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1 INTRODUCTION

1 Introduction

The main topic of this thesis is yield curve modeling. I have tried to collect the most

relevant information on that but still not to exceed the limits of an MSc thesis. The idea

of a thesis about yield curve modeling has come from the swiss Solvency Analytics group.

Reliable yield curve models can be very useful when calculating sensitivites and capital

charges of corporate bonds within the Solvency II framework. For the thesis to be useful

for Solvency Analytics, I have focused mostly on corporate bonds and I have chosen to

write it in English.

The �rst few pages of the thesis is concentrated on concepts such as �xed income

securities, risks a�ecting them, corporate bonds, YTM, zero-coupon yield curve, discount

curve, forward curve and no-arbitrage. After those the concepts of discount function and

instantenous forward rates are introduced. The next section of the thesis is about one

factor short rate models. After a general description of these types of interest rate models

two popular models are introduced: the Vasicek and Cox-Ingersoll-Ross models. In this

section, I have relied on the knowledge I have learned at the university lectures of Dr.

György Michaletzky [1] and I used similar notations. The Statistical Yield Curve Mod-

els section presents some methods to model the yield curve based on observable market

prices and bond properties. It starts with a method called Coupon Stripping and after

that other types of yield curve models follow such as polynomial or spline-based models

and Nelson-Siegel type curves. I have relied on two books mostly: Handbook of Fixed

Income Securities [2] and Interest Rate Modelling [3]. The Additional Features section

presents some alternative but still popular ways to model the yield curve. They can be

very useful when the construction of statistical yield curve models are not possible. The

last section, Applied Methods summarizes the numerical implementations I have written

to be able to �t some models to real data. I have focused on the polynomial and spline

estimation models here and presented some outputs of the apllications.

I would like to thank my supervisors Dr.András Zempléni and Dr.Daniel Niedermayer

for the numerous advice and help they have provided me and made the following thesis

much better.
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1.1 Fixed Income Securities 1 INTRODUCTION

1.1 Fixed Income Securities

Fixed income securities constitute a huge and important part of the �nancial products

universe. There are a lot of di�erent types of them, and as �nancial markets became

more and more complex, the evolution of these products have started to speed up. The

basic �xed income securities grant given cash �ows on certain future dates to the security

holder. The payer of these cash �ows is the issuer of the security. These are one of the most

simple type of �nancial products, but even these are a�ected by several types of risks. It

is in the investor's interest to have a reliable mathematical model of the products, and a

good model always counts with the risks.

The most important type of risk a�ecting �xed income securities is called interest-rate

risk. It is the risk arising from the constant change of the �xed income securities market.

If interest rates increase, that means investors can expect a higher return on their new

investments in the market, and this lowers the value of older ones. The market value

of securities moves in the opposite direction of interest-rate movements, if rates rise the

market values fall while if rates fall the market values rise. Of course this type of risk does

not a�ect the investor who holds the security until maturity and doesn't plan to sell it

before that.

Another important risk a�ecting �xed income securities is credit risk. The source of

this type is the issuer of the security and its ability to meet its duties. There is always

a possibility that the issuer can't or won't pay the amount when it must be payed, and

this possibility is di�erent for di�erent issuers. A bigger chance of default on the issuer's

side makes the security less valuable and this is usually compensated with higher yield,

to have someone buying them. Among others liquidity risk, currency risk and in�ation

risks also a�ect the price of a �xed income security. To be able to precisely measure the

value of an investment, and to make solid investment choices, sophisticated mathematical

models are needed even for the above mentioned most simple types. In practice, there

are more complex features such as embedded options, seniority restrictions or convertible

bonds, which call for more complex models.

Corporate bonds refer to bonds issued by di�erent corporations. The most important

di�erence between governmental bonds and corporate bonds is the di�erent credit risk

associated with the security. In most cases governmental bonds are considered to contain

very little credit risk, while some corporations have much bigger chance of default. This
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1.2 Yield Curve 1 INTRODUCTION

extra risk beared by the investor is compensated with an increased return on the invest-

ment usually. Another distinction between governmental bonds and corporate bonds is

that corporate bonds usually contain additional features like convertibility or embedded

options, and are often less liquid than governmentals. These make the modelling of cor-

porate bonds harder mathematically, and less accurate models can be expected, than in

the case of governmentals. But as more and more complex �nancial products arise, math-

ematical models become more and more sophisticated, trying to �nd a solution for actual

�nancial problems.

1.2 Yield Curve

How can the investor compare the return of several investments, and choose the one

that's the most approriate for his or her needs? There are di�erent mathematical tools to

measure the return of an investment. In the case of coupon bonds, one of the most pop-

ular measure of return is Yield To Maturity. Let's consider a coupon bond with n years

time-to-maturity, �xed $C coupon payments at the end of every year, and the redeem of

the principal which is $100 at the end of the n years. If the market price of this coupon

bond is PC now, the yield-to-maturity (YTM) is de�ned as:

PC =
n∑

i=1

C

(1 + Y TM)i
+

100

(1 + Y TM)n

According to this equation, the YTM can be calculated every time the cash �ow

pattern and the current market value of a security is known. Yield-to-maturity is an

easily computable, but not too sophisticated measure of a bond's yield. It assumes that

every cash �ow is discounted with the same rate, which is not a realistic approach. In

practice cash �ows further in time carry more risks, and usually should be discounted

with a larger discount rate than the closer ones. This is why the zero-coupon yield curve

is so important in the �eld of modelling �xed income securities.
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1.3 No-arbitrage Condition 1 INTRODUCTION

For a zero-coupon bond the computation of the yield is more simple. Let PZ be the

current market price of the zero-coupon bond, and the only one cash �ow it contains is

$100, t years from now. Then the e�ective yield (rE) of this product comes from:

PZ =
100

(1 + rE)t

The compounded yield (rC) comes from the equation:

PZ = 100e−rCt

The zero coupon yield curve refers to the illustration of zero-coupon yields of di�erent

maturities in a given �nancial market. This is one of the most important tools when

modelling �xed income securities.

1.3 No-arbitrage Condition

There is an essential condition when modelling �xed incomes in a given market and

this is the no-arbitrage condition. Economic considerations suggest that there should be

no arbitrage opportunities in well behaving �nancial markets. If any opportunity occurs

for an arbitrage, the arbitrageur's activity will move the maket prices in a direction that

extinguishes it. This phenomenon is very useful in mathematical modeling. It creates

a continuous and solid connection between the prices of �nancial products in relating

markets. In the case of �xed income securities, it is the no-arbitrage condition that ensures

that the knowledge of zero coupon yields itself de�nes the prices of coupon bonds in that

market.

In general it is possible to buy a coupon bond and sell its cash �ows in tranches, like

di�erent zero coupons. Because of that, the prices of this two types of bonds should be

in some kind of harmony. The price of a coupon bond should be the sum of the prices of

the zero-coupons of the cash �ows it contains, or else an arbitrage opportunity arises.

Now, with the use of no-arbitrage conditions let's see how the zero-coupon yield curve

determines the prices of �xed income securities. It is important to bear in mind that yield

curves are abstract theoretical concepts, usually adjusted to real market prices to model
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1.4 Di�erent Types of Curves 1 INTRODUCTION

reality accurately. Now, suppose that in a mathematical model of a �nancial market, the

zero coupon yield curve is known. Let r(t) be the compounded yield of a zero coupon

bond maturing in t years for every t > 0. In this model, a coupon bond with known cash

�ow properties can only have one speci�c price. With the use of the yield curve this price

can easily be determined. Assume that bond B has Ci cash �ows at times ti. Then PB,

the theoretical price of bond B is de�ned as:

PB =
∑
i

Cie
−r(ti)ti

This equation exhibits a strong relationship between the theoretical yield curve of a model,

and the prices of securities in the �nancial market. If the market price of B di�ers from PB

an arbitrage opportunity arises in the model and that is inconsistent with the no-arbitrage

condition. It is important to mention that in practice, there is an error associated with

market prices and so there will always be a small di�erence between the theoretical price

and the market price. The model is estimated usually by somehow minimizing these errors.

As shown, the knowledge of the yield curve is crucially important when pricing secu-

rities but it is an abstract concept. To have a model that describes reality well the yield

curve should be approximated with the use of market prices of securities in a market.

The starting set of securities of this approximation is very important. If one wants to

use the information provided by the yield curve, for example to anticipate the price of a

bond waiting to be issued, it is crucial that the curve is typical of that type of bond. The

estimation should start from similar type of products. Since the yield curve represents

a relationship between maturity and return, the types of risks (other than interest-rate

risk) should be considered when collecting the starting set of bonds.

1.4 Di�erent Types of Curves

The three most popular types of curves used to represent the term structure of interest

rates are the discount curve, the zero-coupon yield curve and the instantenous forward

curve. They present the same core information in di�erent ways and since that they can

be computed from each other. Let us denote the discount function with d(t). It refers to

the present value of 1 dollar (if dollar is the currency one wants to use) received in t years
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1.4 Di�erent Types of Curves 1 INTRODUCTION

(if a year is the time unit one wants to use). The yield of a zero-coupon bond maturing in

t years is written as r(t). The term structure of these are called the spot or zero-coupon

yield curve or shortly yield curve. The forward rates express the market's expectations of

interest rates in the future. On an investment beginning at time t and ending at time T

(where t < T ) the market expects a yield equal to f(t, T ).

The following relationships stand among these three rates. If the spot rates are known,

the discount rates can be calculated as:

d(t) = e−r(t)t

and conversely:

r(t) =
− log d(t)

t
. (1)

The forward rate can be obtained from the spot rates with the use of:

f(t, T ) =
Tr(T )− tr(t)

T − t
(2)

The spot rate is the following forward rate trivially:

r(t) = f(0, t).

The conversion between the discount rates and the forward rates can be easily obtained

using the spot curve and the mentioned equations.

There is one more curve of importance when describing the term structure of interest

rates and that is the instantenous forward rate curve. The forward rates mentioned before

needed two parameters: the beginning of an investment t and the end T . If the spot yield

curve is di�erentiable it is possible to de�ne the instantenous forward rate: f(t). The

instantenous forward rates represent the expected yield of an investment beginning at t

and ending in t + ∆t when ∆t → 0. It describes the present market expectations of the
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evolution of future short rates. Using equation (2), f(t) can be expressed as:

f(t) = lim
∆t→0

f(t, t+ ∆t) =

= lim
∆t→0

(t+ ∆t)r(t+ ∆t)− tr(t)
t+ ∆t− t

=

= lim
∆t→0

∆tr(t+ ∆t) + t(r(t+ ∆t)− r(t))
∆t

=

=r(t) + t lim
∆t→0

r(t+ ∆t)− r(t)
∆t

= r(t) +
∂r(t)

∂t
t

In some yield curve models it is better to estimate the instantenous forward rate curve

and the spot and discount curves can be calculated from it.
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2 INTEREST RATE MODELLING

2 Interest Rate Modelling

2.1 One-factor Short Rate Models

This section provides a few terms and concepts on the type of interest rate models

called one-factor short rate models. Short rate models are widely used mathematical

models to describe the stochastic evolution of di�erent interest rates. They are called short

rate models because the basic concept of this model is the instantenous short rate r(t). It

refers to the (annualized and compounded) yield that can be earned on an in�nitesimally

short investment at time t. It is important to emphasize that altough the notation is

the same, this r(t) is not nearly the same as the one mentioned in the previous chapter.

Here, the t parameter refers to time in a model and not the time-to-maturity feature of a

product observed now.

In the ever-changing world of �nancial markets the interest rate on actual short term

investment opportunities can vary quickly and unpredictably in time. The rates on longer

investments also change in time but they are considered much less volatile. In one-factor

short rate models the instantenous short rate's evolution is de�ned by a stochastic pro-

cess, usually an Ito-process under the risk-neutral measure:

dr(t) = a(t)dt+ b(t)dW (t)

In this equation a(t) and b(t) are time-dependent coe�cients of the stochastic process,

and W (t) is a Wiener-process under the risk-neutral measure.

There is an other interest-rate process in this model and that is the forward rate. The

forward rate is the expected (annualized and compounded) instantenous interest rate of

time T , at time t. Of course T must be higher or equal than t. In the model the forward

rate is a stochastic process with two time parameters:

dtf(t, T ) = α(t, T )dt+ σ(t, T )dW (t) (3)

Here the α(t, T ) and σ(t, T ) coe�cients are the functions of two time parameters.

The short rate model also incorporates two value processes of �nancial products. One

of them is the value process of a zero coupon bond. For convenience the face value of
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2.2 Connections 2 INTEREST RATE MODELLING

this zero coupon bond is set to be $1. Let's consider a $1 zero coupon bond maturing at

time T . The value of this bond at time t is denoted by P (t, T ). Since the values of bonds

depend on the level of interest rates and expectations of these, the evolution of P (t, T ) is

also described with a stochastic process in the model:

dtP (t, T ) = P (t, T )(m(t, T )dt+ v(t, T )dW (t))

Here the m(t, T ) and v(t, T ) coe�cients are functions of two time dependent parameters.

It is important to mention that this mathematical model presumes that there is a bond

maturing at every time t.

Another participant in this model is the value of a bank deposit B(t). In opposite of

the bond where present value is derived from a future cash �ow, the bank deposit's value

origins from the past. Bank deposits pay the timely short interest rate at every time t

and are doing it compoundedly. That's why the evolution of the value of a bank deposit

depends on the evolution of the short rate. The connection between the two is:

dB(t) = r(t)B(t)dt

The value of the deposit at time t can also be expressed as:

B(t) = B(0)e
∫ t
0 r(s)ds, (4)

where B(0) is the value of the deposit at t = 0.

2.2 Connections

There are certain connections between these processes. From Equation (4) it is appar-

ent that with the knowledge of B(0) the short rate process determines the value process

of the bank deposit. There is a connection between the value of the bond and the forward

rate process. The present value of a bond should be the discounted value of the future

cash �ow. At time t the expectations of future interest rate levels are the f(t, s) values

13



2.2 Connections 2 INTEREST RATE MODELLING

where s is larger or equal than t. A fair valuation of the bond in this model should be:

P (t, T ) = e−
∫ T
t f(t,s)ds (5)

This is the appropriate value here as the expected future value of a bank deposit of size

P (t, T ) at time t is exactly one dollar at time T :

Bexp(T ) = B(t)e−
∫ T
t f(t,s)ds = P (t, T )e

∫ T
t f(t,s)ds = e0 = 1

If it wouldn't be one dollar an arbitrage opportunity would arise.

Expressing the forward rate from Equation (5):

f(t, T ) = − ∂

∂T
lnP (t, T )

Using these strong connections between these two processes the knowledge of one of them

results that the other one can be expressed too. Assuming that the forward rate is known

in the form presented in Equation (3), so the coe�cient functions α(t, T ) and σ(t, T )

are known. It can be shown that the coe�cients of the bond value's process m(t, T ) and

v(t, T ) can be expressed using α(t, T ) and σ(t, T ) functions as follows:

m(t, T ) = f(t, t)− α̃(t, T ) +
1

2
σ̃2(t, T )

and

v(t, T ) = −σ̃(t, T )

The α̃(t, T ) and σ̃(t, T ) functions are integrals of α(t, T ) and σ(t, T ):

α̃(s, T ) =

∫ T

s

α(s, u)du

and

σ̃(s, T ) =

∫ T

s

σ(s, u)du

14



2.2 Connections 2 INTEREST RATE MODELLING

This de�nes the coe�cients of the bond's value process perfectly. The other way of ex-

pressing one from the other is also available. Assume that the stochastic process of the

bond value is known, so the coe�cient functions m(t, T ) and v(t, T ) are known. Using

this information and the connection between the two processes, the coe�cients α(t, T )

and σ(t, T ) of the forward rate can be expressed:

α(t, T ) = v(t, T )vT (t, T )−mT (t, T )

and

σ(t, T ) = −vT (t, T ),

where:

mT (t, T ) =
∂

∂T
m(t, T )

and

vT (t, T ) =
∂

∂T
v(t, T ).

These equations de�ne a two-way connection between the bond value process and the

forward rate process.

Now let's consider the short rate process and its possibilities. It can be shown that

assuming the knowledge of the forward rate's evolution the short rate process can be ex-

pressed. The short rate process's a(t) and b(t) coe�cient functions take the following form:

a(t) = α(t, t) +

∫ t

0

αT (s, t)ds+ fT (0, t) +

∫ t

0

σT (s, t)dW (s)

and

b(t) = σ(t, t)

In these expressions the T in the lower corner means the function's derivative by its sec-

ond variable similarly to mT (t, T ) and vt(t, T ) mentioned above.
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2.3 Two Popular Short Rate Models 2 INTEREST RATE MODELLING

But what if one knows the short rate process and wants to express the forward rate from

that? It is provable that it's impossible to derive the forward rate or bond value processes

merely from the knowledge of the short rate process only, because an equivalent martingale

measure can't be obtained. The forward process contains an additional information and

that is the market's expectations of the future. It is needed to observe the market prices

of bonds and �nd the appropriate market price of risk process, to be able to derive the

forward rate process and the bond value from the short rate.

2.3 Two Popular Short Rate Models

The following two models are among the most popular one factor short rate models.

Vasicek: The Vasicek-model uses a mean-reverting stochastic process with a constant

di�usion coe�cient to model the short rate process's evolution:

dr(t) = (k −Θr(t))dt+ σdW ∗(t),

where t ≥ 0, k ≥ 0, Θ > 0, σ > 0.

W ∗(t) refers to a Wiener-process under the P∗ probability measure. The P∗ probability
measure is the one where the bank deposit is the numeraire process. This measure can

be obtained by observing the market prices of bonds and using the market price of risk

process with Girsanov's theorem. Under this measure the bond's value can be expressed as:

P (t, T ) = B(t)EP∗

(
1

B(t)

∣∣∣∣F(t)

)
= EP ∗

(
e−

∫ T
t r(u)du

∣∣∣∣F(t)

)
(6)

CIR: The Cox-Ingersoll-Ross model constructs the short rate process from the sum

of squared, independent Ornstein-Uhlenbeck processes [13] . This way the result is a

non-negative stochastic process. Let us begin from the Ornstein-Uhlenbeck processes:

X1, X2, . . . , Xd for a positive integer d. Each of them can be described as:

dXj(t) = −β
2
Xj(t)dt+

σ

2
dWj(t),
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2.4 Yield Curve Calibrating 2 INTEREST RATE MODELLING

where the following stand: β > 0, σ > 0 and Wj(t)-s are independent Wiener-processes.

Now the short rate process is:

r(t) =
d∑

j=1

X2
j (t)

The stochastic evolution of the short rate can be expressed as:

dr(t) =
(
α− βr(t)

)
dt+ σ

√
r(t)dW ∗(t),

where

α = d
σ2

4

and

dW ∗(t) =
d∑

j=1

Xj(t)√
r(t)

dWj(t).

This last equation relies on Levy's theorem.

In the Cox-Ingersoll-Ross model the dynamics of the zero coupon bond is just like in the

Vasicek-model:

P (t, T ) = B(t)EP∗

(
1

B(t)

∣∣∣∣F(t)

)
= EP ∗

(
e−

∫ T
t r(u)du

∣∣∣∣F(t)

)

2.4 Yield Curve Calibrating

Short rate models like these are very useful when one wants to analyze the evolution

of interest rates in time, but are they consistent with usual yield curve shapes observable

in the markets? Let's see the Vasicek model as an example.

According to Equation (6) the spot discount function can be evaluated at every future

points of time. The discount function d(t) is really the function of bond prices P (0, t)

17



2.4 Yield Curve Calibrating 2 INTEREST RATE MODELLING

evaluated now. Using Equation (6) it is the following in the Vasicek-model:

d(t) = EP ∗

(
e−

∫ t
0 r(u)du

∣∣∣∣F(0)

)

It is easy to see that with the knowledge of the parameters of the model (k, Θ and

σ) and r(0) the discount function can be constructed. Also the zero-coupon yield curve,

which is denoted by z(t) can be computed from the discount function easily. It takes the

following parametric form:

z(t) = r(0)e−Θt − k

Θ

(
e−Θt − 1

)
− σ2

2

1

σ2

(
e−Θt − 1

)2

This is a combination of e−Θt and e−2Θt functions of time. With the three parameters of

r(t) it isn't always possible to match the shape of current yield curves. This is a short-

coming of the Vasicek-model and other parametric one-factor short rate models. If one

wants an interest rate model that can match the actual observable yield curves some im-

provements has to be made.

Extended Vasicek-model: An improved version of the original constant parame-

tered Vasicek model is the Extended Vasicek model. In order to be able to calibrate the

model to actual yield curves one of the constant parameters of the Vasicek-model is made

to be time-varying. The dynamics of the extended model is:

dr(t) =
(
k(t)−Θr(t)

)
dt+ σdW ∗(t),

where k(t) is an arbitrary deterministic function of time, and Θ and σ are positive con-

stants. Deriving the actual zero coupon yield curve from this model results in:

z2(t) = r(0)e−Θt +

∫ t

0

k(u)e−Θ(t−u)du+
σ2

2

1

σ2

(
e−Θt − 1

)2

It is possible to �nd a k(t) function that is appropriate in a sense, that the z2(t) function
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of the interest rate model will match the market zero coupon yield curve, derived from

observable prices of bonds.

A general method of calibrating interest rate models to market yield curves can be

shown through the CIR-model. Let z(t) be a process that is used for modelling short rate

dynamics in a CIR model:

dz(t) =
(
α− βz(t)

)
dt+ σ

√
z(t)dW ∗(t)

The short rate process now is a sum of z(t) and a deterministic function y(t):

r(t) = z(t) + y(t)

Here the value of a bond, P (t, T ) takes the following form:

P (t, T ) = PCIR(t, T )e−
∫ T
t y(u)du

The deterministic y(t) function can be found as follows:

y(t) = f(0, t)− fCIR(0, t)

This approach is suitable to other kinds of short rate models as well. The types of yield

curve models that can be derived from interest rate models, like the ones mentioned above

called consistent. The need for model consistency depends on the goal of the modelling. In

some cases it is very important to be consistent with an interest rate model, while there

are other cases as well where other features are more desirable. The following section

introduces models where consistency isn't among the main requirements.
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3 Statistical Yield Curve Models

There are several methods for modelling the yield curve, based on observable market

prices of securities. Some of them are more theoretical while others are often used in prac-

tice. Di�erent situations appeal to di�erent yield curve models. Each model has its own

advantages and disadvantages. They can di�er for example in tractability, consistency

with stochastic interest rate models or in the type of rates they estimate. The discount

curve, the spot curve and the forward curve can also be the goal of a method. Once one

of this three curves is estimated, the others can be easily calculated from the one known.

In the followings, yield refers to the annualized and continuously compounded yield of a

security.

3.1 Coupon Stripping

Let us start with an easy model which is mostly theoretical. The goal is to estimate a

discount curve that is consistent with the market prices of securities of that kind. In most

of the situations one has to start from a set of coupon bond prices and properties and

derive the discount curve from that. A method called `Coupon Stripping' or `Bootstrap-

ping' [2] is an easy way to obtain the discount function's value on speci�c dates though

it requires very special and unrealistic starting set of information. This approach can be

used only if the following are given: a set of coupon bonds with cash �ows like that on

every cash �ow date there is exactly one maturing coupon bond.

Let's consider an example just to illustrate the method. Assume that we look at 10

bonds in the market with market prices Pi and annual coupon payments of size Ci and

the i-th bond matures i years from now:

i 1 2 3 4 5 6 7 8 9 10

Ci 4 7 3.5 4.25 2 7 6.5 3 4.5 3.25

Pi 101.74 107.01 98.5 99.68 87.93 108.89 101.6 76.71 83.36 72.18

20



3.1 Coupon Stripping 3 STATISTICAL YIELD CURVE MODELS

The goal is to estimate the discount function's value at bond maturity dates. The �rst

step uses the �rst period only. The discount function's value is:

d(1) =
P1

100 + C1

=
101.74

104
= 0.98

The next step uses the value resulted from the step before and the next bond's properties.

d(2) =
P2 − C2d(1)

100 + C2

=
100.15

107
= 0.94

Following this method every new discount factor can be calculated with the properties of

the bond maturing at that date and the past discount factor values:

d(n) =
Pn −

∑n−1
i=1 Cnd(i)

100 + Cn

The resulting discount function of this method is:

d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10)

0.98 0.94 0.87 0.84 0.79 0.73 0.64 0.58 0.52 0.48

It is useful to set d(0) as 1 because the present value of money available now is its

face value.

With a linear algebraic approach the coupon stripping method can be presented as fol-

lows. Let P be the vector of coupon bond prices maturing on di�erent incremental dates:

ti i ∈ {1, . . . , n} and C be the cash-�ow matrix such as C(i, j) denotes the i-th bond's

cash�ow on date tj. From now on C(i, j) is denoted by Ci(tj) for convenience. C is a

square matrix due to the restrictions on the dataset. The discount factors on each ti date

are denoted by d(ti) and D = (d(t1), . . . , d(tn)) is a vector comprised of them.
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In an arbitrage-free solution the bonds' prices should be equal to the discounted present

values of their cash �ows, so

Pi = d(t1)C(i, t1) + · · ·+ d(tn)C(i, tn)

should stand for every i ∈ {1, . . . , n}. Now by solving the CD = P linear system D is

obtained and so the discount values on the de�ned ti dates.

As it was mentioned before this approach is mostly theoretical and rarely used in

practice. One of the main problems is that a starting set of information as it is required

for the Coupon Stripping method is very unrealistic in practice. There is rarely available

a representative set of similar type of bonds maturing exactly one years (or any other

given period) from each other in the market.

3.2 Interpolation

To have a discount value for every t in a time interval, one can consider the discount

curve linear between the dates where it's values are known. With this a continuous but

not smooth (in most cases the �rst derivative is not continuous) yield curve is estimated.

Another way to �t a continuous curve onto the points known can be using polynomial

approximation techniques. In spite of the fact that a perfect �t on the vertices can be

obtained by a polynomial function with the use of Lagrange approximation, it is not

suitable in practical use. Although the estimated curve is in�nitely di�erentiable and

connects the points this approach doesn't result in realistic yield curves. This is because

between the initial points and usually on the short and long ends of the time interval very

unrealistic shapes can occur.

Figure 1 shows the discount factor values obtained by the coupon stripping method

example before. The dark blue marks represent the estimated discrete discount factor

values. The dark blue line is a linear interpolation while the light blue is a Lagrange

polynomial interpolation. It can be seen that the Lagrange interpolation results in some

extra curvatures at both ends of the sample.

22



3.2 Interpolation 3 STATISTICAL YIELD CURVE MODELS

Figure 1: Linear and Lagrange interpolation of the discount function.

While the di�erence between the two interpolation method is not that big in the case

of the discount function, when computing the spot yield curve it becomes much more

signi�cant. The spot yield cuve is computed from the values of the discount curve using

the connection mentioned in Equation (1). Figure 2 shows the resulting curves. The dark

blue marks represent the yields computed from the original results of the coupon strip-

ping. The dark blue is the yield curve estimated from the linearry interpolated discount

function while the light blue is the one derived from the Lagrange interpolated discount

function.
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Figure 2: Yield curves calculated from the interpolated discount functions.

The instantenous forward curve approximation derived from the spot yield curve is pre-

sented in Figure 3. This curve is computed by dividing the time interval between every

year into ten equal small intervals. Then using Equation (2) to calculate f(ti) as:

f(ti) = f(ti, ti+1),

for every i ∈ {0, 1, . . . , 99} where this represents the new time lattice.

Because of the absence of a continuous �rst derivative in the case of linear interpola-

tion, this approximation of the instantenous forward curve becomes very ragged as shown

in Figure 3 . It is a good example of why a smooth curve is required. While the forward

curve computed from the Lagrange-interpolation is smooth, it has apparently too much

curvature which makes the results unrealistic.
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Figure 3: Forward curves derived from the spot curves.

3.3 Including Errors

The Coupon Stripping method doesn't count with errors in the prices of securities.

In reality the bond market prices rarely equal the theoretical prices obtained (sum of

the discounted cash �ows). There can be smaller or larger di�erences arising from several

reasons like liquidity, the cash �ow structure or tax e�ects. It is reasonable to include an

error term in the arbitrage-free equation:

Pi = d(ti)C(i, t1) + · · ·+ d(tn)C(i, tn) + ei,

where ei refers to the error term, the di�erence between the theoretical and quoted market

price of the i-th bond. This approach results in more realistic models of the yield curve

but requires more sophisticated estimation methods.
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Suppose a set of coupon bond prices and properties are known, now without the re-

strictions stated before. Let P be the vector comprised of the market prices of the bonds,

C(i, j) the cash�ow matrix and D the vector of the discount values. In the Coupon Strip-

ping case the cash�ow matrix is a squared matrix due to the strict initial conditions.

Without those restrictions C has usually much more columns than rows and has a lot

of zero values. Let ε be the vector of the ei error terms as mentioned above. Now the

following holds:

P = CD + ε

One way to estimate D is by minimizing the error terms. Without any other restrictions

on D this can be done by Ordinary Least Squares (OLS) estimation. The task is to �nd

D∗ where

D∗ = min
D

{
εT ε | ε = P − CD

}
The solution of the OLS regression is

D∗ = (CTC)−1CTP

It is important to mention that CTC is not always an invertible matrix, but with the

use of a pseudo-inverse this problem is solvable. Although this is an elegant approach in

theory, it is not a good choice in practice. Even with carefully chosen starting data very

unrealistic shapes can occur as a result if one wants to somehow produce a continuous

function out of the estimated values. This method doesn't place any restrictions on the

d(t) function and it is a source of some problems. One of them is that estimated values on

similar maturities often don't have similar values which results in a ragged curve. That is

not realistic at all.
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3.4 Parameterised Curves

Using OLS technique without any restrictions on the d(t) discount function is not a

good way of modelling the yield curve. To obtain better results it is bene�cial to look

for more speci�c curves only. A popular approach is to look for curves which are param-

eterised functions of time-to-maturity. For example if a model's goal is to estimate the

d(t) discount curve one should look for a d(t; a, b, ...) parameterised function of time-to-

maturity with parameters a, b, . . . etc. These are called parameterised yield curve models.

A big advantage of using parameterised yield curve models is that they result in real curve

and not just some set of individual estimated discount factors. An other advantage is that

much less parameters are needed to be estimated than in the simple OLS regression case

where there was a parameter for every cash�ow time.

Parameterised yield curve models can be linear or non-linear. Linear curves can be ex-

pressed as the linear combination of some basis elements and so they are easy to optimise

for a best �t. Non-linear curves can not be expressed like that. In linear models it is much

easier to obtain a best �t because only the linear coe�cients should be estimated and

OLS regression provides a good way of doing this. For a given set of θi(t) basis functions

where i = 1, 2, . . . , K, the function looked for can always be expressed as:

d(t) =
K∑
i=1

λiθi(t) (7)

Now a vector of parameters (λ1, . . . , λK) determines a d(t) function so one has to estimate

these parameters only to obtain a yield curve.

With the use of Λ = (λ1, . . . , λK) and Θ as a matrix like that Θ(i, j) = θj(ti) where

i = 1, . . . , n and j = 1, . . . , K, the vector D = (d(ti), . . . , d(tn)) can be expressed as:

D = ΘΛ

According to the basic problem the following also stands:

P = CD + ε
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Now with the use of the notation:

D̂ = CΘ, (8)

the linear problem can be expressed as:

P = D̂Λ + ε (9)

The solution can be easily obtained with the use of OLS regression by minimalizing εT ε.

It is:

Λ∗ = (D̂T D̂)−1D̂TP (10)

Once the Λ vector of the λi coe�cients are estimated, the discount function, d(t) can be

obtained with the use of Equation (7) .

3.5 Polynomial Estimation

One of the easiest ways to model the yield curve is to look for a polynomial func-

tion that �ts the data most accurately but still has the characteristics of realistic yield

curves. High degree polynomials would �t the data probably very well but they usually

result in unrealistic shapes. The most popular way is to �nd a cubic polynomial that

�ts the data well. Polynomial yield curve estimations are linear yield curve models since

every n-th degree polynomial can be expressed as the linear combination of the xj power

functions for j ∈ {0, . . . ., n}. Using the xj power functions as a basis, the discount curve is:

d(t) =
n∑

j=0

λjx
j(t)

With those basis functions Θ's elements are: Θ(i, j) = xj(ti).

The solution can be obtained using Equation (8), Equation (9) and Equation (10). While

in some rare cases polynomial yield curve estimations lead to quick and good solutions
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they are not the best choice most of the times. A more appropriate model is spline

approximation.

3.6 Spline Yield Curve Models

Using splines to model the yield curve can lead to good results. Spline yield curve

models are linear in the coe�cients so they are easy to �t. Splines are piecewise polynomial

functions with some restriction on the derivatives. It is called knot points where the

di�erent polynomial parts meet. If the spline's domain is a closed interval the ends are

sometimes called knot points too. This section considers the ends as knot points too. A

k-th degree spline is a function that is a k-th degree polynomial between the knot points

and k−1 times di�erentiable everywhere. Because of that a spline of order m with n knot

points needs only n + m − 1 parameters to be fully determined. The polynomial on the

�rst interval is de�ned by m + 1 parameters and all the other parts need only one more

since their derivatives must be the same in the knot points. There are n − 2 parts other

than the �rst, so this gives m + 1 + n− 2 = m + n− 1. As mentioned spline models are

linear in the coe�cients so �rst let's introduce the basis functions. A good choice is to use

basis splines or B-splines. It is possible to de�ne the basis splines recursively. If a de�ned

set of knot points is known: {P1, . . . , Pn} , the de�nition of B-splines of order zero is the

following:

B0,i(t) =

{
1 if Pi ≤ t < Pi+1

0 else

In this de�nition the lower index i refers to the i-th basis spline available for de�nition

on the set of knot points in an incremental order. Starting from the basis spilnes of order

zero, it is possible to de�ne B-splines of higher order recursively:

Bm,i(t) =
t− Pi

Pi+m − Pi

Bm−1,i(t) +
Pi+m+1 − t

Pi+m+1 − Pi+1

Bm−1,i+1(t),

where the lower index m refers to the order (also called degree) of the spline.

Bm,i(t) is a spline function of order m that is zero outside the [Pi, Pi+m] interval. Be-

cause of these on a set of n knot points n−m− 1 basis splines of order m are available.
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In Appendix 1, I give an example of B-splines on a set of knot points.

As mentioned every m-th degree spline with n knot points on a closed interval needs

n + m − 1 parameters to be determined. So for example a cubic spline with knot points

{P1, . . . , Pn} needs n+ 2 parameters and so n+ 2 basis functions to determine the spline.

There are n− 4 B-splines that belong to the knot points so there are 6 more basis func-

tions required. To get those 6 more `out of interval' knot points should be de�ned such

as: P−2 < P−1 < P0 < P1 < · · · < Pn < Pn+1 < Pn+2 < Pn+3. This new set of knot

points determines n+ 2 B-splines. Now the basis can be this n+ 2 basis splines restricted

to the interval [P0, Pn]. The d(t) discount function can be expressed now as the linear

combination of the basis functions:

d(t) =
n−1∑
i=−2

λiB3,i(t)

Let's use the notations Λ = (λ−2, λ−1, . . . , λn−1) and B as a k × (n + 3) sized matrix

like that B(i, j) = B3,j(ti), where there is k cash �ow times. If D denotes the vector

(d(t1), . . . , d(tk)) the following equation stands:

D = BΛ

Now denoting D̂ = CB and minimizing the term εT ε using OLS techniques, the solution is:

Λ∗ = (D̂T D̂)−1D̂TP

This is called the solution of the unconstrained problem. If d(0) = 1 is required it is

called the constrained problem. The constrained problem gives a better �t on the short

end of the yield curve by �xing the �rst value to 1. This is a reasonable requirement in

accordance to practice.
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By denoting the vector of the B-splines values at 0 as W , like that:

W = (B3,−2(0), B3,−1(0), . . . , B3,n−1(0))

and set w = 1, the constraint becomes the following additional requirement in the prob-

lem:

WΛ = w

Using this condition the problem can be expressed as:

Λ∗∗ = min
Λ

{
εT ε
∣∣ε = P − D̂Λ,WΛ = w

}
And the solution of this problem is:

Λ∗∗ = Λ∗ − (D̂T D̂)−1W T (W (D̂T D̂)−1W T )−1(WΛ∗ − w).

The results of spline methods like these rely heavily on the selection of the knot points.

One suggestion made in the literature is to try to position the knot points so there are

similar number of observations between them. This produces better �ts or more realistic

curves usually but sometimes there are exceptions when it is better to try an other starting

set of knot points.

3.7 Smoothing Conditions

The OLS method used for spline approximations minimized the following criterion

with changing the Λ parameter:

c1 = (P − CBTΛ)2
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This c1 term refers to the goodness-of-�t of the curve only in consideration of the distance

between the �tted curve and the observed prices. A smaller c1 value means the observed

values are closer to the �tted curve. On one hand this a desirable property but on the

other hand it can carry some adverse e�ects on other important properties of the yield

curve such as smoothness. It is showed by Díaz and Skinner that signi�cant liquidity and

tax induced errors occur when modelling corporate yield curves compared to Treasury

yield curve models [9]. The universe of corporate bonds are less heterogenous by nature

than governmentals. Sometimes it is better to have a yield curve with less curvature than

to try to over�t the values. It can be reasonable to use some further criterion that controls

the smoothness of the estimated curve. These are called Smoothing Criterions and there

are several di�erent ones. The total curvature of an estimated d(t) curve between P0 and

Pn can be measured as:

c2 =

∫ Pn

P0

(∂m−1d(t)

∂tm−1

)2

dt

for an m-th order spline approximation.

An m-th order spline is called natural if the following is true:

∂m−1d(t)

∂tm−1

∣∣∣
P0

=
∂m−1d(t)

∂tm−1

∣∣∣
Pn

= 0

The natural smoothing criterion is the following:

Λ∗ = min
Λ
{c2|c1 < S}

This criterion minimizes the curvature of a �t while keeping c1's value under S. A big-

ger S value places more importance on smoothness and less on the close �t of the values

while a smaller S emphasizes the �t more. The solution of the natural smoothing criterion

problem is a (2m− 3)-th order natural spline with knots at the data points. That is why

it is called the natural smoothing criterion.

Fisher, Nychka and Zervos's studies show that better �ts can occur if the forward rate

curve's curvature is restricted and not the discount function's [4]. The following is the
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smoothing spline criterion:

c3 = Θ

∫ T

0

(∂2h(t|Λ, ξ̄)
∂t2

)2

dt+ (P − Cd(t|Λ, ξ̄))2.

where h is an invertible function of the yield curve, ξ̄ is the set of knot points: ξ̄ =

(P−3, P−2, . . . , Pn+3) and Θ is called the smoothing parameter. Now it is possible to use

the curvature for example of the yield curve, the forward rate curve or the discount curve

as a basis for the approximation. Θ carries the relative importance between the curvature

and the �t in this approach. A large Θ lays more weight on the �rst part of the criterion.

An extension is to let Θ vary by time. This method was proposed by Waggoner [11]. It

can be reasonable since yield curves usually have much more curvature in the short end

than in the long. Using the time-varying Θ parameter, the criterion becomes:

c3 =

∫ T

0

Θ(t)
(∂2h(t|Λ, ξ̄)

∂t2

)2

dt+ (P − Cd(t|Λ, ξ̄))2.

3.8 Non-linear Models

There are some popular non-linear yield curve models. The most widely used is the

Nelson-Siegel model. This is a four parameter model that is used to estimate the forward

rate curve. It is very popular thanks to the relatively low parameter number and easy

computation. In spite of its small parameter number it can capture most of the yield

curve shapes. The disadvantage of the Nelson-Siegel model lies in precision. It is not a

good choice if very accurate estimations are required or when one is trying to model a

complex yield curve. The four parameters are: β0, β1, β2, k. The forward rate curve esti-

mation is:

f(t) = β0 + (β1 + β2t)e
−kt

From this expression of the forward rate curve the spot curve can be written as:
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r(t) = β0 +
(
β1 +

β2

k

)1− e−kt

kt
− β2

k
e−kt.

The short rate r(0) equals β0 + β1 and the long rate is limt→inf r(t) = β0. The other two

parameters β2 and k can adjust the height and location of a hump in the curve.

An extension of the original Nelson-Siegel model is the Svensson model. It is sometimes

called Nelson-Siegel-Svensson model since it is the original model with two more param-

eters:

f(t) = β0 + (β1 + β2t)e
−k1t + β3te

−k2t

Wiseman [12] introduced a 2(n + 1) parameter model to estimate the forward curve. It

consists of n+ 1 exponential decay terms with βi coe�cients:

f(t) =
n∑

i=0

βie
−kit
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4 Additional Features

4.1 Corporate Bond Valuation using Credit Spread

There was a very important criterion of the statistical yield curve models of the pre-

vious section and that is the availability of data. All of the models are based on the

information a carefully gathered dataset of similar bonds contain. If for example one

wants to obtain a yield curve to use for pricing a bond, the starting set of information

should consist of other bonds with similar credit risk, liquidity, currency and country of

the bond that ought to be priced. That way the resulting yield curve provides a useful

tool for pricing the bond. If the information basis of the model is not chosen well it will

not provide an appropriate tool for valuation. But what if there aren't enough observable

information or simply there aren't enough time and resources to use a statistical yield

curve model? Situations can occur where only a quick valuation is needed and there isn't

enough time to carefully select the best datasets and precisely adjust statistical models.

And it can also happen that there is too little information available on a �nancial product

or issuer company. There are ways to estimate a yield curve and to evaluate a security

without the need to construct statistical yield curve models.

The second most important type of risk a�ecting �xed income securities is credit

risk (after interest-rate risk). Credit risk, more importantly the perceived credit risk of

investors, is an important factor that shapes the yield curve and a�ects the price of

a security a�ected by credit risk. When a company's perceived credit risk grows, that

means investors think that default is more probable than before. Investors can analyze

individually the credit risk of a company but the vast majority relies on the opinion

of big credit rating agencies. The biggest three are Standard and Poor's, Moody's and

Fitch Group. If a company becomes downgraded by one of these companies, it means its

creditworthiness has worsened and this implies that a larger yield margin is expected by

investors to buy the bonds' of that company. Skinner and Díaz (2001) showed that it is

reasonable to pool bonds by broad rating agency categories when constructing statistical

yield curve models. Doing this doesn't a�ect the results signi�cantly in a bad way. They

also found that corporate yield curve models contain signi�cant liquidity and tax-induced

errors and thus they are less reliable than Treasury yield curve estimates. [9]

There are some rates in the markets considered (credit) risk-free. The U.S. Treasuries's
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yields as well as the LIBOR swap rates are usually the most popular when referring to risk

free rates. They contain nearly zero credit risk and that's why they are usually used as

benchmark rates. A not too precise approach is that corporate bonds di�er from risk free

securities like U.S. Treasuries only in their perceived credit risk. Of course it is not true

since for example the U.S. Treasuries are usually much more liquid products than some

corporate bonds, but this approach can provide an easy and quick way with relatively

good results when estimating a yield curve or pricing products. If credit risk is the only

di�erence in a model from the risk-free securities it is reasonable to use the risk-free yield

curve as a starting point and to transform it somehow to cope with the extra credit risk. A

big advantage of this approach is that precise statistical yield curves for risk-free interest

rates like U.S. Treasuries or LIBOR swap rates are usually available. Now one only has

to use some transformations to take in account the credit risk. One of the easiest ways is

to use a paralell shift of the original risk free curve of to get the yield curve of the credit

risky product. The di�erence between the yield of a credit risky product and a risk-free

product of the same maturity is called credit spread.

4.2 Pricing with CDS

If there are CDSs' available for a company, this provide a way of pricing and mod-

elling the yield curve of bonds of that company. Credit Default Swaps are contracts that

provide insurance against the risk of default by a particular company [5]. The buyer of

the CDS pays money periodically to the seller and the seller pays money if the company

(or government) defaults. It is called credit event and the details are �xed in the contract.

The CDS has a face or notional value. In the case of a credit event there are two popular

procedures. One is that if a credit event happens the CDS buyer gives the secured product

to the CDS seller while the seller pays the face value to the buyer. The other case is a

cash settlement payed to the buyer and the amount is usually determined by a calculation

agent or auction mechanism.
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The periodical payments (usually annual or semiannual) the buyer pays to the seller

is computed using the face value and the credit default swap spread (or CDS rate):

PCDS = FV × CDSspread

Here PCDS refers to the annual cost of the CDS, FV denotes Face Value and CDSspread

is the credit default swap spread. The CDS spread of CDS rate is the factor that contains

the perceived credit risk of the company by the market. If market participants think a

company is becoming more credit risky the CDS rate rises while the opposite happens if

the company becomes more stable in the eyes of the public.

Credit Default Swaps have a maturity also. That is the time horizon when the contract

holds. Until maturity the buyer will pay the payments to the seller and the seller provide

security. The only case the contract terminates before maturity is a credit event. If that

occurs the buyer doesn't have to continue paying the periodical payments. CDS spreads

can be di�erent on di�erent time horizons and this way there is a time structure of

CDS spreads too. While it looks obvious that companies with lower credit ratings usually

have higher CDS spreads the relation between CDS maturity and the spread of the same

company is not that easy to see. Research on Eurobonds and domestic bonds from EU-

countries shows that the amount of the spread and maturity have a positive relationship

in the case of investment grade debt. [6]

Bond pricing with the use of CDS rates relies on no arbitrage considerations. If an

investor buys a bond and a CDS with maturity equal to the bond's maturity and face value

equal to the bond's face value this portfolio theoretically becomes a risk-free portfolio.

Then this portfolio should have a return equal to the return on a risk-free product with

the same maturity. Otherwise arbitrage opportunities would arise as the arbitrageur buys

the cheaper product and sells the more expensive contemporarily.
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This no-arbitrage consideration provides an approach of constructing yield curves and

pricing credit risky bonds. The credit spread on bonds should be equal to the CDS spread

of the same bond and maturity. Using this, the yield curve of a credit risky product should

be a benchmark risk-free yield curve plus the term structure of CDS spreads of the prod-

uct. Figure 4 shows an arbitrary example of a risk-free yield curve, a credit spread time

structure and the yield curve a�ected by this credit spread.

Figure 4: An example of the risk-free yield curve, the credit spread and the yield curve

a�ected by credit risk as the sum of the �rst two.

4.3 Corporate Bond Spreads

There are other ways to estimate the credit risk of a product too without the use

of CDS spreads. Credit Default Swaps are not always available in the market, so credit

spread should be estimated from something else. If a bond with similar maturity and

credit properties is observable in the market, one can derive the credit spread from that. An
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example is a bond of the same company or a very similar company (same size, geopraphical

region, market sector, management stlye, leverage...etc.). Now the credit spread of this

bond can be derived from the market price, risk-free yield curve and properties of that

bond. The credit spread will be the value the risk-free yield curve should be shifted with

in order to reproduce the observable market price. It is a parallel shift of the risk-free

yield curve upwards. If CS denotes the credit spread, rf (t) is the risk-free interest rate,

Pc is the market price of the coupon bond that matures n years from now and pays $C

coupon annually and a principal of $100 at maturity, the following stands:

Pc =
n∑

t=1

Ce−(r(t)+CS)t + 100e−(r(n)+CS)n

If the credit spread is obtained this way, it can be used to construct the yield curve

and price of the product where it is needed. The yield curve can be constructed two ways.

One of them is to simply use a paralell shift similar to the computed credit spread on the

risk-free curve. It is a quick and easy way to have a new yield curve that can be used to

price the product. The other way is to estimate a time structure of credit spreads and then

add this to the risk-free yield curve. The time structure can be obtained by evaluating

bond spreads on di�erent maturities. Of course one should start the process from similar

type of bonds in credit properties.

4.4 Liquidity

An other important factor that a�ects the prices and yields of �nancial products is

liquidity. There are di�erent de�nitions and measures of liquidity. Generally a highly

traded product is called liquid. Liquid products are easy to buy and easy to sell in short

period of time without the deterioration of their value. They can be converted to cash

quickly. Illiquid products cannot be sold quickly without some waste in their value. In

stock markets one way to measure liquidity is observing the bid-ask spread of a product.

A relatively big spread means a smaller incoming cash�ow when one wants to sell the

product quickly so it is considered illiquid while a small spread refers to a liquid product.

Liquidity carries an extra value for investors. Illiquid products usually have higher

yields than liquid ones for compensation. U.S. Treasuries are one of the most liquid �-

nancial products available so they are usually used as a benchmark for valuation. Even
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among Treasuries liquidity carries an extra value, this causes the slight di�erence between

the yield to maturities of on-the-run and o�-the-run treasuries. The most lately issued

treasuries are called on-the-run and the ones that are in the market for more time called

seasoned or o�-the-run. New issues are usually traded more than old ones, that causes

the higher liquidity of them. Figure 5 shows the slight di�erence between the yields of

U.S. Treasuries due to the liquidity of the product. On-the-run securities have a bit lower

yield to maturity than seasoned ones:

Figure 5: Yield to maturities' of on-the-run and o�-the-run treasuries. [10]

When using this as the risk-free rate for calculating credit spreads, the results do not

only represent the risk of default of the issuer, it also incorporates the yield premium

arising from the much less liquidity on the secondary markets of corporate bonds. In a

research, Longsta� [7] et al. (2005) shows that the default component explains only 50%

of the spread between the yields of Aaa/Aa rated bonds and treasuries. In the case of Baa
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rated bonds it is 70%. The remaining part is mostly explained by the liquidity factor.

When one wants to estimate yield curves appropriate for evaluating a bond the men-

tioned ways starting from a risk-free yield curve can all lead to relatively good results.

However, Feldhütter suggests that the swap rate is the best as a benchmark risk-free rate

for corporate bond credit spread estimations. [8] The research also concludes that corpo-

rate bonds spreads are a better estimator of credit spread then CDS-spreads since the

latter can be disconnected from the credit component at times. One example according

to them is the Greek CDS and bond spread at 24 June, 2010. While CDS spread has

hit record high, the bond spreads didn't reacted that sensitively probably because of the

support from the European Central Bank bond buying program. Since it is possible to

buy CDSs without owning the bond of the subject company (this is called Naked CDS

contract ) there can be speculative motivations that drive the prices. Even if the bonds'

cash �ows are protected some way and thus the values of them the credit event can hap-

pen and CDS owners can make pro�t from that. Figure 6 shows the Greek CDS and bond

spread around 24 June, 2010.

Figure 6: Historical data of the Greek CDS and bond spread values [8]
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5 Applications

5.1 Data Analysis

The data I have used is corporate bond data from Bloomberg. The plan was to focus

on CHF denominated bonds, altough the models are appropriate for any other currencies

of course. Swiss Bond Index was the starting point of collecting a representative sample of

bonds. The index consisted of 1276 bonds on the 30th September 2014. I used Microsoft

Excel and its Bloomberg extension to obtain the appropriate data.

From the known ISIN values I requested the following informations of the bonds:

• NAME: name of the issuer company

• PX_LAST: last quoted market price of the bond

• COUPON: coupon rate

• CPN_FREQ: frequency of the coupon payments

• COUNTRY_FULL_NAME: country of the company

• INDUSTRY_GROUP: industry group

• RTG_MOODY: Moody's rating of the issuer company

The bold notations refer to the Bloomberg variables used in Excel. The data shows the

states of 14th, November 2014. It is observable in the spreadsheet 'ISINs from SBI' in

the attached Excel-�le, titled data.xlsm. Since the bond index doesn't contain all bonds

of the companies included I needed some more work on that. First I separated the bonds

with the industry group 'Banks' as a focus of the analysis. From the original 1276 bonds

in the bond index 634 was in the 'Banks' industry group. I further narrowed the results

by centering the attention only on companies rated Aaa by Moody's. This way the set of

634 products decreased to 269. The next step was to collect all other bonds of the issuer

companies of these 269 products. I used the BOND_TO_EQY_TICKER function to

transform the ISIN to the Equity Ticker and after that the BOND_CHAIN function to

list all bonds available of the company the ticker denotes. It is in spreadsheet 'All bonds

of Aaa Banks'. After using a simple VBA-code to position the results I got 49998 bonds
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in a column. Of course there were a lot of repetitions which I later corrected. For example

if there was a company with more than one bond in the Bond Index all of the company's

bonds appeared more than one times at this point. When �nished removing duplicates

with Excel 7086 di�erent bonds remained.

After that I requested the same data mentioned for the bonds: name, last price, ...etc.

In more than half of the 7068 bonds the result was not perfect because some or all of the

information wasn't available from Bloomberg. I cleared the data from the imperfect ones

and it resulted in 3029 di�erent bonds with all the important information needed. The

only type where I left missing data is the Moody's rating category since that type is not

used in calculations directly. The spreadsheet 'All bonds of Aaa Banks 2' contains the

results. Figure 7 shows the �rst few elements of the resulting dataset.

Figure 7: The �rst few elements of the dataset after collecting and clearing it.

I have compared two types of linear yield curve models: polynomial approximation and

spline estimation. To be able to use the Ordinary Least Squares method I needed a cash-

�ow matrix of the selected bonds. I have made a VBA code to construct a cash�ow matrix

from a selection of bonds. The code is in the attached data.xlsm �le. The process starts

with collecting the maturities of the bonds into an array. Once it is done a new array

is made that contains all the dates when there is a cash �ow from any one bonds of

the starting set. The date when the data is observed is included here even if there is no

payment. This date has to be an input in a cell and the code reads it from there. This
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much bigger array is constructed with the use of the maturities and coupon frequency

data. I used a bubble sort algorithm to sort these dates in an incremental order and the

algorithm also uni�es repeating dates. The cash �ow matrix's column will present the

cash �ows of the products on these dates. The rows will be associated with the bonds.

I have set the matrix's elements to zero and after that �lled with the appropriate cash

�ows. In the case of every bond the algorithm started with the principal payment and

then moved backwards by the coupon payment frequencies to �ll the selected cells with

the appropriate coupon payment amount. The selection of bonds I analyzed is Aaa rated

bonds of companies from Switzerland. Figure 8 shows an excerpt from the Cash-Flow

matrix result of the algorithm. The code also constructs three more arrays on di�erent

spreadsheets. The vector of the last quoted prices, the incremental cash �ow dates in a

column and the vector of the maturities. I found it easier to gather this four important

type of arrays from di�erent spreadsheets when it came to Python implementation.

Figure 8: A part of the cash �ow matrix constructed from Aaa rated bonds from Switzer-

land.

44



5.2 Modeling in Python 5 APPLICATIONS

5.2 Modeling in Python

After gathering and managing the data to obtain the appropriate cash�ow matrix and

arrays of prices, maturities and cash�ow dates I continued by constructing the models in

Python. This software was suggested by my Swiss co-supervisor, as they use it in their

daily work. I have tried two di�erent methods mentioned in sections (3.5) and (3.6) to

�t a yield curve to the data: polynomial and spline approximations. Both are linear yield

curve models and I have used the OLS method when minimizing the error terms.

I used the following packages under Python: numpy to handle the array datatype and

pandas to import the data from the excel �le into Python. I also used the math and

matplotlib packages. After importing the data from the excel �le I transformed the

arrays of dates to numbers that represent the true annualized time to maturites from

14th November. (Excel stores dates as numbers that represent days from 1st January,

1900.)

For the polynomial model I have made a function:

polynomial (cf, prices, dates, deg, con) , with �ve arguments:

• cf: The cash�ow matrix as a numpy array datatype.

• prices: The market prices of the bonds as a numpy array datatype.

• dates: The cash�ow dates in an ascending order as a numpy array datatype.

• deg: The degree of the polynomial estimation.

• con: A parameter to decide whether a constrained (con=1) or an unconstrained

(con=0) model is to be computed.

The return of the function is an array with the estimated discount function values on the

cash�ow dates. I used this to present the results in a diagram but the code can be easily

modi�ed to return for example the estimated vector of the λi parameters or the discount

function's values on di�erent time to maturity values. The algorithm is based on the OLS

method mentioned in the 'Statistical Yield Curve Models' chapter of this thesis.

The function I wrote for spline �tting is spline (matu, cf, prices, dates, deg,

con) . It has one more argument than the polynomial function and that is an array of

the maturities already imported from the excel �le. This vector is used when computing
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the knot points. I have written a subfunction knotpoints (matu, deg) that computes

the vector of the knot points. There is three way the knot points can be calculated and

the user can choose which way he or she prefers. The �rst is fully automated, the number

of knot points is the square root of the number of observations rounded down to the

nearest integer. The points are located so that there are approximately equal number of

observations between every point. This approach is suggested by J. Huston McCulloch

[14]. The second way is that the user inputs the number of knot points and then these are

located automatically similarly to the �rst case. The third is fully manual. The location

of the knot points are typed in manually one by one. Either way has been chosen the

extension of the knot points is automatically made by the code using parameter deg.

After the knotpoints are generated the spline function estimates the spline yield curve

model with OLS technique and after that returns the arrray of the discount function's

values on cash�ow dates.

I have made two small functions: yieldcurve (discount, dates) and forwardcurve

(yieldcurve, dates) . These are short codes that generate the spot and instantenous

forward curves from the discount curve values or from the spot curve. The returns are the

corresponding curve's values on the cash�ow dates.
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5.3 The results

I have used Aaa rated bonds of Swiss companies in the Bank industry to �t the sta-

tistical yield curves. A total of 175 bonds were used. I have compared the results by the

outlook of the curves and the sum of squared errors of the �ttings.

Polynomial Model: The discount function was modeled as a third and as a �fth

degree polynomial function. The constrained versions (where a constraint ensured that

d(0) = 1) resulted in much better short ends especially for the yield and forward curves.

Of course this raised the error term a bit as constraints usually do. Figure 9 presents the

resulting discount functions. The yield curves computed from the discount functions are

presented by Figure 10.

Figure 9: Polynomial modeling of the discount function.

(a) 3rd degree polynomial. (b) 5th degree polynomial.

The yield curves computed from the discount functions are presented by Figure 10.
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(a) Yield curve derived from the 3rd degree

polynomial.

(b) Yield curve derived from the 5th degree

polynomial.

Figure 10: Yield curves computed from the discount functions.

The forward curves calculated from the yield curves are presented by Figure 11.

(a) Forward curve of the 3rd degree dis-

count function.

(b) Forward curve of the 5th degree dis-

count function.

Figure 11: Forward curves calculated from the spot yield curves.

The sum of squared errors in the third degree case is 187.31. When �tting the �fth degree

polynomial the error decreased to 155.12. On these �gures it is apparent how some extra

curvature in the discount function escalates when computing the yield and the forward
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curves. Altough higher degree polynomials produce smaller errors, sometimes the results'

curvature may be considered too big to be realistic.

Spline Model: On the same data I examined two cubic spline models. Both of them

with the constraint d(0) = 1 because those produced much more realistic results. The

di�erence was the number of the knot points. In the �rst case a model with 4 knot points

was approximated while in the second case a model with six knot points. The knot points

were located automatically and the extensions were made automatically also with the use

of the knotpoints function. Figure 12 shows the estimated discount functions.

(a) Cubic spline with 4 knot points. (b) Cubic spline with 6 knot points.

Figure 12: Cubic spline estimations of the discount function.

The yield curves estimated from the discount functions above are presented in Figure

13.

The forward curves are presented in Figure 14.

49



5.3 The results 5 APPLICATIONS

(a) Yield curve computed from the spline

with 4 knot points.

(b) Yield curve computed from the spline

with 6 knot points.

Figure 13: Yield curves computed from the spline discount function estimations.

(a) Forward curve of the spline with 4 knot

points.

(b) Forward curve of the spline with 6 knot

points.

Figure 14: Forward curves estimated from the yield curves.

The sum of squared errors of the �ttings are the following. In the case of the cubic spline

with 4 knot points the error was 170.56. The sum of squared errors in the case of 6 knot

points was 130.27. By comparing the outlook of the curves and the error values in this

four cases I conclude that the best �t was the cubic spline with 4 knot points on this set

of bonds. Altough the one with 6 knot points resulted in smaller errors, the shapes of the

yield curve and forward curve are not realistic.
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6 Summary

I found that linear yield curve models are quite easy to implement and to work with

in applications. They are not slow even when working with much bigger observations

number and produced sensible results. The algorithm that slowed down the modeling is

the part that computes the cash�ow matrix from the list of the bonds in Excel. I plan to

improve that, for example by changing the bubble sort algorithm to a quicksort, and by

restructuring the algorithm. The excel �le with the VBA function and the Python code

saved as an ipython notebook �le can be downloaded from:

https://dl.dropboxusercontent.com/u/100401660/data.xlsm

and

https://dl.dropboxusercontent.com/u/100401660/yieldcurve.ipynb

I have plans to implement some nonlinear models in Python, such as Nelson-Siegel or

Svensson. And also to compare the di�erent types of models with di�erent statistical

methods.
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7 Appendix

7.1 Appendix 1: An example of B-splines

The following graphs show the B-splines belong to the set of knot points: {0, 2, 5, 8, 11, 14, 19}.

Figure 15: B-splines of order zero.
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The basis splines of order one and two:

Figure 16: B-splines of order one.

Figure 17: B-splines of order two.
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The basis spline of order three:

Figure 18: B-splines of order three.

54



REFERENCES REFERENCES

References

[1] Mitzhaletzky György: Interest Rate Models (university lecture, 2014)

[2] Frank J. Fabozzi, Steven V. Mann: Handbook of Fixed Income Securities (McGraw-

Hill, 2005)

[3] Jessica James, Nick Webber: Interest Rate Modelling (John Wiley and Sons, 2000)

[4] Mark Fisher, Douglas Nychka, David Zervos: Fitting the term structure of interest

rates with smoothing splines, (FEDS 95-1, 1994)

[5] John C. Hull: Options, futures and other derivatives (6th edition, 2005)

[6] Stefan Trück, Matthias Laub, Svetlozar T. Rachev: The Term Structure of Credit

Spreads and Credit Default Swaps - an empirical investigation (2004)

[7] Francis A. Longsta�, Sanjay Mithal, Eric Neis: Corporate Yield Spreads: Default Risk

of Liquidity? (2005)

[8] Peter Feldhütter: Where to look for credit risk? - The corporate bond market or the

CDS market? (Annual Financial Market Liquidity Conference presentation, 2014)

[9] Antonio Díaz, Frank Skinner: Estimating Corporate Yield Curves (2001)

[10] Jerry Yi Xiao: Term Structure Estimations for U.S. Corporate Bond Yields

[11] Daniel F. Waggoner: Spline methods for extracting interest rate curves from coupon

bond prices, 1997

[12] Julian D. A. Wiseman: The exponential yield curve model, 1994

[13] Cox, J.C., J.E. Ingersoll, S.A. Ross: A Theory of the Term Structure of Interest Rates.

(Econometrica 53: 385�407, 1985)

[14] J. Huston McCulloch: The Tax-adjusted Yield Curve (Journal of Finance, 1975)

55


