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Eötvös Loránd University, Budapest

Budapest, 2009.



Contents

Acknowledgements iii

1 Introduction 1
1.1 Basic definitions and examples . . . . . . . . . . . . . . . . . . . 1
1.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Equipartitions 6
2.1 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Weak invariance principle . . . . . . . . . . . . . . . . . . . . . . 11

3 Examples 24
3.1 CLT-property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 0-property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ii



Acknowledgements

I would like to express my gratitude to my advisor in Budapest, Vilmos Prokaj,
and my former supervisor, Karma Dajani, for all the advice, support and en-
couragement they gave me throughout the time I spent working on this thesis.
It has been a pleasure to work with both of them.

I also thank for my universities, the Eötvös Loránd University in Budapest
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Chapter 1

Introduction

1.1 Basic definitions and examples

First of all, let us start with a little introduction about ergodic theory.
Ergodic theory is the study of the long term average behaviour of systems
evolving in time. As a starting point we have a probability space (X,B, µ).
The collection of all states of the system form a space X and the evolution, in
our case, is represented by a measurable transformation T : X → X, so that
T−1A ∈ B for all A ∈ B. In most cases we would like our transformation to be
measure preserving and ergodic, i.e.:

Definition 1.1. Let (X,B, µ) be a probability space and T : X → X measurable.
The map T is said to be measure preserving with respect to µ if µ(T−1A) = µ(A)
for all A ∈ B. We call the quadruple (X,B, µ, T ) a measure preserving or
dynamical system.

Definition 1.2. Let T be a measure preserving trasformation on a probability
space (X,B, µ). T is called ergodic with respect to µ if for every measurable set
A satisfying A = T−1A, we have µ(A) = 0 or 1.

Example 1.1. Consider ([0, 1),B, µ), where B is the Borel σ-algebra and µ is
the Gauss measure given by the density 1

log 2
1

1+x with respect to the Lebesgue
measure. Let T be the Gauss transformation given by T (x) = 1

x (mod 1). It is
well known that T preserves the Gauss measure. Moreover, T is ergodic with
respect to µ.

Example 1.2. Consider ([0, 1),B, λ), where B is the Lebesgue σ-algebra and
λ is the Lebesgue-measure. Let T : [0, 1) → [0, 1) be given by Tx = rx mod 1,
where r is a positive integer. Then T is ergodic with respect to λ.
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CHAPTER 1. INTRODUCTION 2

Example 1.3. Consider ([0, 1),B, λ) as above. Let β > 1 a non-integer, and
consider Tβ : [0, 1) → [0, 1) given by Tβx = βx mod 1. Then Tβ is ergodic with
respect to λ, i.e. if T−1

β A = A, then λ(A) = 0 or 1.

The following lemma provides, for example in the cases mentioned above, a
useful tool to verify ergodicity of a measure preserving transformation defined
on ([0, 1),B, µ), where µ is equivalent to the Lebesgue measure.

Lemma 1.1. (Knopp’s lemma) If B is a Lebesgue-set and C is a class of subin-
tervals of [0, 1) satisfying

(a) every open subintervals of [0, 1) is at most a countable union of disjoint
elements from C,

(b) ∀A ∈ C, λ(A ∩B) ≥ γλ(A), where γ > 0 is independent of A,
then λ(B) = 1.

An important theorem is the Ergodic Theorem also known as Birkhoff’s
Ergodic Theorem, which is in fact a generalization of the Strong Law of Large
Numbers. The theorem goes as follows:

Theorem 1.1. (Ergodic Theorem) Let (X,B, µ) be a probability space and let
T : X → X be a measure preserving transformation. Then ∀f ∈ L1(X,B, µ),

lim
n→∞

1
n

n−1∑
i=0

f(T ix) = f∗(x)

exists µ-a.e. x ∈ X, is T -invariant and
∫
X
fdµ =

∫
X
f∗dµ. If moreover T is

ergodic, then f∗ is a constant a.e. and f∗ =
∫
X
fdµ.

This is widely used theorem, for example, it is crucial in the proof of the
Shannon-McMillan-Breiman theorem which we will state later. Using the Er-
godic Theorem one can give another characterization of ergodicity:

Corollary 1.1. Let (X,B, µ) be a probability space and T : X → X a measure
preserving transformation. Then T is ergodic if and only if for all A,B ∈ B one
has

lim
n→∞

1
n

n−1∑
i=0

µ
(
T−iB ∩A

)
= µ(A)µ(B).

This corollary gives a new definition for ergodicity, namely, the asymptotic
average independence. We can define other notions like this which are stronger
than ergodicity, called mixing properties:

Definition 1.3. Let (X,B, µ) be a probability space and T : X → X a measure
preserving transformation. Then,

(i) T is weakly mixing if for all A,B ∈ B one has

lim
n→∞

1
n

n−1∑
i=0

∣∣µ (T−iB ∩A)− µ(A)µ(B)
∣∣ = 0.
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(ii) T is strongly mixing if for all A,B ∈ B one has

lim
n→∞

µ
(
T−iB ∩A

)
= µ(A)µ(B).

It is not hard to see that strongly mixing implies weakly mixing and weakly
mixing implies ergodicity. This follows from the simple fact that if {an} such
that limn→∞ an = 0 then limn→∞

1
n

∑
|an| = 0 and hence limn→∞

1
n

∑
an = 0.

The following proposition helps us check whether a transformation is mixing:

Proposition 1.1. Let (X,B, µ) be a probability space and T : X → X a measure
preserving transformation. Let C be a generating semi-algebra of B. Then,

(a) If for all A,B ∈ C one has

lim
n→∞

1
n

n−1∑
i=0

∣∣µ (T−iB ∩A)− µ(A)µ(B)
∣∣ = 0,

then T is weakly mixing.
(b) If for all A,B ∈ C one has

lim
n→∞

µ
(
T−iB ∩A

)
= µ(A)µ(B),

then T is strongly mixing.

Example 1.4. (Bernoulli shifts) Let X = {0, 1, . . . , k − 1}N, B generated by the
cylinders. Let p = (p0, p1, . . . , pk−1) be a positive probability vector. We define
the measure µ on B by specifying it on the cylinder sets as follows:

µ({x : x0 = a0, . . . , xn = an}) = pa0pa1 · · · pan .

Let T : X → X be defined by Tx = y where yn = xn+1. This map T , called the
left shift, is measure preserving and even strongly mixing with respect to µ. The
measure preservingness follows easily from the fact that

T−1{x : x0 = a0, . . . , xn = an} =
k−1⋃
j=0

{x : x0 = j, x1 = a0, . . . , xn+1 = an}.

The cylinder sets form a semi-algebra, so we can use Proposition 1.1. Take
A,B cylinders: A = {x : x0 = a0, x1 = a1, . . . , xk = ak} and B = {x : x0 =
b0, x1 = b1, . . . , xm = bm}. Now if we take n ≥ m+ 1, then T−nA and B specify
different coordinates, thus

µ(T−nA ∩B) = µ({x : x0 = b0, . . . , xm = bm, xn = a0, . . . , xn+k = ak}) =

= µ({x : x0 = b0, . . . , xm = bm})µ({x : xn = a0, . . . , xn+k = ak}) =

= µ(B)µ(T−nA) = µ(A)µ(B),

which implies that T is strongly mixing.
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Example 1.5. (Markov shifts) Let (X,B, T ) be as above. We define a measure
ν on B by specifying it on the cylinder sets as follows: Let P = (pij) be a
stochastic k × k matrix, and q = (q0, q1, . . . , qk−1) a positive probability vector
such that qP = q. Define ν the following way:

ν({x : x0 = a0, . . . , xn = an}) = qa0pa0a1 · · · pan−1an .

Just as in the previous example, one can easily see that T is measure preserving
with respect to ν. Note that the Bernoulli shifts are Markov shifts with q = p
and with P = (p01, p11, . . . , pk−11) where 1 denotes the the vector for which all
the k coordinates are 1.

1.2 Entropy

There is a very important notion in ergodic theory called entropy. To define
it, we need a few steps. First, let α be a finite or countable partition, i.e. X
is a disjoint union (up to measure 0) of A ∈ α. We define the entropy of the
partition α by

H(α) = Hµ(α) := −
∑
A∈α

µ(A) logµ(A).

Here and from now on everywhere log represents logarithm with base 2. If α
and β are partitions, then we define

α ∨ β := {A ∩B : A ∈ α,B ∈ β}

and under T−1α we consider the partition

T−1α = {T−1A : A ∈ α}.

Now consider the partition
∨n−1
i=0 T

−iα, whose atoms, i.e. the members of the
partition, are of the form Ai0 ∩T−1Ai1 ∩· · ·∩T−(n−1)Ain−1 . Then the following
proposition can be proven:

Proposition 1.2. Let α be a finite or a countable partition of the dynamical
system (X,B, µ, T ) with T measure preserving transformation. Assume that
H(α) <∞. Then limn→∞

1
nH(

∨n−1
i=0 T

−iα) exists.

The proof is based on the fact that the above sequence is subadditive, as it
can be shown that

H(α ∨ β) ≤ H(α) +H(β)

and it is obvious that if T is µ-invariant, then H(T−1α) = H(α). This propo-
sition allows to define the following:

Definition 1.4. The entropy of the measure preserving transformation T with
respect to the partition α is given by

h(α, T ) = hµ(α, T ) := lim
n→∞

1
n
H(

n−1∨
i=0

T−iα).
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For each x ∈ X, let us introduce the notation α(x) for the element of α to
which x belongs. We close the introduction by stating one of the most important
theorems of ergodic theory, which we are going to use quite often:

Theorem 1.2. (The Shannon-McMillan-Breiman Theorem) Suppose T is an
ergodic measure preserving transformation on a probability space (X,B, µ), and
let α be a countable partition with H(α) <∞. Denote αn =

∨n−1
i=0 T

−iα, then

lim
n→∞

− logµ(αn(x))
n

= h(α, T ) µ− a.e.

For proofs and more detailed introduction, see([2]).



Chapter 2

Equipartitions

In this chapter we will investigate the rate at which the digits of one number-
theoretic expansion determine those of another. First of all, let us define what
a number-theoretic expansion is:

Definition 2.1. A surjective map T : [0,1)→ [0,1) is called a number-theoretic
fibered map (NTFM) if it satisfies the following conditions:

(a) there exists a finite or countable partition of intervals P = {Pi : i ∈ D}
such that T restricted to each atom of P (cylinder set of order 0) is monotone,
continuous and injective,

(b) T is ergodic with respect to Lebesgue measure λ, and there exists a T -
invariant probability measure µ equivalent to λ with bounded density. (Both dµ

dλ

and dλ
dµ are bounded.)

Iterations of T generate expansions of points x ∈ [0, 1) with digits in D. We
refer to the resulting expansion as the T -expansion of x. Throughout the chapter
we are going to assume the followings: let T and S be number-theoretic fibered
maps on [0,1) with probability measures µ1 and µ2 respectively, each boundedly
equivalent to Lebesgue measure and with generating partitions (cylinders of
order 0) P and Q respectively. Denote by Pn and Qn the interval partitions
of [0,1) into cylinder sets of order n, namely, Pn =

∨n−1
i=0 T

−iP and Qn =∨n−1
i=0 S

−iQ. Denote by Pn(x) the element of Pn containing x (similarly for
Qn(x)), and introduce

m(n, x) = sup{m ≥ 0|Pn(x) ⊂ Qm(x)}.

Suppose that Hµ1(P ) and Hµ2(Q) are finite and h(T ) = hµ1(T ) and h(S) =
hµ2(S) are positive.

2.1 Central limit theorem

Our starting point in this section is the following theorem by Dajani and
Fieldsteel[3]:

6
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Theorem 2.1.

lim
n→∞

m(n, x)
n

=
h(T )
h(S)

a.e.

The same holds true if we look at the smallest k for which Pk(x) is still
contained in Qm(x). So let us define

k(m,x) = inf{k ≥ 0|Pk(x) ⊂ Qm(x)}.

Then under the same assumptions, the following is true:

Theorem 2.2.

lim
n→∞

k(m,x)
m

=
h(S)
h(T )

a.e.

Proof. Let us take x such that the convergence in Theorem 2.1 holds. Then for
all m > m(1, x) we can find n ∈ N such that m(n, x) < m ≤ m(n+ 1, x). From
the definition of m(n, x), this means that Pn+1(x) ⊂ Qm(n+1,x)(x) ⊂ Qm(x)
and that Pn(x) * Qm(x), i.e. k(m,x) = n+ 1. Thus

n+ 1
m(n+ 1, x)

≤ n+ 1
m

=
k(m,x)
m

<
n+ 1
m(n, x)

.

Here both the first and the last terms converge to h(S)
h(T ) from the previous theo-

rem, which means that k(m,x)
m converges and the limit is what we wanted. Since

the convergence in Theorem 2.1 holds almost everywhere, we have completed
the proof.

In the sequel the following two properties are going to play an important
role:

Property 2.1. We say that the triplet (P, µ1, T ) or in short the transformation
T satisfies the 0-property if

− logµ1(Pn(x))− nh(T )√
n

→ 0

almost everywhere.

Property 2.2. We say that the triplet (Q,µ2, S) or in short the transformation
S satisfies the CLT-property if

lim
n→∞

µ2

(
− logµ2(Qn(x))− nh(S)

σ
√
n

≤ u
)

=

u∫
−∞

1√
2π
e−

x2
2 dx,

for every u ∈ R and for some σ > 0.
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Remark 2.1. Notice that both properties can be stated with the Lebesgue mea-
sure since we only look at measures equivalent to it. In the case of the CLT-
property, we mean that logµ2(Qn(x)) can be replaced with log λ(Qn(x)).

Lemma 2.1. If the transformation T satisfies the 0-property, then

log
(

λ(Qm(x))
λ(Pk(m,x)(x))

)
= o

(√
m
)

in probability (2.1)

Proof. We know that limm→∞
k(m,x)
m = h(S)

h(T ) > 0 from Theorem 2.2. From
the zero property we also know that for large n and for most of the x points
log(λ(Pn+1(x)))− log(λ(Pn(x))) ≈ h(T ) + o(

√
n). We combine these two prop-

erties to get the result.
Indeed, since by definition Qm ⊃ Pk(m,x), we see that the left hand side of

(2.1) is non negative. So we only have to prove that for any positive ε there is
an m0 such that for m > m0

λ
({
x ∈ [0, 1] : log (λ(Qm(x)))− log (λ(Pk(m,x)(x))) > ε

√
m
})

< ε

Fix ε > 0 and put

An =
{
x ∈ [0, 1] : | log(λ(Pn(x))) + nh(T )| > 1

2
ε
√
n

}
.

By the zero property there is an n0 such that λ(∪n≥n0An) ≤ ε.
Put

Bn =
{
x : ∀m > n,

1
2
<
k(m,x)
m

· h(T )
h(S)

< 2
}

Since k(m,x)
m has a finite positive limit h(S)

h(T ) for almost every x, we can find

m1 > 2n0
h(S)
h(T ) such that

λ (Bm1) > 1− ε.
Now if x /∈ ∪n≥n0An then for n > n0 we have that

log(λ(Pn−1(x)))− log(λ(Pn(x))) ≤ h(T ) +
√
nε

So if m > m1 and x ∈ Bm1 \
⋃
n≥n0

An then

d(x, ∂Qm(x)) ≤ λ(Pk(m,x)−1(x)) ≤

2h(T )+ε
√
k(m,x)λ(Pk(m,x)(x)) ≤ 2h(T )+ε

√
2
h(S)
h(T )mλ(Pk(m,x)(x))

Hence

log (λ(Qm(x)))− log
(
λ(Pk(m,x)(x))

)
√
m

≤

log (λ(Qm(x)))− log(d(x, ∂Qm(x))) + h(T )√
m

+ ε

√
2
h(S)
h(T )

. (2.2)
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For each m and I ∈ Qm let I ′ ⊂ I a concentric interval such that λ(I ′) =
(1− ε)λ(I). Then λ(∪I∈QmI ′) = 1− ε and for each x ∈ ∪I∈QmI ′ the right hand
side of (2.2) is not greater than∣∣log

(
2
ε

)∣∣+ h(T )
√
m

+ ε

√
2
h(S)
h(T )

.

Now we can put the above pieces together. Let m0 > m1 so large that∣∣log
(

2
ε

)∣∣+ h(T )
√
m0

+ ε

√
2
h(S)
h(T )

< ε

√
3
h(S)
h(T )

.

For m > m0 and x ∈ (Bm1 ∩
⋃
I∈Qm I

′)\
⋃
n≥n0

An all the above estimation are
valid, hence

λ

({
x ∈ [0, 1] : log (λ(Qm(x)))− log

(
λ(Pk(m,x)(x))

)
> ε

√
3
h(S)
h(T )

m

})
< 3ε.

Since ε > 0 was arbitrary, the proof is complete.

Now we can prove the following theorem which says that the speed of con-
vergence in Theorem 2.2 is in fact of order 1√

m
:

Theorem 2.3. Let us suppose that the transformation S satisfies the CLT-
property and that T satisfies the 0-property. Then the following holds:

k(m,x)−m h(S)
h(T )

σ1
√
m

⇒ N (0, 1),

where σ1 = σ
h(T ) and ⇒ is the convergence in law with respect to the probability

measure µ2.

Proof. We can divide the expression above into four parts the following way:

k(m,x)−m h(S)
h(T )

σ1
√
m

=

=
log λ(Pk(m,x)(x)) + k(m,x)h(T )

h(T )σ1
√
m

+
− log λ(Pk(m,x)(x)) + log λ(Qm(x))

h(T )σ1
√
m

+

+
− log λ(Qm(x)) + log µ2(Qm(x))

h(T )σ1
√
m

+
− logµ2(Qm(x))−mh(S)

h(T )σ1
√
m

.

Here the first term goes to 0 for almost every x because of the conditions
made on the transformation T . To see this, let us take x ∈ [0, 1) such that the
convergence in k(m,x)

m → h(S)
h(T ) is satisfied. It is enough to see that for such an x

the first term goes to 0. We can prove this easily:

log λ(Pk(m,x)(x)) + k(m,x)h(T )
h(T )σ1

√
m

=
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=
1

h(T )σ1

√
k(m,x)
m

log λ(Pk(m,x)(x)) + k(m,x)h(T )√
k(m,x)

,

and since the multiplier 1
h(T )σ1

√
k(m,x)
m → 1

h(T )σ1

√
h(S)
h(T ) < ∞ and the rest is a

subsequence of the opposite of the sequence appearing in the assumption of the
0-property since k(m,x)→∞ as m→∞, the whole thing goes to 0.

The second term equals to 1
h(T )σ1

√
m

log λ(Qm(x))
λ(Pk(m,x)(x))

and thus goes to 0 in
probability by Lemma 2.1.

The third term will go to 0 for every x because of the equivalency of the
measures λ and µ2. That is to say there ∃K1 andK2 positive and finite constants
such that for every Borel-set B: K1µ2(B) ≤ λ(B) ≤ K2µ2(B). Hence

− logK1

h(T )σ1
√
m

=
− logK1 − logµ2(Qm(x)) + log µ2(Qm(x))

h(T )σ1
√
m

≥

≥ − log λ(Qm(x)) + log µ2(Qm(x))
h(T )σ1

√
m

≥

≥ − logK2 − logµ2(Qm(x)) + log µ2(Qm(x))
h(T )σ1

√
m

=
− logK2

h(T )σ1
√
m
.

Here both the first and the last expression go to 0 for every x and thus so does
the the third term above.

So all is left is the fourth term, and that one has a limiting standard normal
distribution since we have assumed that for the transformation S and we have
chosen σ1 = σ

h(T ) . This means that altogether k(m,x) satisfies a central limit
theorem.

Remark 2.2. From now on there will be times when we would like to show
that something converges in probability using that for some other expression we
already know this. Here is how we are going to proceed in these cases. We
would like to use the expression - even in connection with a sequence of ran-
dom variables that only converges in probability - that we ’take a point where
the convergence holds’. By this we are going to mean the following. It is well-
known that a sequence of random variables converges in probability if and only if
for every subsequence there is a sub-subsequence which converges almost surely.
So if we want to show that a sequence converges in probability, we can take a
subsequence and we only need to show that there is a sub-subsequence which
converges almost surely. And vice versa, if we have a sequence that converges
in probability, then for every subsequence of it, we can take a sub-subsequence
that converges almost everywhere. So when we say for a sequence of random
variables which converges in probability that let us take a point where the con-
vergence holds, we mean that there has been a subsequence for which we can
take a sub-subsequence which converges almost everywhere and thus we take a
point where this almost sure convergence holds. But we do not want to bother
with subsequences and sub-subsequences which would cause some problems with
the notations. However, it is very important to bear in mind that this is what
we mean by that.
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2.2 Weak invariance principle

The central limit theorem can be improved to what is called the weak
invariance principle if we assume more for the transformation S.

For each x ∈ [0, 1) and m ∈ N let us take the following random variables:

Wm,x

(
l

m

)
=
− logµ2(Ql(x))− lh(S)

σ
√
m

and we extend this linearly on each subintervals [ lm ,
l+1
m ]. This way for each x

Wm,x(t) is an element of the space C[0, 1] of the continuous functions on [0, 1]
topologised with the supremum norm.

Definition 2.2. We say that S satisfies the weak invariance principle if the
process Wm(t) converges in law to the Brownian motion on [0, 1].

In this section we are going to suppose for the transformation S that it
satisfies this weak invariance principle and then, as we did it previously with
the CLT-property, we are going to prove that so does k(m,x). Our first theorem
is the following:

Theorem 2.4. Suppose that the transformation T satisfies the 0-property and
that S satiesfies the weak invariance principle. Let us take

Km,x

(
l

m

)
=
k(l, x)− l h(S)

h(T )

σ1
√
m

and let us extend it linearly on each subintervals [ lm ,
l+1
m ] in [0, 1], where σ1 =

σ
h(T ) . Then the process Km(t) for t ∈ [0, 1] converges in law to the Brownian
motion on [0, 1].

Proof. Since S satiesfies the weak invariance principle, it is enough to show that

sup
t∈[0,1]

|Km(t)−Wm(t)| → 0

in probability. Let us notice that both Km(t) and Wm(t) are constructed the
same way that is we take their value at points l

m and then extend them linearly in
between. Hence it is sufficient to take the supremum for t = l

m for l = 0, 1, ...,m.
This is easy to see from the fact that the difference of two linear functions is
linear and that the supremum of a linear function over a closed interval is taken
at one of the endpoints. So let us take 0 ≤ l ≤ m and x ∈ [0, 1). Then we can
divide the difference into three parts:

Km,x

(
l

m

)
−Wm,x

(
l

m

)
=

=
k(l, x)− l h(S)

h(T )

σ1
√
m

− − logµ2(Ql(x))− lh(S)
σ
√
m

=
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=
k(l, x)h(T )− lh(S) + log µ2(Ql(x)) + lh(S)

h(T )σ1
√
m

=

=
k(l, x)h(T ) + log λ(Pk(l,x)(x))

h(T )σ1
√
m

+
log λ(Ql(x))

λ(Pk(l,x)(x))

h(T )σ1
√
m

+
log µ2(Ql(x))

λ(Ql(x))

h(T )σ1
√
m
.

Let us denote this three parts with R1

(
l
m , x

)
, R2

(
l
m , x

)
and R3

(
l
m , x

)
respec-

tively. We are going to prove that

max
l=0,1,...,m

∣∣∣∣Ri( l

m
, x

)∣∣∣∣→ 0,

in probability, for i=1,2,3. The third term is the easiest: because of the equiv-
alence of the measures there exists K1 and K2 that K1 ≤ µ2(B)

λ(B) ≤ K2 for every
B Borel-set and thus

0 ≤ max
l=0,1,...,m

∣∣∣∣R3

(
l

m
, x

)∣∣∣∣ ≤ max{| logK1|, | logK2|}
h(T )σ1

√
m

and this goes to 0. For the other two terms we are going to need a little lemma:

Lemma 2.2. Let gm(l) = 1√
m
f(l) be a real valued function for positive integer

m, where 0 ≤ l ≤ m is also an integer. Let us suppose that gm(m) → 0 as
m→∞. Then

max
0≤l≤m

|gm(l)| → 0

as m→∞.

Proof. First we are going to prove that

max
0≤l≤m

gm(l)→ 0

as m → ∞. Let l(m) be the largest integer not bigger than m, where the
maximum occurs, i.e.

gm(l(m)) = max
0≤l≤m

gm(l).

Let us notice the following:

gm+1(l(m+ 1)) = max
{ √

m√
m+ 1

gm(l(m)), gm+1(m+ 1)
}
.

From this it is easy to see that either l(m + 1) = l(m) or l(m + 1) = m + 1.
Hence whenever l(m+1) > l(m) then l(m+1) = m+1. Thus l(m) is monotone
increasing and if it is not bounded, then there are infinitely many m integers
for which l(m) = m. This way we can distinguish two cases: the first is when
l(m) is bounded: this can only happen if there exists N integer that for every
m ≥ N : l(m) = l(N). So let us take in this case m ≥ N :

gm(m) ≤ max
0≤l≤m

gm(l) = gm(l(m)) = gm(l(N)) =
√
N√
m
gN (l(N)).
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Here both the first and the last term goes to 0 as m → ∞ and so does the
maximum.

The second case is when l(m) is not bounded: this can only happen if
there is a strictly increasing (and thus going to infinity) sequence mn such that
l(mn) = mn and if mn ≤ m < mn+1, then l(m) = l(mn) = mn. This way:

gm(m) ≤ max
0≤l≤m

gm(l) = gm(l(m)) = gm(mn) =
√
mn√
m
gmn(mn) ≤ gmn(mn)

here again the first and the last term goes to 0 as m→∞.
Now let us notice the following:

max
0≤l≤m

|gm(l)| = max{ max
0≤l≤m

gm(l),− min
0≤l≤m

gm(l)}.

We can use the first part of the proof for the function r = −g and conclude that

max
0≤l≤m

rm(l) = − min
0≤l≤m

gm(l)→ 0,

which finishes the proof.

We can use this lemma to conclude the proof of our theorem. First we show
that

max
l=0,1,...,m

∣∣∣∣R1

(
l

m
, x

)∣∣∣∣→ 0

almost everywhere. Let us take x ∈ [0, 1) where the convergence of the 0-
property and the convergence of Theorem 2.2 hold. Both happen almost every-
where, so it is sufficient to prove the above convergence for these x. Now we
can take

f(l) =
k(l, x)h(T ) + log λ(Pk(l,x)(x))

h(T )σ1
.

We can use the lemma with this f because we assumed that at the point x the
0-property holds, i.e.:

− logµ1(Pn(x))− nh(T )√
n

→ 0.

As usual, because of the equivalence of the measures λ and µ1 the same holds if
we write λ instead of µ1 in the convergence of the 0-property. We need to check
if the assumption of the lemma holds:

gm(m) =
1√
m
f(m) =

k(m,x)h(T ) + log λ(Pk(m,x)(x))
h(T )σ1

√
m

=

=

√
k(m,x)
m

k(m,x)h(T ) + log λ(Pk(m,x)(x))

h(T )σ1

√
k(m,x)

,

which goes to 0 as m→∞.
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Next we show that

max
l=0,1,...,m

∣∣∣∣R2

(
l

m
, x

)∣∣∣∣→ 0

in probability. Here we take x ∈ [0, 1) - bearing in mind Remark 2.2 - such that
the convergence in Lemma 2.1 holds. Then we take

f(l) =
1

h(T )σ1
log

λ(Ql(x))
λ(Pk(l,x)(x))

.

Now we can again use the previous lemma if we show that its assumption holds:

gm(m) =
1√
m
f(m) =

1
h(T )σ1

√
m

log
λ(Qm(x))

λ(Pk(m,x)(x))
,

which goes to 0 because of Lemma 2.1. At last we can put all the pieces together:

0 ≤ sup
t∈[0,1]

|Km,x(t)−Wm,x(t)| = max
l=0,1,...,m

∣∣∣∣Km,x

(
l

m

)
−Wm,x

(
l

m

)∣∣∣∣ ≤
≤ max
l=0,1,...,m

∣∣∣∣R1

(
l

m
, x

)∣∣∣∣+ max
l=0,1,...,m

∣∣∣∣R2

(
l

m
, x

)∣∣∣∣+ max
l=0,1,...,m

∣∣∣∣R3

(
l

m
, x

)∣∣∣∣→ 0

in probability. This proves the theorem.

We are going to use the previous theorem to get a similar result for m(n, x).
To get there, first we need a few propositions as we are going step by step.

Proposition 2.1. Let us suppose that we have a stochastic process St for t ≥ 0,
with continuous realizations. Let us take

Sn(t) =
1√
n
Snt.

If Sn(t) converges in law to the Brownian motion on [0, 1], then it also converges
in law to it on [0, k] for every k ∈ N.

Proof. Let us take φ : C([0, 1])→ C([0, k]) such that φ(ω(t)) =
√
kω
(
t
k

)
. Then

this φ is a continuous mapping. Let us notice that φ
(
Skn|[0,1]

)
= Sn|[0,k] . It

is well-known that if B(t) is a Brownian motion, then so is aB
(
t
a2

)
for every

a 6= 0. This means that φ
(
B|[0,1]

)
= B|[0,k] in law, and thus it is a Brownian

motion on [0, k]. Hence as φ is continuous and Skn|[0,1] converges in law to the
Brownian motion on [0, 1], Sn|[0,k] converges in law to the Brownian motion on
[0, k]. This concludes the proof.

This proposition tells us that if we extend the definition of Kn, then it follows
that it converges in law to the Brownian motion on [0, k]. This observation will
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be of great help in the sequel. But first of all, let us introduce the following two
processes:

K ′n,x (tnl (x)) =
l h(S)
h(T ) − k(l, x)

σ1
√
n

and

M ′n,x (tnl (x)) =
h(S)
h(T )m(k(l, x), x)− k(l, x)

σ1
√
n

for tnl (x) = h(T )
h(S)

k(l,x)
n and for l = 0, 1, . . . , n1(x) + 1, where n1(x) is the largest

positive integer for which tnn1(x)
(x) ≤ 1. Then as before we extend these linearly

on each subintervals [tnl (x), tnl+1(x)] for l = 0, 1, . . . , n1(x) and we take the parts
for t ∈ [0, 1].

Proposition 2.2. Suppose that the transformation T satisfies the 0-property
and that S satiesfies the weak invariance principle. Then the process K ′n(t)
converge in law to the Brownian motion on [0, 1].

Proof. We will show that K ′n(t) has the same limit as −Kn(t). As both of them
are piecewise linear, the maximum of the difference can only occur at points
l
n for l ∈ {0, . . . , n} or at tnl (x) for l ∈ {0, . . . , n1(x)}. Let us also notice that
because of the definitions of the processes

K ′n,x (tnl (x)) = −Kn,x

(
l

n

)
.

Thus we can write the difference between K ′n and −Kn at points tnl (x) for
l = 0, . . . , n1(x) as the difference of the value of Kn at two certain points:

K ′n,x (tnl (x)) +Kn,x (tnl (x)) = Kn,x (tnl (x))−Kn,x

(
l

n

)
.

We would like to do the same for the points l
n too. Let us introduce l(n, x) =

max{l ≤ n : tnn1(x)
(x) > l

n}. For every l ≤ l(n, x) there exists an l′ < n1(x) such
that tnl′(x) ≤ l

n < tnl′+1(x) ≤ 1. For l(n, x) < l ≤ n we can take l′ = n1(x) as
tnn1(x)

(x) ≤ l
n ≤ 1 < tnn1(x)+1(x). From the construction of the process K ′n it

follows that

K ′n,x(tnl′(x)) ≤ K ′n,x
(
l

n

)
≤ K ′n,x(tnl′+1(x))

or

K ′n,x(tnl′(x)) ≥ K ′n,x
(
l

n

)
≥ K ′n,x(tnl′+1(x)).

Then as K ′n,x(tnl (x)) = −Kn,x

(
l
n

)
we get that

−Kn,x

(
l′

n

)
≤ K ′n,x

(
l

n

)
≤ −Kn,x

(
l′ + 1
n

)
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or

−Kn,x

(
l′

n

)
≥ K ′n,x

(
l

n

)
≥ −Kn,x

(
l′ + 1
n

)
.

Now we can put the above pieces together to get

sup
t∈[0,1]

∣∣K ′n,x(t) +Kn,x(t)
∣∣ ≤

max
l=0,...,n

{∣∣∣∣K ′n,x( ln
)

+Kn,x

(
l

n

)∣∣∣∣}+ max
l=0,...,n1(x)

∣∣K ′n,x (tnl (x)) +Kn,x (tnl (x))
∣∣

≤ max
l=0,...,n

{Rn1 (l, l′, x)}+ max
l=0,...,n

{Rn2 (l, l′, x)}+ max
l=0,...,n1(x)

{Rn3 (l, x)},

where

Rn1 (l, l′, x) =
∣∣∣∣Kn,x

(
l

n

)
−Kn,x

(
l′

n

)∣∣∣∣ ,
Rn2 (l, l′, x) =

∣∣∣∣Kn,x

(
l

n

)
−Kn,x

(
l′ + 1
n

)∣∣∣∣ ,
and

Rn3 (l, x) =
∣∣∣∣Kn,x (tnl (x))−Kn,x

(
l

n

)∣∣∣∣ .
From the previous theorem we know that Kn(t) converges in law. From the
tightness of the sequence it follows that for every η > 0 there exists a compact
set Kη ⊂ C[0, 1] that

µ2(x ∈ [0, 1] : Kn,x(t) ∈ Kη) > 1− η, for each n.

From the compactness of a set K it follows that for ε > 0 exists δ > 0 such that
w ∈ K implies that |w(t)−w(s)| ≤ ε if |t− s| < δ. Hence in order to prove that
the sum above goes to 0 in probability, it is enough to show that

max
l=0,...,n

{∣∣∣∣ l − l′n

∣∣∣∣}→ 0 in probability

and

max
l=0,...,n1(x)

{∣∣∣∣tnl (x)− l

n

∣∣∣∣}→ 0 in probability.

First we are going to need a little lemma. Since we will use it later in a more
general form that is how we state it. Let us introduce - analogously to n1(x) -
the notation nk(x) = max {l ≥ 0: tnl (x) ≤ k} .

Lemma 2.3.
lim
n→∞

λ(x ∈ [0, 1] : nk(x) < 2kn) = 1.
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Proof. We need to show that if we take ε > 0, ∃ N such that for every n ≥ N :

λ(x ∈ [0, 1] : nk(x) < 2kn) > 1− ε.

From Theorem 2.1 we know that

lim
n→∞

h(T )
h(S)

k(n, x)
n

= 1 a.e.

Then from Jegorov’s theorem it follows that the convergence is also true almost
uniformly, meaning that for every ε > 0 there exists Ak ⊂ [0, 1] such that
λ(Ak) < ε and for η > 0 ∃M such that for m ≥M and x ∈ [0, 1] \Ak:

h(T )
h(S)

k(m,x)
m

> 1− η.

Let us take η = 1
4k and m = 2kn. Then we have

h(T )
h(S)

k(2kn, x)
n

> 2k − 1
2
> k.

As tnnk(x)(x) ≤ k, we get for n ≥ N =
⌈
M
2k

⌉
and x ∈ [0, 1] \Ak

nk(x) < 2kn.

With this lemma, it is sufficient to show that on the set [0, 1] \A1

max
l=0,...,n1(x)

{∣∣∣∣tnl (x)− l

n

∣∣∣∣} ≤ max
l=0,...,2n

{∣∣∣∣tnl (x)− l

n

∣∣∣∣}→ 0

in probability. This follows easily from Lemma 2.2. We can take the function f
as

f(l) =
h(T )k(l, x)− h(S)l

h(S)

and we shall remark that the lemma is also true and can be easily proven if we
multiply f with 1

m instead of 1√
m
. Thus we have that

max
l=0,...,2n

{∣∣∣∣tnl (x)− l

n

∣∣∣∣}→ 0

if
∣∣∣ f(2n)

n

∣∣∣→ 0. This is easy to see:∣∣∣∣f(2n)
n

∣∣∣∣ =
∣∣∣∣h(T )k(2n, x)− h(S)2n

h(S)n

∣∣∣∣ =

=
h(T )
h(S)

∣∣∣∣k(2n, x)
n

− 2
h(S)
h(T )

∣∣∣∣→ 0 a.e.
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from Theorem 2.1.
Now from the definition of l′ we have that h(T )k(l′,x)

h(S) ≤ l < h(T )k(l′+1,x)
h(S) .

Hence we can write:

|l − l′|
n

≤
l − h(T )

h(S)k(l′, x) +
∣∣∣h(T )
h(S)k(l′, x)− l′

∣∣∣
n

≤

≤
h(T )
h(S)k(l′ + 1, x)− h(T )

h(S)k(l′, x)

n
+

∣∣∣h(T )
h(S)k(l′, x)− l′

∣∣∣
n

.

Thus for x ∈ [0, 1] \A1

max
l=0,...,n

{∣∣∣∣ l − l′n

∣∣∣∣} ≤
≤ max
l′=0,...,n1(x)


∣∣∣h(T )
h(S)k(l′ + 1, x)− h(T )

h(S)k(l′, x)
∣∣∣

n
+

∣∣∣h(T )
h(S)k(l′, x)− l′

∣∣∣
n

 ≤
≤ max
l′=0,...,2n

h(T )
h(S)

k(l′ + 1, x)− k(l′, x)
n

+

∣∣∣h(T )
h(S)k(l′, x)− l′

∣∣∣
n

 .

Here again we can use the modification of Lemma 2.2 - meaning that we divide
by n and not by

√
n - with

f1(l) = k(l + 1, x)− k(l, x) and f2(l) =
∣∣∣∣h(T )
h(S)

k(l, x)− l
∣∣∣∣ .

We only have to check that

f1(2n)
n

=
k(2n+ 1, x)− k(2n, x)

n
→ 0 a.e.

and
f2(2n)
n

=
h(T )
h(S)k(2n, x)− 2n

n
→ 0 a.e.

Both of them follow easily from Theorem 2.1.
With this we have just finished proving that

sup
t∈[0,1]

∣∣K ′n,x(t) +Kn,x(t)
∣∣→ 0 a.e.

which means that K ′n also converges weakly to the Brownian motion on [0, 1].

To take the next step we need a proposition which will help to understand
the strong connection between k(m,x) and m(n, x).
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Proposition 2.3. Assume that T satisfies the 0-property and that S satisfies
the weak invariance principle. Then,

0 ≤ m(k(n, x), x)− n ≤ o
(√
n
)
, in probability.

Proof. It is clear from the defintions that m′(n, x) = m(k(n, x), x) ≥ n for all
n ∈ N. From Lemma 2.1 it is also clear that

log λ(Qn(x))− log λ(Qm′(n,x)(x)) ≤ log
(

λ(Qn(x))
λ(Pk(n,x)(x))

)
= o

(√
n
)

in probability. Since µ2 is equivalent to λ, we have that

lim
n→∞

logµ2(Qn(x))− log λ(Qn(x)) = log
dµ2

dλ
(x).

Thus

lim
n→∞

logµ2(Qn(x))− logµ2(Qm′(n,x)(x))
√
n

= 0 in measure (both λ and µ2).

(2.3)

Let us take Wn(t) as in Definition 2.2. From the weak invariance principle

Wn ⇒W, as n→∞

where W is a Brownian motion on [0, 1].
As m′(n,x)

n → 1, for n large enough m′(n, x) < 2n on a large set of x-es,
i.e. for ε > 0 exists n0 such that µ2 (x : m′(n, x) < 2n) > 1 − ε if n > n0.
From the tightness of the sequence (Wn), for any η > 0 there is a compact set
Kη ⊂ C([0, 1]) such that

µ2 (x : Wn(., x) ∈ Kη) > 1− η, for each n. (2.4)

From the compactness of Kη it follows that for ε > 0 exists δ > 0 such that
w ∈ Kη implies that |w(t)− w(s)| ≤ ε if |t− s| < δ. Thus,∣∣∣∣Wn

(
1
2
, x

)
−Wn

(
m′(n, x)

2n
, x

)∣∣∣∣ ≤ ε
provided that n so large that m′(n, x) < n(1 + 2δ), and Wn(., x) ∈ Kη.

As

h(S)
m′(n, x)− n√

2n
=

=
− logµ2(Qn(x))− nh(S) + log µ2(Qm′(n,x)(x)) +m′(n, x)h(S)

√
2n

+
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+
logµ2(Qn(x))− logµ2(Qm′(n,x)(x))

√
2n

=

=
(
W2n

(
1
2
, x

)
−W2n

(
m′(n, x)

2n
, x

))
+

logµ2(Qn(x))− logµ2(Qm′(n,x)(x))
√

2n
,

and here both terms converges to 0 in probability, which we can see from
(2.3) and (2.4). Hence so does m′(n,x)−n√

n
. This completes the proof.

With this the next step becomes quite easy:

Proposition 2.4. Suppose that the transformation T satisfies the 0-property
and that S satiesfies the weak invariance principle. Then the process M ′n(t)
converges in law to the Brownian motion on [0, 1].

Proof. We see that difference between K ′n and M ′n, and we notice that the
supremum of the difference can only occur at points tnl (x). So for x ∈ [0, 1] \A1

sup
t∈[0,1]

∣∣M ′n,x(t)−K ′n,x(t)
∣∣ ≤ max

l=0,...,n1(x)

∣∣∣∣∣∣m(k(l, x), x) h(S)
h(T ) − l

h(S)
h(T )

σ1
√
n

∣∣∣∣∣∣ ≤
≤ max
l=0,...,2n

h(S)
h(T )σ1

∣∣∣∣m(k(l, x), x)− l√
n

∣∣∣∣ .
We can again use Lemma 2.2 by putting f(l) = m(k(l, x), x)− l and then from
Proposition 2.3 we have that M ′n,x(t) also converges to the Brownian motion on
[0, 1], since

0 ≤ m(k(2n, x), x)− 2n√
n

→ 0 in probability.

Now we can state the last theorem, which claims that under the same as-
sumptions as before mn(x) also satisfies the weak invariance principle:

Theorem 2.5. Suppose that the transformation T satisfies the 0-property and
that S satiesfies the weak invariance principle. Let us take k ∈ N such that
h(T )
h(S) < k, then let us take

Mn,x

(
h(T )
h(S)

l

n

)
=

h(S)
h(T )m(l, x)− l

σ1
√
n

and let us extend it linearly on each subintervals [h(T )
h(S)

l
n ,

h(T )
h(S)

l+1
n ]. Then the

process Mn(t) converge in law to the Brownian motion on [0, k].
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Proof. We just need to show that the difference between Mn,x(t) and M ′n,x(t)

goes to 0 in probability. Let us introduce the notation L =
⌊
h(S)
h(T )nk

⌋
. We notice

in this case that the supremum of the difference can only occur at points h(T )
h(S)

l
n

for l = 0, . . . , L or at point k. We take nk(x) = max
{
l ≥ 0: tnl (x) ≤ k < tnl+1(x)

}
.

Denote lk(n, x) = max{l ≤ L : tnnk(x)(x) > h(T )
h(S)

l
n}. For every l ≤ lk(n, x) there

exists an l′ < nk(x) such that k(l′, x) ≤ l < k(l′ + 1, x). For L ≥ l > lk(n, x)
there is nk(x) such that k(nk(x), x) ≤ l < k(nk(x) + 1, x), i.e. for these points
we can take l′ = nk(x). So we get that

h(S)
h(T )m(k(l′, x), x)− k(l′ + 1, x)

σ1
√
n

≤
h(S)
h(T )m(l, x)− l

σ1
√
n

≤

≤
h(S)
h(T )m(k(l′ + 1, x), x)− k(l′, x)

σ1
√
n

.

Hence we have

M ′n,x(tnl′(x))− k(l′ + 1, x)− k(l′, x)
σ1
√
n

≤Mn,x

(
h(T )
h(S)

l

n

)
≤

≤M ′n,x(tnl′+1(x)) +
k(l′ + 1, x)− k(l′, x)

σ1
√
n

.

First let us show that the correcting terms above go to 0:

max
l=0,...,L

{
k(l′ + 1, x)− k(l′, x)√

n

}
≤

≤ max
l=0,...,nk(x)

{
k(l + 1, x)− k(l, x)√

n

}
→ 0 in probability.

Because of Lemma 2.3, it is enough to show that

max
l=0,...,2kn−1

{
k(l + 1, x)− k(l, x)√

n

}
→ 0 in probability.

Again we can use Lemma 2.2 and we bear in mind Remark 2.2 and thus we only
need to show that

k(2kn, x)− k(2kn− 1, x)√
n

→ 0 in probability.

Notice that this term equals to Kn,x(2k) − Kn,x

(
2kn−1
n

)
+ h(S)

h(T )σ1
√
n
. This

converges to 0 in probability, which follows from the fact that Kn converges
weakly to the Brownian motion. Hence we got that

max
l=0,...,L

∣∣∣∣M ′n,x(h(T )
h(S)

l

n

)
−Mn,x

(
h(T )
h(S)

l

n

)∣∣∣∣ ≤
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≤ max
l=0,...,L

{Rn1 (l, l′, x), Rn2 (l, l′, x)} ,

where

Rn1 (l, l′, x) =
∣∣∣∣M ′n,x(h(T )

h(S)
l

n

)
−M ′n,x (tnl′(x))

∣∣∣∣
Rn2 (l, l′, x) =

∣∣∣∣M ′n,x(h(T )
h(S)

l

n

)
−M ′n,x

(
tnl′+1(x)

)∣∣∣∣ .
As before, because of the tightness of the sequence M ′n,x, we only need to show
that

max
l=0,...,L

{
h(T )
h(S)

l − k(l′, x)
n

}
→ 0 in probability

and that

max
l=0,...,L

{
h(T )
h(S)

k(l′ + 1, x)− l
n

}
→ 0 in probability.

Both follow if we show that

max
l=0,...,L

{
h(T )
h(S)

k(l′ + 1, x)− k(l′, x)
n

}
≤

≤ max
l=0,...,nk(x)

{
h(T )
h(S)

k(l + 1, x)− k(l, x)
n

}
→ 0 in probability.

Again it is enough to prove this for x ∈ [0, 1] \Ak. And for these x’s we can use
Lemma 2.2. And as before it is sufficient to show that

k(2kn, x)− k(2kn− 1, x)
n

→ 0 a.e.

which follows from Theorem 2.1 since both terms converge to h(S)
h(T )2k. We only

have to check the difference at point k now. Because of the definition of L,
h(T )
h(S)

L+1
n > k, so the difference at point k cannot be bigger than the maximum

of the differences at points h(T )
h(S)

L
n and h(T )

h(S)
L+1
n . We have already covered the

point h(T )
h(S)

L
n , so let us take a look at the other one. If there exists l such that

k(l, x) = L+1, then the difference is 0. Let us also notice that k(nk(x)+1, x) ≥
L + 1 > L ≥ k(nk(x), x), thus if such an l exists, then l = nk(x) + 1 else
k(nk(x) + 1, x) > L+ 1. In this case

h(S)
h(T )m(k(nk(x), x), x)− k(nk(x) + 1, x)

σ1
√
n

≤
h(T )
h(S)m(L+ 1, x)− L+ 1

σ1
√
n

≤

≤
h(T )
h(S)m(k(nk(x) + 1, x), x)− k(nk(x), x)

σ1
√
n

.

Hence we have

M ′n,x(tnnk(x)(x))− k(nk(x) + 1, x)− k(nk(x), x)
σ1
√
n

≤Mn,x

(
h(T )
h(S)

L+ 1
n

)
≤
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≤M ′n,x(tnnk(x)+1(x)) +
k(nk(x) + 1, x)− k(nk(x), x)

σ1
√
n

.

First again let us see that the correcting terms above go to 0. From Lemma 2.3
it follows that for x ∈ [0, 1] \Ak and for n ≥ N

λ(x ∈ [0, 1] : nk(x) < 2kn) > 1− ε.

Then again it is enough to show that the convergence in probability holds on
this set. Thus

k(nk(x) + 1, x)− k(nk(x), x)√
n

≤ max
l=0,...,2kn−1

{
k(l + 1, x)− k(l, x)√

n

}
→ 0

in probability, which we have already shown. Hence, as before, because of the
tightness of the sequence M ′n(t), we only have to prove that

max{k − tnnk(x)(x), tnnk(x)+1(x)− k} ≤ tnnk(x)+1(x)− tnnk(x)(x)→ 0

in probability. This is also easy to see:

tnnk(x)+1(x)− tnnk(x)(x) ≤ max
l=0,...,2nk−1

{
h(T )
h(S)

k(l + 1, x)− k(l, x)
n

}
→ 0

in probability, which we have also already seen. Hence the difference at point k
also converges to 0 in probability. This finishes the proof.

Finally, we present a corollary, which states the central limit theorem for
m(n, x), and thus in a way it is a generalization of Faivre’s theorem, see ([4]).

Corollary 2.1. Under the assumptions of Theorem 2.5

m(n, x)− nh(T )
h(S)

σ2
√
n

⇒ N (0, 1),

where σ2 =

√(
h(T )
h(S)

)3

σ1 =
√

h(T )

h(S)3
σ and ⇒ is the convergence in law with

respect to the probability measure µ1.

Proof. From Theorem 2.5, we have that

Mn,x

(
h(T )
h(S)

)
=

h(S)
h(T )m(n, x)− n

σ1
√
n

⇒ N
(

0,
h(T )
h(S)

)
.

Hence if we divide by
√

h(T )
h(S) , we get that

h(S)
h(T )m(n, x)− n

σ1

√
h(T )
h(S)n

=
m(n, x)− nh(T )

h(S)

σ2
√
n

⇒ N (0, 1).
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Examples

3.1 CLT-property

We start the section with a theorem which gives the CLT-property for a
wide class of transformations (see [1]):

Theorem 3.1. Let T be a strongly mixing Markov shift, and put

σ2 = lim
n→∞

V ar[− logµ(Pn(x))]
n

,

where ’Var’ stands for the variance. If σ2 6= 0, then

lim
n→∞

µ

({
x :
− logµ(Pn(x))− nh(T )

σ
√
n

≤ u
})

=
∫ u

−∞

1√
2π
e−

x2
2 dx.

Now let us take Example 1.4 with k = 2 and p0 = p, p1 = 1 − p and
suppose that p 6= 1

2 . We have seen that this is a Markov shift and we have
proven that it is strongly mixing. We take the partition with atoms A0 =
{y : y0 = 0} and A1 = {y : y0 = 1}. The only thing we have to check is that
limn→∞

V ar[− log µ(Pn(x))]
n 6= 0. So let us check it. Take x ∈ X, then Pn(x) =

{y : y0 = x0, . . . , yn−1 = xn−1}, since

Pn = {A : A = {y : y0 = a0, . . . , yn−1 = an−1} for (a0, . . . , an−1) ∈ {0, 1}n}.

This means that µ(Pn(x)) = p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi . Then by introducing the

random variable Y with Y =
∑n
i=1 xi, we have

− logµ(Pn(x)) = − log pY − log (1− p)(n− Y ),

24
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where Y is binomial with parameters n and p. Hence we can easily compute
V ar[− logµ(Pn(x))] :

V ar[− logµ(Pn(x))] =

= log2 pV ar[Y ] + log2 (1− p)V ar[n− Y ] + 2 log p log (1− p)Cov(Y, n− Y ).

Here we know that V ar[Y ] = V ar[n−Y ] = np(1−p), and we can easily compute
Cov(Y, n− Y ) from the definition:

Cov(Y, n− Y ) = E(Y (n− Y ))− E(Y )E(n− Y ) =

= E(nY )− E(Y 2)− nE(Y ) + E2(Y ) = −V ar[Y ] = −np(1− p).

Thus we have

V ar[− logµ(Pn(x))]
n

= p(1− p)(log (1− p)− log p)2 = p(1− p) log2

(
1− p
p

)
.

Hence limn→∞
V ar[− log µ(Pn(x))]

n = p(1 − p) log2
(

1−p
p

)
6= 0 if p 6= 1

2 . Therefore
the conditions of Theorem 3.1 are satisfied, hence the transformation has the
CLT-property.

3.2 0-property

Our first example is Example 1.2. For these transformations even more is
true. Take P =

{[
k
r ,

k+1
r

)
: k = 0, 1, . . . , r − 1

}
, then − log λ(Pn(x)) = nh(T )

for every n and for every x ∈ [0, 1). To see this, first take x ∈ [0, 1) which is not
in the form of kr for some k ∈ {0, 1, . . . , r− 1}. Then T generates the digits of x
in the number system with base r:

⌊
rT k−1x

⌋
gives the k-th digit. This means

that for every n ≥ 1

n∑
k=1

⌊
rT k−1x

⌋
rk

≤ x <
n−1∑
k=1

⌊
rT k−1x

⌋
rk

+

⌊
rTn−1x

⌋
+ 1

rn
.

Since
[∑n

k=1
brTk−1xc

rk
,
∑n−1
k=1
brTk−1xc

rk
+ brT

n−1xc+1

rn

)
∈ Pn, we have that

Pn(x) =

[
n∑
k=1

⌊
rT k−1x

⌋
rk

,

n−1∑
k=1

⌊
rT k−1x

⌋
rk

+

⌊
rTn−1x

⌋
+ 1

rn

)
.

Hence − log λ(Pn(x)) = − log 1
rn = n log r for almost every x ∈ [0, 1), which

means from the Shannon-McMillan-Breiman theorem that h(T ) = log r. Thus
T satisfies the 0-property.

Some of the β-transformation as in Example 1.3 also satisfy the property.
We take

P =
{[

k

β
,
k + 1
β

)
: k = 0, 1, . . . , bβc − 1

}
∪
{[
bβc
β
, 1
)}

.
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The big difference between the two types of examples in this section is that in
this case the last interval is what is called non-full, meaning that its measure is
1− bβcβ which is smaller than that of the others which is 1

β . Nevertheless, we will
prove the 0-property for some β-transformation which have something similar
to our first example. But first of all, let us look into the partitions generated
by the β-transformation, in general.

We will see that what plays a very important role in the study of the length
of the elements of the partitions is the error of the expansions of 1. Let us define
Tβ1 with Tβ1 = β − bβc ∈ [0, 1), so then we can talk about T iβ1 for i ≥ 0. This
way we can introduce the following notations:

an = 1−
n∑
k=1

⌊
βT k−1

β 1
⌋

βk

for n ≥ 0. The proposition below explains why these are so important:

Proposition 3.1. Let us denote the set of possible lenghts of n-cylinders: An =⋃
A∈Pn λ(A). Then

An =
{

ai
βn−i

: i = 0, 1, . . . , n
}

.

Proof. We will prove the statement by induction. First for n = 1 we have A1 ={
1
β , 1−

bβc
β

}
=
{
a0
β , a1

}
. Now let us suppose that the statement is true for

some n ≥ 1, and let us try to prove for n+1. First take an arbitrary A ∈ Pn and
look at T−1

β A ∩
[
0, 1

β

)
. Since for x ∈

[
0, 1

β

)
Tβx is simply βx, this means that

λ
(
T−1
β A ∩

[
0, 1

β

))
= 1

βλ(A), by using the fact the every A ∈ Pn is an interval

(which is easy to see by induction). Thus 1
βAn =

{
a
β : a ∈ An

}
⊂ An+1. We get

the same result if we look at T−1
β A∩

[
k
β ,

k+1
β

)
for every k ∈ {0, 1, . . . , bβc − 1}.

The only (n+ 1)-cylinders that we still have to check are T−1
β A ∩

[
bβc
β , 1

)
. Let

A = [a, b). Then if b ≤ β−bβc, then T−1
β A∩

[
bβc
β , 1

)
=
[
bβc
β + a

β ,
bβc
β + b

β

)
. In

this case λ
(
T−1
β A ∩

[
bβc
β , 1

))
∈ 1

βAn. If a ≥ β−bβc, then T−1
β A∩

[
bβc
β , 1

)
= ∅.

The interesting case is when a < β − bβc < b. Then T−1
β A ∩

[
bβc
β , 1

)
=[

bβc
β + a

β , 1
)

. So this leads us to the question: What points can be endpoints
of an n-cylinder?

Lemma 3.1. The endpoints of n-cylinders are elements of the following set,
denoted by En :

En =

{
1,

n∑
k=1

ik
βk

: ik ∈ {0, 1, . . . , bβc}

}
∩ [0, 1].
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Proof. E1 =
{

0, 1
β , . . . ,

bβc
β , 1

}
. Then it is enough to show that T−1

β (En\1) ⊂
En+1. Let then e =

∑n
k=1

ik
βk

< 1 for some ik ∈ {0, 1, . . . , bβc} for k = 1, . . . , n.

In this case, take j ∈ {0, 1, . . . , bβc − 1}: T−1
β e ∩

[
j
β ,

j+1
β

)
= j

β + e
β . (It

is easy to see that j
β + e

β is an inverse image of e and it is in the inter-

val
[
j
β ,

j+1
β

)
.) Now if e ≥ β − bβc, then T−1

β e ∩
[
bβc
β , 1

)
= ∅ else T−1

β e ∩[
bβc
β , 1

)
= bβc

β + e
β . In every case T−1

β e =
{
j
β + e

β : j ∈ {0, 1, . . . , bβc}
}
∩[0, 1) ⊂{∑n+1

k=1
ik
βk

: ik ∈ {0, 1, . . . , bβc}
}
∩ [0, 1) ⊂ En+1.

From the proof it follows that any e < 1 endpoint of an n-cylinder in
the form e =

∑n
k=1

ik
βk

for some ik ∈ {0, 1, . . . , bβc} is in the inverse image
T−j(

∑n
k=j+1

ik
βk−j

) for any n− 1 ≥ j ≥ 0.
Now we can finish the proof of Proposition 3.1. The only thing left that we

need to check is when we have a cylinder in the form [a, b) where a < β−bβc < b.
It means that a is the biggest of the possible endpoints of n-cylinders which is
smaller than β−bβc. We know from the previous lemma that a can be written
in the form

∑n
k=1

ik
βk

for some ik ∈ {0, 1, . . . , bβc}. Now we also know that
bβc
β + a

β is the biggest number that is smaller than 1 amongst those who are in

the form
∑n+1
k=1

ik
βk

for some ik ∈ {0, 1, . . . , bβc}. Let us write then

bβc
β

+
a

β
=
n+1∑
k=1

jk
βk
.

Introduce the notation bk = bβT k−1
β 1c for the moment. We are going to prove

by induction that jk = bk for k = 1, 2, . . . , n for every n ≥ 1. First let n = 1.
Then of course j1 = bβc = bβT 0

β1c = b1. Now suppose that we have that jk = bk
for every k = 1, 2, . . . , j and for every n ≥ j ≥ 1, and let us try to prove it for
n + 1. We are going to prove that by contradiction. Suppose that there are
some i1, i2, . . . , in+1 such that not all ik = bk and that

n+1∑
k=1

bk
βk

<

n+1∑
k=1

ik
βk

< 1.

Let j ≥ 1 the smallest integer for which ij 6= bj and suppose that j ≤ n.
Then it is also true that

n+1∑
k=j

bk
βk−j+1

<

n+1∑
k=j

ik
βk−j+1

.

It follows from the inductive assumptions that bj > ij . If the opposite were
true, then if we look at the case when n = j, then we would have a bigger choice
then

∑j
k=1

bk
βk

, namely
∑j
k=1

ik
βk

< 1. That is a contradiction. So we have that
bj ≥ ij + 1. Thus we have that
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1 ≤ bj − ij <
n+1∑
k=j+1

ik − bk
βk−j

≤
n+1∑
k=j+1

ik
βk−j

.

From the proof of Lemma 3.1 and the remark after that, if
∑n+1
k=1

ik
βk

is an

endpoint of a cylinder, then it is an inverse image of T−j(
∑n+1
k=j+1

ik
βk−j

) for any

n ≥ j ≥ 0. But this contradicts the fact that
∑n+1
k=j+1

ik
βk−j

> 1.
The only possibility left is that j = n+ 1. Then we cannot use the inductive

assumptions but we can use the following lemma, which will be useful later on
too:

Lemma 3.2. For every x ∈ [0, 1]

x =
n∑
k=1

⌊
βT k−1

β x
⌋

βk
+
Tnβ x

βn
.

Proof. Again by induction. For n = 1 it follows from the definition of the
transformation. Now suppose that it is true for some n ≥ 1. Take n+ 1. Then
Tn+1
β x = βTnβ x− bβTnβ xc. Thus

Tnβ x

βn
=

⌊
βTnβ x

⌋
βn+1

+
Tn+1
β x

βn+1
.

This lemma shows us that it cannot be that bn+1 < in+1 because then if we
use the lemma for x = 1 we get that

1 =
n+1∑
k=1

bk
βk

+
Tn+11
βn+1

<

n∑
k=1

bk
βk

+
bn+1 + 1
βn+1

=
n+1∑
k=1

ik
βk

< 1,

which is again a contradiction.
This proves that jk = bk for every k ≥ 1. And we needed all this to get that

bβc
β

+
a

β
=
n+1∑
k=1

bk
βk

and from this we have that the measure of the (n+1)-cylinder is: 1−( bβcβ + a
β ) =

1−
∑n+1
k=1

bk
βk

= an+1, and this proves Proposition 3.1.

From the precedings, we can prove the 0-property for the following class of
β-transformation: those for which the digits of the expansion of 1 is periodic,
meaning that

⌊
βT jβ1

⌋
=
⌊
βT j+nβ 1

⌋
for every j ≥ k ≥ 1 and with n ≥ 1, i.e.

1 =
k−1∑
i=1

⌊
βT i−1

β 1
⌋

βi
+
k+n−1∑
i=k

⌊
βT i−1

β 1
⌋

βi

( ∞∑
l=1

1
βln

)
.
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This follows from the fact that for every x ∈ [0, 1]: x =
∑∞
k=1
bβTk−1

β xc
βk

.
It is apparent from Proposition 3.1 that the important thing to look at is

am. Let m ≥ k − 1. Then from the definition of am and from the special form
of the expansion of 1:

am = 1−
m∑
i=1

⌊
βT i−1

β 1
⌋

βi
=

∞∑
i=m+1

⌊
βT i−1

β 1
⌋

βi
= βn

∞∑
i=m+n+1

⌊
βT i−1

β 1
⌋

βi
= βnan+m.

This means that the possible − logPm(x)−mh(Tβ) values can be:

− log
ai

βm−i
−m log β = − log ai + (m− i) log β −m log β = − log ai − i log β,

for i ∈ {0, 1, . . . ,m}. But this gives only at most k + n different values: for
i = 0, 1, . . . , k + n− 1, as for i ≥ k + n:

− log ai − i log β = − log ai−n
1
βn
− i log β = − log ai−n − (i− n) log β.

So let us take

M = max
i∈{0,1,...,k+n−1}

| − log ai − i log β| = max
i∈N
| − log ai − i log β|.

Now let ε > 0. We can take N =
⌈
M2

ε2

⌉
. Then for every m ≥ N we have

M√
m
≤ ε. From this it follows that for every x ∈ [0, 1) :∣∣∣∣− log λ(Pm(x))−mh(Tβ)√

m

∣∣∣∣ ≤ ε,
hence the 0-property is satisfied.

Just to have some specific examples: we can take β the golden mean, i.e.
β2 = β + 1. Then 1 = 1

β + 1
β2 , so we can already suspect that this is going to

satisfy the condition. In fact, T 2
β1 = β(β − bβc) mod 1, and since β − bβc =

β − 1 = 1
β , so β(β − bβc) = 1, hence T 2

β1 = 0 and as the 0 is a fixpoint for the
transformation, this has the property in question.
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