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1 Introdu
tionLet X be a �nite graph and f : A → B be an isomorphism between indu
edsubgraphs A and B of X. Then there exists a greater �nite graph Z su
h that X isan indu
ed subgraph of Z, and f has an extension f ∗, whi
h is an automorphism of
Z. This theorem has been proved by Truss, for more general results, see Hrushovski[5℄ and Herwig [3℄.The main results of this work are the following: we generalize this theorem as writingpartial homomorphism h instead of partial isomorphism f , we get an extension h∗whi
h is an endomorphism of Z (Theorem 3.5). Furthermore, using Hrushovski'stheorem, we show another proof of Truss's theorem (4.2), whi
h says that the spa
e
Aut(R) has a dense 
onjuga
y 
lass, where R is the Rado graph (also known as
ountable random graph). The de�nitions and the topology 
an be found in the4th 
hapter. Similarly, we prove it for End(R), too (Theorem 4.4). Then we showthat di�erent versions of density is equivalent in this spa
e (Theorem 4.5). Finally,we dedu
e a weaker version of Hrushovski's theorem from the existen
e of a dense
onjuga
y 
lass (Theorem 4.7).Introdu
tionIn this �rst 
hapter we will attempt to summarize the basi
 de�nitions and theoremsthat are 
ru
ial for understanding theorems we prove later in this work. We willalso set the notation that will be used.The se
ond 
hapter is stru
tured around a pair of notions: the homogeneity of astru
ture, and its age. We will spe
ify two properties, namely hereditary propertyand joint embedding property, that 
hara
terize whether a 
lass of stru
tures is theage of a stru
ture. Then with the help of a third property - the amalgamationproperty - we will su

eed in �nding a unique homogeneous stru
ture (
alled Fraïssélimit) belonging to a 
lass of stru
tures. (The ideas treated here will re
ur later inthe fourth 
hapter.)Next, applying this theory we will 
onstru
t the universal homogeneous stru
ture ofthe 
lass of �nite graphs, namely the Rado graph. This graph will be 
hara
terizedby the separation property. Finally, we will point out the 
onne
tion between theRado graph and random graphs. In addition to this, we will prove an interestingtheorem about limit probability of senten
es in a graph, as well.This 
hapter has a survey 
hara
ter and it is based on Hodges's book ([4℄), Cameron's4



le
ture notes ([2℄) and Sági's textbook ([7℄). In parti
ular, all the results in this
hapter are well known.The third 
hapter is based on the 1992 �ndings of E. Hrushovski ([5℄). His theoremsays that every �nite graph 
an be embedded to a greater �nite graph su
h thatevery partial isomorphism of the original graph extends to an automorphism of thegreater one. Here we will present his original proof. This proof has two majorsteps. First the original graph will be embedded to an intermediate graph su
hthat the edges/no-edges departs from the domain of some partial isomorphism willbe preserved. As se
ond step the greater graph will be 
onstru
ted with a masterlyalgebrai
 
onstru
tion. We will be generalize this theorem for partial homomorphismand endomorphism. To do this we must modify the 
onditions, and �nd anotherway as the �rst step.In the fourth 
hapter, we will evoke the notion of generi
 automorphism (whi
hhas a dense 
onjuga
y 
lass in the automorphism group). Of 
ourse, be
ause ofdenseness we will need to introdu
e a topology. Then we give another proof of Truss'stheorem: we 
reate a generi
 automorphism of the Rado graph � using the theoremof Hrushovski. We will also prove the similar theorem for generi
 endomorphism.Then we will prove the equivalen
y of some of properties of its 
onjuga
y 
lass.Finally, we will dedu
e a weaker version of the theorem of Hrushovski from theexisten
e of generi
 automorphism.A
knowledgementsFirst and foremost I would like to thank my supervisor, Gábor Sági for all the helpand support he gave me in writing this thesis. I am grateful for the ideas and forthe time he spent on this work.I grateful to Zalán Gyenis for his 
orre
tions and advi
e. I also would like to thankÁkos Vásáry for grammati
al advi
e.Finally, I am very grateful to my wife Zsuzsi for the patien
e and support.Notation and preliminariesWe summarize the notation of this paper, and the basi
 de�nitions and theoremswe will use.In this paper ω denotes the set of natural numbers. The set of integer and rational5



numbers will be denoted by Z and Q, respe
tively, and [a, b] will denote the set
{a, a + 1, . . . , b} for a ≤ b natural numbers. We will use the standard notation ofoperation of sets as ∪,∩,⊆, et
. We will denote the set of fun
tion from A to B with
AB. As usual P(X) denotes the power set of a set X. The sign of the 
ardinalityof a set X is |X|. Finally, ℵ0 is the 
ardinality of ω.The fun
tions are 
onsidered as sets (of pairs). So we will use set operation andrelation on its. E.g. f ⊆ g means g is an extension of f . The domain and range ofa fun
tion f is denoted by Dom(f) and Ran(f), respe
tively. The image of a set Xby a fun
tion f will be denoted by f [X].In this paper we deal only with relational stru
tures. So a signature S 
ontains(at most 
ountable, but almost always �nite number of) relational symbols, and anarity fun
tion ar on the symbols: S = (Rel, ar). If we say S -stru
ture A, we thinka set with some relation rA ⊆ ar(r)A for some r ∈ Rel. We will not di�erentiate innotation between a stru
ture and its underlying set, it will be 
lear whi
h to thinkabout. For the relation we will use in�x notation xRy or (x, y) ∈ R.We also use the standard phrases and notation of mathemati
al logi
, like A is amodel of a set of senten
es T (A |= T ).In most 
ases the relational stru
ture will be a graph: this means a stru
ture withan irre�exive and symmetri
 �adja
en
y� relation E or E(X) (if the graph is X).Graph theory has an own tradition of notation, and partially this will be appearedhere. So, the elements of a graph stru
ture will be 
alled verti
es (sometimes nodes),the elements of the relation set will be 
alled edges. The verti
es adja
ent to a �xedvertex a will be 
alled neighbours, and will be denoted by X(a) for a graph X.We will say that A is a substru
ture of B (denoted by A ≤ B), if A and B stru
tureswith the same signature, and A (as a set) is a subset of B, and all the relations
onstraining to A will be un
hanged. Let us note that the 
ase of graphs this meansthat A is an indu
ed subgraph of B.De�nition. If A and B are S -stru
tures for a �xed S , then we 
all a one-to-onefun
tion i : A→ B relational isomorphism or isomorphism i� for every r ∈ Rel wehave (x1, . . . , xar(r)) ∈ r

A if and only if (i(x1), . . . , i(xar(r))) ∈ r
B.If there is an isomorphism between A and B, then we denote it with A ∼= B.Similarly,De�nition. If A and B are S -stru
tures for a �xed S , then we 
all a fun
tion

h : A → B relational homorphism or homomorphism i� for every r ∈ Rel we have
(x1, . . . , xar(r)) ∈ r

A if and only if (h(x1), . . . , h(xar(r))) ∈ r
B.6



Note that a

ording to our de�nition, homomorphism for graphs preserves not onlythe edges but also the not edges!An isomorphism between the same stru
ture will be 
alled automorphism, and ahomomorphism between the same stru
ture will be 
alled endomorphism. If for anisomorphism (homomorphism) m : A→ B the set A 6= Dom(f), then it is 
alled apartial isomorphism (respe
tively, partial homomorphism). The group of automor-phisms of a stru
tureX will be denoted by Aut(X), the semigroup of endomorphismsof a stru
ture X will be denoted by End(X).Re
all that the kernel of a fun
tion A→ B is an equivalen
e relation on A, in whi
htwo elements are equivalent i� they have the same homomorphi
 image. A 
ongru-en
e is the kernel of a homomorphism. The quotient stru
ture by an equivalen
e Rwill be denoted by X/R. We will use the `join' fun
tion of two equivalen
e relation,it will be denoted by ∨. This notions are pre
isely the same as introdu
ed in [1℄.Let us remind some of basi
 theorems of logi
. These theorems 
an be found pra
-ti
ally all the textbooks of logi
.Theorem 1.1 (Compa
tness). A (possibly in�nite) set of �rst order senten
es hasa model if and only if every �nite subset of it has a model.Theorem 1.2 (Löwenheim�Skolem). Let T be a theory. If T has an in�nite model,then it has some in�nite model K su
h that |K| = κ where κ ≥ |S | · ℵ0 is anarbitrary 
ardinality.
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2 Fraïssé-limit and random graphsIf there are �nite relational stru
tures, e.g. linear orderings, then an interestingquestion arises: are there a (possibly 
ountable) stru
ture, in whi
h these �nitestru
tures 
an be embedded? We 
an think of the linear ordering of the naturalnumbers. A more general question is, whether there are stru
tures, in whi
h everypartial embedding 
an be extended? We 
an think of (Q, <) as a linear ordering.We will prove that these examples are right.This 
hapter relies on W. Hodges's book ([4℄), P. J. Cameron's notes ([2℄) and GáborSági's textbook ([7℄).Age and Fraïssé-limitIn this se
tion let S be a �xed signature. First, here is a de�nition about the 
lassof �embeddable� stru
tures.De�nition. A 
lass K of S -stru
tures is said to be the age of a 
ountable stru
ture
M i� it 
ontains all the stru
tures (up to isomorphism) whi
h are isomorphi
 withsome �nite substru
ture of M . Denote this 
lass by Age(M).We 
an also say that a 
lass K of S -stru
tures is the age ofM i� for every K ∈ K
K is �nite and 
an be embedded to M as substru
ture, and it 
ontains all the �nitesubstru
tures of M .The question is, what 
ondition are ne
essary and su�
ient to establish the existen
eand uniqueness of su
h a model for a 
lass K of �nite stru
tures? Now let usintrodu
e three 
onditions we will need.Hereditary Property (HP) If A ∈ K is a stru
ture and B ≤ A is a �nite stru
-ture, then B ∈ K, too.Joint Embedding Property (JEP) If A,B ∈ K are stru
tures, then there existsa stru
ture C in K in whi
h A and B are embeddable.

A B

ց ւ

CAmalgamation property (AP) If A,B1, B2 ∈ K are S -stru
tures and f1 : A→

B1 and f2 : A→ B2 are embeddings, then there are C ∈ K and g1 : B1 → C,8



g2 : B2 → C embeddings su
h that g1 ◦ f1 = g2 ◦ f2, i.e. the diagram
A

f1

ւ
f2

ց

B1 B2
g1

ց
g2

ւ

C
ommutes.If K is the age of M , then (HP) obviously holds for K. It is 
lear that (JEP) isalso true be
ause if we embed A and B to M then the indu
ed substru
ture of theimages satis�es (JEP). The third property will be proved later.Fraïssé has proven that two of these 
onditions are also su�
ient for the existen
eof su
h an M .Proposition 2.1. If K is a 
lass of �nite S -stru
tures whi
h has (HP) and (JEP),then there exists a 
ountable stru
ture M su
h that K = Age(M).Proof There are at most 
ountably many elements in K, be
ause the stru
tures are�nite and there is only one from every isomorphism 
lass. So there is an enumeration
(Ai)i<ω of elements of K.Then we de�ne another list of stru
tures. Let B0

def
= A0. Be
ause (JEP) there isa joint embedding of Bi−1 and Ai for every i < ω. Let Bi be the image of thisembedding. Then we 
an de�ne

M = Bω =
⋃

i<ω

Bi.It 
an be seen that every Ai ∈ K 
an be embedded to M , and M is 
ountable as itis the 
ountable union of �nite sets. •This theorem is not enough for us: we need the third 
ondition to prove the uniqenessofM . But what does uniqueness mean in this situation? The answer is homogeneity.De�nition. An S -stru
ture M is homogeneous i� every partial isomorphism fbetween its �nite substru
tures 
an be extended to an automorphism of M .Let us note that W. Hodges 
alled this 
on
ept ultrahomogeneous. Next, here is amore 
on
rete de�nition: 9



De�nition. An S -stru
ture is weakly homogeneous i� whenever A,B ∈ Age(M) A ⊆

B and |A| + 1 = |B|, then every embedding g : A → M 
an be extended to an em-bedding g∗ : B → M .Lemma 2.2. A 
ountable stru
tureM is homogeneous if and only if it is weakly homogeneous.Proof Ne
essity 
omes from homogeneity: if h : B → M is an embedding then
gh−1 is a partial isomorphism ofM (between g[A] and h[A]). By homogeneity thereis an automorphism i whi
h extends gh−1. So it is 
lear that ih is an extension of gand is an embedding of B.

A ⊆ B

↓g ↓h

M
i
← MAs for su�
ien
y, we apply re
ursion: let f = f0 be the partial isomorphism whi
hshould be extended to an automorphism. Letm1, m2, . . . be an enumeration of thoseelements of M whi
h do not belong to Dom(f). Having de�ned fi−1, we 
an set fiusing weak homogeneity:

Dom(fi−1) ∪ {mi} as B, Dom(fi−1) as A, and fi−1 as g.Thus we get a partial isomorphism on Dom(fi−1) ∪ {mi}. Let this partial isomor-phism be fi. This extends fi−1. Finally, we 
an de�ne the desired automorphism as
⋃

i<ω

fi. It is an extension of f (we de�ned it this way), so M is homogeneous. •This proof is very important be
ause its idea plays an essential role in the proofs ofthe fourth se
tion.Now, we are ready to prove Fraïssé's theorem.Theorem 2.3 (Fraïssé). 1. The 
lass K of S -stru
tures is the age of some 
ount-able homogeneous stru
ture M if and only if K has (HP), (JEP) and (AP).2. If M and N are 
ountable homogeneous stru
tures with the same age (Age(M) =

Age(N)) then M and N are isomorphi
.Proof1. For the �only if� part, we only need to prove that K has (AP) follows fromhomogeneity of M (as we promise above).10



We may assume that A,B1, B2 are subsets of M su
h that A ⊆ B1. Thenthe partial isomorphism f2 of M (between A and f2[A]) 
an be extended to anautomorphism i by homogeneity.Then let C def
= i[B1] ∪B2. Choosing g1 = i|B1 and g2 = id 
ompletes the proof.The idea we use to prove the �if� part is very similar to the one in the proof ofProposition 2.1.There are at most 
ountably many elements in K, be
ause the stru
tures are�nite and there is only one from every isomorphism 
lass. So we 
an form anenumeration (Ai, Bi)i<ω of pairs of stru
tures from K (where Ai ⊆ Bi and |Ai|+

1 = |Bi|) su
h that if Aj
∼= Bi then i < j. (E.g. if one orders stru
tures by its
ardinality, it will be appropriate.)Next we de�ne another list of stru
tures using re
ursion. LetM0

def
= A0. Supposethat there are an embedding Ai → Mj for some i < j. Sin
e there is an embedding

Ai → Bi, by (AP) there exist a stru
ture in whi
h Bi and Mj 
an be embedded.Let us 
all this stru
ture Mj+1. (We may 
onsider Mj ≤ Mj+1.) So Bi 
an beembedded to Mj+1.Finally, we de�ne
M = Mω =

⋃

i<ω

Mi.It 
an be seen that every Ai ∈ K 
an be embedded toM . It is 
ountable be
auseit is the 
ountable union of �nite sets.It 
an be seen from this 
onstru
tion, that M is weakly homogeneous thereforehomogeneous.2. We would like to de�ne a 
hain of partial isomorphisms between N and M , sowe do this by re
ursion.Let f0 be the empty fun
tion, n0, n1, . . . be an enumeration of the elements of Nand m0, m1, . . . be an enumeration of the elements of M .Suppose that the partial isomorphism fi between N and M has been alreadyde�ned. Then f−1
i is also a partial isomorphism. Let Ai = Ran(fi) (⊆ M) and

Bi = Ran(fi) ∪ {mi}. By weak homogeneity, we 
an extend f−1
i to mi. Denotethis extension by gi.Similarly, suppose that the partial isomorphism gi has been already de�ned. Then

g−1
i is also a partial isomorphism. Let A′

i = Ran(gi) (⊆ N) and B′
i = Ran(fi) ∪

{ni}. By weak homogeneity, we 
an extend g−1
i to ni. Denote this extension by

fi+1. 11



As the last step, de�ne f as the union of fi-s for all i < ω. It is surje
tive, be
ausethe domain of f−1 
ontains all the elements ofM . And f is also inje
tive, be
ause
Dom(f) 
ontains all the elements of N . Then f is an isomorphism between Nand M , hen
e uniqeness is proved.

•Let us 
all the unique homogeneous stru
ture 
orresponding to a 
lassK of stru
turesthe Fraïssé-limit of K.Random graphsIn this se
tion we will present a graph whi
h is a model of an interesting theory.Then we will show, that this graph is the Fraïssé limit of the 
lass of �nite graphs.Finally, we will show that this graph is isomorphi
 to the random graph on ω (withprobability 1).In this se
tion S denotes the signature of the graphs: there is only one relationsymbol E in it (ex
luding the equality symbol =). So all the stru
tures in thisse
tion are 
onsidered to be graphs.Let TR be the following theory:
TR

def
= {∀v (v, v) /∈ E} ∪ {∀u∀v((u, v) ∈ E → (v, u) ∈ E)} ∪ {ϕn,m : n,m ∈ ω}.The �rst senten
e expresses irre�exivity, the se
ond expresses symmetry. For n,mnatural numbers abbreviate ϕn,m the following: for every x1, x2, . . . , xn, y1, y2, . . . , ymthere is a z di�erent from x-s and y-s su
h that xiEz and ¬yjEz (where i ≤ n, j ≤

m). So the third set of senten
es above gives us a graph property 
alledSeparation property For every n,m ∈ ω if N,M are disjoint �nite graphs su
hthat |N | = n and |M | = m then there is a vertex z whi
h is adja
ent to allthe verti
es of N and none of the verti
es of M .At this point, it is not obvious, whether TR is 
onsistent. The next 
onstru
tiongives a model wittily.Proposition 2.4. TR is 
onsistent. 12



Proof We give an expli
it model of TR.Let R be a graph with underlying set ω. If i = j then let (i, j) /∈ E(R). So assume
i < j Then let (i, j) ∈ E(R) i� the ith digit of j is 1 (in base 2).This graph is a model of TR, be
ause it is irre�exive, symmetri
 and has the separa-tion property: for every x1, x2, . . . , xn, y1, y2, . . . , ym there is a z ∈ ω su
h that the
orrespondent digits are 1 for every xi and 0 for every yi. •So TR has (at least one) model, but are there any more? We 
an observe that theseparation property implies homogeneity, hen
e a model of TR is the Fraïssé limitof the 
lass of �nite graphs!Proposition 2.5. If a graph M has the separation property, then it is a homoge-neous.Proof It is 
lear that if a graph has the separation property, then it 
ontains allthe �nite graphs. •Corollary 2.6. TR is an ℵ0-
ategori
al theory.So it is a unique graph on ω. Call this graph the Rado graph, and denote it by R.Proposition 2.7. TR has only in�nite models.Proof Suppose there is a �nite graph G satisfying TR. It is obvious that in thisgraph ϕ|G|,0 is false. •Re
all the following theorem:Theorem 2.8 (�o±�Vaught test). If theory T has only in�nite models and T is
κ-
ategori
al for some κ ≥ ℵ0, then T is 
omplete.Proof Suppose T is not 
omplete. Then there exists a(n independent) senten
e
ψ and A,B models of T su
h that A |= T ∪ {ψ} and B |= T ∪ {¬ψ}. Be
ause ofLöwenheim�Skolem theorems, there are also modelsA′ |= T∪{ψ} andB′ |= T∪{¬ψ}su
h that |A′| = |B′| = κ. By the κ-
ategori
ity A′ and B′ are isomorphi
, but it isa 
ontradi
tion. • 13



Corollary 2.9. TR is 
omplete.We already know that TR has only in�nite models. But what about the �nite sli
esof TR? That is why we de�ne the graph 
onstru
tion random graph. Let Rk be agraph: let the set of verti
es be the numbers 0, . . . , k−1. Then de
ide for ea
h (i, j)to be an edge or not, with 
oin �ipping (probability 1
2
) where i < j < k.Proposition 2.10. If n,m ∈ ω, then limk→∞ Pr(Rk 6|= ϕn,m) = 0.Proof Let EN,M,z be the event for whi
h the senten
e `z is adja
ent to all theelements of N and to none the elements of M ' is not true. So

Pr(EN,M,z) = 1−
1

2|N |+|M |
.Then denote by EN,M the event that `there is no z vertex su
h that z is adja
ent'.For di�erent z-s the events EN,M,z are independent, thus

Pr(EN,M) = (1−
1

2n+m
)k−n−m.Finally, denote the event `Rk 6|= ϕn,m' by E. Be
ause E =

⋃

N,M

EN,M ,
0 ≤ Pr(E) ≤ kn+m(1−

1

2n+m
)k−n−m,estimated the 
hoi
e of M and N with kn+m. The limit of this expression is 0. •Proposition 2.11. If T ⊆ TR is �nite, then

lim
k→∞

Pr(Rk |= T ) = 1in a random graph Rk on k verti
es.Proof
Pr(Rk 6|= T ) ≤ Pr(Rk 6|= φ1) + · · ·+ Pr(Rk 6|= φl),where φ1, . . . , φl are the elements of T . The limit of right hand side is 0. •This proposition (and 
ompleteness of TR) has an interesting 
orollary:Corollary 2.12 (0-1 law). If φ is an arbitratry formula then limk→∞ Pr(Rk |= φ)is 1 or 0. 14



Proof TR |= φ or TR |= ¬φ, be
ause of 
ompleteness of TR. From the 
ompa
tnesstheorem we get a �nite theory T from whi
h either φ or ¬φ follows. ApplyingProposition 2.11 to T , we get a probability value 1 or 0. •Finally, we prove that a random graph Rω of the set ω is isomorphi
 with the Radograph (with probability 1).Proposition 2.13. With probability 1, a random graph is isomorphi
 to R.Proof Let Ri be the subgraph of Rω indu
ed by the set [0, i−1]. From Proposition2.10 we get that for any �xed n,m: limk→∞ Pr(Rk 6|= ϕn,m) = 0. Sin
e the union of
ω many measure-0-set is a measure-0-set, Pr(Rω 6|= TR) = 0. •
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3 Hrushovski-type theoremsA theorem of HrushovskiFor 
ompleteness, we start this 
hapter by in
luding Hrushovski's original proof(appeared in [5℄).De�nition. We say that F ⊆ P(X) is a statisti
ally independent family of sets on
X, if for every A1, . . . , An, B1, . . . , Bm ∈ F

|A1 ∩ · · · ∩ An r B1 r · · ·r Bm| =
|X|

2n+m
.Proposition 3.1. Every �nite graph X 
an be embedded to a �nite graph Y su
hthat the family of sets {Y (a) : a ∈ X} forms a statisti
ally independent family ofsets on Y .Proof We may assume that a 7→ X(a) is one-to-one on X, else we 
an easily embed

X to a �nite graph, where a 7→ X(a) is one-to-one. Let Y be a graph on the set
P(X) as nodes, and de�ne (y1, y2) ∈ E(Y ) ⇐⇒ y1 = X(a2) for some a2 ∈ y2 or
y2 = Y (a1) for some a1 ∈ y1. Note that for any a ∈ X and Y ′ ∈ P(X) we have
(X(a), Y ′) ∈ E(Y ) i� a ∈ Y . Parti
ularly, if a1, a2 ∈ X, then

(X(a1), X(a, 2)) ∈ E(Y )⇔ a1 ∈ X(a2)⇔ a2 ∈ X(a1)⇔ (a1, a2) ∈ E(X).So the map a 7→ a∗ = X(a) is an embedding to Y . We have to show that the familyof sets below is statisti
ally independent:
{Y (a) : a ∈ X} = {Y (a∗) : a ∈ X} = {Y (X(a))} : a ∈ X}.We have that if Y ′ ∈ P(X) and a ∈ X then Y ′ is a neighbour of X(a) i� a ∈ Y ′.So the interse
tion of sets Y (a∗) = {X ′ : a ∈ X ′} and Y (b∗) = {X ′ : b ∈ X ′} halvesboth of them, so the family {Y (a) : a ∈ X} is statisti
ally independent. •Theorem 3.2 (Hrushovski). Let X be a �nite graph. Then there exists a �nitegraph Z 
ontaining X as an indu
ed subgraph (X ≤ Z), su
h that every partialisomorphism f : A→ B, (where A,B ≤ X) extends to an automorphism f ∗ : Z →

Z.Let U be the set of partial isomorphisms on X, and let Y be as in the previousproposition. For the proof we will need the following lemma:16



Lemma 3.3. If f ∈ U then there exists an f ∗ ∈ Sym(Y ) su
h that f ∗|Dom(f) = fand f ∗[Y (a)] = Y (f ∗(a)) for all a ∈ Dom(f). If Dom(f) = Ran(f) and f 2 = idthen we 
an 
hoose an f ∗ su
h that f ∗2 = id.Proof of the Lemma. Let D = Dom(f) and R = Ran(f). If ν : D → {0, 1} is afun
tion then write
Dν = {y ∈ Y : (d, y) ∈ E(Y )⇔ ν(d) = 1 (d ∈ D)} and

Rν = {y ∈ Y : (r, y) ∈ E(Y )⇔ ν(r) = 1 (r ∈ R)}.Sin
e {Y (a) : a ∈ X} is statisti
ally independent (and by Proposition 3.1) |Dν| =

|Rν | = |Y | · 2
−|D|. Then |D ∩Dν | = |R ∩Rν |, be
ause f is an isomorphism between

D and R, so |Dν rD| = |Rν r R|.Let f ∗ be a permutation on Y extending f and mappingDν\D ontoRν\R arbitrarily.(Ex
ept if D = R and f 2 = id then we must 
hoose f ∗ su
h that f ∗2 = id.) Thispermutation respe
ts the adje
en
y relation on D, so it is su�
ient for the lemma.
•Proof of Hrushovski's theorem. Let U be as above, U∗ = {f ∗ : f ∈ U} and
G = 〈U∗〉 be the group generated by U∗.Notation: if there exist x0, x1, x2 ∈ Y with x0 ∈ Dom(f1), x1 ∈ Ran(f1)∩Dom(f2)and x2 ∈ Ran(f2), and in addition f1x0 = x1 and f2x1 = x2, then we write f2f1x0 =

x2.De�ne a relation ≈ on G×X as follows:
(g, x) ≈ (g′, x′) i� there are h1, . . . , hn ∈ U with(i) hn . . . h1x = x′;(ii) g = g′h∗n . . . h

∗
1 (in G).The relation ≈ is an equivalen
e relation on G × Y : identity funtion witnesses re-�exivity. For symmetry we 
an take the partial isomorphisms h−1

1 , . . . , h−1
n . Finally,if the equivalen
es of (g, x) ≈ (g′, x′) and (g′, x′) ≈ (g′′, x′′) are demonstrated by

h1, . . . , hn ∈ U and h′1, . . . , h′n ∈ U , respe
tively, then transitivity follows by 
hoos-ing h1, . . . , hn, h
′
1, . . . , h

′
n.Next we 
an de�ne a group a
tion by G on Y as follows: h(g, x) = (hg, x). Thisa
tion preserves ≈ be
ause of the following. If (g, x) ≈ (g′, x′), then there exists17



h1, . . . , hn ∈ U with properties (i) and (ii). Sin
e hg = hg′h∗n . . . h
∗
1, the se
ond
ondition is true for (hg, x) and (hg′, x′). The �rst 
ondition is obviously true.Let Z = G × Y/ ≈, and turn Z into a graph: put (

(g, a)/ ≈, (g, b)/ ≈
)

∈ E(Z) if
g ∈ G, (a, b) ∈ E(Y ). This way Z 
an be 
onsidered to be a graph, on whi
h G a
tsby automorphisms, and every f ∈ U extends to an f ∗ ∈ G. The only thing we needto prove for the theorem is that Y 
an be embedded to Z as an indu
ed subgraph.If (id, x) = (id, y) then there exists h1, . . . hn with hn . . . h1x = y and h∗n . . . h∗1 = id,so x = y. Hen
e Y is embeddable to Z naturally (as a set).It is easy to see that Y is a subgraph of Z. But is it an indu
ed subgraph? Supposethat (

(id, x)/ ≈, (id, y)/ ≈
) is an edge of Z for any x, y ∈ Y . Then there exists a

g ∈ G and (x′, y′) ∈ E(Y ) su
h that
(id, x) ≈ (g, x′) and (id, y) ≈ (g, y′).Then there exists f1, . . . fm, h1, . . . hn ∈ U where g = f ∗

m . . . f
∗
1 = h∗n . . . h

∗
1,

hn . . . h1x
′ = x and fm . . . f1y

′ = y.Let x0, . . . , xn ∈ Y be su
h that x0 = x′ and xn = x,
xi ∈ Dom(hi+1), hi+1xi = xi+1.Then h∗i+1[Y (xi)] = Y (h∗i+1xi) = Y (xi+1) so g[Y (x′)] = Y (x). Moreover y′ ∈ Y (x′)(be
ause x′y′ is an edge), hen
e gy′ = f ∗

m . . . f
∗
1 y

′ = y ∈ Y (x) so (x, y) ∈ E(Y ). •Note, that this theorem has been generalized for relational stru
tures:Theorem 3.4 (B. Herwig, [3℄). Let X be a �nite relational stru
ture. Then thereexists a �nite relational stru
ture Z 
ontaining X as an substru
ture (X ≤), su
hthat every partial isomorphism f : A → B, (where A,B ≤ X) extends to an auto-morphism f ∗ : Z → Z.Homomorphism instead of isomorphismWe would like to generalize Hrushovski's theorem for partial homomorphism insteadof isomorphism. But there is a problem with this plan. If there are nodes b, c in thedomain of a partial homomorphism and a node a outside of the domain su
h that
(a, b) is an edge and (a, c) is not an edge, and if the partial homomorphism maps b18



and c to the same node, than we 
annot �nd an appropriate endomorphism whi
hextends our original partial homomorphism. Therefore we avoid this situation.De�nition. We 
all b and c (both nodes in Dom(h)) in
ompatible with respe
t toa partial homomorphism h of a �nite graph X, if there is a node a ∈ X su
h that
(a, b) ∈ E(X) and (a, c) /∈ E(X), and h(b) = h(c).De�nition. We say that a �nite graph X is allowed for a partial homomorphism h,if for h there are no in
ompatible nodes with respe
t to h.Theorem 3.5. Let X be a �nite graph. Then there exists a �nite graph Z 
ontaining
X as an indu
ed subgraph (X ≤ Z), su
h that every partial homomorphism f , forwhi
h X is allowed, extends to an endomorphism f ∗ : Z → Z.An essential idea of the proof of Hrushovski's theorem is the embedding the graph
X to Y su
h that the edges are preserved not only in the domain, but also betweena pair of nodes, where at least one of them is in the domain. We would like to 
arryout a similar argument. But we should 
hoose another way, be
ause we 
annot
omplement a homomorphism to a permutation.Let U be the set of partial homomorphisms on X, for whi
h X is allowed.Lemma 3.6. There exists a �nite graph Y ≥ X su
h that every f ∈ U extends to an
f ∗ ∈ Sym(Y ) su
h that f ∗|Dom(f) = f and f ∗[Y (a)] = Y (f ∗(a)) for all a ∈ Dom(f).Even Y is allowed.Proof of the Lemma.It is 
lear that every h ∈ U is a 
ongruen
y (on its domain), be
ause X is allowed.So we 
an 
onsider the kernel of ea
h partial homomorphism.So de�ne an equivalen
e relation:

H
def
=

∨

h∈U

Ker(h),namely H is the supremum of the kernels of partial homomorphisms.Note that H is a 
ongruen
e for all f ∗.We will de�ne Y by adding verti
es and edges to X su
h that X will remains anindu
ed subgraph. Let
V (Y )

def
= V (X) ∪

⋃

h∈U

a∈V (X)rDom(h)

{ua,h}.19



The set of edges of Y will be the set of edges of X together with some new onesthat we add a

ording to the rule below:
(ua,h, b) ∈ E(Y ) i� b ∈ f [X(a)]/H,where a, b ∈ V (X), h ∈ U .Then we 
an extend an f ∈ U su
h that for every a ∈ V (X) rDom(f),

f ∗(a)
def
= ua,f ,and f ∗(u)

def
= u for ea
h new vertex u. So f ∗ extend to the whole V (Y ).Let us make an observation. Let u be a new node and x, y ∈ V (X). If xHy, then

u is 
onne
ted to x and also to y, or neither to x, nor to y. This is true, be
auseedges between old and new nodes are de�ned up to H .Finally, Y is allowed be
ause of the following. Suppose that there are nodes b, c ∈
V (X) and ua,i ∈ V (Y ) r V (X) su
h that (ua,i, b) ∈ E(Y ) and (ua,i, c) /∈ E(Y ). If
b′ and c′ are the nodes, for whi
h i∗(b′) = b and i∗(c′) = c, then (a, b′) ∈ E(X) and
(a, c′) /∈ E(X) by the observation above. But then X is not allowed, whi
h is a
ontradi
tion, so Y is allowed. •Proof of the Theorem.Let U be as above, U∗ = {f ∗ : f ∈ U} and S = 〈U∗〉 be the semigroup generatedby U∗. This semigroup has an identity element: id = id∗ ∈ U∗.Notation: if there exist x0, x1, x2 ∈ Y with x0 ∈ Dom(f1), x1 ∈ Ran(f1)∩Dom(f2)and x2 ∈ Ran(f2), in addition f1x0 = x1 and f2x1 = x2, then we write f2f1x0 = x2.De�ne a relation ∼ on S×X by (α, a) ∼ (α′, a′) i� there are π1, . . . , πn, ̺1, . . . , ̺m ∈

U with(i) πn . . . π1a = a′, ̺m . . . ̺1a
′ = a,(ii) α = α′π∗

n . . . π
∗
1, α

′ = α̺∗m . . . ̺
∗
1 (in S).The relation ∼ is an equivalen
e relation on S × Y : identity fun
tion shows re�ex-ivity. For symmetry we 
an take the partial isomorphisms π−1

1 , . . . , π−1
n for πi's and

̺−1
1 , . . . , ̺−1

m for the ̺i's. Then the 
orresponding U-elements for transitivity will be
π1, . . . , πn, π

′
1, . . . , π

′
n, and ̺1, . . . , ̺m, ̺

′
1, . . . , ̺

′
m.We 
an de�ne a semigroup a
tion by S on Y as follows: β(α, x) = (βα, x). Thisa
tion preserves ∼. If (α, x) ∼ (α′, x′), then there exists π1, . . . , πn, ̺1, . . . , ̺m ∈ U20



with properties (i) and (ii). Then we 
an get the se
ond 
ondition from the original(ii) by multiplying by β. The �rst 
ondition is the same as the original.Let Z = S × X/ ∼, and let Z be the graph where we let (

(α, a)/ ∼, (β, b)/ ∼
)

∈ E(Z) if α = β ∈ S, (a, b) ∈ E(X). So Z is a graph, on whi
h S a
ts byendomorphisms, and every f ∈ U extends to an f ∗ ∈ S. The only thing we need toprove is that X 
an be embedded to Z as an indu
ed subgraph.If (id, x) ∼ (id, y) then there exist π1, . . . , πn ∈ U su
h that id = π∗
n . . . π

∗
1 and

πn . . . π1x = y hen
e x = y, so x 7→ (id, x) is a natural embedding from X to Z (asa set). Then X is a subgraph of Z, be
ause this embedding respe
ts the edges.Suppose that (

(id, x)/ ∼, (id, y)/ ∼
) is a Z-edge for any x, y ∈ X. We must showthat (x, y) ∈ E(X). To do so, observe that there exist α ∈ S, x′, y′ ∈ X su
h that

(id, x) ∼ (α, x′) and (id, y) ∼ (α, y′)where (x′, y′) ∈ E(X). By the de�nition of ∼ there are π1, . . . , πn, ̺1, . . . , ̺m ∈ Usu
h that
πn . . . π1x

′ = x, ̺m . . . ̺1y
′ = y,

π∗
n . . . π

∗
1 = α = ̺∗m . . . ̺

∗
1.Let x0, . . . , xn ∈ Y be su
h that x0 = x′ and xn = x,

xi ∈ Dom(πi+1), πi+1xi = xi+1.Then π∗
i+1[Y (xi)] = Y (π∗

i+1xi) = Y (xi+1) so α[Y (x′)] = Y (x). Moreover y′ ∈ Y (x′)(be
ause x′y′ is an edge), hen
e αy′ = ̺∗m . . . ̺
∗
1y

′ = y ∈ Y (x) so (x, y) ∈ E(Y ). •
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4 OrbitsThe generi
 automorphismIn this se
tion we would like to �nd a generi
 automorphism of the Rado graph. Tore
all the de�nition of generi
 automorphism, we need to introdu
e a topology onthe automorphism group. If the 
onjuga
y 
lass of an automorphism is big enoughin this topology (namely it is dense), then this automorphism is used to 
all generi
.To prove the existen
e of su
h automorphism we need the following lemma.Lemma 4.1. If f is a partial isomorphism of the Rado graph R and g is a partialisomorphism of a �nite graph G ≤ R, then we 
an 
reate a partial isomorphism f ∗of R su
h that for a suitable automorphism h ∈ Aut(R)

f ∗ ⊇ f ∪ h−1gh.If Dom(f) = Ran(f), then the domain and range of f ∗ are also the same.Proof If G is a �nite graph and g is a partial isomorphism of it, then we 
an applyHrushovski's theorem (3.2), so there is a �nite graph G∗ ≥ G and an automorphism
g∗ ∈ Aut(G∗) su
h that g∗ is an extension of g. We may assume that G∗ ≤ R (whenit is not true then we 
an �nd an embedding ν : G∗ → R, and instead of G∗ we 
anwrite ν−1G∗ν).First we de�ne a partial isomorphism h′ : G∗ → R using re
ursion, then 
omplete itto an automorphism h.By the separation property of the Rado graph, we 
an �nd an image vertex in ea
hstep of the re
ursion, as follows. Let the elements of G∗ be (xi)i≤|G∗|. Assume that
h′(xi) has been de�ned for all i < j for some j ≤ |G∗| su
h that there are no edgesbetween any h′(xi) and nodes belonging to Dom(f)∪Ran(f). Let Xj be the subsetof G∗ whi
h 
ontains the neighbors of xj from x1, . . . , xj−1 and let Yj be the subset of
G∗ whi
h 
ontains the verti
es not 
onne
ted to xj from the elements x1, . . . , xj−1.Using the separation property (see page 12.) we 
an �nd a vertex yj ∈ R su
hthat yj is adja
ent to the elements of h′[Xj ] and not adja
ent to the elements of
h′[Yj] ∪Dom(f) ∪Ran(f). De�ne h′(xj)

def
= yj.So we de�ned h′ for all the verti
es of G∗.Sin
e R is homogeneous, the partial isomorphism h′ extends to an automorphism hof R. This fun
tion respe
ts the graph stru
ture of G∗ hen
e the graph stru
ture of

G too. Therefore,
f ∗ def

= f ∪ h−1g∗h22



is suitable for the lemma. Be
ause g∗ is an automorphism on G∗, the domain andrange of the obtained partial isomorphism are the same. •Let R be the Rado graph on the set ω of verti
es. Taking the dis
rete topology on
ω, the spa
e ωω is endowed with the produ
t topology. Be
ause Aut(R) ⊆ ωω, italso has an inherited topology, so we 
an talk about the densitity of a subset of thespa
e Aut(R).De�nition. An automorphism f of R 
alled generi
, if it has a dense 
onjuga
y
lass (in Aut(R)).Theorem 4.2. There is a generi
 automorphism f ∈ Aut(R). For every x ∈ V (R)the orbit {f (n)(x) : n ∈ Z} is �nite.Proof We would like to de�ne the generi
 automorphism as adding all the partialisomorphisms of �nite graphs (by the previous lemma).Let (Gi, gi)i∈ω be an enumeration of all the pairs of �nite graphs Gi and partialisomorphisms gi on Gi. We may assume that Gi ≤ R for all i < ω. De�ne asequen
e (fn)n∈ω of partial isomorphisms with the following re
ursion su
h that allthe stipulations below are satis�ed.(i) fn is an isomorphism between its domain and range for every n ∈ ω, so that

Dom(fn) = Ran(fn),(ii) n ∈ Dom(fn) ∩ Ran(fn)(iii) if n < ω then there exists D ⊆ Dom(fn), su
h that (D, fn|D) ∼= (Gn, gn).Let f0 be the empty fun
tion. It is trivial that f0 satis�es (i)�(iii).Then assume that fj has been de�ned for all j < i for some i ∈ ω.As �rst step, we would like i to be in the domain. So if i ∈ Dom(fi−1), then de�ne
f ′

i−1

def
= fi−1. Else using Lemma 4.1 to the one-node-graph i with the identi
alisomorphism, we get a partial isomorphism, whose domain 
ontains i. Let thispartial isomorphism be f ′

i−1. It is 
lear that Dom(f ′
i−1) = Ran(f ′

i−1).As se
ond step, applying Lemma 4.1 to f ′
i−1 and (Gi, gi), we get that there exist apartial isomorphism f ′∗

i−1 of R su
h that
f ′∗

i−1 ⊇ f ′
i−1 ∪ h

−1gih.23



De�ne fi as f ′∗
i−1.Sin
e (i) is true for fi−1, Lemma 4.1 implies that Dom(fi) = Ran(fi), so (i) remainstrue. The �rst step guarantees that (ii) remains true. The way as fi has been
onstru
ted ensures the state of (iii).Finally we 
an de�ne

f =
⋃

i∈ω

fi.Then f is a partial isomorphism, be
ause (i) is true for every i ∈ ω. From (ii) weget that Dom(f) = ω, so f is an automorphism.Next we show that f is generi
: we must to prove that this automorphism has a dense
onjuga
y 
lass. Consider an arbitrary nonempty open set A ⊆ Aut(R). We mayassume that it is a basi
 open set: there is a partial isomorphism d : ω → ω where
Dom(d) is �nite and A = {f : d ⊆ f}. Sin
e d is a partial isomorphism of R, thereexists n su
h that (Dom(d)∪Ran(d), d) ∼= (Gn, gn), spe
iallyDom(d) ∼= Gn ⊆ R. Sothere is an automorphism h : ω → ω whi
h maps Dom(d) to Gn. Let g = h−1 · f ·h.Be
ause of g ∈ Aut(R), h shows that g and f are 
onjugate, d ⊆ g (be
ause gn ⊆ f),so g ∈ A.Finally, if x ∈ R, then 
hoosing a number n < ω su
h that x ∈ Dom(fn) we 
an geta �nite orbit of fn in x, be
ause Dom(fn) = Ran(fn) is �nite. So f(⊇ fn) has alsoa �nite orbit on x. •
The generi
 endomorphismWe would like to �nd also the generi
 endomorphism of R. As we will see, the threadof proof is the same as in the previous se
tion.To prove the existen
e of su
h endomorphism we need the following lemma.Lemma 4.3. If f is a partial homomorphism of the Rado graph R and g is a partialhomomorphism of a �nite graph G ≤ R, for whi
h G is allowed, then we 
an 
reatea partial homomorphism f ∗ of R su
h that for a suitable automorphism h ∈ Aut(R)

f ∗ ⊇ f ∪ h−1gh.Proof If G is a �nite graph and g is a partial homomorphism of it, then we 
anapply Theorem (3.5), so there is a �nite graph G∗ ≥ G and an endomorphism
g∗ ∈ End(G∗) su
h that g∗ is an extension of g. We may assume that G∗ ≤ R24



(when it is not true then we 
an �nd an embedding ν : G∗ → R, and instead of G∗we 
an write ν−1G∗ν).First we de�ne a partial isomorphism h′ : G∗ → R using re
ursion, then 
omplete itto an automorphism h.By the separation property of the Rado graph, we 
an �nd an image vertex in ea
hstep of the re
ursion, as follows. Let the elements of G∗ be (xi)i≤|G∗|. Assume that
h′(xi) has been de�ned for all i < j for some j ≤ |G∗| su
h that there are no edgesbetween any h′(xi) and nodes belonging to Dom(f)∪Ran(f). Let Xj be the subsetof G∗ whi
h 
ontains the neighbors of xj from x1, . . . , xj−1 and let Yj be the subset of
G∗ whi
h 
ontains the verti
es not 
onne
ted to xj from the elements x1, . . . , xj−1.Using the separation property (see page 12.) we 
an �nd a vertex yj ∈ R su
hthat yj is adja
ent to the elements of h′[Xj ] and not adja
ent to the elements of
h′[Yj] ∪Dom(f) ∪Ran(f). De�ne h′(xj)

def
= yj.So we de�ned h′ for all the verti
es of G∗.Sin
e R is homogeneous, the partial isomorphism h′ extends to an automorphism hof R. This fun
tion respe
ts the graph stru
ture of G∗ hen
e the graph stru
ture of

G too. Therefore,
f ∗ def

= f ∪ h−1g∗his suitable for the lemma. •Let R be the Rado graph on the set ω of verti
es. Taking the dis
rete topology on
ω, the spa
e ωω is endowed with the produ
t topology. Be
ause End(R) ⊆ ωω, italso has an inherited topology, so we 
an talk about the densitity of a subset of thespa
e End(R).De�nition. An endomorphism f of R 
alled generi
, if it has a dense 
onjuga
y
lass (in End(R)).Theorem 4.4. There is a generi
 endomorphism f ∈ End(R). For every x ∈ V (R)the orbit {f (n)(x) : n ∈ ω} is �nite.Proof The way, as we 
reated the generi
 endomorphism, is the same as theprevious se
tion: we add all the partial homomorphisms by re
ursionLet (Gi, gi)i∈ω be an enumeration of all the pairs of �nite subgraphs Gi of R andpartial homomorphisms gi on Gi su
h that there are no in
ompatible nodes in Giwith respe
t to gi. De�ne a sequen
e (fn)n∈ω of partial homomorphisms with thefollowing re
ursion su
h that all the stipulations below are satis�ed.25



(i) n ∈ Dom(fn)(ii) if n < ω then there exists D ⊆ Dom(fn), su
h that (D, fn|D) ∼= (Gn, gn).Let f0 be the empty fun
tion. It is trivial that f0 satis�es (i)�(iii).Then assume that fj has been de�ned for all j < i for some i ∈ ω.As �rst step, we would like i to be in the domain. So if i ∈ Dom(fi−1), then de�ne
f ′

i−1

def
= fi−1. Else using Lemma 4.1 to the one-node-graph i with the identi
alisomorphism, we get a partial isomorphism, whose domain 
ontains i. Let thispartial isomorphism be f ′

i−1. It is 
lear that Dom(f ′
i−1) = Ran(f ′

i−1).As se
ond step, applying Lemma 4.3 to f ′
i−1 and (Gi, gi), we get that there exist apartial homomorphism f ′∗

i−1 of R su
h that
f ′∗

i−1 ⊇ f ′
i−1 ∪ h

−1gih.De�ne fi as f ′∗
i−1.The �rst step guarantees that (i) remains true. The way as fi has been 
onstru
tedensures the state of (ii).Finally we 
an de�ne

f =
⋃

i∈ω

fi.Then f is a partial homomorphism. From (i) we get that Dom(f) = ω, so f is anendomorphism.Next we show that f is generi
: we must to prove that this endomorphism has a dense
onjuga
y 
lass. Consider an arbitrary nonempty open set A ⊆ End(R). We mayassume that it is a basi
 open set: there is a partial homomorphism d : ω → ω where
Dom(d) is �nite and A = {f : d ⊆ f}. Sin
e d is a partial homomorphism of R, thereexists n su
h that (Dom(d)∪Ran(d), d) ∼= (Gn, gn), spe
iallyDom(d) ∼= Gn ⊆ R. Sothere is an automorphism h : ω → ω whi
h maps Dom(d) to Gn. Let g = h−1 · f ·h.Be
ause of g ∈ Aut(R), h shows that g and f are 
onjugate, d ⊆ g (be
ause gn ⊆ f),so g ∈ A.Finally, if x ∈ R, then 
hoosing a number n < ω su
h that x ∈ Dom(fn) we 
anget a �nite orbit of fn in x, be
ause Dom(fn) is �nite. So f(⊇ fn) has also a �niteorbit on x. •
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Equivalent de�nitions of dense 
onjuga
y 
lassesTheorem 4.5. Let f ∈ Aut(R) and let K be its 
onjuga
y 
lass. Then the followingare equivalent:(1) K is dense somewhere(there is a nonempty open set G ⊆ Aut(R) su
h that for every (nonempty, open)
H ⊆ G we have H ∩K 6= ∅),(2) K is dense(for every open set H we have H ∩K 6= ∅),(3) K is 
o-meager(there is a family of sets {Li : i ∈ ω} where Li is nowhere dense for every i ∈ ω,
Li-s are disjoint, and Aut(R) \K ⊆

⋃

i∈ω

Li ).It is known that (3)⇒ (2). It is obvious that (2)⇒ (1).Proof of dire
tion (1)⇒ (2).Suppose that k is a partial isomorphism su
h that K is dense in {j ∈ Aut(R) : k ⊆

j}. Let l be another partial isomorphism. By Lemma 4.1 there is an embedding
h : Dom(l)∪Ran(l) → R su
h that k∪h−1lh is also a partial isomorphism. Be
ause
(1) we 
an take an automorphism f ′ ∈ K, whi
h is an extension of k ∪ h−1lh. So
h · f ′ · h−1 ⊇ l is an appropriate automorphism for proving impli
ation (1)⇒ (2). •We insert here a lemma we will need.Lemma 4.6. If K and K ′ are dense 
onjuga
y 
lasses then K = K ′.Proof Let f ∈ K and g ∈ K ′ be automorphisms. Then we have to show that theyare 
onjugate: we should �nd an automorphism h su
h that f = h−1gh.Be
ause of Theorem 4.2, the basi
 open set {f ′ ∈ Aut(R) : f ′(0) = f(0)} 
ontainsan automorphism f0 su
h that f0 = h−1

0 gh0 for some automorphism h0.Suppose that fi−1 and hi−1 has been de�ned for any i.First, if i is an odd number. Be
ause of Theorem 4.2, the basi
 open set {f ′ ∈

Aut(R) : f ′|[0,i] = f |[0,i]} 
ontains an automorphism fi su
h that fi = h′i
−1gh′i forsome automorphism h′i. Then there is an isomorphism k′ between hi−1[0, i− 1] and

h′i[0, i]. Then k′ has an extension k, whi
h is an automorphism of R, be
ause R is27



homogeneous. De�ne hi
def
= k−1h′i. Then it is an extension of hi−1, and it witnessesthat fi is 
onjugate to g.Next, 
hanging the role of f and g, we 
an de�ne hi for even numbers su
h that itis an extension of the previous hi-s, and the range of hi 
ontains [0, i] ⊆ Dom(g).So h def

=
⋃

i<ω

hi|[0,i] is an automorphism, we get f = h−1gh, f and g are 
onjugate, so
K = K ′. •Proof of dire
tion (2)⇒ (3).Let g /∈ K be an automorphism, and let K ′ be its 
onjuga
y 
lass. Then K ′ isnowhere dense be
ause of the following. Supposing K ′ is dense somewhere then itis dense (be
ause (1)⇒ (2) has already been proved). By the Lemma 4.6 K ′ = K,so it would be a 
ontradi
tion.So, for su
h a g there is partial isomorphism bg, for whi
h

K ∩ {j ∈ Aut(R) : bg ⊆ j} = ∅.(Call this basi
 open set Lg). Then the family of sets {Lg : g /∈ K} 
overs Aut(R)r

K, it is disjoint fromK, and has at most 
ountable many members (be
ause |<ωω| ≤

ℵ0). •
Ba
k to the extending propertyFinally, we show that the existen
e of the generi
 automorphism implies a weakerversion of Hrushovksi's theorem.Theorem 4.7. Suppose f ∈ Aut(R) is the generi
 automorphism of the Rado graph,namely(i) the 
onjuga
y 
lass of f is dense, and(ii) for every x ∈ V (R) {f (n)(x) : n ∈ Z} is a �nite set.Then the weak extension theorem follows: for every pair of �nite graph X and partialisomorphism h on it, there exists a �nite graph Z and an automorphism h∗ ∈ Aut(Z)su
h that X ≤ Z and h∗ extends h. 28



Proof Let X be a �nite graph and h a partial isomorphism between indu
edsubgraphs of X. We may assume that X ≤ R.We know that there is an automorphism g whi
h is 
onjugate to f and h ⊆ g,be
ause the 
onjuga
y 
lass of f is dense.Then de�ne the underlying set of the graph Z as follows:
V (Z) =

⋃

{g(n)(b) : b ∈ V (X) and n ∈ Z}.This is a �nite set (see (ii) ). The graph stru
ture 
omes from R. So 
hoosing g∗ tobe g|V (Z) the proof is 
ompleted. •
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