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Chapter 1

Introduction

1.1 Current reserving methodology and it’s
shortcomings

The current reserving methodology applied by Hungarian insurance
companies are depending on claims triangulational methods, aggregating
the observed claim payments as it can be seen in 1.1 below.

Figure 1.1: An example for a claims development triangle.

This is not a coincidence, current Hungarian legislation regarding in-
surance technical reserves (43/2015. (III. 12.) Korm. rendelet) states that
for IBNR (Incurred but not reported losses) reserve calculation (on lines
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Introduction

of business with at least three years of existence) :73 §(2) b" for claims
of insurance contracts the IBNR necessity has to be calculated based on
previous years experience with methods using claim triangular data."

Reserving methods based on claims triangulation, are inherently
compressing the data resulting in loss of precious information about
individual losses, that bars us from deriving an adequate distribution for
IBNR and RBNS (Reported but not settled) losses . After triangulation the
method applied deriving the reserve amount can be very sophisticated,
but since the data loss already present can only be used for point type
estimation.

As an example to fathom this let us say, that one has for example 5,000
losses over a period of 12 months, and uses them to build a triangle such
as that in figure 1.1, one is left with only

12 ∗ 12 + 1
2

= 78

points to go by to project the losses to ultimate and to estimate the distri-
bution of outstanding claims or reserves. And if we were to look at 10,000
losses over the same period, still the 78 points would be the result of ag-
gregation. Although these estimation methods were understandably very
useful in times when calculations were performed by hand, and the tri-
angular approach meant significant ease in calculation, now that we have
advanced calculating power due to computers this compression is unnec-
essary.

There are more problems about the triangle based methods. Current
state of the art pricing methodology is already applying stochastic fre-
quency and severity models in calculation whilst triangular methods in
reserving. This means that we have two misaligned valuation frameworks
for what is ultimately the same risk, but looked from two different points
of view: prospectively (pricing) and retrospectively (reserving)! Also for
solvency capital to be in accordance to the EU Solvency II standards, the
infamous 99.5 percentile needs to be calculated, that can only obtained
through distribution estimates not point reserve estimates.

In the following I would like to show based mainly along the lines of
the framework elaborated in Pietro Parodi’s article [1], that frequency and
severity models can improve estimation punctuality in contrast to trian-
gle based methods. I will do so by preparing an IBNR estimation model
and aggregated claims distribution for the professional liability portfo-
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Introduction

lio of a Hungarian insurance company, based on the past 16 years claim
database(2000-2015).

1.2 Benefits of triangle free model over the
chain-ladder

Apart from the question of accuracy and predictive power, the
triangle-free approach has several advantages. Some of these are listed
below:

• Any other information we have about claims can be easily built into
the model e.g. different treatment for claims below or above a given
threshold;

• meaningful results may be gained for accident years with scarce or
even nil claim counts where chain-ladder would not yield reasonable
results;

• the calculation of the tail factor can be done in a more sophisticated
fashion rather than in the heuristic expert judgment that is typical
of triangle-based approaches;

7



Chapter 2

Outline

2.1 Base outline of the model

I Estimate the delay distribution, based on the empirical distribution
of delays (here the distribution might be biased, as only a limited
time window of data is available therefore claims with exceedingly
great delay are not represented in the sample data. As a consequence
an adjustment might be adequate to counter that e.g. in form of a tail
fitting).

II Use the delay distribution in I to estimate the number of incurred
but not reported (IBNR) claims based on the number of claims
reported to date.(This will be done separately for each accident
year.) Also determine the most suitable frequency model (e.g.
Poisson, Negative Binomial) accordingly.

III Model the severity distribution for the IBNR claims (this may be dif-
ferent for each loss year, or at least depend on claims inflation), also
taking IBNER (incurred but not enough reserved/reported) claims
into account.

IV Combine the frequency and severity distributions via Monte Carlo
simulation or another method (e.g. Fast Fourier Transform, Panjer
recursion. . . ) to produce an estimate of the aggregate distribution of
IBNR losses

As a consequence, after the completion of the model our estimations
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Outline

are able to provide confidence intervals and percentiles of the future claim
amounts, thus granting much more sophisticated results as the triangle
based point estimates.
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Chapter 3

Model

3.1 Data

For data we will use a database from a Hungarian insurance com-
pany (hereinafter referred to as "the Company"). The database contains
16 years of claim experience (2000-2015) for Professional Liability line of
business1. The database contained 23 thousand rows of data recording in-
cremental changes (reserve increase/decrease, payment done, recourse) of
nearly 13,000 claims over the above mentioned period. This line of busi-
ness (lob) was chosen due to it’s tendency for long run patterns, as it is a
good candidate for observing delays. Also according to the Company’s Ac-
tuary this line of business have seen remarkably little change in its prod-
ucts structure, thus making estimation more reliable. The chosen lob con-
tains motley professional liability insurance, just to name a few type: tax
advisory, wind-up companies, accountancy, private investigation, security,
financial institution liability etc. (The first candidate for choosing an ideal
lob for estimation would have been MTPL [Motor third party liability] as
this lob is usually one of the most prominent for non-life insurance com-
panies, and also has long run pattern. However in case of the Company,
the products sold in this lob has been greatly altered in recent years, mak-
ing estimation increasingly cumbersome.)
Luckily the obtained database was very detailed not only containing one
payment per case, but recording on a different record each time a payment

1Naturally the data have been applied a positive monotone transformation for encryp-
tion to protect the privacy of the insurance company
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Model

is made or reserve is created/released. Therefore it makes us able to calcu-
late not only IBNR claim frequency and severity of the claim distribution,
but the effect of IBNER(Incurred But Not Enough Reserved) as well.

3.2 Delay in reporting

I have used (mostly) R to conduct my analysis. (The R codes used for
delivering my results (or most of them) can be seen at appendix section.)
The first analysis performed was aimed to assess the delays between the
occurrence of insurance events and their reporting date to the insurance
company, that in turn will be used to construct frequency distribution.
First I have examined empirical density and cumulative distribution of
the delays.

Due to the nature of the data(high amount of small observations and a
very few large ones), a logarithmic transformation made it much easier to
see through. See density and distribution after logarithmic transformation
on the below figure.
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As delays have non-negative values 0 included, I added one to the delay
values as this way the set of feasible distributions for testing fitness will
include log-normal distribution( and as all fitting attempts failed with the
original delay numbers I decided to use these increased values, and later
adjust the result).

The following candidates were considered when looking for distribu-
tion best describing claim delays : weibull, pareto, log-normal, gamma, ex-
ponential, log-logistic. (As loglogistic and pareto distributions have mul-
tiple parameters, they are need to be estimated as well. I have wrote for
cycles in r to estimate the best parameters for them.) Based on the result-
ing AIC and BIC values, the best fit (the lowest value both in AIC and
BIC) was produced by weibull curve, second and third being log-normal
and loglogistic. I have prepared a table to illustrate (in the above sense)
the three best fit distribution together.
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Figure 3.1: The comparison of the three best fitting distributions(by AIC).

The weibull distribution had the following estimated parameters (pro-
vided by R fitting):

Table 3.1: Parameters of the selected weibull distribution.

estimate error
shape 0.6156942 0.004161964
scale 189.4480040 2.869202594

There is also the question of goodness-of-fit. In that sense all of the
above mentioned fit provided by R was poor, resulting in Kolmogorov-
Smirnoff values ranging from 3%-20%. Only in case of exponential distri-
bution(which was one of the worse in terms of AIC) have we seen a K-S
ratio of greater than 10% namely 20%. Also based on more details elab-
orated in the following sections(to be able to compute variance and take
into account disappearing claims), I decided to predict the claim num-
bers based on empirical cumulative distribution function with only using
the above fittings for tail estimation, and calculating claim numbers for
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Model

each accident year separately. Before going into detail on exactly how I
estimated claim numbers I summarize the theoretical approach.

3.3 IBNR claim count - point estimate

With the help of the delay cumulative distribution function
(hereinafter referred to as F(t)), we are able to predict the IBNR claim
count for the [0,t] period the following way. Lets denote the (so far
unknown) frequency density function of claims with ν(t), the already
reported number of claims with nt and the total number of claims with
Nt. This ν(t) function varies the same way, as the probability of having a
claim, thus allowing us to take into account seasonality. If we know this
function, we could easily arrive to the expected total number of occurred
claims Nt:

E(Nt) =
∫ t

0
ν(τ)dτ (3.1)

To the calculation of the already reported part of the former, we can
use the delay distribution estimated in the above section:

E(nt) =
∫ t

0
ν(τ)F(t − τ)dτ (3.2)

In our case where nt is known, and Nt is searched the following esti-
mation can be used:

N̂t =

∫ t
0
ν(τ)dτ∫ t

0
ν(τ)F(t − τ)dτ

nt (3.3)

By the assumption of uniform claim frequency density function, this
boils down to the following formula:

N̂t =
t∫ t

0
F(t − τ)dτ

nt (3.4)

and as a result the number of occurred but not reported claims at t:

N̂t −nt =
t∫ t

0
F(t − τ)dτ

nt −nt (3.5)
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In our case we will need a discrete formula, which based on the above
equation takes the form of:

N̂t −nt =
t∑t

τ=0F(t − τ)
nt −nt (3.6)

(If we were to estimate the outstanding claims as a whole(instead of by
accident years), the above formula would be the one used. )

One more thing is necessary for us to consider before calculating the
expected number of claims.

3.3.1 Disappearance rate - proportion of reported claims
that eventually become zero

The other important factor is the zero claims. In the previous section
where the claim count estimation was performed all reported claim were
taken into account. However as a natural course of claim reporting, in
many cases eventually no payment takes place. This could be due to sev-
eral reason including fraudulent reporting, court case etc.

In order to us to capture the true nature of claim count distribution,
we have to make an estimation on the proportion of these would-be zero
claims, and adjust the expected claim numbers.(As the other workaround
would be to take this into account at the severity distribution, but find-
ing distribution that is actually zero in many percent of the cases, and has
good fit to the positive part of the sample deems highly unlikely.) I have
prepared the following table about the numbers and exposures (reserve
amount) of disappearing claims subtracted from the available data, sum-
marizing how many years have passed from occurrence before a claim was
rejected.

We can observe a high amount of disappearance rates, more than third
of all reported claims disappear, both in terms of numbers and exposure.

In liability line of business the claims can be quite high and therefore
the Company is more likely to debate claims in court. This high ratio can
be interpreted as a "success" ratio for the Company as every rejected claim
is money saved. We can also observe on table 3.2 that while in claim num-
bers 63% remains, in exposure only 62%. We can state based on the data,
that bigger claims are more likely to disappear, not just because of the
final remainder values. In numbers we can see a higher amounts for the
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first two years, but in case of exposure a heavier tail is observable. This
means that while smaller claims tend to nullify in their first few years,
more substantial claims entailing court case persist for longer periods.

Table 3.2: The ratio of claims becoming zero.

years till declared zero number ratio exposure ratio
0 19.86% 7.88%
1 7.46% 6.80%
2 3.16% 4.02%
3 2.12% 4.09%
4 1.15% 2.67%
5 1.18% 3.30%
6 0.79% 3.50%
7 0.51% 2.25%
8 0.30% 1.27%
9 0.13% 0.51%

10 0.12% 0.44%
11 0.09% 0.39%
12 0.10% 0.32%
13 0.08% 0.45%
14 0.03% 0.10%
15 0.03% 0.15%

non-zero claims 62.87% 61.87%

However in our case we need to calculate the ratios from a different
point of view, as we need to apply it to only late claims. (The above ta-
bles contain disappearance rates by time passed from occurrence, without
taking into account the delay) Therefore I also calculated ratios of how
big part of claims (in exposure) ultimately disappears based on delay in
reporting.(As the last delay years(12-15) have had very small sample size,
they were not used in the estimation)
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Table 3.3: Disappearance rates by delay of reporting in years.

Delay years Ultimately disappearing ratio
0 33.7
1 32.31
2 39.12
3 29.19
4 49.33
5 25.62
6 34.75
7 20.05
8 35.03
9 52.62

10 36.54
11 48.63
12 82.41
13 19.12
14 0
15 0

3.3.2 Claim count estimation by vintages

In order to use the above information, we not only need an aggregate
number of expected claims, we need them by vintages. And based on the
section 3.2 unsuccessful distribution estimation I decided to use the em-
pirical cumulative distribution function of the sample with some modifi-
cations.

As empirical CDF-s do not inherently contain tails, and in our case
liability is a line of business prone to long tails, we have to make a tail
estimation to our vintages, otherwise we would certainly underestimate
the number of claims. I decided to use the tail from the best fitting ex-
ponential distribution of the whole sample(in all of my endeavors to pro-
duce an agreeable goodness-of-fit for the claim frequency this was the only
distribution with Kolmogorov-Smirnoff results greater than 10%, namely
20%.).

For estimation by vintages we have to slightly alter the 3.6 formula to
estimate the claim numbers. (Because e.g. for the 2000 vintage we now
don’t estimate the late claims reported after 2000, but the late claims re-
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ported after 2015). Our estimated ECDF function (let’s call it E) uses 16
years of data, or in days 5844 and after that it only takes the value of
1. And also denote probability of delay being greater than 5844 days by
D(5844).(Which is calculated from the fitted exponential distribution with
parameter λ = 0.003554269.)

The amended formula for outstanding number of claims ( in case of
claims occurred in year 2000) is the following:

N̂t −nt =
365∑365

i=0(E(5844− i)(1−D(5844)) +D(5844))
nt −nt (3.7)

where

D(5844) = 1− (1− e−λ∗5844) = e−0.003554269∗5844 ≈ 9.53246...× 10−10

I also prepared the modified formulas for the another vintages and
the following table contains the results before and after the application of
disappearance rates.
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Table 3.4: Point estimate claim count by years with and without disappear-
ance rate.

Accident year Before disappearance rates After disappearance rates
2015 422.28 285.83
2014 160.14 97.49
2013 70.49 49.91
2012 32.24 16.33
2011 18.4 13.69
2010 15.77 10.29
2009 7.52 6.01
2008 3.72 2.42
2007 3.49 1.65
2006 2.26 1.43
2005 1.25 0.64
2004 1.08 0.19
2003 0.52 0.42
2002 0.22 0.22
2001 0.15 0.15
2000 0.03 0.03
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3.4 IBNR claim count - distribution

As we use frequency-severity model for claim forecast, we cannot use
a single point estimate for the claim numbers, for greater accuracy we
need a distribution. The two most commonly used distribution for claim
frequency are the Poisson and the negative binomial. The ubiquitous
Poisson’s great advantage is that only requires one parameter, the mean.
Wright [2] argues in his paper that if at the estimation of parameters any
of the following four parameter uncertainty is present in our model, then
they account for increase in variance.

• Estimation uncertainty:

• Heterogeneity

• Contagion

• exposure uncertainty

As multiple of the above applies in our examined case, the variance
have to be greater than the mean, therefore making Poisson distribution
inappropriate. Therefore we will use negative binomial in our calculation.
For this all we need to have is the variance, as the mean was already esti-
mated in section 3.3.

More precisely we will estimate mean-to-variance ratio. After calcu-
lating the projected claims numbers for each year separately, calculating
the variance from these ultimate claim numbers then dividing with the
average of the claim numbers. (This is only adequate with taking uniform
exposure over the years granted. As we had no unbiased exposure to use
we had to accept this supposition.)

I have computed the yearly ultimate claim numbers and aggregated
into the following table.
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Table 3.5: Ultimate claim numbers by accident years.

Year Ultimate claim
2000 743.03
2001 917.15
2002 606.22
2003 603.52
2004 599.08
2005 567.25
2006 653.26
2007 772.49
2008 994.72
2009 799.52
2010 760.77
2011 770.4
2012 936.24
2013 1298.49
2014 1325.14
2015 1235.28

Based on the above ultimate claim numbers I have calculated (with R)
the variance-to-mean ratio to be 73.73125. This concludes our search for
frequency distribution with negative binomial of the following parame-
ters:

Mean =
rp

1− p
= 486.7 Variance =

rp

(1− p)2 = 35,885 (3.8)

3.5 IBNR claim severity - preparation

Before setting on to estimating claim severity there are several issues
that need to be addressed. The claim amount depends on many factors,
here we mention the three most important are:

• claim inflation;

• IBNER;

• business mix;
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The first and second item will be elaborated below.
Regarding the last one, meaning the change of the composition of busi-

ness mix written year-to-year, we unfortunately have no detailed histori-
cal data. According the Company’s actuary this line has been mainly un-
changed throughout the years and as no other information available we
did not examine this effect in our analysis.

3.5.1 Claim inflation

The first is the application of proper claim inflation. As our data takes
up an extensive period in time - 16 years. Since Hungary experienced
sometimes as high as 10% inflation during that period an adjustment in
claim size is necessary to make the 2015 year claims comparable to claims
taken place in 2000. I have used the most widely available inflation mea-
sure Customer Price Index (CPI) retrieved from the Hungarian national
bank. It was available in monthly granularity, and it was applied to the
data also on a monthly basis. One may find the yearly (accumulated) val-
ues in the following table.

Table 3.6: Yearly CPI from Hungarian National Bank.

year inflation
2000 10.08%
2001 6.82%
2002 4.99%
2003 5.84%
2004 5.62%
2005 3.55%
2006 6.56%
2007 7.65%
2008 3.75%
2009 5.83%
2010 4.58%
2011 3.96%
2012 4.88%
2013 0.39%
2014 -1.00%
2015 0.89%
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3.5.2 IBNER

A portion of the claims in the obtained data set are not fully devel-
oped yet, and the IBNER ratios are necessary to calculate to arrive at the
ultimate value of claims. We will examine the year to year change in al-
ready reported claim amounts to determine year-to-year change in claim
amounts. Some differentiation however, needs to be made.

The claims in the database in terms of reporting delay are highly vary,
there are even claims with 15 years of delay. Assuming that the future
IBNER ratios for a claim reported few months after occurrence, and a
claim reported 10 years after occurrence are the same, is not a reasonable
assumption in my opinion. Therefore we will differentiate IBNER ratios
based on reporting tardiness. So claims that were reported within 1 year
of occurrence will be group delay 0, claims that were reported between
1 and 2 years after occurrence will be delay group 1 etc. Of course this
entails that for higher reporting delay categories we will have fewer data
and thus less robust result, however the inherent difference between the
categories makes this differentiation pivotal.

Table 3.7: IBNER - The observed exposure amounts per delay group.

Delay Initial Claim Amount
0 1,846
1 440
2 306
3 231
4 103
5 93
6 34
7 107
8 21
9 4

10 13
11 7
12 1
13 2
14 1
15 2
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First I checked whether enough data will be available for all years. You
can see the claim amounts on table 3.7 in millions. As expected for claims
with highly delayed reporting period there are very little exposure. There-
fore some of the higher categories will need to be unified.

As you can see in the table above, all delay groups after year seven have
limited amount of exposure. Keeping that in mind, let us have a look at
the result at table 3.8

The analysis have been performed for observing the changes through-
out all the 15 years period, however no observable change has taken place
in the amounts after ten years of development after the reporting of the
claim, so the following table is cropped to ten years.

Table 3.8: IBNER - The observed changes in claim amounts per delay
group.

Delay Initial year 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10
0 100 90.73 90.97 88.97 88.65 82.94 79.59 78.07 72.21 72.55 72.32
1 100 115.25 114.97 111.37 111.87 103.35 97.57 96.97 96.89 96.89 96.89
2 100 77.01 79.44 84.31 84.27 66.64 64.8 64.59 64.08 64.06 64.06
3 100 113.22 110.29 107.78 89.96 89.96 66.43 49.84 49.01 49.45 49.45
4 100 85.01 83.81 70.7 73.77 73.77 74.12 74.12 65.09 65.09 65.09
5 100 154.22 143.99 143.99 143.99 138.89 138.81 138.81 138.81 138.81 138.81
6 100 80.99 87.31 87.03 90.26 88.8 87.47 87.47 82.77 82.77 82.77
7 100 95.47 93.8 93.8 94.93 94.93 94.93 94.08 94.05 94.08 94.08
8 100 83.84 75.12 83.84 90.94 90.94 90.94 90.94 90.94 90.94 90.94
9 100 82.93 82.93 82.93 105.53 105.53 105.53 105.53 105.53 105.53 105.53

10 100 100 101.67 101.67 101.67 76.65 103.41 103.41 103.41 103.41 103.41
11 100 100 55.12 48.63 48.63 48.63 48.63 48.63 48.63 48.63 48.63
12 100 100 100 100 100 100 100 100 100 100 100
13 100 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48
14 100 9.34 9.34 9.34 9.34 9.34 9.34 9.34 9.34 9.34 9.34
15 100 100 100 100 100 100 100 100 100 100 100

Due to the above mentioned, I decided to group the observed IBNER
factors into the following six categories: 0, 1, 2, 3, 4-9, 9+. After regrouping
the IBNER factors can be seen at table 3.9
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Table 3.9: IBNER - The observed changes in claim amounts per condensed
delay group.

Group Initial year 1 year 2 year 3 year 4 year 5 year 6 year 7 year 8 year 9 year 10
1 100 90.73 90.97 88.97 88.65 82.94 79.59 78.07 72.21 72.55 72.32
2 100 115.25 114.97 111.37 111.87 103.35 97.57 96.97 96.89 96.89 96.89
3 100 77.01 79.44 84.31 84.27 66.64 64.8 64.59 64.08 64.06 64.06
4 100 113.22 110.29 107.78 89.96 89.96 66.43 49.84 49.01 49.45 49.45
5 100 105.37 102 98.75 100.95 99.51 99.46 99.21 96.2 96.2 96.2
6 100 97.75 86.94 85.24 85.24 72 86.16 86.16 86.16 86.16 86.16

The ratios gained from the database shows some level of prudence in
estimation of the claims by the Company. In some cases, for group 2,4 and
5 we can see, some initial increase in claims amount, but eventually after
6 years all group’s ratios slump below the initial value, meaning that in
all groups potential claim payments set at the reporting of the claim is
invariably higher than the ultimate payment. This in turn will mean, that
overall at the severity computation we will have to scale downward the
claims.

After consulting with the actuary it turned out this is not a coincidence.
The guidelines for setting the RBNS reserves for claims is artificially made
high, so that run-off results almost always end up positive.

3.6 IBNR claim severity - computation

Based on the above sections, in order to calculate severity we will use
the ultimate value of claims reached by adjusting the claim amounts with
the above calculated IBNER ratios, and naturally only taking into account
eventually non-zero claims. Regarding the claim inflation I have first ex-
amined the average claim amounts per accident year to get a basic idea
how the amount of average claim payment varied over the 16 year observ-
ing period.

The average claim per year can be seen in the table below without in-
flation adjustment.(I have adjusted the claims for IBNER before creating
the comparison, otherwise it would have been misleading to compare old
fully developed claims with more recent just registered ones.)

Based on table 3.10 we can not see a definite trend in claims. Due to
the inflation observed in the Hungarian economy, we should observe an
increase in claim amounts, which is not present. After consulting with the
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Table 3.10: Average claim per accident year.

Accident year Average claim
2000 153478
2001 176672
2002 77814
2003 150785
2004 105229
2005 86328
2006 88290
2007 150465
2008 194323
2009 245123
2010 213879
2011 162428
2012 122706
2013 149961
2014 211339
2015 202402

actuary, She assured me that this is not a coincidence, and they have per-
formed a similar average claim test not just for the professional liability
portfolio, but the whole liability line and observed that the average claim
size remains considerably stable over the years. Therefore I concluded that
application of inflation rates(that even reaches as high compounded value
as 2.2) might not be suitable for my data. Therefore at the calculation of
severity distribution I did not apply the calculated inflation rates.

Also I filtered out zero claims as they have been accounted for at the
application of disappearances rates in case of claim numbers, see 3.3.1.
Therefore my analysis was bent on computing the severity of the actual
non-zero claim amounts. The method to work out the claim distribution
was very similar to the case of the delay distribution, first I examined the
empirical density and cumulative distribution. I again applied logarithmic
scaling to get meaningful figures. The result can be seen on figure 3.2
below.
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Figure 3.2: Observed empirical density and CDF.

Afterwards I have performed distribution fitting. The possible can-
didates were: log-normal, exponential, gamma, weibull, log-logistic and
Pareto. The result was once again disappointing only gamma, log-normal
and weibull did produce a fit, with goodness-of-fit results (Kolmogorov-
Smirnoff) respectively 21.4%, 6.8% and 12.7%. As a conclusion I have de-
cided to use the best-fitting gamma distribution.

So the result of severity model was a gamma distribution with the fol-
lowing parameters:

Shape: α = 0.403411
Rate(=1/scale): β = 0.000001556572

(3.9)

The mean and variance of the chosen distribution can be reached via
the following formulas:

Mean:
α
β

=
0.403411

0.000001556572
≈ 259,166

Variance:
α

β2 =
0.403411

0.0000015565722 ≈ 166,498,110,074
(3.10)
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3.7 Monte Carlo model

As we estimated both the frequency and severity distribution for our
IBNR claims, we can now prepare Monte-Carlo simulation to model the
distribution of outstanding claims. As (very conveniently) R have built-
in random number generator for all the known distributions (including
gamma and negative binomial) this made our model construction much
easier. For simulation size I have decided to use a distribution based on
10,000,000 runs. This size would still run under 20 minutes, and yield
robust results.(By robust I mean that when testing the received cdf the
resulting probabilities for the same total claim amounts have differed less
than 0.0001). A summary of the most important percentiles can be seen
below.

Table 3.11: Percentiles of final IBNR distribution.

value percentiles
270 937 958 0.995
251 634 528 0.99
179 948 905 0.9
145 052 811 0.75
111 794 450 0.5
83 933 802 0.25

The problem with these results, that we cannot compare it to anything.
As the most important part of an estimation is to see whether it is a good
estimate of real life values, I have decided to make adjusted results as well,
where we have a real life data for comparison.

3.8 Comparison of results

The used database comprised of 16 years data. Therefore my idea was
to use only the first 15 years of the data to prepare a model, then esti-
mate the next one year IBNR, and this way I can compare the result with
last years data. As the method I used to derive the "comparable" esti-
mation is nearly the same as the one that was applied to derive the full
database estimation, I will not go into details here just summarize the
main points.(Luckily the overwhelming majority of my work was done
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with R codes therefore the new results were gained with a few alterations
from the original code) One important difference was that while in case of
the full database we had to estimate all future IBNR claims from a point
on, in case of the "comparable" estimation we need to estimate the IBNR
claims surfacing in the next one year. So to derive the number of IBNR
claims expected in the next one year first I computed all the expected
IBNR claims from the 2014 year end, then I computed all the expected
IBNR claims with the same model after 2015 year end then I subtracted
the two value from each other. Apart from this the method was the same,
only the calculated distributions parameters have differed. The newly es-
timated parameters were as follows:

Frequency distribution: Negative binomial
Mean: 424.1212

Variance-to-mean ratio: 64.2446
Severity distribution: Gamma

Shape: α = 0.4075858
Rate(=1/scale): β = 0.000001564

(3.11)

The mean of the distribution was 110,533,504 and the percentiles
where the following:

Table 3.12: Percentiles of "comparable" IBNR distribution.

value percentiles
255 052 102 0.995
236 759 145 0.99
169 251 500 0.9
136 283 863 0.75
104 925 159 0.5
78 647 158 0.25

The result gained from the actual last year database was (after
adjusting to disappearances and IBNER) 179,580,212. Based on the
above percentiles, a result at least as high as this will only occur in
less than 10% of the cases. This is an indication that my model might
underestimate the actual data.
I have analyzed the data, to see if I can find the reason.
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I have found that two very high amount claim occurred in the actual
data. These two claims out of the 433 account for the 1/6th of the whole
actual claim amount(one of them was nearly the biggest claim in the
whole 16 year database). By taking these outlying value out, the result
shrink to less than 150,000,000 in value that is below the 80th percentile.
Another reason could be the way how I derived claim severity. My
frequency model predicted not just an aggregate number, but yearly
outstanding claim numbers, so I can see that in both the total, and the
"comparable" estimation about 94-95% of future claims are coming
from the last three accident years. But when I calculated severity I did
not weighted claim amounts according to these proportions. Below I
calculated an amended result when I only take into account the last 3
years claims when calculating severity.

Table 3.13: Percentiles of last 3 years claim severity based IBNR.

value percentiles
228 787 326 0.995
212 473 982 0.99
151 810 171 0.9
122 246 203 0.75
94 079 771 0.5
70 542 765 0.25

As we can see this does not help in our case, as the result are even
lower, than in the all-years severity case.
One more idea would be the severity distribution. Even though only two
distribution was able to produce a fit on our sample without error, and
of these two gamma was the one with better K-S ratios, it does not have a
heavy enough tail. I have calculated, that what are the chances that a 433
sample of gamma variables with our estimated parameters have the max-
imum gamma variable equal or greater to the observed (outlying) max-
imum, and the observed number of successful cases was zero(calculated
on a 10,000,000 sample). Therefore my opinion is that a distribution with
a heavier tail would have been better to represent the actual claim distri-
bution.
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Appendix A

R codes

A.1 Delay computation
#sources, and output location

library("fitdistrplus")

library("actuar")

data_path<-"D:/other/MSc szakdoga/data/IBNR_szakdoga_adatok_sent_tempered.csv"

output_path<-"D:/other/MSc szakdoga/results/one_year_less/"

#reading, and ordering the database

database<-read.csv(data_path, sep = ’;’, dec =’.’)

#removing unnecessary coloumns and duplicates

colnames(database)

nrow(database)

database$delay<-database$eltérés.bejelentés.és.bekövetkezés.között.napokban

database <- subset(database, select = c(Kár.ID,Kárdátum.period,delay,Bejelentés.dátum.period))

database<-unique(database)

nrow(database)

plotdist(log(database$delay), histo = TRUE, demp = TRUE)

#first estimating an aggregate distribution for the database

minta<-database$delay

fln<-fitdist(minta,"lnorm", method = "mle")

summary(fln)

fe<-fitdist(minta,"exp")

summary(fe)

fg<-fitdist(minta,"gamma", method = "mle", lower = c(0, 0))

summary(fg)

fw<-fitdist(minta,"weibull")

summary(fw)
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fll<-fitdist(minta, "llogis", start = list(shape = 1, scale = 50))

summary(fll)

#goodness-of-fit test

gofstat(fw)

gofstat(fe)

gofstat(fln)

gofstat(fg)

gofstat(fll)

#creation of vintages

database$vintage<-ceiling(database$Kárdátum.period/12)

#unique(database$vintage)

vintage_2000<-database[database$vintage==1,]

vintage_2001<-database[database$vintage==2,]

vintage_2002<-database[database$vintage==3,]

vintage_2003<-database[database$vintage==4,]

vintage_2004<-database[database$vintage==5,]

vintage_2005<-database[database$vintage==6,]

vintage_2006<-database[database$vintage==7,]

vintage_2007<-database[database$vintage==8,]

vintage_2008<-database[database$vintage==9,]

vintage_2009<-database[database$vintage==10,]

vintage_2010<-database[database$vintage==11,]

vintage_2011<-database[database$vintage==12,]

vintage_2012<-database[database$vintage==13,]

vintage_2013<-database[database$vintage==14,]

vintage_2014<-database[database$vintage==15,]

vintage_2015<-database[database$vintage==16,]

#constructing the empirical cumulative distribution function based on the database

#and adding an exponential tail

CDF<-ecdf(database$delay)

CDF_exp_tail <- function(x){

z<-CDF(x)*(1-0.0000000009532461)+0.0000000009532461

return(z)

}

outstanding<-c(1:16)

#CDF_exp_tail(100)

#vintage_2000

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(16*365.25-i)

}

outstanding[1]<-365/sum*nrow(vintage_2000)-nrow(vintage_2000)

#vintage_2001

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0
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for (i in 1:365) {

sum<-sum+CDF_exp_tail(15*365.25-i)

}

outstanding[2]<-365/sum*nrow(vintage_2001)-nrow(vintage_2001)

#vintage_2002

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(14*365.25-i)

}

outstanding[3]<-365/sum*nrow(vintage_2002)-nrow(vintage_2002)

#vintage_2003

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(13*365.25-i)

}

outstanding[4]<-365/sum*nrow(vintage_2003)-nrow(vintage_2003)

#vintage_2004

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(12*365.25-i)

}

outstanding[5]<-365/sum*nrow(vintage_2004)-nrow(vintage_2004)

#vintage_2005

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(11*365.25-i)

}

outstanding[6]<-365/sum*nrow(vintage_2005)-nrow(vintage_2005)

#vintage_2006

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {
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sum<-sum+CDF_exp_tail(10*365.25-i)

}

outstanding[7]<-365/sum*nrow(vintage_2006)-nrow(vintage_2006)

#vintage_2007

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(9*365.25-i)

}

outstanding[8]<-365/sum*nrow(vintage_2007)-nrow(vintage_2007)

#vintage_2008

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(8*365.25-i)

}

outstanding[9]<-365/sum*nrow(vintage_2008)-nrow(vintage_2008)

#vintage_2009

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(7*365.25-i)

}

outstanding[10]<-365/sum*nrow(vintage_2009)-nrow(vintage_2009)

#vintage_2010

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(6*365.25-i)

}

outstanding[11]<-365/sum*nrow(vintage_2010)-nrow(vintage_2010)

#vintage_2011

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(5*365.25-i)
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}

outstanding[12]<-365/sum*nrow(vintage_2011)-nrow(vintage_2011)

#vintage_2012

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(4*365.25-i)

}

outstanding[13]<-365/sum*nrow(vintage_2012)-nrow(vintage_2012)

#vintage_2013

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(3*365.25-i)

}

outstanding[14]<-365/sum*nrow(vintage_2013)-nrow(vintage_2013)

#vintage_2014

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(2*365.25-i)

}

outstanding[15]<-365/sum*nrow(vintage_2014)-nrow(vintage_2014)

#vintage_2015

# using the ecdf with the exponential tail to estimate outstanding no of claims

sum<-0

for (i in 1:365) {

sum<-sum+CDF_exp_tail(1*365.25-i)

}

outstanding[16]<-365/sum*nrow(vintage_2015)-nrow(vintage_2015)

outstanding

write.csv(outstanding, file = paste0(output_path,"Yearly_outstanding_claims_before_disappearance.csv"))

#aggregating ultimate claim number per year

yearly_claim<-c(rep(0,16))

yearly_claim[1]=nrow(vintage_2000)

yearly_claim[2]=nrow(vintage_2001)

yearly_claim[3]=nrow(vintage_2002)

yearly_claim[4]=nrow(vintage_2003)

yearly_claim[5]=nrow(vintage_2004)
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yearly_claim[6]=nrow(vintage_2005)

yearly_claim[7]=nrow(vintage_2006)

yearly_claim[8]=nrow(vintage_2007)

yearly_claim[9]=nrow(vintage_2008)

yearly_claim[10]=nrow(vintage_2009)

yearly_claim[11]=nrow(vintage_2010)

yearly_claim[12]=nrow(vintage_2011)

yearly_claim[13]=nrow(vintage_2012)

yearly_claim[14]=nrow(vintage_2013)

yearly_claim[15]=nrow(vintage_2014)

yearly_claim[16]=nrow(vintage_2015)

ultimate_claim<-c(rep(0,16))

for (i in 1:16) {

ultimate_claim[i]=outstanding[i]+yearly_claim[i]

}

exposure_path<-"D:/other/MSc szakdoga/data/GWP_per_year.csv"

exposure<-read.csv(exposure_path, sep = ’;’, dec =’.’)

exposure_adjusted_ultimate<-c(rep(0,16))

for (i in 1:16) {

exposure_adjusted_ultimate[i]=ultimate_claim[i]/exposure[i,2]*1000000

}

var(ultimate_claim)

ave(ultimate_claim)

var(exposure_adjusted_ultimate)

ultimate_and_exp=matrix(c(rep(0,64)),nrow = 16,ncol = 4)

for (i in 1:16) {

ultimate_and_exp[i,1]=exposure[i,1]

ultimate_and_exp[i,2]=exposure[i,2]

ultimate_and_exp[i,3]=ultimate_claim[i]

ultimate_and_exp[i,4]=exposure_adjusted_ultimate[i]

}

write.csv(ultimate_claim, file = paste0(output_path,"ultimate_claim_numbers.csv"))

write.csv(ultimate_and_exp, file = paste0(output_path,"ultimate_claim_numbers_and_exp.csv"))

A.2 Disappearance rate derivation
#sources, and output location

library("fitdistrplus")

library("actuar")

claim_path<-"D:/other/MSc szakdoga/results/Yearly_outstanding_claims_before_disappearance.csv"

data_path<-"D:/other/MSc szakdoga/data/IBNR_szakdoga_adatok_sent_tempered_disappear.csv"

output_path<-"D:/other/MSc szakdoga/results/"

#reading, and ordering the database

outstanding<-read.csv(claim_path, sep = ’,’, dec =’.’)

database<-read.csv(data_path, sep = ’;’, dec =’.’)
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#gsub("-", "0", database$Kifizetés, fixed = TRUE)

#database$Kifizetés<-as.numeric(database$Kifizetés)

#removing unnecessary coloumns and duplicates

colnames(database)

nrow(database)

#database$delay<-database$eltérés.bejelentés.és.bekövetkezés.között.napokban

#database <- subset(database, select = c(Kár.ID,Kárdátum.period,delay))

#database<-unique(database)

#nrow(database)

#plotdist(log(database$delay), histo = TRUE, demp = TRUE)

#creation of vintages by lateness in years

database$vintage<-floor(-(database$Kárdátumperiod-database$Bejelentésdátumperiod)/12 )

unique(database$vintage)

#finding the claims that became zero, sorting them into delay groups, and calculating total reserve

became_zero<-integer(12843) #12843 darab kárid van x=0 ha nem vált 0vá, x=egy ha igen

delay_group<-integer(12843) #késettség a 12843 elemre

reserve<-integer(12843) # az összege a pozitív tartalékoknak

for (i in 1:12843) {

current_data<-database[database$KárID==i,]

if ( sum(current_data$Kifizetés)==0 & sum(current_data$Tartalék)==0) {

became_zero[i]=1

}

delay_group[i]=min(current_data$vintage)

current_data_positive<-current_data[current_data$Tartalék>0,]

reserve[i]<-sum(current_data_positive$Tartalék)

}

unique(delay_group)

#summarizing the above to the 16 delay group

full_reserve<-c(rep(0,16))

disappearing_reserve<-integer(16)

for (i in 1:12843) {

full_reserve[delay_group[i]+1]=full_reserve[delay_group[i]+1]+reserve[i]

if (became_zero[i]==1) {

disappearing_reserve[delay_group[i]+1]=disappearing_reserve[delay_group[i]+1]+reserve[i]

}

}

#calculating disappearance rates to the 16 delay group

disappearance_rates<-c(rep(0,16))

for (i in 1:16) {

disappearance_rates[i]=disappearing_reserve[i]/full_reserve[i]

}

#applying disappearance rates to the ultimate IBNR claim numbers computed in previous r code

result=c(rep(0,16))

for (i in 0:14) {

result[i+1]=outstanding[16-i,2]*(1-disappearance_rates[i+2] )

}

result

write.csv(disappearance_rates, file = paste0(output_path,"disappearance_from_r.csv"))

write.csv(result, file = paste0(output_path,"Yearly_outstanding_claims_after_disappearance.csv"))
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A.3 Claim severity and Monte Carlo
#sources, and output location

library("fitdistrplus")

library("actuar")

library("mcsm")

data_path<-"D:/other/MSc szakdoga/data/IBNR_szakdoga_adatok_sent_tempered_severity.csv"

output_path<-"D:/other/MSc szakdoga/results/"

IBNER_path<-"D:/other/MSc szakdoga/IBNER_percentage_v2.csv"

#reading the database that was manually ordered in excel

version

database<-read.csv(data_path, sep = ’;’, dec =’.’)

IBNER<-read.csv(IBNER_path, sep = ’;’, dec =’.’)

#removing measuring average claim per year

colnames(database)

nrow(database)

ncol(database)

database <- subset(database, select =

c(KárID,Kárdátumperiod,Bejelentésdátumperiod,Könyvelésihóperiod,Tartalék,Kifizetés))

#data_array<-matrix(c(rep(0,142860)), nrow = 23810, ncol = 6)

#data_array=database

#data_array[1,1:6]

database[3,"KárID"]

#creation of vintages

database$vintage<-ceiling(database$Kárdátumperiod/12)

database$delay_group=floor((database$Bejelentésdátumperiod-database$Kárdátumperiod)/12)

#unique(database$vintage) 1-16ig terjednek a vintage számok

#tail(database, n=1)

#computation of avereage claims per accident year groups

average_claim<-c(1:16)

#vintage_2000 average claim

tail(database$delay_group, n=1)

IBNER[tail(database$delay_group, n=1),5]

nrow(IBNER)

ncol(IBNER)

in_year<-c(rep(0,12843))

sum_per_claim<-c(rep(0,12843))

sum_per_vintage<-c(rep(0,16))

no_per_vintage<-c(rep(0,16))

vintage_group=integer(12843)

typeof(sum_per_claim)

sum_per_claim_base<-c(rep(0,12843))

for (i in 1:12843) {

current_data<-database[database$KárID==i,]

vintage_group[i]=min(current_data$vintage)

in_year[i]=min(12,18-ceiling(tail(current_data$Bejelentésdátumperiod,n=1)/12))

kifiz=as.double(sum(current_data$Kifizetés))

tart=as.double(sum(current_data$Tartalék))

sum_per_claim[i]<-kifiz+tart*IBNER[1+tail(current_data$delay_group, n=1),12]/

IBNER[1+tail(current_data$delay_group, n=1),in_year[i]]
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#sum_per_claim_base[i]=kifiz+tart

}

#counting the number of elements in a vintage group

IBNER[1+tail(current_data$delay_group, n=1),in_year[6818]]/100

sum_per_claim[6818]

sum_per_claim_base[6818]

max(database$Tartalék)

max(database$Kifizetés)

IBNER

unique(in_year)

unique(1+database$delay_group)

typeof(IBNER[1+tail(current_data$delay_group, n=1),in_year])

for (i in 1:16) {

no_per_vintage[i]=sum(vintage_group == i)

}

#summarizing claim amounts per vintage

for (i in 1:16) {

for (j in 1:12843) {

if (vintage_group[j]==i){ sum_per_vintage[i]=sum_per_vintage[i]+sum_per_claim[j]}

}

}

#and the averige claim per year

for (i in 1:16) {

average_claim[i]=sum_per_vintage[i]/no_per_vintage[i]

}

average_claim

#the actual severity analysis and curve fitting starts here

write.csv(average_claim, file = paste0(output_path,"average_claim_per_acc_year.csv"))

minta=sum_per_claim[sum_per_claim>10]

length(minta)

plotdist(log(minta), histo = TRUE, demp = TRUE)

#plotdist(minta, histo = TRUE, demp = TRUE) not meaningful

fln<-fitdist(minta,"lnorm", method = "mle")

summary(fln)

fe<-fitdist(minta,"exp")

summary(fe)

fg<-fitdist(minta,"gamma", method = "mle", lower = c(0, 0))

summary(fg)

fw<-fitdist(minta,"weibull")

summary(fw)

fll<-fitdist(minta, "llogis", start = list(shape = 1, scale = 50))

summary(fll)
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fp <- fitdist(minta, "pareto", start = list(shape = 2, scale = 500))

summary(fp)

#fb<- fitdist(minta, "burr", start = list(shape1 = 0.6, shape2 = 2))

#summary(fb)

#goodness-of-fit test

gofstat(fw)

gofstat(fe)

gofstat(fln)

gofstat(fg)

gofstat(fll)

gofstat(fp)

#best fitting is gamma with shape 0.4157577515 and rate(=1/scale) 0.0000017187 or I could use ecdf

#monte carlo

#nb parameters mean: 486.7 var-to-mean: 73.73125

#qnbinom(p=0.5,size = 6.691758,mu=486.7) quantiles for negative binomial

total_claim=c(rep(0,10000000))

# to check performance time system.time()

for (i in 1:10000000) {

number=rnbinom(n=1,size = 6.691758,mu=486.7) #size is the same as r in the r,p parametrization

total_claim[i]=sum(rgamma(n=number, shape=0.4157577515 , rate=0.0000017187))

}

#és a végs? teljes kárnagyságunkból csinálunk eloszlást

aggregate_loss_distribution=ecdf(total_claim)

#computation of percentiles

percentiles <- function(x){

i=1

while (aggregate_loss_distribution(i)<x) {

if(aggregate_loss_distribution(2*i)<x){ i=2*i}

if(aggregate_loss_distribution(1.1*i)<x){ i=i*1.1}

if(aggregate_loss_distribution(1.01*i)<x){ i=i*1.01}

if(aggregate_loss_distribution(1.001*i)<x){ i=i*1.001}

if(aggregate_loss_distribution(1.0001*i)<x){ i=i*1.0001}

i=i+1

}

return(i)

}

important_percentiles=matrix(data =

c(percentiles(0.995),percentiles(0.99),percentiles(0.9),percentiles(0.75),

percentiles(0.5),percentiles(0.25),0.995,0.99,0.9,0.75,0.5,0.25),

ncol = 2,dimnames = list(NULL,c("value","percentile")) )

system.time(aggregate_loss_distribution(120010000))

min(rgamma(n=1000, shape=0.403411, rate=0.000001556572))

write.csv(important_percentiles, file = paste0(output_path,"final_result_percentiles.csv"))
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