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1 IntrodutionLet X be a �nite graph and f : A → B be an isomorphism between induedsubgraphs A and B of X. Then there exists a greater �nite graph Z suh that X isan indued subgraph of Z, and f has an extension f ∗, whih is an automorphism of
Z. This theorem has been proved by Truss, for more general results, see Hrushovski[5℄ and Herwig [3℄.The main results of this work are the following: we generalize this theorem as writingpartial homomorphism h instead of partial isomorphism f , we get an extension h∗whih is an endomorphism of Z (Theorem 3.5). Furthermore, using Hrushovski'stheorem, we show another proof of Truss's theorem (4.2), whih says that the spae
Aut(R) has a dense onjugay lass, where R is the Rado graph (also known asountable random graph). The de�nitions and the topology an be found in the4th hapter. Similarly, we prove it for End(R), too (Theorem 4.4). Then we showthat di�erent versions of density is equivalent in this spae (Theorem 4.5). Finally,we dedue a weaker version of Hrushovski's theorem from the existene of a denseonjugay lass (Theorem 4.7).IntrodutionIn this �rst hapter we will attempt to summarize the basi de�nitions and theoremsthat are ruial for understanding theorems we prove later in this work. We willalso set the notation that will be used.The seond hapter is strutured around a pair of notions: the homogeneity of astruture, and its age. We will speify two properties, namely hereditary propertyand joint embedding property, that haraterize whether a lass of strutures is theage of a struture. Then with the help of a third property - the amalgamationproperty - we will sueed in �nding a unique homogeneous struture (alled Fraïssélimit) belonging to a lass of strutures. (The ideas treated here will reur later inthe fourth hapter.)Next, applying this theory we will onstrut the universal homogeneous struture ofthe lass of �nite graphs, namely the Rado graph. This graph will be haraterizedby the separation property. Finally, we will point out the onnetion between theRado graph and random graphs. In addition to this, we will prove an interestingtheorem about limit probability of sentenes in a graph, as well.This hapter has a survey harater and it is based on Hodges's book ([4℄), Cameron's4



leture notes ([2℄) and Sági's textbook ([7℄). In partiular, all the results in thishapter are well known.The third hapter is based on the 1992 �ndings of E. Hrushovski ([5℄). His theoremsays that every �nite graph an be embedded to a greater �nite graph suh thatevery partial isomorphism of the original graph extends to an automorphism of thegreater one. Here we will present his original proof. This proof has two majorsteps. First the original graph will be embedded to an intermediate graph suhthat the edges/no-edges departs from the domain of some partial isomorphism willbe preserved. As seond step the greater graph will be onstruted with a masterlyalgebrai onstrution. We will be generalize this theorem for partial homomorphismand endomorphism. To do this we must modify the onditions, and �nd anotherway as the �rst step.In the fourth hapter, we will evoke the notion of generi automorphism (whihhas a dense onjugay lass in the automorphism group). Of ourse, beause ofdenseness we will need to introdue a topology. Then we give another proof of Truss'stheorem: we reate a generi automorphism of the Rado graph � using the theoremof Hrushovski. We will also prove the similar theorem for generi endomorphism.Then we will prove the equivaleny of some of properties of its onjugay lass.Finally, we will dedue a weaker version of the theorem of Hrushovski from theexistene of generi automorphism.AknowledgementsFirst and foremost I would like to thank my supervisor, Gábor Sági for all the helpand support he gave me in writing this thesis. I am grateful for the ideas and forthe time he spent on this work.I grateful to Zalán Gyenis for his orretions and advie. I also would like to thankÁkos Vásáry for grammatial advie.Finally, I am very grateful to my wife Zsuzsi for the patiene and support.Notation and preliminariesWe summarize the notation of this paper, and the basi de�nitions and theoremswe will use.In this paper ω denotes the set of natural numbers. The set of integer and rational5



numbers will be denoted by Z and Q, respetively, and [a, b] will denote the set
{a, a + 1, . . . , b} for a ≤ b natural numbers. We will use the standard notation ofoperation of sets as ∪,∩,⊆, et. We will denote the set of funtion from A to B with
AB. As usual P(X) denotes the power set of a set X. The sign of the ardinalityof a set X is |X|. Finally, ℵ0 is the ardinality of ω.The funtions are onsidered as sets (of pairs). So we will use set operation andrelation on its. E.g. f ⊆ g means g is an extension of f . The domain and range ofa funtion f is denoted by Dom(f) and Ran(f), respetively. The image of a set Xby a funtion f will be denoted by f [X].In this paper we deal only with relational strutures. So a signature S ontains(at most ountable, but almost always �nite number of) relational symbols, and anarity funtion ar on the symbols: S = (Rel, ar). If we say S -struture A, we thinka set with some relation rA ⊆ ar(r)A for some r ∈ Rel. We will not di�erentiate innotation between a struture and its underlying set, it will be lear whih to thinkabout. For the relation we will use in�x notation xRy or (x, y) ∈ R.We also use the standard phrases and notation of mathematial logi, like A is amodel of a set of sentenes T (A |= T ).In most ases the relational struture will be a graph: this means a struture withan irre�exive and symmetri �adjaeny� relation E or E(X) (if the graph is X).Graph theory has an own tradition of notation, and partially this will be appearedhere. So, the elements of a graph struture will be alled verties (sometimes nodes),the elements of the relation set will be alled edges. The verties adjaent to a �xedvertex a will be alled neighbours, and will be denoted by X(a) for a graph X.We will say that A is a substruture of B (denoted by A ≤ B), if A and B strutureswith the same signature, and A (as a set) is a subset of B, and all the relationsonstraining to A will be unhanged. Let us note that the ase of graphs this meansthat A is an indued subgraph of B.De�nition. If A and B are S -strutures for a �xed S , then we all a one-to-onefuntion i : A→ B relational isomorphism or isomorphism i� for every r ∈ Rel wehave (x1, . . . , xar(r)) ∈ r

A if and only if (i(x1), . . . , i(xar(r))) ∈ r
B.If there is an isomorphism between A and B, then we denote it with A ∼= B.Similarly,De�nition. If A and B are S -strutures for a �xed S , then we all a funtion

h : A → B relational homorphism or homomorphism i� for every r ∈ Rel we have
(x1, . . . , xar(r)) ∈ r

A if and only if (h(x1), . . . , h(xar(r))) ∈ r
B.6



Note that aording to our de�nition, homomorphism for graphs preserves not onlythe edges but also the not edges!An isomorphism between the same struture will be alled automorphism, and ahomomorphism between the same struture will be alled endomorphism. If for anisomorphism (homomorphism) m : A→ B the set A 6= Dom(f), then it is alled apartial isomorphism (respetively, partial homomorphism). The group of automor-phisms of a strutureX will be denoted by Aut(X), the semigroup of endomorphismsof a struture X will be denoted by End(X).Reall that the kernel of a funtion A→ B is an equivalene relation on A, in whihtwo elements are equivalent i� they have the same homomorphi image. A ongru-ene is the kernel of a homomorphism. The quotient struture by an equivalene Rwill be denoted by X/R. We will use the `join' funtion of two equivalene relation,it will be denoted by ∨. This notions are preisely the same as introdued in [1℄.Let us remind some of basi theorems of logi. These theorems an be found pra-tially all the textbooks of logi.Theorem 1.1 (Compatness). A (possibly in�nite) set of �rst order sentenes hasa model if and only if every �nite subset of it has a model.Theorem 1.2 (Löwenheim�Skolem). Let T be a theory. If T has an in�nite model,then it has some in�nite model K suh that |K| = κ where κ ≥ |S | · ℵ0 is anarbitrary ardinality.
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2 Fraïssé-limit and random graphsIf there are �nite relational strutures, e.g. linear orderings, then an interestingquestion arises: are there a (possibly ountable) struture, in whih these �nitestrutures an be embedded? We an think of the linear ordering of the naturalnumbers. A more general question is, whether there are strutures, in whih everypartial embedding an be extended? We an think of (Q, <) as a linear ordering.We will prove that these examples are right.This hapter relies on W. Hodges's book ([4℄), P. J. Cameron's notes ([2℄) and GáborSági's textbook ([7℄).Age and Fraïssé-limitIn this setion let S be a �xed signature. First, here is a de�nition about the lassof �embeddable� strutures.De�nition. A lass K of S -strutures is said to be the age of a ountable struture
M i� it ontains all the strutures (up to isomorphism) whih are isomorphi withsome �nite substruture of M . Denote this lass by Age(M).We an also say that a lass K of S -strutures is the age ofM i� for every K ∈ K
K is �nite and an be embedded to M as substruture, and it ontains all the �nitesubstrutures of M .The question is, what ondition are neessary and su�ient to establish the existeneand uniqueness of suh a model for a lass K of �nite strutures? Now let usintrodue three onditions we will need.Hereditary Property (HP) If A ∈ K is a struture and B ≤ A is a �nite stru-ture, then B ∈ K, too.Joint Embedding Property (JEP) If A,B ∈ K are strutures, then there existsa struture C in K in whih A and B are embeddable.

A B

ց ւ

CAmalgamation property (AP) If A,B1, B2 ∈ K are S -strutures and f1 : A→

B1 and f2 : A→ B2 are embeddings, then there are C ∈ K and g1 : B1 → C,8



g2 : B2 → C embeddings suh that g1 ◦ f1 = g2 ◦ f2, i.e. the diagram
A

f1

ւ
f2

ց

B1 B2
g1

ց
g2

ւ

Commutes.If K is the age of M , then (HP) obviously holds for K. It is lear that (JEP) isalso true beause if we embed A and B to M then the indued substruture of theimages satis�es (JEP). The third property will be proved later.Fraïssé has proven that two of these onditions are also su�ient for the existeneof suh an M .Proposition 2.1. If K is a lass of �nite S -strutures whih has (HP) and (JEP),then there exists a ountable struture M suh that K = Age(M).Proof There are at most ountably many elements in K, beause the strutures are�nite and there is only one from every isomorphism lass. So there is an enumeration
(Ai)i<ω of elements of K.Then we de�ne another list of strutures. Let B0

def
= A0. Beause (JEP) there isa joint embedding of Bi−1 and Ai for every i < ω. Let Bi be the image of thisembedding. Then we an de�ne

M = Bω =
⋃

i<ω

Bi.It an be seen that every Ai ∈ K an be embedded to M , and M is ountable as itis the ountable union of �nite sets. •This theorem is not enough for us: we need the third ondition to prove the uniqenessofM . But what does uniqueness mean in this situation? The answer is homogeneity.De�nition. An S -struture M is homogeneous i� every partial isomorphism fbetween its �nite substrutures an be extended to an automorphism of M .Let us note that W. Hodges alled this onept ultrahomogeneous. Next, here is amore onrete de�nition: 9



De�nition. An S -struture is weakly homogeneous i� whenever A,B ∈ Age(M) A ⊆

B and |A| + 1 = |B|, then every embedding g : A → M an be extended to an em-bedding g∗ : B → M .Lemma 2.2. A ountable strutureM is homogeneous if and only if it is weakly homogeneous.Proof Neessity omes from homogeneity: if h : B → M is an embedding then
gh−1 is a partial isomorphism ofM (between g[A] and h[A]). By homogeneity thereis an automorphism i whih extends gh−1. So it is lear that ih is an extension of gand is an embedding of B.

A ⊆ B

↓g ↓h

M
i
← MAs for su�ieny, we apply reursion: let f = f0 be the partial isomorphism whihshould be extended to an automorphism. Letm1, m2, . . . be an enumeration of thoseelements of M whih do not belong to Dom(f). Having de�ned fi−1, we an set fiusing weak homogeneity:

Dom(fi−1) ∪ {mi} as B, Dom(fi−1) as A, and fi−1 as g.Thus we get a partial isomorphism on Dom(fi−1) ∪ {mi}. Let this partial isomor-phism be fi. This extends fi−1. Finally, we an de�ne the desired automorphism as
⋃

i<ω

fi. It is an extension of f (we de�ned it this way), so M is homogeneous. •This proof is very important beause its idea plays an essential role in the proofs ofthe fourth setion.Now, we are ready to prove Fraïssé's theorem.Theorem 2.3 (Fraïssé). 1. The lass K of S -strutures is the age of some ount-able homogeneous struture M if and only if K has (HP), (JEP) and (AP).2. If M and N are ountable homogeneous strutures with the same age (Age(M) =

Age(N)) then M and N are isomorphi.Proof1. For the �only if� part, we only need to prove that K has (AP) follows fromhomogeneity of M (as we promise above).10



We may assume that A,B1, B2 are subsets of M suh that A ⊆ B1. Thenthe partial isomorphism f2 of M (between A and f2[A]) an be extended to anautomorphism i by homogeneity.Then let C def
= i[B1] ∪B2. Choosing g1 = i|B1 and g2 = id ompletes the proof.The idea we use to prove the �if� part is very similar to the one in the proof ofProposition 2.1.There are at most ountably many elements in K, beause the strutures are�nite and there is only one from every isomorphism lass. So we an form anenumeration (Ai, Bi)i<ω of pairs of strutures from K (where Ai ⊆ Bi and |Ai|+

1 = |Bi|) suh that if Aj
∼= Bi then i < j. (E.g. if one orders strutures by itsardinality, it will be appropriate.)Next we de�ne another list of strutures using reursion. LetM0

def
= A0. Supposethat there are an embedding Ai → Mj for some i < j. Sine there is an embedding

Ai → Bi, by (AP) there exist a struture in whih Bi and Mj an be embedded.Let us all this struture Mj+1. (We may onsider Mj ≤ Mj+1.) So Bi an beembedded to Mj+1.Finally, we de�ne
M = Mω =

⋃

i<ω

Mi.It an be seen that every Ai ∈ K an be embedded toM . It is ountable beauseit is the ountable union of �nite sets.It an be seen from this onstrution, that M is weakly homogeneous thereforehomogeneous.2. We would like to de�ne a hain of partial isomorphisms between N and M , sowe do this by reursion.Let f0 be the empty funtion, n0, n1, . . . be an enumeration of the elements of Nand m0, m1, . . . be an enumeration of the elements of M .Suppose that the partial isomorphism fi between N and M has been alreadyde�ned. Then f−1
i is also a partial isomorphism. Let Ai = Ran(fi) (⊆ M) and

Bi = Ran(fi) ∪ {mi}. By weak homogeneity, we an extend f−1
i to mi. Denotethis extension by gi.Similarly, suppose that the partial isomorphism gi has been already de�ned. Then

g−1
i is also a partial isomorphism. Let A′

i = Ran(gi) (⊆ N) and B′
i = Ran(fi) ∪

{ni}. By weak homogeneity, we an extend g−1
i to ni. Denote this extension by

fi+1. 11



As the last step, de�ne f as the union of fi-s for all i < ω. It is surjetive, beausethe domain of f−1 ontains all the elements ofM . And f is also injetive, beause
Dom(f) ontains all the elements of N . Then f is an isomorphism between Nand M , hene uniqeness is proved.

•Let us all the unique homogeneous struture orresponding to a lassK of struturesthe Fraïssé-limit of K.Random graphsIn this setion we will present a graph whih is a model of an interesting theory.Then we will show, that this graph is the Fraïssé limit of the lass of �nite graphs.Finally, we will show that this graph is isomorphi to the random graph on ω (withprobability 1).In this setion S denotes the signature of the graphs: there is only one relationsymbol E in it (exluding the equality symbol =). So all the strutures in thissetion are onsidered to be graphs.Let TR be the following theory:
TR

def
= {∀v (v, v) /∈ E} ∪ {∀u∀v((u, v) ∈ E → (v, u) ∈ E)} ∪ {ϕn,m : n,m ∈ ω}.The �rst sentene expresses irre�exivity, the seond expresses symmetry. For n,mnatural numbers abbreviate ϕn,m the following: for every x1, x2, . . . , xn, y1, y2, . . . , ymthere is a z di�erent from x-s and y-s suh that xiEz and ¬yjEz (where i ≤ n, j ≤

m). So the third set of sentenes above gives us a graph property alledSeparation property For every n,m ∈ ω if N,M are disjoint �nite graphs suhthat |N | = n and |M | = m then there is a vertex z whih is adjaent to allthe verties of N and none of the verties of M .At this point, it is not obvious, whether TR is onsistent. The next onstrutiongives a model wittily.Proposition 2.4. TR is onsistent. 12



Proof We give an expliit model of TR.Let R be a graph with underlying set ω. If i = j then let (i, j) /∈ E(R). So assume
i < j Then let (i, j) ∈ E(R) i� the ith digit of j is 1 (in base 2).This graph is a model of TR, beause it is irre�exive, symmetri and has the separa-tion property: for every x1, x2, . . . , xn, y1, y2, . . . , ym there is a z ∈ ω suh that theorrespondent digits are 1 for every xi and 0 for every yi. •So TR has (at least one) model, but are there any more? We an observe that theseparation property implies homogeneity, hene a model of TR is the Fraïssé limitof the lass of �nite graphs!Proposition 2.5. If a graph M has the separation property, then it is a homoge-neous.Proof It is lear that if a graph has the separation property, then it ontains allthe �nite graphs. •Corollary 2.6. TR is an ℵ0-ategorial theory.So it is a unique graph on ω. Call this graph the Rado graph, and denote it by R.Proposition 2.7. TR has only in�nite models.Proof Suppose there is a �nite graph G satisfying TR. It is obvious that in thisgraph ϕ|G|,0 is false. •Reall the following theorem:Theorem 2.8 (�o±�Vaught test). If theory T has only in�nite models and T is
κ-ategorial for some κ ≥ ℵ0, then T is omplete.Proof Suppose T is not omplete. Then there exists a(n independent) sentene
ψ and A,B models of T suh that A |= T ∪ {ψ} and B |= T ∪ {¬ψ}. Beause ofLöwenheim�Skolem theorems, there are also modelsA′ |= T∪{ψ} andB′ |= T∪{¬ψ}suh that |A′| = |B′| = κ. By the κ-ategoriity A′ and B′ are isomorphi, but it isa ontradition. • 13



Corollary 2.9. TR is omplete.We already know that TR has only in�nite models. But what about the �nite sliesof TR? That is why we de�ne the graph onstrution random graph. Let Rk be agraph: let the set of verties be the numbers 0, . . . , k−1. Then deide for eah (i, j)to be an edge or not, with oin �ipping (probability 1
2
) where i < j < k.Proposition 2.10. If n,m ∈ ω, then limk→∞ Pr(Rk 6|= ϕn,m) = 0.Proof Let EN,M,z be the event for whih the sentene `z is adjaent to all theelements of N and to none the elements of M ' is not true. So

Pr(EN,M,z) = 1−
1

2|N |+|M |
.Then denote by EN,M the event that `there is no z vertex suh that z is adjaent'.For di�erent z-s the events EN,M,z are independent, thus

Pr(EN,M) = (1−
1

2n+m
)k−n−m.Finally, denote the event `Rk 6|= ϕn,m' by E. Beause E =

⋃

N,M

EN,M ,
0 ≤ Pr(E) ≤ kn+m(1−

1

2n+m
)k−n−m,estimated the hoie of M and N with kn+m. The limit of this expression is 0. •Proposition 2.11. If T ⊆ TR is �nite, then

lim
k→∞

Pr(Rk |= T ) = 1in a random graph Rk on k verties.Proof
Pr(Rk 6|= T ) ≤ Pr(Rk 6|= φ1) + · · ·+ Pr(Rk 6|= φl),where φ1, . . . , φl are the elements of T . The limit of right hand side is 0. •This proposition (and ompleteness of TR) has an interesting orollary:Corollary 2.12 (0-1 law). If φ is an arbitratry formula then limk→∞ Pr(Rk |= φ)is 1 or 0. 14



Proof TR |= φ or TR |= ¬φ, beause of ompleteness of TR. From the ompatnesstheorem we get a �nite theory T from whih either φ or ¬φ follows. ApplyingProposition 2.11 to T , we get a probability value 1 or 0. •Finally, we prove that a random graph Rω of the set ω is isomorphi with the Radograph (with probability 1).Proposition 2.13. With probability 1, a random graph is isomorphi to R.Proof Let Ri be the subgraph of Rω indued by the set [0, i−1]. From Proposition2.10 we get that for any �xed n,m: limk→∞ Pr(Rk 6|= ϕn,m) = 0. Sine the union of
ω many measure-0-set is a measure-0-set, Pr(Rω 6|= TR) = 0. •
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3 Hrushovski-type theoremsA theorem of HrushovskiFor ompleteness, we start this hapter by inluding Hrushovski's original proof(appeared in [5℄).De�nition. We say that F ⊆ P(X) is a statistially independent family of sets on
X, if for every A1, . . . , An, B1, . . . , Bm ∈ F

|A1 ∩ · · · ∩ An r B1 r · · ·r Bm| =
|X|

2n+m
.Proposition 3.1. Every �nite graph X an be embedded to a �nite graph Y suhthat the family of sets {Y (a) : a ∈ X} forms a statistially independent family ofsets on Y .Proof We may assume that a 7→ X(a) is one-to-one on X, else we an easily embed

X to a �nite graph, where a 7→ X(a) is one-to-one. Let Y be a graph on the set
P(X) as nodes, and de�ne (y1, y2) ∈ E(Y ) ⇐⇒ y1 = X(a2) for some a2 ∈ y2 or
y2 = Y (a1) for some a1 ∈ y1. Note that for any a ∈ X and Y ′ ∈ P(X) we have
(X(a), Y ′) ∈ E(Y ) i� a ∈ Y . Partiularly, if a1, a2 ∈ X, then

(X(a1), X(a, 2)) ∈ E(Y )⇔ a1 ∈ X(a2)⇔ a2 ∈ X(a1)⇔ (a1, a2) ∈ E(X).So the map a 7→ a∗ = X(a) is an embedding to Y . We have to show that the familyof sets below is statistially independent:
{Y (a) : a ∈ X} = {Y (a∗) : a ∈ X} = {Y (X(a))} : a ∈ X}.We have that if Y ′ ∈ P(X) and a ∈ X then Y ′ is a neighbour of X(a) i� a ∈ Y ′.So the intersetion of sets Y (a∗) = {X ′ : a ∈ X ′} and Y (b∗) = {X ′ : b ∈ X ′} halvesboth of them, so the family {Y (a) : a ∈ X} is statistially independent. •Theorem 3.2 (Hrushovski). Let X be a �nite graph. Then there exists a �nitegraph Z ontaining X as an indued subgraph (X ≤ Z), suh that every partialisomorphism f : A→ B, (where A,B ≤ X) extends to an automorphism f ∗ : Z →

Z.Let U be the set of partial isomorphisms on X, and let Y be as in the previousproposition. For the proof we will need the following lemma:16



Lemma 3.3. If f ∈ U then there exists an f ∗ ∈ Sym(Y ) suh that f ∗|Dom(f) = fand f ∗[Y (a)] = Y (f ∗(a)) for all a ∈ Dom(f). If Dom(f) = Ran(f) and f 2 = idthen we an hoose an f ∗ suh that f ∗2 = id.Proof of the Lemma. Let D = Dom(f) and R = Ran(f). If ν : D → {0, 1} is afuntion then write
Dν = {y ∈ Y : (d, y) ∈ E(Y )⇔ ν(d) = 1 (d ∈ D)} and

Rν = {y ∈ Y : (r, y) ∈ E(Y )⇔ ν(r) = 1 (r ∈ R)}.Sine {Y (a) : a ∈ X} is statistially independent (and by Proposition 3.1) |Dν| =

|Rν | = |Y | · 2
−|D|. Then |D ∩Dν | = |R ∩Rν |, beause f is an isomorphism between

D and R, so |Dν rD| = |Rν r R|.Let f ∗ be a permutation on Y extending f and mappingDν\D ontoRν\R arbitrarily.(Exept if D = R and f 2 = id then we must hoose f ∗ suh that f ∗2 = id.) Thispermutation respets the adjeeny relation on D, so it is su�ient for the lemma.
•Proof of Hrushovski's theorem. Let U be as above, U∗ = {f ∗ : f ∈ U} and
G = 〈U∗〉 be the group generated by U∗.Notation: if there exist x0, x1, x2 ∈ Y with x0 ∈ Dom(f1), x1 ∈ Ran(f1)∩Dom(f2)and x2 ∈ Ran(f2), and in addition f1x0 = x1 and f2x1 = x2, then we write f2f1x0 =

x2.De�ne a relation ≈ on G×X as follows:
(g, x) ≈ (g′, x′) i� there are h1, . . . , hn ∈ U with(i) hn . . . h1x = x′;(ii) g = g′h∗n . . . h

∗
1 (in G).The relation ≈ is an equivalene relation on G × Y : identity funtion witnesses re-�exivity. For symmetry we an take the partial isomorphisms h−1

1 , . . . , h−1
n . Finally,if the equivalenes of (g, x) ≈ (g′, x′) and (g′, x′) ≈ (g′′, x′′) are demonstrated by

h1, . . . , hn ∈ U and h′1, . . . , h′n ∈ U , respetively, then transitivity follows by hoos-ing h1, . . . , hn, h
′
1, . . . , h

′
n.Next we an de�ne a group ation by G on Y as follows: h(g, x) = (hg, x). Thisation preserves ≈ beause of the following. If (g, x) ≈ (g′, x′), then there exists17



h1, . . . , hn ∈ U with properties (i) and (ii). Sine hg = hg′h∗n . . . h
∗
1, the seondondition is true for (hg, x) and (hg′, x′). The �rst ondition is obviously true.Let Z = G × Y/ ≈, and turn Z into a graph: put (

(g, a)/ ≈, (g, b)/ ≈
)

∈ E(Z) if
g ∈ G, (a, b) ∈ E(Y ). This way Z an be onsidered to be a graph, on whih G atsby automorphisms, and every f ∈ U extends to an f ∗ ∈ G. The only thing we needto prove for the theorem is that Y an be embedded to Z as an indued subgraph.If (id, x) = (id, y) then there exists h1, . . . hn with hn . . . h1x = y and h∗n . . . h∗1 = id,so x = y. Hene Y is embeddable to Z naturally (as a set).It is easy to see that Y is a subgraph of Z. But is it an indued subgraph? Supposethat (

(id, x)/ ≈, (id, y)/ ≈
) is an edge of Z for any x, y ∈ Y . Then there exists a

g ∈ G and (x′, y′) ∈ E(Y ) suh that
(id, x) ≈ (g, x′) and (id, y) ≈ (g, y′).Then there exists f1, . . . fm, h1, . . . hn ∈ U where g = f ∗

m . . . f
∗
1 = h∗n . . . h

∗
1,

hn . . . h1x
′ = x and fm . . . f1y

′ = y.Let x0, . . . , xn ∈ Y be suh that x0 = x′ and xn = x,
xi ∈ Dom(hi+1), hi+1xi = xi+1.Then h∗i+1[Y (xi)] = Y (h∗i+1xi) = Y (xi+1) so g[Y (x′)] = Y (x). Moreover y′ ∈ Y (x′)(beause x′y′ is an edge), hene gy′ = f ∗

m . . . f
∗
1 y

′ = y ∈ Y (x) so (x, y) ∈ E(Y ). •Note, that this theorem has been generalized for relational strutures:Theorem 3.4 (B. Herwig, [3℄). Let X be a �nite relational struture. Then thereexists a �nite relational struture Z ontaining X as an substruture (X ≤), suhthat every partial isomorphism f : A → B, (where A,B ≤ X) extends to an auto-morphism f ∗ : Z → Z.Homomorphism instead of isomorphismWe would like to generalize Hrushovski's theorem for partial homomorphism insteadof isomorphism. But there is a problem with this plan. If there are nodes b, c in thedomain of a partial homomorphism and a node a outside of the domain suh that
(a, b) is an edge and (a, c) is not an edge, and if the partial homomorphism maps b18



and c to the same node, than we annot �nd an appropriate endomorphism whihextends our original partial homomorphism. Therefore we avoid this situation.De�nition. We all b and c (both nodes in Dom(h)) inompatible with respet toa partial homomorphism h of a �nite graph X, if there is a node a ∈ X suh that
(a, b) ∈ E(X) and (a, c) /∈ E(X), and h(b) = h(c).De�nition. We say that a �nite graph X is allowed for a partial homomorphism h,if for h there are no inompatible nodes with respet to h.Theorem 3.5. Let X be a �nite graph. Then there exists a �nite graph Z ontaining
X as an indued subgraph (X ≤ Z), suh that every partial homomorphism f , forwhih X is allowed, extends to an endomorphism f ∗ : Z → Z.An essential idea of the proof of Hrushovski's theorem is the embedding the graph
X to Y suh that the edges are preserved not only in the domain, but also betweena pair of nodes, where at least one of them is in the domain. We would like to arryout a similar argument. But we should hoose another way, beause we annotomplement a homomorphism to a permutation.Let U be the set of partial homomorphisms on X, for whih X is allowed.Lemma 3.6. There exists a �nite graph Y ≥ X suh that every f ∈ U extends to an
f ∗ ∈ Sym(Y ) suh that f ∗|Dom(f) = f and f ∗[Y (a)] = Y (f ∗(a)) for all a ∈ Dom(f).Even Y is allowed.Proof of the Lemma.It is lear that every h ∈ U is a ongrueny (on its domain), beause X is allowed.So we an onsider the kernel of eah partial homomorphism.So de�ne an equivalene relation:

H
def
=

∨

h∈U

Ker(h),namely H is the supremum of the kernels of partial homomorphisms.Note that H is a ongruene for all f ∗.We will de�ne Y by adding verties and edges to X suh that X will remains anindued subgraph. Let
V (Y )

def
= V (X) ∪

⋃

h∈U

a∈V (X)rDom(h)

{ua,h}.19



The set of edges of Y will be the set of edges of X together with some new onesthat we add aording to the rule below:
(ua,h, b) ∈ E(Y ) i� b ∈ f [X(a)]/H,where a, b ∈ V (X), h ∈ U .Then we an extend an f ∈ U suh that for every a ∈ V (X) rDom(f),

f ∗(a)
def
= ua,f ,and f ∗(u)

def
= u for eah new vertex u. So f ∗ extend to the whole V (Y ).Let us make an observation. Let u be a new node and x, y ∈ V (X). If xHy, then

u is onneted to x and also to y, or neither to x, nor to y. This is true, beauseedges between old and new nodes are de�ned up to H .Finally, Y is allowed beause of the following. Suppose that there are nodes b, c ∈
V (X) and ua,i ∈ V (Y ) r V (X) suh that (ua,i, b) ∈ E(Y ) and (ua,i, c) /∈ E(Y ). If
b′ and c′ are the nodes, for whih i∗(b′) = b and i∗(c′) = c, then (a, b′) ∈ E(X) and
(a, c′) /∈ E(X) by the observation above. But then X is not allowed, whih is aontradition, so Y is allowed. •Proof of the Theorem.Let U be as above, U∗ = {f ∗ : f ∈ U} and S = 〈U∗〉 be the semigroup generatedby U∗. This semigroup has an identity element: id = id∗ ∈ U∗.Notation: if there exist x0, x1, x2 ∈ Y with x0 ∈ Dom(f1), x1 ∈ Ran(f1)∩Dom(f2)and x2 ∈ Ran(f2), in addition f1x0 = x1 and f2x1 = x2, then we write f2f1x0 = x2.De�ne a relation ∼ on S×X by (α, a) ∼ (α′, a′) i� there are π1, . . . , πn, ̺1, . . . , ̺m ∈

U with(i) πn . . . π1a = a′, ̺m . . . ̺1a
′ = a,(ii) α = α′π∗

n . . . π
∗
1, α

′ = α̺∗m . . . ̺
∗
1 (in S).The relation ∼ is an equivalene relation on S × Y : identity funtion shows re�ex-ivity. For symmetry we an take the partial isomorphisms π−1

1 , . . . , π−1
n for πi's and

̺−1
1 , . . . , ̺−1

m for the ̺i's. Then the orresponding U-elements for transitivity will be
π1, . . . , πn, π

′
1, . . . , π

′
n, and ̺1, . . . , ̺m, ̺

′
1, . . . , ̺

′
m.We an de�ne a semigroup ation by S on Y as follows: β(α, x) = (βα, x). Thisation preserves ∼. If (α, x) ∼ (α′, x′), then there exists π1, . . . , πn, ̺1, . . . , ̺m ∈ U20



with properties (i) and (ii). Then we an get the seond ondition from the original(ii) by multiplying by β. The �rst ondition is the same as the original.Let Z = S × X/ ∼, and let Z be the graph where we let (

(α, a)/ ∼, (β, b)/ ∼
)

∈ E(Z) if α = β ∈ S, (a, b) ∈ E(X). So Z is a graph, on whih S ats byendomorphisms, and every f ∈ U extends to an f ∗ ∈ S. The only thing we need toprove is that X an be embedded to Z as an indued subgraph.If (id, x) ∼ (id, y) then there exist π1, . . . , πn ∈ U suh that id = π∗
n . . . π

∗
1 and

πn . . . π1x = y hene x = y, so x 7→ (id, x) is a natural embedding from X to Z (asa set). Then X is a subgraph of Z, beause this embedding respets the edges.Suppose that (

(id, x)/ ∼, (id, y)/ ∼
) is a Z-edge for any x, y ∈ X. We must showthat (x, y) ∈ E(X). To do so, observe that there exist α ∈ S, x′, y′ ∈ X suh that

(id, x) ∼ (α, x′) and (id, y) ∼ (α, y′)where (x′, y′) ∈ E(X). By the de�nition of ∼ there are π1, . . . , πn, ̺1, . . . , ̺m ∈ Usuh that
πn . . . π1x

′ = x, ̺m . . . ̺1y
′ = y,

π∗
n . . . π

∗
1 = α = ̺∗m . . . ̺

∗
1.Let x0, . . . , xn ∈ Y be suh that x0 = x′ and xn = x,

xi ∈ Dom(πi+1), πi+1xi = xi+1.Then π∗
i+1[Y (xi)] = Y (π∗

i+1xi) = Y (xi+1) so α[Y (x′)] = Y (x). Moreover y′ ∈ Y (x′)(beause x′y′ is an edge), hene αy′ = ̺∗m . . . ̺
∗
1y

′ = y ∈ Y (x) so (x, y) ∈ E(Y ). •
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4 OrbitsThe generi automorphismIn this setion we would like to �nd a generi automorphism of the Rado graph. Toreall the de�nition of generi automorphism, we need to introdue a topology onthe automorphism group. If the onjugay lass of an automorphism is big enoughin this topology (namely it is dense), then this automorphism is used to all generi.To prove the existene of suh automorphism we need the following lemma.Lemma 4.1. If f is a partial isomorphism of the Rado graph R and g is a partialisomorphism of a �nite graph G ≤ R, then we an reate a partial isomorphism f ∗of R suh that for a suitable automorphism h ∈ Aut(R)

f ∗ ⊇ f ∪ h−1gh.If Dom(f) = Ran(f), then the domain and range of f ∗ are also the same.Proof If G is a �nite graph and g is a partial isomorphism of it, then we an applyHrushovski's theorem (3.2), so there is a �nite graph G∗ ≥ G and an automorphism
g∗ ∈ Aut(G∗) suh that g∗ is an extension of g. We may assume that G∗ ≤ R (whenit is not true then we an �nd an embedding ν : G∗ → R, and instead of G∗ we anwrite ν−1G∗ν).First we de�ne a partial isomorphism h′ : G∗ → R using reursion, then omplete itto an automorphism h.By the separation property of the Rado graph, we an �nd an image vertex in eahstep of the reursion, as follows. Let the elements of G∗ be (xi)i≤|G∗|. Assume that
h′(xi) has been de�ned for all i < j for some j ≤ |G∗| suh that there are no edgesbetween any h′(xi) and nodes belonging to Dom(f)∪Ran(f). Let Xj be the subsetof G∗ whih ontains the neighbors of xj from x1, . . . , xj−1 and let Yj be the subset of
G∗ whih ontains the verties not onneted to xj from the elements x1, . . . , xj−1.Using the separation property (see page 12.) we an �nd a vertex yj ∈ R suhthat yj is adjaent to the elements of h′[Xj ] and not adjaent to the elements of
h′[Yj] ∪Dom(f) ∪Ran(f). De�ne h′(xj)

def
= yj.So we de�ned h′ for all the verties of G∗.Sine R is homogeneous, the partial isomorphism h′ extends to an automorphism hof R. This funtion respets the graph struture of G∗ hene the graph struture of

G too. Therefore,
f ∗ def

= f ∪ h−1g∗h22



is suitable for the lemma. Beause g∗ is an automorphism on G∗, the domain andrange of the obtained partial isomorphism are the same. •Let R be the Rado graph on the set ω of verties. Taking the disrete topology on
ω, the spae ωω is endowed with the produt topology. Beause Aut(R) ⊆ ωω, italso has an inherited topology, so we an talk about the densitity of a subset of thespae Aut(R).De�nition. An automorphism f of R alled generi, if it has a dense onjugaylass (in Aut(R)).Theorem 4.2. There is a generi automorphism f ∈ Aut(R). For every x ∈ V (R)the orbit {f (n)(x) : n ∈ Z} is �nite.Proof We would like to de�ne the generi automorphism as adding all the partialisomorphisms of �nite graphs (by the previous lemma).Let (Gi, gi)i∈ω be an enumeration of all the pairs of �nite graphs Gi and partialisomorphisms gi on Gi. We may assume that Gi ≤ R for all i < ω. De�ne asequene (fn)n∈ω of partial isomorphisms with the following reursion suh that allthe stipulations below are satis�ed.(i) fn is an isomorphism between its domain and range for every n ∈ ω, so that

Dom(fn) = Ran(fn),(ii) n ∈ Dom(fn) ∩ Ran(fn)(iii) if n < ω then there exists D ⊆ Dom(fn), suh that (D, fn|D) ∼= (Gn, gn).Let f0 be the empty funtion. It is trivial that f0 satis�es (i)�(iii).Then assume that fj has been de�ned for all j < i for some i ∈ ω.As �rst step, we would like i to be in the domain. So if i ∈ Dom(fi−1), then de�ne
f ′

i−1

def
= fi−1. Else using Lemma 4.1 to the one-node-graph i with the identialisomorphism, we get a partial isomorphism, whose domain ontains i. Let thispartial isomorphism be f ′

i−1. It is lear that Dom(f ′
i−1) = Ran(f ′

i−1).As seond step, applying Lemma 4.1 to f ′
i−1 and (Gi, gi), we get that there exist apartial isomorphism f ′∗

i−1 of R suh that
f ′∗

i−1 ⊇ f ′
i−1 ∪ h

−1gih.23



De�ne fi as f ′∗
i−1.Sine (i) is true for fi−1, Lemma 4.1 implies that Dom(fi) = Ran(fi), so (i) remainstrue. The �rst step guarantees that (ii) remains true. The way as fi has beenonstruted ensures the state of (iii).Finally we an de�ne

f =
⋃

i∈ω

fi.Then f is a partial isomorphism, beause (i) is true for every i ∈ ω. From (ii) weget that Dom(f) = ω, so f is an automorphism.Next we show that f is generi: we must to prove that this automorphism has a denseonjugay lass. Consider an arbitrary nonempty open set A ⊆ Aut(R). We mayassume that it is a basi open set: there is a partial isomorphism d : ω → ω where
Dom(d) is �nite and A = {f : d ⊆ f}. Sine d is a partial isomorphism of R, thereexists n suh that (Dom(d)∪Ran(d), d) ∼= (Gn, gn), speiallyDom(d) ∼= Gn ⊆ R. Sothere is an automorphism h : ω → ω whih maps Dom(d) to Gn. Let g = h−1 · f ·h.Beause of g ∈ Aut(R), h shows that g and f are onjugate, d ⊆ g (beause gn ⊆ f),so g ∈ A.Finally, if x ∈ R, then hoosing a number n < ω suh that x ∈ Dom(fn) we an geta �nite orbit of fn in x, beause Dom(fn) = Ran(fn) is �nite. So f(⊇ fn) has alsoa �nite orbit on x. •
The generi endomorphismWe would like to �nd also the generi endomorphism of R. As we will see, the threadof proof is the same as in the previous setion.To prove the existene of suh endomorphism we need the following lemma.Lemma 4.3. If f is a partial homomorphism of the Rado graph R and g is a partialhomomorphism of a �nite graph G ≤ R, for whih G is allowed, then we an reatea partial homomorphism f ∗ of R suh that for a suitable automorphism h ∈ Aut(R)

f ∗ ⊇ f ∪ h−1gh.Proof If G is a �nite graph and g is a partial homomorphism of it, then we anapply Theorem (3.5), so there is a �nite graph G∗ ≥ G and an endomorphism
g∗ ∈ End(G∗) suh that g∗ is an extension of g. We may assume that G∗ ≤ R24



(when it is not true then we an �nd an embedding ν : G∗ → R, and instead of G∗we an write ν−1G∗ν).First we de�ne a partial isomorphism h′ : G∗ → R using reursion, then omplete itto an automorphism h.By the separation property of the Rado graph, we an �nd an image vertex in eahstep of the reursion, as follows. Let the elements of G∗ be (xi)i≤|G∗|. Assume that
h′(xi) has been de�ned for all i < j for some j ≤ |G∗| suh that there are no edgesbetween any h′(xi) and nodes belonging to Dom(f)∪Ran(f). Let Xj be the subsetof G∗ whih ontains the neighbors of xj from x1, . . . , xj−1 and let Yj be the subset of
G∗ whih ontains the verties not onneted to xj from the elements x1, . . . , xj−1.Using the separation property (see page 12.) we an �nd a vertex yj ∈ R suhthat yj is adjaent to the elements of h′[Xj ] and not adjaent to the elements of
h′[Yj] ∪Dom(f) ∪Ran(f). De�ne h′(xj)

def
= yj.So we de�ned h′ for all the verties of G∗.Sine R is homogeneous, the partial isomorphism h′ extends to an automorphism hof R. This funtion respets the graph struture of G∗ hene the graph struture of

G too. Therefore,
f ∗ def

= f ∪ h−1g∗his suitable for the lemma. •Let R be the Rado graph on the set ω of verties. Taking the disrete topology on
ω, the spae ωω is endowed with the produt topology. Beause End(R) ⊆ ωω, italso has an inherited topology, so we an talk about the densitity of a subset of thespae End(R).De�nition. An endomorphism f of R alled generi, if it has a dense onjugaylass (in End(R)).Theorem 4.4. There is a generi endomorphism f ∈ End(R). For every x ∈ V (R)the orbit {f (n)(x) : n ∈ ω} is �nite.Proof The way, as we reated the generi endomorphism, is the same as theprevious setion: we add all the partial homomorphisms by reursionLet (Gi, gi)i∈ω be an enumeration of all the pairs of �nite subgraphs Gi of R andpartial homomorphisms gi on Gi suh that there are no inompatible nodes in Giwith respet to gi. De�ne a sequene (fn)n∈ω of partial homomorphisms with thefollowing reursion suh that all the stipulations below are satis�ed.25



(i) n ∈ Dom(fn)(ii) if n < ω then there exists D ⊆ Dom(fn), suh that (D, fn|D) ∼= (Gn, gn).Let f0 be the empty funtion. It is trivial that f0 satis�es (i)�(iii).Then assume that fj has been de�ned for all j < i for some i ∈ ω.As �rst step, we would like i to be in the domain. So if i ∈ Dom(fi−1), then de�ne
f ′

i−1

def
= fi−1. Else using Lemma 4.1 to the one-node-graph i with the identialisomorphism, we get a partial isomorphism, whose domain ontains i. Let thispartial isomorphism be f ′

i−1. It is lear that Dom(f ′
i−1) = Ran(f ′

i−1).As seond step, applying Lemma 4.3 to f ′
i−1 and (Gi, gi), we get that there exist apartial homomorphism f ′∗

i−1 of R suh that
f ′∗

i−1 ⊇ f ′
i−1 ∪ h

−1gih.De�ne fi as f ′∗
i−1.The �rst step guarantees that (i) remains true. The way as fi has been onstrutedensures the state of (ii).Finally we an de�ne

f =
⋃

i∈ω

fi.Then f is a partial homomorphism. From (i) we get that Dom(f) = ω, so f is anendomorphism.Next we show that f is generi: we must to prove that this endomorphism has a denseonjugay lass. Consider an arbitrary nonempty open set A ⊆ End(R). We mayassume that it is a basi open set: there is a partial homomorphism d : ω → ω where
Dom(d) is �nite and A = {f : d ⊆ f}. Sine d is a partial homomorphism of R, thereexists n suh that (Dom(d)∪Ran(d), d) ∼= (Gn, gn), speiallyDom(d) ∼= Gn ⊆ R. Sothere is an automorphism h : ω → ω whih maps Dom(d) to Gn. Let g = h−1 · f ·h.Beause of g ∈ Aut(R), h shows that g and f are onjugate, d ⊆ g (beause gn ⊆ f),so g ∈ A.Finally, if x ∈ R, then hoosing a number n < ω suh that x ∈ Dom(fn) we anget a �nite orbit of fn in x, beause Dom(fn) is �nite. So f(⊇ fn) has also a �niteorbit on x. •
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Equivalent de�nitions of dense onjugay lassesTheorem 4.5. Let f ∈ Aut(R) and let K be its onjugay lass. Then the followingare equivalent:(1) K is dense somewhere(there is a nonempty open set G ⊆ Aut(R) suh that for every (nonempty, open)
H ⊆ G we have H ∩K 6= ∅),(2) K is dense(for every open set H we have H ∩K 6= ∅),(3) K is o-meager(there is a family of sets {Li : i ∈ ω} where Li is nowhere dense for every i ∈ ω,
Li-s are disjoint, and Aut(R) \K ⊆

⋃

i∈ω

Li ).It is known that (3)⇒ (2). It is obvious that (2)⇒ (1).Proof of diretion (1)⇒ (2).Suppose that k is a partial isomorphism suh that K is dense in {j ∈ Aut(R) : k ⊆

j}. Let l be another partial isomorphism. By Lemma 4.1 there is an embedding
h : Dom(l)∪Ran(l) → R suh that k∪h−1lh is also a partial isomorphism. Beause
(1) we an take an automorphism f ′ ∈ K, whih is an extension of k ∪ h−1lh. So
h · f ′ · h−1 ⊇ l is an appropriate automorphism for proving impliation (1)⇒ (2). •We insert here a lemma we will need.Lemma 4.6. If K and K ′ are dense onjugay lasses then K = K ′.Proof Let f ∈ K and g ∈ K ′ be automorphisms. Then we have to show that theyare onjugate: we should �nd an automorphism h suh that f = h−1gh.Beause of Theorem 4.2, the basi open set {f ′ ∈ Aut(R) : f ′(0) = f(0)} ontainsan automorphism f0 suh that f0 = h−1

0 gh0 for some automorphism h0.Suppose that fi−1 and hi−1 has been de�ned for any i.First, if i is an odd number. Beause of Theorem 4.2, the basi open set {f ′ ∈

Aut(R) : f ′|[0,i] = f |[0,i]} ontains an automorphism fi suh that fi = h′i
−1gh′i forsome automorphism h′i. Then there is an isomorphism k′ between hi−1[0, i− 1] and

h′i[0, i]. Then k′ has an extension k, whih is an automorphism of R, beause R is27



homogeneous. De�ne hi
def
= k−1h′i. Then it is an extension of hi−1, and it witnessesthat fi is onjugate to g.Next, hanging the role of f and g, we an de�ne hi for even numbers suh that itis an extension of the previous hi-s, and the range of hi ontains [0, i] ⊆ Dom(g).So h def

=
⋃

i<ω

hi|[0,i] is an automorphism, we get f = h−1gh, f and g are onjugate, so
K = K ′. •Proof of diretion (2)⇒ (3).Let g /∈ K be an automorphism, and let K ′ be its onjugay lass. Then K ′ isnowhere dense beause of the following. Supposing K ′ is dense somewhere then itis dense (beause (1)⇒ (2) has already been proved). By the Lemma 4.6 K ′ = K,so it would be a ontradition.So, for suh a g there is partial isomorphism bg, for whih

K ∩ {j ∈ Aut(R) : bg ⊆ j} = ∅.(Call this basi open set Lg). Then the family of sets {Lg : g /∈ K} overs Aut(R)r

K, it is disjoint fromK, and has at most ountable many members (beause |<ωω| ≤

ℵ0). •
Bak to the extending propertyFinally, we show that the existene of the generi automorphism implies a weakerversion of Hrushovksi's theorem.Theorem 4.7. Suppose f ∈ Aut(R) is the generi automorphism of the Rado graph,namely(i) the onjugay lass of f is dense, and(ii) for every x ∈ V (R) {f (n)(x) : n ∈ Z} is a �nite set.Then the weak extension theorem follows: for every pair of �nite graph X and partialisomorphism h on it, there exists a �nite graph Z and an automorphism h∗ ∈ Aut(Z)suh that X ≤ Z and h∗ extends h. 28



Proof Let X be a �nite graph and h a partial isomorphism between induedsubgraphs of X. We may assume that X ≤ R.We know that there is an automorphism g whih is onjugate to f and h ⊆ g,beause the onjugay lass of f is dense.Then de�ne the underlying set of the graph Z as follows:
V (Z) =

⋃

{g(n)(b) : b ∈ V (X) and n ∈ Z}.This is a �nite set (see (ii) ). The graph struture omes from R. So hoosing g∗ tobe g|V (Z) the proof is ompleted. •
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