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1 Introduction

The stable marriages problem was first introduced by [Gale-Shapley (1962)]. In Amer-

ica, the deferred acceptance algorithm was used in the National Intern Matching Prob-

lem since 1952, even before this mathematical model was made.

Another application of the stable matchings is the Hungarian college admissions sys-

tem. [Gale-Shapley (1962)] also gave a model to college admissions, but the Hungarian

system are different, because here can be ties between the applicants, and if there is a

tie, the university must accept all of the tied students or none of them.

This can be captured with scoring choice functions. [Fleiner (2003)] and

[Hatfield-Milgrom (2005)] discovered that the fixed point theorem of [Tarski (1955)] is

a very effective tool to find the stable outcomes.

Using choice functions, stability can be defined in many ways. Here we introduce the

so called three-part, four-part and dominating stability concepts for every comonotone

choice functions, and show that these three are equivalent, if preferences has the path

independence property.

We use score-stability and two-sided score stability for the college admissions problem.

In [Knuth (1976)] they show that stable marriages form a distributive lattice, dedicated

to John Conway. Using Tarski’s fixed point theorem we prove the lattice property of

university admissions too, and generalize Blair’s theorem about the lattice of stable

cores.

In the second part of the thesis, we study abstract models of supply chains. Consider

a directed graph, where the nodes are the trading companies, and the edges correspond

to the possible trades. In an article [Fleiner (2009)] every edge has a maximal capacity,

the traded volumes form a flow, except from the source (manufacturer) and sink (final

consumer), everyone buys as much as they sell. This model differs from the traditional

flows in such a way that, all agents have a preference order over his input and output

edges, and he wants to trade with his preferred partners.

In the stable marriage problem an edge is blocking, if both participants are single or

prefer the other to his/her current partner. Similarly an edge in the trading network is

blocking, if they prefer to sell/buy from the other, and they have free capacity for it,

or decrease other trades for its sake. But now we define blocking coalitions as walks,

where the first and last agent would like to make new trades, and the intermediate

companies pass on the sufficient quantities. We allow cycles in the graph.

In the article [Ostrovsky (2008)] the flow does not need to satisfy Kirchhoff’s law, but

if they buy more, they want to sell more, and they choose the best possible set of edges.

These conditions are described with the so called same side substitutable, cross side
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complementary and path independent properties. In this second model, we have an

upstream-downstream market, there are basic inputs, intermediates and final outputs,

so the graph is acyclic. Each edge is associated with a finite set of possible prices. The

edge-price pairs are called contracts, they can be represented as parallel edges in the

graph.

In this present work, in Section 3, we generalize Ostrovsky’s theorem to the case of

cyclic graphs, first with the assumption that each agent’s choice is discrete, whether

he chooses to trade over an edge or not. Then we consider continuous choices, where

they can decide how much quantity they trade. A supply chain is stable if there is no

blocking walk where all participants would like to sell/forward/buy extra volume.

These three models’ common background is the Tarski fixed point theorem. The fixed

points can be assigned to the stable sets.

A further generalization of the model is described in the article [Hatfield et al. (2011)].

Here the prices of the trades are continuous, every p ∈ R is allowed. The price is added

to the utility function, so if a firm prefers selling a to b, its choice can be reversed if b

will pay more.

Thus the players can compensate each other for a less useful selection, so the prob-

lem is related to maximum weight matchings instead of / in addition to the stable

matchings.

In this article [Hatfield et al. (2011)] they define the fully substitutable property, which

is, because of the prices, a stronger requirement than the SSS and CSC used in the

third chapter. This stronger requirement leads to a stronger claim for the existence of

a stable solution, not only where no blocking walks, but there is no blocking subset of

the edges.

The authors prove the existence of competitive equilibrium first, then they show

that all equilibrium solutions are stable. However, they do not use the Tarski fixed-

point theorem, they reduce the problem to the many-to-one stable matchings by

[Kelso and Crawford (1982)].

Our goal is to generalize it to the case of continuous quantity trading.

In Section 2, we introduce basic definitions in the theory of stable matchings. We

show the connection between the path independent property, and a preference ordering

over all subsets.

In Section 3, we compare five stability definitions, introduce the college admissions

model, show the lattice property of stable score vectors using one generalization of

Blair’s theorem.
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Here the connection between first three stability concepts (Theorems 19,20 and 21),

the statements about score-stability and the generalization of Blair’s theorem are new

results. We also show counterexamples for cases where one kind of stability does not

imply the another.

In Section 4, we capture the preferences in the firm-worker assignment of

[Kelso and Crawford (1982)] with comonotone choice functions.

In Section 5, we solve the problem of supply chains without money in the discrete or

continuous quantities case using Tarski’s fix point theorem.

The new results in this section are the generalization of Ostrovsky’s theorem (Theorem

36), Lemma 38 and Theorem 39, and the similar theorem for the existence of a chain-

stable network in case of continuous quantities, Theorem 43.

In Section 6, we search for equilibrium and stable sets in a supply chain market with

money. We suppose Conjecture 54 and show that if it is true, there exists an equilibrium

in the continuous price-continuous quantity market.

We conclude in Section 7.

2 Preliminaries

In the stable marriage model, there are n men: M = m1, . . .mn and n women: W =

w1, . . . wn, each of them having a strict preference order on the members of the other

gender. Let G be a bipartite graph with color classes M and W , and let set E of edges

of G denote the possible marriages. We use the notation w <m w′, if man m prefers

woman w′ to w. If an S set of marriages is a matching in G, then S ⊆ E can also

be described as an involutive function: s : M ∪ W → M ∪ W . For a married pair

(m,w) ∈ S, let s(m) = w, s(w) = m, and we define s(a) = a, if a ∈ M ∪W remains

single.

With these notations, a marriage scheme S is stable, if for any (m,w) /∈ S pair,

s(m) >m w, or s(w) >w m.

The men’s preference systems give us a partial order on stable marriage schemes:

S ≥M S ′, if s(mi) ≥mi
s′(mi), for all mi ∈ M , and S >M S ′, if S ≥M S ′ and there

exists a man mi such that s(mi) >mi
s′(mi). In the similar way, there is an other

ordering >W defined by women.

Theorem 1 (Gale-Shapley). [Gale-Shapley (1962)] There always exists a stable match-

ing, and it can be found with the deferred acceptance algorithm.

In the deferred acceptance algorithm, in each round every unengaged man proposes

to the most-preferred woman to whom he has not yet proposed. Each woman then
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considers all her suitors and keeps her most preferred man, and refuses the others.

Next round, the men who were not accepted, continue proposing to the next best girl.

The algorithm stops in at most 2n2 steps since every man propose to every women at

most once.

The algorithm guarantees that everyone gets married and the marriages are stable.

Theorem 2 (Knuth). [Knuth (1976)] If preference orders are strict, the common or-

derings for men and women are the opposite of each other. Say, if S and S are two

stable matchings, then S ≥M S ′ ⇔ S ≤W S ′

Definition 1. We call a stable matching S male-optimal (female-optimal) if there is

no stable matching S ′, such that S <M S ′ (S <W S ′).

A stable matching S is male-pessimal (female-pessimal) if there is no stable matching

S ′, such that S >M S ′ (S <W S ′).

Theorem 3. [Gale-Shapley (1962)] The stable marriage scheme given by the Gale-

Shapley algorithm is male-optimal and female-pessimal.

In the stable marriage problem, we can use choice functions to define the preference

orders for the two sides of the market.

Definition 2. Set function F : 2E → 2E is called a choice function if F (A) ⊆ A holds

for any subset A of ground set E.

For example, if a man wants to choose between two girls a and b, and prefers a (we

use the notation a > b), his choice function will be F : 2{a,b} → 2{a,b}

F (∅) = ∅
F ({a}) = {a}
F ({b}) = {b}
F ({a, b}) = {a}
As we will define later, this choice function is comonotone and path independent.

Definition 3. A set function F : 2E → 2E is monotone if F (A) ⊆ F (B) whenever

A ⊆ B ⊆ E holds.

Definition 4. A choice function F : 2E → 2E is comonotone (sometimes it is called

substitutable) if F (A) ⊆ F (B) for any A ⊆ B. (That is, if F is a monotone function.)

The stable marriage problem can be represented with a G = (M,W,E) bipartite

graph, where M is the set of the men, W is the set of women, and edges E is the set

of possible marriages between them. Let F be the common choice function for men
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over the edges of the bipartite graph, where every man choose the best of the edges

he is incident with (i.e. the marriages he can participate in). Let G be the similar

choice function for women. A set of marriages S ⊆ E is stable, if any not married

pair mw = e, e /∈ S , m or w do not want to choose e so e /∈ F (S + e) (we say e is

F -dominated) or e /∈ G(S + e) (e is G-dominated). Let A0 be the set of F -dominated

edges, and B0 is the set of G-dominated edges. Now A0, B0 and S are disjoint sets,

S ∪ A0 ∪ B0 = E, so for A = A0 ∪ S, B = B0 ∪ S, we get A ∪ B = E and A ∩ B = S.

If F and G are comonotone, the edges dominated one by one will be dominated alto-

gether, so F (A) = S,G(B) = S. We can generalize this stability to any kind of choice

functions.

Definition 5. Subset S of E is (three-part) stable, if F (S) = S = G(S), and there

exists subsets A and B of E, such that F (A) = S = G(B) and A∪B = E, A∩B = S.

Pair (A,B) with this property is called an FG-stable pair, and S is an FG-stable core.

We can define a partial order on FG-stable pairs: (A′, B′) ≤ (A,B), if A′ ⊆ A and

B′ ⊇ B.

The following theorem is the key to the Gale-Shapley algorithm that finds a stable

matching. Recall that a lattice is a partially ordered set L with the property that any

two elements x, y of L have a greatest lower bound x∧y and a least upper bound x∨y.

A lattice L is complete if any subset X of L has a greatest lower bound
∧
X and a

least upper bound
∨
X. Function f : L→ L′ from poset L to poset L′ is monotone if

x ≤ y implies f(x) ≤ f(y) for any elements x, y of L.

Theorem 4 (Tarski’s fixed point theorem [Tarski (1955)]). Let L be complete lattice,

and f : L→ L be a monotone function on L. Then Lf is a nonempty, complete lattice

on the restricted partial order where Lf = {x ∈ L : f(x) = x)} is the set of fixed points

of f .

Theorem 4 implies the following corollary.

Theorem 5. [Fleiner (2003)] If F,G : 2E → 2E are comonotone choice functions,

than the FG-stable pairs form a nonempty complete lattice for partial order (≤).

Define function f : 2E × 2E → 2E × 2E by

f(A,B) := (E \ (G(B)), E \ (F (A)) = (E \ (B \G(B)), E \ (A \ F (A))

It is straightforward to see that FG-stable pairs are exactly the fixed points of f . Using

Tarski’s fixed point theorem, FG-stable pairs form a lattice.
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Definition 6. A choice function F is path independent, if it has the property

F (A) ⊆ B ⊆ A⇒ F (A) = F (B)

for every A,B subsets of E.

Sometimes path independence is defined with: F (A ∪ B) = F (F (A) ∪ F (B)) for

every A,B.

Theorem 6. [Fleiner (2002)] If F is a comonotone choice function, these two defini-

tions are equivalent.

Proof. Suppose that F (A ∪B) = F (F (A) ∪ F (B)) for every A,B.

Then F (A) = F (A ∪ A) = F (F (A) ∪ F (A)) = F (F (A)).

If F (A) ⊆ B ⊆ A then F (B) = F (F (A) ∪B) = F (F (F (A) ∪ F (B)) =

F (F (A) ∪ F (B)) = F (A ∪B) = F (A).

For the opposite direction: A,B are arbitrary subsets of E, now

F (A∪B) = F (A∪B)∩(A∪B) = (F (A∪B)∩A)∪(F (A∪B)∩B) ⊆ F (A)∪F (B) ⊆ A∪B
F (A ∪B) ⊆ F (A) ∪ F (B) ⊆ A ∪B ⇒ F (F (A) ∪ F (B)) = F (A ∪B)

If F is not comonotone, we will use the first definition.

Theorem 7. If there exist a well-ordering of all subsets of E, such that F (A) is the

best choice of subsets of A, the choice function F is path independent (with definition

F (A) ⊆ B ⊆ A⇒ F (A) = F (B)).

Note that a well-ordering means every set has a smallest element. Because we

defined preferences the way that a > b is a is better than b, what we need is every set

has a biggest element, so an opposite well-ordering.

Proof. If there is a well-ordering above all subsets, F (A) ⊆ B ⊆ A means that the best

of all X ⊆ A is also in B. Since B is smaller than A, the all subsets of B, P(B) ⊆ P(A),

so B cannot have a better subset, F (A) is also the best in B, so F (A) = F (B).

The theorem is not true in the opposite direction: there exists a choice function

which is path independent, but there is no corresponding ordering above the subsets.

For example, let F be the following choice function defined on three elements ({a, b,

c}:
F (∅) = ∅
F ({a}) = {a}
F ({b}) = {b}
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F ({c}) = {c}
F ({a, b}) = {a}
F ({a, c}) = {c}
F ({b, c}) = {b}
F ({a, b, c}) = {a, b, c}

This function satisfies F (A) ⊆ B ⊆ A ⇒ F (A) = F (B). Suppose that there is a

good ordering. Since F (ab) = a, F(ac)=c and F (bc) = b, so a > b > c > a must stand.

This is not transitive, so it is not an ordering.

But this counterexample is not comonotone. If we add the comonotone property,

we can prove this direction too.

Theorem 8. If F is comonotone and path independent over a finite set E, then there

exists an ordering over all subsets of E for which F (A) = maxX⊆AX.

Proof. We say that A is an independent set, if F (A) = A. If for any A, B sets,

F (A) = B, then F (A) = B ⊆ A, so F (B) = B, which means only independent sets

can be chosen. If F (A) 6= A, then in our ordering A < ∅. We don’t bother with

defining the ordering between non-independent sets, since they are never chosen.

If A and B are independent sets:

If F (A ∪B) = A, then A > B.

If F (A ∪B) = B, then B > A.

If F (A ∪ B) = C is neither A nor B, and there exist a chain A1, A2, . . . An such that

F (A ∪ A1) = A, F (A1 ∪ A2) = A1, . . . F (An−1 ∪ An) = An−1, F (An ∪ B) = An then

A > B.

Where none of these occurs, we can pick the better freely. We need to prove that this

ordering is transitive.

Indirectly, suppose there exist A1, A2, . . . An such that F (A1 ∪A2) = A1, F (A2 ∪A2) =

A2 . . . F (An−1 ∪ An) = An−1, F (An ∪ A1) = An. Then for every i,

F (Ai ∪ Ai+1) = Ai+1 \ Ai ⊆ F (
⋃n
i=1Ai), so B = F (

⋃n
i=1Ai) ⊆ F (

⋂n
i=1 Ai). With the

path independent property, from B = F (
⋃n
i=1Ai) ⊆ Ai ∪ Ai+1 ⊆

⋃n
i=1Ai, it follows

that F (Ai ∪ Ai+1) = B for every i which contradicts our assumption.

So the ordering is transitive, and since we decided something in the uncertain cases,

the ordering is trichotomous.

What is left behind to show this ordering defines the same function what we want.

Indirect: suppose there is A subset of E, and from all subsets of A, our ordering

gives B as maximal, but the choice function chooses F (A) = C. Then B > C so
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F (B∪C) 6= C (since if it were C, we would defined the order in the opposite direction).

From B ⊆ A,C ⊆ A, we get B ∪ C ⊆ A. Since C = F (A) ⊆ B ∪ C ⊆ A, from path

independence F (B ∪ C) = C. We reached a contradiction.

3 Stability concepts

3.1 Score stability

The stable matchings can be used for the Hungarian university admissions system.

There, every applicant has a strict preference order over the colleges she applies to, and

each college assigns some score (an integer between 1 and M) to each of its applicants.

Moreover, each college C has a quota q(C) on admissible applicants. According to the

law, no college can accept more applicants than its quota, moreover if an applicant

with a certain score is not acceptable to some college than any applicant with the same

score has to be unacceptable.

To determine the admissions after all information is known, each college has to

declare a score limit. Assume we have n applicants A1, A2, . . . , An and m colleges

C1, C2, . . . Cm with score limits t1, t2, . . . tm, respectively. Each applicant will become a

student on her most preferred college where she has high enough score. More precisely,

applicant Ai is assigned to college Cj if S(i, j) ≥ tj (i.e. score S(i, j) of Ai at Cj is not

less than threshold tj for Cj) and S(i, j′) < tj′ for j′ < j (i.e. score S(i, j′) of Ai at

Cj′ is less than the score limit tj′). The vector of declared score limits (t1, t2, . . . , tm)

is called a score vector. Below we define the stability of a score vector according to the

Hungarian law.

Definition 7. Score vector (t1, t2, . . . tm) is valid if no college exceeds its quota with

these score limits.

Score vector (t1, t2, . . . tm) is critical if for every college Cj either tj = 0 or score vector

(t1, t2, . . . , tj−1, tj−1, tj+1, . . . , tm) would assign more than q(Cj) students to Cj. (That

is, no college can lower its quota without exceeding its quota.)

A score vector s is stable if s is valid and critical.

The above college admissions model determines a natural choice function for the

students and another one for the colleges. Let E be the set of all applications of

all applicants. (It is convenient to think that E is the set of edges of the bipartite

graph with color classes {A1, . . . , An} and {C1, . . . , Cm} where each edge AiCj of the

graph corresponds to an application of Ai to Cj.) So for subset X ⊆ E of applications

F (X) denotes the set of most preferred applications of each applicant. Similarly, G(X)
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denotes the set of applications that colleges would choose if they can select freely. More

precisely, let Xj denote the set of applications to Cj from X, and let Cj declare a score

limit tj such that no more than q(Cj) applications of Xj has score at least tj, but

either tj = 0 or more than q(Cj) applications has score at least tj − 1. Define choice

function G : 2E → 2E for the colleges such that G(X) is the set of applications with

score at least the corresponding score limit. By definition, G(X) cannot assign more

than q(Cj) applications to Cj for any college Cj.

It is easy to see that choice function F of the applicants is path independent, but G

for the universities is not.

Definition 8. We call a G choice function scoring choice function over the set E, if

there exist scores for every edge and quotas for the universities what define G with the

previous method.

Every scoring choice functions are comonotone, but not necessary path independent.

Definition 9. An subset S of E of applications is an assignment if each applicant Ai

has at most one application in S and each college Cj has at most q(Cj) applications in

S.

An assignment S is score stable if for any application e of (say) Ai to Cj at least

one of the following alternatives holds. Either e ∈ S or there is an application s of

Ai in S such that s ≥Ai
e (i.e. Ai prefers s to e) or |{Al : S(l, j) ≥ S(i, j) and

Cj ≤Al
S(Al)}| > q(Cj), where S(Al) denotes the college that S assigns to applicant

Al. This third condition says that there are more than q(Cj) applicants that Cj should

accept if Cj accepts application e of Ai.

Application e is score blocking assignment S, if the above condition does not hold for

e. (In particular, a score blocking assignment of S cannot belong to S.)

We can define college-optimality/pessimality, applicant-optimality/pessimality in

the same way as we did with stable marriages.

Theorem 9. For any finite set of applicants, colleges and set of applications, for

arbitrary positive scores of the applications there always exists a stable score vector.

However, the score-stable solutions are not equivalent with the three-part stability

in Section 2, so we need to use a new stability concept.

First, we introduce the dominating function:

Definition 10. For choice function F : 2X → 2X let dominating function

DF (A) := {x ∈ X : x /∈ F (A ∪ {x})}

denotes the set of dominated choices.
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Theorem 10. If F is a comonotone choice function then DF is monotone.

Proof. Let A ⊆ B. If x ∈ DF (A) then x /∈ F (A ∪ {x}) ⇒ x ∈ F (A ∪ {x}). From F is

comonotone, x ∈ F (B ∪ {x}) ⇒ x /∈ F (B ∪ {x}) so x ∈ DF (B).

Definition 11. Subset S of E is four-part stable, if F (S) = S = G(S), and there

exists subsets A and B of E, such that F (A) = S = G(B) and A ∩ B = S, and

DF (A) = E \B,DG(B) = E \ A.

Theorem 11. The score-stability is equivalent with four-part stability.

Proof. Suppose that subset S is E is score stable. Let B = {(a, c) : c ≥a s(a)}. Now

G(A)=S, because all student-application pair, where the student would like to change

his university, is in B, so if by decreasing its score limit by one, some university would

fulfil its quota from all edges, it would also fulfil by the edges in B.

Let DG(B) = B \ S ∪D, whereby D = DG(B) \ (B \ S). Let A = E \ DG(B)

This means A ∪D = {(a, c) : c ≤a s(a)} so F (B ∪D) = S, because the students like

the other edges less than their university in assignment S.

Choice function F is path independent, so S ⊆ A ⊆ (A ∪D) is followed by F (A) = S.

From lemma 18, DF (A) = Df (S) = DF (A∪D) = (A∪D)\S = E \A, so S is four-part

stable.

If S is four-part stable, with A, B, and D = E \ (A∪B): Similarly with the earlier

part, DF (A ∪D) = (A ∪D) \ S, so for all x /∈ A ∪D,x ∈ F (A ∪D ∪ x).

(a, c) ∈ B \ S ⇒ c >a s(a)

If c >a s(a), (a, c) can not be in (A∪D)\S, otherwise student a would choose it. This

means (a, c) ∈ (A ∪D) \ S ⇒ c <a s(a)

(a, c) ∈ S ⇒ c =a s(a)

(a, c) ∈ B \ S ⇒ c >a s(a)

Assignment S is score-stable: it is valid because F (S) = G(S) = S, so no one has more

students than its quota. And if college c decreases its score limit, all of the applicants,

who would like to change is in A. But F (A) = S, so c can not lower among the

applications in A, so also can’t do this with all applications.

3.2 Generalization of Blair’s theorem

Definition 12. Define a partial order on stable matchings: if S and are S ′ FG-stable

cores, S ′ ≤F S if F (S ∪ S ′) = S.

13



Blair proved the lattice property of FG-stable cores assuming the path independent

property of the choice functions [Blair (1988)].

Theorem 12 (Blair). [Blair (1988)] If F,G : 2E → 2E are comonotone path indepen-

dent choice functions then the FG-stable cores form a lattice for partial order <F .

Now, we don’t require both side’s path independency, just on one side:

Theorem 13 (Generalization of Blair’s theorem). If F and G are comonotone choice

functions and F is path independent, then the FG-stable cores form a lattice for partial

order <F

Moreover, if S is stable, then there is only one corresponding FG-stable (A,B) pair,

and S ≤F S ′ ⇔ (A,B) ≤ (A′, B′)

Proof. (i) For given stable core S there is a unique (A,B) pair.

Suppose that there are two different stable pairs for S: (A,B) and (A′, B′).

We can assume that there exists a b for which b ∈ B, but b /∈ B′. Since S ⊆ B′, it fol-

lows that b /∈ S. Moreover b ∈ F (A∪b) but b /∈ F (A′∪b) because b ∈ F (A∪b)⇔ b /∈ B.

Because A′\S = F (A′) ⊆ F (A′∪b), we get F (A′∪b) ⊆ S ⊆ A′∪b, hence F (A′∪b) = S.

We know that (A′ ∪ b) \ S = F (A′ ∪ b) and A \ S = F (A) .

Since F is comonotone F (A′∪A∪b) is bigger than both, (A′∪A∪b)\S ⊆ F (A′∪A∪b),
so F (A′ ∪ A ∪ b) ⊆ S.

From F (A′ ∪ b) = S we get F (A ∪ b) ⊆ F (A ∪ b) ∪ F (A′ ∪ b) ⊆ A ∪ b, so F (A ∪ b) =

F (F (A ∪ b) ∪ F (A′ ∪ b))
Using that F is path independent, b ∈ F (A ∪ b) = F (F (A ∪ b) ∪ F (A′ ∪ b)) =

F (A ∪ b) ∪ (A′ ∪ b)) = F (A′ ∪ A ∪ b) ⊆ S. Therefore b ∈ S, which leads to con-

tradiction.

Let S and S ′ be two different stable sets. The stable pair corresponding to S is

(A,B),and for S ′ there is (A′, B′).

(ii) (A,B) ≤ (A′, B′) ⇒ S ≤F S ′.
From the pairs ordering, S ⊆ A ⊆ A′ and S ′ ⊆ A′, so S ∪ S ′ ⊆ A′.

Since F is path independent, from S ′ = F (A′) ⊆ S∪S ′ ⊆ A′ we get that F (S∪S ′) = S ′.

(iii) S ≤F S ′, ⇒ (A,B) ≤ (A′, B′) .

Suppose that B′ * B. Consequently ∃ b such that b ∈ B, but b /∈ B′. From lemma 18

we get B ∈ DF (S), but B /∈ DF (S ′). Now b ∈ F (S ′ ∪ b), b /∈ f(S ∪ b), F (S ∪ S ′) = S ′

therefore F (S ∪ S ′ ∪ b) ⊆ S ′ ∪ b ⊆ S ∪ S ′ ∪ b. Because F is path independent,

F (S ∪ S ′ ∪ b) = F (S ′ ∪ b) 3 b, hence b ∈ F (S ∪ b), and it is a contradiction.
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Accordingly B′ ⊆ B, so DF (B′) ⊆ DF (B), E \ A′ ⊆ E \ A, hence A′ ⊇ A.

(iv) The stable sets form a lattice.

From the previous points, we can see that there is a bijection between the stable S

sets and stable (A,B) pairs, and it keeps the ordering. Because we know the lattice

property for the stable pairs, we get the same lattice for stable sets.

Corollary 14. The score-stable sets form a lattice, because it is equivalent with 4-part

stability, and the applicants choice function is path independent, so we can use the

generalized Blair theorem.

Remark 15. If F and G are comonotone choice functions but none of them is path

independent, then the lattice property doesn’t hold. It is also false that for stable set s

there is only one corresponding (A,B) pair.

Consider the following example: We have two applicants, s and s′. The choice function

is what we named as q = 1 for both sides:

F (s) = s G(s) = s

F (s′) = s′ G(s′) = s′

F (s, s′) = ∅ G(s, s′) = ∅
Both of the choice functions are comonotone, but none is path independent. In this

situation we have four stable (A,B) pairs:

A = ∅, B = (s, s′) S = ∅
A = s, B = s S = s

A = s′, B = s′ S = s′

A = (s, s′), B = ∅ S = ∅
We can say that ∅ ≤F s and ∅ ≤F s′, but because the symmetric construction, we can’t

define ordering between s és s′. So these two points don’t have a supremum.

3.3 Two-sided score limits

In this model, not just the colleges, but the applicants also can choose more than one

place to go. Every applicant A has a quota q(A), and assign a score to the universities

she applies. As before, each college C assigns some score (an integer between 1 and M)

to each of its applicants, and declare a tC score limit. The applicant A also has a tA

score limit. Assume we have n applicants A1, A2, . . . , An and m colleges C1, C2, . . . Cm

with score limits tA1 , tA2 , . . . tAn , tC1 , . . . tCm ,

Those applications realize, where both of the sides exceeds the other side’s score

limit.
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A score vector is valid, if no one gets more students/ goes to more college than its

quota.

Score vector tA1 , tA2 , . . . tAn , tC1 , . . . tCm , is critical if for every X ∈ C ∪ A either

tX = 0 or score vector tA1 , tA2 , . . . tX−1, . . . tCm , would assign more than q(X) students/

colleges to X. (That is, no college or applicant can lower its quota without exceeding

its quota.)

A score vector s is stable if s is valid and critical.

The ordering we use between score vectors: t ≤2 t
′ if tC ≤ t′C for every colleges,

and tA ≥ t′A for every applicants.

Theorem 16. [Jankó (2009)] The stable score vectors form a nonempty lattice for the

partial order ≤2

Definition 13. An admission S ⊆ E is two sided score-stable, if there exist t stable

score vector, for which the set of realized applications is S.

Differently from one-sided scores, now for a given score-stable admission S there

can exist more than one corresponding score-stable t vector.

Example: one college, one applicant, every point is 0, every quota is 0. Score vectors

(0,1) and (1,0) are both score-stable and give the stable admission S = ∅.

3.4 Connections between different kinds of stability

Given a bipartite graph with color classes M and W , and the set of edges is E. Let F

denote the common choice function of the men, G is the women’s choice function. In

this model, stability can be defined in more ways. In this subsection we show what is

the difference between these definitions.

We can define five kinds of stability:

1. Subset S of E is three-part stable, if F (S) = S = G(S), and there exists subsets

A and B of E, such that F (A) = S = G(B) and A ∪B = E, A ∩B = S.

2. Subset S of E is four-part stable, if F (S) = S = G(S), and there exists subsets

A and B of E, such that F (A) = S = G(B) and A ∩ B = S, and DF (A) =

E \B,DG(B) = E \ A.

3. Subset S of E is dominating stable, if F (S) = S = G(S) and DF (S) ∪ DG(S) =

E \ S.
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4. If F is given by a strict ordering, G is a scoring choice function, we can define

score-stability as in Subsection 3.1.

5. If F and G are scoring choice functions, we can define two-sided score-stability.

In the stable marriage problem, the original definition gives the dominating stabil-

ity: if an edge is not in the marriage scheme, it must be dominated by the men or by

the women.

We use the notation A+x for adding a set with only one element, so A+x = A∪{x}.

Lemma 17. If F is comonotone and path independent:

F (A) = S ⇔ DF (S) ∩ A = A \ S.

Proof. ⇒
For every x ∈ A\S, because S ⊂ S+x ⊂ A and F is path independent, F (S+x) = S,

so DF (S) ⊇ A \ S.

⇐
For every x ∈ A \ S, F (S + x) = x, so from comonotonity, x ∈ F (A). From this,

F (A) ⊇ A \ S, witch means F (A) ⊆ S.

From the path independent property, F (A) ⊆ S ⊆ A ⇒ F (A) = F (S) = S

Lemma 18. If F is comonotone, path independent and F (A) = S, then

DF (A) = DF (S).

Proof. We saw that DF is monotone, hence DF (S) ⊆ DF (A).

If x ∈ DF (A), then F (A + x) ⊆ A ⊆ A + x, and because of the path independency,

F (A+ x) = F (A) = S.

Therefore F (A + x) ⊆ S + x ⊆ A + x, so F (S + x) = F (A + x) = S. It means S

dominates x, so DF (A) = DF (S).

Theorem 19. If F and G are comonotone and path independent, three-part, four-part

and dominating stability are equivalent.

Proof. three-part ⇒ dominating

There are A, B such that F (A) = S = G(B). From Lemma 17 DF (S) ⊇ A \ S. The

same goes to G(B), so DG(S) ⊇ B \ S. Their union is

DF (S) ∪ DG(S) ⊇ ((A \ S) ∪ (B \ S)) = E \ S.
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And S do not dominate itself, so DF (S) ∪ DG(S) = E \ S.

dominating ⇒ four-part

We know that DF (S) ∪ DG(S) = E \ S. Let A = E \ DG(S) B = E \ DF (S).

A ⊆ S ∪ DF (S) so F (A) = S. From lemma 18 DF (A) = DF (S) = E \ B. Similarly,

DG(B) = DG(S) = E \ A. With this A,B, S is four-part stable.

four-part ⇒ three-part

There exists subsets A and B of E, such that F (A) = S = G(B) and A ∩B = S, and

DF (A) = E \B,DG(B) = E \ A.

Let D = E \ (A ∪B) and A′ = A ∪D,B′ = B

Now A′∪B′ = E, A′∩B′ = A∩B = S and from lemma 18 DF (S) = DF (A) = E \B =

(A \ S) ∪D = A′ \ S. From lemma 17, F (A′) = S, G(B′) = G(B) = S, so with A′, B′,

S is three-part stable.

Theorem 20. If F , G are comonotone choice functions, F is path independent, but

G is not, then every four-part stable set is three-part stable, but none of the other

directions in Theorem 19 are true.

Proof. Note that in the third section of the previous proof, we have not used that G

should be path independent.

See counterexamples for the other directions later.

Theorem 21. If F , G are comonotone choice functions, but not path independent,

none of the first three property (three-part, four-part, dominating) follows from any of

the others.

Compared to other stability concepts, the three-part, four-part and dominating

stability are defined on every comonotone functions F , G, for the one sided score

stability we need strict preference ordering on one side, and a scoring choice function

on the other side. Two-sided score stability needs scoring choice functions on both

sides.

As we showed in Theorem 11, score stability is equivalent with four-part stability.

Theorem 22. The two-sided score stability is not equivalent with the one-sided score

stability. Moreover, it is not equivalent with any of the other stability definitions.

Theorem 23. If F and G are scoring choice functions, then every two-sided score

stable set is also three-part stable.
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Proof. Let S be a two-sided score stable set, with a corresponding score vector t. If

e /∈ S, then e didn’t reach the score limit on one side. If it was rejected by the university

(choice function F ) then let e ∈ A \ S, and if e was rejected by the student (G) let

e ∈ B \ S. If it was rejected by both sides, e can be anywhere outside of S. The

score vector t is stable, so if a university or a student a lowers its quota by one, it will

get too many applicants/universities. If e = ab was blocked on both ends, it will not

be realized even after a lowers its score limit. So the people who cause problem to

a are those who was only blocked by a, so they are all in A \ S. With score limit t,

applications chosen from A is S, and with score limit (t1, . . . ta− 1, . . . tn), applications

chosen from A exceeds the quota of a so by definition of choice F , F (A) = S. Similarly

G(B) = S, and by the construction A ∪ B = E,A ∩ B = S. Therefore S is three-part

stable.

We define some examples for choice functions:

F = q1

There are two students applying for the same university, with equal points, but the

quota is one. If someone applies alone he is accepted, but if both of them apply the

university refuses both.

F (∅) = ∅
F (a) = a

F (b) = b

F (ab) = ∅

F = q2

There are two students applying for the same university, with equal points, the quota

is two, so everybody is accepted.

F (∅) = ∅
F (a) = a

F (b) = b

F (ab) = ab

F = (a > b)

There are two students applying for the same university, a is better then b, the quota

is one. So the university chooses a.

F (∅) = ∅
F (a) = a

F (b) = b

F (ab) = a
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Counterexamples for Theorems 20 and 21, and that three-part stability does not

imply two-sided score stability in the general case:

a b
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Example 5

In the first, second, fourth and fifth example, every student (or college) gets score

0 everywhere.

To show that the one-sided and two-sided score stability is not equivalent, we use

Example 3:

There are two colleges and two applicants: Both applicants got the same score (0 point)

on the entrance exam, and applicant A1 prefers college C1, applicant A2 prefers college

C2. The quota of C1 is 1, for C2 it is 2.

If we consider the situation as a two-sided scoring system, C1 receives 1 point at A1, 0

at A2, and the reverse for C2. Both of the applicants have a quota of 1.

For one-sided score stability, score vector (0,0) is stable, ( (1,0) is valid, but not stable.)

The stable allocation is S = {C1A1, C2A2} = {a, d}
For two-sided score limits (tC1 , tC2 , tA1 , tA2 , ) = (1, 0, 0, 0) is stable, since if C1 de-

creases its limit to (0,0,0,0), all four applications realizes, an C1 gets 2 students in-

stead of one. (And students get 2 colleges instead of one.) So the stable allocation is

S ′ = {C1A2, C2A2} = {b, d}
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example F path ind? G path ind?

1 q1 no q1 no

2 q2 yes q1 no

3 a > c+ b > d yes q1(a, b) + q2(c, d) no

4 a+ q1(bc) no q1(a, b) + c no

5 a+ q1(b, c, d) no q1(a, b) + c+ d no

In the second and third example, G is path independent, so these are also good

counterexamples for Theorem 20.

Here ”+” means that what F choose from a and b is independent from what he

choose from c and d (The choices are given on two different vertex). More generally, if

X ∩ Y = ∅ and F1 : 2X → 2X , F2 : 2Y → 2Y , F : 2X∪Y → 2X∪Y , F = F1 + F2 means

for every A ⊆ X ∪ Y , F (A) = F1(A ∩X) ∪ F2(A ∩ Y ). We can say that F is a direct

sum of F1 and F2.

The stable sets will be:
Example 3-part 4-part dominating score 2 score

1 ∅ ∅, {a}, {b} {a}, {b} X ∅
2 ∅ ∅ {a}, {b} {a} ∅
3 {a, d}, {c, d} {a, d} {a, d} {a, d} {a, d}, {c, d}
4 {a}, {c} {a, c} {a, c} X {a}, {c}
5 ∅, {a} {a} {b}, {a, c}, {a, d} X {a}
X means the one-sided score stable matching is not defined in these examples,

because none of F and G are path independent.

Graphs of the connections:

Notations: 3=three-part stable, 4=four-part stable, d=dominating stable, s=score sta-

ble, 2s= two-sided score stable
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4 The Kelso-Crawford model

In the Kelso-Crawford model [Kelso and Crawford (1982)], there are m workers and n

firms. Each firm hires as many workers as it wishes, but a worker is allowed to work

only for one firm. So it is a many-to-one matching. The utility function of worker

i, if he works for firm j at salary pij is ui(j, pij), where ui is strictly increasing and

continuous in its second argument.

The firm j’s utility with the set of workers Cj and salary vector pj is π(Cj, pj) =

yj(Cj)−
∑

i∈Cj pij.

Let σij defined by ui(j, σij) = ui(0, 0), thus σij is the lowest salary at which worker i

would ever consider working for firm j.

With a given salary vector p, the choice function of firm j is the following:

F j(Cj) = {C : C ⊆ Cj and πj(C, pj) = max
C∈Cj

πj(C, pj}

The set of optimal worker sets, where the π profit of the firm is maximal. Differently

from the previous sections, now the choice function is not uniquely defined. We need

the following assumptions about the firms’ and workers’ preferences:

(MP) (marginal product) yj(C ∪ {i})− yj(C)− σij ≥ 0 for every i, j.

This means it is worth for a firm to hire a worker on his lowest possible salary, because

the marginal product is bigger than the salary paid.

(NFL) No free lunch yj(∅) = 0 for all j.

If nobody works to firm j, its utility is zero.

The most important property is the third one:

Consider two vectors of salaries pj and p̃j facing firm j. Let T j(Cj) = {i : i ∈
Cj and pij = p̃ij} be the set of workers who where chosen under salary vector p, and

their salary have not increased.

The gross substitutes (GS) property :

(GS) for every firm j, if Cj ∈ F j(pj) and p̃j ≥ pj, then there exists C̃j ∈ F̃ j(p̃j) such

that T j(Cj) ⊆ C̃j

We search for some stable allocations in this model.

Definition 14. [Kelso and Crawford (1982)] An individually rational allocation is an

assignment of workers to firm together with a salary schedule such that, if f : {1, . . . ,m} →
{ 1, . . . , n } is the function that represents the assignments (so that f(i) is the firm to

which worker i is assigned) and Cj = {i|j = f(i)} so Cj is the set of workers hired by
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firm j. If satisfies the following properties:

pif(i) ≥ σif(i)

πj(Cj, pj) ≥ yj(Cj)−
∑
i∈Cj

pij ≥ 0.

Definition 15. [Kelso and Crawford (1982)] A (discrete) strict score allocation is an

individually rational allocation (f, p1f(1), . . . , pmf(m)) such that there are no coalition of

a firm and a set of workers (j, C) and (integer) salaries rj = (r1j, . . . rmj) that satisfy:

ui(j, rij) ≥ ui(f(i), pif(i)) for all i ∈ C

πj(Cj, rj) ≥ πj(Cj, pj)

with strict inequality holding for at least one member of C ∪ {j}.

Definition 16. A (discrete) core allocation is defined in the same way as a (discrete)

strict core allocation, except that it is required that there is no firm-set of workers

combination and (integer) salaries that satisfy all equations with strict inequality.

In the stable marriage model, stable matchings were exactly the core of the game.

Now the Kelso-Crawford algorithm finds the discrete core. It is similar to the Gale-

Shapley algorithm, with proposal and rejection rounds, but now we involve money,

and since F multi-valued, this algorithm can not be that easily described with Tarski’s

theorem.

The steps of Kelso-Crawford algorithm [Kelso and Crawford (1982)], page 1488:

”R1. In round zero, every firm propose to every worker with salaries pij(0) = σij. (In

our special case, σij = 0. )

R2. On each round, each firm makes offers to the members of one of its favourite set

of workers, given the schedule of permitted salaries pj(t) = [p1j(t), . . . pmj(t)]. That is,

firm j makes offers to the members of Cj[pj(t)], where Cj[pj(t)] maximizes πj[C, pj(t)].

Firms may break ties between sets of workers however they like, with the following

exception: Any offer made by firm j in round t − 1 that was not rejected must be

repeated in round t.

R3. Each worker who receives more than one offers rejects all but his or her favourite

(taking salaries into account) which he or she tentatively accepts. Workers may break

ties at any time however they like.

R4. Offers not rejected in previous periods remain still in force. If worker i rejected

an offer from form j in round t− 1, pij(t) = pij(t− 1) + 1, otherwise pij(t) = pij(t− 1).

Firms continue to make offers to their favourite sets of workers, taking into account
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their permitted salaries.

R5. The process stops when no rejections are issued in same period. Workers then

accept the offers that remain in force from the firms they have not rejected.”

Lemma 24. [Kelso and Crawford (1982)] The process converges to a discrete core al-

location in the discrete market for it is defined.

We study the connection between comonotonity in Section 2, and the gross substi-

tutes property here. We claim that they are the same property in some sense.

Lemma 25. [Fleiner (2003)] The choice function F is comonotone if and only if for

every A ⊆ B sets F (A) ⊇ A ∩ F (B).

Proof. If F is comonotone and A ⊆ B, then F (A) ⊆ F (B), so A \ F (A) ⊆ B \ F (B),

therefore F (A) ⊇ A \ (B \ F (B)) = A ∩ F (B).

In the other direction, if F (A) ⊇ A ∩ F (B), then A \ F (A) ⊆ A \ F (B) ⊆ B \ F (B),

so F (A) ⊆ F (B).

Lemma 26. [Hatfield et al. (2011)] If we demand gross substitutability only for prices

p̃ ≥ p, where |F j(p̃)| = |F j(p̃)|, this is equivalent with the original (GS) definition that

is for every good Cj ∈ F j(p) there exists a good C̃j ∈ F j(p̃).

Actually they proved this for fully substitutable preferences, what we will define

later. But gross substitutability is a special case of fully substitutability in a sup-

ply chain market where firms are buyers and they don’t sell anything, and workers

are the sellers. So this lemma is a corollary of (DFS) ⇔ (DCFS) in Appendix A of

[Hatfield et al. (2011)].

Call a firm-worker-salary triplet a contranct, like in the article [Hatfield-Milgrom (2005)].

Theorem 27. If we restrict the choice function in Kelso-Crawford model to the p

values, where there is a unique best set of workers, the gross substitutes property is

equivalent with comonotonity, defined on contracts.

This is also a special case of the (CFS)⇔ (DFS) theorem in [Hatfield et al. (2011)].

Proof. Let p̃j ≥ pj be two vectors of salaries involving firm j, and let Cj ∈ F j(pj).

As we defined before, T j(Cj) = {i : i ∈ Cj and pij = p̃ij}
is a subset of worker-firm edges. Let Ej be the set of all edges incident with firm j.

(Ej = {jw, w is a worker }.
Let M = {i : i ∈ Ej and pij = p̃ij} be the set of edges where the salary remains the

same, and V = {i : i ∈ Ej and pij < p̃ij} the set of edges where the price increases.
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From this T j(Cj) = Cj ∩M .

The set of contracts is Ej × R|Ej |. Introduce the following subsets:

A = {(e, p)|e ∈Mp = p}
B = {(e, p)|e ∈ V p = p}
B̃ = {(e, p)|e ∈ V p(e) = p̃}

If more salaries are available for the same worker, the firm’s choice function chooses

the lowest salary.

Comonotone ⇒ Gross Substitutes:

Since only the lowest salary matters, F (B ∪A) = F (B ∪ B̃ ∪A) The gross substitutes

property means F (B ∪ A) ∩ A ⊆ F (B̃ ∪ A), because with salary vector p, firm chose

from B ∪ A, so Cj = F (B ∪ A), and the contracts where price remained the same is

T j = F (B ∪ A) ∩ A. What we need is the elements of T j is also chosen under salaries

p̃, so T j ⊆ F (B̃ ∪ A).

From Lemma 25, F (B ∪ B̃ ∪ A) ∩ (B̃ ∪ A) ⊆ F (B̃ ∪ A). The firm doesn’t choose a

contract from B̃ if (B ∪ B̃ ∪ A) is available, so F (B ∪ B̃ ∪ A) ∩ A ⊆ F (B̃ ∪ A). From

F (B∪A) = F (B∪B̃∪A) we get F (B∪A)∩A ⊆ F (B̃∪A) and this is what we wanted.

Gross Substitutes ⇒ comonotone

Let X ⊆ Y two arbitrary contract-sets, and let p(e) for every edge the cheapest prize,

where (e, p(e)) is in Y . p(e) = min{p, (e, p) ∈ Y }. If e is not represented in Y , with

any salary, let p(e) be infinitely high, so firm j will never going to choose it in any

coalition, with any salaries of the other workers. We cannot leave out edges, because

the definition of GS applies for the whole edge-set. Let p̃(e) be the cheapest salary of e

in X. Similarly if (e, p) /∈ X, we use infinite price. Since Y is bigger than X, p̃j ≥ pj.

Let M = {i : ij ∈ Ej and pij = p̃ij} V = {i : ij ∈ Ej and pij < p̃ij}
Legyen A = {(e, p)|e ∈Mp = p}

B = {(e, p)|e ∈ V p = p}
B̃ = {(e, p)|e ∈ V p(e) = p̃}
D = {(e, p)|e ∈ V p < p(e) < p̃}
C = Y \ (A ∪B ∪ B̃ ∪D) = {(e, p)|e ∈ V p(e) > p̃ or e ∈M, p(e) > p}

With these subsets X = A ∪ B̃ ∪ C
Y = A ∪B ∪ B̃ ∪ C ∪D
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F choose the cheapest price everywhere, so F (Y ) = F (A∪B) and F (X) = F (A∪B̃).

From gross substitutes, F (B ∪ A) ∩ A ⊆ F (B̃ ∪ A) so F (Y ) ∩ A ⊆ F (X)

F (Y ) ∩ X = F (Y ) ∩ A ⊆ F (X) because F (Y ) doesn’t choose from B̃ and C. From

Lemma 25, F is comonotone.

An interesting question is for what yj utilities will the preferences of the firms satisfy

the gross substitutes criterium (comonotonity).

Theorem 28. [Kelso and Crawford (1982)] If a firm j can choose only from two work-

ers i1 and i2 the utilities are finite and yj(∅) = 0, then its preferences are gross substi-

tutable if and only if yj is subadditive i.e, yj({i1, 12}) ≤ yj({i1}) + yj({i2}).

If there are are more than two workers, subadditivity is not sufficient.

[Kelso and Crawford (1982)] shows a counterexample for three workers, where the tech-

nology firm j is subadditive, but GS fails.

Definition 17. An utility function y : 2E → R is submodular if for all A,B ⊆ E

y(A) + y(B) ≥ y(A ∪B) + y(A ∩B).

The class of gross substitutes utility functions is a subclass of submodular utility

functions, moreover gross substitutes is equivalent with the single improvement property

introduced by [Gul-Stacchetti (1999)].

It was shown by [Fujishige-Yang (2003)] that a utility function y : 2E → R satisfies

the gross substitutes condition if and only if y is an M \-concave function.

Workers are identical if the j’s utility of a group workers depends only on the

number of workers it hire, so there exists a ỹj function such that yj(C) = ỹj(|C|).
[Kelso and Crawford (1982)] introduced the nonincreasing returns property:

(DR) ỹj(w+ 1)− ỹj(w) ≤ ỹj(w)− ỹj(w−1) for integer values of 1 ≤ w ≤ m−1, where

w is the number of identical workers firm j hires.

Theorem 29. [Kelso and Crawford (1982)] If workers are identical, (DR) is equivalent

with (GS).

We will use this theorem in the last section.

4.1 Maximum weighted matchings

Let G = (V,E) be a bipartite graph, where there exists a perfect matching in G, and

every edge e has a nonnegative weight c(e). Our aim to find a maximal weighted perfect

matching.
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We call a function π over the vertices a weighted-covering if for every u, v vertices

π(u)+π(v) ≥ c(uv). An edge e = uv is exact for vertex cover π, if π(u)+π(v) = c(uv).

The weight of π is π(V ) =
∑

v∈V π(v).

Theorem 30. [Egerváry (1931)]

Let G = (S, T,E) be a bipartite graph with |S| = |T | and let c : E → R+ a nonnegative

weight function. The maximum weight of a perfect matching of G is equal to the

minimum weight of nonnegative, integer-valued weighted-covering of c.

If G is a complete bipartite graph, the optimal weighted-covering can be chosen as

nonnegative, and if c is integer-valued, the optimal π can be integer-valued too.

It can be formalized as a linear programming problem:

max
M is complete matching

∑
uv∈M

c(uv) = min
π is a weighted-covering

∑
v∈V

π(v)

Let A be the incidence matrix of graph G, so the rows represent the vertices, the

columns represent the edges, and ave = 1, if e = uv for some u, and ave = 0 otherwise.

Since G is bipartite this matrix is totally unimodular.

Definition 18. A matrix A is totally unimodular if every subdeterminant of A is either

1, 0 or −1.

The maximal weighed matching is:

max cx, Ax = 1, x ≥ 0

The dual problem: min 1y, yA ≥ c

Where 1 is the everywhere one vector. The dual problem is the same as the minimum

weighted-covering.

From the duality theorem max xc = min 1y, and since A is totally unimodular, there

exist optimal integer-valued solutions for x and y. Here x will be the characteristic

vector of the matching, and y = π is the weighted-covering.

Theorem 31 (Duality theorem). Suppose that polyhedron R = {x = (x0, x1) : Px0 +

Ax1 = b0, Qx0 + Bx1 ≤ b1, x1 ≥ 0} is not empty, {cx : x ∈ R} has an upper bound.

Then the dual polyhedron of R is R∗ = {y = (y0, y1) : Py0 + Qy1 = c0, Ay0 + By1 ≥
c1, y1 ≥ 0} which is also nonempty and the maximum of the primal problem equals to

the minimum of the dual problem:

max{cx : x ∈ R} = min{by : y ∈ R∗}.

We show that a maximal weighed matching can be found by the Kelso-Crawford

algorithm, as the K-C algorithm searches a discrete core, we only use it for integer-

valued maximal weighted matchings.
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Let G = (S, T,E) be a bipartite graph with |S| = |T | = n. It is sufficient to prove

the case where G, is complete and bipartite, since is G is not complete, we add a big

enough constant K to every c(e) weight, (let K > n ∗maxe∈E c(e) ), and we add the

missing edges with 0 weight. Now the graph is complete bipartite, the weights are

still nonnegative, and the weight of every perfect matching were increased by nK, the

non-perfect matchings’ weight were increased by < nK.

With the original weights, the max weighted non-perfect matching is at most (n −
1) maxe∈E c(e), and a weight of a perfect matching is at least 0. If we add K to the

weights, (n − 1) maxe∈E c(e) + (n − 1)K < nK, so the new maximal matching was a

perfect matching in the original graph.

In the this special case of the Kelso-Crawford model, the workers utility is linear in

the salaries, so ui(j, pij) = ui(j, 0) + pij.

Working for any firm worths 0 utility to every worker, so they decide only on the

salary. So ui(j) = 0∀i, j, and the utility of being unemployed is also 0, ui(∅) = 0∀i. It

follows that σij = 0∀i, j.
Every firm is acceptable to every worker, G = (F,W,E) is a complete bipartite graph,

and for a weight function c : E → R+, let the utility of the firms be

yj(C) = maxi∈C c(ij), y
j(∅) = 0. By definition, yj has the no free lunch property.

Since σij = 0, the marginal product property is reducated to yj(C ∪ {i})− yj(C) ≥ 0,

i.e. the yj utility function is monotone. Choosing from a bigger set, the maximum

cannot decrease, so this is true.

The choice function of firm j chooses one worker i for which cij − pij is maximal

and add some other worker, whose salary is 0, because it does not affect its utility. If

j would fire more that one worker with positive salary, and the maximum of cij − pij
is reached at i′,

πj(C) = yj(C) −
∑

i∈C pij = maxi∈C c(ij) −
∑

i∈C pij = ci′j −
∑

i∈C pij < ci′j − pi′j.
The other workers do not change the maximum of c, but decrease the utility of the

firm with their salary.

For this choice function, gross substitutes holds, because if p̃ ≥ p and p̃ij = pij,

and i were the one chosen with maximal cij − pij value, the others only could change

for worse, so i is still maximal. If i’s salary was 0, it remains zero. So there is a

C̃j ∈ F j(s̃j) which chooses every worker who were chosen before and did not change

their salaries.

In the first step of the Kelso-Crawford algorithm, every firm proposes to every
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worker with salary 0. The workers are indifferent between the firms, so they accept

one however they like, for example they can use lexicographic ordering, and everybody

accepts the first firm’s proposal. They break ties in such way they like working to any

firm more than being unemployed. Every firm keeps the offers which was not rejected,

and increase the salary by ∆ if it was rejected, completing it to a favourite set under

this new salary vector. Using GS, there is a favourite set which contains all not rejected

offers. Let ∆ be a small positive value, ∆ < 1/n.

Iterating these steps, denote the allocation given at the end of the algorithm with

f , where f(i) is the firm where worker i goes.

This algorithm also gives us the dual vector, the weighted-covering. For a worker

i, let π(i) be the salary he gets firm f(i), so π(i) = pif(i). If j is a firm, let π(j) be his

utility at the end: π(j) = maxf(i)=j(cij − pij).
We show that this π is ”nearly covering”, which means π(i) + π(j) ≥ cij − ∆ If i

works for firm j, there are two cases:

Firm j reached its maximal cij − pij utility at worker i. π(i) = pij and π(j) = cij − pij,
so π(i) + π(j) = cij, that is ij is an exact edge.

In the other case, i gets 0 salary, so π(i) = 0, and π(j) = maxf(i)=j(cij − pij) ≥ cij − 0.

Therefore π(i) + π(j) = 0 + π(j) ≥ cij.

If i does not work for firm j:

We can imagine the ij relationship as many parallel edges in the graph, where every

edge has a possible salary 0,∆, 2∆, . . . cij. (The salary cannot be less then zero because

it starts from zero and increases, and cannot be more then cij, because that would mean

negative utility for the firm, so the firm rather chooses the empty set than offering a

salary higher than cij.)

Some of there parallel edges were refused by the worker, let k be the biggest salary of

these. Worker i rejected this offer, because he got an at least k salary offer for another

firm, so π(i) ≥ k.

In this cases π is not just nearly covering, but a proper weighted-covering.

Salaries bigger than k between firm j and worker i did not realize, because firm j

did not offer it. By offering k+∆, the firm could achieve cij−k−∆ utility, so j did not

offer it because the firm reached this utility with another worker-set: π(j) ≥ cij−k−∆.

From these two inequalities we get that π(i) + π(j) ≥ k + cij − k −∆ = cij −∆, so π

is nearly covering.
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One problem is that the firm-worker assignment is not always a matching. If at

least two workers work for firm j, all but one get salary 0. We call worker i who gets

positive salary from firm j, ”j’s favourite”. If i′ works for j, but gets 0 salary, and

firm j′ has no workers, then π(i′) = 0, π(j′) = 0, and 0 = π(i′) + π(j′) ≥ ci′j′ −∆, so

∆ ≥ ci′j′ ≥ 0. Since cij′ is integer, cij′ = 0, so the edge i′j′ is exact.

Change the assignment such that every firm keeps its favourite worker, and the

non-favourite workers go to some firms with workers. Since the number of firms and

workers are equal, this gives a perfect matching, call it M . Every edge in M is exact to

π. Therefore the weight of π equals to the weight of M .
∑

M c(e) =
∑

v∈V π(v) Every

c(e) is integer, so
∑

v∈V π(v) is also integer.

We claim that this is a maximal weighted perfect matching.

Suppose there exist a better M ′ matching,
∑

e∈M ′ c(e) >
∑

e∈M c(e). Since for every

edge π(i) + π(j) ≥ cij − ∆, the weight of the new matching is c(M ′) =
∑

M ′ c(e) ≤∑
v∈V π(v) + n∆ <

∑
v∈V π(v) + 1 This c(M ′) is also integer, so it cannot be bigger

than c(M), therefore c(M) is maximal.

The number of the proposal steps are at least n2 max cij+∆

∆
≈ n3 max cij, because each

firm propose to each worker at one given price at most once, and prices can go from 0

to cij. So the number of the steps is polynomial in n. When firm j chooses the best

subset, in the general case of the K-C algorithm j should check exponentially many

subsets of Ej, but with this special utility function, firm only has to find the workers

with maximal c(e) − p(e) value, and choose the one who was not rejected in former

rounds. If every best worker rejected firm j in previous rounds, firm j just chooses one

of them arbitrary, and add some zero-salary workers. It can be done in linear time,

and the workers choose the best salary proposal in linear time, so the algorithm runs

in polynomial, O(n4) time.

Remark 32. If weights can be any real values, and we know that the minimal nonzero

difference between the weights of two different perfect matching is ε, then with ∆ < ε
n

,

this method finds the maximum weighted matching.

5 Supply chains without money

Consider a directed graph G = (V,E), where vertices represent people, and the arcs

are trades between suppliers and buyers. In this way, G is a supply chain. Everybody

in the market has some preference order on whom he would like to sell to or buy from.
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A model is described in [Fleiner (2009)], where every node has a strict ordering

over the incoming and outgoing arcs. For two arcs vu and vw, we say vu ≥v vw, if

node v prefers selling to u instead of w. A network is a quadruple (G,s,t,c), where G

is a directed graph, s and t are different nodes of G and c : E → R+ is a function that

determines the capacity c(a) of arc a.

The special nodes s and t are terminal points: source and target. Just like in the usual

setting, we allow arcs to enter s or leave t.

A flow is a function f : E → R such that 0 ≤ f(a) ≤ c(a) and every vertex different

from s and t satisfies Kirchhoff’s law:
∑

uv∈E f(uv) =
∑

vw∈E f(vw) The amount of

the incoming flow equals the amount of outgoing flow for v.

We call an arc a f -unsaturated, if f(a) < c(a).

A blocking walk of flow f is an alternating sequence of incident vertices and arcs

P = (v1, a1, . . . vk) such that all the following properties hold:

arc ai points from vi to vi+1

P has no terminal inner point

each arc ai of P is f -unsaturated

v1 = s or v1 = t, or there is an arc a′ = v1u such that f(a′) > 0 and a1 >v1 a
′ (a1

dominates a′ in v1)

vk = s or vk = t, or there is an arc a′′ = wvk such that f(a′′) > 0 and ak−1 >vk a
′′(

ak−1 dominates a′′ in vk)

A flow f is stable if no blocking walk to f exists.

Theorem 33 ([Fleiner (2009)]). If network (G,s,t,c) and preference orders <v describe

a stable flow problem then there always exist a stable flow f . If capacity function c is

integral then there exists an integral stable flow.

In another model from [Ostrovsky (2008)], every vertex v has a Chv choice function

over the arcs adjacent with v. Let D(v) be the set of arcs starting from v (contracts

where v is the seller), and U(v) is the set of arcs ending at v (where v is the buyer).

Let sc denotes the seller and bc the buyer of arc c, then

D(v) = {c ∈ E|v = sc} and U(v) = {c ∈ E|v = bc}
For a set of edges X incident with v, let D(X) = D(v) ∩X, U(X) = U(v) ∩X

Definition 19. [Ostrovsky (2008)] Preferences of agent a are same-side substitutable

(SSS) if for any two sets of contracts X and Y such that D(X) = D(Y ) and U(X) ⊆
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U(Y ), U(X)\U(Ch(X)) ⊆ U(Y )\U(Ch(Y )), and for any two sets X and Y such that

U(X) = U(Y ) and D(X) ⊆ D(Y ), D(X) \D(Ch(X)) ⊆ D(Y ) \D(Ch(Y )). That is,

preferences are same-side substitutable if, choosing from a bigger set of contracts on

one side, the agent does not accept any contracts on that side that he rejected when

he was choosing from the smaller set.

Preferences of agent a are cross-side complementary (CSC) if for any two sets of

contracts X and Y such that D(X) = D(Y ) and U(X) ⊆ U(Y ), D(Ch(X)) ⊆
D(Ch(Y )), and for any two sets X and Y such that U(X) = U(Y ) and D(X) ⊆
D(Y ), U(Ch(X)) ⊆ U(Ch(Y )). That is, preferences are cross-side complementary if,

when presented with a bigger set of contracts on one side, an agent does not reject any

contract on the other side that he accepted before.

Statement 34. If all nodes have strict preferences over arcs, the capacities are inte-

gers, and they choose the best buys and sells such that it satisfies Kirchhoff’s law, this

defines a SSS and CSC choice function.

Proof. For a terminal node v = s or t, it choose every possible trades, so Chv(A) = A

for all A ⊆ E and set of refused trades are Chv(A) = ∅ everywhere, so it satisfies SSS

and CSC properties.

If v is not a terminal point, let |D(X)| = k, |U(X)| = l, where k ≤ l. The

choice function chooses all (outgoing) edges in D(X), and the k best (incoming) edges

from U(X). If Y is a bigger set such that D(X) = D(Y ) and U(X) ⊆ U(Y ), then

k = |D(Y )| ≤ |U(Y )|, so Chv chooses the whole D(Y ), therefore CSC is true, and it

chooses the best k edges from U(Y ). If some edge weren’t in the best k in D(X), is nei-

ther in best k of a bigger set D(Y ), so the set of rejected edges is expanding, SSS is true.

If Y satisfies D(X) ⊆ D(Y ) and U(X) = U(Y ), let |D(Y )| = k′. There are two

cases:

If k′ ≤ l, so |D(Y )| ≤ |U(Y )|, the choice function choose the whole D(Y ), the set

of rejected outgoing edges remains ∅ so it is SSS. And it chooses the best k′ from

U(Y ) = U(Y ) i.e. more elements from the same set, so CSC is also true.

In the case if k′ > l, Chv chooses the best l from D(Y) the set of rejected outgoing

edges expands from ∅ to something else, so it is SSS. And chooses all U(Y) instead of

the best k, so the set of selected ingoing edges expands, it is also CSC.

We say that a network is chain stable if there is no sequence of agents who could

become better off by forming new contracts among themselves and possibly dropping
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some of their current contracts.

We call a collection of bilateral relationships between the nodes in a market a

network, i.e., a network is simply a set of contracts. Let M(a) denote the set of

contracts involving vertex a in network M . Network M is individually rational if, for

any agent a, Cha(M(a)) = M(a) so no agent would like to unilaterally drop any of his

contracts.

A chain is a sequence of contracts, c1, . . . , cn, such that for any i < n, bci = sci+1
,

i.e., the buyer in contract ci is the same node as the seller in contract ci+1.

For notational convenience, let bi = bci and si = sci . For a network M , a chain

block is a chain c1, . . . , cn such that

∀i ≤ n, ci /∈M ,

c1 ∈ Chs1(M(s1) ∪ c1),

cn ∈ Chbn(M(bn) ∪ cn),

and ∀i < n, {ci, ci+1} ⊆ Chbi=si+1
(M(bi) ∪ ci ∪ ci+1).

A network is chain stable if it is individually rational and has no chain blocks.

Ostrovsky defined the chain stability only for acyclic graphs: upstream-downstream

networks, where there are suppliers of basic inputs (sources), intermediaries and con-

sumers of final outputs (targets).

Theorem 35 ( [Ostrovsky (2008)]). If every vertex’s choice function is SSS, CSC and

path independent, and G is acyclic, then there exists a chain stable network.

Now we allow circles in the graph.

Definition 20. A blocking walk of network M is an alternating sequence of incident

vertices and arcs P = (v1, a1, . . . ak−1, vk) such that all the following properties hold:

arc ai points from vi to vi+1

each arc ai /∈M
a1 ∈ Chv1(M(v1) ∪ a1),

ak−1 ∈ Chvk(M(vk) ∪ ak−1),

and ∀i < n, {ai, ai+1} ⊆ Chvi+1
(M(vi+1) ∪ ai ∪ ai+1).

Nodes v1, . . . vk do not have to be different.
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A network is chain stable if it is individually rational and has no blocking walks.

Theorem 36. (Generalization of Ostrovsky’s theorem) If every vertex’s choice function

is SSS, CSC and path independent, then there exists a chain stable network.

Proof. Transform G = (V,E) to a bipartite graph such way that we divide each arc to

two arcs by a new vertex. From arc e = uv we get e1 = ux and e2 = xv . Denote the

new graph G′ = (V ′, E ′). Let be set of the beginning of the arcs D, D = {ux|u ∈ V },
the end of the arcs is U . U = {xv|v ∈ V } Therefore E ′ = D ∪ U .

We call the original edges full edges, and the new ones half edges.

Every new vertex has the following choice function:

The x node has exastly two arcs, e1 = ux és e2 = xv.

G({e1, e2}) = {e1, e2}
G({e1}) = ∅
G({e2}) = ∅
G(∅) = ∅

Note that this choice function is also SSS, CSC and path independent (the subset

ordering {e1, e2} > ∅ > all other sets defines it).

Define a new partial ordering over the subsets of E ′: for X, Y ⊆ E ′, we say X � Y

if X ∩D ⊆ Y ∩D and X ∩ U ⊇ Y ∩ U .

Lemma 37. If choice function F is SSS and CSC, then F is comonotone for the new

partial ordering, that is F is monotone: X � Y ⇒ F (X) � F (Y ).

If X � Y , let Z = (Y ∩ D) ∪ (X ∩ U). Now X � Z � Y . The X and Z set has

the same intersection with U , and X ∩D ⊆ Z ∩D = Y ∩D, so from the SSS property

D(X) \ D(F (X)) ⊆ D(Z) \ D(F (Z)), from the CSC property U(F (X)) ⊆ U(F (Z)),

and because U(X) = U(Z), we get U(X) \ U(F (X)) ⊇ U(Z) \ U(F (Z)). Therefore

F (X) � F (Z).

In the similar way, Z and Y has the same intersection with D, so we get the same state-

ments with opposite roles of U and D. F (X) � F (Z), F (Z) � F (Y ) so F (X) � F (Y ).

Since the original vertices have disjoint arcs, we can define a common choice func-

tion. Let F (M) =
⋃
Cha(M(a)).

And let G be a common choice function for the new vertices.
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Functions F and G are comonotone for the new � ordering. So using Theorem 5

there exist a three-part stable solution, i.e. ∃A,B for which F (A) = S = G(B), and

A ∩B = S, A ∪B = E.

Lemma 38. If subset S of E is three-part stable, then it is chain stable.

Suppose that S three-part stable. Since G(S) = S, S contains only full edges. From

the edges of E \ S, set B \ S cannot contain a full edge, because then G would choose

it. Therefore A \ S has at least one half from every edges in E \ S.

Color the half edges in A \ S to red.

Consider an arbitrary P = (e1, . . . e2k) directed walk (where ei-s are half edges) outside

of S. (P ∩ S = ∅). A directed path on the original edges is also a directed path on

the new edges. If the first or last half-edge of P is red, then P can’t be a blocking

walk, since e1 ∈ A \ S, so S ⊆ S ∪ e1 ⊆ A, and from the path independent property

F (S ∪ e1) = S which means e1 is dominated. The same applies to e2k.

Suppose that neither the first, nor the last half-edge is red. Since every edge has at

least one red half, there exists an original vertex, where two red half-edges meet. Call

them e2j and e2j+1. From S ⊆ S ∪ {e2j, e2j+1} ⊆ A, we get F (S ∪ {e2j, e2j+1}) = S.

Therefore P is not a blocking walk.

We showed that no walk can block, so S is chain stable.

There always exists a three-part stable solution, and every three-part stable is chain

stable, so there exists a chain stable solution.

Theorem 39. The opposite direction is also true: every chain stable S is three-part

stable with the new ordering ≺.

Proof. Color a half edge e /∈ S outside of S to red if e /∈ F (S + e), so S dominates

them with the F choice function. Color e /∈ S to blue, if e ∈ F (S + e), i.e. it is not

dominated. If there exists a blocking path, the first and last half edge must be blue,

hence the players would choose them.

Since there is no blocking edge, both halves of an edge cannot be blue, so every

edge has at least one red part. Therefore G(S ∪ blue edges) = S.

It would be simple to place the red edges in A \ S, and the blue ones in B \ S.

But it may occur that a and b half edges are red, yet {a, b} ⊆ F (S ∪ {a, b}). Be-

cause of the path independent property, from a and b the choice F (S ∪{a, b}) contains

both or none, since if a /∈ F (S ∪ {a, b}), then F (S ∪ {a, b}) ⊆ S ∪ b ⊆ S ∪ {a, b} so
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F (S ∪ {a, b}) = F (S ∪ b) and b /∈ F (S ∪ b), therefore b /∈ F (S ∪ {a, b})

If {a, b} ⊆ F (S ∪ a, b), we draw a new edge from the beginning of a to the end of

b. We color these new edges to green.

The set of the middle vertices is Vh. Let D1 be set of vertices in Vh who has a blue

incoming edge, and U1 is the set of Vh-vertices with blue outgoing edge. As we said

before, there is no blue full edge, hence D1 ∩ U1 = ∅.
If there is a directed walk on only green edges from D1 to U1, there exist a blocking

walk, the first and last vertices choose the blue edge, and the middle vertices choose

the two red edges connected with the green edge.

Since S is chain stable, there is no such walk, we cannot go from D1 to U1. Let Z1 be

the set of Vh-vertices available from D1 on green edges, and let Z2 = Vh \ Z1.

If v ∈ Z1, no blue edge can leave it. Recolor the incoming red edges to blue. If

v ∈ Z2, no blue edge can go into it. Recolor the outgoing red edges to blue. With this

method, there is still no full blue edge.

Now put the red edges into A \ S and the blue ones into B \ S.

Every edge outside of S has at least one red half, so G(B) = S

For the original vertices, if v ∈ V , let a = xv be an incoming half edge, and b = vy

is an outgoing half edge, which were originally red.

If {a, b} ⊆ F (S ∪ ab), then one of a and b was changed to blue. If it did not, then

x changes the edge before it, so x ∈ V1, and y changes the edge after it, so y ∈ V2.

Moreover there is a green edge from x to y. This contradicts the definition of V1, V2.

Consider the set of remaining red edges incident with v. By the definition of red

edges,

F (S ∪ a) = S, and from the former argument, for every incoming-outgoing pair,

F (S ∪ ab) = S.

Lemma 40. If the choice function F of vertex v is SSS, CSC and path independent,

and the incoming edges are a1, . . . ak, the leaving edges are b1 . . . bl, where for all ai, bj

pairs, F (S ∪ {ai, bj}) = S, then F (S ∪ {a1, . . . ak, b1 . . . bl}) = S.

Since F (S ∪{ai, bj}) refuses bj, from the SSS property F (S ∪{ai, b1, . . . bl}) refuses

every bj. Since F (S ∪ {ai, b1, . . . bl}) ⊆ S ∪ {ai ⊆ S ∪ ai, b1, . . . bl}) from path indepen-

dency F (S ∪ {ai, b1, . . . bl}) = S for every i.

The same can be said for the opposite side, so F (S ∪ {a1, . . . ak, bj}) = S for every j.
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Using SSS again, F (S ∪ {ai, b1, . . . bl}) rejects ai, so F (S ∪ {a1, . . . ak, b1 . . . bl}) also re-

ject ai-t, for every i. F (S∪{a1, . . . ak, bj}) = S rejects bj, so F (S∪{a1, . . . ak, b1 . . . bl})
rejects bj-t, for every j.

Therefore F (S ∪ {a1, . . . ak, b1 . . . bl}) ⊆ S ⊂ S ∪ {a1, . . . ak, b1 . . . bl}
so F (S ∪ {a1, . . . ak, b1 . . . bl}) = F (S) = S.

Using this lemma to the red edges, F (A) = S, and from the construction G(B) = S

and A ∩B = S,A ∪B = E, therefore S is three-part stable.

Example:
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F (e2, e3) = {e2, e3}
F (e4, e7) = {e4, e7}
F (e4, e5) = ∅
V1 = {v2, v4, v8}
V2 = {v6}

Here S = ∅ is stable, there is no blocking walk.

After the color changing:
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In this model, we only know that there are no blocking walks, where the first and

last edges are not chosen by the players separately. But if the walk is a circle, it can

happen that v1 = vk would like to choose e1 and ek−1 together.

Definition 21. A blocking circle of network M is an alternating sequence of incident

vertices and arcs C = (v1, a1, . . . ak−1, vk) such that all the following properties hold:

v1 = vk

arc ai points from vi to vi+1

each arc ai /∈M
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{a1, ak−1} ⊆ Chv1(M(v1) ∪ a1 ∪ ak−1),

∀i < n, {ai, ai+1} ⊆ Chvi+1
(M(vi+1) ∪ ai ∪ ai+1).

A network is fully stable if it is individually rational, and there is no blocking circle

and no blocking walk.

Unfortunately, a fully stable network not always exist. Consider the following

example [Cseh (2010)]:
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2. 5.
3.

4.

This model is described as in [Fleiner (2009)]. The agents u and v want to satisfy

Kirchhoff’s law, and u’s preference ordering is a > b > d > e > c, he wants to buy and

sell equal quantities to his best possible partners. Agent v buys and sells both b and c

or none of them.

The source is s, the target is t, they want to trade everything they can.

With choice functions, Chs(a) = a

Chv(b) = ∅, Chv(c) = ∅, Chv(b, c) = b, c

Cht(d) = d, Cht(e) = e, Cht(d, e) = d, e

Chu(a) = ∅, Chu(b) = ∅, . . . Chu(a, b, c, d, e) = a, b, d, e

The network {a, d} is chain stable, since adding one of b or c is blocked at v, adding

the b, c circle, we can decide where to start it. If v1 = u = v3, v2 = v it is blocked at

u, because Chu(a, b, d) = a, d, Chu(a, c, d) = a, d . If v1 = v = v3, v2 = u it is blocked

at u, because Chv(b) = ∅, Chv(c) = ∅.
If we try e, the edge d is better, so Chu(a, d, e) = a, d

If we add b, c, e together, Chu(a, b, d) = a, d Chu(a, c, d, e) = a, d, so it is not blocking.

But b, c is a blocking circle, Chu(a, b, c, d) = a, b, c, d, Chv(b, c) = b, c so a, d is not

fully stable. Adding this circle to the network, a, b, c, d is not stable, since e edge is

blocking: Chu(a, b, c, d, e) = a, b, d, e and Cht(d, e) = d, e.
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Remark 41. For a given G graph with preferences, it is an open problem to decide

whether there exists a fully stable network.

5.1 Continuous quantities

In the previous model, one trading is realized or not, but we did not talk about how

much they trade. Now, assign a volume to every trade, q : E → R describes the supply

chain. If E is finite, we can consider it as a vector in R|E|. Instead of Kirchhoff’s law,

every node makes some transformation on the goods. (For example: a firm v buys

100 units of wood, and sells 20 chairs) For every vertex, an SSS, CSC choice function

describes the preferences.

In the continuous case, a choice function is F : R|E| → R|E| for which F (A) ≤ A

for every A ∈ R|E|. Here ≤ means F (A)(e) ≤ A(e) for every edge. If for a subset A of

the edges, we use the charasteristic vector A(e) = 1 if e ∈ A and A(e) = 0 if e /∈ A, we

get the original definition.

Denote the set of unselected elements with F (A) = A− F (A).

A choice function F is comonotone, if for every A ≤ B, A− F (A) ≤ B − F (B), so

F (A) ≤ F (B).

Cut each edge in half, E ′ is the set of the half edges. We can generalize the q(e′)

quantity of products for every e′ ∈ E ′, now the function q maps from E ′ to R . The

edge set E ′ = D ∪U where D is the set of the beginner half of the edges, and U is the

ending half of the edges. Let qD be the value of function q, on the half edges in D, and

qU , is the value of q restricted to U .

The F choice function is SSS and CSC, if for any two quantity functions q and q′,

such that qD = q′D, qU ≤ q′U then F (qU) ≤ F (q′U) and F (qD) ≤ F (q′D). And similarly,

for every qU = q′U , qD ≤ q′D we get F (qD) ≤ F (q′D) and F (qU) ≤ F (q′U).

In the new partial order q � q′, if qU ≤ q′U , qD ≥ q′D. As we have seen in the

discrete case, the choice funcion F is SSS and CSC if and only it F is comonotone for

this partial order, i.e. q � q′ ⇒ F (q) � F (q′).

We use the same method as in [Fleiner (2009)]. Each edge has a capacity c(e).

Let L be a set of nonnegative mappings l : E → R such that 0 ≤ l(e) ≤ c(e) holds

for any edge e of E. Observe that L forms a complete lattice under partial order
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≤. If li : E → R are elements of L for i ∈ I then
∨
i∈I l(e) = sup{li(e) : i ∈ I}

and
∧
i∈I l(e) = inf{li(e) : i ∈ I}, since the li(e) elements are bounded, infimum and

supremum always exist.

We define two choice functions on L, for the two sides of the market, now F for the

original nodes, and G for the middle nodes.

Define mappings on L by F ∗(l) = c − F (l) and G∗(l) = c − G(l) that is for each

edge e, F ∗(l)(e) = c(e) − F (l)(e) and G∗(l)(e) = c(e) − G(l)(e). For any element l of

L, we have F ∗(l), G∗(l) ∈ L and since F is monotone for the ordering �, if l � l′ , then

F ∗(l) � F ∗(l′) and G∗(l) � G∗(l′). So if we compose these functions, then we get a

monotone function H = F ∗ ◦G∗

H(l)(e) = c(e) − F (c − G(l))(e). From Tarski’s fixed point theorem, there is some

function l of L such that

H(l)(e) = c(e)− F (c−G(l))(e) = l(e)

Define s = G(l), sG = l − s, sF = c− l, so s = sG + s+ sF .

Rearranging the sides, we get sF = c− l = F (c−G(l)) = F (s+ sF ).

Extending the definition of three-part stability, s = G(l) is three-part stable, since

for A = s+ sF , B = l = s+ sG, F (A) = s = G(B) and A+B = c+ s.

An arc e is q-unsaturated, if q(e) < c(e).

Definition 22. A blocking walk of network q is an alternating sequence of incident

vertices and arcs P = (v1, a1, . . . vk) such that all the following properties hold:

arc ai points from vi to vi+1

each arc ai of P is q-unsaturated

there exist a εi for every vi such that

ε1a1 ≤ F (q + ε1a1)

εkak−1 ≤ F (q + εkak−1)

εiai−1 + εiai ≤ F (q + εiai−1 + εiai)

Definition 23. A network l is chain-stable, if it is individually rational: F (l) = l =

G(l), and there is no blocking walk.

Theorem 42. A network is chain stable if and only if it is three-part stable.

Proof. Similarly to the proof of Lemma 38 and Theorem 39. Now we only prove the

three-part stable ⇒ chain stable direction, because this is what we need for the next

theorem.

Suppose that s is three-part stable. It mean there exist A,B : E ′ → R such that

A = s + sF , B = l = s + sG, F (A) = s = G(B) and A + B = c + s. From path
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independency, s is also individually rational, F (s) = s = G(s).

Color an unsaturated half edge e to red, if A(e) > s(e), so A− s has some positive

quantity of e. If A(e) = s(e), color e to blue.

Since G(s) = s, for two halves of an original edge e1, e2, s(e1) = s(e2). If e1, e2 are

unsaturated, B(e1) = s(e1) or B(e2) = s(e2) otherwise G would choose a bigger volume.

So at least one of the two halves is red. This is true for every unsaturated edge.

Consider an arbitrary P = (e1, . . . e2k) directed walk of unsaturated half edges. If

the first or last half-edge of P is red, then P can’t be a blocking walk, since εe1 ∈ A−s,
so s ≤ s + εe1 ≤ A, and from the path independent property F (S + εe1) = S which

means e1 is dominated. The same applies to e2k.

Suppose that neither the first, nor the last half-edge is red. Since every edge has at least

one red half, there exists an original vertex, where two red half-edges meet. Call them

e2j and e2j+1. From s ≤ s+ε2je2j+ε2j+1e2j+1 ≤ A, we get F (s+ε2je2j+ε2j+1e2j+1) = s.

Therefore P is not a blocking walk.

We showed that no walk can block, so S is chain stable.

Theorem 43. If preferences are SSS, CSC and path independent, there always exists

a chain stable solution.

Proof. Similarly to the discrete case, we cut each edge in half. For the middle points,

we define choice function G. From edge e = uv we created e1 = ux and e2 = xv. If in

a network q, the volume of selled products on the edges are a = q(e1) and b = q(e2),

the choice of x is G(a, b) = (min(a, b),min(a, b)) which means x sells exactly what he

buys, with the biggest possible amount.

We show that G is comonotone for � .

If a < b G(a, b) = (a, a), so G(a, b) = (0, b − a). (a, b) � (a′, b′) means a ≤ a′,b ≥ b′

Suppose that a < b.

If a decreases, b increases G(a′, b′) = (0, b′−a′), and b′−a′ > b−a, so G(a, b) � G(a′, b′).

If a increases, b decreases , and still a′ < b′ G(a′, b′) = (0, b′ − a′), and b′ − a′ < b− a,

so G(a, b) � G(a′, b′)

If a increases, b decreases , and a′ > b′ G(a′, b′) = (a′− b′, 0), and a′− b′ > 0, 0 < a− b
so G(a, b) � G(a′, b′).

Choice function G is also path independent, if (min(a, b),min(a, b)) ≤ (a′, b′) ≤
(a, b), one of a′, b′ must be min(a, b), so G(a′, b′) = (min(a, b),min(a, b)
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There always exists a three-part stable solution, and every three-part stable is chain

stable, so there exists a chain stable solution.

6 Supply chains with money

In the paper [Hatfield et al. (2011)], they introduce a model with continuous prices.

There is a finite set I = 1, 2, . . . n of agents in the economy. They are represented with

vertices. The agents can participate in bilateral trades, which correspond to the edges

of the directed graph G = (I, E). So E is the set of all possible trades. Every trade e

is associated with buyer b(e) and a seller s(e). In this model, circles in the graph are

allowed.

The following definitions are all from [Hatfield et al. (2011)]:

We call a pair (e, pe) a contract where e is a trade and pe is the price at which the

trade occurs. The set of available contracts is X = E × R.

For any set of contracts Y , the set of trades involved in Y is denoted with τ(Y ), so

τ(Y ) = {e ∈ E : (e, pe) ∈ Y for some pe ∈ R}. For an agent i and a set of contracts

Y ⊆ X, denote the contracts coming into i with Yi− so Yi− = {y ∈ Y : i = b(y)}, and

the set of contracts in Y leaving i is Yi+ so Yi+ = {y ∈ Y : i = s(y)}
Let Yi denote the set of all contracts in Y incident with i, so Yi = Yi− ∪ Yi+, and Ei

the set of edges incident with i.

We say the set of contracts Y is feasible, if there is no trade e and prices pe 6= p′e

such that both contracts (e, pe) and (e, p′e) are in Y .

An outcome A ⊆ X is a feasible set of contracts. So it is a set of edges with a price

for every edge in the set, but we don’t have prices for the edges outside the set.

An arrangement is a pair [Ψ, p] where Ψ ⊆ E is a set of trades and p ∈ R|E| is a vector

of prices for all trades in the economy.

Each player vi has a valuation function ui(A) over all subsets of edges A ⊆ E it is

incident with. The valuation ui gives rise to an utility function Ui over sets of contracts.

Ui(Y ) = ui(τ(Y )) +
∑

(e,pe)∈Yi+

pe −
∑

(e,pe)∈Yi−

pe

There are two kind of choice function here: The choice correspondence of agent i
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from the set of contracts Y ⊆ X is

Ci(Y ) = argmax
Z⊆Yi,Z is feasible

Ui(Z)

This Ci is a choice function over the contracts, but it differs from a regular choice

function, in a way that it can be multiple valued, if maximum is taken on more than

one set. So Ci(Y ) is the set of all best choices from Y . It may be empty-valued too,

for example if Y = {(e0, p), 0 < p < 1}.

The demand correspondence of agent i with a given price vector p ∈ R|E| is defined

as the set of trades maximizing agent i’s utility under prices p:

Di(p) = argmax
A⊆E

Ui([A, p])

The demand correspondence function chooses from the edges, not from the con-

tracts, and always from the whole set of the edges. The optimal set is not uniquely

defined, Di(p) is the set of all optimal edge-sets.

The indirect utility function of agent i is

Vi(p) = max
Ψ⊆Ei

Ui([Ψ, p])

Let V (p) =
∑

i∈I Vi(p).

Let a(Z) denote the of agents involved in contracts in Z as buyers or sellers.

a(Z) =
⋃
z∈Z{b(z), s(z)}

Definition 24. An outcome A is stable if it is:

1. Individually rational : Ai ∈ Ci(A) for all i,

2. Unblocked : There is no feasible nonempty blocking set of contracts Z ⊆ X such that

Z ∩ A = ∅ and for all i ∈ a(Z), for all of i’s choices Y ∈ Ci(Z ∪ A) we have Zi ⊆ Y .

Definition 25. An agreement [Ψ, p] is a competitive equilibrium if for all i ∈ I

Ψi ∈ Di(p)

Based on the SSS, CSC definitions by [Ostrovsky (2008)], Hatfield et al. introduce

the fully substitutable property. It is similar to the ”comonotone for ordering ≺” defi-

nition in Section 3, but now they define monotonicity over contracts, not edges, and we

need some modifications because of the multiple valued definition of Ci. They introduce

three equivalent definitions of full substitutability: choice-language fully substitutable,

demand-language fully substitutable and indicator-language fully substitutable prefer-

ences.
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Definition 26. [Hatfield et al. (2011)] Agent i’s preferences are choice-language fully

substitutable(CFS) if:

1. For all sets of contracts Y, Z ⊆ Xi, such that |Ci(Z)| = |Ci(Y )| = 1, if Yi+ = Zi+

and Yi− ⊆ Yi− then for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have

(Yi− − Y ∗i−) ⊆ (Zi− − Z∗i−) and Y ∗i+ ⊆ Z∗i+

2. For all sets of contracts Y, Z ⊆ Xi, such that |Ci(Z)| = |Ci(Y )| = 1, if Yi− = Zi−

and Yi+ ⊆ Yi+ then for the unique Y ∗ ∈ Ci(Y ) and Z∗ ∈ Ci(Z), we have

(Yi+ − Y ∗i+) ⊆ (Zi+ − Z∗i+) and Y ∗i− ⊆ Z∗i−

It means that when attention is restricted to sets for which Ci is single-valued, and

the set of option to i on one side expands, i rejects a larger set of contracts on that

side (SSS), and select a larger set of contracts on the other side.

Definition 27. Agent i’s preferences are demand-language fully substitutable (DFS)

if:

1. for all price vectors p, p′ ∈ R|E| such that |Di(p)| = |Di(p
′)| = 1, pe = p′e for all

e ∈ Ei−>,and pe ≥ p′e for all e ∈ E−>i, for the unique A ∈ Di(p) and A′ ∈ Di(p
′), we

have {e ∈ A′−>i : pe = p′e} ⊆ A−>i and Ai→ ⊆ A′i→

2. for all price vectors p, p′ ∈ R|E| such that |Di(p)| = |Di(p
′)| = 1, pe = p′e for all

e ∈ E−>i,and pe ≥ p′e for all e ∈ Ei−>, for the unique A ∈ Di(p) and A′ ∈ Di(p
′), we

have {e ∈ A′i−> : pe = p′e} ⊆ Ai−> and A→i ⊆ A′→i

The demand correspondence Di is fully substitutable if, when attention is restricted

to prices for which demands are single-valued, a decrease in the price of some inputs

for agent i leads to the decrease in his demand for other inputs and to an increase

in his supply of outputs, and an increase in the price of some outputs leads to the

decrease in his supply of other outputs and an increase in his demand for inputs. For

each agent i, for any set of trades A ⊆ Ei define the (generalized) indicator function

χ(A) ∈ {−1, 0, 1}|Ei| to be the vector with component χe(A) = 1 for each upstream

trade e ∈ Ai−, and χe(A) = −1 for each downstream trade e ∈ Ai+ and χe(A) = 0

= 0 for each trade e /∈ A. The interpretation of χ(A) is that an agent buys a strictly

positive amount of a good if he is the buyer in a trade in A, and ”buys” a strictly

negative amount if he is the seller of such a trade.

Definition 28. [Hatfield et al. (2011)] Agent i’s preferences are indicator-language

fully substitutable (IFS) if for all price vectors p, p′ ∈ R|E| such that |Di(p)| = |Di(p
′)| =

1, and pe ≥ p′e for the unique A ∈ Di(p) and A′ ∈ Di(p
′), we have χe(A) ≤ χe(A

′) for

each e ∈ Ei such that pe = p′e.
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Theorem 44. [Hatfield et al. (2011)] If all agents’ preferences are fully substitutable,

there always exists a competitive equilibrium.

They proved this theorem by reducing it to many-to-one stable matchings in a

bipartite graph, a model from [Kelso and Crawford (1982)].

For an arrangement [Ψ, p], let κ([Ψ, p]) =
⋃
e∈Ψ{(e, pe)} denote the set of contracts

induced by the arrangement. So κ([Ψ, p]) is an outcome.

Theorem 45. [Hatfield et al. (2011)] Suppose [Ψ, p] is a competitive equilibrium. Then

κ([Ψ, p]) is stable.

These two theorems together prove that there always exists a stable solution.

Definition 29. [Hatfield et al. (2011)] The set of trades Ψ is efficient if∑
i∈V ui(Ψ) ≥

∑
i∈V ui(Ψ

′) for any other Ψ′ ∈ E, that is where the sum of utilities is

maximal.

Denote this maximum with

U∗ = max
Ψ∈E

∑
i∈V

ui(Ψ).

Therefore Ψ is efficient if and only if U∗ =
∑

i∈I ui(Ψ)

Theorem 46. [Hatfield et al. (2011)] Suppose agents’ preferences are fully subtituable.

Then for any competitive equilibrium [Φ, p] and efficient set of trades Ψ, [Ψ, p] is also

a competitive equilibrium. Furthermore, the set of competitive equilibrium prices forms

a lattice.

Lemma 47. [Hatfield et al. (2011)] A price vector p′ is a competitive equilibrium price

vector if and only if p′ ∈ argminp V (p)

They proved this lemma using the existence of competitive equilibrium.

The search for a competitive equilibrium is easier after these theorems. We only

have to check the efficient edge sets, and the V (p)-minimizing price vectors.

We can conclude it in a theorem, which is weaker than the former statements, but

sufficient for showing the existence of a competitive equilibrium.

Theorem 48. If p′ ∈ argminp V (p) there exists an efficient set Ψ, where [Ψ, p′] is a

competitive equilibrium.

This theorem is a corollary of Theorem 44, Theroem 46 and Lemma 47.

For any subset of edges Φ ∈ E and arbitrary price vector p, let Y = κ([Φ, p]) denote

the set of contracts formed from the edges of Φ with corresponding prices from p. For
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every i ∈ I , Ui(Y ) ≤ Vi(p) from the definition of Vi(p). If we sum the utilities for all

agents, each price appear twice, with different signs, so they cancel out.∑
i∈I

Ui(Y ) =
∑
i∈I

(
ui(τ(Y )) +

∑
(e,pe)∈Yi+

pe −
∑

(e,pe)∈Yi−

pe
)

=
∑
i∈I

ui(τ(Y ))

So they have the same maximum:

U∗ = max
τ(Y )⊆E

∑
i∈I

ui(τ(Y )) = max
Y⊆X

∑
i∈I

Ui(Y )

The indirect utility funcion maximizes the utilities one by one, and U∗ maximizes the

utilities together, so V (p) is greater.

U∗ = max
Y⊆X

∑
i∈I

Ui(Y ) ≤
∑
i∈I

max
Y⊆X

Ui(Y ) =
∑
i∈I

Vi(p) = V (p)

Let V ∗ = minp V (p), that is V ∗ = V (p′) Since U∗ ≤ V (p) for any p, U∗ ≤ minp V (p) =

V ∗.

Lemma 49. If U∗ = V ∗ then there exists a competitive equilibrium.

Proof. If U∗ = V ∗, then

U∗ = max
Y⊆X

∑
i∈I

Ui(Y ) =
∑
i∈I

max
Y⊆X

Ui(Y ) =
∑
i∈I

Vi(p
′) = V (p′)

so there is a Y ∗ set of contracts, where all agents have maximal utility, U∗ =
∑

i∈I Ui(Y
∗)

and maxY⊆Xi
Ui(Y ) = Ui(Yi), so Yi ∈ Di(p), therefore [Y ∗, p′] is a competitive equilib-

rium.

An example:

There are four players: two buyers (v1, v2) and two sellers (v3, v4)

Buyer v1 prefers buying from v4, and v2 prefers v3. This gives them utility of 1, every

other scenario’s utility is zero. Similarly v3 would like to sell to v1, and v4 prefers v2.
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Let the edges be e1 = v3v1, e2 = v3v2, e3 = v4v1, e4 = v4v2, and the corresponding

prices are p1, p2, p4, p5. The utilities of firm v1 over the set edges it is incident with it

are the followings (without prices):

u1(∅) = 0

u1(e1) = 0 u1(e3) = 1 u1(e1, e3) = 0

With prices:

U1(∅) = 0

U1(e1, p1) = 0− p1 U1(e3, p3) = 1− p3 U1(e1, e3, p1, p3) = 0− p1 − p3

Therefore theD1 demand correspondence function isD1(p1, p3) = argmax(0,−p1, 1−
p3,−p1 − p3)

If we look only at the preference ordering, the market can be considered as a stable

marriage problem with two men and two women. There the stable solutions are {e1, e4}
and {e2, e3}.

Under what price will {e1, e4} be a competitive equilibrium? We are looking for a

price vector p which satisfies:

max(0,−p1, 1− p3,−p1 − p3) = −p1

max(0,−p4, 1− p2,−p4 − p2) = −p4

max(0, 1 + p1, p2, p1 + p2) = 1 + p1

max(0, 1 + p4, p3, p3 + p3) = 1 + p4

From these inequalities −1 ≤ p1 ≤ 0, 0 ≤ p2 ≤ 1, 0 ≤ p3 ≤ 1,−1 ≤ p4 ≤ 0. More-

over:

1− p3 ≤ −p1

1− p2 ≤ −p4

p2 ≤ 1 + p1

p3 ≤ 1 + p4

Summing these four inequalities the prices cancel out and we get 2 ≤ 2. Since

2 = 2, we have equality in all of the four inequalities. The p prices satisfying these

conditions are p1 = x, p2 = 1 + x, p3 = 1 + x, p4 = x where −1 ≤ x ≤ 0. With this p

vector, {e1, e4} is an competitive equilibrium.

Note that with this p, the 1−p3, 1−p2, p2, p3 are also maximal utilities for v1, v2, v3, v4,

therefore {e2, e3} is also a competitive equilibrium.

The lesson of this example is that we cannot modify the Di choice function to a

unique-valued one. For example if we use the rule that in case of equal utility, a firm

chooses the lexicographically first best set, then under price vector p = (x, 1+x, 1+x, x)
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(for example p = (−1/2, 1/2, 1/2,−1/2)) player v1 chooses e1, player v2 chooses e2, v3

chooses e1 and v4 chooses e3, and we do not find the competitive equilibrium. If they use

in a smarter method, everyone choose e1 or e4 if possible, then we find the competitive

equilibrium {e1, e4}, but lose the other solution {e2, e3}.

6.1 Continuous prices and quantities

Denote the set of trades with E, and to every e ∈ E edge belongs a quantity qe and a

price pe. We denote the price vector with p, the quantity vector with q. If q(e) ≤ q′(e)

for every e ∈ E, we say q ≤ q′.

Each edge has a maximal capacity c(e), so for every i 0 < q(e) < c(e). Let

T =
∏

i∈I [0, ce], the set of possible quantity vectors. The prices can take any real

value, p ∈ R|E|.
Now we call a quantity vector-price vector pair an agreement. The set of possible ar-

rangements is X = T × R|E|

Valuation function ui is defined on T for every agent i. Suppose that ui is contin-

uous and ui(0) = 0. Let Ei+ denotes the set of edges leaving vertex i, and Ei− is the

set of edges coming to i. A player i’s utility over the agreements is

Ui(q, p) = ui(q) +
∑

e∈Ei+
peq(e)−

∑
e∈Ei−

peq(e).

We can change the definition of choice correspondence function as follows:

If Y ⊆ X is a set of agreements

Ci(Y ) = argmax
[q,p]∈Y

Ui(q, p)

If in a special case where we only need to choose from a feasible set, where each edge

has only one possible price, and the quantities has some upper bound, the Ci function

can be written as

Ci(q, p) = argmax
q′≤q

Ui(q, p)

The demand correspondence function will be:

Di(p) = argmax
q∈T

Ui(q, p)

The indirect utility function of agent i is

Vi(p) = max
q∈T

Ui(q, p)
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Let V (p) =
∑

i∈I Vi(p), and V ∗ = minpV (p).

Let U∗ = maxq∈T
∑

i∈V ui(q) the maximal common utility over the networks. We

say q is efficient, if U∗ =
∑

i∈V ui(q).

Definition 30. An agreement [q, p] is a competitive equilibrium if for all i ∈ I

q ∈ Di(p)

We would like to show the continuous version of Theorem 44:

Conjecture 50. If all preferences are fully substitutable there exist p q such that [q, p]

is a competitive equilibrium.

We use the same U∗ maximal utility as before:

U∗ = max
q

∑
i∈I

Ui(p, q) ≤
∑
i∈I

max
q
Ui(p, q) =

∑
i∈I

Vi(p) = V (p)

Let V ∗ = minp V (p), that is V ∗ = V (p′) Since U∗ ≤ V (p) for any p, U∗ ≤ minp V (p) =

V ∗.

We can state the same as we did in the discrete case:

Lemma 51. If U∗ = V ∗ then there exists a competitive equilibrium.

Proof. If U∗ = V ∗, then

U∗ = max
q

∑
i∈I

Ui(Y ) =
∑
i∈I

max
q
Ui(Y ) =

∑
i∈I

Vi(p
′) = V (p′)

so there is a Y ∗ set of contracts, where all agents have maximal utility, U∗ =
∑

i∈I Ui(Y
∗)

and maxY⊆Xi
Ui(Y ) = Ui(Yi), so Yi ∈ Di(p), therefore [Y ∗, p′] is a competitive equilib-

rium.

An interesting property of Di(p) is the following one:

Lemma 52. Agent i’s preferences are fully substitutable, and for agreements [q0, p],

[q1, p], [q2, p] the price vector is the same, and for each e ∈ Ei− q0(e) = q1(e) = q2(e),

and for each e ∈ Ei+ q0(e) ≤ q1(e) ≤ q2(e). If q0, q2 ∈ Di(p), then q1 ∈ Di(p).

Similarly, if for each e ∈ Ei+ q0(e) = q1(e) = q2(e), and for each e ∈ Ei− q0(e) ≤
q1(e) ≤ q2(e), we get q0, q2 ∈ Di(p)⇒ q1 ∈ Di(p).
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Proof. We prove the first part:

Suppose that q1 /∈ Di(p), then Ui(q2, p) = Ui(q0, p) > Ui(q1, p), because U(q0, p) and

U(q2, p) are maximal and U(q1, p) is not.

Choose an edge e ∈ Ei+ for which q2(e) > q0(e). Let ε be a small positive number,

such that 0 < εq1(e) < U(q0, p) − U(q1, p). Increase e’s price by ε, so p′e = pe + ε,

p′f = pf for any f 6= e edge

Now Ui(q2, p
′) = Ui(q2, p) + q2(e)ε

Ui(q1, p
′) = Ui(q1, p) + q1(e)ε

Ui(q0, p
′) = Ui(q0, p) + q0(e)ε

Since Ui(q2, p) = Ui(q0, p) and q2(e) > q0(e), for the new utilities Ui(q2, p
′) ≥ Ui(q0, p

′),

and ε is so small that q1 can’t reach the other’s utility, so Ui(q1, p
′) ≥ Ui(q0, p

′).

Ui(q2, p) has the maximal utility of all agreements [q, p] : q ∈ T, p is fixed, so

Ui(q2, p
′) has the maximal utility of all agreements [q, p] : q ∈ T, q(e) ≤ q2(e)p′ is fixed.

Therefore q2 ∈ Ci(q2, p
′). If |Ci(q2, p)| 6= 1, we can perturbate the prices with smaller

εj-s in a way that the ordering of the utilities remain, but Ui(q, p
′′) is different for all

q ∈ T . So {q2} = Ci(q2, p
′′)

For q0, there is a smaller flow with bigger utility, so Ci(q0, p
′) 6= q0. It means Ci(q2, p

′) =

0 and Ci(q0, p
′) > 0 which contradicts same-side substitutability.

The second part is analogous with changing the roles of Ei+, and Ei− and we

decrease pe by ε instead of increasing.

Definition 31. An one-dimensional real function f : R → R is concave if for every

x, y ∈ R and 0 ≤ λ ≤ 1:

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y).

Definition 32. The hypograph of a function f : Rn → R is the set of points lying on

or below its graph:

hypf = {(x, µ) : x ∈ Rn, µ ∈ R, µ ≤ f(x)} ⊆ Rn+1

A function is concave if and only if its hypograph is a convex set.

Let [a, b] a closed interval.

Definition 33. For a function f : [a, b] → R , the upper convex hull of f is the

following function f̂ : [a, b]→ R:

f̂(x) = sup
a≤x1,x2≤b,0≤λ≤1

{y|y = λf(x1) + (1− λ)f(x2), x = λx1 + (1− λ)x2}
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If x = λx1 + (1− λ)x2 then x2 = x−λx1
1−λ , so the definition of f̂ can be written as

f̂(x) = sup
a≤x1≤b,0≤λ<1

{y|y = λf(x1) + (1− λ)f

(
x− λx1

1− λ

)
}

It is correct only if λ 6= 1, but if λ = 1, let x2 take the role of x1, and for some other

x3 ≥ x2, let λ = 0, because they both give the same point f(x2).

We can think of f̂ as the upper border of the convex hull of hypf . If f is continuous

and has an upper bound, then hypf is a closed set, so its convex hull is also closed,

and since the hypograph has an upper bound, f̂ is also bounded from above, moreover

f̂ is concave and continuous.

A property of the utility function:

Lemma 53. For a player i ∈ V , the set of edges incident with i is Ei. Pick an edge

e′ ∈ Ei. Let T−e′ = T =
∏

e∈E,e 6=e′ [0, ce] the set of possible quantities for every edge in

Ei but e′. We claim that if the preferences of i are path independent, SSS and CSC,

then for q−e′ = 0 the function f(q′e) = ui(qe′ , q−e′) = ui(qe′ , 0) is concave.

Proof. The domain of f is the [0, ce′ ] interval.

Suppose f is not concave, then f 6= f̂ , so there exist a point y where f(y) < f̂(y).

Let x1 and z1, the end of the section which defines f̂(y), so x1 < y < z1 and y =

λx1 + (1− λ)z1, f(y) = λ1f(x1) + (1− λ1)f(z1)

Consider the following linear function: l(q) = f(x1) + q−x1
z1−x1 (f(z1)− f(x1))

Here f(x1) = l(x1), f(y) < l(y) and f(z1) = l(z1).

Note that l is an upper bound of f . If there would be a z such that f(z) > l(z),

consider the case when z > x1. Then lz(x) = f(x1)+ x−x1
z−x1 (f(z)−f(x1)) linear function

is bigger than l for values bigger then x1, therefore we have a better value for f̂(y). If

z < x1 then we use the linear combination of z and z1.

Let p = f(z1)−f(x1)
z1−x1 be the slope of the a string [(x1, f(x1)), (z1, f(z1))].Let the price

of edge e′ be pe′ = p− ε, if i is the buyer in trade e′ (i.e. e′ ∈ Ei−) and let the price of

edge e′ be pe′ − p+ ε, if i is the seller in e′ ( e′ ∈ Ei+).

The utility function of firm i is:

Ui(q) = ui(qe′ , 0) +
∑

e∈Ei+
peq(e)−

∑
e∈Ei−

peq(e) =

f(qe′)± q(e′)p(e′) =

f(qe′)− q(e′)f(z)−f(x)
z−x + q(e′)ε
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f(q)− qp = f(q)− l(q) + f(x1)− x1p

f(x1)− x1p is a constant.

Ui(qe′ , q−e′) = f(q)−l(q)+f(x1)−x1p+qε = f(q)−l(q)+K+qε where K = f(x1)−x1p

is also a constant for q(e′).

Ui(x1, 0) = f(x1)−l(x1)+K+x1ε = K+x2ε Ui(y, 0) = f(y)−l(y)+K+yε < K+yε

Ui(z1, 0) = f(z1)− l(z1) +K + z1ε < K + zε

Let 0 < ε < l(y)−f(y)
y−x1 , then Ui(x1, 0) > Ui(y, 0) but U(z1, 0) > U(x1, 0).

Since Ui(x1, 0) > Ui(y, 0) we get that Ci((y, 0), p) chooses on edge e′ a quantity

smaller than y, so it rejects a positive value of e′.

Since f(q) ≤ l(q), and Ui(qe′ , 0) = f(q) − l(q) + K + qε ≤ K + qε, if z′ < z

then Ui(z
′, 0) ≤ K2 + z′ε ≤ K + z′ε = Ui(z, 0), therefore under prices p, z1 has the

maximal utility of all quantity vectors where q(e′) ≤ z1 and q−e′ is fixed. It means

that Ci((z1, 0), p) chooses the whole z1 quantity on edge e′, so it rejects zero value of

e′. This contradicts the SSS property, so f must be concave.

Definition 34. A (q, p) arrangement is stable, if:

It is individually rational: Ci(q, p) = q for every i.

There is no blocking quantity vector z: z blocks if z ≥ 0, q + z ≤ c and with some

price vector p′ firm i would like to add z quantity to the trades where z is positive:

Ci(q + z, p′) ≥ χz>0(q + z)

We generalize the indicator-language fully substitutable property by [Hatfield et al. (2011)]

For an agent i, on the set of edges incident with i, and a given quantity vector q, let a

modified quantity vector be:

q̃(e) = q(e) if e ∈ E−>i
q̃(e) = −q(e) if e ∈ Ei−>

Definition 35. With continuous quantities, we say that agent i’s preferences are fully

substitutable, if for all price vectors p, p′ ∈ R|E| such that |Di(p)| = |Di(p
′)| = 1, and

p ≤ p′ for the unique q ∈ Di(p) and q′ ∈ Di(p
′) we have q̃(e) ≤ q̃′(e) for each e such

that p(e) = p′(e)

It means, if some prizes increase, on the trades where the prize remained the same,

i wants to buy more and sell less quantity.

Let N be a sufficiently large integer. Replace every edge in the graph G with N

parallel edges, if the capacity of e was c(e), the new edges have c(e)
N

capacity. Denote
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the new graph with G′ = (V,E ′), and define a discrete market on G′ where in every

new trade they sell the whole c(e)
N

quantity or none.

The utility function of firm i ∈ V is defined for A ⊆ E ′ as ui(A) = ui(q), where q(e) is

the sum of capacities of edges in A.

Looking at one group of parallel edges between nodes i and j, the trades are identical

in the sense it was defined in Section 4. Using Theorem 29, an utility function defines

substitutable preferences if u(w + 1)− u(w) ≤ u(w)− u(w − 1), so the differences are

decreasing, which means u is a concave function. And this will be true, since we proved

in the previous Lemma 53 that a one-dimensional cut of the utility function is concave.

Definition 36. Firm i’s preferences are very fully substitutable (VFS), if it is fully

substitutable for the new G′ graph.

Conjecture 54. If the original preferences were fully substitutable, they are also fully

substitutable in the new model, so every FS function is VFS too.

If we suppose that preferences are VFS, we can use Theorem 44 for the new supply

chain to prove the existence of a competitive equilibrium

Let U∗N = max
∑
ui in the new market.V ∗N =

∑
maxui

The existence of a competitive equilibrium is equivalent with U∗N = V ∗N

The utility function ui is continuous for every player, so the maximum of ui is also

continuous.

If N → ∞ then U∗N → U∗ and V ∗N → V ∗. Since we have competitive equilibrium

for every discrete market, U∗N = V ∗N for every N , therefore U∗ = V ∗. From Statement

51 there exists a competitive equilibrium on the continuous-quantities market.

Similarly to the proof of Theorem 45 in [Hatfield et al. (2011)], we show that:

Theorem 55. If [s, p] is a competitive equilibrium then [s, p] is stable.

Proof. Suppose that [s, p] is a competitive equilibrium de but it is not stable. There

are two cases: it is not individually rational, or there is a blocking quantity vector z.

If it is not individually rational ∃i such that s /∈ Ci(s), which means s /∈ Di(p) and

this contradicts that [s, p] is a competitive equilibrium.

If there exists a blocking vector z, let Z be the set of edges where z > 0, and a(Z)

is the set of people involved in trades of Z.

Since z blocks, there is a price p̃ for edges in Z, such that for every j ∈ a(Z) and

for every yj ∈ Cj(s + z) they choose yj(e) = z(e) + s(e) on the edges where z > 0.
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They can choose anything on the edges outside of Z. Since s is not in the chosen best

vectors, the utility of s is smaller. For every j ∈ a(Z)

Uj(s) < Uj(yj) = uj(yj) +
∑
e∈Zj+

p̃(e)(z(e) + s(e))−
∑
e∈Zj−

p̃(e)(z(e) + s(e))

+
∑

(E\Z)j+

p(e)yj(e)−
∑

(E\Z)j−

p(e)yj(e)

Summing these to every vertices in a(Z), the p̃ prices cancel out.

∑
j∈a(Z)

Uj(s) <
∑
j∈a(Z)

Uj(y) =
∑
j∈a(Z)

[
uj(y) +

∑
(E\Z)+

p(e)yj(e)−
∑

(E\Z)−

p(e)yj(e)

]

=
∑
j∈a(Z)

[
uj(y) +

∑
e∈Zj+

p(e)yj(e)−
∑
e∈Zj−

p(e)yj(e) +
∑

(E\Z)+

p(e)yj(e)−
∑

(E\Z)−

p(e)yj(e)

]

=
∑
j∈a(Z)

[
uj(y) +

∑
e∈Ej+

p(e)yj(e)−
∑
e∈Ej−

p(e)yj(e)

]
=
∑
j∈a(Z)

Uj(yj)

Therefore for some j Uj(s, p) < Uj(yj, p) so s /∈ Dj(p) and this contradicts that [s, p]

is a competitive equilibrium.

So if Conjecture 54 is true, then using Theorem 44 for every new graph with mul-

tiplicated edges, from the continuousity of U∗ and V ∗ and from Lemma 51 we get

there exists a competitive equilibrium for the marked with divisible goods, therefore

Conjecture 50 is also true. Moreover this solution is stable.

7 Conclusion

We had an overview on many different stability concepts: Abstract definitions like

three-part, four-part stability, and applications like the stability of Hungarian college

admissions. In the two-sided market with money the gross substitutes property is the

special case of fully substitutability in supply chain market. We introduced a common

generalization of Fleiner’s and Ostovsky’s model in Section 5.2, moreover, we searched

for a common generalization of this, and Hatfield et al.’s model. Since the model of

[Hatfield et al. (2011)] contains the Kelso-Crawford model, and since Kelso-Crawford

is good for finding a maximal weighted matching, we can conclude the family of models
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in the following diagram:

Stable marriages flows

Stabe flows (Fleiner) Ostrovsky

SSS, CSC, capacities Hatfield et al

continuous price and quantity

Max weighted matchings

Kelso-Crawford
@ �

@ �

@ �

�

�
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