|(vx)j |) · b · ra

where fvx = (
Pn

j=1(vx)j)πT
PX

. It is then clear that (x 7→ (fvx)j) ∈ L1(X) for all
j, and thus using this (a.e.) pointwise estimate we obtain that for all a ∈ N0:

‖(x 7→ P a
Xvx)− (x 7→ fvx)‖1 =

Z
X
‖P a

Xvx −fvx‖1dµ ≤
Z

X
b · ra

nX
j=1

|(vx)j |dµ

= b · ra
nX

j=1

‖(x 7→ (vx)j)‖1

= b · ra · ‖(x 7→ vx)‖1.

Reformulating the above, looking at this L1-class of Markov chains as a

single L1(X, A , µ)-valued MC, we obtain the following:

Proposition 1.2.1. If P is the transposed transition matrix of a regular MC,

then for all v ∈ (L1(X))n there exists a unique vector ev ∈ (L1(X))n such that

‖P av − ev‖1 ≤ b · ra‖v‖1 ∀a ∈ N0

with suitable constants b ∈ R+ and r ∈ (0, 1). In addition we have that ev =
(
Pn

j=1 vj)πT
P , and thus ‖ev‖1 ≤ ‖v‖1 since ‖πT

P ‖1 = 1.

Similarly we can prove the following:
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Proposition 1.2.2. If P is the transposed transition matrix of a cyclic MC with

period d, then for all v ∈ (L1(X))n there exists a unique vector ev ∈ (L1(X))n

such that
P dev = ev

and ‖P av − P aev‖1 ≤ b · ra‖v‖1 ∀a ∈ N0

with suitable constants b ∈ R+ and r ∈ (0, 1). In addition we have (ev)Im =
(
P

j∈Im vj)πT
Pm

for all m ∈ 0, d− 1, and in consequence ‖ev‖1 ≤ ‖v‖1.

1.3 Networks and �ows

Let us �rst recall a de�nition from graph theory.

De�nition 1.3.1. A directed walk on a directed graph G(V,
−→
E ) is a sequence

vi0 , ei1 , vi1 , . . . , eim
, vim

(m ∈ N+) where the vi-s are vertices, the ei-s are di-

rected edges such that eij has tail in vij−1 and head in vij for all j ∈ 1,m. A

cycle on a directed graph G(V,
−→
E ) is a directed walk in which no two vertices

coincide apart from vi0 = vim .

De�nition 1.3.2. A weighted directed graph D = (V,
−→
E ) in which the edges

have nonnegative lengths, there are no cycles containing exclusively zero-length

edges, and which satis�es the Kirchho� Law, i.e. that for any vertex vi ∈ V the

sum of the weights on the edges having tail in vi is equal to 1 will be called a

network.

Let N be a network with

n := |V |, k := |
−→
E |,

and denote by wα the weight on the edge eα, by lα the length of the same edge,

and by et
α and eh

α its tail and head, respectively. An edge eα with length lα can

then be identi�ed with the interval [0, lα] ⊂ R, and the edges thus inherit the

standard Lebesgue measure λ. Let PN ⊂ L1
�`k

α=1[0, lα]
�
denote the subset of

positive functions with unit norm.

We would now like to reformulate the process described by the transport

equation used in [5] to the linear extension of a suitable stochastic process. Let

us consider the following random process on N : a particle is moving with unit

speed along the directed edges of the network, and when arriving at a vertex vi,

it continues its journey along the edge eα with probability wα if eα has its tail

in vi. If the particle is sent to a zero-length edge, then it passes immediately

to its endpoint. The absence of cycles of zero-length edges together with the

Kirchho� Law condition on the weights given in the de�nition guarantee the

well-de�nedness of this process. This can easily be translated into a stochastic

process where the random variables Ft (t ∈ [0,∞)) represent the position of

the particle at time t (we omit the exact details of the stochastic process).
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If we suppose that each random variable Ft has a probability distribution on`k
j=1[0, lα] that is absolute continuous with respect to the Lebesgue measure

(it is in fact enough to suppose the absolute continuity of the distribution of

F0), we can consider the derivate functions f t ∈ PN ⊂ L1
�`k

α=1[0, lα]
�
∼=Qk

α=1 L1[0, lα] (t ∈ [0,∞)). This yields a family of mappings eT (t) : PN →
PN ⊂

Qk
α=1 L1[0, lα] de�ned by eT (t)f0 := f t

for nonnegative values of t. It is clear from the nature of the process thateT (t + s) = eT (t) ◦ eT (s) ∀ t, s ∈ [0,∞).

By extending these mappings linearly to the space of (not necessarily proba-

bility) distributions
Qk

α=1 L1[0, lα] on N we obtain a semigroup of operators

(T (t))t≥0,

T (t) :
kY

α=1

L1[0, lα] →
kY

α=1

L1[0, lα].

De�nition 1.3.3. We call this semigroup of operators a �ow on the network

N . T (t) is then called the �ow at time t.

De�nition 1.3.4. An initial distribution f ∈
Qk

α=1 L1[0, lα] on a network N
is called (N , d)-invariant if T (d)f = f .

If f ∈
Qk

α=1 L1[0, lα] is an initial distribution on a network N , then f t

denotes the distribution after time t, i.e. f t := T (t)f where (T (t))t≥0 is the �ow

on N . Let further F t
i (i ∈ 1, n) and F t be de�ned by

F t
i :=

X
{β:et

β
=vi}

f t
β

and

F t := (F t
1 , . . . , F t

n)T

for all t ≥ 0. Notice that for all t ≥ 0 we have ‖ eT (t)‖ = 1, and thus also

‖T (t)‖ = 1, i.e.
‖f t‖1 ≤ ‖f‖1.

Finally let us introduce the class of networks we are going to treat in the

rest of this paper.

De�nition 1.3.5. We call a network ergodic if the underlying graph is strongly

connected.



2. ERGODIC NETWORKS WITH UNIT EDGE LENGTHS

We start our study with networks having unit edge lengths, and then pass on

to general ergodic networks in Chapter 4.

Using the notations of the previous Chapter, let N be an ergodic network

with all edges having unit length, and let us further suppose that there are no

multiple directed edges (loops are allowed). Then denote by P the transposed

transition matrix de�ned by the weights of the corresponding graph. Let us �x

an initial distribution f ∈ (L1[0, 1])n. Then due to the Kirchho� Law, for any

time t ≥ 1 the coordinate functions of the distributions corresponding to edges

having tail in a same given vertex will be equal up to a constant factor, namely

the weight of the edges: if eα has its tail in vi, then

f t
α = wα · F t

i , α ∈ 1, k, t ≥ 1

(for notations, see end of previous Chapter). Let Q ∈ Ck×n be the transposed

weighted outgoing incidence matrix of the underlying graph, i.e.

Qα,i =
§

wα, if et
α = vi;

0, otherwise.

Then for t ≥ 1, we have f t = QF t.

We are now going to construct a new network ÒNτ that for t ≥ 1 behaves in

the same way as our original network. First we pick a value τ ∈ [0, 1]. Then we

call the vertices Vi and V ′
i , the edges E′

i and Eα (1 ≤ i ≤ n, 1 ≤ α ≤ k). For

every i, the edge E′
i is a directed edge of length τ from Vi to V ′

i with weight 1.
For every α, if eα was a directed edge such that et

α = vi and eh
α = vj , then Eα

is a directed edge such that Et
α = V ′

i and Eh
α = Vj of length 1 − τ and weight

wα. We then de�ne the initial distributions along the edges as follows:

- on Eα, the initial distribution pα ∈ L1[0, 1− τ ] is pα := f1
α|[τ,1]

- on E′
i, the initial distribution qi ∈ L1[0, τ ] is qi := F 1

i |[0,τ ]

In the random process setting, this corresponds to delaying the decision-making

at the original vertices with τ . The behaviour of the two networks is strongly

linked, as can be seen from the following equalities:

pt−1
α = f t

α|[τ,1], qt−1
i = F t

i |[0,τ ] 1 ≤ t, 1 ≤ i ≤ n, 1 ≤ α ≤ k.
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If we stretch this to the limit case τ = 1, the edges Eα will have length 0
(notice though that no cycle with only such edges arise). As such, these edges

allow a transition from the original Kirchho�-type boundary condition with

weights on the outgoing edges to a new Kirchho�-type boundary condition with

weights on the in�ow: the �ow on this network ÒN := ÒN1 can be reinterpreted

as a system of functions r ∈ (L1[0, 1])n with rightshift (yielded by the E′
i)

satisfying the boundary condition r(0) = Pr(1) (yielded by the Eα)! Notice

that after time t = 1 the distribution r1 is therefore going to be exactly Pr.

Thus, seen at unit time intervals, this network behaves just like an L1 Markov

chain as de�ned in the �rst Chapter. This observation, as mentioned in the

Introduction, is our main motivation to try and use MC methods to obtain

results about the asymptotic behaviour of �ows in networks .

We are going to explicitly describe the behaviour of ÒN , and through it, we

shall obtain an explicit description of the behaviour of the original network

beyond t = 1. Our initial distribution on ÒN was q = F 1. For any t ≥ 1 the

combination of the rightshift and the unit time behaviour yields:

qt−1(s) =
�

(P btcq)(1 + s− {t}) for s ∈ [0, {t}]
(P btc−1q)(s− {t}) for s ∈ [{t}, 1],

where {t} := t − btc. From the previous Chapter we know that if our MC has

period d, then for any r ∈ (L1[0, 1])n there exists a unique vector er ∈ (L1[0, 1])n

for which

P der = er and
‖Pmr − Pmer‖1 ≤ cρm‖r‖1 for some c ∈ R+, ρ ∈ (0, 1) and all m ∈ N0.

Since for (nonnegative) integers m we have Pmer = erm these equations yield:erd = er and
‖rm − erm‖1 ≤ cρm‖r‖1 for some c ∈ R+, ρ ∈ (0, 1) and all m ∈ N0.

Let us convert this back to the original network. Let ÜF := eqd−1, and ef := QÜF .

Since all the weights w are positive, we then for t ≥ 1 have:
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But also

‖ ef‖1 = ‖ÜF‖1 = ‖eqd−1‖1 = ‖eq‖1 ≤ ‖q‖1 = ‖F 1‖1 = ‖f1‖1 ≤ ‖f‖1

and for t < 1 we have


f t − ef t





1
= ‖(f − ef)t‖1 ≤ ‖f − ef‖1
≤ ‖f‖1 + ‖ ef‖1 ≤ 2‖f‖1 ≤

2
ρ
ρt‖f‖1.

Putting together the above estimates, we obtain the following

Theorem 2.0.1. For any initial distribution f ∈ (L1[0, 1])k on the network N ,

there exists a unique distribution ef ∈ (L1[0, 1])k which satis�es the following:

• efd = ef
•



f t − ef t





1
≤ aρt ‖f‖1 with suitable constants a ∈ R+ and ρ ∈ (0, 1).

In addition, 


 ef



1
≤ ‖f‖1 .
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Let us now consider the mapping

π : (L1[0, 1])k → (L1[0, 1])k, f 7→ ef.

This mapping is clearly linear, due to the linearity of the �ow itself. Obviously

all elements of the range are distributions that are (N , d)-invariant. But it can
be seen that all distributions that are (N , d)-invariant are actually mapped to

themselves, and therefore the range of the mapping is the sublattice XN
d of

(N , d)-invariant vectors in X := (L1[0, 1])k. Since the mapping is the identity

on XN
d , it yields a decomposition of X into the direct sum Ran(π) ⊕Ker(π).

Thus π is in fact a projection onto XN
d . Ran(π) is invariant under the �ow,

since for any t > 0 and g ∈ XN
d we have (gt)d = gt+d = (gd)t = gt. As it can

easily be veri�ed, π(f t) = (π(f))t for any t ≥ 0 and f ∈ X, and so Ker(π)
is also invariant under the �ow. We therefore obtain the following for the �ow-

semigroup (T (t))t≥0

Corollary 2.0.2. Let N be a strongly connected network with unit edge lengths.

Let d denote its period. For the decomposition X = XN
d ⊕Ker(π) we have

• XN
d and Ker(π) are T(t)-invariant subspaces

• the operators S(t) := T (t)|XN
d

form a bounded C0-group with period d on

XN
d (‖S(t)‖XN

d
= 1)

• the semigroup T (t)|Ker(π) is uniformly exponentially stable, and

‖T (t)− S(t) ◦ π‖X ≤ aet log ρ,

where a ∈ R+ and ρ ∈ (0, 1)

This corresponds to a special case of Proposition 2.4.5. in [5]. We are going

to prove the general case in Chapter 4.

De�nition 2.0.6. The mapping

π : (L1[0, 1])k → (L1[0, 1])k, f 7→ ef
is called the asymptotic mapping on N .



3. VERTEX CONTROL

Until now, we have considered the network as an isolated system. However, it

is also interesting to know how this system reacts to external in�uence. In this

chapter, we are going to study how the system can be in�uenced through control

at one or more vertices.

Let N be a strongly connected network.

De�nition 3.0.7. Controlling N in a given vertex vi is allowing to tap or �ll

up the network through that vertex, i.e. we change the original Kirchho� Law

boundary condition at viX
{α:et

α=vi}

wα · f t
α(0) =

X
{β:eh

β
=vi}

f t
β(lβ)

to X
{α:et

α=vi}

wα · f t
α(0) =

X
{β:eh

β
=vi}

f t
β(lβ) + gi(t)

for t ≥ 0, where gi is the control function, taken from L1
loc[0,∞).

Notice that simultaneous control at several vertices can also easily be de�ned:

we choose a subset V I = {vi|i ∈ I} of the vertices (I ⊂ 1, n), and we change

the boundary condition at each of them through the control functions gi ∈
L1

loc[0,∞) (i ∈ I).

Several interesting questions arise concerning control. One possibility is to

ask for the space of states that can be reached at some speci�c time t0 ≥ 0 from

the constant zero initial state if the control function can be arbitrarily chosen.

It is clear that this space grows as t0 increases. Also one may ask for the space

of states that can be reached without specifying the time. In connection with

this, an interesting question is whether the system is controllable in �nite time,

that is if there exists a time tmax for which any reachable state is reachable

at tmax. A further question is whether � and in what sense � a network is

more controllable than an other. This is, as can be expected, dependent on the

structure of the graph.

Let us introduce a few notations and de�ne the key notions needed in this

chapter. Notice that due to the linearity of the �ow, the control itself is also

linear, hence the spaces de�ned below are truly linear subspaces.
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De�nition 3.0.8. Let I ⊂ 1, n, and let g ∈ (L1
loc[0,∞))I be a control function.

Denote by fg,t ∈ (L1[0, 1])k the state of the network at time t when applying gi

at vertex vi (i ∈ I) with the initial state fg,0 ≡ 0. Then

• the linear subspace

RI
t :=

[
g∈(L1

loc
[0,∞))I

�
fg,t	 ⊂ (L1[0, 1])k ∼= L1([0, 1], Ck)

will be called the exact reachability space at time t belonging to I,

• the exact reachability space belonging to I is the space of states

RI :=
[
t≥0

RI
t ⊂ (L1[0, 1])k,

• and the approximate reachability space belonging to I is the space of states

RI :=
[
t≥0

RI
t ⊂ (L1[0, 1])k.

Usually we can not expect any of these spaces to be equal to the space

L1(N ) due to restrictions caused by the boundary conditions at the vertices. It

is therefore not a good approach to classify networks with respect to whether

the exact (or approximate) reachability space is equal to the whole state space.

The reachability spaces take the global structure into consideration, and since

we have to � to some extent � factor in the structure of the network, a good.

If we want a good measure of how controllable a network is, we do have to

take into account some of its structural aspects, as we can not expect the reach-

ability spaces to equal the whole state space. We have to �nd some intermediate

space which has some dependence on the network structure, but is big enough

for not being reachable for all networks.

Let us now take a closer look at the e�ect of the Kirchho� Law on control.

Due to the outgoing �ow being distributed along the outgoing edges according

to �xed ratios, it is clear that whatever our control is, if et
α = et

β , then the

restrictions of the states to these edges di�er only by a factor wα/wβ for any

time t ≥ 0. Using the notations of Chapter 2, let us again consider the networkÒN , this time with initial state zero. Let us apply the same control to this network

as to our original network N , i.e. if we have a control function g ∈ (L1
loc[0,∞))I

applied to N , then we apply gi at Vi in ÒN for all i ∈ I, and denote by F g,t ∈
(L1[0, 1])I the state thus obtained at time t. It then follows from the above that

we have

fg,t = QF g,t
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for all t ≥ 0 (for the de�nition of Q, see the beginning of Chapter 2). This

means that the states reachable by control are uniquely determined by the

corresponding states on the network ÒN without time delay. Let us denote by

SI
t ⊂ L1([0, 1], Cn)

the exact reachability space at time t belonging to I on ÒN , and by

SI ∈ L1([0, 1], Cn)

the approximate reachability space belonging to I de�ned by

SI :=
[
t≥0

SI
t ⊂ L1([0, 1], Cn).

We then have

RI
t = QSI

t

and

RI = QSI ,

and so obviously RI ⊂ QL1([0, 1], Cn).
An obvious observation is that applying control at a subset of vertices V I ,

we can not expect to reach a larger space of functions than if we simultaneously

apply control at all vertices. This will turn out to be a useful reference for

measuring controllability, and gives rise to the following de�nition.

De�nition 3.0.9. The network N is called maximally controllable at V I if all

states approximately reachable through control applied at all vertices simulta-

neously can also be approximately reached through control applied only at V I ,

i.e. if

RI = R1,n.

However, it is easily seen that due to the simple structure of ÒN , we have

S1,n = L1([0, 1], Cn),

and thus

R1,n = QL1([0, 1], Cn),

leading to the following Corollary.

Corollary 3.0.3. The network N is called maximally controllable at V I if

RI ⊂ QL1([0, 1], Cn) is satis�ed with equality.

Remark. Actually this corresponds to the notion of maximal reachability space

used in [1] (cf. Lemma 4.1).
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3.1 One-vertex control

We shall now restrict ourselves to control applied at a single vertex. Without

loss of generality, we may assume that this vertex is v1. In view of a less cumber-

some notation, we shall omit the upper index {1} from the di�erent reachability

spaces. As mentioned earlier, the �ow on the network ÒN is a rightshift combined

with a Markov chain iteration as boundary condition, and so the e�ect of the

control function g can be described precisely.

Let e1 denote the unit vector (1, 0, . . . , 0)T ∈ Cn. It is then possible to see

that

Proposition 3.1.1. When applying the control function g ∈ L1
loc[0,∞) at vertex

v1, the state F g,t ∈ L1([0, 1], Cn) on the modi�ed network ÒN at time t ≥ 0
satis�es

F g,t(ε) =

¨ Pbtc
j=0(g(j + {t} − ε) · P btc−je1) for a.e. ε ∈ [0, {t}]Pbtc
j=1(g(j + {t} − ε) · P btc−je1) for a.e. ε ∈ [{t}, 1]

Proof. For t ≤ 1, the combination of the modi�ed boundary condition at v1

together with right-shift yields

F g,t(ε) =
§

g(t− ε) · e1 for a.e. ε ∈ [0, t]
0 for a.e. ε ∈ [t, 1]

Consider now an arbitrary t ≥ 0. Let g0 := g|[0,{t}], and gj := g|[j−1+{t},j+{t}]
for all 1 ≤ j ≤ btc. The system being linear, we then have

F g,t =
btcX
j=0

F gj ,t.

But due to the above, and to the fact that f1 = Pf for any function f ∈
L1([0, 1], Cn), we also have

F g0,t(ε) = (χ[0,{t}]g({t}−ε)·e1)btc =
�

(g({t} − ε) · P btce1) for a.e. ε ∈ [0, {t}]
0 for a.e. ε ∈ [{t}, 1]

where χ[0,{t}] is the characteristic function of the interval [0, {t}], and

F gj ,t(ε) = (g(j + {t} − ε) · e1)btc−j = (g(j + {t} − ε) · P btc−je1) for a.e. ε ∈ [0, 1]

for all 1 ≤ j ≤ btc. By summing these equations, we obtain just what we

needed.

Let

A0 := {0}



3. Vertex Control 15

and

Aj := lin
¦
e1, Pe1, . . . , P

j−1e1

©
for j ≥ 1. Then, with the identi�cation

L1([0, 1], Cn) ∼= L1([0, {t}], Cn)× L1([{t}, 1], Cn)

we obtain the following.

Corollary 3.1.2. F g,t ∈ L1([0, {t}], Abtc+1)× L1([{t}, 1], Abtc) =: At ∀t ≥ 0.

Since g ∈ L1
loc[0,∞) is arbitrary, we actually have

At = St.

But Aj ⊂ Aj+1 for all j ≥ 0, and Aj = An for all j ≥ n. In addition An is a closed

subspace in Cn. Therefore for any t ∈ [0,∞) we have At ⊂ L1([0, 1], An) = An

with An being a closed sublattice in L1([0, 1], Cn), and so

S =
[
t≥0

St = Sn

Consequently we obtain the following

Theorem 3.1.3. The approximate reachability space for the network ÒN with

control at vertex v1 coincides with the exact reachability space at time n, i.e.

S = Sn = L1([0, 1], An),

and passing to the network N :

R = Rn = L1([0, 1], QAn)

Thus N is maximally controllable at v1 if and only if An = Cn

In other words, control beyond time t = n is super�uous, and any approxi-

mately reachable state is exactly reachable.

3.2 One-vertex control with non-zero initial state

If we are interested in the approximate reachability space when the initial state

is nonzero, the situation gets slightly di�erent. As the initial functions on out-

going edges at a given vertex are not necessarily equal up to a constant factor,

transcribing the problem to the network ÒN at t = 0 seems impossible. But, by

linearity of the �ow, the e�ect of the uncontrolled �ow on the initial state f0

adds up with the control, and the exact reachability space at time t thus turns
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into the Minkowski sum Rf
t = f t +Rt. The approximate reachability space will

then be

Rf =
[
t≥0

Rf
t =

[
t≥0

(f t +Rt)

Let us �rst look at the e�ect of the closure. Take a convergent sequence (hi) ⊂S
t≥0R

f
t , where hi ∈ Rtj (ti ≥ 0). Let the limit be called h ∈ L1([0, 1], Ck).

(1) If the sequence (ti) contains a convergent subsequence (t′j) with limit t′,

let us take the corresponding subsequence (h′j) of (hi). Then

h′j = f t′j + rj ,

where rj ∈ Rt′
j
. Since the �ow is strongly continuous, we have

lim
j→∞

f t′j = f t′ ,

and then the sequence (rj) has to converge to h− f t′ . But it is clear from

the above that

Rτ1 ⊂ Rτ2 if τ1 < τ2.

Thus for any ε > 0 there exists a positive integer J such that for any j > J

we have tj < t′ + ε, and so rj ∈ Rt′+ε. The spaces Rτ are closed for any

τ ≥ 0, and so

h− f t′ ∈ Rt′+ε

for all ε > 0. But we also have

Rt′ =
\
ε>0

Rt′+ε,

and therefore h ∈ Rf
t′ .

(2) If the sequence (ti) does not contain a convergent subsequence, it must

tend to in�nity. Also, it has to contain a convergent subsequence mod d

(i.e. on R/dZ), where d is the period of the underlying MC. Let (t′j) be

such a subsequence, and let τ ∈ [0, d) ∼= R/dZ be its limit. Then we have

both

limj→∞




f t′j − ef t′j




 = 0 and limj→∞




 ef t′j − efτ



 = 0,

which yield limj→∞ f t′j = efτ . At the same time h′j − f t′j ∈ Rt′
j
⊂ Rn for

all j, and by closedness of Rn we then have h− efτ ∈ Rn.

We can thus write

Rf =

�[
t≥0

�
f t +Rt

��
∪

� [
τ∈[0,d)

� efτ +Rn

��
.
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If we denote by Γf the asymptotic orbit

Γf :=
[

τ∈[0,d)

{ efτ}

of the initial state f , we obtain

Rf =

�[
t≥0

�
f t +Rt

��
∪
�
Γf +Rn

�
.

But as we shall later see in Chapter 4, Γf ⊂ Rn, and we may thus state the

following

Proposition 3.2.1. When applying control at vertex v1 to the network N with

initial state f ∈ L1([0, 1], Ck), the approximate reachability space is

Rf =

�[
t≥0

�
f t +Rt

��
∪Rn.

3.3 Control at V I

We now shortly outline the situation in the case when control is allowed in more

than one vertex, say in the set of vertices V I = {vi : i ∈ I} where I ⊂ 1, n.

When controlling simultaneously at several vertices, the e�ect of the control

at each vertex adds up, and the reachability space will be the linear hull of

the individual reachability spaces. Therefore, when following the reasoning of

Section 3.1, instead of taking the subspaces Aj ⊂ Cn generated by the iterates

of the �rst unit vector, we have to take the subspaces

AI
j := lin

¦
P aei : a ∈ 0, j − 1, i ∈ I

©
jointly generated by the iterates of the unit vectors

ei := (0, . . . ,
ió1, . . . , 0)T ∈ Cn

corresponding to each of the vertices vi in which control is applied. The exact

reachability space will then be

RI = RI
n = L1([0, 1], QAI

n),

and so N is maximally controllable in {vi : i ∈ I} i� AI
n = Cn.



4. GENERAL ERGODIC NETWORKS

We are now going to study general ergodic networks with arbitrary strictly

positive edge lengths (we shall later see that this restriction can be removed).

Let M be an ergodic network with edge lengths lα > 0 (α ∈ 1, k). We shall

try to transform this network into a network with unit edge lengths without

changing the asymptotic behaviour of the �ow. To this end we present several

types of transformations related to the underlying graph. As we shall see, only a

special class of networks will be transformable in such ways, and the remaining

networks will exhibit a signi�cantly di�erent asymptotic behaviour.

At �rst notice that if a network has integer edge lengths, then by inserting

�ow-through vertices (i.e. vertices that have a single incoming edge, and a single

outgoing edge with weight 1) at unit intervals along edges longer than 1, the
�ow is not modi�ed. Therefore networks with integer edge lengths do not di�er

from networks with unit edge lengths. A more general class of networks is that

of networks with rational edge length ratios. For these we could rescale the

network to obtain integer lengths, and add �ow-through vertices as necessary.

But to keep the period of the periodic states unchanged, we would then have to

rescale the speed of the �ow. Alternatively, we may instead rescale time. This

gives rise to the following de�nition.

De�nition 4.0.1. We call two networks G and H time-scale equivalent if there

exist a weighted directed graph isomorphism between their underlying graphs

DG and DH and a constant c ∈ R+ such that the image of any edge in G with

length lα is an edge in H with length c · lα.

If two networks G and H are time-scale equivalent, then by rescaling time

with the constant factor c we transform the �ow on the �rst network to the �ow

on the second (the states are also stretched with factor c): f(·) ∈ L1(G) is trans-
formed into 1/cf(·/c) ∈ L1(H). Through this norm-preserving transformation

we may say that the �ow on G converges to a periodic one of period d i� the

�ow on H converges to a periodic �ow of period c · d. In the previous chapter,

we did not allow for multiple directed edges. But if a network with rational edge

lengths contains multiple directed edges (MDEs), then adding a �ow-through

vertex at the midpoint of each such edge leads us back to an equivalent network

with rational edge lengths without MDEs. Since any network with rational edge

lengths without MDEs is time-scale equivalent to a network with integer edge
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lengths without MDEs, the asymptotic behaviour of all networks with rational

edge lengths can be fully described with the help of Theorem 2.0.1. To formu-

late the corresponding theorem about the asymptotic �ow, we �rst need the

following de�nition.

De�nition 4.0.2. (1) The length of a directed walk

W = vi0 , ei1 , vi1 , . . . , eim , vim

on a network is

lW :=
mX

j=1

lij

(2) The period of a network M with rational edge length ratios is de�ned by

d := gcd{lC : C is a directed cycle in M}

As we shall later on in Section 4.2, this de�nition is in accordance with the

de�nition of the period of MC-s given in 1.1 and used for networks with unit

edge lengths. Thus trough rescaling time and applying Theorem 2.0.1 we obtain

the following.

Theorem 4.0.1. Let M be a network with rational edge length ratios. Then

for any initial state f ∈ L1(M) on the network M, there exists a unique stateef ∈ L1(M) which satis�es the following:

• efd = ef
•



f t − ef t





1
≤ aρt ‖f‖1 with suitable constants a ∈ R+ and ρ ∈ (0, 1),

where d is the period of the network. In addition,


 ef



1
≤ ‖f‖1 .

This resolves the case of networks with rational edge length ratios. But what

with networks which have edge lengths with irrational ratio? As can be guessed

from the previous theorem, the edge lengths in themselves are not relevant for

the behaviour of the �ow. This behaviour is in fact determined by the ratios

of the cycle lengths. To be able to simplify our investigation, we will have to

introduce a new type of equivalence between networks.

4.1 On Perturbations of Networks

Consider an arbitrary network H (with nonnegative edge lengths), and let vi be

a node which has no incoming zero-length edge (such a node has to exist by the
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de�nition of a network). Let further ε ∈ R+ be such that lα > ε whenever the

edge eα has its head in vi. We then modify the network as follows:

- We increase the length of all edges with tail in vi with ε

- We reduce the length of all edges with head in vi with ε

Remark that if eα is a loop, then its length remains unaltered. We then ob-

tain a new network H∗. In order to compare the behaviour of the �ow in the

networks H and H∗, we also have to map states of the �rst to states of the

second. Let therefore f ∈
Qk

α=1 L1([0, lα], C) be a state of H. We then de�ne

the corresponding state of H∗ as follows:

- f∗α ≡ fα whenever both endpoints of eα di�er from vi

- f∗α ≡ fα|[0,lα−ε] whenever eα has head in vi and tail in a di�erent vertex

- f∗α|[ε,lα+ε] ≡ fα and

f∗α|[0,ε] := wα ·
X

{β: eh
β
=vi}

fβ |[lβ−ε,lβ ]

whenever eα has tail in vi and head in a di�erent vertex

- f∗α|[ε,lα] := fα|[0,lα−ε] and

f∗α|[0,ε] := wα ·
X

{β: eh
β
=vi}

fβ |[lβ−ε,lβ ]

whenever eα is a loop in vi.

Even though it is not possible to recover f itself from f∗, the state f ε (i.e.

the state on H at time ε with the initial state being f) can be obtained as:

- f ε
α = (f∗)ε

α, i.e. f ε
α|[ε,lα] = f∗α|[0,lα−ε] and

f ε
α|[0,ε] = wα ·

X
{β: eh

β
=vj}

f∗β |[l∗β−ε,l∗
β
]

whenever both endpoints of eα di�er from vi, its tail being in vj

-f ε
α|[ε,lα] = f∗α and

f ε
α|[0,ε] = wα ·

X
{β: eh

β
=vj}

fβ |[l∗
β
−ε,l∗

β
]

whenever eα has head in vi and tail in a di�erent vertex vj

- f ε = f∗α|[0,lα] whenever eα has tail in vi and head in a di�erent vertex

- f ε
α = f∗α whenever eα is a loop in vi.

Notice that this mapping ∗ : L1(H) → L1(H∗) also satis�es (f t)∗ = (f∗)t.

Hence through this transformation of the (network, state) pair the behaviour

of the original network completely determines the behaviour of the new net-

work, while the behaviour of the new network completely determines that of

the original with an ε-delay. Thus the �ows on the two networks exhibit the

same asymptotic behaviour.
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De�nition 4.1.1. If the above relations hold, we call H∗ an ε-perturbation (in

vi) of H, and H a (−ε)-perturbation of H∗.

De�nition 4.1.2. Two networks G and H with nonnegative edge lengths are

called perturbation equivalent if there is a �nite sequence of networks (Ga)b
a=0

(b ∈ N+), with G0 := G and Gb := H, such that Ga is a δa-perturbation of Ga−1

with suitable δa ∈ R for all a ∈ 1, b.

Let us now return to our networks with strictly positive edge lengths. A

perturbation doesn't change the length of the cycles, and thus the cycle lengths

in any network that is perturbation equivalent to a network with rational edge

length ratios are rationally dependent. Thus the following de�nition extends the

notion of period also to these networks.

De�nition 4.1.3. For an arbitrary networkM with rationally dependent cycle

lengths, let

d := gcd{length of C : C is a directed cycle on M}

be called the period of the network.

We may then formulate the equivalent of Theorem 4.0.1.

Theorem 4.1.1. Let M be a network that is perturbation equivalent to a net-

work with rationally dependent edge lengths. Then for any initial state f ∈
L1(M) on the network M, there exists a unique state ef ∈ L1(M) which satis-

�es the following:

• efd = ef
•



f t − ef t





1
≤ aρt ‖f‖1 with suitable constants a ∈ R+ and ρ ∈ (0, 1),

where d is the period of the network. In addition,


 ef



1
≤ ‖f‖1 .

Let us now suppose that H (and thus also H∗) is perturbation equivalent to

a network with rationally dependent edge lengths and period d, and let us take

a closer look at the mapping ∗ : L1(H) → L1(H∗). It is, as earlier mentioned,

not necessarily bijective, since we have an ε-delay when passing from H∗ to H.

But let us look at the restriction ∗|XH
d

to the space of (H, d)-invariant states.
Let f ∈ XH

d . Then

(f∗)d = (fd)∗ = f∗,

i.e. ∗ maps XH
d to XH∗

d . Let us now take an initial state g ∈ XH∗
d . We know that

this � through the perturbation � uniquely determines a state on H with an
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ε-delay. There exists an integer a ∈ N+ such that a · d > ε, and so g determines

a unique state g′ ∈ L1(H) at time a · d on H. This state satis�es

(g′)∗ = ga·d = g.

Thus the restricted mapping

∗ : XH
d → XH∗

d

is in fact a bijection.

In the next section we are going to determine the necessary and su�cient

conditions for a network to be perturbation equivalent to a network with ratio-

nally dependent edge lengths.

4.2 A Distance Notion on Strongly Connected Graphs

To be able to study perturbation equivalency of strongly connected networks,

we shall need some distance notion on networks. The underlying structure of a

network being a directed graph, this distance notion should as a start be de�ned

on the set of vertices (nodes). De�ning a distance notion on the vertices of a

directed graph is made di�cult by the number of di�erent walks leading from

one vertex to the other. One often used possibility is to take the length of the

shortest directed walk. But this would fail to capture the relevant structure

of the graph (namely the cycles). We therefore propose a set-valued distance

notion based on the lengths of all possible walks.

De�nition 4.2.1. An undirected walk on a graph G is a sequence

vi0 , ei1 , vi1 , . . . , eim
, vim

m ∈ N+

where the vi-s are vertices, the ei-s are (undirected) edges such that eij is an

edge between vij−1 and vij
for all j ∈ 1,m. We say that vi0 is the starting point

of the walk, while vim is its ending point.

Since networks are directed graphs, the direction of the edges renders the

speci�cation of the vertices super�uous. But the walk being undirected, we have

to allow traveling along a directed edge in opposite direction, and we therefore

introduce the notation e−1
α to indicate that we travel along the edge eα against

its orientation.

De�nition 4.2.2. An undirected walk on a networkM is a sequence ε1, ε2, . . . , εm

where each εj (j ∈ 1,m) is equal to eα or e−1
α for some α ∈ 1, k.

To de�ne the length of an undirected walk, we also have to assign a length to

the "inverse" of an edge: we consider e−1
α as having length −lα for all α ∈ 1, k.
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De�nition 4.2.3. The length of an undirected walk W = ε1, . . . , εm is

lW :=
mX

j=1

lεj
,

where lεj
:=
§

lα, if εj = eα;
−lα, if εj = e−1

α .

Notice that if W1 is a walk ending at vi and W2 is a walk starting at vi, then

W := W1W2 is also a walk, and has length lW = lW1 + lW2 . In addition, if W

is a walk starting at vi, then WW−1 is a closed walk from vi to itself with zero

length.

De�ning a distance notion on the vertices of a graph is made di�cult by the

number of di�erent walks leading from one vertex to the other. One often used

possibility is to take the length of the shortest directed walk. But this would fail

to capture the relevant structure of the graph (namely the cycles). We therefore

propose a set-valued distance notion based on the lengths of all possible walks.

De�nition 4.2.4. Let M be a strongly connected network. We de�ne a set-

valued distance d : V × V → P(R) on the set of ordered pairs of vertices as

follows:

d(vi, vj) := {lW : W is an undirected walk starting at vi and ending at vj} .

The network being strongly connected, all distance sets are nonempty. The

following properties of d can easily be veri�ed: for all i, j, l ∈ 1, n we have

• d(vi, vj) = −d(vj , vi),

• d(vi, vl) = d(vi, vj) + d(vj , vl),

• d(vi, vi) = d(vj , vj),

• d(vi, vi) is closed under addition and substraction.

We now proceed to show the following proposition linking this distance no-

tion to the period of a network.

Proposition 4.2.1. Let M be a strongly connected network with rationally

dependent cycle lengths and period d. Then

d(vi, vi) = dZ ∀i ∈ I

Proof. Due to the above, it is enough to show the equality for a single vertex,

say v1. Denote by C the set of cycles in the network, and denote by C ⊂ R the
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set of real numbers that can be written as a linear combination with integer

coe�cients of cycle lengths, i.e.

C := {
mX

j=1

aj · lCj ∈ R : C1, . . . ,Cm ∈ C,m ∈ N0, a1, . . . , am ∈ Z}.

It is clear that C is in fact equal to dZ.
First we show that the length of any undirected walk from v1 to v1 is an

element in C.
Let W be such a walk. We decompose this closed walk into a sequence of

walks W1W2 . . .Wm such that each of the walks Wj (j ∈ 1,m) consists only of

edges of the network or only of inverses (i.e. is a directed walk or the inverse

of a directed walk), while no two successive walks have the same orientation.

Let v′j denote the end of the walk Wj (j ∈ 1,m), and let v′0 := v1. If Wj is a

directed walk, then let W ∗
j := Wj . If Wj is the inverse of a directed walk, then

let W ∗
j be a directed walk from v′j−1 to v′j . The closed walk (W ∗

j )−1W ∗
j from v′j

to itself has length zero, and thus

lW = lW1W2...WM
= lW1[(W∗

1 )−1W∗
1 ]W2[(W∗

2 )−1W∗
2 ]...Wm[(Wm)−1W∗

m]

= l[W1(W∗
1 )−1]W∗

1 [W2(W∗
2 )−1]W∗

2 ...[Wm(Wm)−1]W∗
m

But notice that W ∗
1 W ∗

2 W ∗
3 . . .W ∗

m is a closed directed walk from v1 to v1,

while for all j ∈ 1,m the walk Wj(W ∗
j )−1 is either the inverse of a closed directed

walk from v′j to itself, or a walk followed by its inverse. It is known from graph

theory that any closed directed walk can be cut and reassembled into cycles

through the following algorithm.

• Start the walk, and stop the �rst time you return to a vertex already

visited.

• Cut out the resulting cycle between the two visits of the vertex.

• Repeat the �rst step with the reduced walk, until you reach the empty

walk.

Thus the length of any closed directed walk is in C, and therefore also the

length of any closed undirected walk, since

lW = l[W1(W∗
1 )−1]W∗

1 [W2(W∗
2 )−1]W∗

2 ...[Wm(Wm)−1]W∗
m

= lW∗
1 W∗

2 W∗
3 ...W∗

m
+

mX
j=1

lWj(W∗
j
)−1 .

In other words, we have d(v1, v1) ⊂ dZ. As d(v1, v1) is closed under addition

and substraction, it has the form cZ for some multiple c ∈ R of d. It is now

enough to show that d ∈ d(v1, v1). By the de�nition of d, there exist cycles
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C1, . . . ,Cm ∈ C and integers a1, . . . , am ∈ Z such that d =
Pm

j=1 aj · lCj . Denote

by v∗j the starting point of the cycle Cj , and let Yj be a walk from v1 to v∗j
(j ∈ 1,m). Then

W := Y1(C1)a1(Y1)−1Y2(C2)a2(Y2)−1 . . . Ym(Cm)am(Ym)−1

is a closed walk from v1 to itself with length d, i.e. d ∈ d(v1, v1).

Now let us investigate the behaviour of this distance function under per-

turbations of the network. Let H be a strongly connected network, and let its

ε-perturbation in vi be H∗, for some ε ∈ R. Denote by d the distance function

on the former, and by d∗ the one on the latter. Then we have

• d∗(vi, vj) = d(vi, vj) + ε for all j 6= i.

• d∗(va, vb) = d(va, vb) for all a, b di�erent from i.

We are now ready to prove the following theorem.

Theorem 4.2.2. Let M be a strongly connected network with rationally depen-

dent cycle lengths. Then it is perturbation equivalent to a network with rationally

dependent edge lengths.

Proof. The proof is algorithmic, i.e. we provide an algorithm for transforming

M to a network with rationally dependent edge lengths through a sequence of

perturbations. Since M has rationally dependent cycle length, it has a period

d.

For every j from 2 to n perturb the current network at vj such that the new

distance function satis�es d′(v1, vj) ⊂ dQ. This can be done, since before the

perturbation we had d(v1, vj) = aj + dZ, where aj ∈ R is the length of a walk

from v1 to vj , and so the perturbation parameter εj has to be chosen such that

aj − εj ∈ dQ.

Since we each time perturb the network at a di�erent vertex, the distance

of vj from v1 changes only at the (j − 1)-st step, and therefore the distance

function d∗ on the �nal network M∗ = (V,
−→
E ∗) satis�es

d∗(v1, vj) ⊂ dQ

for all j ∈ 1, n. But then all edge lengths are rational multiples of d, since for

any edge e∗α we have

l∗α ∈ d∗((e∗α)t, (e∗α)h) = d∗((e∗α)t, v1) + d∗(v1, (e∗α)h) ⊂ dQ,

and so M∗ is a network with rationally dependent edge lengths.

Thus Theorem 4.1.1 takes the following form.
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Theorem 4.2.3. Let M be a network with rationally dependent cycle lengths.

Then for any initial state f ∈ L1(M) on the network M, there exists a unique

state ef ∈ L1(M) which satis�es the following:

• efd = ef
•



f t − ef t





1
≤ aρt ‖f‖1 with suitable constants a ∈ R+ and ρ ∈ (0, 1),

where d is the period of the network. In addition,


 ef



1
≤ ‖f‖1 .

To �ll in the last gap in the proof of Theorem 4.2.3, let us show that the

period d of a network with unit edge lengths as de�ned in this Chapter coincides

with the period of the underlying MC.

The latter was de�ned by d′ = gcd{k : P(Xk = vi|X0 = vi) > 0}, where the
choice of i ∈ 1, n is arbitrary. Since P(Xk = vi|X0 = vi) > 0 is equivalent to the

existence of a closed directed walk from vi to itself of length k (all edges have

unit length), we obviously have d′ ∈ C = dZ, i.e. d|d′. But for any cycle C , its

length c is an element in the set {k : P(Xk = vi|X0 = vi) > 0} for all i ∈ 1, n

for which C passes through vi. Therefore d′|c, and thus also d′|d. The obtained
identity d′ = d then completes the proof of Theorem 4.2.3.

Remark. We started this chapter by restricting ourselves to networks with edges

of strictly positive length, but we made use of networks that do contain such

edges (e.g. ÒN ) in the previous Chapter to establish our base case. This suggests

that this strict positivity condition may be somewhat relaxed. In fact it can be

completely removed, as any network can be perturbed to get rid of these edges

(this is left as an exercise to the reader).

Let us again consider the asymptotic mapping

π : L1(M) → L1(M),
f 7→ ef.

As in Chapter 2, this mapping is a projection to the sublattice XM
d of (M, d)-

invariant vectors in X := L1(M) which yields a decomposition of X into the

direct sum Ran(π) ⊕ Ker(π) of (T (t))t≥0-invariant sublattices, and we thus

obtain the generalisation of Corollary 2.0.2, which corresponds to Proposition

2.4.5. in [5].

Corollary 4.2.4. Let M be a network with period d. For the decomposition

X = XM
d ⊕Ker(π) we then have

• XM
d and Ker(π) are T(t)-invariant subspaces
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• the operators S(t) := T (t)|XM
d

form a bounded C0-group with period d on

XM
d (‖S(t)‖XM

d
= 1)

• the semigroup T (t)|Ker(π) is uniformly exponentially stable, and

‖T (t)− S(t) ◦ π‖X ≤ aet log ρ

with suitable constants a ∈ R+ and ρ ∈ (0, 1).

Now that we know the asymptotic behaviour of these networks, we move

on to see how the asymptotic projection π and the decomposition of the state

space are linked to the above de�ned distance function.

4.3 Asymptotic Behaviour and Factor Network

LetM be a strongly connected network with period d not containing any MDEs,

and denote by d the distance function on the set of vertices of M. Let further

v1 be one of the vertices.

We would like to extend d to also include points along the edges, whilst

conserving the properties listed after De�nition 4.2.4. Let p ∈ eα be a point

on an edge with tail in vi. The edge being identi�ed with [0, lα], the point p

corresponds to a real number p ∈ [0, lα]. Now de�ne the distance between vi

and p as

d(vi, p) := p + d(vi, vi)

This allows us to extend d to a function M×M→ P(R) satisfying

• d(p, q) = −d(q, p) for all p, q ∈M,

• d(p, r) = d(p, q) + d(q, r) for all p, q, r ∈M,

• d(p, p) = dZ for all p ∈M.

Let D be a network consisting of a single vertex v and a single loop e of

length d (and obviously weight 1). Let D denote the distance function on D.
Consider the mapping fM : M→D de�ned by

fM(p) := p if D(v, p) = d(v1, p)

This induces a mapping FM : L1(M) → L1(D) between the state spaces of

the two networks through

(FM(f))(p) :=
X

p∈f−1
M (p)

f(p).

This way D can in fact be considered as a factor network of M with respect to

the equivalence relation induced by d, and � as can be checked � we have

FM(f t) = (FM(f))t
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for any state f ∈ L1(M). In particular, since all states on D are (D, d)-invariant,

FM(f) = FM(fd).

The map FM is clearly linear and bounded, since ‖FM(f)‖1 ≤ ‖f‖1 for all

f ∈ L1(M) with equality for all positive functions, and as such is a continuous

linear operator with norm 1. We know that for any state f ∈ L1(M) we have
‖f t − (π(f))t‖1

t→∞−→ 0. Thus, taking the time sequence t = m · d (m ∈ N), we
obtain from the previous equality that π(f) has to satisfy

FM(π(f)) = FM(f).

De�nition 4.3.1. This bounded linear operator FM : L1(M) → L1(D) is called
the factor mapping belonging to M.

Our goal is to show that the restricted mapping FM|XM
d

is in fact a bijection.

Let H be an arbitrary network with period d, H∗ an ε > 0 perturbation

of this network at some vertex di�erent from v1, and let G and G∗ be their

respective factor networks. Let the state space mappings induced by the factor

mappings be called FH and FH∗ , respectively. Both factor networks consist of a

single vertex and a single loop of length d. Thus we have a natural identi�cation

I of the state spaces L1(G) and L1(G∗). Also, as seen at the end of Section

4.1, the perturbation induces a bijection ∗ : XH
d → XH∗

d . It can then easily be

veri�ed that the diagram

XH
d

∗ - XH∗
d

L1(G)

FH

?
I- L1(G∗)

FH∗

?

(4.1)

is commutative.

Now let us get back to our networkM. Since it is a network with well-de�ned

period, it is perturbation equivalent to a network N ′ with rationally dependent

non-zero edge lengths. This network can then be turned into a network N with

equal edge lengths by adding �nitely many �ow-through vertices along its edges.

We may in addition suppose that none of the perturbations were made at v1 (cf.

the proof of Theorem 4.2.2). The successive perturbations induce a bijection

∗ : XM
d → XN ′

d .

Denote by FM, FN ′ and FN the factor mappings of the state spaces of the

respective networks. The factor networks ofM, N ′ and N have � as seen above
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� a natural identi�cation, and so have their state spaces. The state spaces XN ′
d

and XN
d also have a natural identi�cation Id. The network N ′ can be obtained

fromM with successive perturbations, and thus the commutativity of Diagram

(4.1) implies the commutativity of the next diagram.

XM
d

∗ - XN ′
d

Id - XN
d

L1(D)

FM

?
Id- L1(D)

FN ′

?
Id- L1(D)

FN

?

(4.2)

It may also be supposed that N has unit edge lengths, otherwise we just

rescale time. Also, it has no MDEs, since M had none. Denote then by P

the transposed transition matrix of the underlying MC, and by d′ the distance

function on N . Take an arbitrary state g ∈ XN
d , and consider the transformed

network ÒN (see Chapter 2) with the corresponding state G ∈ X bNd . g being

(N , d)-invariant, it satis�es

wβ · gα = wα · gβ

whenever et
α = et

β . If QN denotes the transposed weighted outgoing incidence

matrix of the underlying graph, we then have

g = QNG,

and so this transformation yields a bijection n : XN
d → X bNd , n(g) := G. Let us

now consider the partition of the set 1, n into the sets

Ib := {i : b ∈ d′(v1, vi)},

and the corresponding partition of the set of vertices V into the sets

Vb := {vi : i ∈ Ib}

for b ∈ 0, d− 1 (see Section 1.1, after De�nition 1.1.4). We then have

FN (g)|[b,b+1] =
X

{β:et
β
∈Vb}

gβ =
X
i∈Ib

Gi.

But G ∈ X bNd ⊂ L1([0, 1], Cn) is (ÒN , d)-invariant, meaning that

Pb((G)Ib
) = (G)Ib

,
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where Pb := (P d)Ib×Ib
. According to Theorem 1.1.1 there is a unique probability

vector πPb
∈ C|Ib| such that PπPb

= πPb
, and any Pb-invariant column vector is

a multiple of πPb
. (G)Ib

(x) being Pb-invariant for a.e. x ∈ [0, 1], we then obtain

(G)Ib
= hbπPb

for some hb ∈ L1([0, 1]). But then

hb =
X
j∈Ib

hb(πPb
)j =

X
j∈Ib

Gj = FN (g)|[b,b+1].

We have thus obtained the following:

(G)Ib
= FN (g)|[b,b+1]πPb

,

i.e. that G is uniquely determined by FN (g). n being a bijection, this means that

g is also uniquely determined by FN (g). FN : XN
d → L1(D) is thus a bijection.

The �ow semigroup (R(t))t≥0 on the network D can be identi�ed with the

rotation semigroup

(r(t)g)(h) := g(e−2πi t
d h)

on L1(Γd) where

Γd := {γ ∈ C : |γ| = d

2π
}

through the bijection

D → Γd

p 7→ d
2π e2πi ω

d i� ω ∈ D(v, p) .

With the de�nition

R(−t) := R(t)−1

for t ≥ 0 we obtain the rotation group (R(t))t∈R.

We can now state our main theorem, in which the connection between the

asymptotic mapping and the network factorisation is made clear, hereby an-

swering a question raised by Prof. R. Nagel.

Theorem 4.3.1. For the ergodic network M with period d, the �ow semigroup

(T (t))t≥0 on M, the decomposition X = XM
d ⊕ Ker(π), the factor mapping

FM : L1(M) → L1(D) and the rotation group (R(t))t∈R satisfy

• XM
d and Ker(π) are T(t)-invariant subspaces

• the semigroup T (t)|Ker(π) is uniformly exponentially stable, and

‖T (t)− S(t) ◦ π‖X ≤ aet log ρ

with suitable constants a ∈ R+ and ρ ∈ (0, 1)
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• the operators S(t) := T (t)|XM
d

form a bounded C0-group with period d on

XM
d (‖S(t)‖XM

d
= 1)

• the factor mapping FM is a bijection between the spaces XM
d and L1(D)

for which

XM
d

FM- L1(D)

XM
d

S(t)

?
FM- L1(D)

R(t)

?

(4.3)

is commutative, and so the group (S(t))t∈R is isomorphic to the rotation

group (R(t))t∈R through the bijection FM.

Also, the asymptotic mapping π and the factor mapping FM satisfy

π = (FM|XM
d

)−1 ◦ FM.

Proof. The �rst three are taken from Corollary 4.2.4. The bijectivity of FM|XM
d

follows from the commutativity of Diagram (4.2) and the bijectivity of FN |XN
d
.

The commutativity of Diagram (4.3) and the relation between π and FM then

follow from the property FM(f t) = (FM(f))t.

The only remaining case is that of networks in which the cycle lengths are

not rationally dependent. Our preceding treatment of networks relied heavily

on the existence of the period and through it of the distance function. But when

the cycle lengths are not rationally dependent, application of �nite MC theory

seems impossible. Instead, we will now cite a result from [5] (Theorem 2.5.2),

and then reformulate it to a limit theorem for probability distributions.

Theorem 4.3.2. Let N be an ergodic network with rationally independent cycle

lengths. Then T (t) converges strongly, but not uniformly, to the projection on

X = L1(N ) to the one dimensional space X0 of stationary states.

Let us now determine what this space X0 is. Notice that if g ∈ L1(N ) is

a �xed state, then it is constant on each of the edges eα (α ∈ 1, k), and these

constants gα ∈ C satisfy the boundary conditions imposed by the Kirchho�

Law, i.e.

gβ = wβ

X
{α:eh

α=et
β
}

gα

for all β ∈ 1, k. Let

Gi :=
X

{α:et
α=vi}

gα.
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Then the vector (Gi)i∈1,n ∈ Cn satis�es

g = QG

where Q is the transposed weighted outgoing incidence matrix of the underlying

graph. Since g is a �xed state of the network, G is a �xed (column) vector of P ,

where P is the transposed transition matrix corresponding to the network, and

is thus a multiple of πP . If we denote by 1N the constant 1 function on N , we

have

Gi =
R
N g

‖1N ‖1
πi(1N )i

for all i ∈ 1, n. Thus the one dimensional subspace X0 of stationary states on

N is generated by the unique stationary probability density function on N

σN := QSN ,

where

SN :=
�

1
‖1N ‖1

πi(1N )i

�
i∈1,n

.

Reformulated to the stochastic process {Ft} (see Section 1.3), the above

theorem then yields:

Theorem 4.3.3. Let N be an ergodic network with rationally independent cycle

lengths. Suppose that the random variable F0 has an arbitrary absolute continu-

ous distribution on N . Then the density functions (f t)t≥0 converge to the unique

stationary probability density function σN .



CONCLUSION

The probabilistic approach to �ows allowed us to give a more explicit description

of the �ow semigroup, simplifying the study of its asymptotics. We have seen

that the asymptotic behaviour of a �ow on an ergodic networkN is very di�erent

depending on whether the (physical, not graph theoretical) length of the cycles

in the network are rationally dependent or not. We showed that if they are

rationally dependent, the �ow converges exponentially to a rotation semigroup

with period d equal to the greatest common divisor of the cycle lengths. We

found that the asymptotic mapping π that maps the initial states to the d-

periodic states they converge to is in fact a projection to the space of d-periodic

states. With the help of a set-valued distance function de�ned on the network

we could create a factor network D that fully captures the asymptotic behaviour

of the original network, as the asymptotic �ow on N is isomorphic to the �ow on

D through the factor mapping FN between the state spaces L1(N ) and L1(D).
This mapping is a bijection when restricted to the space of d-periodic states on

N , and it turns out that we have

π = (FM|XM
d

)−1 ◦ FM,

meaning that the direct sum decomposition L1(N ) = XM
d ⊕ Ker(π) induced

by π can be viewed as stemming from the factorisation fN of the network N .

The more explicit description of the �ow semigroup also allowed us to treat the

question of vertex control of networks with unit edge-lengths, showing that �

provided we start with zero initial state � any asymptotically reachable state

is in fact exactly reachable, and that within time n, where n is the number of

vertices in our network.

The presented probabilistic approach can be further developed to allow the

treatment of non-ergodic networks, but also some classes of in�nite networks. An

interesting additional question is whether the stationary asymptotic behaviour

of ergodic networks with rationally independent cycle lengths can somehow be

obtained from the rationally dependent case through approximation and limit-

transition arguments.
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