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Chapter 1

Introduction

One of the most challenging problems in option pricing theory, is pricing and finding an
optimal exercise strategy for options with American exercise features. The traditional valuation
techniques, such as finite difference and tree-based techniques become impractical in the multi-
dimensional cases.

For pricing an American-style option it is necessary to choose between exercising and holding
the option at each early exercise dates. Several researchers including Francis A. Longstaff and
Eduardo S. Schwartz (2001) introduced Monte Carlo simulation based methods for calculating
the value of continuing to keep the option alive. Their approach includes simple least-squares
regression, which follows to call their method the Least Squares Method (LSM). The LSM is
a widely used and very efficient approximation technique, when one would like to compute the
value of an American-style option for pricing, or future exposures in a counterparty risk setting.

Shashi Jain and Cornelis W. Oosterlee (2015) published a new simulation based technique for
pricing multi-dimensional Bermudan options, it is called the Stochastic Grid Bundling Method
(SGBM). This paper presents the benefits of the SGBM against the LSM from a risk management
perspective.

The main objective of my thesis is to investigate the quality of these Monte Carlo simulation-
based pricing methods by examining the future exposure. We are not only interested in calculating
the expectation of future exposures (i.e. Expected Positive Exposure (EPE)), for risk manage-
ment purposes we also heavily rely on quantiles (i.e. Potential Exposure (PE)) of the distribution.
In this thesis we compare the future exposure distribution of equity options calculated by the
LSM to alternatives. We consider the novel SGBM and analytical solutions if available, and
investigate the exposure metric (PE, Peak PE) differences between the methods.

At first we will see how good the methods approximate the future distribution of a European
option. This is a good starting point, because then we have an analytical benchmark, the Black-
Scholes formula, plus in this case we do not have to determine the stopping strategy, so the
implementation and the description of the methods are easier. Compared to the Black-Scholes
we can come to a lot of conclusions about the two techniques.

After that we will estimate the future exposures of the LSM and SGBM for an American
put option, and we will examine the difference between the two methods in the American case,
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similarly from risk management point of view.
The paper is organized as follows. We can see an introduction to the used Basics in Chapter

2. Chapter 3 describes the framework of the LSM pricing method, while Chapter 4 gives a
description about the SGBM. After introducing the algorithms to be compared, we will move on
to estimate the future distributions calculated with the LSM and alternatives. In Chapter 5 we
investigate the future exposure of a European put option. In this chapter we will introduce the
concept of the Potential exposure and the Peak exposure. Chapter 6 discusses the implementation
for an American put option, and makes comparisons of the two used methods with the exposure
metrics. Finally we will conclude in Chapter 7.
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Chapter 2

Preliminaries

To understand this thesis, it can be helpful to present definitions, financial and mathematical
basics that are used. This chapter summarizes these expressions and techniques.

2.1 European, American and Bermudan Options

In finance, an option is a financial derivative conveying a right - but not the obligation -
to buy or sell the underlying asset at a specified strike price on a specified date. Holding a put
option gives you the right to sell and holding a call option gives you the right to buy. There is a
cost for acquiring an option, which is called the price of the option. At the time of maturity the
holder of the option has to decide whether to exercise the option, or to leave it to expire. We are
talking about a European option in that case, when the contract has only one exercise date, and
it is the same as the maturity date of the option.

For a European put option we exercise the option at the maturity time, if the current stock
price is smaller, than the strike price, else we leave it to expire. For a European call option we
exercise at the time of maturity, if the current stock price is greater, than strike price of the
option. It follows, that the payoff of a European put option at the time of maturity is

max(K − ST ; 0) ,

and for a European call option is
max(ST −K ; 0) ,

where K denotes the strike price of the option, and ST denotes the stock price at the time of
maturity.

Unlike European option, an American option is an exotic option, which can be exercised at
any time before and including its maturity time. This exercise feature of the American option
makes it difficult to find a solution to its pricing. The computation includes the solution of the
optimal stopping problem, which is one of the most challenging problems in derivatives pricing.

In this thesis we estimate the value of American options with simulation-based methods,
because finite differences and binomial techniques become impractical, particularly when the
value of the option depends on more than one factor (Hull and Basu 2016). We will assume that
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the option can be exercised at a discrete set of times, and we can approximate the value of the
American option by increasing the number of these times. So we approach the American option
with the corresponding Bermudan option. A Bermudan option is an exotic option, which can be
exercised at a discrete set of dates.

There are some important expressions in terms of the value of immediate exercise. We call an
option in-the-money (ITM) option, if exercising the option provides income to its holder, and we
call an option out-of-the-money (OTM) option, if its immediate exercise does not provide income.
Therefore a put option is in an ITM position, if its strike price is greater, than the current stock
price, respectively the call option is ITM if its strike price is smaller, than the current stock price.
An option is called an at-the-money (ATM) option, if its strike price equals to the current stock
price. (referring to Bodie, Marcus, and Kane 1999)

2.2 Simulation from Geometric Brownian Motion

In this paper we investigate simulation-based methods, so first we have to simulate paths to
have values to work with. The following section gives a description of the method of the used
simulation (see Huang and Huang 2009, page 20).

A standard single asset Black-Scholes model is assumed. We assume that the underlying
asset St follows a Geometric Brownian Motion (GBM), which is a remarkable transformation of
the Wiener process (also called the exponential Brownian motion). A problem of modeling the
underlying asset’s price with Brownian Motion is, that it can take on arbitrarily large negative
values. Unlike the Wiener process, the GBM can not take negative values. An other advantage
of using the GBM is, that in real life the increments of the ratios of the prices are independent,
and not the prices.

In this case the risk-neutral St stochastic process satisfies the following stochastic differential
equation :

dSt = rStdt+ σStdWt, (2.1)

whereWt denotes the standard Brownian motion (or Wiener process), and r and σ are constants.
With the initial S0 value the analytic solution of the equation is

St = S0 exp

{
(r − σ2

2
)t+ σWt

}
, (2.2)

which we can obtain by using the Itô-formula. If we have a discrete set of times {tj : j = 0, . . . ,M ; tj ≤ tj+1},
then we can calculate the values for consecutive times with the formula below

Stj+1 = Stj exp

{
(r − σ2

2
)(tj+1 − tj) + σ

√
(tj+1 − tj)Ztj+1

}
, (2.3)

where Zt has a standard normal distribution. It follows from that property of the Brownian
motion Wt, that its increments Wt+τ −Wt are normally distributed with mean 0 and variance
τ . With this analytic formula we can easily simulate paths, that follow Geometric Brownian
Motion.
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2.3 The Black-Scholes formula

Fischer Black and Myron Scholes gave an analytic solution to the price of a European option
in the world described in section 2.2, assuming there are no arbitrages (Black and Scholes 1973).
Before mentioning the formula, let us assume some "ideal market" conditions (referring to Duffie
1998).

• The price of the underlying asset, say stock price St, is assumed to follow a random walk
in continuous time, thus the distribution of the possible stock prices is lognormal at the
end of any finite interval.

• The short term interest rate r, and volatility of the stock σ are assumed to be known and
constant through time.

• There are no transaction costs, and riskless borrowing and lending any fraction of the price
of a security is possible at the constant interest rate.

• The last assumption is, that the stock pays no dividends during the option’s life.

Denote the distribution function of the standard normal distribution with Φ, and the discount
factor with P = e−r(T−t). Then the Black-Scholes formula for a European call option’s price at
time t is :

ct = St ∗ Φ(d1)− P ∗K ∗ Φ(d2), (2.4)

and for a European put option it is:

pt = P ∗K ∗ Φ(−d2)− St ∗ Φ(−d1), (2.5)

where

d1 =
log( St

PK ) + σ2

2 (T − t)
σ
√
T − t

and d1 =
log( St

PK )− σ2

2 (T − t)
σ
√
T − t

. (2.6)

According to the Black Scholes formula under the above assumptions the price of an European
option will only depend on the stock price, the constant interest rate and volatility, the given
strike price K, and the given exercise date T .

2.4 The Least-squares Regression

In this paper we use the simple least-squares regression to estimate the conditional expected
value of holding further the option. The least-squares method is a regression algorithm based on
least-squares distances. The aim of the method is to find a curve, that fits the best on the given
set of data. In this case the best-fit means, that the curve needs to have the minimal sum of
squared deviations from the given values.

For instance if we have a given set of points: (x1, y1), (x2, y2), . . . , (xn, yn), then the best-fitting
f(x) curve is that function, that minimizes the

n∑
i=1

d2i =
n∑
i=1

(yi − f(xi))
2 (2.7)

expression.
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Chapter 3

Longstaff and Schwartz methodology

Longstaff and Schwartz presented an American option pricing technique, called the least
squares Monte Carlo (LSM) approach (Longstaff and Schwartz 2001). The LSM algorithm is
a simulation-based algorithm, which uses least-squares regression to estimate the conditional
expectation of the payoff, that the optionholder can receive by keeping the option alive. The
main advantage of the LSM algorithm, is that it is applicable for options with path-dependent
and American exercise features and if the value of the option depends on more than one factor.
It follows, that the simulation part of the method allows the underlying asset to follow complex
stochastic processes like Geometric Brownian motion, or a jump diffusion process, or a Levy
process. The path dependency indicates, that the payoff of the derivative depends on the price
fluctuation of the underlying asset, like in the case of an Asian option, where the payoff is
determined by the average price of the underlying asset over some pre-set period.

3.1 The Pricing Problem and the Notations

To understand the LSM algorithm, we start with presenting the American option pricing
framework.

We assume a complete probability space (Ω,F ,P), where Ω is the set of the possible re-
alizations of the stochastic economy on a specified finite time horizon [0, T ]. The information
structure in this stochastic economy is represented by the filtration Ft, where t ∈ [0, T ]. If s ≤ t,
then for the corresponding filtrations Fs ⊆ Ft, because the Ft σ-algebra is generated by the
distinguishable events till time t. P is assumed to be the risk-neutral probability measure on the
elements of Ω. According to the no-arbitrage pricing theory there is an equivalent martingale
measure Q.

In general, American options are continuously exercisable, but in this pricing method we
assume a discrete set of exercise dates, by dividing the time interval [0, T ] to M + 1 equal pieces,
and estimating the American option’s price by increasing the number of M . The assumed set of
exercise dates is {t0, . . . , tM}, where 0 = t0 < t1 < . . . < tm < . . . tM = T .

Let ht = h(St) be the intrinsic value of the option, i.e. the immediate exercise value is
max(ht, 0). Suppose that the risk-free rate r is constant. Then let Bt be the risk-less bank
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account
Bt = ert. (3.1)

The pricing problem is to solve the following equation, to receive the price of the option.

Vt0(St0) = max
τ

EQ
(h(Sτ )

Bτ

)
, (3.2)

where τ is a stopping time taking values from {t0, . . . , tM}, so that means, that we are searching
for the optimal date to exercise. To find it, we have to determine the conditional expectations
form continuing the option at each exercise date. Denote it with:

Qtm(Stm) =
Btm
Btm+1

∗ EQ(Vtm+1(Stm+1)|Stm). (3.3)

From now on we will not indicate the Q measure in the index of the expected values. At the time
of maturity the value of the option equals the value of exercising.

VT (ST ) = max(h(ST ), 0). (3.4)

We determine the value of the option at time tm by comparing the immediate exercise value
with the value of continuation:

Vtm(Stm) = max(h(Stm), Qtm(Stm)). (3.5)

The solution for the pricing problem is to obtain the Vt0(St0) value, i.e. the price of the option
at time zero.

3.2 The LSM algorithm

The challenging part of the above described pricing framework is to determine the value of
continuations. We will do that by simulating N paths according to the dynamic of the underlying
asset, denote it with St. The conditional expected values of continuing the option are gained by
a simple least-squares regression. The following subsection presents the regression step in LSM.

3.2.1 The Regression in the LSM algorithm

After simulating N paths, we will have N ∗M simulated values. So the generated set of points
is {Stm(n) : n = 1, . . . , N ;m = 0, . . . ,M}, where St0(n) are the same S0 initial stock prices for
n = 1, . . . , N .

According to the backward feature of the algorithm we can assume, that when we com-
pute the continuation value at tm the option values at time tm+1 are known. These values are
Vtm+1(Stm+1(n)) for n = 1, . . . , N .

In the LSM algorithm we approach the continuation value at tm by regressing the discounted
option values at tm+1 onK basis functions Φk(Stm), which are highly correlated with the option’s
value, for k = 1, . . . ,K.
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So we get the linear regression in the following form:

yn =

K∑
k=1

βkxnk + εn (3.6)

where εn denotes the error, xnk denotes the corresponding basis function as independent variable,
yn denotes the dependent variable

xnk = Φk(Stm(n)), and yn =
Btm
Btm+1

Vtm+1(Stm+1(n)). (3.7)

From this regression we get the βk coefficients, so we can use this approach in the pricing formula
as below.

Qtm(Stm(n)) = E (
Btm
Btm+1

∗ Vtm+1(Stm+1) |Stm = Stm(n))

≈ E (

K∑
k=1

βk(tm) Φk(Stm) |Stm = Stm(n))

=
K∑
k=1

βk(tm) Φk(Stm(n)).

(3.8)

With this regression step we receive an estimation of the value of continuation along each
path for every exercise date. (see Maree and Du Toit n.d., page 2-3)

When pricing American options, the best choice of the basis functions depends on the con-
tract. For example Longstaff and Schwartz like to use the Laguerre polynomials as basis functions
in their paper (Longstaff and Schwartz 2001), or often used basis functions are the Hermite, the
Chebysew and the Jacobi polynomials. In this paper we will use the powers of the state variables.

After including the Kth basis function we can conclude, that the result does not get any
better. It follows that we don’t need to use infinitely many functions. When there are more state
variables, that affects the option, then the set of basis functions should contain terms in each
variable and cross-products as well.

3.2.2 Optimal stopping strategy

The optimal stopping strategy can be obtained by comparing the immediate exercise value
with the expected payoff from continuation along each simulated path at every exercise date,
starting from the time of maturity moving backwards.

The strategy is to exercise the option, if the value of immediate exercise is greater than the
estimated value of continuation. The option will be exercised at the earliest time this condition
holds, since an option can be exercised only once.

As soon as we have the optimal stopping strategy, we can simply determine the corresponding
cash flows along the simulated paths. Now we are able to get the option’s value by discounting
the cash flows to time zero and by taking the average of these values.
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3.2.3 Using only in-the-money paths

LSM includes only in-the-money paths in the regression, since for the out-of-the-money paths
it is never optimal to exercise the option, so we do not need to estimate the value of the contin-
uation in that cases, because we do not have to make stopping decisions then. Using only ITM
paths decreases the computational time, and leads to better estimations of the continuation
values, where exercising the option is relevant.

3.3 Foresight bias of the LSM

The LSM is easy to implement, because only the simple least-squares regression is required,
and it has its advantages because of the simulation step, that is why it is a simple yet powerful
method. A weakness of this method, that it gives high biased estimation of the conditional
expectation of continuation. (A simulation estimator X is biased high, if E(X) ≥ Q, where Q is
the real option value. Likewise, the simulation estimator X is biased low, if E(X) ≤ Q. (referring
to Broadie, Glasserman, et al. 2004))

After the simulation step the LSM works backwards with estimating the values of continuing
the option. The optimal strategy, that we gain with the look ahead feature of the LSM method,
is based on information, which is unavailable in real life. It follows, that the exercise strategy
of the LSM is super optimal, i.e. better than it would be based on the theoretically available
informations. (Fries 2005) (for more see Kovacs 2012, page 21)

This foresight problem can be solved for example with a path re-sampling method. It works
by determining the optimal stopping strategy with LSM, and simulating a new set of paths, which
is independent from the strategy, and using the received stopping rule on that. Thus, we will not
use these foresight informations in the algorithm. This modification of the LSM algorithm is a
low biased estimator.

Since the original LSM is superoptimal, and its previously mentioned modification is subop-
timal, the two algorithms can give an optimal interval for the price.
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Chapter 4

The Stochastic Grid Bundling Method

The Stochastic Grid Bundling Method (SGBM) is an algorithm, that approximates the value
of a multi-dimensional Bermudan option (Jain and Oosterlee 2015). It is similar to the LSM
algorithm, because it has the same pricing framework, and it is also based on simulation and
contains regression. The main difference is the bundling step of SGBM, and the time of the
regression. In essence, the SGBM differs from LSM in the method, with which we approach the
value of continuation.

The estimated values in SGBM have lower numerical noise, than in LSM at each time step. It
follows that the SGBM is an appropriate choice, if we need the option values in the intermediate
time steps. For example, when we approximate future exposures, which we will examine later.

4.1 The SGBM algorithm

The pricing framework of the SGBM is the same as we presented in chapter 3. At the terminal
time T the holder of the option exercises the option, if it is in ITM position, or allows it to expire
otherwise. We determine the strategy backwards, and exercise the option, if exercising is worth
more, than the estimated value of continuation.

As in the LSM method we simulate N sample paths starting from S0. In every tm exercise
date we will have N generated Stm(1), . . . , Stm(N) values. We call them the grid points for every
t ∈ {t0, . . . , tm−1, tm, . . . , T}. The bundling step is to make ν partitions of the grid points in
every tm time, based on a specified distance, or technique. Note them with Btm(1), . . . ,Btm(ν).

4.1.1 The Regression step in SGBM

We would like to estimate the value of continuation at each tm ∈ {t0, . . . , tM−1} time for
every n ∈ {1, . . . , N} paths. After the bundling step we have to run a regression for every bundle
at every tm. With the bundling technique we can get more accurate results at the intermediate
time steps. Like we did before, we can assume that the option values of time tm+1 are known at
time tm.

It is assumed, that in SGBM the components of the regression can be written in the following
form:
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xnk = Φk(Stm+1(n)), and yn = Vtm+1(Stm+1(n)). (4.1)

So the following regression equation needs to be solved within every bundle. The partitioning
was determined at the previous time step.

yn =
K∑
k=1

αkxnk + εn (4.2)

In this case the regression coefficients depend on time tm+1.

Vtm+1(Stm+1) ≈
K∑
k=1

αk(tm+1)Φ(Stm+1(n)) (4.3)

The difference is caused by the changes in the regression. We have to pay attention to the
projection between the consecutive time steps. The risk-free interest rate is still assumed to be
constant.

Qtm(Stm(n)) = E (
Btm
Btm+1

∗ Vtm+1(Stm+1) |Stm = Stm(n))

≈ Btm
Btm+1

∗ E (
K∑
k=1

αk(tm+1) Φk(Stm+1) |Stm = Stm(n))

=
Btm
Btm+1

∗
K∑
k=1

αk(tm+1)E ( Φk(Stm+1) |Stm = Stm(n))

(4.4)

Denote the conditional expectation part E( Φk(Stm+1) |Stm = Stm(n)) with Ψk(Stm(n)). This
means we get

Qtm(Stm(n)) =
Btm
Btm+1

∗
K∑
k=1

αk(tm+1)Ψk(Stm(n)) (4.5)

In SGBM the choice of the basis functions is harder, because the E( Φk(Stm+1) |Stm(n))

conditional expected values have to be known in a closed form, or there should be analytic
approximation for these expressions. For example if we consider the Φ(Stm+1) = Stm+1 basis
function in a Black-Scholes model, then its distribution is known to be lognormal, or if we consider
the Φ(Stm+1) = log(Stm+1) basis function, then its distribution is known to be normal. It follows,
that the conditional expectation E( Φk(Stm+1) |Stm = Stm(n)) for these basis functions can be
given in closed forms. We could use the (Stm+1)2 and the (Stm+1)3 variables as basis functions
too, with the help of the variance, and third moment of the lognormal distribution.

4.1.2 The Bundling step

Using the bundling method we can approximate the distribution of Stm+1 conditional on the
state Stm = X. Instead of simulating paths from all Stm(n) grid points until time tm+1, we can
take the bundle, from which Stm(n) starts, and we can use those paths that originate from this
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bundle to sample Stm+1 . This method is computationally cheaper, and with increasing number
of paths and bundles it approaches the true distribution.

The bundling can be implemented for example with the following two techniques:

• k-means clustering

• recursive bifurcation

k-means clustering algorithm

The k-means clustering algorithm does the partitioning by minimizing the sum of squares of
the deviation from the mean within the clusters.

minD(Btm(1), . . . ,Btm(k)) = min
k∑

β=1

(
∑

Stm (n)∈Btm (β)

‖Stm(n)− µβ‖2), (4.6)

where µβ is the mean of the grid points of the Btm(β). So k-means clustering is partitioning the
given data into k clusters, where every data belongs to the cluster, whose mean is nearest to it.

There are a few algorithms for this partitioning. The most popular is Lloyd′s algorithm.
The first step of the Lloyd’s algorithm is to determine the initial values µ(1)1 , . . . , µ

(1)
k of the

means. After that the algorithm alternates betweens two steps to reduce D(Btm(1), . . . ,Btm(k)).

1. Assignment step

Assign the values with the cluster represented by the nearest mean point.

B(l)tm(β) =
{
Stm(n) : ‖Stm(n)− µ(l)β ‖

2 ≤ ‖Stm(n)− µ(l)j ‖
2 , ∀ 1 ≤ j ≤ k

}
, (4.7)

where every Stm grid point can be assigned to only one bundle, because of the non- over-
lapping feature.

2. Update step

We are ready if the assignment did not change from the previous iteration, otherwise we
need to update the mean points as:

µ
(l+1)
β =

1

|B(l)tm(β)|

∑
Stm (n)∈B(l)tm

(β)

Stm(n). (4.8)

It is easy to see, that we can only reduce D(Btm(1), . . . ,Btm(k)) with each step, and since
D(Btm(1), . . . ,Btm(k)) ≥ 0 the algorithm converges to a stable, fixed local minimum. So it is
proven, that after a finite number of this iteration step, the structure of the partition no longer
changes.

A well known problem with Lloyd’s algorithm is that it is sensitive to the initial choice of
the means. (referring to Slonim, Aharoni, and Crammer 2013)

The problem of converging to a local minimum is less severe with Hartigan′s algorithm.
The Hartigan’s method also starts from a given partition. The difference is the iteration step.
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The algorithm picks an item Stm(i) randomly, and removes it from its cluster. Then the mean
of the original cluster should be updated without Stm(i). Now we have to find a new cluster to
Stm(i), in terms of minimizing D(Btm(1), . . . ,Btm(k)), and update the mean of the new cluster.

Recursive bifurcation

For the recursive bifurcation technique please refer to Appendix B.

4.2 Bias in SGBM

The SGBM uses the same look ahead method for estimating the values of continuation. Like
in the case of the LSM, it is easy to construct a low biased path estimator version of the SGBM.
After the optimal stopping strategy has been obtained with the original SGBM, we generate a
new set of paths, and apply the previously found stopping policy on it. As soon as the option has
to be exercised along a path according to the exercise strategy, we take the immediate exercise
value from that time, and discount it back to t0. Finally we take the average of these received
values.

The high biased original SGBM, and the low biased modification of it together can be a valid
confidence interval for the price of the option.
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Chapter 5

Future exposure of European Option

The main subject of my thesis is to compare this simulation-based and widely used pricing
methods by examining the future price distributions (i.e. the future exposure) in each case. The
first step should be the approximation of a European option’s price, because then we do not have
to determine the optimal stopping strategy and that is why the implementation is easier, plus
in this case we have an analytical benchmark, the Black-Scholes formula (see in section 2.3).

To investigate the future exposures, we are interested in the price of a European option at
a t time, later then t0. We can easily do this in the analytic case, if the St value is known. In
the LSM and SGBM cases the values at t will be the conditional expectation from continuing
the option, which we get with the regression step. This chapter describes how these methods
approximate the future exposures.

5.1 LSM for European Option

5.1.1 Description of the LSM for the European case

First we have to simulate N paths from Geometric Brownian Motions forward in time (as it
was described in section 2.2) . To calculate the conditional expected values at t with a regression,
we only need the simulated values at t and at the time of maturity T , because we do not have
the chance to exercise the option between.

In these simulation algorithms we always start the regression with determining the pay-offs
at the final expiration date. As it was mentioned is chapter 2 the immediate exercise value for a
put option is max(K − ST , 0) and for a call option is max(ST −K, 0) at T . We define Y as the
cash-flows at T discounted back to time t. Let X denote the simulated stock prices at t. After
that we have to choose the basis functions, which are depending on X. Let Φk(X) be the chosen
family of the basis functions for k = 1, . . . ,K. Now we can regress Y on the basis functions, and
after we receive the regression coefficients β0, . . . , βK , we can get the values of continuation by
substituting X = St into the regression equation with the coefficients previously obtained. The
following polynomial results the future exposures.

β0 + β1Φ1(X) + . . .+ βKΦK(X) (5.1)
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As we have seen we got the conditional expected values easily, and only one regression was
involved.

5.1.2 Results

In the next subsection the application of the LSM method for European options will be
demonstrated, and its accuracy will be evaluated by comparing the future exposures to the
Black-Scholes formula. We implement the above described methods in R, which is a language
and environment for data manipulation, calculation and graphical display.

For the Black-Scholes formula we only need the following inputs. The spot price of the
underlying asset, note it with St, the strike price K, the risk-free interest rate r, the volatility
of the stock price σ, and the remaining time till the maturity time: T − t. For the simulation we
need the same values, and the number of rows N and columns M of the simulated matrix. The
number of the rows indicates how many paths we simulate. The number of the columns will not
play an important role in the European case, because we only need the column, which belongs
to time t and the one which belongs to time T .

Consider a 2-year European-style put option on a non-dividend-paying stock. The short term
interest rate is assumed to be 6% and constant through the lifetime of the option. The underlying
stock price at the initial time step is 40, the strike price of the option is 42, the constant volatility
is 20%. The Black-Scholes price of the option at the initial time step is 3.105212.

LSM based on all of the simulated paths

First we try the LSM algorithm with basis functions Φ1(X) = X, and Φ2(X) = X2 for the
previously mentioned European put option. We chose 6 different dates to illustrate the evolution
of the future exposures for the examined methods. We chose one date close to the initial date,
plus two more dates before the half of the option’s lifetime. We plot the future exposures at the
half time period, and at the time, when only half a year left till maturity, and when we are close
to the maturity date.

To compare the future exposures with the Black-Scholes formula we plot the BS option
values against the spot underlying asset price, and we plot the LSM values to the same figure.
In this figure we have BS prices for every spot price, but we have LSM values only, where the
corresponding simulated values are located. Figure 5.1 depicts the received future exposures at
the 6 chosen dates, where the LSM was calculated using the basis functions X and X2, and using
100000 simulated paths.

We can see in Figure 5.1, that as time passes and the simulated values are more scattered
from the initial stock price, the regressed values of LSM fit much less to the BS curve. The figures
show that the LSM approximation takes on more and more negative values, which is obviously
not a good estimation of the price of the option, because you can not pay a negative price, for
getting a right to do something in the future.
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(a) t = 2 weeks (b) T-t=1.6 year till the maturity

(c) T-t=1.2 year till the maturity (d) T-t=1 year till the maturity

(e) T-t=0.5 year till the maturity (f) Two weeks till the maturity

Figure 5.1: Exposures calculated with LSM (with black) for a European put option with basis
functions X and X2, and the BS curve (with green). The strike price of the put option is 42 ,
the stock price at the initial time was 40 , r = 0.06, σ = 0.2 , the time of maturity is 2 years,
and the LSM algorithm is based on 100000 simulated paths, and all of the paths were included
in the regression.
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(a) t = 2 weeks (b) T-t=1.6 year till the maturity

(c) T-t=1.2 year till the maturity (d) T-t=1 year till the maturity

(e) T-t=0.5 year till the maturity (f) Two weeks till the maturity

Figure 5.2: LSM for European put option with basis functions X, X2 and X3, and the BS curve.
The parameters of the option are the same as in the Y ∼ X +X2 case (as it is described under
Figure 5.1) , and again all of the 100000 paths were included in the regression.

Figure 5.1 shows, that for the out-of-the-money cases, where we should get zero almost
everywhere, this version of the LSM gives completely false results. This proves, that suggestion
of Longstaff and Schwartz to only use the in-the-money paths (Longstaff and Schwartz 2001) is
a good idea.

22



Figure 5.2 shows what happens, when we involve the X3 basis function in the regression.
Compared to Figure 5.1 the fitting is much better to the BS curve. The approximation seems to
be appropriate for the t ≤ 1 cases. As we get closer to the expiration the LSM is increasingly
different from the BS, especially in the out-of-the-money cases, where the LSM takes on negative
and positive values alternatingly. In the following we will use the Φ1(X) = X, Φ2(X) = X2,
and Φ3(X) = X3 basis functions, because it gave much better approximations compared to the
Φ1(X) = X, Φ2(X) = X2 version.

LSM only with the in-the-money paths involved

Above we showed what happens, when all of the simulated paths are involved. The LSM ap-
proach truly includes only the in-the-money paths in the regression. The Longstaff and Schwartz
paper (Longstaff and Schwartz 2001) claims, that this step significantly increases the efficiency
and decreases the computational time of the algorithm. In this subsection we will examine this
statement with the future exposures.

When we are in t and we have N simulated St(n) values, we use only the in-the-money values
in the regression, which means that X will include only the in-the-money elements of St, and
Y will include the corresponding discounted pay-offs of the time of maturity. The option values
along the out-of-the-money paths will get 0 values.

This modification will give a more accurate conditional expected value for the in-the-money
paths. When we calculate the value of an American option, this is obviously an improvement,
because in that case we need to decide at every time step and along each path, if we should
exercise the option or we should hold it further. We only have to make this decision in the
in-the-money paths, because the exercise is only relevant then. Since we have a more accurate
conditional expectation of continuation in that case, this algorithm is more efficient. In the
American option chapter we will obviously use this version of the algorithm.

Let’s see what happens when we apply this modification for European options. We consider
the same European put option, as in Figure 5.1 and in Figure 5.2, to be able to compare with the
LSM, when all of the paths were used in the regression. We use the Φ1(X) = X, Φ2(X) = X2,
and Φ3(X) = X3 basis functions in both cases. The difference is, that X denotes all of the
simulated values at t in the first case (depicted with black), and it denotes only the in-the-money
paths of St in the second case (depicted with pink). (see in Figure 5.3)

Figure 5.3 shows, that in the region where exercise is relevant this modification improved the
fit to the BS curve.
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(a) t = 2 weeks (b) T-t=1.6 year till the maturity

(c) T-t=1.2 year till the maturity (d) T-t=1 year till the maturity

(e) T-t=0.5 year till the maturity (f) Two weeks till the maturity

Figure 5.3: Future exposures of a European put option at 6 different times with LSM, where the
pink function represents the LSM, when only the in-the-money paths are included, and the black
function represents the LSM, when all of the 100000 simulated paths are included. We considered
a 2-year European-style put option, with the parameters: S0 = 40, K = 42, r = 0.06, σ = 0.2,
T = 2. The green line represents the European option values against the underlying asset’s spot
price, calculated with the Black-Scholes formula.
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5.1.3 Potential Exposure

Previously, we examined future exposures (i.e. Expected Positive Exposure=EPE) in this
chapter. From a risk management perspective the upper quantiles also play an important role.
The potential exposure (PE) is an important metric in risk management, which indicates a
maximum amount of the expected future exposures at a specified date on a given confidence
level. For example, if the level of confidence is 99%, then the PE99 value will be that value of
future exposure, that will not be exceeded in a 99% confidence level, i.e.

PE99(t) = inf {X(t) : P (EPE(t) ≥ X(t)) ≤ 1− 99%} (5.2)

For the LSM we can determine the PE99(t) by taking the 99% quantile of the distribution,
that we got with the method at t. After calculating these measures for every columns of the
simulated matrix, we can plot the PE99(t) values against the time.

By LSMitm, we mean that version of the method, in which we include only the ITM paths,
and LSMall indicates that version, when we use all of the simulated paths in the regression. Our
PE confidence level exposure calculation is also based on 100000 paths. Our benchmark will be
the Black-Scholes again, by calculating the BS price for each simulated value and by taking the
99% quantile of them.

Figure 5.3e shows, that for the larger option values the LSMall curve is curved upward from
the BS curve, and it is not true for the LSMitm, when half a year is left till the expiration. That
means, we except at t = 1, 5 years, that the PE99 metric of the LSMall will be the largest, the
second largest will be the BS and the smallest will be the LSMitm.

Figure 5.4: PE99(t) of the LSMitm (with pink), LSMall (with black) and of the BS (with green)
for a European put option, with the parameters: S0 = 40, K = 42, r = 0.06, σ = 0.2, T = 2.
The calculation is based on the same 100000 simulated paths for the 3 methods. (The x-axis
represents the time, even though the number of the certain column of the simulated matrix is
there.)

Figure 5.4 illustrates the comparison of the PE99 curves. The plotted curves are very similar,
they move roughly together, the percentage value of the quantile is too small for the number of
the paths to show clearly our expectation from the exposure figure. To see the deviations better
for the larger option values, let’s plot the 99.99% quantile of the methods.
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Figure 5.5 shows the PE99.99 values. We can see in the plot, that in 99.99% confidence
level the potential exposure curves are more different from each other. From this point of view
the LSMitm is a better choice, than the LSMall. The figure shows, that LSMitm estimates the
option values better for the options, which are roughly in ITM positions.

Figure 5.5: PE99.99(t) of the same European put option as above, calculated with the same
methods. (The x-axis represents the time, even though the number of the certain column of the
simulated matrix is there.)

5.1.4 Peak Exposure

The Peak Exposure is a maximum amount of a specific exposure metric, in our case the
Potential Exposure (PEα), during the lifetime of the option. i.e.:

PeakPE = max
0≤t≤T

{PEα(t)} (5.3)

Calculate the Peak values for the above illustrated PE99.99(t) curves of the 3 methods (see
in Figure 5.5).

PeakPEBS = 26.45964

PeakPELSMitm = 26.45964

PeakPELSMall
= 32.7672

We can see, that the Peak PE99.99 value of the LSMall is much higher, than the values belonging
to the other two methods. The Peak PE value of LSMitm equals the Peak PE value of the BS,
and they are the PE99.99(T ) values in both cases.

5.2 SGBM for European Option

We would like to compare our existing LSM results with the Stochastic Grid Bundling Method
for the previously defined 2-year European put option.

5.2.1 Description of the SGBM for the European case

The regression part of the SGBM differs from the regression in LSM not just in the bundling
step. When we would like to approximate the option values at t, we get the independent variables

26



from the next time step. This means that the whole regression happens in the next time step. In
the European case the next time step, which counts is the time of maturity, because we can not
exercise the option at the earlier dates.

The Stochastic Grid Bundling Method in the European option case will contain more regres-
sions than the LSM. Our grid points are the simulated underlying asset values at t, if we are
interested in the future exposure at time t. As it was described earlier, we have to partition the
St(n) grid points, n = 1, . . . , N , to get the non-overlapping sets for the regressions. The N grid
points are bundled into ν partitions, denote them with Bt(1), . . . ,Bt(ν). Then we have to do ν
regressions for the Bt(v), v = 1, . . . , ν, partitions separately.

As the result of the regressions we get ν kind of regression coefficient vectors. If we made the
regression with K basis functions, then we should get (K + 1) coefficients for each Bt(v) bundle.
We introduce the αvk notation, where k reflects the corresponding basis function and v is the
index of the bundle.

After we received the constant αvk regression coefficients, we have to determine the
E( Φk(ST ) |St = St(n)) conditional expected values for every basis functions in every bundle.
Ψk(S

v
t ) indicates the corresponding result. Then we have to substitute these calculated condi-

tional expected values to the following equation:

αv0 + αv1Ψ1(S
v
t ) + . . .+ αvKΨK(Svt ), (5.4)

where Svt ∈ Bt(v). Do not forget to discount this value back to t, because this value was calculated
at T . If we do this for every v = 1, . . . , ν , then we get all values of continuation, which are exactly
the required future exposures in the European case.

The aim of the bundling step is to assign similar values to the same bundle, and dissimilar
ones to other bundles. For example, when we are far away from the initial time step, and the N
paths of GBM are taking values from a wider interval, this bundling step separates the roughly
out-of-the-money values from the in-the-money values. With this partition of the St(n) values we
expect a more accurate approach of the future distribution. When the regressions are separated,
the results for the extremely out-of-the-money cases could get the expected zero values better,
than if we run only one regression.

5.2.2 Results

To implement the method we will use the k-means clustering algorithm for the bundling step.
In R there is an available function, called kmeans. With this function the Hartigan’s algorithm
is used by default, but with the algorithm variable it can be changed easily. We can choose from
the algorithms given by Lloyd, Forgy and MacQueen. We will go with the Hartigan’s method
(referring to (Slonim, Aharoni, and Crammer 2013)). With the nstart command it can be set to
be able to try more random starts. The maximum number of iterations can be limited with the
command iter.max. I allowed 20 iterations and 20 opportunities to select the initial sets.

We will do the regression on the Φ1(X) = X, Φ2(X) = X2, and Φ3(X) = X3 basis functions,
where X indicates the simulated values at T . While we assumed the Black-Scholes model, and
Geometric Brownian Motion to the underlying asset’s price, we know, that the distribution of ST
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is lognormal. This follows, that the conditional expected values can be written in the following
closed form. (see Jain and Oosterlee 2015, page 19)

E(Φ1(ST ) |St = St(n)) =E(ST |St = St(n)) = St(n) er(T−t)

E(Φ2(ST ) |St = St(n)) =E((ST )2 |St = St(n)) = (St(n))2 e(2r+σ
2)(T−t)

E(Φ3(ST ) |St = St(n)) =E((ST )3 |St = St(n)) = (St(n))3 e(3r+3σ2)(T−t)

(5.5)

The clustering will depend on the simulated values at t. By trying the method for several
clusters, we could conclude, that the greater the number of clusters, the better the result fits on
the BS curve. To see this statement for concrete examples please refer to Appendix A Figure 1.

Appendix A Figure 1 shows the exposure for the 2-year European put option, when half a
year left till the maturity. The SGBM was implemented with 4 different number of clusters, and
the figures show how well these implementations fit the BS curve. If we use 2 clusters, the result
improves compared to the LSM, when all of the paths were included. If we increase the number
of clusters to 3 and to 6, the results get better and better. We can be completely satisfied with
the fit of the exposure calculated with the SGBM, when the number of clusters was 10.

I decided to use 10 partitions in the SGBM algorithm, which means 10 regression in the
European option case. If we will estimate American options, we will do 10 regression in every
step between two consecutive time steps.

We estimate the future exposures of the same put option, as we did in the LSM section.
The results are plotted to the same figure with the LSM to make the comparison easier. Figure
shows the comparison of SGBM and that case of the LSM, when only the in-the-money paths
are involved, because the real American option pricing LSM skips the out-of-the-money paths.

So Figure 5.6 is the most important plot of this chapter. It is clear from Figure 5.6, that the
bundling step is good for the out-of-the-money paths. Overall, we can see that the shape of the
function we got with SGBM is more similar to the shape of the BS curve. We can notice a higher
accuracy in the case of the exposures calculated by the SGBM.

If we are interested in the future distributions, and make the out-of-the-money estimations
count too, then it is obvious, that the skipping the OTM paths, and giving them the 0 values
has a really bad effect on the distribution. When we depict the density functions of the future
distributions, the many zero values of the LSM messes up the shape of its density function. In the
case of the SGBM we do not need to miss the OTM values from the regression, so it estimates
the option values well in the out-of-the-money positions too.
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(a) t = 2 weeks (b) T − t = 1.6 year till the maturity

(c) T − t = 1.2 year till the maturity (d) T − t = 1 year till the maturity

(e) T − t = 0.5 year till the maturity (f) Two weeks till the maturity

Figure 5.6: Exposures of a European put option at 6 different t times, where the blue one was
calculated with SGBM, and the pink was calculated with LSM, when only the ITM paths are
included. The used parameters of the option are: S0 = 40, K = 42, r = 0.06, σ = 0.2, T = 2

and the two algorithms are based on the same 100000 paths. The green curve represents the
Black-Scholes price against the underlying asset’s spot price.
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(a) T − t = 0.5 year till the maturity (b) T − t = 1 year till the maturity

(c) T − t = 1.5 year till the maturity

Figure 5.7: Comparison of the density functions of the BS, LSM, and SGBM for a 2-year European
put option, with the strike priceK = 42, the initial stock price S0 = 40, the interest rate r = 0.06,
and the volatility σ = 0.2.

Let’s see the density functions after half a year, after one year, and after one and a half
year from the initial time. Figure 5.7 shows the comparisons. We can see in the figures, that
the density functions of the BS and SGBM almost equal, while the LSM results a completely
different function. This proves, that the SGBM is more applicable in that case, when we are not
just interested in the price of an American option, but we need to know the future distributions
too. For a clearer interpretation of the density function of the LSM please refer to Appendix A
Figure 2, where you can find the histogram of the LSM.

5.2.3 Potential Exposure

Finally let’s examine the PE metrics of the methods. We can see in Figure 5.8, that the PE99

values of the three methods are very similar through the lifetime of the option, even though Figure
5.6 shows, that for the largest values the exposures differ from each other. Accordingly, the 99%

quantile of the option values based on the 100000 simulated paths does not yet belong to this
range, but it is good to see, that the two methods fit that much to the BS curve in their 99%

quantile.
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Figure 5.8: PE99 of the LSMitm (with pink), SGBM (with blue) and of the BS (with green)
for a European put option, with the parameters: S0 = 40, K = 42, r = 0.06, σ = 0.2, T = 2

years. The calculation is based on 100000 simulated paths. (The x-axis represents the time, even
though the number of the certain column of the simulated matrix is there.)

To plot the tail of the exposures, let’s try to depict the 99, 99% quantile of the values, i.e.
the PE99.99(t) values through the lifetime of the option.

Figure 5.9: PE99.99 values according to the exposures plotted in Figure 5.6. (The x-axis repre-
sents the time, even though the number of the certain column of the simulated matrix is there.)

Figure 5.9 shows the discrepancies of the exposures in the 99.99% confidence level. The
pink line, which represents the LSM, differs most from the other lines. From this figure we can
conclude, that the SGBM is a more accurate estimation, than the LSM.

The three PE99.99(t) values end at the same point, and these values equal with the Peak
PE values in all cases.

PeakPEBS = PELSMitm = PeakPESGBM = 26.45964

Assume, that we are in a short position. Then the upper quantile will be the 1% quantile of
the future distribution. The LSM does not give an estimation for the smallest values, that is why
the PE1(t) values of the LSM are going to be constant zero.
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Figure 5.10: PE1 values of the BS, LSMitm and SGBM for the same European put option as
above. (The x-axis represents the time, even though the number of the certain column of the
simulated matrix is there.)

Figure 5.10 illustrates the PE1(t) values through the lifetime of the option. We can see, that
the SGBM fits well to the BS, and the LSM is constant zero as we expected. The conclusion is,
that if we have a short position of an option in our portfolio, and we would like to give the upper
quantiles of the potential exposures, then the use of the SGBM is recommended in contrast to
the LSM.
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Chapter 6

Future exposure of American Options

This chapter gives a description of the implementation in R of the above introduced American
option pricing methods. As in these simulation-based algorithms always the first step is to simu-
lateN paths into anNxM matrix (in our case from Geometric Brownian Motion). HereM means
the number of the exercise dates, so we divide the [t0, T ] interval to equal distances, to get these
t0 ≤ t1 ≤ . . . ≤ tM = T exercise dates. We will approximate the American option’s price with
the corresponding Bermudan option, with a discrete set of exercise dates: {tm : m = 1, . . . ,M}.

6.1 Application of LSM for American Options

After we have the N ∗M simulated values, we have to determine the pay-offs at the time
of maturity tM . For a put option these pay-offs are VtM (StM (n)) = max(K − StM (n) ; 0) for
n = 1, . . . , N . When we have the option values at tM , we have to estimate the values of continuing
the option at tM−1 with a regression. X will get those simulated StM−1(n) values, which are in
ITM position, and Y will be the corresponding simulated values at tM discounted back to tM−1.
The received values from the regression are the conditional expected values of continuation at
tM−1. We have to move backwards with the algorithm from the time of maturity till the initial
time step.

An important step of the algorithm is, that we should use the estimated conditional expected
values only once to avoid a higher error. That means, if at some time along a certain path
the value of continuation is greater, than the immediate exercise value, then we do not use the
continuation value in the following regression, but we use the immediate exercise value from the
next time step discounted back to the following date. This is because, then we do not have to
use this estimated value twice, and our result will not be so inaccurate.

This means in practice, that if CF ∈ RNxM+ indicates the cash flows of immediate exercise
based on the simulated matrix, and at a t time along p path the conditional expected value is
greater or equal than the immediate exercise value, i.e.

Qt(St(p)) ≥ CFt(St(p)), (6.1)

then we need to use the immediate cash flow from t + 1 discounted back to t − 1 as the pth
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element of Y in the calculation of the continuation value at time t− 1. In the

Qt(St(p)) < CFt(St(p)) (6.2)

case we use the immediate exercise value at t discounted back to t − 1 as the corresponding
element of Y . That means, that after every regression we have to make a decision along each
path about what to write into the corresponding element of the next dependent variable. The
ifelse function in R makes it possible to implement this step for the whole column.

We are moving backwards in the algorithm with these comparison steps. We can solve it with
a for cycle from M − 1 to 1. In the regression of the LSM the out-of-the-money paths are not
used, we have to give 0 values to its continuation values. Note again, that in the American option
pricing version of the LSM we do not need the values of continuation in the out-of-the-money
positions. In that case we do not have to determine whether we should exercise the option or not,
because the out-of-the-money expression exactly means that the immediate exercise is valueless.

If we are interested in the future exposure of an American option, then we have to determine
the optimal stopping strategy first. If we have an optimal exercise date along a path, then the
value of the option along this path will be the immediate exercise value at the optimal exercise
date, and before this date the option’s value will be the value of continuation. After we exercised
the option, it will be valueless.

In the American option case we do not have an analytic benchmark like the Black-Scholes
formula was in the European case, but we can compare our exposures with the BS curve now
too. It is clear, that in a case of an American put option the received exposures do not have to
fit in the BS curve, but we know that an American put option has to be more expensive (or the
same) before the expiration, than the corresponding European put option. We have come to this
claim, because the time value of a put option can be negative, and then it can be worthwhile
to exercise the option before the time of maturity and with an American option we have the
right to do that. (If we consider an American call option on a non-dividend stock, it will not be
exercised early, it follows, that its price will equal with the equivalent European call’s.)

After implementing the Least-squares Monte Carlo method for American options, we can
plot the future exposures for an American option with the same parameters as we used in the
European option chapter. In Figure 6.1 we can see the result of the LSM for an American put
option illustrated with red. The lifetime of the option is 2 years, and the figure shows the future
exposures at 6 different times gradually getting closer to the expiration date. As we excepted
the red curve, which is the approximated value of an American put option, never goes under
the green curve, which represents the Black Scholes price of the European put option with the
same parameters. After we exercised the option along a path according to the optimal stopping
strategy, the exposure of the option will not be plotted in the figures anymore.

We can also notice from Figure 6.1, that at the earlier dates the difference between the
American put option price and the European put option price is bigger, and as we getting closer
to the time of maturity the difference decreases. This is logical, because as we get closer to the
expiration we will have less opportunities to exercise the American option. It is obvious, that
the American option’s price equals with the European option’s price at the maturity time, and
both equals with the option’s immediate exercise value at T . (see in Figure 6.1f)
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(a) t = 2 weeks (b) T-t=1.6 year till the maturity

(c) T-t=1.2 year till the maturity (d) T-t=1 year till the maturity

(e) T-t=0.5 year till the maturity (f) At the maturity

Figure 6.1: The BS curve (with green), and the future exposures by using the LSM with the basis
functions X, X2 and X3 for an American put option (with red). The parameters of the option
are: S0 = 40, K = 42, r = 0.06, σ = 0.2, T = 2 years, and the algorithm is based on 50 exercise
dates and 100000 simulated paths from GBM.
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6.2 Application of SGBM for American Options

To implement the SGBM for American options we will work on the same pricing framework
as in the LSM. We have to change the time of the regression, so we will take the X and Y

variables from the following time step. We have the same finite set of exercise dates and then
we do the regression in the nearest exercise date after tm, denote it with tm+1, when we are
interested in the conditional expected values from continuation at tm.

The bundling step will depend on the current time step (tm). The used basis functions are
Φ1(Stm+1) = Stm+1 , Φ2(Stm+1) = (Stm+1)2, Φ3(Stm+1) = (Stm+1)3, and after we got the regression
coefficients, we have to calculate the conditional expected values for each basis functions. We
have to give closed forms for the conditional moments of a lognormal distribution, like we did in
the European option case.

E(Φ1(Stm+1) |Stm = Stm(n)) =E(Stm+1 |Stm = Stm(n)) = Stm(n) er(tm+1−tm)

E(Φ2(Stm+1) |Stm = Stm(n)) =E((Stm+1)2 |Stm = Stm(n)) = (Stm(n))2 e(2r+σ
2)(tm+1−tm)

E(Φ3(Stm+1) |Stm = Stm(n)) =E((Stm+1)3 |Stm = Stm(n)) = (Stm(n))3 e(3r+3σ2)(tm+1−tm)

(6.3)

When we have these values for every bundle, we have to substitute them to the polynomial,
which was introduced in Chapter 4 as equation 4.5.

We repeat this procedure M times, where M is the number of the assumed exercise dates.
To determine the optimal stopping strategy, we have to compare the immediate exercise values
with the values of continuing the option at every intermediate exercise date along each path.
Consequently the future exposure is going to be the value of continuation till the optimal exercise
date along a path, it is going to be the immediate exercise value at the optimal exercise date,
and after we exercised the option it will be valueless along the path. We made the bundling with
k-means clustering algorithm and we set up the number of clusters to 10.

If we plot future exposures received by the SGBM for the same American put option to the
same figure as we plotted the LSM, we can see, that the SGBM estimates the OTM values too,
while the LSM not. (see in Figure 6.2).

The two methods differ from each other in the way, as they estimate the value of continuation,
and it follows, that the optimal exercising strategies can be different too. For example in Figure
6.2f we can see, that along some paths we exercised the option earlier with the SGBM, while
with the LSM we did not.
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(a) t = 2 weeks (b) T-t=1.6 year till the maturity

(c) T-t=1.2 year till the maturity (d) T-t=1 year till the maturity

(e) T-t=0.5 year till the maturity (f) 2 weeks till the maturity

Figure 6.2: Future exposures of 2-year American put option calculated with 2 different methods,
the SGBM is plotted with blue, and the LSM is plotted with red. The green curve indicates the
Black-Scholes prices of the European put option with the same parameters.The used parameters
are: S0 = 40, K = 42, r = 0.06, σ = 0.2, 50 exercise dates and 100000 simulated paths.
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6.3 Potential Exposure

Figure 6.3 illustrates the 99% quantile of the future exposures based on the LSM and the
SGBM methods. The two metrics almost equal through the lifetime of the option. We can see,
that the shape of the PE99(t) in the American put option case differs from the shape of the
PE99(t)in the European option case.

Figure 6.3: PE99 values of a 2-year American option on a non-dividend stock, with the parame-
ters: S0 = 40, K = 42, r = 0.06, σ = 0.2, 50 exercise dates and 100000 simulated paths. The red
line represents the PE99(t) of the LSM, and the blue line represents the PE99(t) of the SGBM.
(The x-axis represents the time, even though the number of the certain column of the simulated
matrix is there.)

Figure 6.4: PE99.99 values for the same methods and for the same American put option, which is
illustrated in Figure 6.3. (The x-axis represents the time, even though the number of the certain
column of the simulated matrix is there.)

When we plot the 99.99% quantile of the future exposures for the two techniques in the
American option case, we can notice a little more difference. (see in Figure 6.4)
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From a counterparty perspective we have to count on to the exposures that paths, along
which the option is already exercised. The value of the option is zero at a t time, if it has been
exercised earlier. We can plot the density functions, which represent the value of the option from
a counterparty point of view. (Figure 6.5)

(a) T − t = 0.5 year till the maturity (b) T − t = 1 year till the maturity

(c) T − t = 1.5 year till the maturity

Figure 6.5: Density functions of the LSM, and SGBM for a 2-year American put option, with the
strike price K = 42, the initial stock price S0 = 40, the interest rate r = 0.06, and the volatility
σ = 0.2.

We can see in Figure 6.5, that the LSM results a bimodal distribution. It is caused by the
fact, that the LSM does not estimate the continuation values along the OTM paths. If we would
like to give an estimation about the future value of the option, the SGBM is obviously a better
choice.
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Chapter 7

Conclusion

I have implemented two simulation-based American option pricing methods, the LSM and
the SGBM. We can say, that the LSM is a simple yet powerful method. In this thesis we showed
the Stochastic Grid Bundling Method, which we get by making the LSM more complex. With
the SGBM we can give more accurate estimation for the future prices in the same Monte Carlo
framework.

We analyzed these two methods from a risk management perspective. We wanted to decide,
that which method gives better results of calculating counterparty risk metrics like PE95 and
PE99. We have showed, that involving the bundling step makes it possible to estimate the option
values at a certain time for every moneyness level, and not just for the ITM positions.

First we tried the two methods for a European put option. We illustrated the comparisons
with plotting the future exposures calculated with the two methods for different dates during
the lifetime of the option. Comparing to the Black-Scholes price we saw, that the SGBM gives a
more accurate estimation. If we would like to predict the counterparty risk of the position, then
to give an upper quantile of the value of the position is important. Plotting the 99% quantile of
the future exposures, we showed, that the SGBM gives a better prediction. When we plotted the
density functions of the future distributions we came to the same conclusion.

When we examined the methods according to the pricing of an American put option, the
most spectacular difference was, that the SGBM estimates the option values to the OTM paths
too. This is a advantage for example in that case, when we are in a short position. Then the
PE1 value would play the role of the PE99, and it is constant zero in the LSM case.

In essence we can conclude, that the confidence level exposure (PEα), the expected exposure
and the density functions of the future distributions all suggest, that the use of the SGBM will
improve the results.
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Appendix

A Figures

(a) The number of clusters is 2 (b) The number of clusters is 3

(c) The number of clusters is 6 (d) The number of clusters is 10

Figure 1: SGBM with different numbers of clusters for a 2-year European put option, when half
a year left till maturity (T − t = 0.5 year). The strike price of the option is 42, the stock price
at the initial time step was 40, the risk-free interest rate is 6%, and the volatility is 0.2. The
method was calculated with 100000 simulated paths.
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(a) T − t = 0.5 year till the maturity (b) T − t = 1 year till the maturity

(c) T − t = 1.5 year till the maturity

Figure 2: Histograms and density functions of LSMitm for a 2-year European put option, with
the strike price K = 42, the initial stock price S0 = 40, the interest rate r = 0.06, and the
volatility σ = 0.2. The calculation is based on 100000 simulated paths.

B Recursive bifurcation

The aim is to cluster the d-dimensional grid points {Stm(1), . . . , Stm(N)} to 2d non-overlapping
sets. First we need to compute the mean of the grid points for every dimension, i.e.

µδ =
1

N

N∑
n=1

Sδtm(n) , δ = 1, . . . , d. (1)

The 2d partitions are gained by separating the grid points by their means for every d dimension

Aδ =
{
Stm(n) : Sδtm(n) > µδ , n = 1, . . . , N

}
Aδ =

{
Stm(n) : Sδtm(n) ≤ µδ , n = 1, . . . , N

}
and then getting the intersections of any possible d sets as:

Btm(1) = A1 ∩A2 ∩ . . . ∩Ad,

43



Btm(2) = A1 ∩A2 ∩ . . . ∩Ad,
...

Btm(2d) = A1 ∩A2 ∩ . . . ∩Ad,

We can repeat this partitioning for the obtained bundles, and after p iterations we will gain
(2d)p non-overlapping sets.

For instance to the 2 dimensional case the given set is halved along the two dimensions,
resulting in four non-overlapping sets. In the second iteration we repeat the process for every
set, resulting in 16 clusters, and for the third iteration we get 64 partitions.
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