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1 Introduction

Let X be a finite graph and f : A — B be an isomorphism between induced
subgraphs A and B of X. Then there exists a greater finite graph Z such that X is
an induced subgraph of Z, and f has an extension f*, which is an automorphism of
7. This theorem has been proved by Truss, for more general results, see Hrushovski
5] and Herwig [3].

The main results of this work are the following: we generalize this theorem as writing
partial homomorphism h instead of partial isomorphism f, we get an extension h*
which is an endomorphism of Z (Theorem BI). Furthermore, using Hrushovski’s
theorem, we show another proof of Truss’s theorem (EL2]), which says that the space
Aut(R) has a dense conjugacy class, where R is the Rado graph (also known as
countable random graph). The definitions and the topology can be found in the
4th chapter. Similarly, we prove it for End(R), too (Theorem E4)). Then we show
that different versions of density is equivalent in this space (Theorem E). Finally,
we deduce a weaker version of Hrushovski’s theorem from the existence of a dense

conjugacy class (Theorem ).

Introduction

In this first chapter we will attempt to summarize the basic definitions and theorems
that are crucial for understanding theorems we prove later in this work. We will

also set the notation that will be used.

The second chapter is structured around a pair of notions: the homogeneity of a
structure, and its age. We will specify two properties, namely hereditary property
and joint embedding property, that characterize whether a class of structures is the
age of a structure. Then with the help of a third property - the amalgamation
property - we will succeed in finding a unique homogeneous structure (called Fraissé
limit) belonging to a class of structures. (The ideas treated here will recur later in

the fourth chapter.)

Next, applying this theory we will construct the universal homogeneous structure of
the class of finite graphs, namely the Rado graph. This graph will be characterized
by the separation property. Finally, we will point out the connection between the
Rado graph and random graphs. In addition to this, we will prove an interesting

theorem about limit probability of sentences in a graph, as well.

This chapter has a survey character and it is based on Hodges’s book ([4]), Cameron’s



lecture notes ([2]) and Ségi’s textbook ([7]). In particular, all the results in this

chapter are well known.

The third chapter is based on the 1992 findings of E. Hrushovski ([5]). His theorem
says that every finite graph can be embedded to a greater finite graph such that
every partial isomorphism of the original graph extends to an automorphism of the
greater one. Here we will present his original proof. This proof has two major
steps. First the original graph will be embedded to an intermediate graph such
that the edges/no-edges departs from the domain of some partial isomorphism will
be preserved. As second step the greater graph will be constructed with a masterly
algebraic construction. We will be generalize this theorem for partial homomorphism
and endomorphism. To do this we must modify the conditions, and find another

way as the first step.

In the fourth chapter, we will evoke the notion of generic automorphism (which
has a dense conjugacy class in the automorphism group). Of course, because of
denseness we will need to introduce a topology. Then we give another proof of Truss’s
theorem: we create a generic automorphism of the Rado graph — using the theorem
of Hrushovski. We will also prove the similar theorem for generic endomorphism.
Then we will prove the equivalency of some of properties of its conjugacy class.
Finally, we will deduce a weaker version of the theorem of Hrushovski from the

existence of generic automorphism.
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Notation and preliminaries

We summarize the notation of this paper, and the basic definitions and theorems

we will use.

In this paper w denotes the set of natural numbers. The set of integer and rational



numbers will be denoted by Z and @, respectively, and [a,b] will denote the set
{a,a + 1,...,b} for a < b natural numbers. We will use the standard notation of
operation of sets as U, N, C, etc. We will denote the set of function from A to B with
AB. As usual P(X) denotes the power set of a set X. The sign of the cardinality
of a set X is | X|. Finally, Rq is the cardinality of w.

The functions are considered as sets (of pairs). So we will use set operation and
relation on its. E.g. f C g means ¢ is an extension of f. The domain and range of
a function f is denoted by Dom(f) and Ran(f), respectively. The image of a set X
by a function f will be denoted by f[X].

In this paper we deal only with relational structures. So a signature .¥ contains
(at most countable, but almost always finite number of) relational symbols, and an
arity function ar on the symbols: . = (Rel, ar). If we say .-structure A, we think
a set with some relation r4 C () A for some r € Rel. We will not differentiate in
notation between a structure and its underlying set, it will be clear which to think

about. For the relation we will use infix notation xRy or (z,y) € R.

We also use the standard phrases and notation of mathematical logic, like A is a
model of a set of sentences T' (A = T).

In most cases the relational structure will be a graph: this means a structure with
an irreflexive and symmetric “adjacency” relation E or E(X) (if the graph is X).
Graph theory has an own tradition of notation, and partially this will be appeared
here. So, the elements of a graph structure will be called vertices (sometimes nodes),
the elements of the relation set will be called edges. The vertices adjacent to a fixed

vertex a will be called neighbours, and will be denoted by X (a) for a graph X.

We will say that A is a substructure of B (denoted by A < B), if A and B structures
with the same signature, and A (as a set) is a subset of B, and all the relations
constraining to A will be unchanged. Let us note that the case of graphs this means
that A is an induced subgraph of B.

Definition. If A and B are .#-structures for a fized .7, then we call a one-to-one
function 1 : A — B relational isomorphism or isomorphism iff for every r € Rel we

have (x1, ..., Tar(r) € 1 if and only if (i(z1), ..., i(Ter(r)) € 75.

If there is an isomorphism between A and B, then we denote it with A = B.

Similarly,

Definition. If A and B are ./-structures for a fized .7, then we call a function
h : A — B relational homorphism or homomorphism iff for every r € Rel we have

(L1, -+, Tar(ry) € 74 if and only if (W(z1),. .., W(zer)) € rP.



Note that according to our definition, homomorphism for graphs preserves not only

the edges but also the not edges!

An isomorphism between the same structure will be called automorphism, and a
homomorphism between the same structure will be called endomorphism. If for an
isomorphism (homomorphism) m : A — B the set A # Dom(f), then it is called a
partial isomorphism (respectively, partial homomorphism). The group of automor-
phisms of a structure X will be denoted by Aut(X), the semigroup of endomorphisms
of a structure X will be denoted by End(X).

Recall that the kernel of a function A — B is an equivalence relation on A, in which
two elements are equivalent iff they have the same homomorphic image. A congru-
ence is the kernel of a homomorphism. The quotient structure by an equivalence R
will be denoted by X/R. We will use the ‘join’ function of two equivalence relation,

it will be denoted by V. This notions are precisely the same as introduced in [T].

Let us remind some of basic theorems of logic. These theorems can be found prac-

tically all the textbooks of logic.

Theorem 1.1 (Compactness). A (possibly infinite) set of first order sentences has

a model if and only if every finite subset of it has a model.

Theorem 1.2 (Léwenheim—Skolem). Let T' be a theory. If T has an infinite model,
then it has some infinite model K such that |K| = k where k > || - Yy is an

arbitrary cardinality.



2 Fraissé-limit and random graphs

If there are finite relational structures, e.g. linear orderings, then an interesting
question arises: are there a (possibly countable) structure, in which these finite
structures can be embedded? We can think of the linear ordering of the natural
numbers. A more general question is, whether there are structures, in which every
partial embedding can be extended? We can think of (Q, <) as a linear ordering.

We will prove that these examples are right.

This chapter relies on W. Hodges’s book ([4]), P. J. Cameron’s notes (|2]) and Gabor
Sagi’s textbook (|]).

Age and Fraissé-limit

In this section let . be a fixed signature. First, here is a definition about the class

of “embeddable” structures.

Definition. A class K of .7 -structures is said to be the age of a countable structure
M iff it contains all the structures (up to isomorphism) which are isomorphic with

some finite substructure of M. Denote this class by Age(M).

We can also say that a class K of .#-structures is the age of M iff for every K € K
K is finite and can be embedded to M as substructure, and it contains all the finite

substructures of M.

The question is, what condition are necessary and sufficient to establish the existence
and uniqueness of such a model for a class I of finite structures? Now let us

introduce three conditions we will need.

Hereditary Property (HP) If A € K is a structure and B < A is a finite struc-
ture, then B € IC, too.

Joint Embedding Property (JEP) If A, B € K are structures, then there exists
a structure C in K in which A and B are embeddable.

A B

\ /
C

Amalgamation property (AP) If A, By, By € K are .%-structures and f; : A —
By and f5: A — B, are embeddings, then there are C' € K and ¢, : B; — C,
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go : By — C embeddings such that g; o f; = go 0 f5, i.e. the diagram

By Bs

commutes.

If IC is the age of M, then (HP) obviously holds for K. It is clear that (JEP) is
also true because if we embed A and B to M then the induced substructure of the

images satisfies (JEP). The third property will be proved later.

Fraissé has proven that two of these conditions are also sufficient for the existence
of such an M.

Proposition 2.1. If K is a class of finite 7 -structures which has (HP) and (JEP),
then there exists a countable structure M such that KK = Age(M).

Proof There are at most countably many elements in K, because the structures are
finite and there is only one from every isomorphism class. So there is an enumeration
(A;)i<w of elements of .

Then we define another list of structures. Let B & Ap. Because (JEP) there is

a joint embedding of B; ; and A; for every i < w. Let B; be the image of this

embedding. Then we can define

M =B, = UBi.

<w

It can be seen that every A; € K can be embedded to M, and M is countable as it

is the countable union of finite sets. o

This theorem is not enough for us: we need the third condition to prove the unigeness

of M. But what does uniqueness mean in this situation? The answer is homogeneity.

Definition. An . -structure M is homogeneous iff every partial isomorphism f

between its finite substructures can be extended to an automorphism of M.

Let us note that W. Hodges called this concept ultrahomogeneous. Next, here is a

more concrete definition:



Definition. An .7 -structure is weakly homogeneous iff whenever A, B € Age(M) A C
B and |A| 4+ 1 = |B|, then every embedding g : A — M can be extended to an em-
bedding g* : B — M.

Lemma 2.2. A countable structure M is homogeneous if and only if it is weakly homogeneous.

Proof Necessity comes from homogeneity: if h : B — M is an embedding then
gh~!is a partial isomorphism of M (between g[A] and h[A]). By homogeneity there
is an automorphism 4 which extends gh~!. So it is clear that ih is an extension of g

and is an embedding of B.

A C B
lg ln
M & M

As for sufficiency, we apply recursion: let f = fy be the partial isomorphism which
should be extended to an automorphism. Let m, ms, ... be an enumeration of those
elements of M which do not belong to Dom(f). Having defined f; 1, we can set f;

using weak homogeneity:
Dom(fi_l) U {m,} as B, Dom(fi_l) as A, and fi—l as ¢g.

Thus we get a partial isomorphism on Dom(f;_1) U {m;}. Let this partial isomor-
phism be f;. This extends f;_;. Finally, we can define the desired automorphism as

U fi- It is an extension of f (we defined it this way), so M is homogeneous. e
1<w

This proof is very important because its idea plays an essential role in the proofs of

the fourth section.

Now, we are ready to prove Fraissé’s theorem.

Theorem 2.3 (Fraissé). 1. The class K of 7 -structures is the age of some count-
able homogeneous structure M if and only if I has (HP), (JEP) and (AP).

2. If M and N are countable homogeneous structures with the same age (Age(M) =
Age(N)) then M and N are isomorphic.

Proof

1. For the “only if” part, we only need to prove that K has (AP) follows from

homogeneity of M (as we promise above).

10



We may assume that A, By, By are subsets of M such that A C B;. Then
the partial isomorphism fy of M (between A and f3[A]) can be extended to an

automorphism ¢ by homogeneity.
Then let ¢ % i[B1] U By. Choosing ¢g; = i|g, and g, = id completes the proof.

The idea we use to prove the “if” part is very similar to the one in the proof of
Proposition 11

There are at most countably many elements in I, because the structures are
finite and there is only one from every isomorphism class. So we can form an
enumeration (A;, B;);<., of pairs of structures from I (where A; C B; and |A;| +
1 = |B;|) such that if A; = B; then i < j. (E.g. if one orders structures by its
cardinality, it will be appropriate.)

Next we define another list of structures using recursion. Let M, et Ag. Suppose
that there are an embedding A; — M, for some ¢ < j. Since there is an embedding
A; — B;, by (AP) there exist a structure in which B; and M, can be embedded.
Let us call this structure M;;;. (We may consider M; < M;,;.) So B; can be
embedded to M.

Finally, we define
M =M, =M.
1<w
It can be seen that every A; € K can be embedded to M. It is countable because

it is the countable union of finite sets.

It can be seen from this construction, that M is weakly homogeneous therefore

homogeneous.

. We would like to define a chain of partial isomorphisms between N and M, so

we do this by recursion.

Let fo be the empty function, ng,n{,... be an enumeration of the elements of N

and mg, mq,... be an enumeration of the elements of M.

Suppose that the partial isomorphism f; between N and M has been already
defined. Then f; ! is also a partial isomorphism. Let 4; = Ran(f;) (C M) and
B; = Ran(f;) U {m;}. By weak homogeneity, we can extend f;"! to m;. Denote
this extension by g;.

Similarly, suppose that the partial isomorphism g; has been already defined. Then
g; ! is also a partial isomorphism. Let A} = Ran(g;) (C N) and B} = Ran(f;) U
{n;}. By weak homogeneity, we can extend g; ' to n;. Denote this extension by

fir1.

11



As the last step, define f as the union of f;-s for all i < w. It is surjective, because
the domain of f~! contains all the elements of M. And f is also injective, because
Dom(f) contains all the elements of N. Then f is an isomorphism between N

and M, hence unigeness is proved.

Let us call the unique homogeneous structure corresponding to a class K of structures
the Fraissé-limit of K.

Random graphs

In this section we will present a graph which is a model of an interesting theory.
Then we will show, that this graph is the Fraissé limit of the class of finite graphs.
Finally, we will show that this graph is isomorphic to the random graph on w (with

probability 1).

In this section . denotes the signature of the graphs: there is only one relation
symbol FE in it (excluding the equality symbol =). So all the structures in this

section are considered to be graphs.

Let Tk be the following theory:

Tp = A{Yv(v,v) ¢ E}U{Vuvu((u,v) € E — (v,u) € E)}U{ppm:n,m e w}.

The first sentence expresses irreflexivity, the second expresses symmetry. For n,m
natural numbers abbreviate ¢, ,, the following: for every z1,22,..., 20, Y1,Y2,- .-, Ym
there is a z different from 2-s and y-s such that z; £z and —y; Ez (where i <n, j <

m). So the third set of sentences above gives us a graph property called

Separation property For every n,m € w if N, M are disjoint finite graphs such
that |N| = n and |M| = m then there is a vertex z which is adjacent to all

the vertices of N and none of the vertices of M.

At this point, it is not obvious, whether Tj is consistent. The next construction

gives a model wittily.

Proposition 2.4. Ty is consistent.

12



Proof We give an explicit model of Tk.

Let R be a graph with underlying set w. If ¢ = j then let (i,7) ¢ E(R). So assume
i < j Then let (i,j) € E(R) iff the ith digit of j is 1 (in base 2).

This graph is a model of T, because it is irreflexive, symmetric and has the separa-
tion property: for every xi, %o, ..., %, Y1,Yo,...,Ymn there is a z € w such that the

correspondent digits are 1 for every x; and 0 for every ;. o

So Tr has (at least one) model, but are there any more? We can observe that the
separation property implies homogeneity, hence a model of Tj is the Fraissé limit

of the class of finite graphs!

Proposition 2.5. If a graph M has the separation property, then it is a homoge-

neous.

Proof It is clear that if a graph has the separation property, then it contains all

the finite graphs. o

Corollary 2.6. T is an Ng-categorical theory.

So it is a unique graph on w. Call this graph the Rado graph, and denote it by R.
Proposition 2.7. Tx has only infinite models.

Proof Suppose there is a finite graph G satisfying T. It is obvious that in this
graph ¢g| o is false. o

Recall the following theorem:

Theorem 2.8 (Los-Vaught test). If theory T has only infinite models and T is

k-categorical for some k > g, then T is complete.

Proof Suppose T is not complete. Then there exists a(n independent) sentence
¢ and A, B models of T such that A =T U {¢} and B |= T' U {—%}. Because of
Lowenheim-Skolem theorems, there are also models A’ = TU{¢} and B" = TU{—¢}
such that |A’'| = |B’| = k. By the k-categoricity A" and B’ are isomorphic, but it is

a contradiction. e

13



Corollary 2.9. Ty is complete.

We already know that Tk has only infinite models. But what about the finite slices
of TR? That is why we define the graph construction random graph. Let R, be a
graph: let the set of vertices be the numbers 0, ...,k —1. Then decide for each (i, )
to be an edge or not, with coin flipping (probability 1) where i < j < k.

Proposition 2.10. If n,m € w, then limy_.o, Pr(Ry = ¢nm) = 0.

Proof Let Ey . be the event for which the sentence ‘z is adjacent to all the

elements of N and to none the elements of M’ is not true. So

1

PT(EN,M,Z> =1- W

Then denote by En s the event that ‘there is no z vertex such that z is adjacent’.

For different z-s the events Ey ;. are independent, thus

1
2n+m

PT’(EN’M) = (1 — )kinim.

Finally, denote the event ‘R [~ ¢n." by E. Because E = |J En .,
NM

1

n+m k—n—m

)

estimated the choice of M and N with k"™, The limit of this expression is 0. e

Proposition 2.11. If T C Ty is finite, then

lim Pr(R, =T) =1

k—o0

in a random graph Ry on k vertices.

Proof
Pr(Ry = T) < Pr(Ry & ¢1) + -+ + Pr(By = &),

where ¢1, ..., ¢; are the elements of 7. The limit of right hand side is 0. e

This proposition (and completeness of Tx) has an interesting corollary:

Corollary 2.12 (0-1 law). If ¢ is an arbitratry formula then limy_ .o Pr(Ry = ¢)

18 1 or 0.

14



Proof Ty = ¢ or Tk |= —¢, because of completeness of Tg. From the compactness
theorem we get a finite theory T from which either ¢ or —¢ follows. Applying
Proposition X110 to T, we get a probability value 1 or 0. e

Finally, we prove that a random graph R, of the set w is isomorphic with the Rado

graph (with probability 1).

Proposition 2.13. With probability 1, a random graph is isomorphic to R.

Proof Let R; be the subgraph of R, induced by the set [0,7—1]. From Proposition
we get that for any fixed n, m: limg_oo Pr(Ry [~ ¢@nm) = 0. Since the union of

w many measure-0-set is a measure-O-set, Pr(R, = Tg) =0.

15



3 Hrushovski-type theorems

A theorem of Hrushovski

For completeness, we start this chapter by including Hrushovski’s original proof

(appeared in [B]).

Definition. We say that F C P(X) is a statistically independent family of sets on
X, if for every Ay,..., A, B1,..., By, € F
RS

Proposition 3.1. Every finite graph X can be embedded to a finite graph Y such
that the family of sets {Y(a) : a € X} forms a statistically independent family of

sets on Y.

Proof We may assume that a — X (a) is one-to-one on X, else we can easily embed
X to a finite graph, where a — X(a) is one-to-one. Let Y be a graph on the set
P(X) as nodes, and define (y1,y2) € E(Y) <= 31 = X(a) for some as € y, or
y2 = Y(ap) for some a; € y;. Note that for any a € X and Y’ € P(X) we have
(X(a),Y") € E(Y) iff a € Y. Particularly, if a;,as € X, then

(X(a1),X(a,2)) €e E(Y) a1 € X(az) & ay € X(a1) & (a1,a9) € E(X).

So the map a — a* = X(a) is an embedding to Y. We have to show that the family

of sets below is statistically independent:
{Y(a):ae X} ={Y(a"):ae X} ={Y(X(a))}:a € X}.

We have that if Y’ € P(X) and a € X then Y is a neighbour of X (a) iff a € Y.
So the intersection of sets Y (a*) = {X’':a € X'} and Y (b*) = {X': b € X'} halves
both of them, so the family {Y'(a) : a € X} is statistically independent. o

Theorem 3.2 (Hrushovski). Let X be a finite graph. Then there exists a finite
graph Z containing X as an induced subgraph (X < Z), such that every partial
isomorphism f : A — B, (where A, B < X ) extends to an automorphism f*: 7 —
Z.

Let U be the set of partial isomorphisms on X, and let Y be as in the previous

proposition. For the proof we will need the following lemma:

16



Lemma 3.3. If f € U then there exists an f* € Sym(Y') such that f*|poms) = f
and f*[Y(a)] = Y (f*(a)) for all a € Dom(f). If Dom(f) = Ran(f) and f* = id

then we can choose an f* such that f** = id.

Proof of the Lemma. Let D = Dom(f) and R = Ran(f). If v: D — {0,1} is a

function then write
D,={yeY:(dy e EY)svd =1 (deD)} and

R, ={yeY:(rny) e E(Y)=v(ir)=1 (reR)}.
Since {Y(a) : a € X} is statistically independent (and by Proposition Bl |D,| =
|R,| = |Y|-27IPl. Then |DN D,| =|RNR,|, because f is an isomorphism between
D and R, so |D, ~ D|=|R, \ R|.
Let f* be a permutation on Y extending f and mapping D,\ D onto R, \ R arbitrarily.
(Except if D = R and f? = id then we must choose f* such that f*? = id.) This

permutation respects the adjecency relation on D, so it is sufficient for the lemma.

Proof of Hrushovski’s theorem. Let U be as above, U* = {f* : f € U} and
G = (U*) be the group generated by U*.

Notation: if there exist xo, 1, 2o € Y with zy € Dom(f1), x1 € Ran(fi)NDom(f2)
and zo € Ran(fy), and in addition fizg = z1 and fox; = o, then we write fofizo =

9.
Define a relation ~ on G x X as follows:

(9,x) =~ (¢',2') iff there are hy,..., h, € U with

(i) hy...he=2a;

(ii) g=4¢'h...h7 (in G).

The relation & is an equivalence relation on G x Y identity funtion witnesses re-
flexivity. For symmetry we can take the partial isomorphisms hy*, ..., h.'. Finally,
if the equivalences of (¢,z) ~ (¢’,2’) and (¢’,2’) = (¢”,2"”) are demonstrated by
hi,...,h, € U and h},..., h, € U, respectively, then transitivity follows by choos-
ing hy,...,hy, Ry, ... .

Next we can define a group action by G on Y as follows: h(g,x) = (hg,z). This

action preserves =~ because of the following. If (g,2) =~ (¢’,2’), then there exists

17



hi,...,h, € U with properties (i) and (ii). Since hg = hg'h} ...h7, the second

condition is true for (hg,z) and (hg’,x’). The first condition is obviously true.

Let Z =G x Y/ =, and turn Z into a graph: put ((g,a)/ =, (9,b)/ ~ ) € E(Z) if
g € G, (a,b) € E(Y). This way Z can be considered to be a graph, on which G acts
by automorphisms, and every f € U extends to an f* € G. The only thing we need
to prove for the theorem is that Y can be embedded to Z as an induced subgraph.

If (id,z) = (id, y) then there exists hq,...h, with h, ... hjx =y and b} ... h} =id,
so x = y. Hence Y is embeddable to Z naturally (as a set).

It is easy to see that Y is a subgraph of Z. But is it an induced subgraph? Suppose
that ((id,z)/ =, (id,y)/ & ) is an edge of Z for any x,y € Y. Then there exists a
g € G and (2',y') € E(Y) such that

(id,z) ~ (g,2")  and  (id,y) = (9,9
Then there exists fi,... fr, h1,...h, € U where g = f) ... ff =h}...h],

hy...ha' =z and fm- [V =v.

Let xg,...,x, € Y be such that g = 2’ and z,, = z,
x; € Dom(hiﬂ), hi+1ﬂfi = Ljy1-

Then b}, [Y(2;)] = Y (ki) = Y(2441) so g[Y (2')] = Y(z). Moreover y' € Y (a')
(because 2y’ is an edge), hence gy’ = f ... fiy =y € Y(x) so (z,y) € E(Y).

Note, that this theorem has been generalized for relational structures:

Theorem 3.4 (B. Herwig, [3|). Let X be a finite relational structure. Then there
exists a finite relational structure Z containing X as an substructure (X <), such
that every partial isomorphism f : A — B, (where A, B < X ) extends to an auto-
morphism f* . 7 — Z.

Homomorphism instead of isomorphism

We would like to generalize Hrushovski’s theorem for partial homomorphism instead
of isomorphism. But there is a problem with this plan. If there are nodes b, ¢ in the
domain of a partial homomorphism and a node a outside of the domain such that

(a,b) is an edge and (a, c) is not an edge, and if the partial homomorphism maps b

18



and ¢ to the same node, than we cannot find an appropriate endomorphism which

extends our original partial homomorphism. Therefore we avoid this situation.

Definition. We call b and ¢ (both nodes in Dom(h)) incompatible with respect to

a partial homomorphism h of a finite graph X, if there is a node a € X such that
(a,b) € E(X) and (a,c) ¢ E(X), and h(b) = h(c).

Definition. We say that a finite graph X s allowed for a partial homomorphism h,

if for h there are no incompatible nodes with respect to h.

Theorem 3.5. Let X be a finite graph. Then there exists a finite graph Z containing
X as an induced subgraph (X < Z), such that every partial homomorphism f, for

which X s allowed, extends to an endomorphism f*: 72 — Z.

An essential idea of the proof of Hrushovski’s theorem is the embedding the graph
X to Y such that the edges are preserved not only in the domain, but also between
a pair of nodes, where at least one of them is in the domain. We would like to carry
out a similar argument. But we should choose another way, because we cannot

complement a homomorphism to a permutation.

Let U be the set of partial homomorphisms on X, for which X is allowed.

Lemma 3.6. There exists a finite graph'Y > X such that every f € U extends to an
f* e Sym(Y) such that f*|pomsy = f and f*[Y(a)] =Y (f*(a)) for all a € Dom(f).

FEven'Y is allowed.

Proof of the Lemma.

It is clear that every h € U is a congruency (on its domain), because X is allowed.

So we can consider the kernel of each partial homomorphism.

So define an equivalence relation:

o “ \/Ker(h),
heU
namely H is the supremum of the kernels of partial homomorphisms.

Note that H is a congruence for all f*.

We will define Y by adding vertices and edges to X such that X will remains an
induced subgraph. Let

vy) = vix) uo 0 {tan)
aEV(Xh)E\UDom(h)
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The set of edges of Y will be the set of edges of X together with some new ones

that we add according to the rule below:
(uan,b) € E(Y) iff be f[X(a)]/H,
where a,b € V(X), he U.

Then we can extend an f € U such that for every a € V(X) ~ Dom(f),

* def
f (CL) = Uq, f,

and f*(u) %/ 4 for each new vertex u. So f* extend to the whole V(Y').

Let us make an observation. Let u be a new node and z,y € V(X). If xHy, then
u is connected to x and also to y, or neither to z, nor to y. This is true, because

edges between old and new nodes are defined up to H.

Finally, Y is allowed because of the following. Suppose that there are nodes b,c €
V(X) and u,,; € V(Y) N\ V(X) such that (us;,b) € E(Y) and (uq4,¢) ¢ E(Y). If
b and ¢ are the nodes, for which *(b') = b and i*(¢) = ¢, then (a,V') € F(X) and
(a,d) ¢ E(X) by the observation above. But then X is not allowed, which is a

contradiction, so Y is allowed. e

Proof of the Theorem.

Let U be as above, U* = {f*: f € U} and S = (U*) be the semigroup generated
by U*. This semigroup has an identity element: id = id* € U*.

Notation: if there exist xo, z1, 22 € Y with zy € Dom(f1), x1 € Ran(fi)NDom(f2)

and xo € Ran(fs), in addition fizg = 27 and foz; = xo, then we write fofizg = 2o.

Define a relation ~ on S x X by (a,a) ~ (o/,a) iff there are m,...,m,,01,...,0m €
U with

(i) mp...ma=d, om...00d =a,
(ii) a=d/7}...7],d =agl,...0f (in9).

The relation ~ is an equivalence relation on S x Y: identity function shows reflex-

ivity. For symmetry we can take the partial isomorphisms 7; ;.. ., 7, for m;’s and
o7', ..., 05! for the g;’s. Then the corresponding U-elements for transitivity will be
Ty e oy Ty My eeey Ty a0d 01, .« oy Omy Oy -« oy Oy

We can define a semigroup action by S on Y as follows: §(a,x) = (Ba,z). This

action preserves ~. If (o, z) ~ (o, ), then there exists m,..., T, 01,...,0m € U
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with properties (i) and (ii). Then we can get the second condition from the original

(ii) by multiplying by 3. The first condition is the same as the original.

Let Z = S x X/ ~, and let Z be the graph where we let ((a,a)/ ~,(3,b)/ ~
) € E(Z)ifa = €S, (a,b) € E(X). So Z is a graph, on which S acts by
endomorphisms, and every f € U extends to an f* € S. The only thing we need to
prove is that X can be embedded to Z as an induced subgraph.

If (id,x) ~ (id,y) then there exist my,...,m, € U such that id = «}...7} and
Tn - ..M =y hence x = y, so x — (id, x) is a natural embedding from X to Z (as

a set). Then X is a subgraph of Z, because this embedding respects the edges.

Suppose that ((id,:c)/ ~, (id,y)/ ~ ) is a Z-edge for any x,y € X. We must show
that (z,y) € E(X). To do so, observe that there exist « € S, ’,y’ € X such that

(id,z) ~ (o, 2') and (id,y) ~ (o, 3)

where (2',y’) € E(X). By the definition of ~ there are my,..., 7, 01,...,0m € U
such that

Let xg,...,x, € Y be such that g = 2/ and z,, = z,
x; € DOm(?TZ'+1), Ti41L5 = Ljg1-

Then 7/, [Y(2;)] = Y(nf,12:) = Y(2i41) so oY (2)] = Y(x). Moreover y' € Y (z)
(because 2y’ is an edge), hence ay’ = o, ... 0fy =y € Y(z) so (z,y) € E(Y). o
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4  Orbits

The generic automorphism

In this section we would like to find a generic automorphism of the Rado graph. To
recall the definition of generic automorphism, we need to introduce a topology on
the automorphism group. If the conjugacy class of an automorphism is big enough
in this topology (namely it is dense), then this automorphism is used to call generic.

To prove the existence of such automorphism we need the following lemma.

Lemma 4.1. If f is a partial isomorphism of the Rado graph R and g is a partial
isomorphism of a finite graph G < R, then we can create a partial isomorphism f*
of R such that for a suitable automorphism h € Aut(R)

fr2 funTigh.

If Dom(f) = Ran(f), then the domain and range of f* are also the same.

Proof If GG is a finite graph and g is a partial isomorphism of it, then we can apply
Hrushovski’s theorem (B2), so there is a finite graph G* > G and an automorphism
g* € Aut(G*) such that g* is an extension of g. We may assume that G* < R (when
it is not true then we can find an embedding v : G* — R, and instead of G* we can

write v1G*).

First we define a partial isomorphism A’ : G* — R using recursion, then complete it

to an automorphism h.

By the separation property of the Rado graph, we can find an image vertex in each
step of the recursion, as follows. Let the elements of G* be (x;);<|c+|. Assume that
I (z;) has been defined for all i < j for some j < |G*| such that there are no edges
between any h’(z;) and nodes belonging to Dom(f)U Ran(f). Let X be the subset
of G* which contains the neighbors of z; from x;, ..., 2;_; and let Y; be the subset of
G* which contains the vertices not connected to x; from the elements zy,...,z;_;.
Using the separation property (see page [2) we can find a vertex y; € R such
that y; is adjacent to the elements of A'[X;] and not adjacent to the elements of
R'Y;]U Dom(f) U Ran(f). Define h'(x;) = Y.

So we defined A’ for all the vertices of G*.

Since R is homogeneous, the partial isomorphism A’ extends to an automorphism h
of R. This function respects the graph structure of G* hence the graph structure of

G too. Therefore,
f* d;f f U h—lg*h
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is suitable for the lemma. Because ¢g* is an automorphism on G*, the domain and

range of the obtained partial isomorphism are the same. e

Let R be the Rado graph on the set w of vertices. Taking the discrete topology on
w, the space “w is endowed with the product topology. Because Aut(R) C “w, it
also has an inherited topology, so we can talk about the densitity of a subset of the
space Aut(R).

Definition. An automorphism f of R called generic, if it has a dense conjugacy
class (in Aut(R)).

Theorem 4.2. There is a generic automorphism f € Aut(R). For every x € V(R)
the orbit {f™(z) : n € Z} is finite.

Proof We would like to define the generic automorphism as adding all the partial

isomorphisms of finite graphs (by the previous lemma).

Let (Gi, gi)icw be an enumeration of all the pairs of finite graphs G; and partial
isomorphisms ¢g; on G;. We may assume that G; < R for all ¢ < w. Define a
sequence (fy,)ne, of partial isomorphisms with the following recursion such that all

the stipulations below are satisfied.

(i) f. is an isomorphism between its domain and range for every n € w, so that

Dom(f,) = Ran(f,),
(ii) n € Dom(f,) N Ran(f,)

(iii) if n < w then there exists D C Dom(f,), such that (D, f,|p) = (Gy, gn)-

Let fo be the empty function. It is trivial that f, satisfies (i)—(iii).
Then assume that f; has been defined for all j < i for some ¢ € w.

As first step, we would like 7 to be in the domain. So if i € Dom(f;_1), then define
T el fi—1. Else using Lemma to the one-node-graph ¢ with the identical
isomorphism, we get a partial isomorphism, whose domain contains 7. Let this

partial isomorphism be f/ ;. It is clear that Dom(f! ;) = Ran(f]_;).

As second step, applying Lemma BT to f/ ; and (G, g;), we get that there exist a

partial isomorphism f/*; of R such that
z(il 2 fi/—l U h_lgih'
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Define f; as f/*;.

Since (i) is true for f;_;, LemmaEIlimplies that Dom(f;) = Ran(f;), so (i) remains
true. The first step guarantees that (ii) remains true. The way as f; has been

constructed ensures the state of (iii).

Finally we can define

f= Ufz

(S
Then f is a partial isomorphism, because (i) is true for every i € w. From (ii) we

get that Dom(f) = w, so f is an automorphism.

Next we show that f is generic: we must to prove that this automorphism has a dense
conjugacy class. Consider an arbitrary nonempty open set A C Aut(R). We may
assume that it is a basic open set: there is a partial isomorphism d : w — w where
Dom(d) is finite and A = {f : d C f}. Since d is a partial isomorphism of R, there
exists n such that (Dom(d)URan(d),d) = (G, gn), specially Dom(d) = G,, € R. So
there is an automorphism A : w — w which maps Dom(d) to G,,. Let g=h~'- f-h.
Because of g € Aut(R), h shows that g and f are conjugate, d C g (because g, C f),
so g € A.

Finally, if z € R, then choosing a number n < w such that © € Dom(f,) we can get
a finite orbit of f,, in z, because Dom(f,) = Ran(f,) is finite. So f(2 f,) has also

a finite orbit on z. e

The generic endomorphism
We would like to find also the generic endomorphism of R. As we will see, the thread
of proof is the same as in the previous section.

To prove the existence of such endomorphism we need the following lemma.

Lemma 4.3. If f is a partial homomorphism of the Rado graph R and g is a partial
homomorphism of a finite graph G < R, for which G is allowed, then we can create
a partial homomorphism f* of R such that for a suitable automorphism h € Aut(R)

f*2 fuhTigh.
Proof If G is a finite graph and g is a partial homomorphism of it, then we can

apply Theorem (B3), so there is a finite graph G* > G and an endomorphism
g € End(G*) such that ¢g* is an extension of g. We may assume that G* < R
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(when it is not true then we can find an embedding v : G* — R, and instead of G*

we can write v~ 1G*v).

First we define a partial isomorphism A’ : G* — R using recursion, then complete it

to an automorphism h.

By the separation property of the Rado graph, we can find an image vertex in each
step of the recursion, as follows. Let the elements of G* be (;);<|g+. Assume that
I (z;) has been defined for all i < j for some j < |G*| such that there are no edges
between any h’(x;) and nodes belonging to Dom(f)U Ran(f). Let X, be the subset
of G* which contains the neighbors of z; from x4, ..., x;_; and let Y; be the subset of
G* which contains the vertices not connected to x; from the elements xy,...,z;_;.
Using the separation property (see page [2) we can find a vertex y; € R such
that y; is adjacent to the elements of A’[X;] and not adjacent to the elements of
R'Y;]U Dom(f)U Ran(f). Define h'(x;) = Yj.

So we defined A’ for all the vertices of G*.

Since R is homogeneous, the partial isomorphism A’ extends to an automorphism h
of R. This function respects the graph structure of G* hence the graph structure of
G too. Therefore,

r def fu hilg*h

is suitable for the lemma. e

Let R be the Rado graph on the set w of vertices. Taking the discrete topology on
w, the space “w is endowed with the product topology. Because End(R) C “w, it
also has an inherited topology, so we can talk about the densitity of a subset of the
space End(R).

Definition. An endomorphism f of R called generic, if it has a dense conjugacy
class (in End(R)).

Theorem 4.4. There is a generic endomorphism f € End(R). For every x € V(R)
the orbit {f™(z) : n € w} is finite.

Proof The way, as we created the generic endomorphism, is the same as the

previous section: we add all the partial homomorphisms by recursion

Let (G, gi)icw be an enumeration of all the pairs of finite subgraphs G; of R and
partial homomorphisms g; on G; such that there are no incompatible nodes in G;
with respect to g;. Define a sequence (f,)ne, of partial homomorphisms with the

following recursion such that all the stipulations below are satisfied.
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(i) n € Dom(f,)

(ii) if n < w then there exists D C Dom(f,,), such that (D, f,|p) = (Gp, gn)-

Let fo be the empty function. It is trivial that f, satisfies (i)—(iii).
Then assume that f; has been defined for all j < i for some ¢ € w.

As first step, we would like 7 to be in the domain. So if i € Dom(f;_1), then define
T el fi—1. Else using Lemma to the one-node-graph ¢ with the identical
isomorphism, we get a partial isomorphism, whose domain contains 7. Let this

partial isomorphism be f/ ;. It is clear that Dom(f! ;) = Ran(f]_;).

As second step, applying Lemma to f/_; and (Gj, g;), we get that there exist a

partial homomorphism f/*, of R such that
z(il 2 fi/—l U h_lgih'

I*x
Define f; as f/*,.

The first step guarantees that (i) remains true. The way as f; has been constructed

ensures the state of (ii).

Finally we can define

f=U#t

(S
Then f is a partial homomorphism. From (i) we get that Dom(f) = w, so f is an

endomorphism.

Next we show that f is generic: we must to prove that this endomorphism has a dense
conjugacy class. Consider an arbitrary nonempty open set A C End(R). We may
assume that it is a basic open set: there is a partial homomorphism d : w — w where
Dom(d) is finite and A = {f : d C f}. Since d is a partial homomorphism of R, there
exists n such that (Dom(d)URan(d),d) = (G, gn), specially Dom(d) = G,, C R. So
there is an automorphism % : w — w which maps Dom(d) to G,,. Let g=h""- f-h.
Because of g € Aut(R), h shows that g and f are conjugate, d C g (because g, C f),
so g € A.

Finally, if € R, then choosing a number n < w such that x € Dom(f,) we can
get a finite orbit of f, in x, because Dom(f,,) is finite. So f(2 f,,) has also a finite

orbit on z. e
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Equivalent definitions of dense conjugacy classes

Theorem 4.5. Let f € Aut(R) and let K be its conjugacy class. Then the following

are equivalent:

(1) K is dense somewhere
(there is a nonempty open set G C Aut(R) such that for every (nonempty, open)
H C G we have HN K #10),

(2) K is dense
(for every open set H we have HN K # (),

(3) K is co-meager
(there is a family of sets {L; : i € w} where L; is nowhere dense for every i € w,
Li-s are disjoint, and Aut(R)\ K C JL; ).

(S
It is known that (3) = (2). It is obvious that (2) = (1).
Proof of direction (1) = (2).

Suppose that k is a partial isomorphism such that K is dense in {j € Aut(R) : k C
j}. Let [ be another partial isomorphism. By Lemma there is an embedding
h : Dom(l)URan(l) — R such that kUh™!lh is also a partial isomorphism. Because
(1) we can take an automorphism f’ € K, which is an extension of kU h~'lh. So

h-f'-h~ D1l is an appropriate automorphism for proving implication (1) = (2). e

We insert here a lemma we will need.

Lemma 4.6. If K and K' are dense conjugacy classes then K = K'.

Proof Let f € K and g € K’ be automorphisms. Then we have to show that they

are conjugate: we should find an automorphism h such that f = h=tgh.

Because of Theorem L2 the basic open set {f’ € Aut(R) : f'(0) = f(0)} contains

an automorphism fy such that fy = halgho for some automorphism hy.
Suppose that f;_; and h;,_; has been defined for any 1.

First, if ¢ is an odd number. Because of Theorem L2 the basic open set {f’ €
Aut(R) : f'lj) = fljoq} contains an automorphism f; such that f; = hi™'gh! for
some automorphism A}. Then there is an isomorphism &’ between h;_1[0,7 — 1] and

R;[0,4]. Then k' has an extension k, which is an automorphism of R, because R is
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d . . o
homogeneous. Define h; e k~1h!. Then it is an extension of h;_1, and it witnesses

that f; is conjugate to g.

Next, changing the role of f and g, we can define h; for even numbers such that it
is an extension of the previous h;-s, and the range of h; contains [0, C Dom/(g).

def

So h' = hs|jo,) is an automorphism, we get f = h~'gh, f and g are conjugate, so
1<w
K=K e

Proof of direction (2) = (3).

Let ¢ ¢ K be an automorphism, and let K’ be its conjugacy class. Then K’ is
nowhere dense because of the following. Supposing K’ is dense somewhere then it
is dense (because (1) = (2) has already been proved). By the Lemma @0 K’ = K,

so it would be a contradiction.

So, for such a g there is partial isomorphism by, for which
Kn{je Aut(R): b, C j} = 0.

(Call this basic open set L,;). Then the family of sets {L, : g ¢ K} covers Aut(R)
K, it is disjoint from K, and has at most countable many members (because |<“w| <
NQ). [ ]

Back to the extending property

Finally, we show that the existence of the generic automorphism implies a weaker

version of Hrushovksi’s theorem.

Theorem 4.7. Suppose f € Aut(R) is the generic automorphism of the Rado graph,

namely

(i) the conjugacy class of f is dense, and

(ii) for every x € V(R) {f"™(x):n € Z} is a finite set.

Then the weak extension theorem follows: for every pair of finite graph X and partial

isomorphism h on it, there ezists a finite graph Z and an automorphism h* € Aut(Z)
such that X < Z and h* extends h.
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Proof TLet X be a finite graph and h a partial isomorphism between induced
subgraphs of X. We may assume that X < R.

We know that there is an automorphism g which is conjugate to f and h C g,
because the conjugacy class of f is dense.

Then define the underlying set of the graph Z as follows:
V(z) = |J {¢"™):beV(X)andneZ}.

This is a finite set (see (ii) ). The graph structure comes from R. So choosing g* to

be g|v(z) the proof is completed. o
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