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Bevezetés

Az affin teljes algebrák vizsgálata a 60-as évek elejéig nyúlik vissza. Grätzer

György ismerte fel először a fogalom jelentőségét az univerzális algebrában, és az

ő nevéhez köthetők az első jelentős eredmények is a témában. A csoporthatások

univerzális algebrai szempontból szintén fontos szerepet töltenek be. A két foga-

lom kapcsolatára viláǵıt rá John Snow egy tétele, miszerint ha egy véges rend-

polinomteljes háló előáll mint egy véges algebra kongruenciahálója, akkor előáll úgy

is, mint egy vektortér vagy egy affin teljes csoporthatás kongruenciahálója. Ez utóbbi

eredmény motiválja az affin teljes csoporthatások vizsgálatát.

Dolgozatomban többek között ismertetek néhány fontos csoportosztályt, amik-

ből affin teljes csoporthatások származtathatók. Ilyenek például a véges egyszerű

csoportok, a szimmetrikus csoportok vagy a Frobenius-csoportok. Szerepelni fognak

olyan csoportok is, melyek sosem adnak meg affin teljes csoporthatásokat, például

azon kommutat́ıv csoportok, melyek nem izomorfak egy elemi Abel 2-csoporttal.

Ilyen esetekben különböző kompatibilis függvényeket, például hatványfüggvényeket

kell konstruálnunk, melyek cáfolják az algebra affin teljességét.

Megvizsgáljuk, milyen esetekben terjed ki az affin teljesség a részcsoportokról a

csoportra. Végül bevezetünk egy új defińıciót, ami minden csoportnak egy karak-

terisztikus részcsoportját adja meg. Bizonyos értelemben ez a részcsoport méri azt,

hogy a csoport mennyire áll közel ahhoz, hogy 1-affin teljes csoporthatást adjon meg.
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Affine complete G-sets

András Pongrácz

Eötvös Loránd University, Budapest, Hungary

Abstract

György Grätzer was the first to investigate affine complete algebras. He

realized the importance of this topic in universal algebra. Recently, John Snow

observed that if the congruence lattice of a finite algebra is order polynomially

complete, then this lattice is isomorphic to the congruence lattice of a vector

space or of an affine complete G-set.

We take this as motivation to study affine complete G-sets in general.

Recall that, for a group G acting on a set Ω, the algebra 〈Ω, G〉 is called a

G-set. We will investigate faithful actions only. An algebra is affine complete

if all its congruence preserving functions are polynomials.

We present some families of affine complete G-sets, like regular actions of

certain groups. We will prove that the regular G-set corresponding to a Frobe-

nius group or a non-abelian group that is generated by involutions is affine

complete. For some other classes of groups, including finite abelian groups

(except elementary abelian 2-groups), we can construct several compatible

functions, in particular, power endomorphisms, that are not polynomial func-

tions.

We will investigate the heredity of affine completeness in regular G-sets.

Then we will define the characteristic subgroup C(G) of G. This subgroup

is suitable to indicate how close the group is to produce a 1-affine complete

G-set.

1 Introduction

1.1 Definitions

As usual, the expression algebra refers to a pair A = (A,F ). Here, A is called

the underlying set of A and F contains the fundamental operations. Many well-

known algebraic structures such as groups, rings, fields, Boolean algebras, lattices
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or modules are all considered as algebras now. The algebra A is finite if both A and

F are finite.

Let C be a set of functions on A, i.e. for any f ∈ C there is a k ∈ N = {1, 2, 3, . . .}
such that we have f : Ak → A. Such C is called a clone if it contains all projections

and it is closed under composition. The smallest clone containing the fundamental

operations and the constant functions is the set of polynomials. In other words, a

polynomial is a function onA that can be obtained from the fundamental operations,

constant functions and projections by finitely many compositions. For a group

G it is hard to describe the polynomials of G. Typically, a polynomial can be

written as a product of some elements of G, some variables and the inverse of some

variables. Note that a polynomial can be written in many different forms here.

However, if G is an abelian group then there is a canonical form of the polynomials,

namely these are the functions (x1, x2, . . . , xk) 7→ a1x1 + a2x2 + . . . akxk + g, where

ai ∈ {0, 1, . . . exp(G) − 1} for any i ≤ k and g ∈ G. If we have a finite field F

then according to the Lagrange interpolation every function on F is a polynomial.

Such algebras are called functionally complete or polynomially complete. Another

important example for a polynomially complete algebra is the 2-element Boolean

algebra.

A congruence on A is an equivalence relation ρ satisfying the following condition:

for any fundamental operation f with arity k, and elements a1, b1, . . . , ak, bk ∈ A
such that (ai, bi) ∈ ρ we have that (f(a1, a2, . . . , ak), f(b1, b2, . . . , bk)) ∈ ρ. As ρ is a

binary relation, it is a subset of A×A. It is easy to see that an equivalence relation

ρ is a congruence if and only if it is a subalgebra of A × A. The congruences of

a group G are well studied. Every congruence corresponds to a normal subgroup

of G in the following way. For a given N C G, the congruence ρN is the binary

relation {(a, b) ∈ G×G | aN = bN}. Similarly, the congruences of a ring R are the

equivalence relations corresponding to the ideals of R. Here, the equivalence classes

of ρI for a given ideal I are the cosets of I. Usually, we abbreviate (a, b) ∈ ρ with

a ≡ρ b or simply aρb. The congruences of an algebra A form a lattice denoted by

Con(A).

An n-ary function f on A is called compatible with the relation R ⊆ Ak if the

following holds:

∀ai,j ∈ A (1 ≤ i ≤ n, 1 ≤ j ≤ k) :

((a1,1, . . . , a1,k) ∈ R, . . . , (an,1, . . . , an,k) ∈ R)⇒

⇒ ((f(a1,1, . . . , an,1), . . . , f(a1,k, . . . , an,k)) ∈ R)

An equivalence relation is a congruence if and only if every fundamental operation

is compatible with it. Note that every function is compatible with the smallest
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congruence (equality) and the biggest congruence (any two element is congruent).

We call a function f on A compatible if it is compatible with all the congruences

of A. According to the fact that every function is compatible with the smallest

and the biggest congruence in Con(A) we have that on a simple algebra every

function is compatible. Thus for any prime p and any α ∈ N, the cyclic group Zp

(and all other finite simple groups), the finite field Fpα and the 2-element Boolean

algebra have the property that every function is compatible on them. In general,

it is clear that constant functions, projections and the fundamental operations are

compatible. It is also easy to see that the composition of compatible functions is

also compatible. Thus the polynomials are compatible. This observation yields the

following definitions.

Definition 1. An algebra A is affine complete if every compatible function on A is

a polynomial. A is k-affine complete if every at most k-ary compatible function is a

(k-ary) polynomial.

Clearly A is affine complete if and only if A is k-affine complete for all k ∈ N.

Note that a polynomially complete algebra is always affine complete, as it only has

polynomial functions, thus it is trivial that every compatible function is a polynomial

on them. This holds for finite fields or the 2-element Boolean algebra. For the cyclic

group Zp, we have pp
n
n-ary functions, and these are all compatible. However,

according to the canonical form of polynomials on abelian groups, we have that

there are pn+1 n-ary polynomials. Thus for p ≥ 3 the cyclic group Zp is not k-affine

complete for any k ∈ N.

1.2 Known Results

It was György Grätzer in the early 60’s who posed the following question:

What are the affine complete algebras?

Of course, the aim is not to give a general description for such algebras, but

to characterize them according to the different types. It was Grätzer himself who

achieved the first significant results in this area. He proved that every Boolean al-

gebra is affine complete in [1]. He also characterized the affine complete bounded

distributive lattices. According to [2] a bounded distributive lattice is affine com-

plete if and only if it does not contain proper Boolean intervals (intervals containing

at least two elements). Hence there are no finite affine complete distributive lat-

tices. Note that in the point of view of affine completeness, the main difference

between Boolean algebras and lattices is that the type of a Boolean algebra con-

tains an extra unary function, the complement. Hence while a polynomial function
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is order-preserving on a lattice, it need not to be order-preserving on a Boolean

algebra.

As all polynomial functions of a lattice are order-preserving, it is natural to

investigate the following property. A lattice L is order affine complete, if every

order-preserving compatible function is a polynomial on L. In case of lattices it is

also natural to study lattices satisfying the condition that every order-preserving

function is a polynomial, rather than lattices with the property that every function

is a polynomial. These lattices are called order polynomially complete. Here is a

description of order polynomially complete modular lattices.

R. Wille: [9] A finite modular lattice L is order polynomially complete if and

only if L is simple and relatively complemented.

The following theorem is the classification of affine complete semilattices.

K. Kaarli, L. Márki, E. T. Schmidt: [5] A semilattice S is affine complete if and

only if the following conditions hold for S:

• S does not contain any atoms;

• ∀a ∈ S @b ∈ S such that 0 6= b < a and (a] = (b] ∪ [b, a] hold simultaneously;

• if a proper ideal I of S satisfies that ∀a ∈ S the ideal (a] ∩ I is a principal

ideal, than I is a principal ideal.

It was K. Kaarli who characterized affine complete abelian groups in [3]. Accord-

ing to his result, a finite abelian group G, written in the form Zn1 ⊕Zn2 ⊕ . . .⊕Znk
with nk|nk−1| . . . |n2|n1, is affine complete if and only if n1 = n2. Affine complete

modules were investigated by A. Saks.

For a more detailed discussion of the topic, see [4] or [7]. In what follows we will

present some new results for G-sets from the point of view of affine completeness.

2 1-affine completeness

To decide whether a G-set 〈Ω, G〉 is affine complete, we have to investigate all k-

ary compatible functions and also all k-ary polynomials for all k ∈ N. However,

there aren’t any interesting k-ary polynomials of a G-set 〈Ω, G〉 for k ≥ 2. This

observation leads to the following result.

Theorem 1. Let G be a non-trivial permutation group on a set Ω, that is |Ω|, |G| ≥
2. Assume that 〈Ω, G〉 is 1-affine complete. Then exactly one of the following holds:

(1) 〈Ω, G〉 is affine complete.

7



(2) |Ω| = 2 or there exists a division ring K and a K-module V of rank greater

than 1 over K such that 〈Ω, G〉 is isomorphic to

〈V, {x 7→ kx+ v | k ∈ K, k 6= 0, v ∈ V }〉.

For finite Ω the result above is immediate from Pálfy’s classification of minimal

algebras. We will give a self-contained, elementary proof for arbitrary cardinalities

at the end of this section. First we state an auxiliary lemma.

Lemma 2. Let G be a semidirect product of a normal subgroup T 6= {1} and H ≤ G.

We assume that H acts faithfully on T by conjugation and that every H-invariant

subgroup of T is normal in T .

(1) Then 〈G/H,G〉 is not 2-affine complete.

(2) 〈G/H,G〉 is 1-affine complete if and only if |G| = 2, H = 1 or T forms a

module of rank greater than 1 over some division ring K, and 〈G/H,G〉 is

isomorphic to

〈T, {x 7→ kx+ t | k ∈ K, k 6= 0, t ∈ T}〉.

Proof: We claim that the function

f(aH, bH) := abH for a, b ∈ T is compatible. (1)

For H ≤ U ≤ G we have an N ≤ T such that U = NH and N is H-invariant, hence

normal in T . Let a1, a2, b1, b2 ∈ T be such that a1NH = a2NH, b1NH = b2NH.

Using the normality of N in T we obtain f(a1H, b1H)NH = a1b1NH = a1b2NH =

a1Nb2H = a2Nb2H = a2b2NH = f(a2H, b2H)NH and (1) is proved. Since f is

essentially binary for T 6= 1, 〈G/H,G〉 is not 2-affine complete.

Next assume that 〈G/H,G〉 is 1-affine complete. We will show that

K := {ch : T → T, x 7→ xh | h ∈ H} ∪ {o : T → T, x 7→ 1}

is closed under pointwise multiplication · of functions. For g, h ∈ H the function

p(aH) := agahH for a ∈ T

is compatible by a similar argument as above. By the 1-affine completeness and

p(H) = H, either p is constant or we have r ∈ H such that p(aH) = raH for all

a ∈ T . In the former case agah ∈ H yields agah = 1 for all a ∈ T and cg · ch = o.

In the latter case we have (a−1)ragah ∈ H yields (a−1)ragah = 1 for all a ∈ T and

cg · ch = cr. For h ∈ H we define i(ch) : T → T, x 7→ (xh)−1 and i(o) := o. As
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above we find i(ch) = cs for some s ∈ T . Hence 〈K, ·, i, o〉 is an abelian group.

Clearly 〈K \ {o}, ◦,−1 , idT 〉 is a group isomorphic to H. For u, v, w ∈ K we have

the distributive laws (u · v) ◦ w = (u ◦ w) · (v ◦ w) and u ◦ (v · w) = (u ◦ v) · (u ◦ w)

by the definition of the pointwise multiplication · of functions. Thus 〈K, ·, ◦〉 is a

division ring. T forms a K-module. Denote the group operation in T by +. Clearly

G is isomorphic to

A := {x 7→ kx+ t | k ∈ K, k 6= 0, t ∈ T}, (2)

and 〈G/H,G〉 is isomorphic to 〈T,A〉. If T has dimension 1 over K, then 〈T,A〉 is

simple and not 1-affine complete except if |T | = 2.

Conversely it is straightforward that 〈G,G〉 is 1-affine complete if |G| = 2. Now

assume that T is a K-module of rank greater than 1 over some division ring K.

Let A be as in (2). Let f : T → T be congruence preserving on 〈T,A〉 such that

f(0) = 0. Then f preserves cosets of all K-submodules of T .

Let x ∈ T . Then we have k ∈ K such that f(x) = kx. Likewise for y ∈ T \Kx we

have f(y) = ly and f(x+ y) = m(x+ y) for some l,m ∈ K. Then f(x+ y) ≡ f(x)

mod Ky and f(x+ y) ≡ f(y) mod Kx yield mx ≡ kx mod Ky and my ≡ ly

mod Kx. Hence m = k = l and f(y) = ky for all y ∈ T \Kx. Similarly, f(z) = kz

for all z ∈ T \ Ky and in particular for all z ∈ Kx \ {0}. Then f(x) = kx for all

x ∈ T . Thus f is in A.

For H = 1 we obtain the following consequence.

Lemma 3. Let G be an abelian group with |G| > 1. Then 〈G,G〉 is not 2-affine

complete, and 〈G,G〉 is 1-affine complete if and only if G has exponent 2.

Proof: As we have already proved the binary function h : (x, y) 7→ xy is compat-

ible, thus 〈G,G〉 is not 2-affine complete.

The function f : x 7→ x2 is compatible on G. Indeed, let H ≤ G, and a, b ∈ G
such that aH = bH. As H is a normal subgroup in G, we have a2H = aHa =

bHa = b2H. Thus this power map is compatible. We only have to check whether

it is a polynomial function. It is clearly not a left translation, and it is constant

only if the exponent of G is 2. Thus an abelian group that is not an elementary

abelian 2-group is not 1-affine complete. It is easy to see that an elementary abelian

2-group is 1-affine complete. Later, we will prove a more general theorem, namely

that every group that is generated by involutions is 1-affine complete.

In this proof, we only used that every subgroup of an abelian group is normal.

Hence the same argument works for Hamiltonian groups, as well.

We recall some well known facts about transitive permutation actions.
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Lemma 4. Let G be a transitive permutation group on a set Ω, let α ∈ Ω, and let

H := {g ∈ G | gα = α}.

(1) 〈Ω, G〉 is isomorphic to 〈G/H,G〉 where g ∗ xH := gxH for all g, x ∈ G.

(2) For H ≤ U ≤ G define

ρU := {(xH, yH) ∈ (G/H)2 | xU = yU}.

Then Con(〈G/H,G〉) = {ρU | H ≤ U ≤ G}.

Proof of Theorem 1: By a result of Salomaa in [8] it suffices to show that every

binary compatible function is constant or essentially unary or that the conditions

of (2) in Theorem 1 are satisfied.

Let e ∈ Comp2(Ω, 〈Ω, G〉). Since |G| > 1 by assumption, we have α ∈ Ω such

that |Gα| > 1. By the 1-affine completeness of 〈Ω, G〉 the functions e1(x) := e(x, α)

and e2(x) := e(α, x) are polynomial. Hence they are either constant or in G. If,

for example, e1 ∈ G, then f(x, y) := e(e−1
1 (x), y) satisfies f(x, α) = x for all x ∈ Ω.

Hence it suffices to consider f ∈ Comp2(Ω, 〈Ω, G〉) such that the unary functions

x → f(x, α) and x → f(α, x) are constant or the identity function, respectively.

Now, it is clear that we may assume f(α, α) = α, as well. For ω ∈ Ω we define

fω(x) := f(ω, x) for x ∈ Ω.

We have four cases, now.

Case 1: f(x, α) = α, f(α, x) = α for all x ∈ Ω. Since |Gα| > 1, we have g ∈ G
such that gα 6= α. Then h(x) := f(x, gx) satisfies h(α) = h(g−1α) = f(α, α). As a

non-injective polynomial function, h is constant and

f(x, gx) = f(α, α) for all x ∈ Ω.

For β ∈ Ω, β 6= g−1(α), we have fβ(α) = fβ(g(β)) = f(α, α). Consequently fβ is

constant and

f(x, y) = f(α, α) for all x, y ∈ Ω, x 6= g−1α.

If |Ω| > 2, then the functions of the form x 7→ f(x, γ) for γ ∈ Ω are not injective

and hence f is constant. Otherwise, if |Ω| = 2, then |G| = 2 and 〈Ω, G〉 satisfies the

conditions of (2).

Case 2: f(x, α) = x, f(α, x) = α for all x ∈ Ω. Assume that we have β ∈ Ω such

that fβ is not constant. Then fβ ∈ G and fβ(α) = β. The function r(x) :=

f(x, f−1
β (α)) satisfies r(α) = α and r(β) = fβ(f−1

β (α)) = α. Hence r is constant and

f(x, f−1
β (α)) = α for all x ∈ Ω.
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Let ω ∈ Ω \ {α}. Then fω is not constant but in G. In particular, ω = fω(α) is in

Gα and Gα = Ω.

Let g ∈ G be such that g(α) 6= f−1
β (α). Then h(x) := f(x, g(x)) satisfies

h(α) = α and h(g−1f−1
β (α)) = f(g−1f−1

β (α), f−1
β (α)) = α. Hence h is constant and

h(g−1(α)) = f(g−1(α), α) = g−1(α) yields g−1(α) = α. Hence Gα = {α, f−1
β (α)}

and both Ω and G have size 2. Then 〈Ω, G〉 satisfies the conditions of (2).

Case 3: f(x, α) = α, f(α, x) = x. for all x ∈ Ω: This case is essentially the same

as the previous one.

Case 4: f(x, α) = f(α, x) = x for all x ∈ Ω. We will show that G satisfies the

conditions of (2). First suppose that there exists β ∈ Ω\Gα. Since fβ(α) = β 6∈ Gα,

fβ is not in G but constant. Hence

f(x, y) = x for all x ∈ Ω \Gα, y ∈ Ω,

and similarly

f(x, y) = y for all x ∈ Ω, y ∈ Ω \Gα.

Now x = y for all x, y ∈ Ω \ Gα yields Ω = Gα ∪ {β}. Let γ ∈ Gα, γ 6= α. The

function c : Ω → Ω defined by c(Gα) := α and c(β) = γ is compatible because the

total congruence is the unique congruence ρ such there exists δ ∈ Gα with (β, δ) ∈ ρ.

Since c is obviously not polynomial, we have a contradiction. Hence Ω = Gα, that

is, G is transitive on Ω. Let H be the stabilizer in G of α. By Lemma 4 we may

assume that Ω = {xH | x ∈ G}.
If there exists an a ∈ G such that faα is constant, then f ′(x, y) := a−1f(ax, y)

satisfies the assumptions of the previous case and consequently |Ω| = |G| = 2. Hence

we assume fω ∈ G for all ω ∈ Ω in the following. Note that T := {fω ∈ G | ω ∈ Ω}
is a transversal through G/H. It is clear that f(xH, yH) = xyH for any x, y ∈ T .

Let p ∈ Pol1(G). We claim that

q(aH) := p(a)H for a ∈ T preserves all congruences of 〈Ω, G〉. (3)

Let ρ ∈ Con(〈Ω, G〉). By Lemma 4 we have H ≤ U ≤ G such that ρ = ρU . Let

a, b ∈ T such that aU = bU . For x ∈ G, f(aH, xH) = axH and f(bH, xH) = bxH

are congruent modulo ρU since f is congruence preserving. Hence

(b−1a)x ∈ U. (4)

We have l ∈ N, g1, . . . , gl ∈ G, and e1, . . . , el−1 ∈ {−1, 1} such that p(x) =

g1x
e1g2 · · · gl−1x

el−1gl for all x ∈ G. Then

p(b)−1p(a) = g−1
l b−el−1g−1

l−1 · · · b
−e1g−1

1 g1a
e1g2 · · · gl−1a

el−1gl

= (b−el−1ael−1)gl(g−1
l−1 · · · b

−e1ae1g2 · · · gl−1)
ael−1gl .
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By induction on l we obtain that p(b)−1p(a) is a product of conjugates of b−1a and

of ba−1, that is, conjugates of (b−1a)−1. Hence by (4) we have p(b)−1p(a) ∈ U . Thus

q preserves ρU .

We show that

H ∩Hx = 1 for all x ∈ G \H. (5)

Let b ∈ T \ {1}, and let c ∈ bHb−1 ∩H. The function g(aH) := a−1caH for a ∈ T
is compatible by (3). Since g(bH) = H and g(H) = H, we have that g is constant

and ca ∈ H for all a ∈ T . Hence c ∈
⋂
a∈T aHa

−1 =
⋂
x∈G xHx

−1 = 1. Therefore

bHb−1 ∩H = 1 which proves (5).

Next we show

[ah, b] = 1 for all a, b ∈ T, h ∈ H. (6)

We fix b ∈ T, h ∈ H. The function m(aH) := [ah, b]H for a ∈ T is compatible

by (3). Since m(bh
−1
H) = m(H) = H, we have that m is constant and [ah, b] ∈ H

for all a ∈ T . By a similar argument b(ah)−1b−1ah is in H for all a ∈ T . Then

[ah, b] = (b(ah)−1b−1ah)b is in H ∩Hb and [ah, b] = 1 by (5).

Now 〈T 〉 is abelian by (6) and H ∩ 〈T 〉 = 1 by (5). Hence 〈T 〉 = T . For a ∈ T ,

h ∈ H we have u ∈ T, v ∈ H such that ah = uv. By (6) uv commutes with u−1.

Hence v = uvu−1 which implies v = 1 by (5). Thus T is an abelian normal subgroup

of G.

Finally we see that every binary compatible function on 〈Ω, G〉 is constant, essen-

tially unary or that G is a semidirect product of a nontrivial abelian normal subgroup

T and H ≤ G such that 〈Ω, G〉 is isomorphic to 〈G/H,G〉. In the latter case 〈Ω, G〉
satisfies the conditions of (2) and is not 2-affine complete by Lemma 2.

According to Theorem 1 we only have to consider unary functions, from now on.

In other words, we study 1-affine completeness of G-sets.

3 Regular group actions

3.1 Compatible functions

For a group G let R(G) denote the regular G-set 〈G,G〉. According to Lemma 4 a

function f : G → G is compatible on the regular G-set R(G) if and only if for any

H ≤ G and a, b ∈ G such that aH = bH, it holds that f(a)H = f(b)H. The G-set

R(G) is 1-affine complete if every compatible function on R(G) is constant or is a

multiplication with an element of G. Let f be a function on G such that f(1) = g

for some g ∈ G. For an arbitrary h ∈ G let mh be the function

mh : G→ G

12



x 7→ hx

These are compatible functions on R(G) and (mg−1 ◦ f)(1) = 1. It is also clear

that mg ◦ (mg−1 ◦ f) = f . As the composition of compatible functions is again

a compatible function this implies that f is compatible if and only if mg−1 ◦ f is

compatible. Thus R(G) is 1-affine complete if and only if the compatible functions

on R(G) fixing 1 are 1G and idG, where 1G denotes the constant 1 map on G and idG

denotes the identity of G. This simplifies the matter of the 1-affine completeness of

R(G). However, the most important property of a compatible function f satisfying

f(1) = 1 is that it leaves invariant the subgroups of G. Indeed, let H ≤ G and

h ∈ H, then 1H = hH, thus H = 1H = f(1)H = f(h)H, hence H = f(h)H and

f(h) ∈ H. As these functions leave invariant the subgroups of G we can restrict

them to any subgroup H ≤ G. It is clear that if f is compatible on R(G) such that

f(1) = 1 then f |H is compatible on R(H) such that f |H(1) = 1.

The following definition is a useful tool in our investigations. It is a way to

construct new compatible functions if we are given a compatible function f .

Definition 2. Let f be a compatible function on G. Then fg is the following func-

tion: fg : x→ f(g)−1f(gx)

Lemma 5. Given a compatible function f on R(G) and an arbitrary g ∈ G, the

function fg is also compatible on R(G) such that fg(1) = 1.

Proof: Note that fg = mf(g)−1 ◦ f ◦ mg. As the composition of compatible

functions is also compatible, we proved that fg is compatible. It is also easy to see

that fg(1) = f(g)−1f(g) = 1.

Semidirect products and direct products of groups often occur among the sub-

groups of a given group. The following lemma shows how a compatible function is

determined by its restriction to the components.

Lemma 6. Let G = A o B and f be a compatible function on R(G) such that

f(1) = 1. Then f(ab) = f(a)f(b) holds for any a ∈ A and b ∈ B.

Proof: Every g ∈ G is uniquely determined by its A-coset and B-coset. Thus we

only have to show that f(ab)A = f(a)f(b)A and f(ab)B = f(a)f(b)B.

We have that ab = bab where ab ∈ A, thus abA = bA. As f is compatible, we

have f(ab)A = f(b)A. Since f(1) = 1 we know that f preserves the subgroups of G,

hence f(a) ∈ A. As A is a normal subgroup of G, we have that f(a)f(b) ∈ A, thus

A = f(a)f(b)A. This implies that f(ab)A = f(b)A = f(b)f(a)f(b)A = f(a)f(b)A.

As f is compatible and abB = aB, we have that f(ab)B = f(a)B. As f fixes 1,

we know that f(b) ∈ B. Thus f(ab)B = f(a)B = f(a)f(b)B and we are ready.

13



Corollary 7. Let n ≥ 1 and α ≥ 2. Then the compatible functions of R(Zα
n) fixing

1 are exactly the following:

pk : Zα
n → Zα

n, k ∈ N

x→ xk

Proof: The function pk is a homomorphism of Zα
n that leaves invariant the

subgroups. Thus given a H ≤ Zα
n and a, b ∈ Zα

n such that aH = bH, we have

that b−1a ∈ H. Thus pk(b
−1a) ∈ H, hence pk(b)

−1pk(a) ∈ H. This means

pk(a)H = pk(b)H, thus pk is indeed a compatible function fixing 1.

Now suppose that f is a compatible function on R(Zα
n) fixing 1. Let Zα

n =∏α
i=1〈ai〉 and let k ∈ N be such that f(a1) = ak1. We claim that f = pk. Let b ∈ 〈aj〉

for some j ≥ 2 and let f(b) = bl with l ∈ N. According to Lemma 6 we have that

f(a1b) = f(a1)f(b), thus f(a1b) = ak1b
l. This is also an element of 〈a1b〉, hence it

is (a1b)
t = at1b

t for some t ∈ N. Thus at1b
t = ak1b

l, hence t ≡ k (mod n). Thus

f(b) = bk. The same method works for a2 and an arbitrary element of 〈a1〉. Thus

for any 1 ≤ j ≤ α and x ∈ 〈aj〉, we have that f(x) = xk. According to Lemma 6 it

is clear that f = pk, now.

3.2 Hereditary conditions

Proposition 8. Let G be a group with subgroups Ui (i ∈ I), N and H :=
⋂
i∈I Ui

such that H ≤ N and UiN = G for all i ∈ I.

Then 〈G/H,G〉 is 1-affine complete if 〈N/H,N〉 is 1-affine complete.

Proof: Let f be compatible on 〈G/H,G〉 with f(H) = H. Let x ∈ G, and

let i ∈ I. Then we have u ∈ Ui such that x−1N = uN , that is, xu ∈ N . Since

xUi = xuUi, we have

f(xH)Ui = f(xuH)Ui. (7)

First we assume that f is constantH onN/H. Then f(xuH) = H yields f(xH) ⊆ Ui

by (7). Hence f(xH) ⊆
⋂
i∈I Ui = H. Thus f is constant H on G/H.

Next we assume that f is the identity on N/H. Then f(xuH) = xuH yields

f(xH) ⊆ xUi by (7). Hence f(xH) ⊆ x
⋂
i∈I Ui = xH. Thus f is the identity on

G/H.

Let G := AGL(n,K) be the group of affine transformations on Kn, and let

H := Z(GL(n,K)). If n > 1, then 〈G/H,G〉 is affine complete by Proposition 8.

[For v ∈ Kn define tv : Kn → Kn, x 7→ x + v. Let N := {tv | v ∈ Kn}H.

Then 〈N/H,N〉 is 1-affine complete by Lemma 2. Let U := GL(n,K). Then
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G = UN . For v ∈ Kn we have U tvH ∩ U = {a ∈ U | av = kv for some k ∈ K}.
Hence

⋂
v∈Kn U tvH = H. Proposition 8 applies and yields that 〈G/H,G〉 is 1-

affine complete. Since H has no abelian complement in G, Theorem 1 implies that

〈G/H,G〉 is ac.]

Corollary 9. Let G be a group with a normal subgroup N and U ≤ G such that

G = UN and
⋂
g∈G U

g = 1. Assume that R(N) is 1-affine complete. Then R(G) is

1-affine complete.

Before our observations on how the affine completeness of proper subgroups imply

the affine completeness of the group, we show a construction. The G-sets obtained

by this construction are never 1-affine complete.

Proposition 10. Let A and B be nontrivial groups such that gcd(|A|, |B|) = 1.

Then R(A×B) is not 1-affine complete.

Proof: The elements of the group A×B can be uniquely written in the form ab

such that a ∈ A and b ∈ B. Let f be the function that maps ab to a. Here f(1) = 1

holds. As gcd(|A|, |B|) = 1, the subgroups of A × B are of the form C × D with

C ≤ A and D ≤ B. Thus a function h is compatible on R(A × B) if and only if

h|A is compatible on R(A) and h|B is compatible on R(B). The function f clearly

satisfies this condition but it is neither constant 1 nor the identity. Hence A×B is

not 1-affine complete.

Lemma 11. Let G be a group with subgroups A,B. Suppose that there exists a

compatible function f on R(G) such that f(A) = 1 and f |B = idB.

Then [A,B] = 1 and gcd(|A|, |B|) = 1.

Proof: Let a ∈ A, b ∈ B. Notice that f(1) = 1. Since b〈b−1a〉 = a〈b−1a〉, we have

f(b) ∈ f(a)〈b−1a〉, that is, b ∈ 〈b−1a〉. Then b commutes with b−1a and consequently

with a. Hence A and B centralize each other.

Clearly A∩B = 1. Suppose that a prime p divides gcd(|A|, |B|). Let a ∈ A, b ∈ B
both have order p. Then 〈a, b〉 is an elementary abelian group of order p2. Since

f(ab) = f(a) · f(b) = b is not contained in 〈ab〉, the function f does not preserve

the congruence modulo 〈ab〉. This contradicts the assumption that f is compatible.

Thus gcd(|A|, |B|) = 1.

Lemma 12. Let G be a group and A ≤ G such that R(A) is 1-affine complete. Let

f be a compatible function on G such that f(1) = 1 and let g ∈ G be an arbitrary

element. Then f |gA is either constant or it is of the form x → h ∗ x with some

h ∈ 〈g〉.
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Proof: According to Lemma 5 we know that fg is a compatible function on R(G).

The restriction of fg to A is a compatible function on R(A) with fg(1) = 1. As R(A)

is 1-affine complete we got that fg|A is either constant 1 or the identity.

Case 1: fg|A is constant 1. Then for any x ∈ A we have that f(g)−1f(gx) = 1,

hence f(gx) = f(g) for all x ∈ A. Thus f |gA is constant.

Case 2: fg|A is the identity. Then for any x ∈ A we have that f(g)−1f(gx) = x,

hence f(gx) = f(g)x = (f(g)g−1)(gx) for all x ∈ A. Thus f |gA is the multiplication

with f(g)g−1.

The following theorem is the most important hereditary condition for 1-affine

complete G-sets. It covers the case of direct and semidirect products of groups

producing 1-affine complete regular G-sets.

Theorem 13. Let G be a group with subgroups A,B such that R(A), R(B) are

1-affine complete. Then R(〈A,B〉) is 1-affine complete except if [A,B] = 1 and

gcd(|A|, |B|) = 1.

Proof: Let f be a compatible function on 〈A,B〉 such that f(1) = 1. We have

four cases now.

Case 1: f |A = 1A and f |B = idB. Then by Lemma 11 we have that [A,B] = 1

and gcd(|A|, |B|) = 1.

Case 2: f |A = idA and f |B = 1B. Again by Lemma 11 we have that [A,B] = 1

and gcd(|A|, |B|) = 1. In these two cases 〈A,B〉 = A × B with gcd(|A|, |B|) = 1,

thus R(〈A,B〉) is not 1-affine complete according to Proposition 10.

Case 3: f |A = idA and f |B = idB. An element of 〈A,B〉 can be written as the

product of elements of A and B. There is a shortest form of every element in

〈A,B〉. We prove by induction on this length that f(x) = x for every x ∈ 〈A,B〉.
For elements with length at most 1 it is clear that f(x) = x, because such an x is

in A or in B. Now assume that the length of x is l ≥ 2 and that the statement

holds for any x ∈ 〈A,B〉 with length smaller than l. Without loss of generality

we may assume that x = x1ab is the shortest form of x, x1 ∈ 〈A,B〉, a ∈ A and

b ∈ B. Note that x1abB = x1aB and x1abA
b = x1bA

b. Here R(Ab) is also 1-affine

complete, because Ab is isomorphic to A. According to Lemma 12 the function f on

these cosets is either constant or it is a multiplication with some element of 〈A,B〉.
Assume it is constant on both cosets. Then f(x1ab) = f(x1a) and f(x1ab) = f(x1b).

As x1a and x1b has length smaller then l, we know that f fixes these elements. Thus

f(x1ab) = x1a = x1b and consequently a = b. This is a contradiction, because this

implies that x1a
2 is a shorter form of x than x1ab. Thus f is a multiplication with

some element of 〈A,B〉 on at least one of the cosets. The element we multiply with
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can only be 1, because both cosets has an element that is fixed by f . Hence f fixes

x, too.

Case 4: f |A = 1A and f |B = 1B. We will prove by induction on the length of

an element of x ∈ 〈A,B〉 that f(x) = 1. For elements with length at most 1 it is

clear that f(x) = 1 as these are the elements of A ∪ B. Assume that l ≥ 2 and

the statement holds for elements with length smaller than l. Again, without loss of

generality we may assume that x = x1ab is the shortest form of x, x1 ∈ 〈A,B〉, a ∈ A
and b ∈ B. Note that x1abB = x1aB and x1abA

b = x1bA
b, and that according to

Lemma 12 the function f on these cosets is either constant or it is a multiplication

with some element of 〈A,B〉. Assume that it is a multiplication with some element

on both cosets. Then on the B-coset it has to be the multiplication with (x1a)−1

and on the Ab-coset it has to be the multiplication with (x1b)
−1. As these cosets has

a common element x, we got that (x1a)−1 = (x1b)
−1, hence x1a = x1b and a = b.

This is a contradiction, because if a = b then x1a
2 is a shorter form of x than x1ab.

Thus f is constant on at least one of these cosets. As both cosets has an element

that is mapped to 1, the function f can only be constant 1, so we are ready.

The following corollaries are immediate consequences of Theorem 13.

Corollary 14. Let G be a group with subgroups A,B such that G = AB. Assume

that R(A), R(B) are 1-affine complete. Then R(G) is 1-affine complete except if

gcd(|A|, |B|) = 1 and G = A×B.

Corollary 15. Let G be a group that is generated by involutions. Then R(G) is

1-affine complete.

By Corollary 15 and Theorem 1 every nonabelian group G that is generated

by involutions with the regular action on itself is affine complete. This covers the

dihedral groups, nonabelian simple groups, Sn, SL(n, q) for n ≥ 3, and all nonabelian

Coxeter groups. Since Sn is 1-affine complete it is clear that every group occurs as a

subgroup of a 1-affine complete group. Later, we will show another way to construct

such an embedding yielding a much smaller 1-affine complete group in general.

For a group G let N := 〈x ∈ G | x2 = 1〉. If N has a complement U in G and⋂
g∈G U

g = 1, thenR(G) is affine complete by Corollary 9. This applies to SL(n, q) ≤
G ≤ GL(n, q) for n > 2 and to SL(2, q) 〈diag(−1, 1)〉 ≤ G ≤ GL(2, q). [We note

that SL(n, q) 〈diag(−1, 1, . . . , 1)〉 is generated by all conjugates of a transposition

matrix and by diag(−1, 1, . . . , 1).]

Corollary 16. Let G be a finite group all of whose minimal normal subgroups are

nonabelian. Then R(G) is affine complete.
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Proof: LetN be the product of all minimal normal subgroups ofG. Let a ∈ G\N ,

and let U := 〈a〉. We claim that K := UN satisfies the assumptions of Corollary 9.

For k ∈ K we have UkN = K. Clearly H :=
⋂
k∈K U

k is a cyclic normal subgroup of

K. By assumption we have simple non-abelian subgroups S1, . . . , Sl of G such that

N = S1 · · ·Sl. Hence N has no abelian normal subgroup and in particular H∩N = 1.

Thus [H,N ] = 1. But the centralizer of N in G is trivial by assumption. Hence

H = 1. Since N is generated by involutions by the Odd-Order Theorem, R(N) is

affine complete by Corollary 15. Hence R(K) is 1-affine complete by Corollary 9.

Now let f be compatible on R(G) with f(1) = 1. By Corollary 15 we have

either f(N) = 1 or f |N = idN . In the first case we find f(a) = 1 and in the second

f(a) = a by the 1-affine completeness of R(K). Thus f(N) = 1 implies that f is

constant on all of G and f |N = idN implies that f is the identity map on all of G.

Now R(G) is 1-affine complete and consequently affine complete by Theorem 1.

Lemma 17. Assume that G is a group with subgroups H1, H2, . . . , Hk, k ≥ 2, such

that the set G\{1} is the disjoint union
k⋃
i=1

(Hi\{1}). Assume that f is a compatible

function on G such that there exists an x 6= 1 in G satisfying f(x) = 1 or f(x) = x.

Then f is the constant 1 map or the identity.

Proof: Without loss of generality suppose that x ∈ H1. Let y ∈ Hj \ {1} for

some 2 ≤ j ≤ k. Let z = x−1y and z ∈ Hl. Note that l 6= 1 and l 6= j. Then

xHl = xzHl = yHl, thus f(x)Hl = f(y)Hl. Note that the intersection of any two

cosets g1Hi1 and g2Hi2 has at most one element, hence f(y) is determined by its

Hl-coset and Hj-coset.

Case 1: Now if f(x) = 1, then f(y) is in the same Hl-coset and Hj-coset as 1.

Thus f(y) = 1 for any y /∈ H1. Now we can choose x from H2 and do the same for

any y ∈ H1, which implies that f is the constant 1 map.

Case 2: If f(x) = x, then f(y) is in the same Hl-coset and Hj-coset as y. Thus

f(y) = y for any y /∈ H1. Again we can choose x from H2 and do the same for any

y ∈ H1, hence f is the identity.

Definition 3. We call G a partitioned group if there exist subgroups H1, H2, . . . , Hk

of G such that G\{1} is the disjoint union of the sets H1\{1}, H2\{1}, . . . , Hk\{1}.

Corollary 18. Assume that G is a partitioned group and f is a compatible function

on G such that f(1) = 1. Then f is either the constant 1 map or f |G\{1} is a

permutation of the set G \ {1} with all cycles of equal size.

Proof: Assume that f is not the constant 1 map. Denote by fk the function

f ◦ f ◦ . . . ◦ f with k copies of f in the composition. Note that as f is compatible,
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fk is also compatible for any k ∈ N. The function f maps G \ {1} to G \ {1}, thus

fk also maps G \ {1} to G \ {1}. Take an arbitrary element g 6= 1 in G and consider

the series g = f 0(g), f 1(g), f 2(g) . . . Take the minimal l such that f l(g) = fk(g) for

some k > l. Then f l(fk−l(g)) = f l(g), hence f l has a fixpoint. This means that f l

is the identity, so f is bijective. The size of a cycle of f is the divisor of l. Neither

of these numbers can be less then l, because otherwise there would be a d < l such

that fd(g) = g. Thus all the cycles of f has size l.

This lemma says that if a group G is partitioned with some subgroups then it

is 1-affine complete if and only if for any f compatible function on G such that

f(1) = 1 there exists an element x 6= 1 satisfying f(x) = 1 or f(x) = x. It is

well known that Frobenius groups, p-groups with exponent p for some prime p and

certain nonabelian simple groups such as PSL2(q) and Suzuki groups are partitioned

groups. Now we investigate some special Frobenius groups.

Lemma 19. Let G be a non-abelian group of size pq for distinct primes p, q. Then

R(G) is 1-affine complete.

Proof: We will use + to denote the group operation on G. Let f be compatible

with f(0) = 0. Let G = 〈a〉 o 〈b〉 with pa = qb = 1. Then there is an r (mod p)

such that for any x ∈ 〈a〉 we have −b + x + b = rx. The order of r is q (mod p).

For any x ∈ 〈a〉 the equation −kb + x + kb = rkx holds. As G is a partitioned

group it is enough to prove that there exists a h 6= 1 such that f(h) = h. By

Corollary 18 we have that f is a bijection. Every element of the semidirect product

can be written uniquely in the form u + v such that u ∈ Zp and v ∈ Zq. We know

that f(u+v) = f(u)+f(v) for such u and v. The function f restricted to 〈b〉 is also

a permutation fixing 1. Thus there is a bijection α : {1, 2, ..., q−1} → {1, 2, ..., q−1}
such that for any i ∈ {1, 2, ..., q − 1} we have f(ib) = α(i)b. Let x ∈ 〈a〉 and let

k ∈ {1, . . . , q−1}. Then f(x+kb) = f(x) +f(kb) by Lemma 6. On the other hand,

f(x+ kb) ∈ 〈x+ kb〉. Thus for some n ∈ N we have that

n(x+ kb) = f(x) + α(k)b (8)

After expanding the expression on the left hand side we get

x+ (kb+ x− kb) + . . .+ (k(n− 1)b+ x− k(n− 1)b) + knb = f(x) + α(k)b (9)

Every element has a unique form u+ v such that u ∈ Zp and v ∈ Zq, hence

f(x) = x+ (kb+ x− kb) + . . .+ (k(n− 1)b+ x− k(n− 1)b) and (10)

α(k)b = knb (11)
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According to 11 we have kn ≡ α(k) (mod q). Substituting this to 10 yields

f(x) = x+ (kb+ x− kb) + . . .+ (k(n− 1)b+ x− k(n− 1)b) =

= x+ r−kx+ . . .+ r−k(n−1)x =
r−kn − 1

r−k − 1
x =

r−α(k) − 1

r−k − 1
x

Hence f(x) = r−α(k)−1
r−k−1

x. This holds for any 1 ≤ k ≤ q − 1 but the left hand side

of the equation does not depend on k. Thus there is an element t (mod p) such

that for any x ∈ 〈a〉 we have f(x) = tx and for any k ∈ {1, 2, ..., q − 1} we have
r−α(k)−1
r−k−1

≡ t (mod p), that is

r−α(k) − 1 ≡ t(r−k − 1) (mod p) (12)

Note that α is a permutation of {1, 2, ..., q − 1}, thus adding these equations for

1 ≤ k ≤ q − 1 we get

q−1∑
k=1

(r−α(k) − 1) ≡ t

q−1∑
k=1

(r−k − 1) (mod p), hence (13)

(t− 1)

q−1∑
k=1

(r−k − 1) ≡ 0 (mod p) (14)

As
q−1∑
k=0

r−k ≡ 0 (mod p), it is easy to calculate that
q−1∑
k=1

(r−k − 1) ≡ (−q) (mod p).

Here q is not divisible by p. Thus p|(t − 1) and consequently t ≡ 1 (mod p). This

implies that for any x ∈ 〈a〉 we have f(x) = tx = x, thus f has a fixpoint.

The importance of these lemmata will be clear from the following theorem.

Theorem 20. Let G be a Frobenius group. Then R(G) is 1-affine complete.

Proof: Let a ∈ N and b ∈ H. Assume that a, b 6= 1 and ap = bq = 1 for

distinct primes p and q. The equation f(ab) = f(a)f(b) holds again, thus f(ab) =

alf(b) = f(b)(al)f(b) with some 1 ≤ l ≤ p − 1. As ab = bab we also know that

ab〈ab〉 = b〈ab〉. Thus f(ab)〈ab〉 = f(b)〈ab〉. Hence f(ab) = f(b)(ab)k = f(b)(ak)b

for some 1 ≤ k ≤ p − 1. We got that f(b)(al)f(b) = f(b)(ak)b and consequently

(al)f(b) = (ak)b. Thus (al)f(b)b−1
= ak. Here al 6= 1, otherwise f(a) = 1 and

f(G) = 1. If f(b) = b then we found a fixpoint and we are ready. If f(b) 6= b then

f(b)b−1 6= 1 and then the conjugation with the element f(b)b−1 ∈ 〈b〉 permutes the

elements of 〈a〉. Thus 〈a〉o 〈b〉 = F is a non-abelian subgroup of size pq. According

to Lemma 19 we have that f |F = idF . Hence the elements of F are fixpoints of the

function f and f(G) = idG.

According to Theorem 20 R(A4) is 1-affine complete.
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Definition 4. A permutation group G acting on the finite set Ω is called a Zassen-

haus group if G is the transitive extension of a Frobenius group, that is G is transi-

tive, and the stabilizer of an element α ∈ Ω is a Frobenius group acting on Ω \ {α}.

The following corollary is a natural consequence of Theorem 20, as there are

many Frobenius subgroups in a Zassenhaus group.

Corollary 21. Let G be a Zassenhaus group. Then R(G) is 1-affine complete.

Proof: Let f be a compatible function on G such that f(1) = 1. Consider G as

a permutation group on the set Ω. This is a Zassenhaus group, hence for any α ∈ Ω

the stabilizer Gα is a Frobenius group. Two such stabilizers intersect nontrivially

and generate G. These stabilizers are 1-affine complete. According to Theorem 13

G is 1-affine complete.

Theorem 22. Let p > 2 be a prime and G be a nonabelian group with exponent p.

Then R(G) is 1-affine complete.

Proof: Note that G is a p-group that is equally partitioned with its subgroups.

Thus we only have to check whether the conditions of Lemma 17 hold. Let 1 <

Z1(G) < Z2(G) < . . . < Zn(G) = G be the upper central series of the group G. As

G is nonabelian, we have n ≥ 2. Z2(G) is a p-group with nilpotence class 2. In such

groups the following equation holds:

(xy)k = xkyk[x, y]
k(k−1)

2 for any k ∈ N (15)

Let f be a compatible function on G such that f(1) = 1. Then f preserves Z2(G).

We will show that f |Z2(G) is either constant 1 or the identity. The centre of this group

is nontrivial, hence it contains a subgroup 〈g〉 that is isomorphic to Zp. Let k ∈ N
be such that f(g) = gk. Then given an element h /∈ 〈g〉 in Z2(G) we have 〈g, h〉
is isomorphic to (Zp)

2 on which every compatible function is of the form x 7→ xl

with some l ∈ N. Thus every element of 〈g〉 is mapped to its kth power just as the

elements of G \ 〈g〉. So we have f(x) = xk for any x ∈ Z2(G). Let x and y be in

Z2(G) such that [x, y] 6= 1. As xy〈y〉 = x〈y〉, we have that f(xy) = f(x)yl = xkyl

with some l ∈ N. Also f(xy) = (xy)k = xkyk[x, y]
k(k−1)

2 , where [x, y]
k(k−1)

2 is in the

centre of Z2(G). Thus xkyl = xkyk[x, y]
k(k−1)

2 , hence yl−k = [x, y]
k(k−1)

2 . Thus this

element is in the intersection of 〈y〉 and the centre, which is the trivial subgroup

{1}. Thus [x, y]
k(k−1)

2 = 1 such that [x, y] 6= 1. This implies that p divides k(k−1)
2

,

thus either k or k − 1 is divisible by p. Hence f is either the constant 1 map or the

identity on Z2(G). Now the conditions of Lemma 17 hold, hence f is the constant

1 map or the identity on G. Thus G is 1-affine complete.
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Proposition 23. Assume that A and B are groups such that R(A) is 1-affine com-

plete and exp(B)|exp(A). Then R(A×B) is 1-affine complete.

Proof: Given a compatible function f on G such that f(1) = 1. As R(A) is

1-affine complete, we have that f |A is 1A or idA. In other words f |A is the function

pk|A with k = 0 or k = 1, where

pk : A×B → A×B (16)

x→ xk (17)

We will prove that if the compatible function f fixes 1 and f |A = pk|A for some

k ∈ N, then f = pk.

First we will show that f |B = pk|B. Let b ∈ B an arbitrary element. Here 〈b〉
is cyclic, hence it is the direct product of cyclic groups of prime power order. Thus

according to Lemma 6 it is enough to prove that f |H = pk|H for any H ≤ B cyclic

with |H| prime power. For this let H be such a subgroup and c 6= 1 an arbitrary

element of H of order pα with p prime. As exp(B)|exp(A), there is an a ∈ A with

the same order as c. It is clear that 〈a, c〉 is isomorphic to (Zpα)2. According to

Corollary 7 we have that any compatible function on 〈a, c〉 is of the form pl for some

l ∈ N. As f(a) = ak we have that f(c) = ck. Thus f |B is indeed pk|B.

According to Lemma 6 it is clear that f = pk, now. As k = 0 or k = 1, we have

that f is either the constant 1 map or the identity.

According to Proposition 23 for any group G we have that R(D2|G| × G) is 1-

affine complete. This is another construction for a group of which G is a subgroup

(moreover a normal subgroup) and the G-set corresponding to it is 1-affine complete.

As we proved earlier, abelian groups are not 1-affine complete (except the ele-

mentary abelian 2-groups), because the map x 7→ x2 is a compatible function on

them. The next step should be to observe when a map of the form x 7→ xk is

compatible. The following theorem gives a condition which implies that there exists

such a compatible function on the group.

Proposition 24. Assume that G is a nonabelian group such that exp(G) does not

divide |G : Z(G)|. Then R(G) is not 1-affine complete.

Proof: Let |G : Z(G)| = k. According to the theory of transfers it is well-known

that the map f(x) = xk is a homomorphism. Given a subgroup U ≤ G and x, y ∈ G
such that xU = yU we have y−1x ∈ U . Now f clearly preserves subgroups, thus

(y−1x)k ∈ U . As f is a homomorphism it also holds that (y−1x)k = y−kxk, hence

xkU = ykU . Thus f is compatible, and since exp(G) does not divide |G : Z(G)|, f
is not the constant 1 map. G is not abelian, hence f is not the identity. Thus f is

a nontrivial compatible function on G and G is not 1-affine complete.
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4 The characteristic subgroup C(G)

In this section we present the characteristic subgroup C(G). A more detailed dis-

cussion on the topic can be found in [6].

Definition 5. Denote by C(G) the subgroup of G that is generated by all the 1-affine

complete subgroups of G.

Theorem 13 shows that C(G) is the direct product of subgroups of pairwise

coprime order, namely the maximal 1-affine complete subgroups of G. It also

shows that the maximal 1-affine complete subgroups of G are characteristic sub-

groups. Indeed, for an α automorphism of G and A ≤ G maximal 1-affine complete

subgroup, R(〈A,α(A)〉) is 1-affine complete, since for a nontrivial A the condition

gcd(|A|, |α(A)|) = 1 never holds. According to this remark (and also by definition)

it is clear that C(G) is a characteristic subgroup of G. Not considering those groups

which are the direct product of nontrivial groups of coprime order (we know these

are not 1-affine complete), it is clear that a group G is 1-affine complete if and only

if G = C(G).

Corollary 25. Let G be a group such that G is not the direct product of two non-

trivial groups of coprime order. Then R(G) is 1-affine complete if and only if every

Sylow subgroup of G is contained in a 1-affine complete subgroup of G.

Proof: If R(G) is 1-affine complete then it is clear that every Sylow subgroup

of G is contained in a 1-affine complete subgroup of G. For the other direction let

|G| = pα1
1 p

α2
2 . . . pαrr . Then for any 1 ≤ i ≤ r we have that |C(G)| is divisible by pαii ,

since there is a pi-Sylow contained in C(G). Thus |C(G)| is divisible by |G|, hence

G = C(G) and R(G) is 1-affine complete.

It is a natural idea to look for groups with the property that C(G) = 1. Ac-

cording to our results about groups producing 1-affine complete G-sets, we know the

following.

Corollary 26. Assume that C(G) = 1. Then

• |G| is odd

• every subgroup of G of order pq with different primes p and q is cyclic.

• every subgroup H ≤ G with exponent p for a prime p H is abelian.
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[6] Mayr, P., Pongrácz, A., Horváth, G.: Characterizing translations on groups by

cosets of their subgroups, manuscript (2009.)
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