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1 Introduction

Representations of a quiver with a �xed dimension vector (quiver setting) are

parametrized by a vector space together with a linear action of a product of

general linear groups such that two point belong to the same orbit if and only

if the corresponding representations are isomorphic. Therefore the quotient

constructions of algebraic geometry can be applied to give an approximation

to the problem of classi�cation of isomorphism classes of representations. The

simplest quotient varieties, the so called a�ne quotients are de�ned in terms

of invariant polynomial functions on the representation spaces. In this way

we obtain a wealth of natural invariant theory situations. It is traditional in

invariant theory to try to describe those situations where the corresponding ring

of invariants has good commutative algebraic properties (eg. is a polynomial

ring, or is a complete intersection). This is the main theme of the present report.

Although these a�ne quotient varieties turn out to re�ect faithfully the class

of semisimple representations only, the study of them is motivated by more

sophisticated quotient constructions as well. Geometric invariant theory has

been applied by A. King to construct non-trivial projective quotients (even in

cases when the a�ne quotient is a single point). It was shown by Adriaenssens

and Le Bruyn [1] that the study of the local structure (say singularities) of

these projective quotients (moduli spaces) can be reduced to the study of a�ne

quotients of other quiver settings. (See [6] for an application illustrating the

power of this method.) Therefore the results in this report on the a�ne quotient

varieties of representation spaces of quivers have relevance also for the study of

more general moduli spaces of quiver representations.

The new results in the report concern the special case when the values of

the dimension vector are all one. Though this is a strong restriction from the

point of view of representation theory, it still covers a rather interesting class,

since the corresponding a�ne quotients are toric varieties. The question when

a toric variety is a complete intersection received considerable attention in the

literature, see for example [8] or [9]. The study of toric ideals has become an

active area of research in recent years, and our work can be viewed from this

perspective as well.
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2 Basic Properties of Quivers

2.1 Path algebras and quiver representations

A quiver Q = (V, A, s, t) is a quadruple consisting of a set of vertices V , a set

of arrows A, and two maps s, t : A→ V which assign to each arrow its starting

and terminating vertex (loops and multiple arrows are possible). A non-trivial

path x in Q is a sequence ρ1, ρ2...ρn of arrows which satis�es t(ρi) = s(ρi+1) for

1 ≤ i < n, s(ρ1) and t(ρn) are called the starting and terminating vertex of the

path and are noted by s(x) and t(x) respectively. For each vertex v in V we also

de�ne a trivial path, denoted by ev, which contains of no arrows and starts and

terminates in v. If x consisting of ρ1, ρ2, ..., ρn and y consisting of τ1, τ2, ..., τm

are two paths which satisfy t(x) = s(y) then we de�ne their composition to be

the path ρ1, ρ2, ..., ρn, τ1, τ2, ..., τm.

For a �eld k, the path-algebra kQ is the k-algebra with basis the paths in Q,

and with the product of two paths x, y given by:

xy =

composition if (t(x) = s(y))

0 otherwise

It is easy to see that this is an associative algebra. For example if Q consists of

one vertex and r loops then kQ is the free associative algebra on r letters.

A representation X of Q is given by a vector space Xv for each v ∈ V , and
a linear map Xρ : Xs(ρ) → Xt(ρ) for each ρ ∈ A.

A morphism θ : X → X ′ is given by linear maps θv : Xv → X ′v for each

v ∈ V satisfying θt(ρ)Xρ = X ′ρθs(ρ) for each ρ ∈ A. θ is an isomorphism if all of

its components are isomorphisms.

The category of representations will be denoted by Rep(Q).

There is a natural correspondence between representations of Q and right-

modules over kQ. For a representation X, ⊕Xv can be regarded as a right

kQ-module, de�ning xρ = Xρ(x) for each ρ ∈ A and x ∈ Xs(ρ). Conversely if

M is a right kQ-module a representation can be de�ned by Xv = M ∗ ev and

Xρ(x) = x ∗ ρ ∗ et(ρ) for x ∈ Xs(ρ). It is easy to verify that we get functors this

way between Rep(Q) and Mod − kQ and that these are inverses of each other

(see [5, Page 6]), resulting in the following lemma:
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Lemma 2.1. The category Rep(Q) is equivalent to Mod− kQ.
Throughout the rest of this report we will assume that k is an algebraically

closed �eld of characteristic zero, and we will denote it by C. This is convenient
since we will use several results of LeBruyn and Procesi [4], and Raf Bocklandt

[3, 2], who worked with this assumption. However as it was shown by Domokos

and Zubkov in [7] many of the results extend to �elds with positive charac-

teristic as well. For example the classi�cation of quivers with genuine simple

representation we will recall below, holds over an arbitrary �eld.

The dimension vector α : V → N of a representation X is de�ned by α(v) =

dim(Xv). The pair (Q,α) is called a quiver setting, and α(v) is referred to as

the dimension of the vertex v. A quiver setting is called genuine if no vertex

has dimension zero.

The Ringel form of a quiver is

χQ(α, β) =
∑
v∈V

α(v) ∗ β(v)−
∑
ρ∈A

α(s(ρ)) ∗ β(t(ρ)).

A representation is called simple if the only collection of subspaces Vv ⊆ Xv

with the property ∀ρ ∈ A : XρVs(ρ) ⊆ Vt(ρ) are the trivial ones. This is the same

as the corresponding kQ module being simple. A representation equivalent to

the direct sum of simple representations is called semisimple.

If Q contains no oriented cycles then the only simple representations of Q

are the ones where for some v0 ∈ V :

α(v) =

1 v = v0

0 v 6= v0

and Xρ = 0 for all ρ ∈ A. Obviously, it is only genuine if Q has one vertex.

When Q is allowed to have oriented cycles, a result by Le Bruyn and Procesi

[4, Theorem 4] gives us a characterization of the dimension vectors for which Q

has simple representations.
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Theorem 2.2. Let (Q,α) be a genuine quiver setting. There exist simple rep-

resentations of dimension vector α if and only if

- Q is of the form

, , or

and α(v) = 1 for all v ∈ V .
- Q is not of the form above, but strongly connected and

∀v ∈ V : χQ(εv, α) ≤ 0 and χQ(α, εv) ≤ 0

where εv(u) =

1 if v = u

0 otherwise.

If (Q,α) is not genuine, the simple representations classes are in bijective

correspondence to the simple representations classes of the genuine quiver setting

obtained by deleting all vertices with dimension zero.

2.2 Quotient spaces

2.2.1 The action of GL(α) on RepαQ

Let RepαQ denote the set of representations ofQ with dimension vector α. Since

a representation in RepαQ is completely determined by the linear morphisms

assigned to the arrows, we have:

RepαQ =
⊕
ρ∈A

Matα(t(a))×α(s(a))(C).

To a dimension vector α we will also assign the reductive linear group:

GLα :=
⊕
v∈V

GLα(v)(C).

GLα can be viewed as the group of base changes in the respective vector spaces,

thus it has a natural action on RepαQ. For an element g = (gv1 , ..., gvn) in GLα
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and a representation X ∈ RepαQ :

Xg
ρ = gt(ρ)Xρg

−1
s(ρ).

Clearly the GLα orbits in RepαQ under this action are the isomorphism

classes of representations. It is known [4, 5] that the orbit of an X ∈ RepαQ
element is closed if and only if X is semisimple. Moreover it was shown in

[12] that every X ∈ RepαQ can be (not necessarily uniquely) written as

X = Xs + Xn, where Xs is a semisimple representation and Xn is such that

the zero representation lies in the closure of its orbit under the action of the

stabilizer subgroup of Xs in GLα. Therefore the study of the orbit structure of

GLα on RepαQ breaks down into the study of closed orbits which correspond to

semi-simple representations, and the study of certain linear subgroups of GLα

acting on the nilpotent representations. In this report we will only be concerned

with the sooner.

To better understand the orbit structure (and thus the isoclasses of represen-

tations) of RepαQ under the described group action, one wants to construct a

quotient space that parametrizes the orbits. The di�culty with this arises from

the fact that the set theoretic quotient usually does not have a good structure.

To obtain a quotient space with better properties we must allow it to identify

some of the orbits.

2.2.2 The geometric quotient

Any algebraic variety X can be regarded as a topological space equipped with

a sheaf of functions, whose section algebra over an open set U consists of the

rational functions of X that are regular on U (noted by k[U ]). If an algebraic

group G acts on X we can regard the quotient space X/G which as a set will

consist of the orbits under the action of G on X, will be equipped with the

quotient topology and the sheaf that is the direct image of the sheaf of invariant

functions of X. The quotient map from X to X/G will be denoted by πX/G.

The space X/G is not, in general, an algebraic variety. A necessary condition

for it to be an algebraic variety is that all the orbits are closed and (if X is

irreducible) have the same dimension (see [16]). This does not hold in the case

of RepαQ, except for some trivial cases (if there is no arrows at all, or there is

only one loop on a vertex with dimension 1). When X/G is an algebraic variety,
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the pair (X/G, πX/G) is called the geometric quotient for the action G : X. The

geometric quotient can also be de�ned axiomatically (as described in [16]):

De�nition 2.3. A pair (Y, πY ) where Y is an algebraic variety and πY is a

morphism of X into Y is called a geometric quotient for the action G : X if the

following conditions are satis�ed:

1) the morphism πY is surjective

2) the morphism πY is open

3) its �bers are precisely the orbits of G

4) for each open subset U ⊆ Y the homomorphism πY ∗ : k[U ]→ k[π−1(U)]G

is an isomorphism.

2.2.3 The a�ne quotient

X/G de�ned above can be characterized (up to isomorphism) by having the uni-

versal property in the category of topological spaces with sheaves of functions:

if Y is a topological space with a sheaf of functions and πY : X → Y is a mor-

phism that is constant on the orbits of G then there exists a unique morphism

ϕ : X/G→ Y such that πY = ϕ ◦ πX/G. When the geometrical quotient exists

(so X/G is an algebraic variety) it has this same property in the category of

algebraic varieties. However, even when the geometrical quotient does not exist

it is possible that an object in the category of a�ne algebraic varieties will have

this property. If such an object exists we will call it the a�ne quotient for the

action G : X. When X is an a�ne variety and G is a reductive group (so in

all of the cases we are interested in) this a�ne quotient always exists and has

many useful properties.

If G is reductive, the algebra k[x]G of G invariant regular functions is

�nitely generated and we can consider the a�ne variety Spec(k[X]G). It will

be denoted by X//G and the morphism X → X//G de�ned by the embedding

k[X]G → k[X] by πX//G. πX//G is surjective and constant on the orbits of

G. It can be shown that the pair (X//G, πX//G) is the a�ne quotient for the

action G : X (see [16, Theorem 4.9]). Moreover if f1, ..., fm generate the ring of

invariants for the action G : X , X//G can be interpreted as the image of the

morphism:

X → Cm x→ (f1(x), ..., fm(x)).
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An important property of πX//G is that every �ber contains exactly one

closed orbit, which in the case of the action described in Section 2.2.1 means that

X//G parametrizes the isomoprhism classes of semisimple representations. For

X = RepαQ and G = GLα this quotient space will be denoted by issαQ, and

the ring of invariant polynomials (which is the coordinate ring of issαQ) will be

denoted by C[issαQ].

2.3 The coordinate ring

As noted above, the map π : RepαQ → issαQ can be realized in coordinate

form with the help of a generator system of the ring of invariants. A cycle c in

Q is a sequence of arrows ρ1, ...ρm for which t(ρi) = s(ρi+1) and t(ρm) = s(ρ1)

holds (so we allow a cycle to run through a vertex more than once). For a cycle

c = (ρ1, ..., ρm) consider the polynomial:

fc : RepαQ→ C X → Tr(Xρ1 ... Xρn
).

Clearly fc is GLα invariant. Moreover if c1 and c2 are cyclic permutations of

each other then fc1 = fc2 . A cycle is called primitive if it does not run through

any vertex more than once. Any cycle can be decomposed into primitive cycles,

it is however not true that the corresponding invariant polynomial decomposes

to a product of invariants corresponding to primitive cycles. We call a cycle

quasi-primitive for a dimension vector α if the vertices that are run through

more than once have dimension bigger than 1. If c is not quasi-primitive then

for some cyclic permutation of its arrows Xρ1 ...Xρn
will be a product of 1x1

matrices and Tr(Xρ1 ...Xρn) will be the product of the traces of these matrices,

so we will be able to write fc as a product of polynomials corresponding to quasi-

primitive cycles. We recall a result of LeBruyn and Procesi [4], that shows us

that quasi-primitive cycles of a bounded length generate all of the invariant

polynomials.

Theorem 2.4. C[issαQ] is generated by all fc where c is a quasi-primitive

cycle with length smaller than α2+1. We can turn C[issαQ] into a graded ring

by giving fc the length of its cycle as degree.
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3 Tools

For the rest of the report we will be interested in the classi�cation of quiver

settings based on some geometrical properties of issαQ. A quiver setting (Q,α)

is said to be coregular, if issαQ is an a�ne space. This is the same as issαQ

being smooth at 0 (see [2, Theorem 2.1]).

De�nition 3.1. An a�ne variety V of dimension n is called a complete inter-

section if

C[V ] ∼= C[X1, ..., Xk]/(f1, ..., fl),

such that k − l = n.

This is also called an ideal theoretic complete intersection (a set theoretic

complete intersection is de�ned similarly, replacing the ideal generated by the

polynomials fi by the generated radical ideal). A quiver setting (Q,α) is called

a complete intersection if issαQ is a complete intersection. We will abbreviate

the name of this property into C.I..

The aim is to classify quiver settings with these two properties. The classi-

�cation has been done for the coregular quiver settings and the symmetric C.I.

quiver settings by Raf Bocklandt in [2] and [3]. In this report we will also show a

classi�cation for non-symmetric C.I. quiver settings when all of the vertices have

dimension 1. For these purposes we will introduce some methods of simplifying

the structure of a quiver while preserving the above properties.

3.1 Subquivers

De�nition 3.2. A quiver Q′ = (V ′, A′, s′, t′) is a subquiver of the quiver

Q = (V,A, s, t) if (up to graph isomorphism) V ′ ⊆ V , A′ ⊆ A , s′ = s|A′

and t′ = t|A′ .

If Q′ is a subquiver of Q and α′ = α|Q′ , then if Q is coregular then Q′ is

coregular and if Q is a C.I. then Q′ is a C.I., so to show that a quiver is not

coregular (resp. C.I.) it is satisfactory to show a subquiver that is not coregular

(resp. C.I.). The �rst statement can be found in [2, Lemma 2.3], and the second

one in [3, Lemma 4.3], although the proof for the second statement in that article

is not clear. However a similar statement for the ring that is invariant under

the action of SLα ⊂ GLα is proven in [6, Lemma 3.3], and the same argument

can be applied in the case of GLα.
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3.2 Strongly connected components and connected sums

Two vertices v and w are said to be strongly connected if there is a path from

v to w and a path from w to v. Clearly this is an equivalence relation. The

subquivers consisting of the set of vertices of an equivalence class and all arrows

in between them are called the strongly connected components of Q. All cycles

of a quiver will run inside one of the strongly connected components which leads

to a result that we recall from [2, Lemma 2.4]:

Lemma 3.3. If (Q,α) is a quiver setting then

C[issαQ] =
⊗
i

C[issαi
Qi],

where Qi are the strongly connected components of Q and αi = α|Qi .

It follows that Q is coregular (resp. C.I.) if all of its strongly connected

components are coregular (resp. C.I.).

If a quiver can be decomposed into subquivers that have no arrows running

in between them and only intersect each other in vertices of dimension one, then

it is easy to see that every quasi-primitive cycle has to run inside one of these

subquivers. This inspires the following de�nition:

De�nition 3.4. A quiver Q = (V,A, s, t) is said to be the connected sum of 2

subquivers Q1 = (V1, A1, s1, t1) and Q2 = (V2, A2, s2, t2) at the vertex v, if the

two subquivers make up the whole quiver and only intersect in the vertex v. So

in symbols V = V1 ∪ V2, A = A1 ∪ A2, V1 ∩ V2 = v, and A1 ∩ A2 = {∅}. We

note this by Q = Q1#vQ2. The connected sum of three or more quivers can be

de�ned similarly, for sake of simplicity we will write Q1#vQ2#wQ3 instead of

(Q1#vQ2)#wQ3.

Since the ring of invariants is generated by the polynomials associated to

quasi-primitive cycles, a similar result to Lemma 3.3 can be said about connected

sums in vertices of dimension one [3, Lemma 3.2]:

Lemma 3.5. Suppose Q = Q1#vQ2 α(v) = 1, then

C[issαQ] = C[issα1Q1]⊗ C[issα2Q2],

where α1,2 = α|Q1,2 .
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We will call a quiver prime if it can not be written as a non-trivial connected

sum in vertices of dimension one. Based on the previous two lemmas we can

conclude that it is satisfactory to classify coregular or C.I. quiver settings that

are prime and strongly connected.

3.3 Reduction steps

In [2] Raf Bocklandt introduces some methods of reducing the number of arrows

and vertices in a quiver setting (Q,α), so that the ring of invariants of the new

quiver will be the same or closely related to C[issαQ]. We recall these reduction

steps. (Once again εv is the dimension vector that is 1 in v and 0 elsewhere)

Lemma 3.6. (Reduction RI: removing vertices) Suppose (Q,α) is a quiver set-

ting and v is a vertex without loops such that

χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0.

Let (i1, ..., il) denote the vertices from which arrows point to v and (u1, ..., uv)

denote the vertices to which arrows point from v. Construct a new quiver setting

(Q′, α′) by removing the vertex v and all of the arrows (a1, ..., al) pointing to v

and the arrows (b1, ..., bk) coming from v, and adding a new arrow cij for each

pair (ai, bj) such that s′(cij) = s(ai) and t′(cij) = t(bj), as illustrated below:

These two quiver settings now have isomorphic ring of invariants.

Lemma 3.7. (Reduction RII: removing loops of dimension 1) Suppose that

(Q, α) is a quiver setting and v a vertex with k loops and α(v) = 1. Take Q′ the

corresponding quiver without the loops of v, then the following identity holds:

C[issαQ] = C[issαQ′]⊗ C[X1, ..., Xk],

where Xi are the polynomials that correspond to the loops of v.
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Lemma 3.8. (Reduction RIII: removing a loop of higher dimension). Suppose

(Q, α) is a quiver setting and v is a vertex of dimension k ≥ 2 with one loop

such that

χQ(α, εv) = −1 or χQ(εv, α) = 1.

(In other words, aside of the loop, there is either a single arrow leaving v and

it points to a vertex with dimension 1, or there is a single arrow pointing to v

and it comes from a vertex with dimension 1). Construct a new quiver setting

(Q′, α′) by changing (Q, α):

We have the following identity:

C[issαQ] = C[issαQ′]⊗ C[X1, ..., Xk].

Since the tensor product with a polynomial ring does not change the property

of being coregular or C.I., we can summarize:

Proposition 3.9. If (Q,α) can be transformed into (Q′, α′) by the above steps

or their inverses, then (Q,α) is coregular (resp. C.I.) if and only if (Q′, α′) is

coregular (resp. C.I.).

We will call a quiver setting reduced if none of the above steps can be applied

to it, we can conclude that it is satisfactory to classify coregular and C.I. quiver

settings that are reduced.

3.4 Local quivers

Both smoothness and being a C.I. are properties that can be interpreted locally.

Smoothness of a variety by de�nition means that it is smooth in every point

(being smooth in a point means that the rank of the Jacobian of the de�ning
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polynomials is maximal locally around that point). We say that a variety is a

C.I. in a point x if the ideal of the variety is a C.I. in the local ring of that point

in the ambient a�ne space. It can be shown that if the variety is a C.I. than

this holds for every point (see for ex. [13]). This means that in order to prove

that issαQ is not coregular or a C.I. for some quiver setting it satis�es to show

that it does not have these properties locally around a given point.

It is also known (see for example the proof of Lemma 3.3 in [6]) that a homo-

geneous ideal in a polynomial ring is a complete intersection if its localization

by the ideal of positively graded elements is a complete intersection. Since the

ideal of relations for a quiver is a homogeneous ring (if we give the generators

the grade equal to the length of the corresponding cycles), to see that a quiver

is a C.I. it su�ces to see that its localization around the zero representation is

a C.I..

To understand the local structure of issαQ we recall some results from Luna

[14] and LeBruyn and Procesi [4]. For these we will need some de�nitions.

An étale morphism of a�ne varieties is a smooth (in the analytical sense)

morphism of relative dimension 0. (The analogue of the notion of submersion for

complex manifolds.) These morphisms are useful for us since if there is an étale

isomorphism from an open neighborhood of p ∈ Q to an open neighborhood of

p′ ∈ Q′ then Q will be smooth (resp. locally C.I.) in p if and only if Q′ is smooth

(resp. locally C.I.) in p′. (The �rst statement is true because the morphism is

smooth in the analytical sense for the latter see [10].)

If X is an a�ne variety over the �eld k, the tangent space TxX of a point x

of the a�ne variety X is the k-vector space of k-derivations of k[X], i.e. linear

maps D : k[X] → k such that D(fg) = f(x)(Dg) + (Df)g(x). A morphism

ϕ : Y → X de�nes a map of tangent spaces (dϕ)y : TyY → TxX, which is called

the di�erential of ϕ at y. If Y is a subvariety of X and y is a point on Y then

the tangent space TyY can be regarded as a subspace of the tangent space TyX

(formally we can regard (dι)TyY ⊆ TyX, where ι is the inclusion map). The

normal space of a subvariety at a point x is direct complement of the tangent

space of the subvariety.

If G is a reductive group acting on the a�ne variety X, and x is a point

whose orbit is closed, let Nx denote the normal space of the orbit of x at the

point x. The stabilizer group Gx acts linearly on Nx, so we can consider the

quotient variety Nx//Gx. It follows from Luna's étale slice theorem [14] that
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there is an étale isomorphism between a neighborhood V of 0 ∈ Nx//Gx and a

neighborhood U in πX/G(x) ∈ X/G.
In the case of GLα acting on issαQ a theorem of Le Bruyn and Procesi [4,

Theorem 5] showed that for every point p ∈ issαQ corresponding to a semi-

simple representation, we can build a quiver setting (Qp, αp) which will be

isomorphic as a GLα representation to the normal space of the orbit of p.

Theorem 3.10. For a point p ∈ issαQ corresponding to a semisimple repre-

sentation V = S⊕a1
1 ⊕ ... ⊕ S⊕ak

k , there is a quiver setting (Qp, αp) called the

local quiver setting such that we have an étale isomorphism between an open

neighborhood of the zero representation in issαpQp and an open neighborhood of

p in issαQ.

Qp has k vertices corresponding to the set {Si} of simple factors of V and

between Si and Sj the number of arrows equals

δij − χQ(αi, αj),

where αi is the dimension vector of the simple component Si and χQ is the Ringel

form of the quiver Q. The dimension vector αp is de�ned to be (a1, ..., ak), where

the ai are the multiplicities of the simple components in V .

Remark 3.11. Due to our earlier note on étale isomorphisms preserving the

properties of smoothness and being C.I., to show that a quiver setting is not

coregular (resp. C.I.) it is satisfactory to �nd a local quiver setting that is not

coregular (resp. C.I.).

The structure of the local quiver setting only depends on the dimension vec-

tors of the simple components. So to �nd all local quivers of a given quiver

setting we have to decompose α into a linear combination of dimension vectors

α =
∑
ai ∗ βi (ai ∈ N and the βi-s are not necessarily di�erent) and check if

there is a semi-simple representation corresponding to this decomposition. This

depends on two conditions: there has to be a simple representation correspond-

ing to each βi which we can check using Theorem 2.2, and if some of the βi-s

are the same there has to be at least as many di�erent simple representation

classes with dimension vector βi. For checking the latter condition we recall from

[4, Theorem 6] that in all of the cases described in Theorem 2.2 the dimension

of issαQ is given by 1− χQ(α, α), which is bigger than zero except for the one

vertex without loops, so in all the other cases there are in�nitely many classes
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of semi-simple representations, and in the case of one vertex without loops there

is a unique simple representation.

3.5 Quivers with one dimensional vertices

We will brie�y overview what the above results mean when all the vertices have

dimension 1. For a quiver Q = (V,A, s, t) and α = (1, ..., 1), 1 − χQ(εv, α)

and 1 − χQ(α, εv) are the in-degree and the out-degree of the vertex v, and

χQ(α, α) = |V |−|A|. According to Theorem 2.2 there is a simple representation

with dimension vector α if and only if Q is strongly connected (χQ(εv, α) ≤ 0

and χQ(α, εv) ≤ 0 holds automatically in this case). Applying Theorem 3.10

we can see that to construct a local quiver (Q′, α′) we have to decompose Q to

strongly connected complete subquivers, then the vertices of Q′ will correspond

to these subquivers, and the number of arrows between two vertices will equal

to the number of arrows between the corresponding subquivers of Q. Since each

simple component is listed once in the decomposition, we have α′ = (1, ..., 1).

We will say that Q′ is the local quiver we get by gluing the vertices in some

strongly connected subquivers.

Also for a strongly connected Q, dim(issαQ) = 1−χQ(α, α) = 1+ |A|− |V |.
The quasi-primitive cycles and the primitive cycles are the same, and they

generate the ring of invariants. It is also clear that all of these cycles are needed

to generate that ring. Let C denote the set of primitive cycles in Q, issαQ is

embedded in a |C| dimensional a�ne space, so

codim(issαQ) = |C|+ |V | − |A| − 1.

For an arbitrary quiver Q we will use the notation F (Q) = |C|+ |V | − |A| − 1.

(It is worth noting that we now have a geometrical proof for the combinatorial

fact that F (Q) ≥ 0 for any strongly connected quiver Q.) For a quiver setting

in which all vertices are 1 dimensional, issαQ being smooth (so an a�ne space)

is equivalent to F (Q) ≥ 0, and issαQ being a C.I. is equivalent to the ideal of

issαQ being generated by F (Q) elements.

We also note that RIII can never be applied on a quiver with one dimensional

vertices, so being reduced in this case means, that there is no loops in the quiver

and all the vertices have in-degree and out-degree greater than or equal to 2, or

that the quiver consists of a single vertex with no loops.
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4 Coregular Quiver Settings

Raf Bocklandt in [2] gives a complete classi�cation of all quiver settings that

are coregular.

Theorem 4.1. Let (Q,α) be a genuine strongly connected reduced quiver set-

ting. Then (Q,α) is coregular if and only if it is one of the three quiver settings

below:

.

4.1 Proof of Theorem 4.1

There is an error in [2], in the proof for the above theorem. When the author

discusses the case α = (1, ..., 1), he argues on the bottom of page 312 that when

there is no subquiver of form

then a vertex 'v' can be removed in the following way:

without changing the number of primitive cycles. This is however not true

since non-primitive cycles, that run through v multiple times, but do not run

through any other vertex more then once, will become primitive cycles in the

new quiver. The number of new cycles can be arbitrarily large as demonstrated

on the example below:
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The quiver on the left has n+ 1 primitive cycles, while the one on the right has

2n+ 1.

As it is explained in Section 3.5, to prove Theorem 4.1 in the case

α = (1, ..., 1), we have to see that the only reduced quiver, for which F (Q) = 0

holds, is the one consisting of a single vertex with no loops. This follows from

the lemma below:

Lemma 4.2. If Q is a strongly-connected quiver without loops, and for every

vertex the in-degree and the out-degree are both at least 2, then F (Q) ≥ 1.

Proof. We prove the theorem by induction on the number of vertices. For one

vertex the statement is true, since there is no such quiver with one vertex at

all. Lets suppose we already saw that the statement is true for quivers with at

most k vertices. It then follows that the following stronger statement is true for

quivers with at most k vertices:

(*) If Q is a strongly-connected quiver, with at least two vertices, without

loops, and for every vertex, with the possible exception of one vertex, the

in-degree and the out-degree are both at least 2, then F (Q) ≥ 1.

We prove this by induction as well. (*) is obviously true if there is only two

vertices since if one of them has in-degree and out-degree two or bigger then so

does the other. Lets suppose (*) is true for some l < k, and lets regard a quiver

Q with l + 1 vertices that has at most one vertex whose in- and out-degrees

are not both at least two. If it has no such vertex then F (Q) ≥ 1 follows

from k ≥ l + 1 and the induction hypothesis on the original lemma. If it has

exactly one such vertex than we apply the reduction step RI, and then RII to

remove all possible loops, and get a quiver Q′ that has again at most one vertex

whose in- and out-degrees are not both at least two. So applying the induction

hypothesis on Q′ we get F (Q′) ≥ 1 and because neither RI, nor RII can change

this property, F (Q) ≥ 1 holds.
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Now we proceed with the induction on the original lemma. Lets suppose Q

is a quiver with k + 1 vertices for which every vertex has in- and out-degrees 2

or greater. If all primitive cycles of Q are k + 1 long than Q has a subquiver of

form:

for which F (Q) ≥ 1.

If there is a primitive cycle shorter than k+ 1 then let Q′ be the local quiver

of Q we get by gluing the vertices of this cycle. Let Q′′ be the quiver we get from

Q′ by removing all loops. Q′′ has at most one vertex that can have in- or out-

degree 1 (namely the new vertex we created by gluing the cycle), it is strongly

connected and has at least 2 vertices but no more than k, so we can apply (*)

and see that F (Q′′) ≥ 1. Since we got Q′′ by applying RII on a local quiver of

Q according to Proposition 3.9 and Remark 3.11, F (Q) ≥ 1 follows.
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5 Complete Intersections

5.1 The symmetric case

A symmetric quiver setting is one, in which for any two vertices v1 and v2 the

number of arrows pointing from v1 to v2 equals the number of arrows pointing

from v2 to v1. In [3] Bocklandt classi�ed all the symmetric prime reduced quiver

settings.

Theorem 5.1. Let (Q,α) be a symmetric prime reduced quiver setting without

loops. If issαQ is a complete intersection then (Q,α) is either coregular or is

one of the following list.

(The last pictures shows a quiver with at least three vertices whose arrows form

two oppositely directed cycles that both go through all the vertices.)
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5.2 The one dimensional case

Giving a list of all C.I. quiver settings that are reduced (in the sense described

in 3.3) seems hopeless even in the α = (1, ..., 1) case. Here we will introduce a

new reduction step that preserves both the property of being C.I. and not being

C.I., and proceed to show that a strongly connected, prime quiver setting which

can not be reduced by either this new reduction step or the steps RI and RII

is C.I. if and only if it is the quiver consisting of a single vertex and no loops.

(We remind that the reduction step RIII is never applicable to quivers with one

dimensional vertices, so we will not need it in this section.)

We will call a pair of vertices a connected pair if there is arrows both ways

between them. Also note that by path we always mean a directed path that

does not run through the same vertex twice.

Theorem 5.2. Let (Q,α) be a quiver with α = (1, ..., 1) , and (v1, v2) a con-

nected pair in Q. Let (Q′, α′) denote the local quiver of Q we get by gluing the

vertices v1 and v2. Suppose at least one of the following holds:

a) There are exactly two paths from v1 to v2 and exactly two paths from v2

to v1.

b) There is exactly one path from v1 to v2.

c) There is exactly one path from v2 to v1.

Then we have: (Q,α) is a complete intersection if and only if (Q′, α′) is a

complete intersection.

Proof. Since (Q′, α′) is a local quiver of (Q,α), we only have to prove that if

(Q′, α′) is a C.I. then (Q,α) is a C.I..

The arrow from v1 to v2 will be noted by a1 and the the arrow from v2 to

v1 will be noted by a2 (Note that we never exclude the case in the theorem

that there is more arrows running between v1 and v2 but we will not use any

special notations for those.) Primitive cycles running through both v1 and v2

are formed by disjoint paths from v1 to v2 and v2 to v1. In case a) the paths

between the two vertices are a1, a2 and one more path both ways which will be

denoted by Γ1 and Γ2. It follows that there are 3 or 4 primitive cycles running

through the two vertices depending on whether Γ1 and Γ2 intersect each other

or not (anywhere else than in the vertices v1 and v2). The element of C[issαQ]

that corresponds to the cycle (a1, a2) will be noted by p, the elements that

correspond to (a1,Γ2) and (a2,Γ1) will be noted by q1 and q2, and if Γ1 and Γ2
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form a primitive cycle the corresponding element will be noted by s. We will

say we are in case a1) when Γ1 and Γ2 intersect each other, and case a2) when

they do not. In case b) and c), the paths from v1 and v2 will be denoted by

Γ1,...j and the primitive cycles running through the two vertices will be denoted

by p and q1,...j as above. The rest of the primitive cycles in Q will be denoted

by r1, ...rk.

Since all dimension vectors in the proof are (1, ..., 1) we will writeQ instead of

(Q,α). C[RepαQ] is a polynomial ring in |A| variables, and the GLα invariants

that correspond to the primitive cycles are monomials in this ring. So, according

to Theorem 2.4, C[issαQ] is isomorphic to a monomial subring of a polynomial

ring. Let n denote the number of primitive cycles in Q and f1, ..., fn denote the

monomials corresponding to the primitive cycles. issαQ is then embedded in

an n dimensional a�ne space, and we have a morphism

ϕ : C[x1, ...xn]→ C[issαQ] ϕ(xi) = fi

for which Ker(ϕ) is the ideal of the variety issαQ. We will refer to Ker(ϕ)

as the ideal of relations, and to its elements as relations on Q. In our case

the ring C[x1, ...xn] will be denoted by R, and its variables will be noted by

xp, xqi
, xri

, xs.

It is important to note that, since C[issαQ] is a monomial ring, the ideal

Ker(ϕ′) (also referred to as the toric ideal of the monomial subring) is generated

by binomials (see for ex., [15, Proposition 7.1.2]). Moreover some binomial

m1 −m2 is in Ker(ϕ) if and only if the multisets of arrows corresponding to

m1 and m2 are the same (this is clear if we regard C[issαQ] as a subring of the

polynomial ring C[RepαQ]).

Note that when we glue together some vertices in a quiver there will be a

natural graph-homomorphism between the old and the new quiver, so it makes

sense to talk about the image and pre-image of vertices, arrows, paths and

cycles. The image of a path remains a path if it did not run through the glued

subquiver twice, and it will become a cycle if it started from and ended in the

glued subquiver. The image of a cycle will always be a cycle, but the image of

a primitive cycle will only remain primitive if it did not run through the glued

subquiver twice. The pre-image of a path (resp. a primitive cycle) is always a

path (resp. a primitive cycle).
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In our case the images of the arrows a1 and a2 will be loops on the glued

vertex w, which (by the reduction step RII) can be removed without changing

the C.I. property of the quiver. For sake of simplicity Q′ will denote the quiver

from which these cycles have already been removed. With these loops removed

the only case when the image of a primitive cycle inQ will not be primitive is a2),

the image of the primitive cycle corresponding to s will be formed by the images

of the cycles corresponding to q1 and q2. So it makes sense to denote the the

primitive cycles in Q′ by q′i, r
′
i and the variables of the corresponding polynomial

ring R′ by xq′i , xr′i . As above we have a morphism ϕ′ : R′ → C[issα′Q′] for which

Ker(ϕ′) is the ideal of relations on Q′.

The graph-homomorphism between Q and Q′ induces an epimorphism

Ψ : C[RepαQ] → C[Repα′Q′], whose restriction to C[issαQ], which will be de-

noted by ψ, is an epimorphism to C[issα′Q′] (since the pre-images of primitive

cycles of Q′ are primitive cycles of Q.) We have:

ψ(p) = 1 ψ(qi) = q′i ψ(ri) = r′i

and in the case a2) ψ(s) = q′1q
′
2.

We can also de�ne a morphism:

θ : R→ R′ : θ(xp) = 1 θ(xqi
) = xq′i θ(xri

) = xr′i

and in the case a2) θ(xs) = xq′1xq′2 .

We have:

ψ◦ϕ(xp) = ϕ′◦θ(xp) = 1 ψ◦ϕ(xqi
) = ϕ′◦θ(xqi

) = qi ψ◦ϕ(xri
) = ϕ′◦θ(xri

) = r′i

and in the case a2) ψ ◦ ϕ(xs) = ϕ′ ◦ θ(xs) = q′1q
′
2. To sum this up the diagram

below is commutative and all the morphisms in it are epimorphisms.

ϕ

R → C[issαQ]

↓ θ ↓ ψ
ϕ′

R′ → C[issα′Q′]
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Clearly Ker(θ) =< 1 − xp > in cases a1), b) and c), and

Ker(θ) =< 1− xp, xq1xq2 − xs > in case a2).

Lemma 5.3. Ker(ψ) =< 1− p > .

Proof. Let us suppose f ∈ Ker(ψ), and let g ∈ R be a polynomial for which

ϕ(g) = f . Clearly θ(g) ∈ Ker(ϕ′), so θ(g) =
∑
tibi for some binomials

bi ∈ Ker(ϕ′). R′ can be regarded as a subring of R and the injection map

ι : R→ R′ is a right inverse of θ. g − ιθ(g) ∈ Kerθ, so

g = ι(
∑

tibi) + τ1 ∗ (1− xp)

in cases a1), b) and c), and

g = ι(
∑

tibi) + τ1(1− xp) + τ2 ∗ (xq1xq2 − xs)

in case a2). Note that in case a2) s = pq1q2, since the multisets of arrows corre-

sponding to the two sides of the equation are the same, so

q1q2 − s = (1− p) ∗ q1q2. It follows that

f = ϕι(
∑

tibi) + ϕ(τ1) ∗ (1− p)

in cases a1), b) and c), and

f = ϕι(
∑

tibi) + ϕ(τ1) ∗ (1− p) + ϕ(τ2) ∗ q1q2 ∗ (1− p)

in case a2).

So it is satisfactory to prove the lemma for binomials m1 −m2 ∈ Ker(ψ).

ψ(m1) =ψ(m2) means that the multisets of arrows corresponding to ψ(m1)

and ψ(m2) are the same in Q′ so the multisets of arrows corresponding to m1

and m2 in Q only di�er in the arrows a1 and a2. However these multisets are

both unions of primitive cycles, and in such a union for each vertex the number

of arrows leaving the vertex and going into the vertex are equal. Thus if for

example the multiset corresponding to m1 has a1 in it k more times than the

multiset corresponding to m2 then it also must have a1 in it k more times than

m2, which means m2 = pk ∗m1, and it follows that

m1 −m2 = (1− pk) ∗m1 ∈< 1− p > .
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Lemma 5.4. θ(Ker(ϕ)) = Ker(ϕ′).

Proof. Clearly θ(Ker(ϕ)) ⊆ Ker(ϕ′). For surjectivity lets suppose that

t ∈ Ker(ϕ′). Because θ is surjective there is a y ∈ R, such that θ(y) = t. Since

ϕ′ ◦ θ = ψ ◦ϕ, ϕ(y) ∈ Ker(ψ), and by the previous lemma ϕ(y) = (1−p) ∗ f for

some f ∈ C[issαQ]. Since ϕ is surjective there is a g ∈ R such that ϕ(g) = f .

It follows that

y − (1− xp) ∗ f ∈ Ker(ϕ)

and

θ(y − (1− xp) ∗ f) = t.

Denoting by V ′, A′, C ′ the set of vertices, arrows and primitive cycles in Q′,

we have |V ′| = |V | − 1 and |A′| = |A| − 2. In cases a1), b), c) |C ′| = |C| − 1 so

(as explained in Section 3.5)

codim(issα′Q′)) = F (Q′) = |C ′|+ |V ′| − |A′| − 1 = codim(issαQ).

In case a2) |C ′| = |C| − 2 and codim(issα′Q′)) = codim(issαQ))− 1.

As it has already been notedKer(ϕ) is generated by binomials. The elements

of R and thus Ker(ϕ) can be graded so that each variable has grade equal to

the length of the corresponding primitive cycle. With this grading all of the

binomials in Ker(ϕ) are homogeneous, so Ker(ϕ) is a homogeneous ideal. It is

then known that all minimal homogeneous systems of generators ofKer(ϕ) have

the same number of elements, and that a generating set with minimal number

of elements can be chosen to be homogeneous. So to �nd out the number of

elements needed to generate Ker(ϕ) we only have to �nd a minimal binomial

generating set.

In order to see the relation between the minimal number of binomials needed

to generate Ker(ϕ) and Ker(ϕ′), lets take a look at how a minimal set of

binomials generating the ideal of relations can be selected for an arbitrary quiver.

Let U denote a multiset of arrows, in which each vertex has the same in-degree

as out-degree (meaning that U is a union of directed cycles), we will say that

the monomial m is a partition of U if U is a union of the cycles represented by
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m. As we have noted earlier a binomial, m1 − m2 is in the ideal of relations

if and only if m1 and m2 are partitions of the same multiset. For a relation

m1 −m2 to be generated by some other binomials we need an equation

m1 −m2 = r1(n1 − l1) + r2(n2 − l2) + . . . rk(nk − lk)

to hold for some monomials ni, li and polynomials ri. For the sake of simplicity

we can suppose that no partial sum on the right hand side equals zero and that

m1 = r1 ∗ n1 and m2 = rk ∗ lk and for 1 ≤ i ≤ k − 1 : ri ∗ li = ri+1 ∗ ni+1 (we

can achieve that by reordering the sum on the right hand side). Clearly the ni-s

and li-s correspond to partitions of subsets of U. This gives us a chance to �nd

a minimal set of generators recursively.

If a minimal set A generating the relations on all multisets strictly smaller

than U has already been found we will have to chose a minimal set of relations

B on U , such that A ∪B generate the relations on U . We can de�ne a relation

among the partitions of U: m1 ∼U m2 if and only if m1 −m2 is generated by

relations on multisets strictly smaller than U (meaning that we have an equation

as above, with deg(ri) > 0 for each i). Clearly this is an equivalence relation. If

there are n equivalence classes of ∼U , then we will need at least n−1 relations in

B. For example if m1, m2, . . . , mn are representatives of each equivalence class

of ∼U , then A ∪ {m1 −m2, m2 −m3 , . . . , mn−1 −mn} minimally generate all

the relations on U . Thus if we want to compare the sizes of minimal generating

sets in Ker(ϕ) and Ker(ϕ′), we only have to compare the sum of the number

of equivalence classes for each multiset in the two quivers. Note that ∼U only

depends on the quiver and the multiset and not how the generators in smaller

multisets were chosen, so it makes sense to use the notation

E(U) := |{equivalence classes of ∼U}| − 1.

Note that E(U) = 0 with �nitely many exceptions since, the ideal of relations

is �nitely generated.

In case a1) it is satisfactory to prove that
∑
E(U) ≤

∑
E(U ′), where the

left hand sum runs over all the arrow multisets of Q and the right hand sum

runs over all the arrow multisets in Q′. If U is a multiset of arrows in Q than

by slight abuse of notation we can write θ(U) for its image in Q′. Obviously if

U and V only di�er in the arrows a1 and a2 then θ(U) = θ(V ). The left hand
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sum can be written as

∑
a1∈U or a2∈U

E(U) +
∑

a1 /∈U and a2 /∈U

E(U)

and the right hand sum can be written as

∑
a1 /∈U and a2 /∈U

E(θ(U)).

Lets now look at
∑
a1∈U or a2∈U E(U). If a1 ∈ U but a2 /∈ U then all partitions

of U will be of form q1 ∗ t (where t is a partition of U\k1), since the only

cycle containing a1 but not a2 is q1. These partitions are all equivalent since

q1 ∗ t1 − q1 ∗ t2 = q1 ∗ (t1 − t2) and t1 − t2 is a relation on a proper subset of U .

So for such a U we have E(U) = 0, and the same can be said when a1 /∈ U and

a2 ∈ U . Let Uq be the multiset formed by the arrows of q1 and q2. A partition of

Uq is either q1 ∗ q2 or of form p∗ t (where t is a monomial corresponding to some

partition of Uq\{a1, a2}), clearly the latter are all equivalent with each other

but can not be equivalent with k1 ∗ k2 (noteworthily no partition consisting of

exactly two cycles can be equivalent to some other partition since that would

require one of the cycles to be written as a union of strictly smaller cycles which

is of course impossible). So we have E(Uq) = 1. Let us now suppose that U

contains both a1and a2 but it is not Uq. A partition of U in this case is either

of form p ∗ t or of form q1 ∗ q2 ∗ % (t and % are monomials corresponding to

partitions of the remaining arrows). The ones that are of form p ∗ t are clearly
equivalent with each other. If U has a partition of form q1 ∗ q2 ∗ % then Uq ⊂ U ,
so using relations on Uq we can show that q1 ∗ q2 ∗ % ∼U p ∗ %′ for some %′. So

in this case we also get E(U) = 0. Thus
∑
e1∈U or e2∈U E(U) = 1. So now we

have to prove

∑
e1 /∈U and e2 /∈U

E(U) + 1 ≤
∑

e1 /∈U and e2 /∈U

E(θ(U)).

If U is a multiset that does not contain a1 and a2, and m1 and m2 are two

partitions of U for which θ(m1) ∼θ(U) θ(m2), thenm1 andm2 are also equivalent

in U . To see this, regard the equation

θ(m1)− θ(m2) = r1(n1 − l1) + r2(n2 − l2) + ...rk(nk − lk).
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Let r∗i , n
∗
i , l
∗
i note the pre-images of the monomials on the right hand side that

does not contain xp, in this case

m1 −m2 = r∗1(f∗1 − g∗1) + r∗2(f∗2 − g∗2) + . . . r∗k(f∗k − g∗k)

holds in Q since the di�erence of the two sides could only be some multiple

of 1 − xp, which can only be zero, since neither sides contain xp. So we get

E(U) ≤ E(θ(U)). Let U0 = Uq\ {a1, a2}. θ(U0) has the partition xq′1 ∗ xq′2
which is not the image of any partition of U0 and is not equivalent to any other

partition of θ(U0) (once again, since it is a partition with exactly two cycles).

So we get E(U0) + 1 ≤ θ(E(U0) and with this

∑
e1 /∈U and e2 /∈U

E(U) + 1 ≤
∑

e1 /∈U and e2 /∈U

E(θ(U))

is proven.

We can use a similar argument in case a2) except that now it is not true

anymore that θ(q1) ∗ θ(q2) is not the image of any partition of U0, in fact it will

be the image of the only partition of U0 namely xs (we remind xs corresponds

to the cycle formed by the arrows of q1and q2 without the arrows a1and a2). So

this time we get ∑
E(U) ≤

∑
E(U ′) + 1

which is exactly what we need to prove.

In case b) (case c) can be done similarly) we know that the only cycle going

through the arrow a2 is p. If for some U1 ⊆ U2 we have θ(U1) = θ(U2) then

U2 = U1∪{a1, a2}n (since both multisets correspond to unions of cycles). Since

a2 is then contained in U2 at least n times, all partitions of U2 can be written as

pn ∗ s and these are clearly equivalent with each other, so we have E(U2) = 0.

So every multiset in Q′ has at most one pre-image that has more than one

equivalence class. Also E(U) ≤ E(θ(U)) can be proven the same way as above,

so
∑
E(U) ≤

∑
E(U ′) follows.
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The reduction step introduced in the above theorem will be referred to as

RIV. Now we will proceed to show that the reduction steps RI-IV, and decom-

position into prime components will reduce all strongly connected C.I. quivers

to a single vertex without loops. First we will show two examples of non-C.I.

quivers, that will play an important role in the proof of the upcoming lemmas.

Proposition 5.5. The quiver setting

is not a C.I..

Proof. There are 6 primitive cycles in the above quiver so

codim(issαQ) = 6 + 2− 5− 1 = 2

Denoting the variables corresponding to the cycles by cik 1 ≤ i ≤ 3, 1 ≤ k ≤ 2,

the following relations generate Ker(ϕ):

c11c22 − c21c12

c11c32 − c31c12

c21c32 − c31c22.

Clearly none of these relations are generated by the others. The argument in

the second part of Theorem 5.2 could be used to see that they indeed generate

Ker(ϕ), though to prove the fact that the quiver is not a C.I. it is satisfactory

to see that any generating set consists of at least 3 elements. It is easy to see

that issαQ in this case is isomorphic to the variety of 3x2 matrices with rank 1

or 0.
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Proposition 5.6. The quiver setting

is not a C..I.

Proof. There are 8 primitive cycles in this quiver so

codim(iss(Q)) = 8 + 3− 6− 1 = 4.

Let aik 1 ≤ i ≤ 3, 1 ≤ k ≤ 2 denote the edges and cikj denote the cycle

consisting of a1i , a2k , a3j . Arrow multisets of type {a11,a12, a21, a22, a31, a31}
can be partitioned to directed cycles exactly two di�erent ways, namely c111∗c221
and c121 ∗c211, giving us one relation for each of these multisets. These relations

can not be generated by relations on smaller multisets, since the only non-trivial

subsets of the above multiset that is a union of cycles consists of only one cycle,

which does not yield any non-trivial relations. Thus the following six relations

will be part of any minimal binomial generator system in the ideal of relations:

c111 ∗ c221 = c121 ∗ c211 c112 ∗ c222 = c122 ∗ c212
c111 ∗ c212 = c112 ∗ c211 c121 ∗ c222 = c122 ∗ c221
c111 ∗ c122 = c112 ∗ c121 c211 ∗ c222 = c212 ∗ c221.
So the quiver setting is not a complete intersection. (It can be easily veri�ed

that a minimal generating set of Ker(ϕ) consists of 9 elements in this case, but

we will not need this fact.)

Now we will prove two lemmas, that in essence will show us that whenever

RIV can not be applied on a reduced, prime quiver setting, that quiver setting

can not be a C.I.. (We remind that by �a reduced quiver setting� we still mean

a quiver that can not be reduced with the original reduction steps RI-III.)

Lemma 5.7. If (Q,α) is a quiver setting with α = (1, ..., 1) in which there is a

connected pair (v1, v2), and there are at least three paths from v1 to v2 and at

least two paths from v2 to v1 then (Q,α) is not a C.I..
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Proof. We prove by induction on the number of vertices in Q. If Q has two

vertices, then it contains the sub-quiver:

(I)

which is not a C.I. by Proposition 5.5.

We have an arrow a1 from v1 to v2 and an arrow a2 from v2 to v1, let x1

and x2 denote the paths from v1 to v2 that are not {a1}, and y denote the path
from v2 to v1 that is not {a2}. Let us regard the sub-quiver Q' that is made

of these three paths and the arrows between v1 and v2. If Q
′ has a vertex with

in- or out-degree 1, then we can apply RI (which will not change the number of

paths between v1 and v2) and by the induction hypothesis Q' can not be a C.I..

So we only have to look at the cases where all vertices have in- and out-degrees

of at least 2 (so Q' is reduced).

First we discuss the case when y consists of a single arrow from v2 to v1.

Let us look at the vertex where the �rst arrow of x1 points to. If it is v2 then,

since Q' is reduced, it can only be the quiver (I).

If it is some other vertex v3 then since Q' is reduced there has to be another

arrow pointing to v3, which can only be part of x2. If we delete the arrows that

are in x1 but not in x2 except for the �rst arrow of x1 we get a quiver of form:

(dashed arrows indicate a single directed path with arbitrarily many vertices)

which once again can be reduced to (I).

If y contains more than one arrow, let a denote its �rst arrow and u the

vertex a points to. Since Q′ is reduced x1 or x2 has to contain the vertex u as

well. We can suppose x1 does. The arrow a and the part of x1 that is between

u and v2 forms a directed cycle c. Now we can regard the local quiver Q′′ of

Q′ that we get by gluing the vertices of c. Q′′ has less vertices than Q′ so if it

satis�es the conditions in the proposition we can apply the induction hypothesis

and conclude that Q′ is not a C.I.. In other words, for Q′ to be a C.I. there can
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only be one directed path both ways between the images of v1 and v2 in Q′′,

meaning that there is only one directed path both ways between the cycle c and

v1 in Q′. It follows then that the segment of x1 that is between v1 and u is also

contained in x2. Let Q0 be the subquiver of Q′ that consists of x1, a, and the

part of x2 that starts from the �rst arrow in which it di�ers from x1 and ends

in the �rst vertex which is also on x1 (this vertex can be v2). Q0 is of form:

(Including the special cases when w1 is u and w2 is v2.)

Let Q1 be the subquiver of Q′ we get by adding to Q1 the part of y that is

between the last vertex of y that is part of Q0 (there is at least one such vertex:

u) and v1, as well as adding the two arrows between v1 and v2.

Depending on where y departs from Q0, Q1 will be one of the following

quivers:

(II)
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(III)

(IV)

(V)

Case (II): The segments of x1 and y between v1 and w3 form a cycle, and

in the local quiver we get by gluing the vertices of this cycle there will still be

at least two paths from v1 to v2 and a path from v2 to v1 so we can apply the

induction hypothesis and conclude that Q′ is not a C.I..
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Case (III) and (IV): In both cases if we reduce by RI, we get the following

quiver:

The local quiver we get by gluing the bottom two vertices will be (I) (or more

precisely: (I) with two extra loops on one of the vertices) which is not a C.I..

Case(V): If we take the local quiver we get by gluing v1 and v2 , and reduce

it by RI afterwards, the resulting quiver will be of form:

Which is not a C.I. according to Proposition 5.6, so neither can be Q′.

For technical purposes we will state the next lemma in a weaker and stronger

form and prove them simultaneously, using parallel induction somewhat simi-

larly to the proof of Lemma 4.2.

Lemma 5.8. Let (Q,α) be a reduced (by RI, RII, and RIII), strongly connected,

prime quiver setting with α = (1, ..., 1), that has at least two vertices and does

not contain any connected pairs. Then (Q,α) is not a C.I..

Lemma 5.9. Let(Q,α) be a strongly connected, prime quiver setting with at

least three vertices and no loops, and with α = (1, ..., 1). If there is a vertex v in

Q such that v is a member of every connected pair of Q and any vertex except

v has in-degree and out-degree at least 2, then (Q,α) is not a C.I..

Proof. We will prove by induction on the number of vertices in Q. Supposing

that Lemma 5.8 holds for quivers with at most k vertices and Lemma 5.9 holds

for quivers with at most k− 1 vertices, we will �rst show that Lemma 5.9 holds

for quivers with k vertices as well. Then we will use this result to show that

Lemma 5.8 holds for quivers with k + 1 vertices.
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In the case Q is a quiver with two vertices Lemma 5.8 holds trivially since

a strongly connected quiver with 2 vertices contains a connected pair. Lemma

5.9 does not hold for two vertices since the quiver:

(I)

satis�es the conditions, and is a C.I.. Noteworthily it is the only exception

(since one of the vertices need to have in- and out-degree 2 or greater and any

further arrows would result in the quiver not being a C.I.).

We will show the lemmas directly in the case of three vertices (it su�ces to

show Lemma 5.9). Let the vertices be v, u1, u2 with u1 and u2 having in- and

out-degrees 2 or greater, and u1 and u2 not forming a connected pair. For the

sake of simplicity we can suppose that there is no arrow from u2 to u1. In this

case there has to be at least 2 arrows going from u2 to v, and 2 arrows going

from v to u1 (because of the condition on the in- and out-degrees), and at least

one arrow going from u1 to u2 (because the quiver is not prime). Moreover if

there is only one arrow going from u1 to u2 then there also has to be at least one

arrow going from v to u2 since the in-degree of u2 is at least 2. So the quiver

will contain one of the following subquivers:

(II)

(III)

We have already seen in Proposition 5.6 that (II) is not a C.I..
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For (III) if we delete the arrow from v to u2 and apply RI on u2 we get:

(IV)

which is not a C.I..

Now let us suppose that Q has k > 3 vertices, satis�es the conditions in

Lemma 5.9 and is a C.I.. If there is neither connected pairs nor a vertex with

in- or out-degree less than 2 in Q we have a contradiction since we supposed

that Lemma 5.8 holds for k vertices.

If there is a connected pair in Q, this pair has to contain the vertex v and

some other vertex u. Let Q′ denote the local quiver of Q we get by gluing the

vertices of this connected pair. Q′ is strongly connected but not necessarily

prime. However if Q′ has non-trivial prime components Q′1, . . . , Q
′
k then it

must be the connected sum Q′ = Q′1#v′Q′2#v′ . . .#v′Q′k since if two prime

components would meet in some vertex w′ 6= v′ then there would be two vertices

x′, y′ in Q′ such that all paths between them run through w′, and since w′ has a

unique pre-image in Q the same would have to hold in Q for the pre-images of

x′, y′, w′ which would contradict with Q being a prime quiver. We can conclude

that all vertices in the prime components, except v′, have as many in- and out-

degrees as they have in Q′, which is the same as their pre-images have in Q. Also

v′ will be contained in all connected pairs of Q′ and thus in all connected pairs

of the prime components. If Q is a C.I. then so is Q′ and its prime components,

and due to the induction hypothesis on Lemma 5.9 this means that the prime

components of Q′ have to be quivers with two vertices that are of form (I)

(otherwise they would satisfy the conditions in Lemma 5.9). This means that

every vertex in Q aside of v and u have exactly two arrows going to either u or v

and exactly two arrows arriving from either u or v, and no other arrows. Since

Q is prime, there has to be an arrow between u and some other vertex w1 6= v.

We can suppose this arrow is pointing from u to w1. Since u and w1 are not a

connected pair the two arrows leaving w1 are both pointing to v. Since u has

in-degree of at least 2 there has to be either two arrows from v to u, or an arrow

pointing to u from some other vertex w2. In the latter case there also has to be

two arrows pointing from v to w2. This means Q contains one of the following

sub-quivers:
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(V)

(VI)

neither of which are C.I.-s. (By applying RI on w1 in the �rst case and both

w1 and w2 in the second case we get quivers that contain a subquiver of form

(IV).)

If Q contains no connected pairs but it has a vertex v with out-degree 1,

then let u denote the vertex where the only arrow leaving v points to, and Q′

denote the quiver we get by applying RI on v. Applying the same argument as

above on Q′ we can conclude that Q′ = Q′1#v′Q′2#v′ . . .#v′Q′k where the Q′i-s

are all of form (I). Since u has in-degree of at least 2 in Q there has to be an

arrow entering u from some vertex w2 6= v. Since Q is strongly connected it

must contain an arrow that points to w2, however due to our result on Q′ this

arrow can only leave from u or v. Since there is only one arrow leaving v and

that points to u, we can conclude that there is an arrow pointing from u to w2

contradicting with the supposition that Q contains no connected pairs.

Now we are left to prove Lemma 5.8 on k vertices, supposing that we already

know that both lemmas are true for quivers with at most k − 1 vertices. Let

c be a cycle of length l in Q , going through the vertices v1, v2, ..., vl. For the

sake of simplicity vi and vj will denote the same vertex if i ≡ j (mod l). If c is
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a cycle of minimum length in Q then any arrow between the vertices of c has to

point from some vi to vi+1. Since if an arrow pointed to any vertex at least two

steps away in the cycle it would form a shorter cycle than l along with some

of the original arrows of c. Also no arrow can point from vi to vi−1 since Q

contains no connected pairs. For Q to be a C.I. there can not be more than two

extra arrows going between the vertices of c otherwise we could reduce it to (II)

which is not a C.I.. Also if we look at the local quiver Q′ we get by gluing the

vertices of this cycle, using the same argument as above, we can see that the

prime components in Q′ satisfy the conditions of Lemma 5.9 except for having

at least three vertices, so Q′ has to either consist of a single vertex (if l = k)

or be a connected sum of quivers of form (I). This means that any vertex in Q

other then v1, v2, ..., vl will have in- and out-degree 2 and all of its arrows will

point to a vertex in c or come from a vertex in c.

If the minimal cycle length in Q is k, then, since all vertices have in- and

out-degree of at least 2, Q will contain the subquiver:

By repeatedly deleting an arrow and applying RI this quiver can be reduced to

(II) which is not a C.I..

If the minimal cycle length in Q is k − 1 then let c be a minimal cycle

with vertices v1, v2, ..., vk−1 and u be the only vertex of Q that is not in c.

As noted above there is two arrows going from u to c and two arrows going

from c to u. If an arrow points from vi to u and another arrow points from

u to vj then j − i ≡ 1 (mod k − 1) or i − j ≡ 1 (mod k − 1) , otherwise the

cycle u, vj , vj+1 . . . vi, u would be shorter than k − 1 contradicting that c is a

cycle of minimal length. For this condition to be satis�ed either the two arrows

entering u have to point to the same vertex or the two arrows leaving u have to

come from the same vertex. We can suppose the latter holds. Also note that

if there is no arrow going from u to some vi then there has to be at least two

arrows going from vi−1 to vi, and similarly if there is no arrow going from some
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vi to u then there has to be at least two arrows going from vi to vi+1 due to

all vertices having in- and out-degrees of at least 2. So depending on where

the arrows departing from u point to, Q will contain one of the following three

sub-quivers:

All of these contain a cycle with three double vertices (as indicated with red

lines on the pictures) which reduce to (II) and are therefore not C.I.-s.

If the minimal cycle length in Q is smaller than k − 1 , there is a minimal

cycle c in Q with vertices v1, v2, ..., vl and at least two vertices u1 and u2 outside

this cycle. Applying the same argument as above we can suppose that there is

two arrows going from v1 to u1. There has to be at least two arrow pointing

to v1 and none of these can be leaving from u1. If both arrows entering v1 are

leaving from vl then we can regard the subquiver of Q consisting of the cycle c

the vertex u1 and the four arrows that are incident to u1. This will be of form:

or of form:
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The �rst case already contains a cycle with three double arrows, and the second

case can be reduced to the �rst case by applying RI on v2.

If one of the arrows entering v1 are leaving from some vertex u2 outside

the cycle c, let us regard the subquiver Q′ that consists of the cycle c, the

vertices u1, u2 and the eight arrows that are incident to u1 or u2. If there is

an arrow from u1 to v3 then there can be no arrow between u2 and v2 (either

direction) otherwise the local quiver we get by gluing the vertices of the cycle

u1, v3, v4...v1, u1 would not be a connected sum of quivers of form (I) (since the

images of u2 and v2 would be separate vertices in that quiver with an arrow

between them) and due to the induction hypothesis on Lemma 5.9 it could not

be a C.I.. Thus if there is an arrow from u1 to v3 then there is only one arrow

leaving v2 in Q′ and thus we can apply RI, and in the resulting quiver we will

have a double arrow from u1 to c and a double arrow from c to u1. Depending

on how the arrows incident to u2 are arranged, Q′ will be one of the following

quivers:

or

or

all of which contain a cycle with three double arrows, therefore Q′ (and Q) can

not be C.I.-s.
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Theorem 5.10. If (Q,α) is a strongly connected, prime quiver setting with

α = (1, ..., 1) and none of the reduction steps RI-RIV can be applied, then (Q,α)

consists of a single vertex with no loops.

Proof. Follows immediately from Lemmas 5.7 and 5.8.

5.2.1 Hypersurfaces

We will use the above results to give a list of all reduced quiver settings with

one dimensional vertices whose quotient varieties are hypersurfaces.

Theorem 5.11. Let (Q,α) be a strongly connected, reduced quiver setting with

α = (1, ..., 1). Then issαQ is a hypersurface if and only if Q is coregular or of

the form:

(eg. a quiver with at least two vertices whose arrows form two oppositely directed

cycles that both go through all the vertices.)

Proof. Note that in the theorem we do not require Q to be prime. It would

be unnecessary because for the codimension of a connected sum of two quiver

settings we have F (Q1#vQ2) = F (Q1) + F (Q2), so applying the stronger (*)

version of Lemma 4.2 we can conclude that a strongly connected, reduced quiver

setting with F (Q) = 1 is automatically prime. Also note that hypersurfaces are

C.I.-s, so we can apply Lemmas 5.7 and 5.8 and see that there is always a

connected pair of vertices in Q and RIV is always applicable on this pair.

If Q = (V,A, s, t) is of the above form then it is easy to see that |A| = 2|V |
and |C| = |V | + 2, so F (Q) = |C| + |V | − |A| − 1 = 1, meaning that issαQ is

indeed a hypersurface.

We prove the opposite direction by induction on the number of vertices. We

remind that if Q′ is a quiver we got by applying RIV on a connected pair of

Q then in the cases a1), b) and c) we saw that F (Q′) = F (Q) and in the case

a2) we saw that F (Q′) = F (Q) − 1 (for details, and the explanation of the
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cases see Theorem 5.2). For |V | = 2 there can not be more than two arrows

running from either vertex to the other, since otherwise issαQ would not even

be a complete intersection, and even less so a hypersurface (and for |V | = 1 Q

is always coregular).

Let us suppose that there is a connected pair (v1, v2) in Q with exactly one

arrow pointing from each vertex to the other. In this case if we apply RIV on

this connected pair the resulting quiver Q′ will be reduced as well, so applying

the induction hypothesis Q will be one of the following two quivers:

The �rst case is the one in the theorem, and for the second case it is easy to

check that |C| = |V |+ 3 and F (Q) = 2.

Now let us suppose there is a connected pair (v1, v2) with exactly 2 arrows

pointing from each vertex to the other. If there is no other vertex in the quiver

then this is one of the quivers described in the theorem. If there is a third vertex

v3 then, since Q is prime, we either have a path from v1 to v3 that does not go

through v2 or a path from v3 to v1 that does not go through v2. Let us suppose

the �rst one holds and call this path P1. If there is a path P2 from v3 to v2

that does not go through v1 then P1 and P2 form a directed path from v1 to

v2 so by Lemma 5.7 we can see that Q can not be a C.I., so it can neither be

a hypersurface. If all the paths from v3 to v2 go through v1 then, since Q is

prime, there has to be a path P3 from v2 to v3 that does not go through v1.

Also since Q is strongly connected there has to be a path from v3 to the pair

(v1, v2), if this path reaches (v1, v2) at v1 then along with P3 it forms a path

from v2 to v1 , similarly if it reaches (v1, v2) at v2 then along with P1 it forms a

path from v1 to v2, in both cases we can apply Lemma 5.7 and see that Q can

not be a hypersurface.

Now if there is no connected pairs in Q with exactly 1 or exactly 2 arrows

going both ways, then by Lemmas 5.7 and 5.8, we can conclude that there has

to be a connected pair (v1, v2) with exactly 1 arrows pointing from v1 to v2,

40



which will be noted by a, and exactly 2 arrows pointing from v2 to v1. Let Q
′

denote the quiver we get by applying RIV on (v1, v2) and removing all loops by

RII, and w denote the image of (v1, v2) in Q′. By the stronger (*) version of

Lemma 4.2 we can see that F (Q′) = 1. Therefore there can not be any paths

from v1 to v2 in Q other than (a) or we would be in case a2) of Theorem 5.2,

and we would have F (Q) = F (Q′) + 1 = 2.

If Q′ is reduced then Q will be one of the following quivers:

It is easy to check that for the �rst one |C| = |V | + 4 and F (Q) = 2, for the

second one |C| = |V |+ 5 and F (Q) = 3, and for the third one |C| = |V |+ 4 and

F (Q) = 2, so none of these are hypersurfaces.

If Q′ is not reduced then w has in- or out-degree 1 (all of the other vertices

have the same in- and out-degrees as in Q). For sake of simplicity let us suppose

that it has out-degree 1 and in-degree k. Let Q′′ denote the quiver we get by

applying RI on w and removing all loops by RII. If Q′′ is reduced then by the

induction hypothesis it is of the form described in the theorem, it follows then

that Q′ is of form:
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Consequently Q has to contain on of the following subquivers:

Again it is easy to check that F (Q) > 1 in both cases.

Let now suppose that Q′′ is not reduced. Let u denote the vertex the single

arrow leaving from w in Q′ points to, and w′ denote the vertex in Q′′ we got by

gluing u and w with RI. Noting the number of arrows pointing from u to w by

l it is easy to see that:

in(w′) = in(w) + in(u)− l − 1 and out(w′) = out(u)− l

(since loops have been removed from Q′′). So if Q′′ is not reduced we have l > 1,

meaning that (w, u) is a connected pair in Q′. By slight abuse of notation, we

can note the pre-image of u in Q by u as well. Since (w, u) is a connected pair

in Q′ there has to be an arrow pointing from either v1 or v2 to u and an arrow

pointing from u to either v1 or v2 in Q. We have three cases:

i) If there is an arrow pointing from u to v1 and an arrow pointing from v1

to u then there has to be at least one more arrow between the two vertices since

we supposed that there is no connected pair in Q with exactly one arrow going

both ways. This arrow can not point from v1 to u otherwise we would have
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in(v1) ≥ 3 and out(v1) ≥ 3 and since it is easy to check that:

in(w) = in(v1) + in(v2)− 3 and out(w) = out(v1) + out(v2)− 3,

the vertex w would have in- and out-degrees 2 or greater and Q′ could not be

reduced, contradicting our supposition. So the extra arrow has to point from u

to v1. Since Q is prime there has to be either a path from u to v2 that does not

go through v1 or a path from v2 to u that does not go through v1. In the �rst

case by adding the arrow pointing from v1 to u to this path, we get a path from

v1 to v2 that is di�erent from the path consisting of the single arrow a so due

to our earlier note we have F (Q) ≥ 2. Similarly in the second case by adding

the arrow a to the path from v2 to u we get a path from v1 to u that is di�erent

from the arrow pointing from v1 to u so applying the same argument on the

connected pair (v2, u) we can see that F (Q) ≥ 2.

ii) If there is an arrow pointing from v1 to u and an arrow pointing from

u to v2, then these two arrows form a path from v1 to v2 and once again we are

in case a2) of Theorem 5.2 and can conclude that F (Q) ≥ 2.

iii) If there is an arrow pointing from v2 to u and an arrow pointing from

u to v1 then we have in(v1) ≥ 3 and out(v2) ≥ 3, also because Q is reduced

we have out(v1) ≥ 2 and in(v1) ≥ 2, so just as in case i) we can conclude

that in(w) ≥ 2 and out(w) ≥ 2, meaning that Q′ is reduced contradicting our

supposition.
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