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I would like to thank Gábor Tardos for inviting me to learn and work at Simon Fraser
University in the beautiful city of Vancouver, for drawing my attention and introducing
me to this subject and for all his guidance and ideas during this work.

I also would like to thank Katalin Friedl for undertaking to be my official MSc Thesis
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Chapter 1

Introduction

In this thesis we are going to investigate first order sentences on random graphs. More
precisely we are interested in how the truth value of a first order sentence can change as
a function of a density parameter.

G(n, α) denotes the random graph with n vertices in which every possible edge is
present with probability n−α independently of each other. Shelah and Spencer proved in
[4] that if α is irrational then for any first order sentence ϕ the limit limn→∞ P (G(n, α) |=
ϕ) exists and is either one or zero. If the above limit is 1, then we say ϕ almost surely
holds in G(n, α).

Here we are interested in how the limit of the probability of a fixed first order sentence
changes as we change the value of α. For this purpose, let us define the following function
on non-negative irrationals:

fϕ(x) = lim
n→∞

P (G(n, x) |= ϕ) ∈ {0, 1}

The main question is that for which f : R+ \ Q → {0, 1} functions can we found a
formula ϕ such that f = fϕ. After some definitions we state four necessary conditions,
that is four properties that must hold for fϕ for any formula ϕ. Maybe surprisingly, the
behavior of fϕ is closely related to a rational approximation sequence.

Definition 1.0.1. For α ≥ β ≥ 0, where β is rational let us define:

τ(α, β) = max{
p

q
∈ Q |

p

q
≤ α,

p− 1

q
≤ β}

We define the strong approximation sequence of α > 0 as τ0(α), τ1(α), ... where τ0(α) = 0
and τi(α) = τ(α, τi−1(α)).

Notice that this definition is correct, that is the set S = {p
q
∈ Q | p

q
≤ α, p−1

q
≤ β} is

not empty and has a maximal element. Indeed, β ∈ S and for any r
s
> β and for all the

u
v

elements of S larger then r
s

we have v < 1
r
s
−β

, thus there are only finitely many such

elements.
As established in [7] but also apparent from the results in Chapter 3, the strong

approximation sequence tends to α (from below), and it reaches it in finitely many steps
if α is rational. This motivates the notion of length. We say a rational α is of length
k if it is reached in k steps in the above sequence, that is α = τk(α) but α > τi(α) for

3



0 ≤ i < k. We denote by LEN(k) the set of rationals of length at most k, that is the
rationals α for which α = τk(α). We define another closely related sequence by changing
p
q
≤ α to p

q
< α:

Definition 1.0.2. For α > β ≥ 0, where β is rational let us define:

ν(α, β) = max{
p

q
∈ Q |

p

q
< α,

p− 1

q
≤ β}

Let ν0(α) = 0 and νi(α) = ν(α, νi−1(α)).

As long as τi(α) < α we have νi(α) = τi(α), but νi never reaches α, only it tends to it.
It was also proved in [7] that the set LEN(k) is well-ordered under >, and the greatest
element of LEN(k) below α > 0 is νk(α).

Now we are ready to state the three known rules which govern where the value of fϕ
can change:

Very Sparse Condition fϕ is constant on each interval (1 + 1
i+1
, 1 + 1

i
) and on (2,∞).

Very Dense Condition There exists a k0 = k0(ϕ) > 0 such that fϕ is constant on
(0, 1

k0
).

Locally Constant Condition There exists an l = l(ϕ) such that fϕ is constant on
(νl(α), α) for any 0 < α.

Clearly, for the Locally Constant Condition to hold it is enough to require that fϕ is
constant on the irrationals of (νk(α), α) for α ∈ LEN(k), as for other values of α we
obtain subintervals. (Assuming k > 0, as for k = 0, the condition simply says fϕ is
constant on α > 0.)

The first two conditions were already proved in [4], the third was established in [7].
A function f defined on positive irrationals satisfying the Locally Constant Condition

can be extended to positive rationals as:

f−(x) = lim
ǫ→+0

f(x− ǫ)

This is well defined as the Locally Constant Condition guarantees a positive length con-
stant segment left of any positive number.

This enables us to talk about the computational complexity of such functions by
defining the language Lf = {0p1q | p, q > 0, f−(p

q
) = 1}. Now we are ready to state the

last necessary condition on the functions that come up as fϕ (see [7]):

Complexity Condition Lfϕ
is in PH.

Here PH denotes the union of all complexity classes in the polynomial hierarchy. We
will give the definition of the polynomial hierarchy in Section 2.3.

In [7] Spencer and Tardos conjectured that the four conditions above are also sufficient,
that is if a function f satisfies all four of the above conditions, then there is a first order
formula ϕ such that f = fϕ. The subject of this thesis is the proof for an important part
of this conjecture. We will show that it is true for the dense region of the α parameter,
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more precisely for any f satisfying all four conditions there is a first order formula ϕ such
that f |[0,1/2] = fϕ|[0,1/2].

The structure of this thesis is as follows. In Chapter 2 we give all the necessary notions
and earlier results that we will use in the rest.

In Chapter 3 we take a detour to elementary number theory. We will examine an-
other approximation sequence and prove that it is equivalent to the strong approximation
sequence defined above. We need to do this because later we will work out a way to con-
struct and first order characterize graphs whose size will correspond to the elements of
this new sequence. If the new sequence would not tend to α fast enough relatively to
the strong approximation sequence then this construction would not be usable to prove
that the above four conditions are also sufficient. We also give here some facts about the
speed of the approximation by these sequences. The results in this chapter are my own
work.

In Chapter 4 we give the above promised graph construction and the way to first
order characterize subgraphs in α-graphs isomorphic to the constructed graphs. The main
concept of this chapter is the so called hybrid construction. The idea of this construction
and the main steps for the first order characterization were already invented by Gábor
Tardos. My contribution was to simplify in one way and generalize in other ways these
ideas to exactly fit the number theoretical results of Chapter 3.

The main result in Chapter 4 is that for any d we can create formulae independently
of α which characterize the occurrences of various subgraphs in an α-graph among which
subgraphs there will be a specific one with v vertices and e edges where v

e
= τd(α). We

know that there is a PH algorithm that computes f−(p
q
) if p and q are given unary. This

can be easily modified to a PH algorithm which computes f−(v
e
) if given a graph with v

vertices an e edges. Thus all we need is to create a first order formula which somehow
simulates the execution of this PH algorithm on the above mentioned subgraph. By
Fagin’s Theorem (see Section 2.3) we know that there is such second order formula.
So we need to work out a toolkit to be able to simulate second order formulae on a
specific subgraph with first order formulae on the whole α-graph. Exactly this is what
happens in Chapter 5. The foundation-stone of this is an idea by Gábor Tardos on how
to represent multivariate functions on small vertex sets. My contribution in this chapter
is to prove that this idea indeed works, to define the notion of set dresses which allows
for representing relations on larger sets and to build the framework around these to first
order simulate second order formulae.

Finally in Chapter 6 we put all these tools together to prove the main result promised
above.
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Chapter 2

Preliminaries

2.1 Graph extensions

We follow [7] with the notations concerning graph extensions. We call a pair (H,G) a
graph extension where H is a finite subgraph of the (possibly infinite) graph G. We call
H the base of the extension. As a special case we allow H to be empty (no vertices, thus
no edges), and this way we can look at any graph as a graph extension with empty base.
If we write (S,G) where S is a set of vertices of G, we mean the extension (H,G) where
H is the graph with vertex set S and no edges. A graph extension is trivial if H = G and
finite if G is also finite. An intermediate graph of an extension (H,G) is a finite subgraph
H ′ of G such that H ≤ H ′ (so (H ′, G) is an extension and (H,H ′) is a finite extension).
We also call an intermediate graph of (H,G) a finite extension of H in G. A function
i : V (G) → V (G′) is an isomorphism from (H,G) to (H ′, G′) if it is an isomorphism from
G to G′ and i|V (H) is an isomorphism from H to H ′.

The size of a finite extension (H,G) is the pair (v, e), where v = |V (G) − V (H)| and
e = |E(G) − E(H)|. A simple but fundamental fact about extensions in random graphs
is the following:

Lemma 2.1.1. Let (H,H ′) be a finite extension of size (v, e). For every isomorphism
i from H to a subgraph of G(n, α) let Xi,H′ be the set of all isomorphisms j from H ′

to a subgraph of G(n, α) such that j is an extension of i (as an isomorphism). Then

E(|Xi,H′|) = (n−|H|)!
(n−|H′|)!

n−αe ∼ nv−αe.

Proof. The images of the vertices in V (H ′)−V (H) can be chosen (n−|H|)!
(n−|H′|)!

ways. A choice

is good if for all edges present in H ′ but not present in H the image of its endpoints are
connected in G(n, α). For each edge, the probability of this is n−α independently from all
other edges, so the probability of a given function to be a good isomorphism is n−αe.

This lemma motivates the following definitions. Let us fix an irrational α. We call
an extension of size (v, e) dense, if αe ≥ v and sparse if αe ≤ v. Notice that (as α is
irrational) an extension cannot be sparse and dense at the same time, except for a trivial
extension, which we do consider both sparse and dense. If we say that a graph H is
sparse/dense, we mean that (∅, H) is sparse/dense, similarly when we talk about the size
of H, we mean the size of (∅, H).

6



Applying the above lemma to the extension (∅, H) it is clear that if the graph H is
dense, then almost surely in G = G(n, α) there is no subgraph isomorphic to H. On the
other hand the converse is not true: only because H is sparse, we cannot almost surely
found in G a subgraph isomorphic to H. One obvious reason can be that H has a dense
subgraph. It will turn out in Theorem 2.2.2 that this is the only possible reason.

As motivated above, we will call a finite extension (H,H ′) safe, if for all intermediate
graph H ′′ the extension (H,H ′′) is sparse. We will call a finite extension rigid, if for all
intermediate graph H ′′ the extension (H ′′, H ′) is dense.

The following lemma summarizes some poperties of graph extensions:

Lemma 2.1.2. 1. Let H be an intermediate graph of the dense extension (H1, H2). If
one of (H1, H) and (H,H2) is sparse, then the other is dense.

2. Let H be an intermediate graph of the sparse extension (H1, H2). If one of (H1, H)
and (H,H2) is dense, then the other is sparse.

3. If for all intermediate graph H 6= H2 of the dense extension (H1, H2) we have that
(H1, H) is sparse, then (H1, H2) is rigid.

4. If (H1, H2) is not safe, then there is an intermediate graph H 6= H1 for which
(H1, H) is rigid.

5. If (H1, H2) is a rigid extension then for any finite graph H we have (H∪H1, H∪H2)
is rigid.

6. If (H1, H2) is a safe extension then for any finite graph H we have (H∩H1, H∩H2)
is safe.

7. If (H1, H2) and (H2, H3) are rigid then so is (H1, H3).

8. If (H1, H2) and (H2, H3) are safe then so is (H1, H3).

Proof. 1. and 2.: The size (v, e) of (H1, H2) is the sum of the sizes (v1, e1) of (H1, H) and
(v2, e2) of (H,H2). Suppose H1 6= H2. If both v1−αe1 ≥ 0 and v2−αe2 ≥ 0 then we also
have v − αe ≥ 0, but = is not possible so v − αe > 0, which contradicts (H1, H2) being
dense. If H1 = H2 then for the unique intermediate graph H = H1 = H2 both (H1, H)
and (H,H2) are dense. Changing ≥ to ≤, > to < and “dense” to “sparse” in the above
argument we get 2.

3.: By 1 for all H 6= H2 intermediate graph (H,H2) is dense, and (H2, H2) is dense
always, thus (H1, H2) is rigid indeed.

4.: Take a H intermediate graph for which (H1, H) is not sparse, but which is minimal
with that property, that is for all H ′ 6= H intermediate graphs of (H1, H) we have that
(H1, H

′) is sparse. As (H1, H1) is sparse, but not all intermediate graphs of (H1, H2) are
sparse there is such H. Using 3. we have that (H1, H) is rigid.

5.: Let H ′ be an intermediate graph of (H ∪ H1, H ∪ H2). Notice that the size of
(H ′, H ∪ H2) is the same as that of (H ′ ∩ H2, H2). As the second extension is dense as
H ′ ∩H2 is an intermediate graph of the rigid extension (H1, H2) the former extension is
also dense, thus (H ∪H1, H ∪H2) is rigid indeed.
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6.: Let H ′ be an intermediate graph of (H ∩ H1, H ∩ H2). Notice that the size of
(H ∩H1, H

′) is the same as that of (H1, H
′ ∪H1). As the second extension is sparse as

H ′ ∪H1 is an intermediate graph of the safe extension (H1, H2) the former extension is
also safe, thus (H ∪H1, H ∪H2) is safe indeed.

7.: Let H be an intermediate graph of (H1, H3). The extension (H2 ∪H,H3) is dense
as H2 ∪H is an intermediate graph of the rigid extension (H2, H3). Using that (H1, H2)
is rigid by item 5. (H,H2 ∪H) is also rigid, thus dense. As the size of (H,H3) is the sum
of the sizes of the dense extensions (H2 ∪H,H3) and (H,H2 ∪H) we have that (H,H3)
is dense as needed.

8.: Let H be an intermediate graph of (H1, H3). The extension (H1, H2∩H) is sparse
as H2 ∩H is an intermediate graph of the safe extension (H1, H2). Using that (H2, H3)
is safe by item 6. (H2 ∩H,H) is also safe, thus sparse. As the size of (H1, H) is the sum
of the sizes of the sparse extensions (H1, H2 ∩H) and (H2 ∩H,H) we have that (H1, H)
is sparse as needed.

2.2 The almost sure theory of random graphs

For a fixed α the set of sentences which hold almost surely that is the set of formulae
{ϕ | limn→∞ P (G(n, α) |= ϕ) = 1} obviously forms a consistent and complete theory.
This is called the almost sure theory of G(n, α). It is clear that the sentence “the graph
has more than k vertices” is in the theory for every k, so no finite graph will actually
satisfy all the almost sure sentences. So for us it will be easier to deal with infinite graphs
which models the whole theory. We shall call such a graph an α-graph. As there are no
finite models by Gödel’s completeness theory there must exist infinite models, so there
exist α-graphs for every α.

We are not going to use this, but remark here that by the Löwenheim-Skolem theorem,
there is also a countable model for the almost sure theory. In fact, proven in [5], if
α > 1, there is exactly one such countable model, but if α < 1, there are continuum
non-isomorphic countable models.

To give an axiomatization of the almost sure theory we need one more notion. We
will call an extension of a subgraph in a bigger graph generic if it does not have small
rigid extensions, except maybe for those of the base graph. More precisely:

Definition 2.2.1. Let H be a subgraph of a graph G. We say the finite extension H ′

of H in G is k-generic if for any rigid extension H ′′ of H ′ in G of size (v, e) with v ≤ k
there is no edge in E(H ′′) − E(H ′) having an endpoint in V (H ′) − V (H).

As proved in [6], the following axiomatization of the almost sure theory of G(n, α)
can be given:

Theorem 2.2.2. The two axiom schemes below give an axiomatization of the almost sure
theory of G(n, α):

AH (sparsity axiom; H is a finite, but non-empty dense graph) G does not contain a
subgraph isomorphic to H.

Bk
H0,H1

(safe extension axiom; (H0, H1) is a finite safe extension, k ∈ Z+) Every isomor-
phism from H0 to a subgraph H ′

0 of G can be extended to an isomorphism from H1

to a subgraph H ′
1 of G, such that H ′

1 is a generic extension of H ′
0 in G.
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The first axiom scheme simply states the above observation about the lack of dense
subgraphs. The second axiom scheme not only tells that safe extensions are always
present, but also guarantees the existence of generic safe extensions.

2.3 Logic, complexity theory and Fagin’s theorem

We will denote signatures as ι = (J1/r1, ..., Jl/rl) where J1, ..., Jl are the predicate
symbols of the signature and ri is the arity of Ji. We will not have functions in our
structures and formulae. Let us fix a signature ι. Let A be an ι-model with universe A.
We will denote with JA

i the interpretation of the Ji predicate in A, thus JA

i ⊆ Ari . If ϕ
is a closed ι-formula we use the standard notation A |= ϕ to say that A models ϕ. If ϕ
is not closed and σ : V → A is a variable assignment such that all free variables of ϕ is
contained in V then we will use the notation A[σ] |= ϕ to say that A models ϕ with the
σ variable assignment. For any first order variables x1, x2, ..., xn and a1, a2, ..., an ∈ A
we will use the notation {x1 7→ a1, x2 7→ a2, ..., xn 7→ an} to refer to the assignment
σ : {x1, x2, ..., xn} → A where σ(xi) = ai. If σ1 : V1 → A and σ2 : V2 → A are two
variable assignment where V1 and V2 are disjoint variable sets then we will denote with
σ1 ∪ σ2 the union of the two assignment, that is the σ : V1 ∪ V2 → A where σ(x) = σ1(x)
if x ∈ V1 and σ(x) = σ2(x) otherwise.

We will define formulae as:

ϕ(x, y, z, w) = “some first order formula”

All free variables of the formula on the right hand side must be listed on the left in
the parentheses, although we can also list unused variables (for example ϕ(x, y, z, w) =
E(x, y) ∧ (y = z) is valid if E is a binary predicate symbol of the signature). The length
of the variable list in the parentheses is called the arity of the formula, for example ϕ
above is a 4-ary formula. The order of the variables in the list is important as for t1, ...,
tn arbitrary terms we will use the notation ϕ(t1, ..., tn) to refer to the formula where we
substitute all occurrences of the first variable with t1, the second with t2, etc. For example,
if ϕ was defined as above then ϕ(x′, y′, z′, w′) refers to the formula E(x′, y′) ∧ (y′ = z′).

If it is clear from the context that we are talking about the model A then for a1, ..., an ∈
A we will use ϕ(a1, ..., an) instead of A[{x1 7→ a1, ..., xn 7→ an}] |= ϕ(x1, x2, ..., xn). If ϕ
was defined as an n-ary formula, than ϕ(a1, ..., ak, , ..., ) denotes the following (n − k)
ary relation on A:

ϕ(a1,..., ak, , ..., ) = {(b1, ..., bn−k) ∈ An−k |

A[{x1 7→ a1, ..., xk 7→ ak, xk+1 7→ b1, ..., xn 7→ bn−k}] |= ϕ(x1, x2, ..., xn)}

We will work with parameterized formulae, when we do not want to explicitly list all
the free variables of the formula. The below formalism helps to keep the notation simpler
in that case. For a set P of variables we can say ϕ is an n-ary P -formula and define it
as:

ϕ(x1, x2, ..., xn) = “some first order formula”
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if the set of free variables in the formula on the right hand side is contained in P ∪
{x1, x2, ..., xn}. We also call a 0-ary P -formula a closed P -formula. In case of P -formulae
the notation ϕ(t1, ..., tn) denotes the formula that we get from ϕ by substituting x1 with
t1, ... xn with tn and we leave the variables in P untouched.

For an n-ary P -formula ϕ and variable assignment σ : P → A and a1, ..., an ∈ A
we will use the notation G[σ] |= ϕ(a1, ..., an) meaning G[σ ∪ {x1 → a1, ..., xn → an}] |=
ϕ(x1, ..., xn). Instead of G[σ] |= ϕ(a1, ..., an) we can also say ϕ(a1, ..., an) holds in G[σ].

When we speak about complexity classes we will fix the alphabet {0, 1}, so a language
is a subset of {0, 1}∗. We fix an encoding of pairs of words, that is an injection:

〈 , 〉 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

We define the polynomial hierarchy following [9]. For a language L ⊆ {0, 1}∗ and a
polynomial p we define the following two languages:

∀pL = {x ∈ {0, 1}∗ | ∀y ∈ {0, 1}p(|x|)(〈x, y〉 ∈ L)}

∃pL = {x ∈ {0, 1}∗ | ∃y ∈ {0, 1}p(|x|)(〈x, y〉 ∈ L)}

Given a class C of languages, we define the following two language classes:

∀PC = {∀pL | L ∈ C and p is a polynomial}

∃PC = {∃pL | L ∈ C and p is a polynomial}

Now we can recursively define the polynomial hierarchy (P denotes the class of the
polynomial time decision problems):

ΣP
0 = ΠP

0 = P

ΣP
i+1 = ∃PΠP

i

ΠP
i+1 = ∀PΣP

i

Observe that ΣP
1 = NP and ΠP

1 = coNP . It is easy to see that ΣP
i ∪ΠP

i ⊆ ΣP
i+1∩ΠP

i+1.
We set PH =

⋃∞
i=0 ΣP

i =
⋃∞
i=0 ΠP

i .
To state Fagin’s Theorem we need to fix an encoding of structures of a given signature

ι = (J1/r1, ..., Jk/rk). If we are given and ordering <A of the universe A then we can
encode any relation R ⊆ Ad with a bit string of length |A|d by setting the jth bit 1 iff the
jth tuple of Ad in the lexicographical order induced by <A is in R. Let us denote this
encoding as EncR<A

(R). Using this we can give the encoding of ι-structures (· means
concatenation):

Encι<A
(A) = 1|A|0 · EncR<A

(JA

1 ) · EncR<A
(JA

2 ) · ... · EncR<A
(JA

l )

Let us denote with Lι the language of encodings of finite ι-structures, that is:

Lι = {Encι<A
(A) |A is a finite structure of signature ι, A is the universe of A,

<A is any ordering on A}

10



Definition 2.3.1. We say that a language L ⊆ Lι is order invariant if for any structure A

and any two ordering<A and<′
A on its universe we have Encι<A

(A) ∈ L iff Encι<′

A
(A) ∈ L.

For an arbitrary second order ι-formula ψ let us define:

Lιψ = {Encι<A
(A) |A is a finite structure of signature ι, A is the universe of A,

<A is any ordering on A and A |= ψ}

Notice that Lιψ is order invariant.

Theorem 2.3.2 (Fagin, 1974, [3]). For any signature ι and any second order ι-sentence
ψ we have that Lιψ ∈ PH. On the other hand for any L ⊆ Lι order invariant language if
L ∈ PH then there is a second order formula ψ such that L = Lιψ.

Remark 2.3.3. Fagin originally proved in the [3] that existential second order sentences
correspond to decision problems in NP in the above claimed way. The theorem as stated
above is a trivial generalization of his work.
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Chapter 3

Rational approximations

In this chapter, we are going to consider a way to approximate non-negative real numbers,
referred to as weak approximation sequence. Our first goal is to prove that this sequence
is equivalent to the strong approximation sequence (Definition 1.0.1). The reason we are
interested in this sequence is its strong relation to the hybrid construction given in the
next chapter. Just to give a rough idea now we can say a bit imprecisely that if we are
able to first order characterize extensions of size (v, e) and (v′, e′) with v

e
≤ α and v′

e′
≤ α

then we will be able to characterize extensions of size (kv+ lv′+1, ke+ le′) if kv+lv′+1
ke+le′

< α

but (k−1)v+lv′+1
(k−1)e+le′

> α and kv+(l−1)v′+1
ke+(l−1)e′

> α. This motivates the Definition 3.1.4 below. The
above sketched connection will be precisely stated in Lemma 4.6.1.

In the first section we establish the promised equivalence between the new sequence
and the strong approximation sequence. In the remaining two sections we will prove some
results about the approximation speed of these sequences. The results of Section 3.3 will
be used in Chapter 5.

In this chapter almost always whenever we refer to a rational p
q

the numbers p and q
are going be relatively prime, and in many points it is actually important to choose the
reduced form. Thus whenever we write x

y
we implicitly claim that x and y are coprime.

When we choose integers to represent a rational, this notation means that we chose them
to be relatively prime, or if x and y have not been just chosen, then for some reason we
know that they have to be coprime. Although in some rare cases we will need to write
fractions without this assumption. In these cases we will either use x/y or the special
∗x
y
∗ notation.

3.1 The weak approximation sequence

Before defining the weak approximation sequence we need some preparation.

Definition 3.1.1. A rational p
q

is reached from the rationals r1
s1

, r2
s2

, ..., rt
st

with non-
negative integer coefficients k1, ..., kt if p = k1r1 + k2r2 + ... + ktrt + 1 and q = k1s1 +
k2s2 + ... + ktst. The number p

q
is reachable from r1

s1
, r2
s2
, ..., rt

st
if there are non-negative

integer coefficients as above.

Remark 3.1.2. It is important that we not only required that:

p

q
= ∗

k1r1 + k2r2 + ...+ ktrt + 1

k1s1 + k2s2 + ...+ ktst
∗

12



So, for example, 3
4

is not reached from 1
2

and 2
3

with coefficients 1 and 2, although
∗1×1+2×2+1

1×2+2×3
∗ = ∗6

8
∗ = 3

4
. (We can reach 3

4
from 1

2
alone, though.)

Definition 3.1.3. A rational p
q
≤ α is α-reached from the rationals r1

s1
, r2
s2

, ..., rt
st

with
non-negative integer coefficients k1, ..., kt if it is reached and for all 1 ≤ i ≤ t where
ki > 0 we have k1r1 + k2r2 + ... + ktrt + 1 − ri > α(k1s1 + k2s2 + ... + ktst − si). The
number p

q
is α-reachable from r1

s1
, r2
s2

, ..., rt
st

if there are non-negative integer coefficients
as above.

For example 9
13

is α-reachable from 1
2

and 2
3

if 9
13

≤ α < 7
10

. Now we are ready to
define our new approximation sequence, which is actually a sequence of sets:

Definition 3.1.4. Let S be any set of rationals.

H(α, S) := {
p

q
∈ Q |

p

q
can be α-reached from a rational

r

s
∈ S

or from two rationals
r

s
,
r′

s′
∈ S}

We define the weak approximation set sequence of α as H0(α) = {0
1
}, and Hi(α) =

H(α,Hi−1(α)) ∪Hi−1(α).

It is easy to see that max(Hi(α)) ≤ τi(α). We can prove it by induction observing
that if p

q
is reachable from a set of rationals then ∗p−1

q
∗ is less or equal to the largest

rational in the set. The rest of this section is devoted to prove the following theorem:

Theorem 3.1.5. For any 0 ≤ α < 1 and i ∈ N it holds that τi(α) ∈ Hi(α).

To prove the theorem, we will need several tools. First of all, we will often use the
following function:

Definition 3.1.6. For rationals p
q

and r
s

let l(p
q
, r
s
) = rq − ps = qs( r

s
− p

q
).

Notice that this is well defined by our assumption that all rationals are in reduced
form. Observe, that l(p

q
, r
s
) < 0 iff r

s
< p

q
and it also holds if we change “<” to “=” or

“>”. Also, trivially l(p
q
, r
s
) = −l( r

s
, p
q
).

The following is a simple property of the l function.

Lemma 3.1.7. For any non-negative rationals p
q
, r1
s1

, ..., rt
st

and integer c if gcd(k1r1 +

k2r2 + ...+ ktrt + c, k1s1 + k2s2 + ...+ ktst) = 1 we have:

l

(

k1r1 + ...+ ktrt + c

k1s1 + ...+ ktst
,
p

q

)

= k1l

(

r1
s1

,
p

q

)

+ ...+ ktl

(

rt
st
,
p

q

)

− cq

Proof. Elementary computation.

One of the central observations in the proof is the following lemma:

Lemma 3.1.8. Let r1
s1

≤ r2
s2

≤ α such that l( r1
s1
, r2
s2

) = 1 and a
b
≤ α be such that r1

s1
≤

∗a−1
b
∗ ≤ r2

s2
. If αb− a < αs1 − r1 and αb− a < αs2 − r2 then a

b
∈ H({ r1

s1
, r2
s2
}, α).

13



Proof. Let us solve the following system of linear equations:

k1r1 + k2r2 = a− 1

k1s1 + k2s2 = b

Using Cramer’s rule, we get:

k1 =

∣

∣

∣

∣

a− 1 r2
b s2

∣

∣

∣

∣

∣

∣

∣

∣

r1 r2
s1 s2

∣

∣

∣

∣

=
(a− 1)s2 − r2b

l
(

r2
s2
, r1
s1

)

k2 =

∣

∣

∣

∣

r1 a− 1
s1 b

∣

∣

∣

∣

∣

∣

∣

∣

r1 r2
s1 s2

∣

∣

∣

∣

=
r1b− (a− 1)s1

l
(

r2
s2
, r1
s1

)

By r1
s1

≤ ∗a−1
b
∗ ≤ r2

s2
we have that both numerators are non-positive integers. The

denominators are -1, so k1 and k2 are non-negative integers. This already proves that a
b

is reachable from r1
s1

and r2
s2

. To establish α-reachability, we need that for i = 1, 2 if ki > 0
then k1r1 + k2r2 + 1 − ri > α(k1s1 + k2s2 − si). But this is true, as:

(k1r1 + k2r2 + 1 − ri) − α(k1s1 + k2s2 − si) =

αsi − ri − (αb− a) > 0

To prove the main theorem, we will need to yet another sequence.

Lemma 3.1.9. For a positive rational p
q

with q > 1 there uniquely exist two non-negative

rationals p−

q−
and p+

q+
such that q− < q, q+ < q, l( q

−

p−
, p
q
) = 1 and l(p

q
, q

+

p+
) = 1. We will

call p−

q−
the one down of p

q
and denote it by OD(p

q
). Similarly, p+

q+
called the one up of p

q

and denoted by OU(p
q
). It also holds that p = p+ + p− and q = q+ + q−. (Of course, the

value of p− and p+ above also depends on q, not only on p, and the same way q− and q+

depends on p, so it is not that we defined a ”+” and a ”-” operation.)

Proof. We need to solve the Diophantine equation pq− − p−q = 1. Observe that in this
case gcd(p−, q−) = 1 holds automatically. The equation yields pq− ≡ 1 (mod q) which
has a unique solution in the range [0, q) as gcd(p, q) = 1. As q > 1, q− = 0 is not a
solution to the congruence. So we found the unique q−, and then p− = (pq− − 1)/q.
We can do a similar calculation for p+, q+ In that case we solve pq+ ≡ −1 (mod q),
whose only solution in [0, q) is q − q−. Then p+ = (pq+ + 1)/q, and indeed p+ + p− =
(pq+ + 1)/q + (pq− − 1)/q = pq/q = p.

If we iteratively apply OD starting from a rational 0 < p
q
< 1 we obtain a decreasing

sequence of rationals with smaller and smaller denominators. Finally, we have to get a
rational with denominator 1, which by being smaller then p

q
, must be 0. We will call the

finite sequence p
q
, OD(p

q
), OD(OD(p

q
)), ..., 0 the one down sequence of p

q
.

Let us state two important facts about the one ups of the elements of a one down
sequence:

14



Lemma 3.1.10. Let p0
q0

= p
q
, p1
q1

, ..., pn

qn
= 0 be the one down sequence of p

q
. Let

p′i
q′i

=

OU(pi

qi
). Then for any 0 ≤ i < j ≤ n we have:

1)
p′i
q′i
≤

p′j
q′j

2) q′i ≥ q′j

Proof. Let r
s

= OD(u
v
) for any rational u

v
. First we claim that l( r

s
, OU(u

v
)) = 1. Let

u′

v′
= OU(u

v
). By Lemma 3.1.9 we know that u′ = u − r and v′ = v − s. This is enough

to prove our claim as:

l(
r

s
,
u′

v′
) = (u− r)s− r(v − s) = ur − rs = l

(r

s
,
u

v

)

= 1

So what we know about OU( r
s
)? Either it is OU(u

v
), or it is larger, as it is easy to see that

among all rationals x having l( r
s
, x) = 1 the largest is OU( r

s
). Also, by definition, among

these rationals OU( r
s
) has the smallest denominator. If we apply these observations to

u
v

= pi

qi
and r

s
= pi+1

qi+1
we get the two claims of the lemma.

We will need a simple statement about the function l:

Lemma 3.1.11. There are no rationals p1
q1
< p2

q2
< p3

q3
< p4

q4
such that l(p1

q1
, p3
q3

) = 1 and

l(p2
q2
, p4
q4

) = 1.

Proof. Assume the contrary. We have:

1

q1q2
≤
p2

q2
−
p1

q1
<
p3

q3
−
p1

q1
=
l(p1
q1
, p3
q3

)

q1q3
=

1

q1q3

This implies q3 < q2. On the other hand:

1

q3q4
≤
p4

q4
−
p3

q3
<
p4

q4
−
p2

q2
=
l(p2
q2
, p4
q4

)

q2q4
=

1

q2q4

This means q2 < q3, a contradiction.

It is an easy observation that the one ups of the elements of the strong approximation
sequence are above α.

Lemma 3.1.12. For any α ∈ [0, 1) and i ∈ Z+ we have OU(τi(α)) > α. Also, if p
q

is an

element of the one down sequence of τi(α), then OU(p
q
) > α.

Proof. Let r
s

= τi(α) and r+

s+
= OU( r

s
). Notice that 0 < τi(α) < 1, so s > 1, thus the one

up indeed exists. Observe that ∗ r
+−1
s+

∗ ≤ ∗ r−1
s
∗ ≤ τi−1(α). The second inequality holds

by definition of τ and the first is also true as:

(r − 1)s+ − (r+ − 1)s = rs+ − r+s+ s− s+ = s− 1 − s+ ≥ 0

This means that if r+

s+
≤ α then r+

s+
is in the set whose maximum we take to define

τi(α) = τ(α, τi−1(α)), which contradicts to the fact that the maximum was r
s
< r+

s+
. The

second statement is obvious from the first statement of this lemma and the first statement
of Lemma 3.1.10.
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Using the above two lemmas we will prove a crucial connection between the one down
sequence and the strong approximation sequence:

Lemma 3.1.13. For any 0 ≤ p
q
< 1 and any i ≥ 0 the number τi(

p
q
) is an element of the

one down sequence of p
q
.

Proof. For i = 0 the statement is obvious. For i > 0 if p
q

= τi(
p
q
) then we are done.

Otherwise, let us denote r
s

= τi(
p
q
). From the previous lemma r+

s+
= OU( r

s
) > p

q
. If r

s
is

not in the one down sequence then there is a last element p′

q′
of the sequence such that

p′

q′
> r

s
. Let the next element in the sequence be p′′

q′′
< r

s
. But then the four rationals

p′′

q′′
< r

s
< p′

q′
< r+

s+
contradict Lemma 3.1.11.

Reversing the one down sequence allows us to extend the definition to irrational
numbers:

Definition 3.1.14. For a rational α we get the reversed one down sequence of α by
reversing its one down sequence, that is it is the sequence β1 = 0, β2, ..., βk = α where
βk = α, βk−1, ..., β1 = 0 is the one down sequence of α. For an irrational α ∈ [0, 1)
the reverse one down sequence is the infinite sequence β1 = 0, β2, ... where we get βj in
the following way. Find an n for which the reversed one down sequence β′

1 = 0, β′
2, ...,

β′
k′ = τn(α) of τn(α) is long enough, that is k′ > j and set βj = β′

j.

The definition is good, that is it does not depend on the choice of n. Indeed as
established in Lemma 3.1.13 the reversed one down sequence of τi(α) contains τj(α) if
i ≥ j as τj(α) = τj(τi(α)). Thus the reversed one down sequence of τi(α) starts with the
reversed one down sequence of τj(α), so they have the same elements on the common
positions. Also notice that the length of the one down sequence of τn(α) is at least n+1,
so there exists an n large enough. With this definition the generalization of Lemma 3.1.13
to irrationals is obvious:

Lemma 3.1.15. For any α ∈ [0, 1) the strong approximation sequence of α is a subse-
quence of the reversed one down sequence of α.

Remark 3.1.16. We remark here that the one down sequence is closely related to the
Stern-Brocot tree as defined independently by Moritz Stern ([8]) and Achille Brocot
([2]). It is a nice arrangement of all possible positive rationals in an infinite binary search
tree. One can find a good discussion about these trees at [1]. Here we only want to
point out the relation of the one down and the analogously definable one up sequences
to the Stern-Brocot tree. For any (rational or irrational) 0 < α < 1 let us consider the
sequence of rationals that we get by starting from the root of the tree and searching for
α as we do search in a binary search tree and writing down the rationals we see at each
node. It is a finite sequence for a rational α as we find α sooner or later and infinite
otherwise. The fact is that this sequence is a merge of the elements of the reversed one
down sequence without the 0 and the elements of the reversed one up sequence. That is
all its elements are from one of the two sequences, and all elements of the reversed one
down and one up sequences are present in their original order. Obviously the elements
larger then α belongs to the one up sequence, the other smaller elements belong to the
one down sequence.
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Next we prove that the qα − p quantity strictly monotonically decreases on the p
q

elements of the reversed one down sequence of α:

Lemma 3.1.17. If p0
q0

= 0, p1
q1

, ... is the (finite or infinite) reversed one down sequence

of the (rational or irrational) α ∈ [0, 1) then for any two indices i, j of this sequence if
i > j then αqi − pi < αqj − pj.

Proof. For any i > 0 index of the reversed one down sequence by Lemmas 3.1.12 and
3.1.9 we know that pi−pi−1

qi−qi−1
= OU(pi

qi
) > α. As qi > qi−1 multiplying by qi − qi−1 implies

αqi−1 − pi−1 > qiα− pi which proves the lemma.

Finally, we have all the tools needed to prove the main theorem.

Proof of the main theorem. We will prove by induction on i the stronger statement that
every element of the one down sequence of τi(α) is contained in Hi(α). Observe that
by Lemma 3.1.15 the reversed one down sequence of τi(α) is always the beginning of the
reversed one down sequence of α. For i = 0 the statement is trivial. For i = 1, let q be the
smallest positive integer for which 1

q
≤ α. Then we have τ1(α) = 1

q
, H1(α) = {0, 1

q
} and

OD(1
q
) = 0 so the statement is true. Now assume that for i ≥ 1 the one down sequence

of τi(α) is contained in Hi(α). If τi(α) = τi+1(α), meaning that we have already reached
α, then we are done.

Otherwise, let p
q
> τi(α) be an element of the one down sequence of τi+1(α). (The

smaller elements of the one down sequence of τi+1(α) are already in Hi(α).) First observe
that ∗p−1

q
∗ ≤ τi(α). Indeed, for p′

q′
= τi+1(α) we have ∗p

′−1
q′

∗ ≤ τi(α) by definition and it

is very easy to see that if r
s

= OD(u
v
) then ∗ r−1

s
∗ < ∗u−1

v
∗. So there are two consecutive

elements u1

v1
, u2

v2
of the one down sequence of τi(α) for which u1

v1
≤ ∗p−1

q
∗ ≤ u2

v2
. But

these two rationals and p
q

are all in the reversed one down sequence of α, so we know
by Lemma 3.1.17 that αq − p < αvj − uj for j = 1, 2. By Lemma 3.1.8 we have that
p
q
∈ H({u1

v1
, u2

v2
}, α) ⊆ H(Hi, α) ⊆ Hi+1(α) which we wanted to prove.

Observe that we proved a somewhat stronger statement in that we do not really need
all the elements of Hi−1 to get τi and the new elements of its one down sequence, we need
only those that are the elements of the one down sequence of τi−1. It will be convenient
to use this property, so we state it more precisely:

Lemma 3.1.18. For any i ≥ 1 if the set A contains all the elements of the one down
sequence of τi+1(α) which are at least τi−1(α) and at most τi(α) then H(α,A) contains
all the elements p

q
of the one down sequence of τi+1(α) for which τi(α) < p

q
.

Proof. At the end of the proof of the theorem above we found two elements u1

v1
, u2

v2
of the

one down sequence of τi(α) such that u1

v1
≤ ∗p−1

q
∗ ≤ u2

v2
and we used these to α-reach p

q
.

But we had p
q
> τi(α) so by the definition of τ we have ∗p−1

q
∗ > τi−1(α). Thus u1

v1
must

be at least τi−1(α) and trivially u2

v2
is at most τi(α), so if we have all the elements of the

one down sequence between τi−1(α) and τi(α) we can α-reach all other elements up to
τi+1(α).
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3.2 Speed of the approximation

Although not necessary for the main goal of this thesis, here we will show some results
about the speed of our approximation sequences. First we observe that we can give
an upper bound to the distance of α and τi(α) using the denominator of τi(α). This
motivates us to concentrate on how fast the denominators grow in the rest of the section.

Lemma 3.2.1. Let α < 1, p
q

= τi(α), then ∗p+1
q
∗ > α, thus α− τi(α) < 1

q
.

Proof. Let p′

q′
= OU(p

q
). Then p′

q′
≤ ∗p+1

q
∗ as:

(p+ 1)q′ − p′q = pp′ − p′q + q′ = q′ − 1 ≥ 0

But according to Lemma 3.1.12 we have p′

q′
> α.

Lemma 3.1.15 showed that the strong approximation sequence is a subsequence of the
reversed one down sequence. Now we characterize this connection more precisely:

Lemma 3.2.2. Let p0
q0

= 0
1
, p1
q1

, ... be the reversed one down sequence of α. Assume for

some i ≥ 1 that τi−1(α) < α and let τi−1(α) =
pj

qj
for some j ≥ 0. Then τi(α) = pk

qk
where

k = max{t | l(pj

qj
, pt

qt
) ≤ qj}.

Proof. Observe that ∗u−1
v
∗ ≤ r

s
if and only if l( r

s
, u
v
) ≤ s. As we already know that τi(

p
q
)

is one of the elements of the one down sequence, then it must be the largest of those
satisfying l(

pj

qj
, pt

qt
) ≤ qj.

A statement strongly related to Lemma 3.1.17 is the following:

Lemma 3.2.3. Let p0
q0
< p1

q1
< ... be a (finite or infinite) reversed one down sequence.

Then for any i, j, k indices of the this reversed one down sequence if i > j then l(pk

qk
, pi

qi
) >

l(pk

qk
,
pj

qj
).

Proof. Lemma 3.1.17 implies the current lemma if both i and j are less then k with the
substitution α = pk

qk
and with the trivial observation that l(pk

qk
, pi

qi
) > l(pk

qk
,
pj

qj
) if and only

if pk

qk
qi − pi <

pk

qk
qj − pj. If j ≤ k ≤ i then the statement is trivial by the relation of the

sign of the value of l to the ordering of the parameters. If both i and j are at least k,
then

pj

qj
< pi

qi
and also qj < qi, so:

l(
pk
qk
,
pj
qj

) = qkqj(
pj
qj

−
pk
qk

) < qkqi(
pi
qi

−
pk
qk

) = l(
pk
qk
,
pi
qi

)

which proves the remaining case of our lemma.

Next we give an upper bound to the denominator of the kth element of the strong
approximation sequence.

Lemma 3.2.4. Let p
q

= τk(α), p′

q′
= OU(p

q
). Then q ≤ (q′ + 1)k.
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Proof. Not surprisingly, we prove by induction on k. Let u
v

= τk−1(α), u′

v′
= OU(u

v
). We

know that walking down on the one down sequence of p
q
, we reach u

v
sooner or later.

By the strict monotonicity of l established in Lemma 3.2.3 and by the characterization
given in Lemma 3.2.2, we also know that we can have at most v steps. In one step in
a one down sequence from element a the denominator decreases by the denominator of
OU(a) (Lemma 3.1.9). We also know from lemma 3.1.10 that the denominator of the
corresponding OU ’s monotonically decreases along a one down sequence. Putting all
together, we have that we decreased the denominator at most v times with at most q′,
thus q ≤ v + q′v = (q′ + 1)v ≤ (q′ + 1)(v′ + 1)k−1 ≤ (q′ + 1)k.

Next we characterize what are the possible next elements from a given rational in a
reversed one down sequence.

Lemma 3.2.5. Let p
q

be a rational and let r
s

= OU(p
q
). Then the set of all rationals x

having l(p
q
, x) = 1 is { r+tp

s+tq
| t ∈ N}. Specially the set of rationals y for which OD(y) = p

q

is { r+tp
s+tq

| t ∈ Z+}. Finally, OU( r+tp
s+tq

) = r+(t−1)p
s+(t−1)q

for all t ∈ Z+.

Proof. If a rational u
v

has l(p
q
, u
v
) = 1 then v is a solution to the linear congruence:

px ≡ −1 (q)

As established in the proof of 3.1.9 the integer s is the unique solution of this congruence
between 1 and q − 1. Thus the set of all positive solutions is tq + s. If v = tq + s then
u has to be r + tp and r+tp

s+tq
is indeed a good rational, which proves the first statement.

Notice that in r+tp
s+tq

* was not forgot accidently: gcd(r + tp, s + tq) = 1 indeed for any t.
The second statement is a trivial consequence of the first as r

s
is the only element of the

set { r+tp
s+tq

| t ∈ N} with denominator not larger then q. By

(r + (t− 1)p)(s+ tq) − (r + tp)(s+ (t− 1)q) = rq − ps = 1

l( r+tp
s+tq

, r+(t−1)p
s+(t−1)q

) = 1 and s + tq > s + (t − 1)q trivially, so the the last statement is also
true.

To establish a lower bound on the growing speed of the denominators of the strict
approximation sequence, we will do one last induction:

Lemma 3.2.6. Let p0
q0

, p1
q1

, ..., pn

qn
be a segment of a reversed one down sequence, that is

a sequence of rationals such that q0 < q1 < ... < qn and l(pi

qi
, pi+1

qi+1
) = 1 for all i < n. Then

we have:

a) qi ≥ q0 + l(p0
q0
, pi

qi
)q′0

b) q′i ≥ l(p0
q0
,
p′i
q′i

)q′0

Proof. For i = 0 both inequalities hold trivially, with equality. Let us assume both
equalities for i = k. Using the the previous lemma there is a positive integer t for which
pk+1

qk+1
=

p′k+tpk

q′
k
+tqk

and
p′k+1

q′
k+1

=
p′k+(t−1)pk

q′
k
+(t−1)qk

. Then
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q0 + l

(

p0

q0
,
pk+1

qk+1

)

q′0 = q0 +

(

l

(

p0

q0
,
p′k
q′k

)

+ tl

(

p0

q0
,
pk
qk

))

q′0 ≤

≤ q0 + (q′k/q
′
0 + t(qk − q0)/q

′
0) q

′
0 = qk+1 + (1 − t)q0 ≤ qk+1

For the first equation we used Lemma 3.1.7, for the first inequality we used the
inductive hypothesis. The same way:

l

(

p0

q0
,
p′k+1

q′k+1

)

q′0 =

(

l

(

p0

q0
,
p′k
q′k

)

+ (t− 1)l

(

p0

q0
,
pk
qk

))

q′0 ≤

≤ (q′k/q
′
0 + (t− 1)(qk − q0)/q

′
0) q

′
0 = q′k+1 + (1 − t)q0 ≤ q′k+1

Corollary 3.2.7. Let p
q

= τi(α), u
v

= τi+2(α), p′

q′
= OU(p

q
). Then v ≥ q(q′ + 1).

Proof. By Lemma 3.2.2, l(p
q
, u
v
) ≥ q (it is already true if we put the element right after

τi+1(α) in the reversed one down sequence instead of u
v
). By the first statement of the

previous lemma, v ≥ q + qq′ = q(q′ + 1).

Putting the two bounds together, we get our main result about the convergence speed
of the strong approximation sequence:

Theorem 3.2.8. If k ≥ 0, α < 1, p
q

= τk(α), u
v

= τ3k(α) then v ≥ q2.

Proof. Let p′

q′
= OU(p

q
). By Lemma 3.2.4 we know that q ≤ (q′ + 1)k. By corollary

3.2.7 and by the fact that the denominators of the corresponding one ups grow mono-
tonically along a strong approximation sequence (as they do so along a reversed one
down sequence), we have that the denominator of τk+2i(α)) is at least q(q′ + 1)i, thus
v ≥ q(q′ + 1)k ≥ q2 indeed.

3.3 Accuracy of the approximation relative to the

denominator

While we will not use the results in the previous section, we will use those in this section.
It will turn out in Chapter 5 that using a well chosen graph extension of size (v, e) where
v and e are coprimes we will be able to characterize arbitrary relations on sets of size
polynomial in

⌊

1
αe−v

⌋

. On the other hand we will need to use relations on sets of size
v + h for some fixed constant h. As for the interesting extensions we will have v

e
= τk(α)

it will be enough to have that v + h is polynomial in
⌊

1
αe−v

⌋

for these numbers. This is
the goal of this section.

First we state a trivial consequence of Lemma 3.1.17:

Lemma 3.3.1. Let 0 = p0
q0

, p1
p1

, p2
q2
, ... be the reversed one down sequence of α ∈ [0, 1).

Then for any i < j indices of the above sequence we have
⌊

1
αqi−pi

⌋

≤
⌊

1
αqj−pj

⌋

.

Let us next investigate what coefficients are possible when α-reaching a number.
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Lemma 3.3.2. Let p1
q1
, p2
q2
, p
q
≤ α. Assume p

q
is α-reached from p1

q1
, p2
q2

with coefficients k1

and k2. Then ki <
1

qiα−pi
+ 1

Proof. By definition p1(k1−1)+p2k2+1
q1(k1−1)+q2k2

> α. As either k2 = 0 or p2k2
q2k2

= p2
q2
< α, the above

inequality also implies:
p1(k1 − 1) + 1

q1(k1 − 1)
> α

k1 − 1 <
1

q1α− p1

k1 <
1

q1α− p1

+ 1

which yields the statement for k1. The same argument works for k2.

Lemma 3.3.3. For every n and h non-negative constants there is a c = c(n, h) such that

for any 0 < α < 1
2

if p
q

= τn(α) then q + h ≤
⌊

1
qα−p

⌋c

.

Proof. We first prove by induction on n that for h = 0 the choice c(n, 0) = 3n is good.

As α < 1
2

we have
⌊

1
1α−0

⌋

> 2, therefore
⌊

1
pα−q

⌋

> 2 by Lemma 3.3.1, which yields
⌊

1
pα−q

⌋3

> 2( 1
pα−q

+1). As we saw in the proof of the equivalence of the two approximation

sequences, there are two elements p1
q1

and p2
q2

of the one down sequence of r
s

= τn−1(α)
such that p = k1p1 + k2p2 + 1 and q = k1q1 + k2q2. By Lemma 3.3.2 and by the fact that
q > s, s ≥ qi and qα− p < sα− r ≤ qiα− pi:

q ≤

(

1

q1α− p1

+ 1

)

q1 +

(

1

q2α− p2

+ 1

)

q2 ≤ 2

(

1

qα− p
+ 1

)

s <

<

⌊

1

pα− q

⌋3 ⌊

1

sα− r

⌋c(n−1)

≤

⌊

1

pα− q

⌋(3n−3)+3

=

⌊

1

pα− q

⌋3n

By q ≥ 1 and
⌊

1
pα−q

⌋

> 2 it is obvious that c(n, h) = c(n, 0) + ⌈log2(h+ 1)⌉ is good.
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Chapter 4

Capturing the density of a random

graph with first order formulae

In this chapter, our aim is to create a first order “handle” on the value of α in an α-
graph. That is, we are going to be able to create first order formulae which characterize
extensions in an α-graph whose size is (v, e) where gcd(v, e) = 1 and τi(α) = v

e
. Of course

these formulae will not depend on the exact value of α, this is the very purpose of this
construction. But they do depend on which of the intervals [ 1

k
, 1
k−1

] for k ≥ 3 contains
α. This will not cause any problem as by the Very Dense Condition we will only need to
deal with finitely many such intervals, so we can combine the formulae for the individual
intervals into one big formula which works in the whole [0, 1

2
] interval.

So we fix for this whole chapter (and as a matter of fact for the next, too) an integer
k ≥ 3. We also fix an irrational 1

k
< α < 1

k−1
and finally an α-graph G.

4.1 Rooted graphs and their hybrids

We call a graph H together with k + 1 distinct designated vertices x1, x2, ..., xk−2, y,
z, and w a k-rooted graph or k-rgraph if there is no edge connecting two of the first k
designated vertices. We shell often omit the k as it will be fixed except for the last
chapter. We will use the notation x = (x1, ..., xk−2) and denote the above rooted graph
by H = (H, x, y, z, w). We will also use X = {x1, ..., xk−2}. We call the x1, x2, ..., xk−2,
y, z designated vertices the base vertices and often regard a rooted graph (H, x, y, z, w)
as a graph extension (X ∪{y, z}, H). We call the last designated vertex of an rgraph the
counting vertex. Figure 4.1 shows an example rooted graph.

Figure 4.1: A very simple rooted graph for k = 4.
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We call two rgraphs (H, x, y, z, w) and (H ′, x′, y′, z′, w′) isomorphic if an isomorphism
from H to H ′ maps xi to x′i, y to y′, z to z′ and w to w′. A subrgraph of an rgraph
(H, x, y, z, w) is another rgraph (H ′, x, y, z, w) where H ′ is a subgraph of H containing
x1,..., xk−2, y, z and w. We call H′ a proper subrgraph of H if H′ is a subrgraph of H
but H′ 6= H. We define the size of a rooted graph to be the size of the corresponding
extension, i.e., it is (v, e) where v is the number of vertices excluding the base vertices
(but not excluding w) and e is the number of edges.

As we have fixed an 1
k
< α < 1

k−1
irrational the notion of sparse, dense, safe, and rigid

extensions are defined (see Section 2.1). When using the words sparse, dense, safe, and
rigid for rooted graphs we mean that the corresponding extensions are such.

Definition 4.1.1. We call the k-rooted graph H valid if

1. H is rigid and

2. each proper subrgraph of H is safe and

3. no base vertex of H is isolated and

4. all automorphisms of the underlying graph of H fixing each of the base vertices also
fixes the counting vertex.

Notice that in this definition rigid and safe can be equivalently replaced by dense and
sparse. Also notice that item 3 is equivalent to saying that for H = (H, x, y, z, w) all the
extensions (A,H) are safe for all proper subset A of X ∪ {y, z}.

Also observe that if we remove the base vertices from the underlying graph of a valid
rooted graph then it remains connected. Indeed, otherwise there would be two disjoint
unconnected non-empty vertex sets L1, L2 of H\(X∪{y, z}) such that L1∪L2 contains all
non-base vertices. Then let H1 be the induced subgraph of H spanned by L1∪X ∪{y, z}
and H2 be the induced subgraph of H spanned by L2 ∪X ∪ {y, z}. By item 2 of validity
both (X ∪ {y, z}, H1) (of size (v1, e1)) and (X ∪ {y, z}, H2) (of size (v2, e2)) are sparse,
thus (X ∪ {y, z}, H) of size (v1 + v2, e1 + e2) is also sparse, contradicting item 1.

We will build larger rooted graphs from two smaller ones via the following construc-
tion.

Definition 4.1.2. H′ = (H ′, x′, y′, z′, w′) and H′′ = (H ′′, x′′, y′′, z′′, w′′) be two rooted
graphs. For 0 ≤ l < k the +l-hybrid of these rooted graphs with non-negative integer
multiplicities m′, m′′ is the following rooted graph (H, x, y, z, w). First we take the union
of m′ isomorphic copies of H ′ and m′′ isomorphic copies of H ′′ such that these copies are
pairwise disjoint except for following cases. For any 0 ≤ j ≤ k − 2 the image of x′j and
x′′j is the same vertex xj for each copy, the image of y′ is the same vertex w for each copy
of H ′, the image of z′′ is also the above vertex w for each copy of H ′′, the image of y′′

is the vertex y in each copy of H ′′, finally the image of z′ is the same vertex z in each
copy of H ′. If (because m′ and/or m′′ is 0) any of xi, y, z or w was not created above,
we just add those as isolated vertices. Finally we add l extra edges to this rooted graph:
we connect w with x1, ..., xl−1, and we connect w with xl if 1 ≤ l ≤ k − 2 or with y if
l = k − 1. We will denote the above hybrid as Hib(l,H′,H′′,m′,m′′).

We study first when the hybrid construction on graphs preserves validity.
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Figure 4.2: The hybrid Hyb(0,H,H, 2, 2) where H is the rooted graph on Figure 4.1.

Lemma 4.1.3. Let H′ and H′′ be two valid graphs of size (v′, e′) and (v′′, e′′) respectively.
The +l-hybrid H of these graphs with positive multiplicities m′, m′′ is of size (v, e) =
(1+m′v′ +m′′v′′,m′e′ +m′′e′′ + l). It is valid if and only if v/e < α, (v− v′)/(e− e′) > α
and (v − v′′)/(e − e′′) > α. If v/e > α then H is safe. If (v − v′)/(e − e′) < α (resp.
(v− v′′)/(e− e′′) < α) then the hybrid of H′, H′′ with multiplicities m′− 1, m′′ (resp. m′,
m′′ − 1 ) is dense.

Proof. The size of the hybrid (even with non-negative multiplicities) is clearly as stated
since it consists of m′ copies of H′, m′′ copies of H′′ and these copies are disjoint except
for the uncounted base vertices. The plus one in the formula for v comes from the vertex
w which is counted in the hybrid but was not counted before. The plus l in the formula
for e comes from the l extra edges added at the end of the construction.

Note that a rooted graph G is dense if and only if for its size (vG, eG) it holds that
vG/eG < α. This immediately implies the last statement and (since the hybrids with
multiplicities m′−1, m′′ and m′, m′′−1 are proper subrgraphs of H) also the only if part
of the statement on the validity of H.

We claim that if both (v−v′)/(e−e′) > α and (v−v′′)/(e−e′′) > α then each proper
subrgraph H∗ of H is sparse. For the size (v∗, e∗) of H∗ we have to prove v∗ − αe∗ ≥ 0.
By the validity of H′ and H′′ we decrease v∗ − αe∗ by removing the non-base vertices
from H∗ of any copy of H′ or H ′′ not completely contained in H∗. Notice that if w is
not in H∗ then this includes the removal of all non-base vertices. Also, if w ∈ V (H∗), we
only increase this value if we remove any of the edges connecting w to the base vertices,
so we can assume that all l edges are preserved. Thus the minimum will be obtained
by (v′, e′) = (0, 0) (if w and thus everything else was removed), or by a +l-hybrid of the
graphs H′, H′′ with multiplicities n′ ≤ m′ and n′′ ≤ m′′. In the former case the inequality
trivially holds. Among the graphs in the latter case the maximum is realized by one of
the two hybrids where n′ = m′ and n′′ = m′′ − 1 or n′ = m′ − 1 and n′′ = m′′ — where
the inequality was assumed.

If v/e > α then H is sparse and so are its subrgraphs as proved above since in this
case (v − v′)/(e− e′) > α and (v − v′′)/(e− e′′) > α. Thus H is safe as claimed.
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The if part of the statement on the validity of H also follows from the above claim.
Notice that for H = (H, x, y, z, w) any automorphism of H fixing x1, ..., xk−2, y and z
has to fix w since w is a cutpoint in H\X separating y from z.

4.2 Relations characterizing rgraphs

We use (k + 2)-ary relations on the vertices of G to distinguish subgraphs isomorphic to
a rooted graph H. We start with some technical definitions. For a (k + 2)-ary relation
R we write R(x, y, z, w) as a shorthand for R(x, y, z, w, w). We define R′(x, y, z) = {w |
R(x, y, z, w)} and R′(x, y, z, w) = {t | R(x, y, z, w, t)}. We further define Rx(y, z) to be
the relation ∃wR(x, y, z, w).

Definition 4.2.1. We call a k-tuple (x, y, z) of distinct vertices R-separated if the sets
R′(x, y, z, w) are pairwise disjoint for all w ∈ R′(x, y, z).

Definition 4.2.2. We say that an rgraph H present in an rgraph H′ if H′ has a subrgraph
isomorphic to H.

Definition 4.2.3. We say that an rgraph H of size (v, e) is isolated in (G, x, y, z, w)
if (G, x, y, z, w) has a subrgraph H′ = (H ′, x, y, z, w) such that H′ is isomorphic to H,
and for any rigid extension H ′′ of H ′ in G with at most v vertices there is no edge in
E(H ′′) − E(H ′) having an endpoint in V (H ′)\(X ∪ {y, z, w}).

Notice that being isolated implies being present. Also observe that being isolated
means being present in such a way that the corresponding extension in G is v-generic
(see Definition 2.2.1).

Definition 4.2.4. We say that a (k + 2)-ary relation R ⊂ V (G)k+2 characterizes the
finite rooted graph H if for any vertices x, y, z and w of G both assertions below are
satisfied:

a) If R(x, y, z, w) holds then (G, x, y, z, w) has a subrgraph H′ = (H ′, x, y, z, w) isomor-
phic to H and R′(x, y, z, w) = V (H ′) \ {x1, ..., xk−2, y, z}.

b) If H is isolated in (G, x, y, z, w) then R(x, y, z, w) holds.

The two criteria clearly implies that R(x, y, z, w) has to be in between H being present
and H being isolated in (G, x, y, z, w).

4.3 Counting and comparing using relations charac-

terizing valid rgraphs

In the hybrid construction we need numerical parameters: the two multiplicities and the
number of edges to inject. The last one causes no problems, as we know apriori that
there are only a fixed, finite number (k, which is fixed) possibilities, which we will be
able to encode to our formulae easily. But to deal with the first kind of parameters we
will need to somehow represent numbers in graphs. If given a relation R characterizing
a valid rooted graph, we would like to represent the number i by choosing a k-tuple x, y,
z such that |{w | R(x, y, z, w)}| = i. First we study the limits of this approach.
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Lemma 4.3.1. Let R be a relation characterizing the valid rgraph H = (H, x, y, z) of
size (v, e). For any R-separated triple (x, y, z) one has |R′(x, y, z)| < k/(αe − v). For
any nonnegative integer i < k/(αe − v) there exist an R-separated k-tuple (x, y, z) with
|R′(x, y, z)| = i. The above R-separated k-tuple (x, y, z) can be chosen such a way that
there are no edges among the base vertices and there are no extra edges in any copy of
H, that is the graph spanned by the set X ∪ {y, z} ∪ R′(x, y, z, w) in G is isomorphic to
H for any w ∈ R′(x, y, z).

Proof. For a positive integer i let us call Hi the (not rooted) graph consisting of i isomor-
phic copies of H that are disjoint except for identifying the corresponding base vertices
in each of the copies. Hi has iv + k vertices and ie edges.

Let (x, y, z) be an R-separated k-tuple. Notice that with i = |R′(x, y, z)| the graph
Hi appears as a subgraph of G: its set of vertices is the union of the sets R′(x, y, z, w) for
w ∈ R′(x, y, z) and the set X ∪ {y, z}. By the sparsity axiom we must have iv + k > αie
proving the first claim.

For the second claim let i < k/(αe− v) and consider the extension Hi over the empty
graph. We claim that this extension is safe. To prove it we have to prove that for any
subgraph of Hi with v′ vertices and e′ edges we have v′ − αe′ ≥ 0. Assume the contrary
and fix a subgraph H∗ violating this inequality. By the validity of H we decrease this
formula by removing all non-base vertices of any copy of H not entirely contained in H∗.
(Notice that here we not only use the second, but also the third condition of validity,
which means as remarked there that the extension also becomes safe if we remove one
or more base vertices.) Thus the minimum is either realized by the empty graph or the
graph Hi′ for some 1 ≤ i′ ≤ i. We get no negative values in any of these cases. Now the
safe extension axiom Bv

∅,Hi gives an isolated embedding of Hi in G. The images of the
base points form an R-separated k-tuple (x, y, z) with |R′(x, y, z)| = i. As any extra edge
would form a small rigid extension, the last statement of the lemma is also true.

To use this kind of representation of numbers, we will at least need to compare car-
dinalities of finite sets. First we capture general binary relations.

Lemma 4.3.2. Let R be a relation characterizing a valid rooted graph of size (v, e). Let
x1, x2, ..., xr be disjoint vertices of G for 0 ≤ r ≤ k − 3. Let A and B be finite sets
of vertices of G disjoint from each other and the xi’s, and let T ⊆ A × B be a binary
relation. If |T | < k−2−r

αe−v
then there exists k − 2 − r distinct vertices xTr+1, ..., xTk−2 in G

such that for xT = (x1, x2, ..., xr, x
T
r+1, ..., x

T
k−2) we have that RxT

restricted to A × B is
T .

Proof. We use the safe extension axiom Bv
H1,H2

for the following graphs: Let H1 be the
induced subgraph spanned by A ∪ B ∪ {x1, ..., xr} in G. To get H2 add k − 2 − r new
vertices xr+1, ..., xk−2 to H1 and for all pairs (y, z) ∈ T add a disjoint copy of H around
the base vertices x = (x1, x2, ..., xr, xr+1, ..., xk−2), y and z. (The vertices in H2 \H1 are
abstract – not from G.) The size of this extension is (k− 2− r+ v|T |, e|T |). The bound
on |T | ensures that the extension is sparse. Using that H is valid one can see that the
extension is safe by the very same argument as in the above lemma.

Axiom Bv
H1,H2

gives a map f : H2 → G that is identity on H1. We claim that
xTi = f(xi) for r < i ≤ k − 2 is a good choice for the statement of the lemma. The
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construction of H2 gives that H is present in (G, xT , y, z, f(wy,z)) if (y, z) ∈ T and wy,z
is the counting vertex of the copy of H added around the base vertices x, y and z. From
the assertions of the axiom about the small rigid extensions of f(H2) in G one can see
that H is isolated in the above rgraph and H is not even present in (G, xT , y, z, w) for
any w if (y, z) ∈ A×B \ T .

Observe that when k = 3, we have no choice, r has to be 0. But for larger k,
r represents a trade-off. If we set r to small, then we are able to characterize larger
relations, but the price is that we have to allow for the selection of larges tuples.

The above lemma gives us a very important tool that we next use for checking set size
equalities. For vertex sets A and B we define |A| ≤R |B| if there are (k − 2)-tuples x(i)

for i = 1, . . . , 5 such that the union of the relations Rx(i)
restricted to (A\B)× (B \A) is

an injection. We write |A| =R |B| as a shorthand for |A| ≤R |B| and |B| ≤R |A|. Clearly
|A| ≤R |B| implies |A| ≤ |B|, but the converse is not true in general. The following
observation claims the converse is also true if one of the sets is small enough.

Lemma 4.3.3. Let R be a relation characterizing the valid rooted graph H of size (v, e),
and let b =

⌊

k−2
αe−v

⌋

. For every two finite sets A and B of vertices of G such that one of
them has size at most 5b the relations |A| ≤ |B| and |A| ≤R |B| are equivalent.

Proof. As mentioned before the lemma ≤R always implies ≤. To prove the converse in
this special case we fix an injection from A \B to B \A regarded as a relation, partition
the pairs in this relation into five classes of size at most b and apply the result of Lemma
4.3.2 with r = 0 to get x(i) for i = 1 . . . 5 so that Rx(i)

restricted to (A \B)× (B \A) give
the five parts of the injection.

The above lemma is enough to compare any set to another set characterized as in
Lemma 4.3.1:

Lemma 4.3.4. Let R be a relation characterizing the valid rgraph H. For any R-separated
k-tuple (x, y, z) and any set of vertices S the statements |S| = |R′(x, y, z)| and |S| =R

|R′(x, y, z)| are equivalent.

Proof. Let (v, e) be the size of H, let ǫ = αe − v and let b =
⌊

k−2
ǫ

⌋

. Notice that the
validity of H implies ǫ < 1 and remember k ≥ 3 so b = k−2

ǫ
> 1 and k

ǫ
≤ 3k−2

ǫ
. Using

that for any real x > 1 we have ⌊3x⌋ ≤ 5⌊x⌋ we have ⌊k/ǫ⌋ ≤ 5b. Now apply lemmas
4.3.1 and 4.3.3 to prove the nontrivial direction of the claim.

4.4 Characterizing hybrids

Given relations characterizing two (not necessarily different) rgraphs, we want to give a
first order relation characterizing the possible hybrids built from these graphs. We will
use the definition below:

Definition 4.4.1. Let P , Q be (k+2)-ary relations and let xP , yP , zP and xQ, yQ, zQ be
two k-tuples of vertices of G, and finally let 0 ≤ l < k. We define the (k + 2)-ary hybrid
relation R = HybR(l, P,Q, xP , yP , zP , xQ, yQ, zQ) as follows. We set R(x, y, z, w, t) if all
the following conditions are met:
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i) x1, ..., xk−2, y, z, w and t are distinct, except possibly w = t,

ii) |P ′(x,w, z)| =P |P ′(xP , yP , zP )|,

iii) |Q′(x, y, w)| =Q |Q′(xQ, yQ, zQ)|,

iv) w is connected to x1, ..., xl−1; w is also connected to xl if 1 ≤ l ≤ k − 2 and finally
to y if l = k − 1,

v) the sets P ′(x,w, z, u) for u ∈ P ′(x,w, z) and the sets Q′(x, y, w, u) for u ∈ Q′(x, y, w)
and X ∪ {y, z, w} are pairwise disjoint,

vi) t is included in P ′(x,w, z, u) for some u ∈ P ′(x,w, z) or in Q′(x, y, w, u) for some
u ∈ Q′(x, y, w) or t = w.

The definition of the hybrid relation is clearly first-order, if all the P and Q are first
order defined with the help of parameters, then so is R. As promised, we can use the
above definition to characterize hybrids:

Lemma 4.4.2. Suppose the relations P and Q characterizes the valid rooted graphs HP

and HQ respectively. For any two k-tuples of vertices (xP , yP , zP ) and (xQ, yQ, zQ) and for
any 0 ≤ l < k the hybrid relation R = HybR(l, P,Q, xP , yP , zP , xQ, yQ, zQ) characterizes
the hybrid rgraph H = Hyb(l, HP , HQ, |P ′(xP , yP , zP )|, |Q′(xQ, yQ, zQ)|).

Proof. For part a) of the definition of R characterizing H suppose R(x, y, z, w) for some
vertices x, y, z and w of G. By the definition of R the set R′(x, y, z, w) consists of w and
the disjoint subsets P ′(x,w, z, u) and Q′(x, y, w, u) for the appropriate vertices u. Since P
characterizes HP and Q characterizes HQ each of these sets give rise to an almost disjoint
copy of HP or HQ. We also guarantee the existence of the additional edges in point iv)
of the definition of R. Together these copies and edges give an isomorphic copy of H as a
subgraph of (G, x, y, z, w). By points ii) and iii) of the definition of R and by the fact that
=S implies = for any (k + 2)-ary relation S we have |P ′(x,w, z)| = |P ′(xP , yP , zP )| and
|Q′(x, y, w)| = |Q′(xQ, yQ, zQ)|. Thus the multiplicities are as claimed. The set of vertices
of the copy of H is exactly the disjoint union of the set X ∪ {y, z}, the set {w}, the sets
P ′(x,w, z, u) and the sets Q′(x, y, w, u). The union of the set {w}, the sets P ′(x,w, z, u)
and the sets Q′(x, y, w, u) is R′(x, y, z, w) thus part a) holds.

For part b) suppose H is isolated in (G, x, y, z, w), and let (H ′, x, y, z, w) be the
subrgraph of (G, x, y, z, w) isomorphic to H. Let the size of H be (v, e). Let mP =
|P ′(xP , yP , zP )| and mQ = |Q′(xQ, yQ, zQ)|. H consists of mP copies of HP and mQ

copies of HQ plus l extra edges connecting w with some base points. The latter implies
that point vi) holds, the previous implies that HP must be present in (G, x, w, z, u) for
mP vertices u and HQ must be present in (G, x, y, w, u) for mQ vertices u.

We claim that HP and HQ must be isolated in each of these cases, to make H iso-
lated in (G, x, y, z, w). Indeed, let (J, x, w, z, u) be one of the above copies of HP in
(G, x, w, z, u), and let (vP , eP ) be the size of HP . Suppose there is a rigid extension (J, J ′)
with at most vP non-base vertices such that there is at least one edge e ∈ E(J ′) \ E(J)
adjacent to a vertex in V (J) \ (X ∪ {w, z}). By the hybrid construction any edge in H ′

adjacent to V (J)\(X∪{w, z}) is also in J , so e /∈ E(H ′). But by the definition of rigidity
(H ′, H ′ ∪ J ′) is also rigid, it has at most vP thus at most v non-base vertices, and e is in
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this extension adjacent to a non-base vertex, so this contradicts with H being isolated.
The same argument works for the copies of HQ.

This implies |P ′(x,w, z)| ≥ mP and |Q′(x, y, w)| ≥ mQ. We claim that equality holds
in the above formulae, i.e., no unintended copies of HP or HQ appear. For this we use
that HP and HQ are valid. Since they are rigid and H is isolated all copies of HP must
appear inside H ′. Since valid graphs remain connected after removing the base vertices
all copies of HP must be contained in a single copy of HP or HQ. But as the last base
vertex is z in case of the copies of HP and w in case of the copies of HQ, all copies of HP

must appear inside some already counted copy of HP , and by being equal size it must be
the entire copy. Finally, since each automorphism of the underlying graph of HP fixing
the base vertices also fixes the counting vertex the contribution of a single copy of HP in
P ′(x,w, z) is only one vertex. By symmetry, this also holds for the copies of HQ.

We now have |P ′(x,w, z)| = mP = |P ′(xP , yP , zP )|. By Lemma 4.3.3 this implies
|P ′(x,w, z)| =P |P ′(xP , yP , zP )| since (x,w, z) is P -separated. Notice that for this lat-
ter statement one also needs the argument in the previous paragraph. The same way
|Q′(x, y, w)| =Q |Q′(xQ, yQ, zQ)|.

We also need to show that for all ,,interesting” hybrids we can represent the multi-
plicities we need to get them:

Lemma 4.4.3. Let P and Q be two relations characterizing the valid rgraphs HP and HQ,
0 ≤ l < k, 0 ≤ mP ,mQ be integers. Suppose that the hybrid H = Hyb(l,HP ,HQ,mP ,mQ)
is valid or safe. Then there exists a P -separated k-tuple (xP,m

P

, yP,m
P

, zP,m
P

) such that
|P ′(xP,m

P

, yP,m
P

, zP,m
P

)| = mP and also there exists a Q-separated k-tuple (xQ,m
Q

, yQ,m
Q

,
zQ,m

Q

) such that |Q′(xQ,m
Q

, yQ,m
Q

, zQ,m
Q

)| = mQ, thus the hybrid relation HybR(l, P,Q,
xP,m

P

, yP,m
P

, zP,m
P

, xQ,m
Q

, yQ,m
Q

, zQ,m
Q

) characterizes the hybrid H.

Proof. Consider the subrgraph H∗ of H consisting of the mP copies of HP . This is not
a valid rgraph as the base point z is isolated thus it is either a proper subrgraph or H
must be safe. H∗ is safe in either case. Its size is (mPvP + 1,mP eP ) if the size of HP

is (vP , eP ). Thus mPvP + 1 − αmP eP > 0 so mP < 1/(αeP − vP ). Thus Lemma 4.3.1
gives the existence of (xP,m

P

, yP,m
P

, zP,m
P

). The existence of (xQ,m
Q

, yQ,m
Q

, zQ,m
Q

) can
be proved the same way.

4.5 First order defining validity

In the previous section we were able to characterize hybrids of already characterized valid
graphs. But there was no requirement or guarantee about the validness of the resulting
graph. To detect whether the result of a hybrid construction is valid we will use the
criteria given in Lemma 4.1.3. But first we need the following observation:

Lemma 4.5.1. Suppose the relation R characterizes an rgraph H = (H, x, y, z, w). Then
R satisfies the first order statement “for all k-tuple of distinct vertices x′, y′, z′ there
exists w′ such that R(x′, y′, z′, w′)” if and only if H is safe.

Proof. The if part follows from the safe extension axiom Bm
X∪{y,z},H (see Theorem 2.2.2)

where m is the number of vertices in H. It says in effect that for every k distinct vertices
x′, y′ and z′ one can find w such that H is isolated in (G, x′, y′, z′, w′).
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The only if part follows from the safe extension axiom Bm
H1,H2

, where H2 consists of
three isolated vertices, H1 is the empty graph, and m is the number of vertices in H. The
axiom then claims the existence of distinct vertices x′, y′ and z′ having no rigid extension
on at most m vertices. If H is not safe, then it has a nontrivial rigid sub extension thus
H cannot be present in (G, x′, y′, z′, w′) and so R(x′, y′, z′, w′) cannot hold for any w′.

Now we are ready to give a first order characterization of validness:

Definition 4.5.2. Let P and Q be two (k + 2)-ary relations characterizing two valid
rooted graphs and 0 ≤ l < k be an integer. We say the 2k-tuple of vertices xP , yP , zP ,
xQ, yQ, zQ is good for P , Q and l if the following conditions are met:

1. Let R = HybR(l, P,Q, xP , yP , zP , xQ, yQ, zQ). Then there exists k different vertices x,
y, z such that R(x, y, z, w) does not hold for any vertex w.

2. There exists a k-tuple (x′, y′, z′) of vertices such that they satisfy both statements
below:

a) |P (x′, y′, z′)| =P |P (xP , yP , zP )| − 1

b) Let S = HybR(l, P,Q, x′, y′, z′, xQ, yQ, zQ). Then for any k-tuple of distinct vertices
x, y, z there exists a vertex w such that S(x, y, z, w) holds

3. There exists a k-tuple (x′, y′, z′) of vertices such that they satisfy both statements
below:

a) |Q(x′, y′, z′)| =Q |Q(xQ, yQ, zQ)| − 1

b) Let S = HybR(l, P,Q, xP , yP , zP , x′, y′, z′). For any k-tuple of distinct vertices x,
y, z there exists a vertex w such that S(x, y, z, w) holds

By Lemma 4.5.1, by the fact that =P is equivalent to = in this case and because being
safe and being sparse is the same thing for hybrids of valid graphs, the above conditions
are indeed equivalent to those given in Lemma 4.1.3, so we have the following:

Lemma 4.5.3. Let P and Q be two k + 2-ary relations characterizing two valid rooted
graphs and 0 ≤ l < k be an integer. xP , yP , zP , xQ, yQ, zQ are good for P , Q and l if
and only if HybR(l, P,Q, xP , yP , zP , xQ, yQ, zQ) is characterizing a valid rooted graph.

4.6 Simulating the weak approximation

It is time to link the constructions of this chapter with the results of Chapter 3. The
main link is as promised that the sizes of graphs resulting from the hybrid construction
and α-reachability are strongly related.

Lemma 4.6.1. Let p1
q1

, p2
q2

, ..., pn

qn
and p

q
be rationals less then α, and assume as always

in Chapter 3 that gcd(pi, qi) = 1 and gcd(p, q) = 1. We also assume q > qi. Let H1,
H2, ..., Hn be valid rooted graphs of sizes (p1, q1), (p2, q2), ..., (pn, qn) respectively. If
p
q
∈ H(α, {p1

q1
, ..., pn

qn
}) then there is a valid +0-hybrid of size (p, q) obtained from at most

two Hi’s.
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Proof. By definition, if p
q
∈ H(α, {p1

q1
, ..., pn

qn
}) then either there are indexes i1, i2 and

positive coefficients k1 and k2 such that p = k1pi1 + k2pi2 + 1, q = k1qi1 + k2qi2 and we
also have (k1 − 1)pi1 + k2pi2 + 1 > α((k1 − 1)qi1 + k2qi2) and k1pi1 + (k2 − 1)pi2 + 1 >
α(k1qi1+(k2−1)qi2) or there is and index i and a positive coefficient k such that p = kpi+1,
q = kqi and (k − 1)p+ 1 > α(k − 1)q.

In the first case by Lemma 4.1.3 the +0-hybrid of Hi1 and Hi2 with multiplicities k1

and k2 is valid and has size (p, q). In the latter case by q > qi we have k ≥ 2. Again by
Lemma 4.1.3 the hybrid Hyb(0,Hi,Hi, 1, k − 1) is valid and has size (p, q).

Using this we can prove the following theorem which is the main results of this chapter.

Theorem 4.6.2. For any k ≥ 3 and d positive integers we have non-negative integers
a, n, a-ary first order formulae ϕ1, ..., ϕn and (a + k + 2)-ary first order formulae ψ1,
..., ψn such that for any 1

k
< α < 1

k−1
and any α-graph G we have the following three

properties:

(1) For any a-tuple v1, ..., va ∈ V (G) and any 1 ≤ i ≤ n if ϕi(v1, ..., va) holds in G then
the (k+2)-ary relation ψi(v1, ..., va, , ..., ) characterizes a valid k-rooted graph in G.

(2) There is an a-tuple v1, ..., va ∈ V (G) and an integer 1 ≤ i ≤ n such that ϕi(v1, ..., va)
holds and the k-rooted graph characterized by ψi(v1, ..., va, , ..., ) is of size (v, e) where
gcd(v, e) = 1 and v

e
= τd(α).

(3) If for some vertices v1, ..., va and integer 1 ≤ i ≤ n we have ϕi(v1, ..., va) and the
size of the rooted graph characterized by ψi(v1, ..., va, , ..., ) is (v, e) then v

e
≤ τd(α).

Proof. We are going to prove by induction on d. Instead of (2) we are going to show the
stronger:

(2’) For every p
q

(gcd(p, q) = 1) non-zero element of the one down sequence of τd(α)

there is an a-tuple v1, ..., va ∈ V (G) and an 1 ≤ i ≤ n such that ϕi(v1, ..., va) holds
and the rooted graph characterized by ψi(v1, ..., va, , ..., ) is of size (p, q).

Let us assume first that we already know the theorem for some d ≥ 2 and let n and a
be the constants and ϕ1,...,ϕn,ψ1,...,ψn be the formulae it guarantees for that d. To prove
the statement for d′ = d + 1 let us set a′ = 2a + 2k and n′ =

(

n
2

)

+ 2n. We are going to
have two kind of formulae:

a) For any 1 ≤ i ≤ n we have the following pair of formulae:

ϕ′(v1, ..., v2a+2k) = ϕi(v1, ..., va)

ψ′(v1, ..., v2a+2k, x, y, z, w, t) = ψi(v1, ..., va, x, y, z, w, t)

b) For any 1 ≤ i ≤ j ≤ n we have the following pair of formulae:

ϕ′(v1, ..., v2a+2k) =ϕi(v1, ..., va) ∧ ϕj(va+1, ..., v2a)∧

∧ “the va+1, ..., va+2k 2k-tuple is good for

ψi(v1, ..., va, , ..., ), ψj(va+1, ..., v2a, , ..., ) and l=0”

ψ′(v1, ..., v2a+2k, x, y, z, w, t) =“(x, y, z, w, t) ∈ HybR(0, ψi(v1, ..., va, , ..., ),

ψj(va+1, ..., v2a, , ..., ), v2a+1, ..., v2a+2k)”
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As the HybR relation and also being good are first order definable the parts between
quotation marks can indeed be formulated as first order formulae. There are n formula
pairs of type a), which are basically the copies of the formulae on the previous level, they
simply ignore the extra parameters. There are

(

n
2

)

+n formula pairs of type b) which are
responsible for characterizing new hybrids. By induction point (1) holds for the type a)
pairs, and also by induction and by lemmas 4.4.2 and 4.5.3 it also holds for the set b) of
formula pairs. Let ϕ′

1, ..., ϕ′
n′ and ψ′

1, ..., ψ′
n′ be some ordering of the above formulae (of

course the ordering of the ϕ’s and ψ’s must be the same).
By lemmas 4.4.3 and 4.5.3 the b) type formulae guarantee that we have the charac-

terization of all possible valid hybrids of all the rgraphs that we could characterize in
the previous step. Let A be the set of rationals p

q
, gcd(p, q) = 1 for which there ex-

ists 1 ≤ i ≤ n and an a-tuple of vertices v1, ..., va such that ϕi(v1, ..., va) holds and
ψi(v1, ..., va, , ..., ) characterizes a valid rooted graph of size (p, q). The same way let B
be the set of rationals p

q
, gcd(p, q) = 1 for which there exists 1 ≤ i ≤ n′ and an a′-tuple

of vertices v1, ..., va′ such that ϕ′
i(v1, ..., va′) holds and ψ′

i(v1, ..., va′ , , ..., ) characterizes a
valid rooted graph of size (p, q). By Lemma 4.6.1 we have A∪H(α,A) ⊂ B. By induction
all the non-zero elements of the one down sequence of τd(α) are present in A. As d ≥ 2
this means that we have all the elements of the one down sequence between τd−1(α) and
τd(α). (Notice that for d = 1 it would not be true: we would miss τ0(α) = 0.) By Lemma
3.1.18 this means that H(α,A) has all the elements of the one down sequence of τd+1(α)
which are larger then τd(α), thus B does contain all non-zero elements of the one down
sequence of τd′(α). This proves (2’) for d′.

By induction (3) trivially holds for the formulae of type a). For type b) formu-
lae consider any two valid rooted graphs H1 and H2 of sizes (p1, q1), (p2, q2) respec-
tively which can be characterized using the formulae from the previous step. If H =
Hyb(0,H1,H2,m1,m2) then the size of H is (p, q) = (m1p1 +m2q2 + 1,m1q1 +m2q2). So
p−1
q

= m1p1+m2p2
m1q1+m2q2

. This is at most pi

qi
for i = 1 or i = 2. But by induction this implies

p−1
q

≤ τd(α) and if H is valid we also have p
q
< α. Thus by the definition of τ we have

p
q
≤ τd+1(α). As all of the rgraphs characterized by type b) formulae are valid hybrids as

considered above this proves (3) and completes the induction step.
To start up our induction we need some tricks to get around the disability to create

a rooted graph of size (0, 1). First for d = 1 let us have n(1) = 1 and a(1) = 0. ϕ1
1 is

constant true, and ψ1
1(x, y, z, w, t) holds if:

1. x1, ..., xk−2, y, z and w are distinct vertices,

2. t = w and

3. w is connected to x1, ..., xk−2, y and z.

This is clearly first order and characterizes the valid rooted graph which has only one
non-base vertex which is connected to all the base vertices. Thus (1) holds. We will
call this rgraph B. The size of this rgraph is (1, k), and indeed for 1

k
< α < 1

k−1
we

have τ1(α) = 1
k
. Thus (3) holds and as OD( 1

k
) = 0 claim (2’) also holds for this pair of

formulae.
By Lemma 3.1.18, to fulfill (2’) for d = 2 it is enough to characterize all rationals

p
q
∈ H(α, {0

1
, 1
k
}) for which p

q
> 1

k
as these are the elements that can potentially be
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elements of the one down sequence of τ2(α). The rationals in H(α, {0
1
, 1
k
}) are in the

form m2+1
m1+km2

. First observe that if m1 ≥ k then m2+1
m1+km2

< 1
k
, so we do not need to care

about this case. Also observe that if m2 = 1 and m1 ≤ k− 2 then m2+1
m1+km2

≥ 2
k−2+k

= 1
k−1

so it cannot be an element of H(α, {0
1
, 1
k
}). Finally if m2 = 0 then we do not get any

new rational (we get only 1
k

that we already had in the first round). So we are going to
have two distinct cases. One is when m1 = k − 1 and m2 = 1. This case we will handle
by characterizing a concrete rgraph as we did for d = 1. The second case is 0 ≤ m1 < k
and m2 ≥ 2. This we will handle using the hybrid construction.

Now we give the formula pairs that prove the theorem for d = 2. We set n(2) = k + 2
and a(2) = 2k We will have the following three kind of formulae:

a) ϕ2
1(v1, ..., va(2)) is constant true and ψ2

1(v1, ..., va(2) , x, y, z, w, t) = ψ1
1(x, y, z, w, t)

b) ψ2
2(v1, ..., va(2) , x, y, z, w, t) holds if:

1. x1, x2, ..., xk−2, y, z, w are distinct vertices,

2. w is connected to x1, ..., xk−2 and to y,

3. there exists a unique vertex v distinct from x1, x2, ..., xk−2, y, z, w which is
connected to x1, ..., xk−2, z and w and

4. t is either w or the above mentioned v.

Let R be the (k+ 2)-ary relation ψ2
2(v1, ..., va(2) , , ..., ). Define ϕ2

2(v1, ..., va(2)) to hold
if there are distinct vertices x1, ..., xk−2, y, z for which there is no w such that
R(x, y, z, w)

c) For any 0 ≤ l ≤ k − 1 we have the following pair of formulae:

ϕ2
l+3(v1, ..., v2k) =“the v1, ..., v2k 2k-tuple is good for

ψ1
1( , ..., ), ψ1

1( , ..., ) and l”

ψ2
l+3(v1, ..., v2k, x, y, z, w, t) =“(x, y, z, w, t) ∈ HybR(l, ψ1

1, ψ
1
1, v1, ..., v2k)”

Point a) just copies ϕ1
1 and ψ1

1 as we did it in the proof of the induction step above.
(1) and (3) trivially holds.

Point b) takes care of the case where m1 = k − 1 and m2 = 1. As m2+1
m1+km2

= 2
2k−1

∈

H(α, {0
1
, 1
k
}) if and only if 2

2k−1
< α, we need to characterize this rational only in this

case. ψ2
2 characterizes the rooted graph with two non-base vertices v and w where v

and w are connected, v is connected to all base vertices but y and w is connected to all
base vertices but z. The size of this graph is (2, 2k − 1) so it indeed corresponds to the
rational 2

2k−1
. It is easy to see that for 1

k
< α < 1

k−1
this graph is valid if and only if it

is dense, otherwise it is safe. It is dense if and only if 2
2k−1

< α, so this graph is valid

exactly when we need the rational 2
2k−1

. The choice of ϕ2
2 takes care of this using Lemma

4.5.1: it is true for any set of parameters if the above explained rgraph is valid and it
is false for any set of parameters otherwise. By the above argument, (1) holds for this
pair. As 2−1

2k−1
< 1

k
= τ1(α) and if ϕ2

2 is ever true then 2
2k−1

< α so in this case we have
2

2k−1
≤ τ2(α), so (3) holds.
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Figure 4.3: The rooted graph characterized by ψ1
1( , ..., ) (on the left) and the rooted

graph characterized by ψ2
2(v1, ..., va(2) , , ..., ) for any vertices v1, ..., va(2) (on the right)

for k = 4.

Point c) handles the case where 0 ≤ m1 ≤ k − 1 and m2 > 2. These pairs satisfy
(1). the same way point b) did in the induction step. With l = m1 the hybrid rgraph
Hyb(l,B,B, 1,m2 − 1) has size (m2 + 1, km2 +m1). Observe that m2+1

km2+m1
∈ H(α, {0

1
, 1
k
})

if and only if m2+1
km2+m1

< α and m2−1+1
k(m2−1)+m1

> α as the latter inequality also implies
m2+1

km2+m1−1
> α if m1 ≥ 1. This is exactly the condition when the above explained rgraph

is valid. In this case by Lemma 4.4.3 and 4.5.3 there will be a 2k tuple v1, ..., v2k

which is good for ψ1
1, ψ

1
1 and l and for which HybR(l, ψ1

1, ψ
1
1, v1, ..., v2k) characterizes

Hyb(l,B,B, 1,m2 − 1). As m2

km2+m1
≤ 1

k
= τ1(α) claim (3) also holds.

Altogether these formulae satisfy (2’) as all elements of H(α, {0
1
, 1
k
}) that are above

1
k

can be captured by point b) or point c) and 1
k

itself is captured by point a). This
completes the proof of the theorem.

We will need a trivial modification to the above theorem to make the application
easier:

Theorem 4.6.3. For any k ≥ 3 and d positive integers we have an integer a′, an a′-ary
first order formula ϕ and an (a′ + k + 2)-ary first order formulae ψ such that for any
1
k
< α < 1

k−1
and any α-graph G we have the following three properties:

(1) For any a′-tuple v1, ..., va′ ∈ V (G) if ϕ(v1, ..., va′) holds then the (k + 2)-ary are
relation ψ(v1, ..., va′ , , ..., ) characterizes a valid k-rooted graph.

(2) There is an a′-tuple v1, ..., va′ ∈ V (G) such that ϕi(v1, ..., va′) holds and the k-rooted
graph characterized by ψ(v1, ..., va′ , , ..., ) is of size (v, e) where gcd(v, e) = 1 and
v
e

= τd(α).

(3) If for some vertices v1, ..., va′ such that ϕ(v1, ..., va′) holds the size of the rooted graph
characterized by ψ(v1, ..., va′ , , ..., ) is (v, e) then v

e
≤ τd(α).

Proof. Let a, n be the constants and ϕ1, ..., ϕn,ψ1, ...,ψn be the formulae guaranteed by
the previous theorem for d and k. Let t = ⌈log2(n)⌉ and a′ = a + t + 1. Let us define
the formulae βj0 = (yj = yb) and βj1 = (yj 6= yb). Finally let gi(j) for 1 ≤ i ≤ n and
1 ≤ j ≤ t be the jth digit of the number i− 1 written as a t long binary number. Then
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the following formulae will be good:

ϕ(yb, y1, ..., yt, x1, ..., xa) =(β1
g1(1) ∧ β

2
g1(2) ∧ ... ∧ β

t
g1(t) ∧ ϕ1(x1, ..., xa))∨

(β1
g2(1) ∧ β

2
g2(2) ∧ ... ∧ β

t
g2(t) ∧ ϕ2(x1, ..., xa))∨

...

(β1
gn(1) ∧ β

2
gn(2) ∧ ... ∧ β

t
gn(t) ∧ ϕn(x1, ..., xa))

ψ(yb, y1, ..., yt, x1, ..., xa+k+2) =(β1
g1(1) ∧ β

2
g1(2) ∧ ... ∧ β

t
g1(t) ∧ ψ1(x1, ..., xa+k+2))∨

(β1
g2(1) ∧ β

2
g2(2) ∧ ... ∧ β

t
g2(t) ∧ ψ2(x1, ..., xa+k+2))∨

...

(β1
gn(1) ∧ β

2
gn(2) ∧ ... ∧ β

t
gn(t) ∧ ψn(x1, ..., xa+k+2))

The first t + 1 parameters are only used to select which original formula to use for the
last a (or a+ k + 2) parameters. It is obvious that all formulae can be addressed by the
right choice of the first t+ 1 parameters. By the properties of the original formulae it is
easy to see that the new formulae indeed satisfies all the requirements.
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Chapter 5

Second order logic on small vertex

sets

As in the previous chapter we fix α, k ≥ 3 such that 1
k
< α < 1

k−1
. We also fix an

α-graph G. Additionally here we also fix k − 1 distinct vertices of G: x1, ..., xk−3,
vtrue, vfalse. To be able to refer to the set of all fixed vertices, let us introduce F =
{x1, ..., xk−3, vtrue, vfalse}.

5.1 Representing multivariate functions

Suppose we are given disjoint finite vertex sets D, C1, ..., Cn of G. We would like to
represent all possible functions f : C1 × ... × Cn → D with some kind of representative
points using a relation characterizing a rooted graph. Of course we will not be able to
do that for any set sizes. It will turn out that we have to choose the sizes of the C’s very
accurately. We will have |Ci| ≥

⌊

1
αe−v

⌋

, where (v, e) is the size of the used rooted graph,
which will be enough for our purposes.

For a one variable function, we already know the solution: Lemma 4.3.2 allows us to
represent any binary relation of size at most

⌊

1
αe−v

⌋

, so we can represent functions where

the domain size is at most
⌊

1
αe−v

⌋

. Observe that the size of the range does not matter
at all, we only need it to be finite. The idea for representing multivariate functions
is to think of an i-variate function f : C1 × ... × Ci → D as a one variable function
whose domain is Ci and whose range is the set of all possible (i − 1)-variate functions
g : C1 × ... × Ci−1 → D. If we can represent all (i − 1)-variate functions with vertices,
then we just need to represent another function that maps Ci to the set of all possible
representing points. Unfortunately we have a serious problem. The set of all possible
representing points are not finite: if a function can be represented at all, then it can be
represented with infinitely many points. So we cannot prove that the above idea works
just by repeatedly applying Lemma 4.3.2. Nevertheless it does work, but we will need to
work much more to prove it.

First we give a more precise formalization of the above notions.

Definition 5.1.1. Let R be a (k + 2)-ary relation on the vertices of G. Let D, C1, ...,
Cn be finite vertex sets, disjoint from each other and from F . For j ≥ 0 we will define
a unary relation RD[C1, ..., Cj]. The elements of RD[C1, ..., Cj] will be the vertices that
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represent some j-ary function C1× ...×Cj → D. We also define a function R̂D[C1, ..., Cj]
mapping elements of RD[C1, ..., Cj] to sets of vertices. For y ∈ RD[C1, ..., Cj] we will call

the elements of R̂D[C1, ..., Cj](y) the vertices of the defining structure of y.
The definition is recursive in j. We start with RD[](y) if and only if y ∈ D while

R̂D[](y) = ∅. For j > 0 we define RD[C1, ..., Cj](y) to hold if and only if both following
conditions are met:

1. ∀x ∈ Cj∃!(z, w)(RD[C1, ..., Cj−1](z) ∧R(x1, ..., xk−3, x, y, z, w) ∧ (R̂D[C1, ..., Cj−1](z) ∩
R′(x1, ..., xk−3, x, y, z, w) = ∅)).

2. The sets {x1, ..., xk−3}, {y}, the sets Ci for 1 ≤ i ≤ j, the set D and for the
triplets (x, z, w) with x ∈ Cj, RD[C1, ..., Cj−1](z) and R(x1, ..., xk−3, x, y, z, w) the sets

R̂D[C1, ..., Cj−1](z) and R′(x1, ..., xk−3, x, y, z, w) are all pairwise disjoint.

If RD[C1, ..., Cj](y) holds we set R̂D[C1, ..., Cj](y) to be the union of all the disjoint
sets in item 2 above except for the sets Ci for 1 ≤ i ≤ j, D and {x1, ..., xk−3}.

Finally in case RD[C1, ..., Cj](y) holds we define the map Ry
D[C1, ..., Cj] : C1 × · · · ×

Cj → D the following way. Let Ry
D[]() = y and for j > 0 and ai ∈ Ci for 1 ≤ i ≤ j

let Ry
D[C1, ..., Cj](a1, . . . , aj) = Rz

D[C1, ..., Cj−1](a1, . . . , aj−1) where (z, w) is the unique
pair whose existence for x = aj is stated in item 1 of the definition above. We call this
mapping the mapping represented by y, or we say y represents Ry

D[C1, ..., Cj].

Notice that all the above defined functions and relations do depend on the choice of
the x1, ..., xk−3 vertices. But we exclude them from the notations as we will keep them
fixed all the time.

We will prove below that if the sizes of the Ci’s are properly chosen, then for any
f : C1 × ...×Cn → D we can found a vertex y representing it. Also we will see that sets
with these proper sizes can be first order defined in an α-graph.

5.2 Function representing extensions

In this section we are going to recursively define a sequence of graphs and study their
properties. These graphs corresponds to representations of functions as defined in the
previous section.

We fix a valid k-rooted graph H = (H, x̃, ỹ, z̃, w̃) of size (v, e) and a positive integer n.
If f is an n-variate function by f iai+1,...,an

we will denote the i-variate function for which

f iai+1,...,an
(a1, ..., ai) = f(a1, ..., an).

Before turning to the actual extensions interesting to us, we define a sequence of
rooted graphs using the hybrid construction. Let H0 = H. For i > 0 let Hi =
Hyb(0,Hi−1,H, li, 1) where li is the smallest non-negative integer making this hybrid
dense. Let (vi, ei) be the size of Hi.

Lemma 5.2.1. The Hi as defined above is valid and li is a non-decreasing sequence and
l1 =

⌊

1
αe−v

⌋

.

Proof. Let di = αei− vi. The hybrid Hyb(0,Hi−1,H, l, 1) is dense if and only if α(lei−1 +

e) − (lvi−1 + v + 1) = ldi−1 + d0 − 1 > 0, thus li =
⌈

1−d0
di−1

⌉

. For i = 1 this means
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l1 =
⌈

1−d0
d0

⌉

=
⌊

1
d0

⌋

which proves the last statement. We will prove by induction that Hi

is valid and that di is decreasing. The second claim proves that li is non-decreasing.
We know that H0 is valid, the other statement is empty for i = 0. Let’s assume

we know the statements for j − 1. We have dj = ljdj−1 + d0 − 1 which is positive
by Hj being dense. As lj is the minimal l that makes the above hybrid dense, we have
(lj−1)dj−1+d0−1 = dj−dj−1 < 0, thus dj < dj−1 as claimed. To prove the validity of Hj

by Lemma 4.1.3 we only have left to show that α(ljej−1 +e0−e0)−(ljvj−1 +v0 +1−v0) =
dj − d0 < 0. But we have just established the monotonicity of di up to j, so dj < d0

which completes the proof.

We will use some standard graph constructions. If G1 and G2 are graphs then G1∪G2

is the graph whose vertex set is the union of the vertex sets of G1 and G2 and its edge
set is the union of the edge sets of G1 and G2. For a graph M and two distinct vertices u
and u′ of M the graph that we get from M by attaching u to u′ (denoted as M(u 7→ u′))
is the following graph:

V (M(u 7→ u′)) = V (M) \ {u}

E(M(u 7→ u′)) = E(M − {u}) ∪ {{u′, w} | {u,w} ∈ E(M)}

For any T ⊂ V (M) and vertex u 6∈ V (M) the graph that we get fromM by contracting
T as u (denoted as M(T/u)) is the following graph:

V (M(T/u)) = V (M) ∪ {u} \ T

E(M(T/u)) = E(M − T ) ∪ {{u,w} | {u′, w} ∈ E(M) for some u′ ∈ T}

We will potentially handle many isomorphic copies of the same graph, so we need a
special notation. We will use M [L] where L is a finite list of some objects to refer to
graphs. It will always be true that M [L] ∼= M [L′] for any L and L′ lists. M will be used
as a shorthand to M []. We will use the notation a|L to refer to the list of length |L| + 1
whose first element is a and the rest are the elements of L in the original order.

Let us first define H[L] to be a copy of H for any L. For any L 6= L′ we choose H[L]
and H[L′] to be disjoint. To comply with our convention we choose H[] to be H itself.
The copies of the base vertices of H in H[L] are denoted as x̃1[L], ..., x̃k−2[L], ỹ[L], z̃[L],
w̃[L].

Let us now fix finite disjoint sets B, A1, ..., An, X
′ of sizes b, l1, ..., ln, k−3 respectively

such that these sets are disjoint from all the above defined copies of H. The li’s are as
defined above, b is an arbitrary positive integer. We denote the elements of X ′ with x′1,
..., x′k−3. Let E be the empty graph on the set B ∪ A1 ∪ ... ∪ An ∪X

′. Also for all L let
us have a vertex d[L] disjoint from all the copies of H, all the sets defined above and all
other d[L′].

For any 0 ≤ i ≤ n and any i-variate function f from A1 × ...×Ai to B and any list L
we will define the graph FullExtif [L] and a designated vertex sif [L] ∈ V (FullExtif [L]).
For any 1 ≤ i ≤ n and any i-variate function f from A1 × ... × Ai to B, an element
a ∈ Ai and a list L we will define the graph OneExtif,a[L] and a designated vertex
tif,a[L] ∈ V (OneExtif,a)[L].

For an f ∈ B constant regarded as a nullary function let FullExt0f [L] = E and
s0
f [L] = f for any L. Observe below that during the construction E will always be a

subgraph of the defined graphs.
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For i > 0, a ∈ Ai, the function f : A1 × ... × Ai → B and the list L to define
OneExtif,a[L] take the union of FullExti−1

f i−1
a

[L] and H[L]. Then attach the following

vertices of H[L] to vertices of FullExti−1

f i−1
a

[L]. Attach x̃i[L] to x′i for 1 ≤ i ≤ k − 3,

x̃k−2[L] to a and z̃[L] to si−1

f i−1
a

[L]. We set tif,a[L] to the vertex ỹ[L] of H[L].

For i > 0 and f : A1 × ...×Ai → B and a list L to define FullExtif [L] take the union
of the graphs OneExtif,a[a|L] for each a ∈ Ai. Then contract the set {tif,a[a|L] | a ∈ Ai}
as dL, and set sif [L] to dL.

Figure 5.1: The graph FullExt2f . The function g : A1 → B is defined as g(a11) = b2,
g(a12) = b3. The functions h : A1 → B is defined as h(a11) = b1, h(a12) = b3. The
function f : A1 ×A2 → B is defined as f(a21, x) = g(x) and f(a22, x) = h(x). The points
x1, ..., xk−3 and their respective edges are omitted from this figure.

Notice the point of this whole construction: in the graph FullExtif [L] the vertex sif [L]
represents the function f as defined in the previous section if R is a relation characterizing
H.

Using the above rgraph sequence we can now easily prove what we need to know about
the extensions corresponding to function representations.

Lemma 5.2.2. Let us fix a function f : A1 × ... × An → B and elements a1 ∈ A1, ...,
an ∈ An. Suppose the size of Aj is lj for 1 ≤ j ≤ n. Let us further denote fj = f jaj+1,...,an

for 1 ≤ j ≤ n. Then for 1 ≤ i ≤ n the extension (E,FullExtifi
[L]) is safe and the

extension (E ∪ {tifi,ai
}, OneExtifi,ai

[L]) is rigid for any L.
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Proof. Let OneExtifi,ai
[L] be the graph that we get from OneExtifi,ai

[L] by contracting
A1∪...∪An to a single new vertex a and contracting B to a single new vertex b. The crucial
observation is that the rooted graph (OneExtifi,ai

[L], x′1, ..., x
′
k−3, a, t

i
fi,ai

[L], b, si−1
fi−1

[L]) is
isomorphic to Hi−1. Indeed it is obvious for i = 1 and can be easily shown by induction
for larger i using the construction of hybrids and the inductive construction of OneExt.
Retracting unconnected base vertices does not change the size of an extension, thus
it does not change the extension being dense/sparse/rigid/safe. Thus we have (E ∪
{tifi,ai

[L]}, OneExtifi,ai
[L]) is rigid as we wanted. The same way let FullExtifi

[L] be the
graph that we get from FullExtifi

[L] by contracting A1 ∪ ...∪An to a single vertex a and
contracting B to a single vertex b. From the above it is obvious that the rooted graph
(FullExtifi

[L], x′1, ..., x
′
k−3, a, y

′, b, sifi
[L]) where y′ is a new isolated vertex is isomorphic

to the hybrid Hyb(0,Hi−1,H, li, 0), thus safe as a proper subgraph of the valid rgraph
Hi. This proves the statement about FullExtifi

[L] that completes the proof.

5.3 Existence of representations

Let R be a relation characterizing the valid rgraph H in the α-graph G. We fix n as
above and we will use the integers b and li as defined in the above section. Notice that
while b was chosen arbitrarily the value of li was determined by the choice of H and by
α. We will also refer to all the sets and graphs defined in the previous section.

Lemma 5.3.1. Let us fix finite sets of vertices of G: C1, C2, ..., Cn of sizes l1, ..., ln
and D of size b such that these sets are pairwise disjoint from each other and from F .
Let us fix bijections γi : Ai → Ci and δ : B → D. For a vertex y and for 0 ≤ j ≤ n
assume RD[C1, ..., Cj](y) holds. Let f : A1 × ...× Aj → B be the function defined by:

f(a1, ..., aj) = δ−1(Ry
D[C1, ..., Cj](γ1(a1), ..., γj(aj)))

Then G has a subgraph G′ for which there is an isomorphism ϕ : FullExtjf → G′ such

that ϕ(sjf ) = y, ϕ(b) = δ(b) for any b ∈ B, ϕ(xi) = x′i for 1 ≤ i ≤ k− 3 and ϕ(a) = γi(a)
for any 1 ≤ i ≤ n, and any a ∈ Ai. The vertex set of G′ is:

D ∪ C1 ∪ ... ∪ Cn ∪ R̂D[C1, ..., Cj](y) ∪ {x1, ..., xk−3}

Proof. We prove by induction on j. For j = 0 setting ϕ to be the union of the function
δ and the functions γi will be good.

For j > 0 by definition of RD[C1, ..., Cj] we know that there are vertices zc, wc for
each vertex c ∈ Cj such that zc ∈ RD[C1, ..., Cj−1] and there is a copy of H present in
(G, x1, ..., xk−3, c, y, zc, wc). We know by induction that there are isomorphisms:

ϕc : FullExtj−1

fj−1

γ
−1
j

(c)

[c] → D ∪ C1 ∪ ... ∪ Cn ∪ R̂D[C1, ..., Cj−1](zc) ∪ {x1, ..., xk−3}

There are also isomorphisms ϕ′
c from H[c] to the respective copy of H present in

(G, x1, ..., xk−3, c, y, zc, wc). By the extra conditions in the lemma on the isomorphism
and by the 2. point of the definition of RD[C1, ..., Cj] we know that all the functions ϕc
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and ϕ′
c are compatible, that is if any two of them are defined on a common point then

they give the same value. Thus the union of these isomorphisms give a homomorphism:

ϕ∗ :
⋃

c∈Cj

FullExtj−1

fj−1

γ
−1
j

(c)

[c]∪
⋃

c∈Cj

H[c] → D∪C1∪ ...∪Cn∪ R̂D[C1, ..., Cj](y)∪{x1, ..., xk−3}

Furthermore we know that ϕ′
c(ỹ[c]) = y for all c ∈ Cj and that ϕc(x

′
i) = ϕ′

c(x̃i[c]) = xi
for 1 ≤ i ≤ k − 3, also ϕc(γ

−1
j (c)) = ϕ′

c(x̃k−2[c]) = c and ϕc(s
j−1

fj−1

γ
−1
j

(c)

) = ϕ′
c(z̃i[c]) = zc. So

ϕ∗ induces a homomorphism:

ϕ : FullExtjf → D ∪ C1 ∪ ... ∪ Cn ∪ R̂D[C1, ..., Cj](y) ∪ {x1, ..., xk−3}

as FullExtjf can be created from
⋃

c∈Cj
FullExtj−1

fj−1
c

[c]∪
⋃

c∈Cj
H[c] by identifying vertices

and any two vertices identified during the construction had the same image according to
ϕ∗. But one can see that ϕ is a bijection, so it indeed is an isomorphism as wanted.

Lemma 5.3.2. Let G′ be a subgraph of G such that there is an isomorphism ϕ from
FullExtnf to G′ for some f : A1 × ... × An → B. Assume that for any rigid extension
G′′ of G′ in G of at most |V (FullExtnf )| extra vertices there is no edge e ∈ E(G′′) −
E(G′) which is adjacent to a vertex in V (G′) \ ϕ(B ∪ A1 ∪ ... ∪ An ∪X

′). Then for any
0 ≤ j ≤ n and aj+1 ∈ Aj+1, ..., an ∈ An for y = ϕ(sj

fj
aj+1,...,an

[aj+1, ..., an]) we have

y ∈ Rϕ(B)[ϕ(A1), ..., ϕ(Aj)]. Furthermore for any a1 ∈ A1, ..., aj ∈ Aj we have:

ϕ−1(Ry
ϕ(B)[ϕ(A1), ..., ϕ(Aj)](ϕ(a1), ..., ϕ(aj)) = f jaj+1,...,an

(a1, ..., aj)

Finally we have:

R̂ϕ(B)[ϕ(A1),..., ϕ(Aj)](y) =

ϕ(V (FullExtj
fj

aj+1,...,an

[aj+1, .., an])) \ ϕ(B ∪ A1 ∪ ... ∪ An ∪X
′)

Proof. We prove by induction on j. For j = 0 the lemma is trivial. Let 0 < j ≤ n. For
any a ∈ Aj let za = ϕ(sj−1

fj−1
a,aj+1,...,an

[a, aj+1, ..., an]) and wa = ϕ(w̃[a, aj+1, ..., an]). Then we

have the following facts.

(1) By induction za ∈ Rϕ(B)[ϕ(A1), ..., ϕ(Aj−1)].

(2) By the facts that:

a) the non-base vertices of H[a, aj+1, ..., an] are connected only to each other and to
the respective base vertices in FullExtnf and

b) G′, the image of FullExtnf , does not have small rigid extensions except for those
of ϕ(B ∪ A1 ∪ ... ∪ An ∪X

′)

we know that H is isolated in G(x1, ..., xk−3, ϕ(a), y, za, wa).
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(3) We also know that the image of the set of the non-base vertices of H[a, aj+1, ..., an]
are disjoint from the set:

ϕ(V (FullExtj
fj

aj+1,...,an

[aj+1, .., an])) \ ϕ(B ∪ A1 ∪ ... ∪ An ∪X
′)

simply by ϕ being an injection. The first set is exactly R′(x1, ..., xk−3, ϕ(a), y, za, wa)
and by induction the second is R̂ϕ(B)[ϕ(A1), ..., ϕ(Aj−1)](za).

Thus the first point of the definition of y being an element of Rϕ(B)[ϕ(A1), ..., ϕ(Aj)]
holds, except maybe for the uniqueness. If the uniqueness would also hold then by the
inductive hypothesis on R̂ and by the respective parts in FullExtnf being disjoint we knew
that the second point also holds. It is also easy to check using the respective inductive
hypothesis on the functions represented by za, that y represents the function as claimed.
So the only thing to check is that there are no other pair z′a and w′

a for which:

Rϕ(B)[ϕ(A1), ..., ϕ(Aj−1)](z
′
a) ∧R(x1, ..., xk−3, ϕ(a), y, z′a, w

′
a)∧

∧(R̂D[C1, ..., Cj−1](z
′
a) ∩R

′(x1, ..., xk−3, ϕ(a), y, z′a, w
′
a) = ∅)

Assume the contrary and put together the previous lemma, the above condition on z′a
and w′

a and the fact that R characterizes H implies the existence of an isomorphism
ψ from OneExtjg,a for some (j − 1)-ary function g to a subgraph G′′ of G such that
ψ(E ∪ {tjg,a}) ⊆ V (G′). As by Lemma 5.2.2 (ψ(E ∪ {tjg,a}), G

′′) is a rigid extension we
have that (G′, G′′) is also rigid. The number of non-base vertices of this extension is less
then |V (FullExtnf )|. By the construction of FullExtnf one can also see that G′′ must
have an edge not present in G′ with an endpoint in V (G′) − ϕ(B ∪ A1 ∪ ... ∪ An ∪X

′).
But this contradict with the conditions of the lemma, which completes the proof.

Theorem 5.3.3. For any finite vertex sets C1, ..., Cn, D of sizes l1, ..., ln, b respectively
which are disjoint from each other and from F and for any f : C1 × ...× Cn → D there
exists a vertex y ∈ RD[C1, ..., Cn] for which Ry

D[C1, ..., Cn] ≡ f .

Proof. The theorem follows from the above lemma and from the safe extension axiom

B
|V (FullExtnf )|

E,FullExtn
f

applied to an isomorphism ϕ from E ≤ FullExtnf to the empty graph on

X ∪ C1 ∪ ... ∪ Cn ∪D for which ϕ(x′i) = xi, ϕ(Ai) = Ci and ϕ(B) = D. Notice that by
Lemma 5.2.2 the extension (E,FullExtnf ) is indeed safe.

5.4 Dressing up sets

Lemma 5.4.1. If G is an α-graph then for any finite set T of its vertices G− T is also
an α-graph.

Proof. We need to prove that both axiom schemes given in Theorem 2.2.2 holds in G−T .
It is trivial that AH holds for any dense H as there is no subgraph isomorphic to H in
G, so obviously there is no such subgraph in G− T either.

Let (H0, H1) be a finite safe extension and k > 0 an integer. We can assume H1

(and thus H0) being disjoint from G. For any graph M (not necessarily a subgraph of
G) disjoint from T we denote with M+ the graph that we get from M by adding the
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vertices in T as isolated vertices (that is V (M+) = V (M) ∪ T and E(M+) = E(M)).
Observe that (H+

0 , H
+
1 ) is a safe extension. If there is an isomorphism ϕ from H0 to a

H ′
0 subgraph of G − T then it can be extended to an isomorphism ϕ+ from H+

0 to H ′
0
+

where ϕ+ is the identity on T . Applying Bk
H+

0 ,H
+
1

to this isomorphism we can extend it

to an isomorphism ψ+ from H+
1 to a subgraph L of G. Observe that ψ = ψ+|V (H1) is an

isomorphism from H1 to L − T which is a subgraph of G − T . By L being a k-generic
extension of H ′

0
+ in G it is obvious that L− T is a k-generic extension of H ′

0 = H ′
0
+ − T

in G− T , so Bk
H0,H1

holds in G− T indeed.

We will use the above lemma in the following way. When we know by one of our tools
developed previously or directly by the safe extension axiom that some kind of structure
exists in G (e.g. extension, subgraph) then we can always assume a copy disjoint to any
given finite set.

In the previous section we showed how we can represent functions from Descartes
products of small sets. In this section we want to use this tool to represent relations
on larger sets. To capture at most d-ary relations we will first create a correspondence
between the d-tuples of the big set and the elements of the Descartes product of cd small
sets. Here c is used to compensate for the larger size of our big set. In a cd-tuple every
c long block encodes one element in the d-tuple it corresponds to.

Definition 5.4.2. Let R be a relation characterizing a valid rooted graph H. The
((k+2)(cd+1)+d)-tuple Dr = (x0, y0, z0, x1, y1, z1, ..., xcd, ycd, zcd, s1, ..., sd) is an (R, c, d)-
dress of the vertex set S if the following properties hold. Let R0 = R and Ri =
HybR(0, Ri−1, R, xi, yi, zi, x0, y0, z0). Let Ci = R′

i(xi, yi, zi) for 1 ≤ i ≤ cd. We require
that:

1. |R′(x0, y0, z0)| = 1.

2. The 2k-tuple xi, yi, zi, x0, y0, z0 is good for Ri−1, R and l = 0, thus Ri characterizes
a valid hybrid rooted graph.

3. The sets Ci are pairwise disjoint and also disjoint from F and S.

4. si ∈ RS[C1, ..., Cic]

5. Let fi = Rsi

S [C1, ..., Cic] : C1×...×Cic → S. There is an f ′
i surjection from C(i−1)c+1×

... × Cic to S such that for any a1 ∈ C1, ..., aic ∈ Cic we have fi(a1, ..., aic) =
f ′
i(a(i−1)c+1, a(i−1)c+2, ..., aic).

Observe that if R is first order defined then being a dress is also first order defined.
This definition achieves the goals outlined before it by using vertices xi, yi, zi to define
the small sets Ci and using si to define the correspondence between c-long blocks of tuples
in C1 × ...× Ccd to elements of S.

Lemma 5.4.3. Suppose R is a relation characterizing a valid rooted graph H of size
(v, e). For any c > 0, d > 0 integers there exists an (R, c, d)-dress of the finite vertex set
S if and only if there exists an (R, c, 1)-dress of S. If |S| ≤

⌊

1
αe−v

⌋c
then for any d > 0

there exists an (R, c, d)-dress of S.
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Proof. Let us use the definitions of the previous sections for n = cd. Observe that the
relation Ri in the definition of dress above captures the rooted graph Hi as defined in
Section 5.2. This also implies Ci = li. By repeatedly applying Lemma 4.4.3 and Lemma
5.4.1 we can see that we always have x0, y0, z0, x1, y1, z1, ..., xcd, ycd, zcd which satisfies
items 1., 2. and 3. As we know that Ci = li, by Theorem 5.3.3, we know that for any
function f : C1 × ... × Cj → S for any 1 ≤ j ≤ cd there is a vertex z ∈ RS[C1, ..., Cj]
such that Rz

S[C1, ..., Cj] ≡ f . So s’s satisfying 4. and 5. can be found if and only if
we can found f ′

i : C(i−1)c+1 × ... × Cic → S surjections. This happens if and only if
|C(i−1)c+1| × ... × |Cic| = l(i−1)c+1l(i−1)c+2...lic ≥ |S|. By the li being a non-decreasing
sequence l(i−1)c+1l(i−1)c+2...lic ≥ |S| for all 1 ≤ i ≤ d if and only if l1l2...lc ≥ |S|. This
proves the first statement. If |S| ≤

⌊

1
αe−v

⌋c
then l1l2...lc ≥ lc1 =

⌊

1
αe−v

⌋c
≥ |S| so the

second statement is also true.

Now we show how to use dresses to represent relations.

Definition 5.4.4. Let Dr be an (R, c, d)-dress of the finite set S. With the notations of
Definition 5.4.2 we say the function gK : C1×...×Crc → {vtrue, vfalse} is the representing
function of the r-ary relation K ⊂ Sr (1 ≤ r ≤ d) if for any a1 ∈ C1, ..., arc ∈ Crc we have
g(a1, ..., arc) = vtrue if and only if (f1(a1, ..., ac), f2(ac+1, ..., a2c), ..., fr(a(r−1)c+1, ..., arc)) ∈
K.

It is obvious that for any relation uniquely exists a representing function.

Definition 5.4.5. Let Dr be an (R, c, d)-dress of the finite set S. With the notations
of Definition 5.4.2 we say a vertex q represents K ⊂ Sr if q ∈ R{vtrue,vfalse}[C1, ..., Crc]
and Rq

{vtrue,vfalse}[C1, ..., Crc] ≡ gK where gK is the representing function of K. We will
denote the set of vertices representing any r-ary relation as defined above as RelV r

S,Dr.
The r-ary relation represented by a vertex q ∈ RelV r

S,Dr will be denoted as RelrS,Dr[q].

Notice that both RelV r
S,Dr and RelrS,Dr[q] are first order definable.

Lemma 5.4.6. If Dr is an (R, c, d)-dress of the finite set |S| then for any r-ary relation
K for 1 ≤ r ≤ d there exists a vertex q ∈ RelV r

S,Dr such that K = RelrS,Dr[q].

Proof. The lemma is obvious from the existence of the representing function and from
the fact that for any 1 ≤ j ≤ cd and for any function f : C1 × ...×Cj → {vtrue, vfalse}
there is a vertex z ∈ R{vtrue,vfalse}[C1, ..., Cj] such that Rz

{vtrue,vfalse}[C1, ..., Cj] ≡ f .

5.5 Converting second order formulae

Using the results above we can state the main result of this chapter which essentially says
that we can first order simulate second order formulae on small vertex sets of G.

Theorem 5.5.1. Let P be a fixed set of variables and suppose we are given first order
P -formulae (of signature (E/2)) ∆, η, ι1, ..., ιm of arities 1, k + 2, r1, ..., rm. We are
also given a closed second order formula ψ of signature (E/2, J1/r1, ..., Jm/rm). Finally
we are given a constant c. Then there exists a first order closed P -formula ϕ with the
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following properties. Assume σ : P → V (G) is any variable assignment. Let S = {v ∈
V (G) | G[σ] |= ∆(v)}. Let us define the structure A = (S,EA, JA

1 , ..., J
A

m) where:

EA = {(v, w) ∈ S2 | v and w are connected in G}

JA

i = {(v1, ..., vri) ∈ Sri | G[σ] |= ιi(v1, ..., vri)}

First, if ψ is existential second order, then A 6|= ψ implies G[σ] 6|= ϕ. Second, if σ is such
that:

a) the relation R = {(v1, ..., vk+2) ∈ V (G)k+2 | G[σ] |= η(v1, ..., vk+2)} characterizes a
valid rooted graph of size (v, e) (for some v > 0, e > 0 integers) and

b) the set S has an (R, c, 1)-dress

then A |= ψ if and only if G[σ] |= ϕ. Finally, if a) holds but b) does not hold for σ, then
G[σ] 6|= ϕ.

Proof. Let us first create a second order formula Q1R1...QnRnψ
′ equivalent to ψ where

Qi is one of ∃ and ∀, Ri are relational variables and ψ′ is closed first order (of signature
(E/2, J1/r1, ..., Jm/rm, R1/s1, ..., Rn/sn)). We know that such rewrite is possible for every
second order formula. If ψ is existential second order then ψ′ = ψ and Qi = ∃ for all i.
Set d = max{ti}. The following formula will be good:

ϕ = ∃(Dr = (x1, y1, z1, ..., xcd, ycd, zcd, s1, ..., sd))(

“Dr is an (R, c, d)-dress for S”∧

Q1q1 ∈ RelV s1
S,DrQ2q2 ∈ RelV s2

S,Dr...Qnqn ∈ RelV sn

S,Dr(ψ
′′)

)

where we get ψ′′ from ψ′ by substituting all occurrence of Ri(t1, ..., tsi
) for 1 ≤ i ≤ n with

Relsi

S,Dr[qi](t1, ..., tsi
) and all occurrence of Ji(t1, ..., tsi

) for 1 ≤ i ≤ m with ιi(t1, ..., tsi
).

First, if ψ is existential second order and A 6|= ψ then no choice of relations can satisfy
ψ′, thus ψ′′ is also false for any possible values of Relsi

S,Dr[qi](t1, ..., tsi
), hence ϕ is false.

Second, if a) holds but b) does not then by Lemma 5.4.3 no (R, c, d)-dress can be found,
so the formula is going to be false. Finally using the fact that if both a) and b) holds
then any si-ary relation on S can be represented as Relsi

S,Dr[q] for an appropriate q one
can easily see that ϕ is indeed equivalent to ψ′ and thus to ψ on S.

We already have tools to first order define occurrences of various rooted graphs in
our infinite random graph G. We also know that among these rooted graphs there is
(at least) one whose size corresponds to the numerator and denominator of τl(α) if we
choose the characterizing formulae right for l. But we will need to actually find that
specific occurrence among all the rooted graph occurrences that we can characterize.
The distinctive feature of this specific rooted graph is that it has the largest v

e
ratio

among all the characterizable rooted graphs. So all we need to do is to give a first order
definition of one rooted graph occurrence being better then an other in the above sense.

Definition 5.5.2. Let V1 ⊂ W1 ⊂ V (G) and V2 ⊂ W2 ⊂ V (G) be vertex sets of G. Let
v1 = |W1 \ V1|, v2 = |W2 \ V2|. Let e1 be the number of edges in G between vertices of
V1, and the same way e2 is the number of edges in G between vertices of V2. We say that
(V1,W1) is better then (V2,W2) if we have v1

e1
> v2

e2
.

45



When using this definition sets V1 and V2 will correspond to the base vertices of two
rooted graph occurrence while W1 and W2 will correspond to all the vertices of the same
occurrences.

Lemma 5.5.3. Let P be a fixed variable set, and let ζ and ζ ′ be (k+2)-ary P -formulae and
c be a positive integer constant. Then there exists a (2k+2)-ary P -formula µ with the fol-
lowing properties. Let σ : P → V (G) be a variable assignment and a1, ..., ak+1, a

′
1, ..., a

′
k+1

be vertices of G. Suppose that R = {(v1, ..., vk+2) ∈ V (G)k+2 | G[σ] |= ζ(v1, ..., vk+2}
characterizes a valid rooted graph of size (v, e) and R′ = {(v1, ..., vk+2) ∈ V (G)k+2 |
G[σ] |= ζ ′(v1, ..., vk+2} characterizes a valid rooted graph of size (v′, e′). Let us denote
S = {a | G[σ] |= ζ(a1, ..., ak+1, a)} and S ′ = {a | G[σ] |= ζ ′(a′1, ..., a

′
k+1, a)}. Also let

B = {a1, ..., ak} and B′ = {a′1, ..., a
′
k}. Then we have:

1. If (B′, B′ ∪S ′) is not better then (B,B ∪S) then G[σ] 6|= µ(a1, ..., ak+1, a
′
1, ..., a

′
k+1).

2. If (B′, B′ ∪ S ′) is better then (B,B ∪ S), B ∪ S has an (R, c, 1)-dress and B′ ∪ S ′

has an (R′, c, 1)-dress then G[σ] |= µ(a1, ..., ak+1, a
′
1, ..., a

′
k+1).

Proof. Apply Theorem 5.5.1 with variable set P ′ = P ∪ {y1, ..., yk+1, y
′
1, ..., y

′
k+1}, the

P ′-formulae below:

ι1(z) = (z = y1) ∨ ... ∨ (z = yk)

ι2(z) = (z = y′1) ∨ ... ∨ (z = y′k)

ι3(z) = ζ(y1, ..., yk, yk+1, z) ∨ ι1(z)

ι4(z) = ζ ′(y′1, ..., y
′
k, y

′
k+1, z) ∨ ι2(z)

η(z1, ..., zk+2) = ζ(z1, ..., zk+2)

∆(z) = ι3(z) ∨ ι4(z)

the constant c′ = c + 1 and last but not least for the second order formula γ which has
signature of (E/2, J1/1, J2/1, J3/1, J4/1) and which essentially says that if Vi is the set
for which the unary relation Ji holds then (V2, V4) is better then (V1, V3). Let the closed
first order P ′-formula given by the theorem be ν. Apply the theorem again with exactly
the same parameters except for:

η(z1, ..., zk+2) = ζ ′(z1, ..., zk+2)

Notice the only difference is that we have ζ ′ instead of ζ. Now let us call ν ′ the formula
that the theorem gives. Finally set µ = ν ∨ ν ′.

Observe that γ can be formulated as an existential second order formula. It essentially
states the existence of an injection f : (V3 \ V1) × E ′ → (V4 \ V2) × E where E is the set
of edges between vertices in V3, E

′ is the set of edges between vertices in V4 such that
there is a pair (v, e) ∈ (V4 \ V2) × E which is not a value of f .

So, by Theorem 5.5.1, neither ν or ν ′ holds if (B′, B′∪S ′) is not better then (B,B∪S),
so item 1 holds. For item 2 one only have to notice that the size of the union of the vertex
sets of the two occurrences is at most twice the size of the vertex set of the larger rooted
graph. Thus by setting c′ = c+ 1 and by requiring that B ∪ S has an (R, c, 1)-dress and
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B′∪S ′ has an (R′, c, 1)-dress we ensured that S∪B∪S ′∪B′ either has an (R, c′, 1)-dress
or an (R′, c′, 1)-dress. Hence if γ holds on S ∪ B ∪ S ′ ∪ B′ then at least one of ν and ν ′

holds, so µ holds as claimed.
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Chapter 6

Putting all together

Finally we are ready to prove the main result of this thesis.

Theorem 6.0.4. If a function f : R+ \ Q → {0, 1} satisfies the Very Dense Condition,
the Locally Constant Condition and the Complexity condition then there is a formula ν
such that f |[0,1/2] = fν |[0,1/2].

Proof. As f satisfies the Very Dense Condition there is a positive integer k0 ≥ 2 such
that f is constant on [0, 1

k0
]. First we are going to separately construct formulae νk for

3 ≤ k ≤ k0 that has f |[ 1
k
, 1
k−1

] = fνk
|[ 1

k
, 1
k−1

].

By the Complexity Condition we know there is a PH algorithm A which calculates the
value of f− for any rational p

q
encoded as 0p1q. One can construct another PH algorithm

A′ which works the following way. It takes encoded structures of signature (E/2, B/1).
These structures corresponds to rooted graphs: E gives the edges and B marks the base
vertices. The algorithm answers yes if and only if for the v number of non-base vertices
and for the e number of edges f−(v

e
) = 1. Indeed, A′ simply counts the edges and

the non-base vertices, then invokes A. As the preparation steps are clearly polynomial
(actually linear) and as A is in PH and the input of the A invocation is smaller then the
original input of A′, the whole computation is clearly in PH. Also observe A′ is obviously
order independent as defined in Section 2.3.1.

According to Fagin’s theorem (Theorem 2.3.2) there is a second order formula δ such
that for a structure A of signature (E/2, B/1) we have A |= δ if and only if the above
algorithm would accept it.

By the Locally Constant Condition, there is a constant l such that f is constant
in [τl(α), α] for any α positive real number. Let us fix 3 ≤ k ≤ k0. Applying The-
orem 4.6.3 with our k and d = l + 1 we will have formulae ϕk and ψk of arity nk
such that when for v1, ..., vnk

vertices of an α-graph G we have G[{x1 7→ v1, ..., xnk
7→

vnk
}] |= ϕk(x1, ..., xnk

) then the relation {(a1, ..., ak+2) ∈ V (G)k+2 | G[{x1 7→ v1, ..., xnk
7→

vnk
; y1 7→ a1, ..., yk+2 7→ ak+2}] |= ψk(x1, ..., xnk

, y1, ..., yk+2)} characterizes a valid rooted
graph and there are parameters v1, ..., vnk

with which the above relation characterizes a
rooted graph of size (v, e) with v and e relatively prime and v

e
= τl+1(α).

Applying Lemma 3.3.3 to n = l+ 1 and h = k there is a constant c such that for any
0 < α < 1

2
and p

q
= τl+1(α) with p and q relatively prime we have:

q + k ≤

⌊

1

qα− p

⌋c

(6.1)
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Apply Theorem 5.5.1 to the variable set P = {x1, ..., xnk
, y1, ..., yk+1}, the following

P -formulae:

ιk(z) = (z = y1) ∨ ... ∨ (z = yk)

∆(z) = ψk(x1, ..., xnk
, y1, ..., yk+1, z) ∨ ιk(z)

η(z1, ..., zk+2) = ψk(x1, ..., xnk
, z1, ..., zk+2),

the second order formula δ and the above defined c, and let δ′ denote the first order closed
P -formula given by the theorem.

Using Lemma 5.5.3 for the variable set P ′ = {x1, ..., xnk
, x′1, ..., x

′
nk
} and the P ′-

formulae:

ζ(z1, ..., zk+2) = ψk(x1, ..., xnk
, z1, ..., zk+2)

ζ ′(z1, ..., zk+2) = ψk(x
′
1, ..., x

′
nk
, z1, ..., zk+2)

we get the (2k + 2)-ary P ′-formula µ.
Let νk be the formula below:

νk = ∃x1, ..., xnk
, y1, ..., yk+1( (6.2)

ϕk(x1, ..., xnk
)∧ (6.3)

ψk(x1, ..., xnk
, y1, ..., yk+1, yk+1)∧ (6.4)

¬(∃x′1, ..., x
′
nk
, y′1, ..., y

′
nk

(ϕ(x′1, ..., x
′
nk

) ∧ µ(y1, ...., yk+1, y
′
1, ..., y

′
k+1)))∧ (6.5)

δ′) (6.6)

To find out when νk is true let us investigate a specific assignment of the variables
of the outermost quantification: let xi be assigned to the vertex vi for 1 ≤ i ≤ nk
and yi be assigned to wi. We assume 1

k
< α < 1

k−1
. Let R = ψk(v1, .., vnk

, , ..., )
and if it characterizes a valid rooted graph then let us call that H, and let (v, e) be
the size of H and H be the underlying graph of H. We also set S = {w1, ..., wk} ∪
ψk(v1, ..., vnk

, w1, ..., wk+1, ). We call an assignment good if:

(i) ϕk(v1, .., vnk
) holds in G thus R characterizes a valid rooted graph and v

e
= τl+1(α)

(ii) ψk(v1, .., vnk
, w1, ..., wk+1, wk+1) holds and the induced subgraph of G spanned by

the vertex set S is isomorphic to the H.

We remark that from (i) and from ψ(v1, .., vnk
, w1, ..., wk+1, wk+1) we already know

that the subgraph spanned by S contains H as a subgraph. (ii) also claims that there
are no extra edges.

By Theorem 4.6.3 we know that there are vertices v1, ..., vn satisfying (i). By Lemma
4.3.1 for any v’s satisfying (i) there are w’s satisfying (ii) Thus there is a good assignment.

First let us investigate what happens if the assignment is good. Parts 6.3 and 6.4 of
νk trivially hold. By the third point of Theorem 4.6.3 and by point 1. of Lemma 5.5.3
the formula µ(y1, ...., yk+1, y

′
1, ..., y

′
k+1) can never hold if x′1, ..., x′nk

are assigned such way
that ϕk(x

′
1, ..., x

′
nk

) holds. Thus part 6.5 also holds. Observe that by the choice of c and
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by Lemma 3.3.3 the set S has an (R, c, 1)-dress. Thus by Theorem 5.5.1 δ′ holds if and
only if f−(τl+1(α)) = 1. Observe that as τl+1 ∈ [τl(α), α)] and f− is continuous at the
irrational point α using the Locally Constant Condition we have f−(τl+1(α)) = f(α).
Thus δ′ holds if and only if f(α) = 1.

We claim that if an assignment is not good then at least one of 6.3, 6.4, 6.5 or 6.6 will
not hold. If R does not characterize a valid rooted graph then 6.3 fails. Otherwise if the
rooted graph H characterized by R is not present in (G,w1, ..., wk) with counting vertex
wk+1 then 6.4 fail. If the set S does not have an (R, c, 1)-dress then 6.6 will fail by the
last statement of Theorem 5.5.1. Otherwise if for the (v, e) size of H we have v

e
6= τl+1(α)

thus v
e
< τl+1(α) and/or there are extra edges in the induced subgraph spanned by S

then 6.5 will fail by the existence of a good assignment which we can apply to the x′’s
and y′’s.

Putting the above together we have that the νk holds if and only if f(α) = 1 when
1
k
< α < 1

k−1
which implies f |[ 1

k
, 1
k−1

] = fνk
|[ 1

k
, 1
k−1

] as claimed.

For k ≥ 2 let Lk be the graph on k+1 vertices {a, b1, ..., bk} where a is connected to all
others and no other edges are present. We can easily create a first order characterization
of the rooted graph Lk = (Lk, b1, ..., bk, a). Thus by Lemma 4.5.1 we can create a closed
first order formula βk such that G |= βk if and only if Lk is safe. Observing that the Lk
is safe if and only if α < 1

k
we get that G |= βk if and only if α < 1

k
. Let us define the

following formula:

ν ′ = (¬βk0 ∧ βk0−1 ∧ νk0) ∨ (¬βk0−1 ∧ βk0−2 ∧ νk0−1) ∨ ... ∨ (¬β3 ∧ β2 ∧ ν3)

It is obvious from the properties of βk and νk that f |[ 1
k0
, 1
2
] = fν′ |[ 1

k0
, 1
2
] and that fν′ is 0

outside [ 1
k0
, 1

2
]. Thus ν = ν ′ is good if f(x) = 0 for x ≤ 1

k0
. Otherwise ν = ν ′ ∨ βk0 is

good.
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