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Preface

This work is mainly about the cobordism theory of smooth manifolds, an element
of di�erential topology. We give a new proof for a theorem by J. F. Hughes [Hu],
demonstrating the use of singularity theory in cobordism theory along the way.

Our main result will be that in the cobordism group of 4-dimensional oriented
manifolds, Ω4

∼= Z, exactly the even elements have representatives that can be
immersed into R6. Using Herbert's multiple point formula, this gives Hughes's
result as a corollary: an immersion M4

or # R6, if it is in a generic position (i. e.
self-transverse), must have an even number of triple points. This is in parallel with
Bancho�'s classical theorem for immersions from 2-surfaces to R3.

We review most of the results in di�erential topology that we use: in Chapter 1,
one can �nd an overview of basic facts about "generally positioned" (generic) smooth
maps, while in Chapter 2, we recite two multiple point formulas � that is, partial
characterizations of the multiple point sets of certain maps between manifolds � and
prove one of them. (The algebraic topology we will need is standard, so we will use
it without reference.) Chapter 3 is more detailed, and is devoted to the proof of the
main result.

I wish to express my immense gratitude to Professor András Sz¶cs for the in-
teresting pieces of mathematics that he called my attention to and his tireless and
patient advising.

ii



Contents
1 Generic di�erentiable maps between manifolds 1

1.1 Genericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Global behavior: transversality . . . . . . . . . . . . . . . . . . . . . 2
1.3 Local behavior: singularities . . . . . . . . . . . . . . . . . . . . . . . 3

2 Multiple point formulas 8
2.1 Multiple point manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Herbert's and Ronga's formulas . . . . . . . . . . . . . . . . . . . . . 9

3 The image of ImmSO(4, 2) → Ω4 14
3.1 The obstruction [Σ(f)] . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Elimination of double points in ImmSO(4, 3) . . . . . . . . . . . . . . 27
3.3 Elimination of singularities using classifying spaces . . . . . . . . . . 31
3.4 Elimination of singularities by a geometric constuction . . . . . . . . 41
3.5 Hughes's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

References 47

iii



1 Generic di�erentiable maps between manifolds

1.1 Genericity
In this chapter, we shall review a few classical results about di�erentiable maps
between manifolds. We shall only deal with manifolds and mappings smooth enough.
In this spirit, from now on, the word "smooth" always stands for C∞ class (in�nitely
di�erentiable) 1. All manifolds and maps are assumed to be di�erentiable and all
manifolds are without boundary in this chapter, unless otherwise noted.

We know from real analysis that continuous maps can exhibit very bad behavior.
Even di�erentiable maps can have extremely complicated local and global structures.
A powerful idea to make considerations simpler is to restrict our attention to a
generic class of maps: informally speaking, we disregard any phenomenon that can
be eliminated by a "small perturbation" of the map.

(a) (d)(c)(b)

Figure 1: Examples of smooth maps S1 → R2. (a), (b) and (c) are non-generic:
(a) is not self-transverse,
(b) has a triple point,
(c) has a singularity of non-generic type;
(d) is generic by all aspects that we will consider.

This idea may have come from physics: if a function is ultimately computed from
the readings of a measuring instrument, there is no point in dealing with "unstable"
behavior of the function; since the readings already involve some error, we should
usually feel comfortable to alter the function a little bit further.

To give a mathematically precise sense to the notion of the "small change" of a
map, we �rst have to de�ne a suitable topology on the set of di�erentiable maps.
For the sake of simplicity, we only give a formal de�nition for the space of Cr class
maps. The idea is that for two functions to qualify as "close" to each other, not
only their values should be close, but also the partial derivatives of order at most r:

1There are general results (see [W]) which assert that from a complete C1 atlas on a manifold,
one can uniquely choose a C∞ atlas up to C∞ di�eomorphism; furthermore, in the space of C1-
di�erentiable maps, the C∞-smooth mappings form a dense subset. This means that we do not
really lose generality by only dealing with the smooth case.
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De�nition 1.1. Let M and N be di�erentiable manifolds, and let M be compact.
Then let us denote the set of r times di�erentiable mappings from M to N by
Cr(M,N). Furthermore, let us �x a standard topology on this set: the subbase
shall be formed by all sets of the form
N(f, (ϕ,U), (ψ, V ), K, ε) =

{g ∈ Cr(M, N) : g(K) ⊂ V, |∂α(ψ ◦ f ◦ ϕ−1)(ϕ(x))− ∂α(ψ ◦ g ◦ ϕ−1)(ϕ(x))| < ε, ∀x ∈ K},
where (ϕ, U) is a map in the atlas of M , (ψ, V ) is a map in the atlas of N , K ⊂ U

is a compact set such that f(K) ⊂ V , and α = (α1, . . . , αn) is a multiindex, |α| ≤ r.

We will not deal with the case when M is not compact (in such a case, one has
to consider the strong topology on Cr(M,N), where the subbase neighborhoods are
de�ned using a countable family of locally �nite coordinate neighborhoods).

This space Cr(M, N) can easily be given a metric with which it is complete,
therefore Cr(M,N) is a Baire space. As a consequence, a countable intersection of
open and dense subsets is still dense. Of course, a �nite intersection of open and
dense subsets continues to be open and dense. This �ts in well with our intuitive
idea of "genericity": if the generic maps form an open and dense subset in Cr(M,N),
then there will be a generic map as near as we want to any Cr map, but a generic
map will stay generic under small modi�cations. This justi�es the following

De�nition 1.2. In this paper, we will call a property G of Cr functions (that is, a
subset G ⊂ Cr(M,N)) generic if it is open and dense with respect to the Cr topology.

We will use this concept much like one uses "almost every" in measure theory
or "a typical continuous function" in real analysis; for example, "a typical generic
function f : M → N satis�es condition G" means G is a generic property.

It is important to note that genericity is often understood in a more lenient way
(for example, allowing dense Gδ sets). Also note that there is a natural, continuous
embedding Cs(M,N) ↪→ Cr(M,N) whenever s > r.

1.2 Global behavior: transversality
Let us recall the concept of transversality and state R. Thom's transversality lemma.
Transversality is the di�erentiable equivalent of the elementary geometric concept
of "general positioning"; intuitively speaking, it asserts that two objects in a �gure
"touch as little as possible". One feels that this can be achieved if the map is generic,
and Thom's lemmas show that this is indeed the case.

De�nition 1.3. Two submanifolds M1,M2 ⊂ N are said to be transverse if for
each p in M1 ∩M2, the tangent space TpN is generated by the tangent spaces of the
submanifolds: TpN = TpM1 + TpM2.
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A smooth map f : V → N is called transverse to the submanifold M ⊂ N if for
each point p = f(q) ∈ M ∩ f(V ), f∗(TqV ) + TpM = TpN .

It is easy to see that if M1 and M2 are transverse, then M1∩M2 is a submanifold
of N (furthermore, codim M1 ∩M2 = codim M1 + codim M2 � if this is larger than
dim N , no intersection is allowed at all). Similarly, if f is transverse to M , then
f−1(M) is a submanifold of V of codimension codim M .

We de�ne the transversality of more than two submanifolds so that each is trans-
verse to the intersection of any number of others. Transversality to a manifold with
boundary W means transversality to both W and ∂W .

The basic version of Thom's lemma says:

Theorem 1.4 (Thom). For a �xed submanifold M ⊂ N and a manifold V (dim V <

dim N), those maps f : V → N that are transverse to M form a generic subset of
Cr(V, N) (r ≥ 1).

We will also need a sharper result that is only true for immersions:

De�nition 1.5. An immersion f : Mm # Nn (m < n) is called self-transverse if
its "leaves" intersect transversally. That is, whenever q = f(p1) = · · · = f(pk) for
distinct points p1, . . . , pk ∈ M , f∗(Tpi

M) +
⋂

j 6=i f∗(Tpj
M) = TqM .

Theorem 1.6 (Thom). Given manifolds Mm and Nn (m < n), self-transverse
immersions form a generic subset of all immersions M # N (which themselves
form an open subset in all smooth maps M → N).

1.3 Local behavior: singularities
Our goal here is to classify the local behavior of generic di�erentiable functions. We
assume m < n for simplicity. It should be noted that this is still not well-understood
for certain pairs of dimensions (m, k), where k = n−m is the codimension. However,
we shall present a partial characterization due to J. Boardman in all cases, as well
as a complete description in the case where the codimension k is large, that is,
2n > 3m − 2. (Another important and simple special case is n = 1, when we are
looking at Morse functions.) Notations and statements that follow are mostly taken
from [AGV].

We �rst need to de�ne what we wish to classify:

De�nition 1.7. A map germ M → N at a point p ∈ M is an equivalence class of
maps ϕ : Up → N , where p ∈ Up ⊂ M is an open neighborhood, and � as usual with
germs � two maps are equivalent if they agree on a (possibly smaller) neighborhood
of p.
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De�nition 1.8. Two map germs are called di�erentiably left-right equivalent or
A-equivalent if there is a di�eomorphism between their source and target manifolds
that conjugate one germ to the other. More formally, let fi : Ui → Vi (i = 1, 2) be
germs, where pi ∈ Ui ⊂ Mi, fi(p) ∈ Vi ⊂ Ni are open neighborhoods. If there are
di�eomorphisms h : U1 → U2 and k : V1 → V2 such that k ◦ f1 ◦ h−1 = f2, then the
germs represented by f1 and f2 are A-equivalent.

A set of map germ classes (by A-equivalence) is called generic for a pair of
dimensions (m,n) if a generic map in C∞(Mm, Nn) gives a germ from the named
set of classes in each point p ∈ M . In general, there may not be a unique smallest
generic set of germ classes. However, certain classes can not be left out:

De�nition 1.9. A map germ f : M → N at a point p is said to be stable if there
is a neighborhood p ∈ U and a neighborhood f ∈ E ⊂ C∞(M, N) such that ∀f ′ ∈ E

∃p′ ∈ U for which the germ of f ′ in p′ is A-equivalent to that of f in p. (This is
obviously a property of the A-class of f .)

In other words, stable germ classes are those that cannot be essentially altered
by arbitrarily small perturbations. In small pairs of dimensions m and n, the set of
stable germs are generic; unfortunately, for some larger dimensions, this ceases to
be true.

Let us �x the compact di�erentiable manifolds Mm and Nn, where dim M = m

and dim N = n. Let TM and TN be the respective tangent bundles. If f ∈
C1(M, N), then the di�erential f∗ : TpM → Tf(p)N is a linear map in each point p ∈
M . Naturally, the rank of this map is at most min(m,n). If rk(Tpf) = min(m,n),
then the germ of f around p is uniquely determined up to A-equivalence; depending
on whether m ≥ n or m ≤ n:

If m ≥ n, then f is a submersion near to p, that is, it is locally a projection of a
�ber bundle to its base: by the implicit function theorem, in a small neighborhood
of p and f(p), there are coordinate functions x1, . . . , xm and y1, . . . , yn respectively
such that yi(f(q)) = xi(q) (i = 1, 2, . . . , n) if q is near to p.

If m ≤ n, then f is an immersion near to p, which is to say it is locally a
di�erentiable embedding: again with local coordinates xi and yj, yi(f(q)) = xi(q)

(i = 1, 2, . . . ,m) and yj(f(q)) = 0 (j = m + 1, . . . , n).
These are the points p where f behaves in the simplest possible way; they are

usually called the regular points of f . The map germ of f at a regular point is
A-equivalent to the standard projection or embedding, and it is easy to see that this
map germ class is stable.
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All the other points are called the critical or singular points of f . For a generic
f , the critical points form a "thin" set, and we can partially classify them (more
precisely, the map germ classes around them) further according to A-equivalence.
From the above discussion, one invariant property of singular germ classes is already
apparent: the co-rank i of Tpf .

De�nition 1.10. Let Σi(f) = {p ∈ M : rk(Tpf) = min(n, m) − i}, that is, the set
of points where the rank of Tpf drops by i compared to the maximum possible.

For example, Σ0(f) is the set of regular points. The co-rank is clearly an invariant
under A-equivalence: the rank of the derivative is unchanged under left and right
composition with linear isomorphies (coming from the chain rule). By Thom's Jet
transversality theorem, it can easily be seen that for generic maps f , the set Σi(f)

is a (not necessarily compact) submanifold of M , with codimension codim Σi(f) =

i(|m− n|+ i).

Remark 1.11. From this, we get that if n = 2m, a generic map f : M → N has no
singular points at all, thus it is an immersion. Also, such an f has a 0-dimensional
double point manifold. If n ≥ 2m + 1, a generic f will be an embedding.

The idea that leads to a �ner classi�cation of singular map germs is the following:
Let us restrict f to the singularity manifold Σi(f), and examine the rank of its

derivative. Let Σi,j(f) = Σj(f |Σi(f)). This new set may no longer be a sub-
manifold; however, if it is, we can proceed and inductively de�ne Σi1,...,il(f) =

Σil(f |Σi1,...,il−1(f)), where I = (i1, . . . , il) is a non-increasing sequence of nonneg-
ative integers. The endpoints of this classi�cation are those sets where il = 0; in
this case, f is a maximal rank map when restricted to ΣI(f) = Σi1,...,il(f).

J. M. Boardman proved that for a generic f , these sets are indeed submani-
folds. (He de�ned the submanifolds ΣI(M, N) in the in�nite dimensional jet space
over (M, N), and used a jet transversality in the proof.) Boardman also gave the
codimension of each stratum.

Theorem 1.12 (Boardman). For a generic smooth map f : Mm → Nn (m < n)
and an index sequence I = (i1, . . . , il), the set ΣI(f) is a submanifold of M , and its
codimension is codim ΣI = νI(m,n);

νI(m,n) = (n−m + i1)µ(i1, . . . , il)− (i1 − i2)µ(i2, . . . , il)− · · · − (il−1 − il)µ(il)

and µ(i1, . . . , il) is the number of non-increasing sequences j1 ≥ · · · ≥ jl of integers
such that ir ≥ jr ≥ 0 ∀r, j1 > 0.
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Of particular importance for us is the case I = (1, 0). We get that codim Σ1,0 =

k+1, where k = n−m is the codimension of the map. Any higher class I = (i1, . . . , il)

has either i1 > 1 or i1 = i2 = 1. If i1 > 1, then codim ΣI ≥ codim Σi1 ≥ 2(k + 2). If
i1 = i2 = 1, then codim ΣI ≥ codim Σ1,1 = 2(k + 1).

Corollary 1.13. If 2(k + 1) > m, that is, 2n > 3m − 2, then a generic map f

has only Σ1,0 singularities (besides regular points). Σ = Σ1,0(f) ↪→ M is a closed
submanifold with codim Σ = k+1 and f |Σ is an embedding. Furthermore, f |M\Σ, the
restriction of f to its regular points, can be assumed to be self-transverse. Finally,
if 2n > 3m − 1 also holds, then f−1(f(Σ)) = Σ, or in other words, p ∈ Σ and
f(q) = f(p) implies q = p. (This is because f(Σ) has codimension 2k + 1 in N , and
2k + 1 > m, so f(Σ) has no intersection with other points in f(M \ U(Σ)), where
U(Σ) is any open neighborhood of Σ.)

The following classical theorem by Whitney demonstrates that in the case of Σ1,0,
Boardman's classi�cation is complete with respect to A-equivalence (a relatively
simple proof for this can be found in [Ha]).

Figure 2: Image of the 2-dimensional Whitney umbrella wh1 : R2 → R3. To imagine
the k + 1-dimensional case, one should think of the "horizontal" lines as Rk's.

Theorem 1.14 (Whitney normal form). If p ∈ Σ1,0(f) for a generic map f , then
there are neighborhoods p ∈ U , f(p) ∈ V and coordinates ϕ = (ϕ1, . . . , ϕm) : U →
Rm, ψ = (ψ1, . . . , ψn) : V → Rn such that

ψ◦f |U◦ϕ−1(x, y1, . . . , yk, zk+1, . . . , zm−1) = (x2, xy1, . . . , xyk, y1, . . . , yk, zk+1, . . . , zm−1),

or in other words,
ψ ◦ f |U ◦ ϕ−1 = whk× idRm−k−1 ,

where whk : Rk+1 → R2k+1:

whk(x, y1, . . . , yk) = (x2, xy1, . . . , xyk, y1, . . . , yk).

(Such a map is called a Whitney umbrella.)
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Remark 1.15. B. Morin proved that Σ1,1,...,1,0 singularities have normal forms as
well, so these Boardman classes contain a unique map germ class each with respect
to A-equivalence. For Σ2,0, this is already false: Σ2,0 contains many A-di�erent
map germs. For some higher multiindices I, a number of continuous parameters are
needed to describe the A-equivalence class of a map germ.
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2 Multiple point formulas
Given a smooth map f : Mm → Nn between closed manifolds (m = n−k), a natural
question to ask is to describe the multiple points of f . One can immediately de�ne
the r-fold intersection sets

Nr = {p ∈ N : |f−1(p)| ≥ r}

Mr = f−1(Nr)

However, these sets will not usually be manifolds even for self-transverse immersions
f , except for the simplest cases.

To remedy this situation in the case when f : Mm # Nn is a self-transverse
immersion, we will introduce closed manifolds ∆r and ∆̃r and immersions ψr :

∆r # N and µr : ∆̃r # M such that ψr(∆r) = Nr and µr(∆̃(r)) = Mr. We will
even have a map f̂r : ∆̃r → ∆r that lifts f , that is, ψr ◦ f̂r = f ◦ µr. The spaces ∆r

and ∆̃r (together with the maps µr and ψr) will be called the r-tuple point manifolds
of f .

A similar construction can be given for the double points in the case where
2n > 3m− 2 and f is a generic singular map, as described in Corollary 1.13, to be
detailed below.

In this chapter, we shall review two theorems about the Z2 homology class rep-
resented by multiple point manifolds: Herbert's classical result where f is a self-
transverse immersion [He] and Ronga's double point formula [R]. The former is
proved via a nice geometric argument in [EG]; we shall present a proof of the latter
by the modi�cation of this proof, suggested by Professor A. Sz¶cs. Most notations
are taken from [EG], too.

2.1 Multiple point manifolds
First, assume that f : M # N is a self-transverse immersion. Let

M̂r(f) = {(p1, . . . , pr) ∈ M × · · · ×M : pi 6= pj, f(pi) = f(pj)}

be the set of formal r-tuple points in the source. By self-transversality, M̂r(f) is a
compact manifold. M̂r(f) admits a free action of Sr by permuting the coordinates,
and a sub-action of this of Sr−1, permuting only the last r − 1 coordinates. If we
factor out by these free actions, the factor spaces will also be closed manifolds.

De�nition 2.1. Let us de�ne the multiple point manifolds and the relevant maps
as:

∆r(f) = M̂r(f)/Sr,
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ψr(f)([p1, . . . , pr]) = f(p1),

∆̃r(f) = M̂r(f)/Sr−1,

µr(f)(p1, [p2, . . . , pr]) = p1,

f̂r(p1, [p2, . . . , pr]) = [p1, p2, . . . , pr].

From our de�nition of self-transversality (De�nition 1.5), it follows easily that
µr and ψr are immersions. Also note that if a value q ∈ N is taken exactly r times,
then it is covered once by ψr. The maps ψr and µr only fail to be embeddings at
values that are taken r + 1 times or more by f .

Now let us de�ne the double point manifolds for generic maps f : Mm → Nn,
where 2n > 3m−2. Such an f may well be singular, but by Corollary 1.13, all of its
singularities are Whitney umbrellas: in a suitably chosen local coordinate system,
f has the standard form f(x,y, z) = (x2, xy,y, z) (y ∈ Rk, z ∈ Rm−k−1). We also
know that Σ = Σ1,0(f) is a submanifold of M and f |Σ is an embedding.

The de�nition of ∆2 and ∆̃2 are the same as above, the only di�erence being
that they might not be closed manifolds. However, if we make

∆2 ⊂ ∆2 = {{p1, p2} : pi ∈ M, f(p1) = f(p2), p1 6= p2 or p1 = p2 ∈ Σ}

∆̃2 ⊂ ∆̃2 = {(p1, p2) : pi ∈ M, f(p1) = f(p2), p1 6= p2 or p1 = p2 ∈ Σ}
then ∆̃2 is made a closed manifold and ∆2 a compact manifold with boundary. This
can be checked by examining the standard form of f near a singular point p ∈ Σ:
this shows Σ to be an m − k − 1-dimensional submanifold of M that is embedded
in the closure of µ2(∆̃2), locally an embedded m− k-manifold in M .

The extension of µ2, ψ2 and f̂2 to ∆̃2 and ∆2 is obvious; µ2 and ψ2 continue
to be immersions. We also introduce a smooth involution T : ∆̃2 → ∆̃2 for which
f̂2 ◦ T = f̂2: simply T (p1, p2) = (p2, p1). The �xed points of T are exactly µ−1

2 (Σ).

2.2 Herbert's and Ronga's formulas
We state Herbert's formula without proof:

Theorem 2.2 (Herbert). Let f : Mm # Nn be a self-transverse immersion. Denote

mr = DM((µr)∗[∆̃r]) ∈ H(r−1)k(M ; Z2)

nr = DN((ψr)∗[∆r]) ∈ Hrk(N ; Z2)

9



where [V v] ∈ Hv(V, Z2) is the mod 2 fundamental class of the closed manifold V and
DV is the mod 2 Poincaré dual. Then we have, for r ≥ 1,

f ∗(nr) = mr+1 + e ∪mr ∈ Hrk(M,Z2)

where e = e(ν(f)) = wk(ν(f)) is the mod 2 Euler class of the normal bundle ν(f).

Remark 2.3. If M and N are oriented and k is even then, Theorem 2.2 holds with
Z coe�cients as well.

And the singular version for double points:

Theorem 2.4 (Ronga). Let f : Mm → Nn be a generic smooth map, 2n > 3m− 1.
Denote

m2 = DM

(
(µ2)∗

[
∆̃2

])
∈ Hk(M ; Z2)

Then,
m2 = wk(f

∗TN − TM) + f ∗(f!(1)) ∈ Hk(M, Z2)

where f ∗TN − TM is the virtual normal bundle (in the K-group of M ; or we can
just say w(f ∗TN −TM) := f ∗w(TN)∪ w̄(M)), and f! = DN ◦ f∗ ◦DM is the Gysin
homomorphism.

Of course, f ∗(f!(1)) = f ∗(n1), so this is a generalization of Theorem 2.2 for r = 1.

To prove Theorem 2.4, let us recall the concept of unoriented bordism and cobor-
dism: a pair of extraordinary homology and cohomology theories that can be ob-
tained from the spectrum {(MOk = Tγk) : k ∈ N}, the Thom spaces of the universal
(unoriented) k-bundles.

Nk(X, Y ) = lim
q→∞

[Sq−k(X/Y ),MOq]

Nk(X, Y ) = lim
q→∞

πk+q((X/Y ) ∧MOq)

Also, by the Thom-Pontryagin construction, Nk is identi�ed with the geometrically
de�ned bordism group:

Nk(X,Y ) = {f : (V k, ∂V ) → (X,Y )}/bordism

In this theory, the Poincaré duality for a closed manifold X = Mm can be readily
seen: for k ≥ 1 and [ϕ] ∈ Nk(M) = Nk(M, {∗}) = [Sq−kM, MOq] (q >> k), where
the representative ϕ is transverse to BOq ↪→ MOq,

DM([ϕ]) =
[
π(q−k) : (V n−k = ϕ−1(BOq)) → M

]
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where π : SN \ {−1, 1} → N is a projection, the undoing of the suspension. Since
BO(q) ↪→ MO(q) is an embedding of codimension q, we can perturb ϕ so that it
maps to the domain Rq−k ×M ⊂ Sq−kM of π(q−k).

BO(q) ↪→ MO(q) is the universal embedding of codimension q, so all embeddings
V n−k ↪→ Rq−n ×M can be obtained this way. Moreover, all maps V n−k → M can
be subjected to smooth approximation and then lifted out to Rq−n ×M to get an
embedding, for q large enough. Homotopy in [Sq−kM,MOq] corrresponds to bordism
of the map. So in this case, Poincaré duality is simply a natural isomorphism DM :

Nk(M)
DM←→ Nm−k(M).

We have a version for manifolds M with boundary, too, from essentially the same
construction:

Nk(M)
DM←→ Nm−k(M,∂M).

We can reduce the Nk theory to the usual Z2 coe�cient homology: for

[f : (V, ∂V ) → (X, Y )] ∈ Nn(X, Y ),

denote
h([f ]) = f∗([V, ∂V ]) ∈ Hn(X, Y ; Z2).

This reduction can be induced by the spectrum map

{hk : MOk → K(Z2, k) : k ∈ N},

where (hk)
∗ carries the fundamental class lk ∈ Hk(K(Z2, k); Z2) to Φγk(1BOk

), and
Φγk denotes the Thom isomorphism for the universal bundle γk over BOk. Being
induced by a spectrum morphism, the reduction h extends naturally (functorially)
to the respective cohomology theories.

The advantage of working with Nk(X,Y ) is that it is contravariant in (X,Y ). If
g : (M, ∂M) → (N, ∂N) is a smooth map between manifolds and f : V n−k → Nn is
transverse to g, then it is easy to check that if "W = f−1(g(V ))", more precisely,

Wm−k = {(x, y) : x ∈ M, y ∈ V, f(x) = g(y)} ⊂ M × V

(a manifold, by transversality), then the pullback of [f ] ∈ Nk(N, ∂N) is

g∗[f ] = [π1 : W → M ] ∈ Nk(M, ∂M),

where π1 : M × V → M is the projection to the �rst coordinate.

11



Now let us prove Ronga's result for the case described. We resume the use of
all notations in the statement (Theorem 2.4). Let us allow the slightly ambiguous
notation that for f : (V w−l, ∂V ) → (Ww, ∂W ), [f ] denotes both [f ] ∈ Nw−l(W,∂W )

and its Poincaré dual [f ] = DW [f ] ∈ Nl(W ). Denote Σ = Σ1,0(f) ⊂ M .
Let U(f(Σ)) be an open tubular neighborhood of f(Σ) such that f and ψ2 are

transverse to ∂U(f(Σ)). Let N0 = N \U(f(Σ)). Since f−1(f(Σ)) = Σ (there are no
"far-away" points in M that f takes close to Σ), the preimage UΣ := f−1(U(f(Σ)))

is a tubular neighborhood of Σ. Let M0 = M\UΣ = f−1(N0), and B = ∂UΣ = ∂M0.
This way, f |B : B → ∂N0 is an embedding. Since ψ2 is transverse to ∂N0, µ2 is
transverse to B.

Proposition 2.5. Denote by ν = νf |M0 the normal bundle of f over the regular set
M0, and by D(ν) its disc bundle. Introduce a submersion F : D(ν) → N continuing
f0 = f |M0 that is locally injective: for each x ∈ M0, there is an open (open in M0)
neighborhood U containing x such that F |D(ν|U) is a di�eomorphism. Then,

F ∗[f0] = [i] + [d] ∈ Nk(M0, B)

where i : M0 → D(ν) is the zero section and d : (D(ξ), 0) → (D(ν), 0) is the
other leaf of f (the one transverse to i) in double points (ξ is a k-bundle over
∆̃0

2 = µ−1
2 (M0) ).

Proof. F is a submersion from D(ν) (which has the boundary ∂D(ν) = D(ν|B) ∪
S(ν), where S(ν) is the sphere bundle of ν), so it is transverse to everything in N ;
thus, F ∗[f0] = [W → Dν ], where W = {(x, y) : x ∈ M, y ∈ D(ν), f(x) = F (y)}.
Obviously, W includes M = {(x, (x,0))} ⊂ W .

The remainder of W is D(ξ), where ξ is the k-bundle ξ = (µ0
2)
∗ν over ∆̃0

2 (where
µ0

2 = µ2|∆̃0
2), as f is self-transverse. The pull-back of [f : M → F (D(ν))] is clearly

[i], while F ∗[D(ξ) → F (D(ν))] = [d : D(ξ) → D(ν)].

Now let us apply the homomorphism i∗ induced by the embedding i : M0 → Dν

to the equation F ∗[f0] = [i] + [d]:

i∗F ∗[f0] = i∗[i] + i∗[d]

f ∗[f0] = i∗[i] + [µ0
2]

as d is transverse to i. Since i is not transverse to itself, we choose a generic section
s : M0 → D(ν). Then [i] ∼= [s], and

i∗[i] = s∗[i] = [ι : s−1(0) ↪→ M0]
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At this point, let us reduce our equation to the H(•; Z2) theory by the functor h.
If ϕ : (V, ∂V ) → (M0, B), then (as the Poincaré duality is functorial in the spectral
construction of homologies and cohomologies):

DM0(h([ϕ])) = h(DM0([ϕ])) = h([ϕ]) = ϕ∗[V, ∂V ]

Similarly, for ϕ : (V, ∂V ) → (N0, ∂N0):

DN0(h([ϕ])) = h(DN0([ϕ])) = h([ϕ]) = ϕ∗[V, ∂V ].

Using these equalities:

h(f ∗[f0]− [ι]− [µ0
2]) = 0

DM0(h(f ∗[f0]− [ι]− [µ0
2])) = 0

DM0f
∗DN0((f0)∗[M0, B])−[s−1(0)]−(µ0

2)∗[∆̃
0
2] = 0 ∈ Hm−k(M0, B; Z2) = Hm−k(M, UΣ; Z2)

the last equality by excision.
As for the zeros of the section s,

[s−1(0)] = DM0(e(ν) mod 2) = DM0(wk(ν)) ∈ Hk(M0, B; Z2) = Hk(M,UΣ; Z2)

For j : (M, ∅) → (M, UΣ):

j∗(wk(f
∗TN − TM)) = wk(ν)

since the Stiefel-Whitney classes are stable and natural and ν is stably the restriction
of f ∗TN − TM to (M,UΣ) ∼ (M0, B).

Now let us examine the exact homology sequence of the pair (M,UΣ):

· · · → Hm−k(UΣ; Z2) → Hm−k(M ; Z2) → Hm−k(M, UΣ; Z2) → Hm−k−1(UΣ; Z2) → . . .

UΣ ∼ Σ is homotopically m−k−1 dimensional, so Hm−k(UΣ; Z2) = 0, which means
Hm−k(M ; Z2)

j∗−→ Hm−k(M, UΣ; Z2) is a monomorphism. Using the functoriality
of the Poincaré dual:

0 = DM0f
∗DN0((f0)∗[M0, B])−DM0wk(ν)− (µ0

2)∗[∆̃
0
2] =

= j∗
(
DMf ∗(DN(f∗[M ]))−DMwk(f

∗TN − TM)− (µ2)∗[∆̃2]
)
∈

∈ Hm−k(M0, B; Z2) = Hm−k(M,UΣ; Z2)

But j∗ is injective, so this implies

DMf ∗(DN(f∗[M ]))−DMwk(f
∗TN − TM)− (µ2)∗[∆̃2] = 0

Or, applying DM one last time, we get in the cohomologies:

f ∗(f!(1))− wk(f
∗TN − TM)−m2 = 0 ∈ Hk(M ; Z2)

We did everything in Z2-linear spaces, so the signs do not really count. QED.
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3 The image of ImmSO(4, 2) → Ω4

In this chapter, M will denote a closed connected oriented 4-manifold. Emb(SO)(n, k)

and Imm(SO)(n, k) will stand for the cobordism group of embeddings and immersions
respectively from (oriented) n-manifolds to Rn+k.

Our primary goal is to determine which oriented cobordism classes of 4-manifolds
have a representative that can be immersed in R6, that is, the image of the map

ϕ : ImmSO(4, 2) → Ω4

where ϕ is the natural forgetting mapping: it takes a class [f : M # R6] to the
class [M ]. Clearly, ϕ is a group homomorphism. To handle Ω4 better, we shall use
the well-known fact that the signature σ : Ω4 → Z gives an isomorphism between
Ω4 and Z. The answer that we will prove is that im(σ ◦ϕ) = 2Z ≤ Z. The strategy
we pursue is roughly as follows:

We identify Ω4 with the bordism group Ω4(R6). Then we take a generic smooth
map f : M → R6; this map may only have Σ1,0-type singularities (Whitney um-
brellas), as shown in Chapter 1. We then try to describe the obstruction to the
elimination of the singular stratum Σ(f) = Σ1,0(f).

Due to technical di�culties, we will not handle all generic maps f : M → R6,
only the so-called prim maps (to be de�ned below); this will be su�cient, since
there are enough prim maps in a certain sense (there are prim maps from any M to
R6). We will, by a geometrical construction, de�ne an obstruction [Σ(f)] ∈ Z2 to
the elimination of singularities for prim maps and show that this is indeed the only
obstruction.

The general picture of this chapter and most proofs are based on Professzor
András Sz¶cs's ideas. The idea underlying the proof in Section 3.4 and part of
Theorem 3.31's proof comes from Endre Szabó.

3.1 The obstruction [Σ(f)]

We de�ne prim (projected immersion) maps as:

De�nition 3.1. A map f : Nn → Rn+k is said to be a prim map if there is an
immersion g : Nn # Rn+k+1 such that f = π̄n+k+1 ◦ g, where π̄n+k+1 : Rn+k+1 →
Rn+k is the projection that eliminates the n + k + 1-st (last) coordinate.

Cobordism of prim maps (of the same dimensions) is simply de�ned as the (ori-
ented) immersion cobordism of the respective immersions g. Hence the cobordism
group of prim maps from (oriented) n-manifolds to Rn+k can be identi�ed with
Imm(SO)(n, k + 1).

14



Remark 3.2. The prim cobordism class of f , the class [g] ∈ Imm(SO)(n, k + 1), is
determined by f and an orientation of the line bundle ker Tf over Σ(f); the map f

in itself may be insu�cient. From now on, whenever we speak of a prim map f , we
assume that an orientation of ker Tf is also given.

Let us now focus on the case when n = 4, k = 2 and the manifold M is oriented.
As always, we can assume the genericity of g and f . The only singular stratum
Σ(f) = Σ1,0(f) of such a map will be the set of points x ∈ M where the seventh
coordinate axis is in the tangent space im(Txg). By Corollary 1.13, the set Σ(f) is
a compact 1-manifold embedded in M , in other words, a collection of �nitely many
embedded circles (S1-s). Moreover, f restricted to Σ(f) is an embedding.

Let us also examine the double point manifolds in the source, µ = µ2(f) :

∆̃2(f) # M and in the target, ψ = ψ2(f) : ∆2(f) # R6. The double point
manifolds have dimension 2. (From now on, we usually omit f from the notation
of these maps and manifolds.) As we saw in Chapter 2, adding the singular curve
Σ ↪→ M to ∆̃2 in the source and f(Σ) ↪→ R6 to ∆2 in the target, we get a closed
manifold ∆̃2 with an immersion µ : ∆̃2 # M in the source and a compact manifold
∆2 (with boundary f(Σ)) with an immersion ψ : ∆2 # R6.

We have a smooth map f̂ : ∆̃2 → ∆2 with f ◦ µ = ψ ◦ f̂ . Finally, we have a
smooth involution T : ∆̃2 → ∆̃2, such that f̂ ◦ T = f̂ and the �xed points of T are
exactly Σ. We will not di�erentiate between Σ ↪→ ∆̃2 and µ(Σ) ↪→ M in notation;
since everything is an embedding here, this should not cause confusion.

According to the Pontryagin construction, if we choose a framing (a trivialization
of the normal bundle � that is to say, 5 linearly independent sections) of f(Σ)

in the target space R6, we get an invariant in π6(S
5) ∼= Z2; more precisely, the

framed cobordism classes of dimension 1 and codimension 5 framed embeddings are
identi�ed with the elements of π6(S

5): Embfr(1, 5) = π6(S
5).

We shall therefore attempt to �x a trivialization of the normal bundle
ν(f(Σ) ↪→ R6) (in the end, we will opt for a curve S ↪→ ψ(∆2) near to f(Σ) for
technical reasons.) The trivialization will involve an arbitrary choice, so we will also
need to prove that the resulting class in Embfr(1, 5) does not depend on this choice.
Once we have established this, we will have de�ned the class [Σ(f)] ∈ π6(S

5) ∼= Z2

for generic f = π̄7 ◦ g : M → R6 prim maps.
Let us see a few easy facts about framed cobordisms, particularly in dimensions

(1, 5):

Lemma 3.3. Let Nn ↪→ Rn+k be a submanifold with framing [u1(x), . . . , uk(x)] for
x ∈ N . Let H : N × [0, 1] → GL+(k) be a homotopy in linear transformations
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starting from H(x, 0) = Ik. Then, [w1(x), . . . , wk(x)] = H(x, 1) · [u1(x), . . . , uk(x)]

is a valid framing on N and the two framings are cobordant: [N ;u] = [N ;w] ∈
Embfr(n, k).

Proof. Let us take the submanifold Nn× [0, 1] ↪→ Rn+k× [0, 1] and equip it with the
framing H(x, t) · [u1(x), . . . , uk(x)] in each point (x, t) ∈ Nn × [0, 1]. (Of course, we
need to complement each normal vector with a component in the vertical direction;
this component can be set to 0.) Since H(x, t) ∈ GL+(k) is invertible, the new
framing spans the normal space at each point, so we gave a framed cobordism
between [N ;u] and [N ;w].

Corollary 3.4. Given a Riemannian metric on the normal bundle ν(Nn ↪→ Rn+k),
we can always assume that any framing is orthonormal.

Proof. The procedure of the Gram-Schmidt orthogonalization can be implemented
as a deformation that is continuous in the starting vectors, that is, a homotopy in
GL+(k).

Proposition 3.5. In Embfr(1, 5), exchanging two normal �elds in the framing does
not change the cobordism class: [N ; u1, u2 . . . , u5] = [N ; u2, u1, . . . , u5] ∈ Embfr(1, 5) =

π6(S
5). Therefore, we can assume all framings to be oriented (after �xing an orien-

tation on the curve N) in this case.

Proof. Clearly, exchanging two normal �elds gives an automorphism Embfr(1, 5) →
Embfr(1, 5). However, Z2 only has the identity as automorphism.

The following proposition is both easy and well-known:

Proposition 3.6. π1(SO(k)) ∼= Z2 for k ≥ 3.

Lemma 3.7. Let N ∼= S1, N ↪→ R6, and ν = ν(N ↪→ R6) be its normal bundle.
Let us choose two positively oriented framings [N,u] and [N,w] (ui, wi ∈ ν). Let
A(x) = wu−1 ∈ GL+(5) ∼ SO(5) be the "ratio" of the two framings: the extent
to which u(x) needs to be twisted so that we get w(x). Then, the two framings are
cobordant if and only if [A] = 0 ∈ [N,GL+(5)].

Proof. If [A] = 0 ∈ [N,GL+(5)], then we are given a homotopy H : N × [0, 1] →
GL+(5) starting in the identity and ending in A, so by Lemma 3.3 we have a framed
cobordism.

For the other direction, we make use of the fact that [A] ∈ [N,GL+(5)] =

π1(GL+(5)) ∼= Z2. By contradiction, assume that [N,u] and [N,w] are cobordant
even though their ratio [A] is not null-homotopic. But in this case, let us take any
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other positively oriented framing [N,v]: if B(w) = v, then [B] 6= [BA] = [B] + [A],
using the fact that pointwise multiplication in a topological group (like GL+(5)) can
be replaced by addition in the homotopy groups.

Since [N, GL+(5)] = π1(GL+(5)) has only 2 elements, this means that [N,v] is in
the same class as either [N,u] or [N,w]. However, by Proposition 3.5, all framings
can be assumed to be positively oriented, so this would mean that all framings are
cobordant, in contradiction with the fact #{Embfr(1, 5)} = 2 > 1.

(Of course, all of this works for dimensions (1, k) with k ≥ 3.)

Remark 3.8. In the above proof, we conveniently used the well-known fact that
Embfr(1, k) = πk+1(S

k) ∼= Z2 for k ≥ 3. However, we can prove this as a by-product
at this point.

Proof. From the above considerations, it follows that there are at most 2 non-
cobordant framed embeddings in dimension 1, codimension k ≥ 3. To prove that
there are 2, we only need to show a non-nullcobordant framing.

Let us equip the standard S1 ⊂ R2 × {0} × · · · × {0} with the standard null-
cobordant framing u and a framing v so that the ratio
[A] = [vu−1] ∈ [S1, SO(k) · B] ∼= [S1, SO(k)] = π1(SO(k)) (where SO(k) · B is one
of the two cosets of SO(k) in O(k)) is not null-homotopic.

Assume that u can be extended to a connected surface W with boundary S1 =

∂W = W ∩ (Rk+1 × {0}), to form a framed null-cobordism. W must be orientable,
since its normal bundle is trivialized, so W = Ap \ D2 for some canonical oriented
surface Ap. It is easy to construct the extension of v to such a W , so the ratio
A = vu−1 : W → SO(k) ·B is extended, too. If

π1(Ap) =

〈
a1, b1, . . . , ap, bp

∣∣∣∣∣
p∏

i=1

[ai, bi] = 1

〉

for the generating loops ai, bi ∈ π1(Ap), then from the CW structure of W , we
can see that S1 represents the product [a1, b1] . . . [ap, bp]. But this means that A∗ :

π1(W ) → π1(SO(k)) sends [S1] to A∗([a1, b1] . . . [ap, bp]) = 0 in the Abelian group
π1(SO(k)), which gives contradiction.

Let us return to the prim maps f : M → R6. In practice, it will be more
convenient to work with an embedded 1-manifold
S ⊂ ψ(∆2) in the double points that is near to f(Σ), than with f(Σ) itself. More
precisely, let ϑ = ν(Σ ↪→ ∆̃2) be the normal bundle of Σ in ∆̃2. ϑ is a 1-dimensional
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bundle over Σ. We can equip ϑ with a Riemannian metric and take its closed disc
bundle, D(ϑ) = {v ∈ ϑ : ‖v‖ ≤ 1}.

Denote by U(Σ) a T -invariant closed tubular neighborhood of Σ in ∆̃2, small
enough that it does not contain a triple point (ν|U(Σ) is an embedding). By genericity,
Σ is far away from the triple points, so this can be achieved. Let τ : D(ϑ) → U(Σ)

be a Z2-equivariant di�eomorphism: T (τ(v)) = τ(−v) for v ∈ ϑ above each point of
Σ.

The boundary ∂U(Σ) is a disjoint union S̃2 ∪ S̃1 of the upper (S̃2) and the lower
(S̃1) components of the boundary (with respect to π7 ◦ g, where π7 is the projection
to the 7-th coordinate). Let S = ψ(f̂(S̃1)) = ψ(f̂(S̃2)).

We now try to give a framing of the normal bundle νS = ν(ψ|S : S ↪→ R6).
Denote ν(∆2) = ν(ψ|∆2 : ∆2 # R6); this will later serve well to establish a framed
cobordism.

Let us de�ne a pair of oriented 2-plane bundles over S. For any q ∈ S, let q̃i

(i = 1, 2) be its lower and upper preimages; q̃i ∈ S̃i. De�ne the bundles ξi(q) =

f∗((Tq̃i
µ(Tq̃i

∆̃2))
⊥), the 2-dimensional remainders (the parts orthogonal to ψ(∆2))

of the tangent spaces of the two leaves of the mapping f at the double point q. Since
the codimension 6 − 4 = 2 is even, the bundles ξi inherit an orientation from that
of M and R6.

η

ξ2

ξ1

Figure 3: (ξ1)q and (ξ2)q collapse into each other as q → Σ

Lemma 3.9. νS is globally decomposed: νS = η ⊕ ξ1 ⊕ ξ2, where η is a trivial line
bundle.

Proof. In the normal bundle ϑ = {(p, x) : p ∈ Σ, x ∈ [−1, 1]}, consider the tangent
vectors ũ2 = (∂/∂x)|S̃2

in the "upper" boundary and ũ1 = −(∂/∂x)|S̃1
in the "lower"

boundary. By the Z2-equivariance, (ψ ◦ f̂ ◦ ϑ)∗ũ1 = (ψ ◦ f̂ ◦ ϑ)∗ũ2; let us denote
this vector �eld by u and the trivial bundle it spans by η. In e�ect, u is the inner
normal vector of S in ψ(∆2 \ f̂(U(Σ))).
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What remains is to decompose the normal space of the double point manifold
ψ(∆2) over S into ξ1 and ξ2. Obviously, ξ1 and ξ2 are normal to ψ(∆2), as f is an
immersion in q̃i. By self-transversality of f outside Σ, the bundles ξ1 and ξ2 are
transverse, so the decomposition of νS is complete.

For further use, let us introduce a Riemannian metric on the 2-bundle ν(µ|U(Σ) :

U(Σ) → M); denote by J the rotation by +π/2. Restricting this metric to the
boundaries S̃i of U(Σ) and pushing them forward, we get Riemannian metrics over
ξ1 and ξ2 too; here, let the rotations by +π/2 be denoted by J1 and J2, respectively.
We can extend the Riemannian metric of ξ1 and ξ2 over S to the whole normal
bundle νS such that νS = η ⊕ ξ1 ⊕ ξ2 is an orthogonal decomposition.

Remark 3.10. We also have a homotopically well-de�ned bundle isomorphism be-
tween ξ1 and ξ2, which is given by the normal bundle ν(µ : ∆̃2 → M) over U(Σ) ∼=
Σ × [−1, 1]. So we have a canonical decomposition of νS into a trivial line bundle
and a pair of canonically isomorphic oriented plane bundles. By the general Thom
construction, such a structure already gives an invariant in π6(Tξ), where Tξ is
the Thom space for the bundle ξ = ε1 ⊕ 2γ2

SO, and γ2
SO is the universal oriented

2-dimensional bundle.

Let us choose a generic section ŝ : ∆̃2 → ν(µ : ∆̃2 → M). It is a section
of a 2-dimensional bundle over a 2-dimensional manifold, so typically it will not
vanish over the curve Σ. If we took the tubular neighborhood U(Σ) small enough,
ŝ does not vanish even on U(Σ). Thus, ŝ de�nes a framing: if si = f∗µ∗(ŝ|S̃i

), then
[u, s1, J1(s1), s2, J2(s2)] is a framing of νS.

Lemma 3.11. The framed cobordism class [S; u, s1, J1(s1), s2, J2(s2)] does not de-
pend on the section ŝ, as long as ŝ does not vanish over U(Σ). Therefore, it is an
invariant of the prim map f . (By the Pontryagin construction, this invariant lies
in π6(S

5) ∼= Z2).

De�nition 3.12. Let us denote this framed cobordism class by [Σ(f)] ∈ Embfr(1, 5) =

π6(S
5).

Proof. Let C ∼= S1 be an arbitrary connected component of the embedded 1-
manifold S. Clearly, [Σ(f), ŝ] (temporarily mentioning the possible dependence
on ŝ in the notation) is the sum of the framed cobordism classes of the framings
on the components, so we only need to deal with a change of the section over
ϑ(C × [−1, 1]) ⊂ U(Σ). Therefore, we can assume without loss of generality that
S = S1.
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Now we examine what happens if ŝ is replaced by another nonzero section

t̂ : U(Σ) → ν(µ : U(Σ) → M).

Let us norm both ŝ and t̂ to unit length with respect to the Riemannian metric
that we took on ν(µ : U(Σ) → M); this way, [ŝ, J(ŝ)] and [t̂, J(t̂)] are both positive
orthonormal bases in each �ber.

Then we can take, in the �ber above each point x ∈ U(Σ), the ratio
[ŝ, J(ŝ)]−1

x [t̂, J(t̂)]x, that is, the unique special orthogonal transformation A(x) ∈
SO(2) that takes ŝ(x) into t̂(x). These matrices A(x) form a continuous map A :

U(Σ) → SO(2). Let us de�ne A1, A2 : S → SO(2) as follows: Ai(q) = A(q̃i); this
way, A : U(Σ) ∼= Σ× [−1, 1] → SO(2) gives a homotopy between A1 and A2.

With respect to the Riemannian metric that we took on νS, the framings
[u, s1, J1(s1), s2, J2(s2)] and [u, t1, J1(t1), t2, J2(t2)] are orthonormal bases of the �ber
of νS over each point q ∈ S, so we can take their ratio B(q) ∈ SO(5) in a similar
manner to what we have seen in Lemma 3.7. In fact, we already know B:

B(q) =




1 0 0

0 A1(q) 0

0 0 A2(q)




Thus, B : S → SO(5) expresses the twisting one has to do to get the framing
[Σ(f), t̂] from [Σ(f), ŝ].

Sublemma 3.13. B is homotopically trivial: [B] = 0 ∈ π1(SO(5)).

Proof. Recall again the fact that in a topological group (like SO(5)), multiplication
in the fundamental group and pointwise multiplication of the loops is equivalent;
thus,

B(q) =




1 0 0

0 A1(q) 0

0 0 I2


·




1 0 0

0 I2 0

0 0 A2(q)


 = B1(q)·B2(q); [B] = [B1]+[B2] ∈ π1(SO(5))

Now observe that B2(q) = CB′
2(p)C−1 for every p, where

C =




1 0 0

0 0 I2

0 I2 0


 ∈ SO(5), B′

2(q) =




1 0 0

0 A2(q) 0

0 0 I2


 .

Since SO(5) is connected, there is a path H : [0, 1] → SO(5), H(0) = I5, H(1) = C.
By taking Dt(p) = H(t)B2(p)H(t)−1, Dt is a homotopy between B2 and B′

2. We
already know that A1 and A2 are homotopic; thus so are B′

2 and B1. Therefore, B1
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and B′
2 represent the same element in π1(SO(5)) ∼= Z2. Whichever this element be,

its double [B] = [B1] + [B′
2] is zero in π1(SO(5)).

We now see that B is null-homotopic. Using Lemma 3.3, the two framings give
the same framed cobordism class in Embfr(1, 5) = π6(S

5).

Remark 3.14. Technically, we did not prove that [Σ(f)] is independent on the
tubular neighborhood U(Σ) and the map τ : ϑ → U(Σ). However, the proof for
this is essentially identical to the above one about independence on ŝ (the only extra
notion we need is that for two tubular neighborhoods, there is a third that is contained
in both).

We will now prove that [Σ(f)] is indeed an invariant of the prim cobordism class
[f ]:

Theorem 3.15. For a prim map f = π̄7 ◦ g, (g : M # R7), the class [Σ(f)] only
depends on the prim cobordism class [f ] ∈ ImmSO(4, 3). So we get a homomorphism
[Σ] : ImmSO(4, 3) → Z2.

Proof. First we prove that if [f ] = 0, then [Σ(f)] = 0.
Suppose G : W 5

or # (R8)+ is an immersion such that ∂W = M , the tangent
space G∗(TpW ) is not horizontal (not a subspace of R7 × {0}) in p ∈ M (this can
be ensured by adding a "collar" to G), and G and its projection F = π̄7 ◦ G are
generic. (It is the 7-th coordinate that we collapse, the 8-th coordinate is brought
in by the cobordism.)

Fortunately, the condition 2n > 3m−2 still holds, so F satis�es the condidions of
Corollary 1.13. (We only stated this for manifolds without boundary, but the version
with boundary can easily be obtained by using the closed manifold W ∪∂W (−W ).)

The singular points of F , the set ΣF = Σ1,0(F ) is a 2-manifold with boundary
∂ΣF = ΣF ∩M = Σ(f) = Σ. Let us discard any connected components of ΣF that
are not connected to the boundary.

ΣF is embedded in the 3-manifold ∆̃2(F ). Let U(ΣF ) be a T -invariant tubular
neighborhood extending U(Σ) with τ : ϑF = D

(
ν

(
ΣF ↪→ ∆̃2(F )

))
→ U(ΣF ), a

Z2-invariant di�eomorphism. Let SF = f(µ(∂U(ΣF ))).
We can break up the normal bundle of SF continuing the decomposition of

ν(S ↪→ R6), and in much the same way:

ν(SF ↪→ R7) = η ⊕ ξ1 ⊕ ξ2,
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where η = 〈u〉, u ∈ ν(SF ↪→ ψ(∆2(F ) \ f̂(U(ΣF )))) (u is the normal vector pointing
away from ΣF ), and for q ∈ SF , q̃i ∈ ∂U(Σ(F )), f(µ(q̃i)) = q:

ξi(q) = f∗((Tq̃i
µ(Tq̃i

∆̃2(F )))⊥).

This decomposition is globally consistent over SF , as we have an ordering between
the pre-images q̃1,2. Also, the bundles ξ1,2 inherit an orientation from the double
point manifold ∆̃2, which is oriented because k = 2 is even.

Now we want to �nd a nonzero section ŝF : U(ΣF ) → ν(U(ΣF ) ↪→ W ). We need
to be more careful here: the bundle is 2-dimensional, as is ΣF . However, ΣF is a
surface with boundary, and we made sure that each of its connected components
have nontrivial boundary.

Since all closed 2-manifolds have a CW structure that has a single 2-cell, all con-
nected compact 2-manifolds with nontrivial boundary are homotopically equivalent
to a 1-complex. This implies that [ΣF , BSO2] = 0, as sk1(BSO2) = {∗}, so all
oriented plane bundles over ΣF are trivial. Thus we can give a nonzero section ŝF

over ΣF , which we can extend to the tubular neighborhood U(ΣF ).
Taking si(q) = f∗µ∗(ŝF (q̃i)), and introducing Riemannian metrics on ξ1 and ξ2

that continue the ones already given over S, we have a framing [u, s1, J1(s1), s2, J2(s2)]

over SF that continues the one given on S. The surface SF with this framing is ex-
actly a framed cobordism that shows [Σ(f)] = [S; u, s1, J1(s1), s2, J2(s2)] = 0.

We have proved that if [f ] = 0, then [Σ(f)] = 0, thus, [Σ(f)] only depends on
[f ]. Since everything is additive, we also get a homomorphism [Σ] : ImmSO(4, 3) →
π6(S

5) = Z2.

We now prove a key result that connects the global properties of M with the
class [Σ(f)]. Due to geometric di�culties, this proof will only work for an even
smaller class of maps f .

De�nition 3.16. A mapping f : Nn → Rn+k is said to be a prem (projected
embedding) if there is an embedding g : Nn ↪→ Rn+k+1 such that f = π̄n+k+1 ◦ g,
where π̄n+k+1 is the projection that eliminates the last coordinate.

As with prims, codimension k prems from (oriented) n-manifolds can be identi-
�ed with representatives of the elements of Emb(SO)(n, k + 1), and we de�ne cobor-
dism of prems via this identi�cation.

Remark 3.17. As with prims, f in itself does not determine the prem cobordism
class [g] ∈ Emb(SO)(n, k + 1). However, f and an orientation of the line bundle
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ker Tf over Σ(f) is su�cient to reconstruct the cobordism class [g] of the embedding
g. From now on, whenever we speak of a prem map f , we understand that an
orientation of the line bundle ker Tf is also given.

We shall later prove that there are, in a sense, "enough" prem maps so that the
general result is implied by the prem case.

Theorem 3.18. For every generic prem map f = π̄7 ◦ g (g : M4
or ↪→ R7), we have

[Σ(f)] = σ(M) mod 2 ∈ Z2, where σ(M) is the signature of the oriented 4-manifold
M .

Proof. In the prem case, the double point manifold ∆2 is still only immersed in R6

(as f might have triple points), but now we have a global ordering of the pre-images;
that is, f̂ : ∆̃2 → ∆2 is a trivial double covering. Using the self-transversality of f at
the double points, the four-dimensional normal bundle ν(ψ : ∆2 # R6) decomposes
to two 2-dimensional bundles: in the double point q ∈ ∆2, we have the orthogonal
spaces f∗((Tq̃i

µ(Tq̃i
∆̃2))

⊥) (i = 1, 2), the normal spaces of the double surface in each
leaf.

The ordering of the two pre-images q̃1,2 ∈ ∆̃2 is globally consistent � this is why
we needed f to be prem! �, so we have a global decomposition ν(∆2 # R6) = ξ1⊕ξ2.
Very importantly, this decomposition is the extension of the one we chose over S.
These plane bundles are still oriented, as seen from the same argument.

Our general plan is to use W ′ = ∆2 \ f̂(int U(Σ)) itself as a cobordism, with suit-
able framing, to establish a relation between the framed curve [S; u, s1, J1(s1), s2, J2(s2)]

and a standard framed curve whose cobordism class can be computed. To this end,
we prove a useful technical statement:

Lemma 3.19. Let Nn ↪→ Rn+k be a compact manifold with boundary, with the
normal framing [v1, . . . , vk]. Let u be an inner normal vector for N in ∂N . Then, its
boundary ∂N with the framing [u, v1, . . . , vk] is null-cobordant: [∂N ; u, v1, . . . , vk] =

0 ∈ Embfr(n− 1, k + 1)

Proof. By de�nition, we need a manifold N ′ ↪→ (Rn+k+1)+ with boundary ∂N ′ =

N ′∩ (Rn+k×{0}) = ∂N , and a framing [u′, v′1, . . . , v
′
k] on it, such that the framing's

restriction on ∂N is the desired [u, v1, . . . , vk]. What we do is "lift" the interior of
N out of the plane Rn+k × {0}. For this, take a smooth function h : N → R+ such
that h|∂N ≡ 0, but the inner derivative ∂u(h)(x) is positive, ∀x ∈ ∂N . N ′ shall be
the same as N , but its embedding to (Rn+k+1)+ is lifted by h:

N ′ = {(x, h(x)) : x ∈ N} ↪→ (Rn+k+1)+.
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N ′

N

Rn+k

N

∂N

u u′

∂N
Rn+k

Figure 4: Lifting the cobordism in Lemma 3.19.

Denote by U = U(∂N) = ∂N × [0, ε) an open tubular neighborhood of ∂N .
Then,

u′(x) =





τ
ε
u(y)− (

1− τ
ε

)
en+k+1 if x ∈ U, x ∼ (y, τ)

−en+k+1 otherwise

where −en+k+1 = (0, . . . , 0,−1) is the vector pointing straight down. All the other
vectors need not change: v′i((x, h(x))) = vi((x, 0)),∀x ∈ N .

The vectors v′i stay normal, as even their projections vi are not tangent to the
projection of N ′, namely N . If U is chosen to be small enough, u′ is also normal:
h "starts rising" near in U to the direction of u (for y ∼ (x, τ), ∂u(h)(y) > 0 if τ is
small enough, since h ∈ C1 and ∂N is compact). Finally, the vectors u′, v′1, . . . , v

′
k

are linearly independent: on ∂N , this is because u is in the tangent space of N ,
while in other points, the linear hull 〈v′1, . . . , v′k〉 is in Rn+k × {0}, while u′ has a
downward component.

So we succeeded in giving a framed cobordism [N ′; u′, v′1, . . . , v
′
k] that demon-

strates [∂N ; u, v1, . . . , vk] = 0 ∈ Embfr(n− 1, k + 1).

To use this handy result, we need to trivialize the bundles ξ1 and ξ2 over the
immersed compact manifold W ′ = ∆2 \ f̂(int U(Σ)) with boundary to obtain a
framing. As above, let us take a generic section ŝ : ∆̃2 → ν(µ : ∆̃2 → M). This
is a section of a 2-bundle over a 2-manifold, so it has isolated zeroes. Again by
genericity of ŝ, we can assume that the zeroes do not fall in U(Σ) and that they are
not equivalent by T . Finally we can assume, for simplicity, that ŝ does not vanish
at the triple points of f (where µ is not an embedding).

Lemma 3.20. Let ŝ : ∆̃2 → D(ν(µ)) be as above. Then, #{ŝ−1(0)} = [Σ(f)] mod 2.
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Proof. We will try to use ŝ to trivialize the oriented 2-bundles ξ1,2 over W ′. By
Lemma 3.19, this will establish a framed cobordism starting in [S; u, s1, J1(s1), s2, J2(s2)].

If, in a point q ∈ W ′, where q = f(q̃1) = f(q̃2), the section ŝ(q̃1,2) is non-zero in
both pre-images, we have produced a desired trivialization of the planes (ξ1,2)q: let us
simply take the framing [s1, J1(s1), s2, J2(s2)], where once again, si(q) = f∗µ∗(ŝ(q̃i))

is just the projection of the section ŝ and Ji is the rotation by the positive angle
+π/2 in the respective bundles. (By de�nition, this is consistent with the framing
we took on S.)

Were it not for the zeroes of ŝ, we would have established a framing [s1, J1(s1), s2, J2(s2)]

over the immersed framed 2-manifold with boundary, W ′. Since 2 dim W ′ < 6, we
can perturb the immersion ψ|W ′ : W ′ # R6 to have an embedded submanifold that,
according to Lemma 3.19, shows [Σ(f)] = 0.

In general, however, ŝ has zeroes at q̃1, . . . , q̃k. Thus, we have a framing of
ν(ψ|W ′), except in the points ql = f(q̃l), 1 ≤ l ≤ k. Let us cut out small, disjoint
open disc neighborhoods Dl of ql from W ′. Denote Sl = ∂Dl. We have a legitimate
framing [s1, J1(s1), s2, J2(s2)] on the remaining surface ψ(W ), where W = W ′ \⋃k

l=1 Dl. By perturbing ψ|W slightly, this will give a framed embedding. So we get:

[Σ(f)] = −
k∑

l=1

[Sl; u, s1, J1(s1), s2, J2(s2)] ∈ Embfr(1, 5) ∼= Z2,

where u is the inner normal vector of ψ(W ) in each boundary component.

Since k = #{ŝ−1(0)}, it su�ces to show that for all values l, the class
[Dl; u, s1, J1(s1), s2, J2(s2)] is the nontrivial element in Embfr(1, 5) = Z2. Dl is an
embedded disc, so it can be transported by isotopy to the standard embedding of the
unit disc, {(x1, . . . , x6) : x2

1 + x2
2 ≤ 1, x3 = · · · = x6 = 0} ↪→ R6, so that the �bers of

ξ1 and ξ2 go into the coordinate planes spanned by 〈e3, e4〉 and 〈e5, e6〉, respectively,
where ei is the i'th vector of the standard basis in R6.

By symmetry, we can assume that q̃l = q̃l
1 is the �rst pre-image of ql and T (q̃l

1) =

q̃l
2 is the second. T does not carry zeroes of ŝ to one another, so ŝ(q̃l

2) 6= 0. If Dl

was taken small enough, the turning number of s2(q
′) = f∗(q̃′2) in ξ2 is zero as q′

goes round Sl, and the same is true for J2(s2). This means that the sections s2 and
J2(s2) can be twisted to e5 and e6 by isotopy.

So we only need to care about the nontrivial normal vectors [u, s1, J1(s1)] in R4.
ŝ has a root at q̃l

1, but by genericity, its derivative can be assumed to be regular in
q̃l
1. This means that ŝ can be supposed to be the identity map idR2 : R2 → R2 in
properly chosen local coordinates. In this case, s1(q

′) = Aq′, where A : R2 → R6 is
the linear map (x1, x2) → (0, 0, x1, x2, 0, 0).
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At this point, we transformed the framing into a standard one: at
q′ = (cos α, sin α, 0, 0, 0, 0) ∈ Sl, we have

v1(q
′) = ( cos α, sin α, 0, 0, 0, 0 ) = u

v2(q
′) = ( 0, 0, cos α, sin α, 0, 0 ) = s1

v3(q
′) = ( 0, 0, − sin α, cos α, 0, 0 ) = J1(s1)

v4(q
′) = ( 0, 0, 0, 0, 1, 0 ) = s2

v5(q
′) = ( 0, 0, 0, 0, 0, 1 ) = J2(s2)

over the standard circle Sl = S1. We will now proceed to compute its class in
Embfr(1, 5) ∼= Z2. (An alternative route is available here: if this class was 0, that
would mean [Σ(f)] = 0 for every f = π̄7 ◦ g, g ∈ EmbSO(4, 3); a single example for
the contrary would su�ce.)

Let us now compare our framing with a standard one:

w1 = ( cos α, sin α, 0, 0, 0, 0 )

w2 = ( 0, 0, 1, 0, 0, 0 )

w3 = ( 0, 0, 0, 1, 0, 0 )

w4 = ( 0, 0, 0, 0, 1, 0 )

w5 = ( 0, 0, 0, 0, 0, 1 )

This framing [S1; w1, . . . , w5] is null-cobordant, easily seen by Lemma 3.19: w1 is the
inner normal vector for ∂D2 = S1, while w2, . . . , w5 can be extended to D2. Now
let us take the ratio of the two framings in SO(5), just like we did in Lemma 3.11:
with

A(α) =




1 0 0 0 0

0 cos α sin α 0 0

0 − sin α cos α 0 0

0 0 0 1 0

0 0 0 0 1




,

Aw = v.

Proposition 3.21. A as a loop is homotopically nontrivial; with
A : S1 = [0, 2π]/(0 ∼ 2π) → SO(5), we get [A] 6= 0 ∈ π1(SO(5)) ∼= Z2.

Proof. From the exact homotopical sequences for the �brations
SO(n)

Sn−1→ SO(n− 1) for n = 3, 4 and 5, we can see that for the map

i : SO(2) → SO(5), i(M) =

[
M 0

0 I3

]
,

i∗ : π1(SO(2)) → π1(SO(5)) is an epimorphism. Since π1(SO(2)) ∼= Z and π1(SO(5)) ∼=
Z2, this implies that the generator in π1(SO(2)) goes into a nontrivial element. But
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the loop A is exactly the i-image of the generator in π1(SO(2)). (This fact is also
known as the "scarf trick".)

Now we can conclude the proof of Lemma 3.20:
From Lemma 3.7, [A] 6= 0 means that [Sl;w] 6= [Sl;v] = 0. So

1 = [Sl;w] = [Sl; u, s1, J1(s1), s2, J2(s2)],

and from this, [Σ(f)] = k · 1 = #{ŝ−1(0)}mod 2.

We have transformed the geometric invariant [Σ(f)] to #{ŝ−1(0)}mod 2, an
algebraic quantity. Note that ŝ, a section of the normal bundle ν(µ : ∆̃2 → M),
gives a perturbation of the immersion µ : ∆̃2 # M . Therefore #{ŝ−1(0)}mod 2 is
the mod 2 number of "self-intersections" of µ.

Using the fact that the intersections of immersed submanifolds correspond under
the Poincaré duality D to the cup products of the corresponding cohomology classes,
one obtains the following:

[Σ(f)] = #{ŝ−1(0)}mod 2 = D(µ∗[∆̃2]∪µ∗[∆̃2])∩[M ] = D(µ∗[∆̃2])
2∩[M ] ∈ H0(M, Z2) = Z2.

By Ronga's double point formula (Theorem 2.4),

D(µ∗[∆̃2]) = w2(f
∗(TR6)− TM) = w2(ε

6 − TM) = w̄2(M).

Since M is oriented, w2(M) = w̄2(M).

[Σ(f)] = w2
2(M) ∩ [M ] = (p1(M) mod 2) ∩ [M ] = p1[M ] mod 2

Using the Rokhlin-Hirzebruch signature formula, which just says p1(M) = 3σ(M) in
dimension 4, we get

[Σ(f)] = w2
2(M) ∩ [M ] = (p1(M) mod 2) ∩ [M ] = p1[M ] mod 2 = σ(M) mod 2

and our theorem is proved.

3.2 Elimination of double points in ImmSO(4, 3)

Our Theorem 3.18 that says [Σ(f)] = σ(M) mod 2 works only for prem maps, so we
obviously need information that there are "enough" prem maps in some sense.

Theorem 3.22. The natural map EmbSO(4, 3) → ImmSO(4, 3) is an epimorphism.
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Proof. Let us take an immersion g : M # R7 representing [g] ∈ ImmSO(4, 3). We
can assume that g is self-transverse, so it has an embedded 1-dimensional double
point manifold ∆2 ↪→ R7. The double point manifold in the source is ∆̃2 ↪→ M . We
claim that g : ∆̃2 → ∆2 is a trivial double covering.

Let C ∼= S1 be a component of ∆2 that is covered by C̃ ↪→ M ; �x an orientation
of C. For each x ∈ C, the normal space (νC)x splits into two 3-spaces, (νC)x =

(ξ1)x ⊕ (ξ2)x, where g(x̃i) = x and (ξi)x = g∗((Tx̃i
C̃)⊥). These vector spaces inherit

an orientation from the orientations of M and C. (We have no global separation to
x̃1 and x̃2 yet, only a pair above each point x ∈ C.)

In the 7-dimensional space TxR7, we get an orientation by composing the orien-
tations of (ξ1)x, (ξ2)x and the �xed orientation of the circle C. Going around C, this
orientation cannot change. However, if the covering g : C̃ → C was not trivial, (ξ1)x

and (ξ2)x would change place and, both being odd dimensional, this would change
the orientation in R7. So we proved that the covering g : ∆̃2 → ∆2 is trivial, and so
we have bundles ξ1 and ξ2 over C.

Now we try to cast the double points away along one double curve, S1 ∼= C =

g(C̃1 ∪ C̃2), where C̃1,2 are the two connected components of the pre-image of C.
Let Ui

∼= S1 × D3 be a tubular neighborhood for Ci and U ∼= S1 × D6 for C.
(The neighborhoods are indeed products, since an oriented bundle over S1 is always
trivial.) Let µi : Ui → M and µ : U → R7 be the respective embeddings. With
suitable choice of the coordinates (and neighborhoods), we can assume that the
maps µ ◦ g|Ui

◦ µ−1
i = gi are g1(α,v) = (α,v,0) and g2(α,u) = (α,0,u), where

v,u,0 ∈ D3 and α ∈ S1.

Figure 5: Illustration of a cobordism of immersions separating a component of the
double point manifold (dimension 0 in �gure) from the immersed manifold.

We now meticulously describe a cobordism W starting in M and an immersion
h continuing g on it: h : W → R7× [0, 1] such that h|M = (g, 0). However, Figure 5
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should be a lot more intuitive. Unfortunately, we cannot settle with the relatively
simple construction seen in the Figure, as we need W to be a smooth manifold and
h : W # R7 × [0, 1] must be smooth on it. The last coordinate t = π8 ◦ h will be
called height.

As Figure 5 shows, we want to dig a groove in the shape of S3 × [0, 1] between
the two leaves of g. To achieve this, we start from g × idR that maps from M × R,
but round o� the pair of vertical lines (µ1(α,u), t) and (µ2(α,u), t) (where α ∈ S1

and u ∈ D3 are �xed) to form a ∩-like dome, then intersect this with R7× [0, 1]. For
vectors u where the base of the dome is above 1, we get the product g × idR back.
For intermediate altitudes, we get a pair of lines, but they are "bended towards
each other". Finally, if the top of the ∩-shape is below 1, then (µ1(α,u), 0) and
(µ2(α,u), 0) will be joined by a curved line.

1

1

1/4

11/2
G

Ψ

Φ

Figure 6: The auxiliary functions Φ and Ψ and the "dome" G

Now let us put these plans into action. Let Ψ : [0, 1] → [0, 1/4] be a concave,
continuous function that is smooth on the open interval (0, 1), symmetric with re-
spect to 1/2, and its n-th derivative Ψn(0) is ∞, ∀n ∈ N. Further, we require that
Ψ(1/2) = 1/4 and Ψ|[0,1/2] be strictly increasing. Let Ψ−1 = (Ψ|[0,1/2])

−1; this is
also a smooth function. The graph of Ψ, joined by a pair of vertical semilines on
both sides, will be our "dome". Let G = graphΨ ∪ ({0, 1} × (−∞, 0]) ↪→ R2 be the
complete dome; this is a smooth curve due to the properties of Ψ.

Let Φ : [0, 1] → [1/2, 1] be a smooth function symmetric with respect to 1/2, for
which Φ|[0,1/6] ≡ 1, Φ|[1/6,1/2] is strictly decreasing, Φ(1/3) = 3/4 and Φ(1/2) = 1/2.
The base of the dome over (α,u) will be at the height 1 − Φ(‖u‖). De�ne the set
W0 and the map h0 : W0 → R7 × R as:

W0 =
{
(α,u, s, t) : α ∈ S1,u ∈ D3, (s, t− Φ(‖u‖)) ∈ G

} ⊂ S1 ×D3 × R2;

h0(α,u, s, t) = (µ(α, (1− s)u, su), t).
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From the smoothness of Φ and G, W0 is a smooth oriented 5-manifold. Clearly, h0

is an immersion, as µ is a di�eomorphism and (α,u, s, t) → (α, (1 − s)u, su, t) is
easily of the maximal rank 5.

Let W = (W0 ∩ {t ∈ [0, 1]}) ∪ ((M \ U1 \ U2)× [0, 1]). There is a natural gluing
here, as on ∂Ui, Φ = 1, so we only cut a pair of lines out of the dome. h = h0|{t∈[0,1]} is
also naturally extended: for x /∈ Ui, let h(x, t) = (g(x), t). This continues h0|{t∈[0,1]}
and h is everywhere an immersion.

Look at the two boundaries of W and h. At the level 0:

∂0W = M , h|∂0W = (g, 0)

since Φ ≥ 1/2 everywhere. The upper boundary, however, decomposes into two
connected components, because for 1/3 < ‖u‖ < 2/3, the whole dome is under the
height 1:

∂1W = M ′ ∪N,

where

M ′ = (M \ U1 \ U2) ∪ {(α,u, s) : α ∈ S1, ‖u‖ ≥ 2/3, (s, 1− Φ(‖u‖)) ∈ G},

or expressing s explicitly:

s = Ψ−1(1− Φ(‖u‖)) or s = 1−Ψ−1(1− Φ(‖u‖)).

The only essential property of M ′, however, is that (g1, 1) = h|M ′ has lost the double
curve C: indeed, for u > 0, h is injective in W0 ∩ {t = 1}.

If we prove that g2 = π̄8 ◦ h|N is null-cobordant in immersions, we will have
eliminated a double curve, and then by induction, gained an embedding. So let us
examine N :

N = {(α,u, s) : α ∈ S1, ‖u‖ ≤ 1/3, (s, 1− Φ(‖u‖)) ∈ G}.

N = N1 ∪N2 :

N1 = {(α,u, s) : α ∈ S1, ‖u‖ ≤ 1/3, s = Ψ−1(1− Φ(‖u‖))}
N2 = {(α,u, s) : α ∈ S1, ‖u‖ ≤ 1/3, s = 1−Ψ−1(1− Φ(‖u‖))}

∂N1 = ∂N2 = N1 ∩N2 = {(α,u, 1/2) : ‖u‖ = 1/3}
So N = S1×D3 ∪S1×D3, glued along id∂D3 × idS1 , which means N = S1×S3.
All that remains is to prove that [g2] = 0 ∈ ImmSO(4, 3) (see Figure 7). For

this, it su�ces that g2 can be extended to an immersion h2 : V = D2× S3 # (R8)+

for which N = ∂V , h2|N = (g2, 0) and h2(x) ∈ R7 × {0} only if x ∈ N .
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Figure 7: Elimination of the immersion g2.

Let i : D2 → (R8)+ be a null-cobordism of ∂D2 = S1 = C that starts vertically:
in each point x ∈ X, for some normal vector u ∈ ν(S1 ↪→ D2)|x, let ∂u(i) = e8.
The tangent space TC is globally split into a pair of trivialized 3-bundles ξ1 and ξ2.
Therefore, ξ1 and ξ2 can be extended to be a splitting of the normal bundle of i into
a pair of trivial bundles, giving ν(i) = ξ1 ⊕ ξ2.

Take an embedding τ : D(ν(i)) = D(ξ1 ⊕ ξ2) = D2 × D3 × D3 → (R8)+ to
a tubular neighborhood, so that τ extends µ : S1 × D6 = D(ν(C)) → R7. The
following map will do:

h2(x, r) = τ(x, (1− s)u, su),

where r = (u, s), r ∈ {(u, s) : (s, 1− Φ(‖u‖)) ∈ G} = S3.
This h2 is clearly an immersion and is consistent with the de�nition of g2, so we

proved [g] = [g1] ∈ ImmSO(4, 3). Iterating this elimination procedure, we �nally
get [g] = [gK ], where gK ∈ EmbSO(4, 3).

Corollary 3.23. Theorem 3.18 can be extended to ImmSO(4, 3):
[Σ(f)] = σ(M) mod 2 for generic prim maps f = π̄7 ◦ g (where g : M # R7).

Proof. Let us consider the homeomorphism ϕ : ImmSO(4, 3) → Z2, where ϕ(f) =

[Σ(f)]−σ(M) mod 2, and ι : EmbSO(4, 3) → ImmSO(4, 3) is the natural (forgetting)
map.

By Theorem 3.18, ϕ◦ι = 0. By Theorem 3.22, ι is an epimorphism. So ϕ = 0.

3.3 Elimination of singularities using classifying spaces
Our next goal is to prove that [Σ(f)] is the only obstruction to the elimination of
singularities by prim cobordism. This means that for any prim map f , the condition
[Σ(f)] = 0 implies that f is prim-cobordant to an immersion. To achieve this, we
shall use the tool of universal singular maps. The following concepts and results are
taken from �5 of [Sz].
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The word (mono)singularity will stand for an A-equivalence class of map germs,
as in De�nition 1.8. We will be considering stable singularities (stable in the ho-
motopy theoretical sense � this is a concept di�erent from the one described by
De�nition 1.9!), which simply means that we identify a germ ϕ : (Rm, 0) → (Rn, 0)

with its suspension ϕ × idR1 : (Rm+1, 0) → (Rn+1, 0). A multisingularity means a
�nite multiset of (stable) singularities.

De�nition 3.24. For a set τ of multisingularities, a map f : Mm → Pm+k is called
a τ -map if ∀y ∈ P , the germ of f at f−1(y) (which is a discrete set if f is generic)
is from τ .

This way, we can describe global restrictions as well: for instance, if τ has only
singleton elements, then f must be a (topological) embedding.

De�nition 3.25. The cobordism group Cobτ (P
m+k) consists of the classes of τ -

maps f : Mm → Pm+k, where the equivalence is given by τ -cobordisms g : Wm+1 →
Pm+k × [0, 1].

There is a natural partial ordering on the set of multisingularities η: we de�ne
η ≥ η0 if for each y ∈ P for which the germ of f in f−1(y) is η, there must be a
point y0 ∈ Uy in any neighborhood y ∈ Uy ⊂ P that gives η0.

In [RSz], the authors constructed classifying spaces Xτ that give

Cobτ (P
m+k) = [Ṗ , Xτ ]

where Ṗ is the one-point compacti�cation of the manifold P .
Let τ be a set of multisingularities and let η the top multisingularity in τ (η ≥ η0,

∀η0 ∈ τ). Let τ ′ = τ \ {η}. Then the space Xτ can be obtained by gluing to Xτ ′

the disc bundle D(ξ) of a vector bundle ξ, along the boundary S(ξ). Thus, the pair
(Xτ , Xτ ′) gives a co�bration

Xτ ′ ⊂ Xτ → Tξ.

When the multisingularity η is a singleton (containing a single stable monosingular-
ity), η = {ϕ}, then ξ here can be described as follows:

The monosingularity ϕ is represented by a map (Rc, 0) → (Rc+k, 0), where we
take c to be minimal (in other words, 0 is an isolated ϕ-type singularity). Let G be a
maximal compact subgroup of the automorphism group of ϕ. G can be conjugated
by a left-right di�eomorphic action to a subgroup G ≤ O(Rc) × O(Rc+k). In the
image, we get a faithful representation ρ : G → O(c + k). The bundle ξ is the
universal bundle for this representation ρ, that is, ξ = EG×ρRc+k, where EG → BG

is the universal principal G-bundle.
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The natural map Cobτ ′(P ) → Cobτ (P ) can be identi�ed with the map [Ṗ , Xτ ′ ] →
[Ṗ , Xτ ], induced by the inclusion Xτ ′ ⊂ Xτ . The elimination of η-points in a τ -map
f : Mm → Pm+k by τ -cobordism is simply the question whether [f ] is in the image.

De�nition 3.26. A set τ of multisingularities is complete if it only gives local
restrictions; that is, if there is a set Φ of monosingularities such that τ consists of
the multisingularities that can be composed of elements of Φ.

Theorem 3.27 (Sz¶cs). If τ ′ is complete, then the sequence

[P, Xτ ′ ] → [P,Xτ ]
α→ {P, Tξ}

is exact, where {Y, Z} is the set of stable homotopy classes of maps Y → Z:

{Y, Z} = lim
q→∞

[SqY, SqZ].

The map [Ṗ , Xτ ′ ] → {Ṗ , T ξ} can be understood through the universal η-map. In
the case when η = {ϕ} consists of a single monosingularity, this is a �ber-preserving
map over BG that goes to ξ from the bundle ξ̃ = EG ×χ Rc, where χ : G → O(c)

is the action of G in the source. The universal η-map is:

ξ̃
(idEG×η)/G- ξ

BG
? = - BG

?

Denote by η̃(f) the η-points in the source M and by η(f) the η-points in the
target P . As η is the top singularity, η̃(f) and η(f) are closed submanifolds. Take a
tubular neighborhood Ũ over η̃ and U over η, seen as neighborhoods of the 0 sections
of the normal bundles ν(η̃ ↪→ M) and ν(η ↪→ P ), respectively. Then the universal
property of the map ξ̃ → ξ is expressed by the following commutative diagram:

ξ̃ - ξ

↖ ↗ Θ

Ũ
f |Ũ - U

η̃(f)
? f |η̃ - η(f)

?

↙ ↘ ϑ

BG
? = - BG

?
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where the homotopy class [ϑ] ∈ [η(f), BG] is uniquely determined.
From Θ : U → ξ, we get a map θ : Ṗ → Tξ as usual in Thom-type constructions;

the class [θ]s ∈ {Ṗ , T ξ} is the image of [f ] ∈ Cobτ (P ) = [Ṗ , Xτ ] in {Ṗ , T ξ} under
α.

We now need a slightly modi�ed version of this theory. Let PrimCobSO
τ (Pm+k)

be the cobordism group of prim τ -maps with an oriented normal bundle, that is,
the set of maps g : Mm # Pm+k×R, with a �xed orientation (SO-structure) on νg,
for which the projection f = π1 ◦ g is a τ -map � factorized by prim τ -cobordisms,
with orientation on the normal bundle, from manifolds with boundary. If the target
manifold is P = R6, the orientation requirement only means an orientation of M .

In this case too, we have classifying spaces Xτ (di�erent from the Xτ in the
unoriented theory above, of course), for which

[Ṗ , Xτ ] = PrimCobSO
τ (P ).

If τ \ {η} = τ ′, where η is the top multisingularity, there is again a co�bration

Xτ ′ ⊂ Xτ → Tξ,

where ξ now comes only from the automorphism group of prim representatives of η.
Theorem 3.27 holds in this case as well. The proof of these results can be found in
[Sz2].

Let us apply the theory to our case! τ should be essentially the set of multisin-
gularities that are generated by the Σ1,0 singularity wh2 : R3 → R5 and the trivial
(non-)singularity. In our dimensions m = 4, k = 2, the only multisingularities that
actually occur for generic maps (and cobordisms) are the singleton η = {ϕ}, where
ϕ is the stable class of wh2, and 1, 2 and 3 instances of the trivial (non-singular)
stable class. Let τ consist of η and the regular multisingularities, l copies of the
non-singular stable class (l = 1, 2, . . . ).

Let τ ′ = τ \ {η}; τ ′ is a complete set of multisingularities. τ ′-maps are exactly
the immersions, while all generic maps in dimensions (4, 6) and (5, 7) are τ -maps by
Corollary 1.13. This means that all prim maps are τ -maps in these dimensions, so
PrimCobSO

τ (S6) = ImmSO(4, 3). So the following sequence is exact:

[P, Xτ ′ ] → [P,Xτ ] → {P, Tξ}

ImmSO(4, 2) → ImmSO(4, 3) → {S6 → Tξ} = [S6, T ξ],

where the last equality comes from the generalized Freudenthal theorem: Tξ is
4-connected, being the Thom space of a 5-bundle.
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What is ξ in our case? Let G ≤ O(3) × O(5) be a maximal compact subgroup
of the automorphism group of prim map germs η. As we have already established,
wh2 induces a splitting of the target space R5 to a pair of oriented 2-planes with
a canonical isomorphism, and a trivial line bundle. A non-prim germ does not
di�erentiate between the two 2-planes. However, if we only allow automorphisms
that respect the prim structure, we have an ordering between the two. So the image
ρ(G) is:

ρ(G) =








1 0 0

0 A 0

0 0 A


 : A ∈ SO(2)





.

ρ is a faithful representation, so the universal space we get is BG = BSO2 = BU1 =

CP∞. Thus, the universal bundle is:

ξ = EG×ρ R5 = ε1 ⊕ 2γ1
C,

where γ1
C = γ1 is the tautological C-bundle over BU1 = CP∞. (From now on, we

will only consider the tautological bundles in the complex case, so we leave C from
the notation.)

Now let us examine the following diagram:

EmbSO(4, 3)
[Σ]- π6(S

5) = Z2

ImmSO(4, 2) - ImmSO(4, 3)

i
? [θ]- π6(Tξ)

j∗
?

where
j : R5 - ξ

{point}
?

- CP∞
?

To progress, we need to prove that the diagram is commutative: j∗ ◦ [Σ] = [θ]◦ i.
This is slightly complicated by the fact that we de�ned [Σ] through a framing on
the curve S, rather than the singular curve f(Σ(f)) itself. So we �rst need

Lemma 3.28. Let f : M → R6 be a generic prim map and let Σ denote its sin-
gularity curve in the source. Then, there are di�eomorphisms χ : N(Σ) → D3 × Σ

and ϕ : N(f(Σ)) → D5 × f(Σ) (where N(Σ) and N(f(Σ)) are tubular neighbor-
hoods for the singular stratum in the source and the image respectively), for which
χ(p̃) = (0, p̃) (p̃ ∈ Σ) and ϕ(p) = (0, p) (p ∈ f(Σ)), and f has the standard form

ϕ ◦ f ◦ χ−1 = wh2×f |Σ.
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Moreover, let us denote the pull-back of the coordinate vectors by (ũi)p̃ = χ|∗p̃(ei)

(1 ≤ i ≤ 3) and (ui)p = ϕ|∗p(ei) (1 ≤ i ≤ 5), respectively. Then, the framing
[f(Σ); u1, . . . , u5] can be used to de�ne [Σ(f)]; that is,
[f(Σ);u] = [S; u, s1, J1(s1), s2, J2(s2)] = [Σ(f)] ∈ Embfr(1, 5).

Proof. Recall the diagram that expresses the universal property of the map ξ̃ → ξ.
In our case, η̃(f) = Σ and η(f) = f(Σ) are curves. Let us examine the map
ϑ : (η(f) = Σ) → (BG = CP∞). Since Σ is a 1-manifold and sk1(CP∞) = {∗},
we get that [ϑ] = 0. Homotopic maps between base spaces de�ne isomorphic pull-
back bundles, so U ↪→ ϑ∗ξ is a trivial 5-bundle over f(Σ) and Ũ ↪→ ϑ∗ξ̃ is a trivial
3-bundle over Σ; the map between them is wh2 in each �ber.

Since Σ is compact, there is a number ε > 0 such that each �ber of U and Ũ

contains the ball Dε. By linear rescaling, we can take ε to be 1.

We have the freedom to choose the tubular neighborhood U(Σ) ⊂ ∆̃2 in the
de�nition of [Σ(f)] = [S; u, s1, J1(s1), s2, J2(s2)]. Let us choose U(Σ) = {(τ, 0, 0, p̃) :

τ ≤ δ, p̃ ∈ Σ} ⊂ N(Σ) for an arbitrary 0 < δ < 1. This gives S = {(δ2, 0, 0, 0, 0, p) :

p ∈ Σ}. (See again Figure 3.)
The normal vector of S in ψ(∆2), the vector u, can be chosen to be u =

ϕ|∗p(1, 0, 0, 0, 0) = u1 in q = (δ2, 0, 0, 0, 0, p) = S ∩ ϕ−1(D5 × {p}).
The tangent line of the singularity curve f(Σ) is tangent to the double point

manifold, too: T (f(Σ)) ≤ ψ∗(T∆2). Thus (ξ1)q and (ξ2)q, the normal subspaces of
Tq∆2 in the leaves of f , can be chosen to be in the �ber; in the local coordinates
given by ϕ|p:

(ϕ|p)∗(ξ1)q = {(0, x1, x2, δx1, δx2, p) : x1, x2 ∈ R},

(ϕ|p)∗(ξ2)q = {(0, x1, x2,−δx1,−δx2, p) : x1, x2 ∈ R}.
Let us introduce the notation

w = (w1, . . . , w5) : w1 = u1, w2 = u2+δu4, w3 = u3+δu5, w4 = u2−δu4, w5 = u3−δu5.

Let (0, c1(p), c2(p)) = (χ|p̃)∗(ŝ(q̃1)) and (0, d1(p), d2(p)) = (χ|p̃)∗(ŝ(q̃2)). Then the
framing [u, s1, J1(s1), s2, J2(s2)] in q can be written as B(p) ·w, where B ∈ GL+(5)

is the following:

B(p) =




1 0 0

0 C(p) 0

0 0 D(p)


 , C(p) =

[
c1(p) c2(p)

−c2(p) c1(p)

]
, D(p) =

[
d1(p) d2(p)

−d2(p) d1(p)

]
.
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w = Au = A(u1, . . . , u5), where

A =




1 0 0 0 0

0 1 0 1 0

0 0 1 0 1

0 δ 0 −δ 0

0 0 δ 0 −δ




is a constant positive linear transformation, A ∈ GL+(5).
So the framing [u, s1, J1(s1), s2, J2(s2)] on S (that de�nes [Σ(f)]) can be written

as B(p) ·A ·u(p). ŝ gives a homotopy between C(p) and D(p); hence the loop [B(p)]

is homotopically trival by the same argument that we saw in Sublemma 3.13, so the
loop [B(p) · A] is homotopically trivial, too.

By Lemma 3.7, we can then change the framing [u, s1, J1(s1), s2, J2(s2)] to
[u1, u2, u3, u4, u5], and also replace S by Σ (which is just a translation by −δu1 in
these coordinates, which clearly does not change the framed cobordism class).

Now we can prove

Lemma 3.29. The diagram that we were looking at is commutative: j∗◦ [Σ] = [θ]◦i.

Proof. This statement comes immediately from the previous lemma. Indeed, [Σ]

represents a trivialization of ν(f(Σ) ↪→ R6) so that f is consistent with the trivial-
ization in the sense described in Lemma 3.28. j is the natural morphism between
the Thom spaces of the stronger structure {I5} ⊂ O(5) (a framing) and the weaker
structure ρ : G → O(5).

So j∗ partially forgets the trivialization (framing) to get a ρ-structure of
ν(f(Σ) ↪→ R6) that is consistent with f . But the homotopically unique [θ] does just
the same, so [θ] = [θ] ◦ i must be equal to j∗ ◦ [Σ].

Now, if we show that j∗ : π6(S
5) → π6(Tξ) is an isomorphism, then [θ] = [Σ]

will follow, and the exact sequence of the lower row of our commutative diagram
will prove that [Σ] is the only obstruction to the elimination of singularities by prim
cobordism.

Theorem 3.30. j∗ : π6(S
5) → π6(Tξ) is an isomorphism.

Proof. First, note that j : Tε5 = ST (ε4) → Tξ = ST (2γ1) is a suspension: j = Sι,
where ι : S4 = Tε4 → T (2γ1). So by the generalized Freudenthal theorem, it su�ces
to show that ι∗ : π5(S

4) → π5(T (2γ1)) is an isomorphism.
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Lemma 3.31.
T (mγ1) = CP∞/CPm−1,

and the �ber over a point ∗ ∈ CP∞ corresponds to CPm/CPm−1. Here, CP l =

P (Cl+1) = P ({z1, . . . , zl+1, 0, 0, . . . }) (l ≥ 0), where P is the projectivization.

Proof. Let D(Cl) = { z ∈ Cl : ‖z‖ ≤ 1}; S(Cl) = ∂D(Cl). Let N ≥ 0. Look at the
map f : S(CN+1)×D(Cm) → S(CN+m+1) that is given by

f(z,w) = (
√

1− ‖w‖2 · z,w).

Its restriction

f |S(CN+1)×int(D(Cm)) : S(CN+1)× int(D(Cm)) → S(CN+m+1) \ S(Cm)

is one-to-one. Thus we get a homeomorphism

f̃ :
S(CN+1)×D(Cm)

S(CN+1)× S(Cm)
→ S(CN+m+1)

S(Cm)
.

f̃ is equivariant by the S1 = U1-action ω : (z → ωz). Factoring out by this
action, we get:

T (mγ1
N) =

D(mγ1
N)

S(mγ1
N)

= CPN+m/CPm−1,

where γ1
N is the tautological 1-bundle over CPN .

The �ber over the point ∗ = CP 0 = P (S(C1)) goes to CPm/CPm−1. Taking the
direct limit of these homeomorphisms, we get T (mγ1) = CP∞/CPm−1.

So the map ι : S4 ⊂ T2γ1 coincides with the inclusion
S4 = CP 2/CP 1 ⊂ CP∞/CP 1. By homotopical excision, the inclusion CP 3/CP 1 =

sk7(CP∞/CP 1) ⊂ CP∞/CP 1 induces an isomorphism in π5, so we only need to
prove that ι : S4 ⊂ Y = CP 3/CP 1 induces an isomorphism in π5.

We may think of the space Y = CP 3/CP 1 as a disc D6 glued to a sphere S4

by a gluing map ϕ : ∂D6 = S5 → S4. If ϕ ∼= 0, then ι∗ : π5(S
4) → π5(Y ) is an

isomorphism, whereas if [ϕ] 6= 0 ∈ π5(S
4), then the group π5(Y ) is trivial.

Now let us compare ϕ with another gluing map S2h : S5 → S4, where h : S3 →
S2 is the Hopf �bration. Let X = D6 ∪S2h S4 = S2CP 2. If S2h ∼= ϕ ∈ [S5, S4],
then the spaces X and Y are homotopy equivalent (as Y = Cyl(ϕ) ∪S5 D6 and
X = Cyl(S2h) ∪S5 D6).

If we could tell X and Y apart homotopically, that would mean [ϕ] 6= [S2h] ∈
π5(S

4) ∼= Z2; this together with [S2h] 6= 0 would give [ϕ] = 0 and conclude our
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theorem. Unfortunately, the homology and cohomology of the two spaces is the
same, as both are CW complexes of only 3 cells, one in dimensions 0, 4 and 6 each.
But using the concept of Steenrod squares, we can indeed tell the di�erence:

In H4(X; Z2) = H4(S2CP 2; Z2) ∼= Z2, the generator is S2x, where x is the
generator in H2(CP 2, Z2). The mod 2 Poincaré dual of x is [CP 1] ↪→ CP 2, which
has a self-intersection [CP 0], a single point; therefore, x2 = D(D(x) ∩ D(x)) =

D({∗}) 6= 0 ∈ H4(CP 2, Z2). As the Steenrod square is stable, this gives Sq2(S2x) =

S2(Sq2(x)) = S2x2 6= 0 ∈ H6(X; Z2).
This also implies that [S2h] 6= 0 ∈ [S5, S4], because if it were null-homotopic,

X ∼= X ′ = S4∨S6 would follow. But for p : X ′ → X ′/S6 = S4 and y ∈ H4(X ′; Z2) =

p∗H4(S4; Z2), we have Sq2y ∈ p∗H6(S4; Z2) = 0, from the naturality of the Steenrod
square.

In Y , however, Sq2 sends the generator y ∈ H4(Y ; Z2) to 0. To prove this, let
us �rst look at CP 3; let z be the generator z ∈ H4(CP 3; Z2). Then, z = u2, where
u ∈ H2(CP 3; Z2), again trivially by mod 2 Poincaré duality. By Cartan's relations,
this gives

Sq2z = Sq2(x∪ x) = Sq2u∪ u + Sq1u∪ Sq1u + u∪ Sq2u = 2(Sq2u∪ u) + 0∪ 0 = 0.

From the exact cohomology sequence of the pair (CP 3,CP 1), we get that H4(Y ; Z2) =

H4(CP 3; Z2) (where y goes to z), and H6(Y ; Z2) = H6(CP 3; Z2). By the naturality
of Steenrod squares, the following diagram is commutative:

H4(Y ; Z2) y

≈ - H4(CP 3; Z2) z

H6(Y ; Z2)

Sq2

?

Sq2y

≈- H6(CP 3; Z2)

Sq2

?

Sq2z=0

This shows that Sq2y = 0, so indeed, X and Y are homotopically di�erent. Thus
[ϕ] = 0, which, in turn, gives our theorem (that j∗ : π6(S

5) → π6(Tξ) is an isomor-
phism).

So we have essentially proved

Theorem 3.32. The sequence

ImmSO(4, 2)
ι−→ ImmSO(4, 3)

[Σ]−→ Z2 −→ 0

is exact.
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Proof. Trivially, [Σ(ι(f))] = 0: if there is no singular point at all, the invariant
we de�ned using Σ ↪→ ∆̃2 is zero. By Whitney's strong immersion theorem, for
all classes [M ] ∈ Ω4 (even for all M), there is an immersion g : M # R7, but by
Corollary 3.23 we know that [Σ(π̄7 ◦ g)] = σ(M) mod 2, so [Σ] is an epimorphism to
Z2.

The only non-trivial part is the one that we have just proved: in the commutative
diagram

EmbSO(4, 3)
[Σ]- π6(S

5) = Z2

ImmSO(4, 2) - ImmSO(4, 3)

i
? [θ]- π6(Tξ)

j∗
?

the lower row is exact, and also [Σ] = [θ] if we identify π6(S
5) ∼= π6(Tξ) by the

isomorphism j∗.

Now we can �nally prove our main result:

Theorem 3.33. The sequence
ImmSO(4, 2) → Ω4

σ mod2−→ Z2 → 0

is exact; that is, a cobordism class [M ] ∈ Ω4 has a representative M ′ ∼ M that can
be immersed in R6 if and only if σ(M) is even.

Proof. The exactness in Z2 follows from the already mentioned fact that σ : Ω4 → Z

is an isomorphism. As for the exactness in Ω4:

ImmSO(4, 2)
ι- ImmSO(4, 3)

[Σ] - Z2
- 0

↘ α ↗ σ mod 2

Ω4

β

?

By Corollary 3.23, the diagram above is commutative. By Whitney's strong
immersion theorem, the map β : ImmSO(4, 3) → Ω4 is an epimorphism. Finally, by
Theorem 3.32, the upper row is exact. We need to check (σ mod 2) ◦ α = 0:

(σ mod 2) ◦ α = (σ mod 2) ◦ β ◦ ι = [Σ] ◦ ι = 0

by the exactness of the upper row. Conversely, ker(σ mod 2) ⊂ im α: let

[M ] ∈ ker(σ mod 2)

We know that β is an epimorphism:

∃[g] ∈ ImmSO(4, 3) : β([g]) = [M ]
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[Σ]([g]) = (σ mod 2)(β([g])) = (σ mod 2)([M ]) = 0

By exactness of the upper row,

∃[f ] ∈ ImmSO(4, 3) : ι([f ]) = [g]

α([f ]) = β([g]) = [M ]

Thus we proved that the sequence is indeed exact.

3.4 Elimination of singularities by a geometric constuction
We now present an alternative proof for Theorem 3.32 that circumvents the use of
classifying spaces, at the price of using a complicated geometric construction.

The non-trivial part is to prove that if f = π̄7 ◦ g, where g : M # R7 is an
immersion, and [Σ(f)] = 0, then ∃g′ : M ′ # R7 such that π̄7 ◦ g′ is non-singular and
[g] = [g′] ∈ ImmSO(4, 3) are cobordant via immersions. The idea is to perform a
surgery to eliminate a tubular neighborhood of the singularity curves.

We still have rely on Lemma 3.28, which may be proved in an elementary way
by collating the standard neighborhoods along Σ carefully.

f(Σ) is a closed 1-manifold, so it is a collection of embedded circles. In dimension
6, 1-manifolds do not have any linking invariants, so we can move them into any
position we like by isotopy. Now, since [Σ(f)] = [f(Σ); u1, . . . , u5] = 0 and the
framed cobordism class is additive on the components of f(Σ), we are �nished
proving the theorem if we can eliminate, by a prim cobordism of f ,
(I) a single component C ∼= S1 with [C; u1, . . . , u5] = 0 and
(II) a pair of components C = C1 ∪ C2: C1

∼= C2
∼= S1 with [Ci; u1, . . . , u5] = 1,

i = 1, 2.

Case I.
Let us apply an isotopy on R6 that takes C to the standard circle

S1 = {(x1, x2, 0, . . . , 0) : x2
1 + x2

2 = 1} ↪→ R6.

We have a framing on C = S1, namely [u1, . . . , u5], with [C; u1, . . . , u5] = 0. By
Lemma 3.7, comparing u with the standard framing v1(p) = p, vi(p) = ei+1 (p ∈
S1, 2 ≤ i ≤ 5), the resulting A(p) = u(p)v(p)−1 is null-homotopic as a loop: [A] =

0 ∈ π1(GL+(5)). This means that we can extend A continuously to the disc that
C surrounds. We raise the disc out to (R7)+ so that its tangent space be vertical
(e7 ∈ TxH) exactly in C; say,

H = D2 =
{
(x1, x2, 0, . . . , 0, t) : x2

1 + x2
2 + 4t2 = 1

}
↪→ R6 × [0, 1/2]
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Obviously, the standard framing v can be extended to H, but we also extended A,
which means u = Av can also be extended. u is a basis in ν(H); let us de�ne a
Riemannian metric in ν(H) such that u is orthonormal. Let τ : D(ν(H)) → (R7)+

be an embedding that continues ϕ−1 : D(ν(C)) = D5 × C → R6 in ∂H = C.

Figure 8: The cobordism H ↪→ (R7)+ over C ↪→ R6 in Case I and II, respectively.

Case II.
Now, we have two singular circles C1

∼= C2
∼= S1 ↪→ R6, with a framing [u1, . . . , u5]

that admits the standard form of f , just like in Case I. Let us connect C1 and C2

with an embedded cylinder H ∼= S1 × [0, 1] ↪→ R6 × [0, 1/2], such that the tangent
space of H is vertical exactly in C. (This can be done, for instance, if we send
C1 and C2 to a pair of unit circles by isotopy, then rotate them around an axis
R5 ⊂ R6 × {0}, and �nally squeeze down the height by an a�ne map.)

Once again, using Lemma 3.7, we get that u can be extended to be a framing
of the normal bundle of H. Let us take a Riemannian metric in ν(H) so that u is
orthonormal, and let τ : D(ν(H)) ↪→ (R7)+ be a map that extends ϕ−1 : D5 × C =

D(ν(C)) ↪→ R6 in ∂H = C = C1 ∪ C2 and maps to a tubular neighborhood of H.

So in either case, we have C ↪→ R6 with a nullcobordism H ↪→ R6 × [0, 1/2], a
framing u over H for which u|C is, in the sense of Lemma 3.28, consistent with the
standard form wh2× idR of f over the singular stratum; and we have an embedding
τ : D(ν(H)) ↪→ (R7)+ that continues the map ϕ−1 : D5 × C = D(ν(C)) ↪→ R6.

Now we try to perform a surgery of the prim map f : M4 → R6 in order to get
rid of the singularity curve(s) C. For this, we use the bridge construction (see Figure
9): we try glue a strip D(H) to the neighborhood U(C) = τ(D(ν(C))) of C, and
attach vertical "bars" to the edge of the strip (∂relD(H)), as well as to M \ U(C).
This already gives a bordism if we map the height identically. This bordism starts
in our prim map f and ends in a map that does not even have the points f−1(C) in
its source M ′. However, we still have some work to do in order to make the manifold
smooth and the map prim.
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C

H

M

Figure 9: D(H) forms a bridge grounded on the neighborhood U(C) of the curve C.

Let Φ : H → (0, 1] be a continuous function, C1 (once continuously di�erentiable)
in int(H), such that for any p ∈ C, its value is Φ(p) = 1, and for any n ∈ ν(S ↪→ H)p

inner normal vector, the derivative inwards, ∂nΦ, is +∞. This Φ will roughly mean
the width of the bridge at x ∈ H; it will help us glue our strip to M in a di�erentiable
way.

But there is one more di�culty: the vertical bars still form an edge with the strip
D(H) (the "walkway" of the bridge). To handle this problem, we will curl up the
edge of the walkway so that the transition to the bars be seamless. More precisely,
let Ψ : [0, 1] → [0, 1/4] be strictly growing, continuous function that is C1 on the
left-closed, right-open interval [0, 1); moreover, Ψ(0) = Ψ′(0) = 0, Ψ(1) = 1/4 and
Ψ′(1) = ∞.

G ⊂ R+×R = graphΨ∪{1}× [1/4,∞) is a non-compact C1 manifold. Rotating
this by O(3), we get the "∪-shaped objects" over each point x ∈ H, that are the
combination of the "walkway" and the "bars" of the bridge.

Now we compose the manifold W from three pieces:

W1 =
{
(x,v, t) ∈ H × R3 × [0, 1] : (‖v‖/Φ(x), t− x7 − π7(τx(〈wh2(v), τ ∗xu〉))) ∈ G

}
,

(where 〈a,b〉 =
∑

j aj · bj), the bridge and the vertical bars issuing from it;

W2 = {(p,v, t) ∈ C × R3 × [0, 1] : t ≤ Ψ(‖v‖)},

the "triangle-shaped" little remainder under the ∪-shaped object in a point p ∈ C =

∂H; and �nally
W3 = (M \ int U(C))× [0, 1].
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The gluing between the three parts is obvious from the geometric plan we gave,
albeit hard to formally handle:

(x,v, t) ∈ W1 ∼ (p,v′, t′) ∈ W2 if x = p;v = v′; t = t′

(x,v, t) ∈ W1 ∼ (q, t′) ∈ W3 if x = p ∈ C; q = χ−1(〈v, (χp̃)∗ũ〉, p) ∈ ∂U(C); t = t′

(p,v, t) ∈ W2 ∼ (q, t′) ∈ W3 if q = χ−1(〈v, (χp̃)∗ũ〉, p); t = t′

W1 and W3 can easily be equipped with an oriented C1-di�erentiable manifold
structure (they are 5-dimensional, with boundary). So can W1 ∪W2, as the choice
of Φ implies that the ∪-objects in W1 over inner points x ∈ int H osculate to those
over the boundary point p ∈ C for x → p. As H has a vertical tangent space in
p ∈ C, W1 ∪W2 is C1 even in the "pole" of the ∪-object, (p,0, 0).

The gluing of W3 to W1 ∪W2 occurs along the C1 boundary manifold ∂U(S)×
[0, 1]. So we de�ned W = W1 ∪W2 ∪W3 as a C1 manifold.

Now let us give the C1-map h : W → R6 × [0, 1]. We de�ne

h1 : W1 → R7 × [0, 1]; h1(x,v, t) = (π̄7(x + τx(〈wh2(v), τ ∗u〉), t)

h2 : W2 → R7 × [0, 1]; h1(p,v, t) = (π̄7(p + τp(〈wh2(v), τ ∗u〉), t)
h3 : W3 → R7 × [0, 1]; h3(q, t) = (f(q), t)

h = h1 ∪ h2 ∪ h3.

It is straightforward to verify that h is de�ned consistently along the boundaries
and is C1 on each component. The gluings between W1, W2 and W3 were de�ned
exactly so that in a boundary point w, derivatives Twh agree by the di�erent de�-
nitions of h. (It is at this point that constructing in C1 is easier than in the smooth
case (C∞) � if the derivative Twhi is independent on i for all ambiguous (glued)
points w, then we already know h to be C1.)

Using the fact that τ is a di�eomorphism and that wh2 is an immersion except
in 0, we get that h only has singularities in the points H = (x,0, x7) ∈ W2 and on
the cylinders (Σ(f) \C)× [0, 1] ⊂ W3 over the other singular curves. In both cases,
the singularities are Whitney umbrellas.

To make h a prim, we only need to give an orientation on the line bundle ker Th

(or, which is the same for a 1-bundle, a nonzero section). On (Σ(f) \ C) × [0, 1],
we can raise the orientation given by g on (Σ(f) \ C). In x ∈ H, τ∗(∂/∂1) (which
is a vector in the direction that goes y → y2) is the good choice that continues the
orientation given by g on ker Tf |C . Thus we made h a prim cobordism.

Denote ∂W = ∂0W ∪∂1W = M ∪M ′; the upper boundary M ′ is an oriented C1-
class 4-manifold. The prim cobordism h connects the prim maps h0 = f : M → R6
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and h1 = f ′ : M ′ → R6. f ′ has no singular points in (W1 ∪W2) ∩ (R6 × {1}); this
means that we have got rid of the singular set C.

We constructed W and h only as C1-di�erentiable, but we can introduce a C∞

atlas on W that is compatible with the one already given on M and W3, and approx-
imate h with a smooth generic map to get a smooth prim cobordism. New singular
curves will not appear, because the class Σ1 can be characterized with only the �rst
derivative of h (as Σ1(h) is the pullback (j1

h)
−1(Σ1(W,R8)) from the �rst jet space),

so new singularities do not appear after a C1-small perturbation.
So we succeeded in cutting out the singular curve(s) C in both cases; iterating

this process, we �nally get a map gK : MK # R7 for which [gK ] = [g] ∈ ImmSO(4, 3),
but also fK = π̄7 ◦ gK : M ′ # R6 is an immersion. This concludes the proof.

3.5 Hughes's theorem
Now we present an interesting consequence of our main result, Theorem 3.33. Recall

Theorem 3.34 (Bancho�). Let f : N2 # R3 be a self-transverse immersion (N
may be unoriented). Then #{∆3(f)} ≡ χ(N) mod 2, where χ(N) is the Euler
characteristic of N . In particular, surfaces of odd Euler characteristic cannot be
immersed in R3 without a triple point.

This theorem can be proved easily by cutting out standard neighborhoods of the
triple points and replacing them with the triple point-free part of the Boy surface.
(The theorem can be generalized to generic (singular) maps f : N2 → R3, using
similar theory that we did in this work.)

Notice that Bancho�'s theorem says that #{∆3(f)} is even in the case where N2

is oriented, since an oriented surface has even Euler characteristic. Theorem 3.33
yields a partial generalization of Bancho�'s theorem in double dimensions:

Theorem 3.35 (Hughes). Let f : M4 # R6 be a self-transverse immersion, where
M is oriented. Then #{∆3(f)} must be even.

Proof. Herbert's multiple point formula (Theorem 2.2) says:

mr+1 = f ∗(nr) + e ∪mr

where mr is the dual class of the r-tuple points in the source and nr is that in the
target; e = e(ν(f)) mod 2 is the mod 2 normal Euler class. Now, as R6 has trivial
cohomology except in dimension 0,

m3 = f ∗(n2) + e ∪m2 = 0 + e ∪ (f ∗(n1) + e ∪m1) = e2 ∪m1 = e2.
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So the number of triple points is:

3#{∆3}mod 2 = #{∆̃3}mod 2 = m3∩[M ] = e2[M ] mod 2 = p1[M ] mod 2 = 3σ(M) mod 2.

But we proved that the very existence of f shows σ(M) to be even; this means
#{∆3} is even, too.

In fact, Hughes's theorem is equivalent with the slightly weaker statement

im(ImmSO(4, 2) → Ω4
σ−→ Z) ≤ 2Z.
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