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1 Introduction

1.1 Motivation

For the sake of simpli�cation, it was often assumed that the returns of �nancial assets

are distributed normally, which seems to be a natural choice in practice, because of it's

theoretical importance: the Central Limit Theorem. However, this supposition does not

exactly hold in return modeling, due to their extremal behavior, which can been observed

in the markets and for many di�erent assets.

Some of the common behaviors of asset returns, known as stylized facts are:

• Heavy tails

This is the most important property � at least in the case of the thesis. This means,

that the tails of the characterizing distribution are decaying in power-law, which is

a much slower order of decay than the exponentially decaying normal distribution's

tails. The consequence of this is that much more probability will be concentrated on

the tails, so the probability of extreme returns rises, compared to non-heavy tailed

distributions.

• Gain-Loss asymmetry

The second most important property. Mathematically, this asymmetry means that

the characterizing distribution of the returns is skewed negatively, so the losses of

the assets are usually bigger than the gains. Normal distribution is symmetrical so

we are unable to model this phenomenon with it.

• Di�erence in scale of time

Usually, if we observe returns from long frequency data, the returns will more likely

be normally distributed, however when we are trying to model returns from short

frequency data, heavy tails tend to appear.

To model returns more precisely we have some alternatives, such as Student t-distribution,

power exponential distribution, Weibull distribution and other time independent and de-

pendent models. More of these can be found e.g. in [12], but not all of them are theoreti-

cally established. Instead of these, I work with stable distributions in my thesis.

Stable distributions are a rich class of probability distributions with many practical

properties, especially in �nance or insurance. Paul Lévy was the one who �rst studied

this distribution family and he proved the Generalized Central Limit Theorem, which is

an important theorem in the case of stable distributions. The �rst attempt to use these

distributions in �nance was done by Benoit Mandelbrot, who was modeling cotton price
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changes with stable distributions [3]. Since then many other studies were published in

the subject. The most recent works were done by J. P. Nolan, who is also working on

a comprehensive book [11] on stable distributions. Modeling stock returns with stable

distributions was in attention for a while and most of the results were promising, however

some studies stated that the distribution of stock returns must have �nite second moments

[14], which would exclude non-Gaussian stable distributions. The studies only observed

stock returns and didn't take into consideration an interesting asset category for stable

distributions: cryptocurrencies. Cryptocurrencies have much di�erent characteristics than

stocks, commodities or regular currencies, therefore stable distributions may be used to

model their returns. Bitcoin, the most famous cryptocurrency had the one of the most

interesting and volatile price movements in the last few years, which �uctuation can also

be observed on other cryptocurrencies, presumably depending on each other. This is why

stable distributions � univariate and multivariate � could be proper tools to model their

returns.

At �rst I introduce univariate stable distributions and their parameter estimation

methods in Section 1, since I build on it later on. After these in Section 2, I go trough

multivariate stable distributions and their most important properties, then I introduce

the bivariate parameter estimation method in Section 3 and the general procedure in

Section 5, which I put in to practice on cryptocurrency data, �rst in two, and then in

three dimensions too in Sections 4 and 6. For checking the �t of the distribution, I use

two goodness-of-�t methods in univariate and multivariate cases, which are introduced

in Section 3. I mostly follow Nolan's works, as he wrote many extensive articles about

stable distributions. These articles are giving a good overview about the subject, building

on mathematical results done in the past 40 years. Additionally, the base of the thesis is

from [18] and [19], my prior works in the subject.

1.2 Univariate stable distributions

The following introduction to univariate stable distributions is based on [11] and [17]. By

de�nition, a random variable X is stable, if to any positive a, b ∈ R, there are positive
c ∈ R and d ∈ R, such that the distribution of aX1 + bX2 has the same distribution as

cX+d, where the random variables X1 and X2 are independent, identically distributed to

X. We can be familiar with this property from the normal distribution, as it is a member

of the stable distribution family too.

In the univariate case, the distribution is described by four parameters: index α ∈ (0, 2],

skewness β ∈ [−1, 1], scale γ > 0 and shift δ ∈ R parameters. The usual notion for the

distribution is S(α, β, γ, δ). One serious drawback makes it harder to work with this
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distribution family, that they have no closed form of density function, apart from a few

special cases: the well known normal distribution, the Cauchy and Lévy distributions.

Instead of density functions, they are described by their characteristic functions, which we

can handle better now as the computers became more advanced and faster. By de�nition,

the characteristic function of a X random variable is φX(t) = E[eitX ], which is computed

for absolutely continuous distributions with f(x) density function in the
∫∞
−∞ f(x)eitxdx

form. The characteristic function of stable distributions has the following form:

ϕ(t) =

exp
{
−γα|t|α(1 + iβ tan πα

2
· sign t)(|γt|1−α − 1) + iδt

}
α 6= 1

exp
{
− γ|t|

(
1 + iβ 2

π
sign t · log (γ|t|)

)
+ iδt

}
α = 1.

Stable distribution are always absolutely continuous with any set of parameters and uni-

modal too.

There are a few di�erent representations of the characteristic function, which di�er in

parametrization. The above form is called the S0 representation, which is more useful in

practical problems, because it is easier to compute.

From the characteristic function we can get back the special cases mentioned above: by

taking S(2, 0, γ, δ), we get the normal characteristic function with N(δ, 2γ2) parameters.

The S(1, 0, γ, δ) parametrization is the Cauchy distribution (or the Student-t distribution

with degree of freedom 1) and for α = 0.5 and β = 1 we get the Lévy distribution. One of

the most interesting properties of stable distributions is that only the l < α moments are

�nite, with the exception of α = 2, where this means that the normal distribution is the

only stable distribution with �nite variance. It is interesting too, if β ∈ {−1, 1}, then the

distribution is completely skewed respectively to left or right, and additionally, if α < 1

is true too, then the support of the density is concentrated only to a half line. If β = 0,

the distribution is symmetric to δ with any α. Also, if α is close to 2, then β doesn't have

much impact on the skewness. This can be easily seen from the characteristic function,

where if we substitute α = 2, the value of the β tan πα
2
in the characteristic function will

be 0, therefore β doesn't play any role.
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Figure 1: Special stable distributions

Let's take a simple comparison between the normal and the Cauchy distribution. There

is signi�cant di�erence between the variables X ∼ N(0, 2) and Y ∼ C(0, 1) (which are

the same as S(2, 0, 1, 0) and S(1, 0, 1, 0), so the γ parameters are matching): for example

P (X > 5) = 0.00621 and P (Y > 5) = 0.06283. This means the probability to get a value

higher than 5, calculated from Cauchy distribution is 10 times larger than calculated from

a normal distribution.

We can standardize the distribution the same way as we are used to at normal distribu-

tions. By dividing a stable S(α, β, γ, δ) r.v. by γ and subtracting with δ, the distribution

will be S(α, β, 1, 0), which we note by S(α, β). This makes the distribution family very

�exible in practical use.

Probably the most important theoretical property of stable distributions is the Gen-

eralized Central Limit theorem [10].

1.1. Theorem. The X r.v. is stable, where 0 < α ≤ 2 if, and only if there are X1, X2, . . . , Xn

non-degenerate, independent, identically distributed random variables and an, bn ∈ R nor-

malizing sequences, so that

X1 +X2 + . . .+Xn

bn
− an

d→ X.

The main di�erence between the classical Central Limit theorem and the theorem above

is that it doesn't require X to have �nite second moment. The consequence of the theorem

is that the domain of attraction of stable distributions is not empty. An example from [10]

is, that if the tails of X satisfy xαP (X > x) → c+ and xαP (X < −x) → c− as x → ∞,
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with c+ + c− > 0 and 1 < α < 2 (so the expected value µ of X is surely �nite), then

X1 +X2 + . . .+Xn

bn
− an

d→ X ∼ S(α, β, 1, 0), n→∞,

where bn =

(
2Γ(α) sin(πα2 )
π(c++c−)

)− 1
α

n
1
α , an = nb−1

n µ, β = c+−c−
c++c−

and X represented with the S1

parametrization (can be found in [10]).

1.3 Parameter estimation

Since stable distributions have no closed form of density function, the parameter estima-

tion is a di�cult task. The usual best choice, the maximum likelihood method can be

used, but in our case it's based on inverting the characteristic function, which makes it a

very slow, computationally heavy method for large samples. The method of moments es-

timation can't be used, because the moments may not exist. Fortunately, there is another

way for estimation: the quantile method, proposed by McCulloch in [5]. This estimation

procedure is based on the sample quantiles, which we can compute easily. It is good news,

that this method is a consistent estimator for all of the parameters, although becomes

biased when α < 0.5. This should not be a problem in �nancial applications, it would be

unusual to observe such an α on price �uctuations as it would result in in�nite expected

value of the returns.

Let xp be the p-quantile of the distribution and de�ne

να =
x0.95 − x0.05

x0.75 − x0.25

and νβ =
x0.95 + x0.05 − 2x0.5

x0.75 − x0.25

.

Both expressions are functions of α and β, since the quantiles are simple linear transforms

of each other, with given α and β. As a result of this property, γ and δ are both eliminated

in να and νβ. If xp = γzp + δ, where the distribution of zp is S(α, β), then

να =
x0.95 − x0.05

x0.75 − x0.25

=
γz0.95 + δ − (γz0.05 + δ)

γz0.75 + δ − (γz0.25 + δ)
=
γ(z0.95 − z0.05)

γ(z0.75 − z0.25)
=
z0.95 − z0.05

z0.75 − z0.25

νβ =
x0.95 + x0.05 − 2x0.5

x0.75 − x0.25

=
γz0.95 + δ + γz0.05 + δ − 2(γz0.5 + δ)

γz0.75 + δ − (γz0.25 + δ)
=
γ(z0.95 + z0.05 − 2z0.5)

γ(z0.75 − z0.25)
=

=
z0.95 + z0.05 − 2z0.5

z0.75 − z0.25

,

therefore both can be written in the from

να = Φ1(α, β), νβ = Φ2(α, β).
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Having these functions inverted both parameters can be expressed as

α = ψ1(να, νβ), β = ψ2(να, νβ).

These values can be easily calculated for samples, however the inverted functions are lack-

ing a closed form. In practice, both functions are usually evaluated from the distribution

functions for di�erent combination of parameters and are tabulated. When estimating,

with the results of Φ1 and Φ2 we can obtain the values for the parameters by interpolating

between the calculated values.

Estimation for γ and δ can be approached in a similar way, but there is a more simple

method mentioned in [1], which utilizes the standardizing property of stable distributions.

Let X ∼ S(α, β, γ, δ) and Z ∼ S(α, β) and xp, zp be the p-quantile of X and Z. Then for

every 0 < p1, p2 < 1, where p1 6= p2:

γ =
xp2 − xp1
zp2 − zp1

and δ = xp1 − γzp1 .

Based on this, γ and δ can be expressed as

γ =
x0.75 − x0.25

z0.75 − z0.25

, δ = x0.5 − γz0.5.

2 Multivariate stable distributions

2.1 De�nition and properties

Here I follow [7], [8] and [9], which are covering the most important properties of mul-

tivariate stable distributions and the possible estimation methods. First, let me de�ne

multivariate stable distributions.

2.1. De�nition. A random variable X = (X1, X2, . . . , Xd) is a d-dimensional stable vec-

tor, if to any A,B ∈ R there are C,D ∈ Rd such that

AX1 +BX2 = CX + D,

where X1,X2 are independent, identically distributed to X and are d-dimensional random

variables.

Our only chance to describe the distribution is still to use characteristic functions apart

from the usual few special cases (e.g. the multivariate Cauchy distribution), however the

multivariate case is more abstract. In higher dimensions, for a vector variable X it's

characteristic function is de�ned as ϕX(t) = E[exp{itTX}]. There are a few di�erent

representations of multivariate stable characteristic functions, but the following de�nition

shows us their general form.
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2.2. De�nition. Let Λ be a �nite measure on Sd, where Sd =
{
s ∈ Rd : ‖s‖2 = 1

}
, the

surface of the unit ball. This measure is called the spectral measure. The X, d-dimensional

variable is stable, denoted by X ∼ S(α,Λ, δ), where 0 < α ≤ 2 and δ ∈ Rd, if it's

characteristic function is

ϕX(t) = exp{−IX(t) + itTδ},

where

IX(t) =

∫
Sd

ψ
(
tTs;α

)
Λ(ds)

and

ψ (u;α) =

|u|α
(
1− i tan πα

2
· signu

)
α 6= 1

|u|(1 + i 2
π

signu · log|u|) α = 1.

The IX(t) determines the shape of the distribution and δ is the location vector.

As we can see α and δ essentially remained the same, which is not true for β and γ. Instead,

the measure Λ takes over their role. Additionally, this measure is what determines the

dependence structure of the distribution, which makes the model �tting more complicated,

since its non-parametric estimation is not feasible. Because of this, we �t a parametric

model later on, where this Λ is discrete, more exactly that Λ is concentrated to a �nite

number of points. In this case, the measure can be written as

Λ(·) =
n∑
i=1

λiδsi(·)

where λi are the weights concentrated on δsi points of mass, si ∈ Sd. With the discrete Λ,

the characteristic function of X simpli�es into the following form:

ϕ∗(t) = exp

{
−

n∑
i=1

ψ(tTsi;α)λi + itTδ

}
. (1)

In this form, the characteristic function is easier to handle and can be understood more

intuitively.

There is another important property of the distribution family, which we can be fa-

miliar with from the normal distribution's characteristics. With the help of the following

proposition, we have another way to express multivariate stable distributions.

2.3. Proposition. If X is d-dimensional stable with 0 < α ≤ 2, then for every u ∈ Rd

uTX = u1X1 + . . .+ udXd

is a univariate stable random variable, with the same α.
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We note this univariate variable as uTX ∼ S(α, β(u), γ(u), δ(u)), where α is constant

and the functions β(·), γ(·), δ(·) completely determine X, as it can be seen in the next

theorem.

2.4. Theorem. Let be uTX ∼ S(α, β(u), γ(u), δ(u)). Then the functions determining X

can be written in the following forms:

γ(u) =

(∫
Sd

|uTs|αΛ(ds)

)1/α

(2)

β(u) = γ(u)−α
∫
Sd

|uTs|α sign(uTs)Λ(ds) (3)

δ(u) =

uTδ α 6= 1

uTδ − 2
π

∫
Sd

uTs · log
(
|uTs|

)
Λ(ds) α = 1.

(4)

With these, IX(t) can be written as

IX(t) =

γα(t)(1− iβ(t) tan πα
2

) α 6= 1

γ(t)(1− iδ(t)) α = 1.
(5)

The connection between these properties gives us the opportunity, to be able to determine

the multivariate distribution using the univariate projections and to perform calculations

more easily. These are giving the base of the estimation procedure, which we can see in

section 3.

2.2 Special cases

There are some special multivariate stable distributions worth mentioning, even if they

will not be present explicitly in the estimation procedure.

2.5. Proposition. If the components of X = (X1, X2, . . . , Xn), Xi ∼ S(α, βi, γi, δi) are

independent, then the characteristic function of X can be written as

ϕX(t) = exp

{
−

n∑
i=1

ω(ti;α, βi)γ
α
i + itTδ

}
,

The independent case could be represented with a discrete Λ, where weights would be

only on the intersection between the hypersphere Sd and the axises, so the margins are

individually weighted.
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2.6. De�nition. Let R ∈ Rd×d be a positive de�nite matrix. The X d-dimensional ran-

dom variable is elliptically stable, if it's characteristic function is

ϕX(t) = exp
{
−(tRt)α/2 + itTδ

}
.

By taking R = γ2
0I, where I ∈ Rd×d is the identity matrix, the distribution will be

isotropic.

The elliptical stable distributions are similar to normal distributions in how their

dependence structure look like, but they allow heavy tails too. The general representation

with Λ gives the opportunity to model unusual, non-elliptical dependence structures as

well.

2.7. Theorem. Let Z be a d-dimensional normal vector with mean vector 0 and with

covariance matrix Σ ∈ Rd, Z ∼ N(0,Σ) and a univariate stable random variable W , with

parameters (α
2
, 1, (cos πα

4
)2/α, 0), independent to Z. Then the vector

X = δ +
√
WZ

is also d-dimensional stable, with shift δ. In this case, the characteristic function simpli�es

to

ϕX(t) = exp

{
−
(

1

2
tTΣt

)α/2
+ itTδ

}
,

where Σij = cov(Zi,Zj), i, j = 1, . . . , d, the covariances between the components of Z.

The distribution of the projections uTX ∼ S(α, β(u), γ(u), δ(u)) can be described as

• β(u) = 0

• γ(u) = 1
2
(uTΣu)1/2

• δ(u) = uTδ,

for all u ∈ Rd.

2.3 Simulation

Generating samples from a univariate stable distribution can be done easily with Cham-

bers method, shown in [6]. Let the distribution ofW be exponential, with parameter λ = 1
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and U ∼ U(−π
2
, π

2
). We can construct a symmetrical univariate stable random variable,

with any α ∈ (0, 2] as

Z =


sinαU

(cosU)1/α

(
cos((α− 1)U)

W

)(1−α)/α

α 6= 1,

tanU α = 1.

To construct non-symmetrical stable random variables, we need the constant c, de�ned

from the desired parameters as c =
arctan(β tan(πα

2
))

α
, α 6= 1. Using these, by calculating

Z =


sinα(c+ U)

(cosαc cosU)1/α

(
cos(αc+ (α− 1)U)

W

)(1−α)/α

α 6= 1

2
π

(
(π

2
+ βU) tanU − β log

π
2
W cosU
π
2

+ βU

)
α = 1,

the distribution of Z will be

Z ∼

S(α, β, 1, βγ tan πα
2

) α 6= 1

S(α, β, 1, 0) α = 1.

Fortunately, we can simulate samples from a multivariate stable distribution [7] with

discrete Λ using only univariate stable distributions [9] with Chambers method and the

measure itself.

2.8. Proposition. Let Z1, . . . , Zn be independent, identically distributed, Zi ∼ S(α, 1, 1, 0)

random variables. A stable vector X, with discrete Λ, where γi are the weights correspond-

ing to si ∈ Sd can be written as

X =


∑n

i=1 λ
1/α
i Zisi, α 6= 1∑n

i=1 λi(Zi + 2
π

log λi)si, α = 1.

In practice, this procedure is very fast, making simulation more preferable than actually

calculating the density with help of the inversion formula from the characteristic function,

which still requires a reasonable amount of time.
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3 Paramater estimation, goodness of �t

I go through the bivariate estimation method proposed in [7], [8] and [9], which builds

on the distribution's properties mentioned in Section 2. The method is based on the

univariate projections and characteristic function of the distribution, where we assume

that Λ is discrete. Using these, we get an equation system, whose solution will be the

estimation of Λ.

3.1 Estimating procedure

Let X1, . . . ,Xm be our bivariate sample, where we assume that its distribution is bivarite

stable. Additionally, we assume that Λ is discrete and concentrated exactly on n points.

Step 1

Firstly, we would like to eliminate the shift δ =

[
δ1

δ2

]
from the sample to reduce the

characteristic function (1) into a simpler form. This correction makes our latter calcu-

lations easier. We do this correction by estimating δ1 and δ2 separately e.g. using the

quantile method for both marginal distributions and then subtract δ̂1 and δ̂2 from the

corresponding margin. We can do this, as shifts do not change the distribution nor the

other parameters as we could see in Section 1.2. Now the characteristic function should

look like

ϕ0(t) = exp

{
−

n∑
i=1

ψ(tTsi;α)λi

}
.

Step 2

In the next step, we need to take the points from S2, where we assume the distribution is

concentrated on and where we would like to estimate the weights. Our choice are the points

sj =
(

cos
(

2π(j−1)
n

)
, sin

(
2π(j−1)

n

))
, j = 1, . . . , n, which are an equal partition of points on

the unit circle. Additionally, we need a grid for the characteristic function t1, . . . , tn ∈ S2,

which also determines the 〈tj,X1〉, . . . , 〈tj,Xm〉 projections of the distribution. To make

the calculation easier, we take these grid points same as the points from S2, so that tj = sj,

j = 1, . . . , n.

Step 3

For every projection, we estimate the value of (2), (3), and if α = 1, then the value of (4)

too, although it is very unlikely for the estimate of α to be equal to 1. To be able to do
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that, we need to use quantile or ML methods to estimate α on the constructed projections.

Since α is constant, we take a pooled modi�cation of the parameter as α̂∗ = 1
n

∑n
j=1 α̂(tj).

We know that for every projection, α should be exactly the same, but with estimation, α

will be slightly di�erent on every projections due to the noise in the sample. By increasing

the sample sizes, the estimated α parameters would stabilize for every projection since

both univariate estimation methods are consistent. After evaluating (2), (3) and (4), we

can calculate the estimated values of IX(t) for every projection.

Step 4

Since Λ is discrete, IX(t) can be written into the form: IX(t) =
∑n

j=1 ψ
(
tTsj; α̂

∗)λj.
Based on that, de�ne the n× n complex matrix Ψ as

Ψ(t1, . . . , tn; s1, . . . , sn) =

ψ
(
t1

Ts1; α̂∗
)

. . . ψ
(
t1

Tsn; α̂∗
)

...
. . .

...

ψ
(
tn

Ts1; α̂∗
)

. . . ψ
(
tn

Tsn; α̂∗
)
 (6)

and the n × 1 unknown vector λ =
[
λ1, . . . , λn

]
, what we are trying to �nd in the end.

We de�ne the vector IX(t∗) =
[
IX(t1), . . . , IX(tn)

]
, with the calculated values from the

previous step. With these, we can write the equation system

Ψλ = IX. (7)

By solving (7), we can determine the distribution with λ̂, however we run into some prob-

lems. First of all, λ̂ will most likely be a complex vector, which we can not really interpret

from the perspective of the modeling and neither fortunate for describing the distribution

itself. The second problem is, that if the size of the grid is even, then the system (7) is

singular. That is because ψ(−t;α) = ψ(t;α) and IX(−t) = IX(t). Fortunately, we can

deal with these problems using some modi�cations.

Step 4/1

Let's assume that we are trying to �nd λ̂ on even number of points (n = 2k), where

tj = sj as before. We saw that picking an even number of points is causing singularity

in the system, but we can turn the tide in our favor. This case IX(ti) = IX(ti+k) and

ψ
(
ti

Tsj;α
)

= ψ
(
ti+k

Tsj;α
)
, as we could see before. By picking these pairs we can see,

that

Re Ii =
Ii + Ii+k

2
=

n∑
j=1

Reψi,jλj
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and

Im Ii = −Ii − Ii+k
2

=
n∑
j=1

Imψi,jλj,

where IX(ti) = Ii and ψi,j = ψ
(
ti

Tsj; α̂
∗). This is because every calculated value of

IX has it's conjugated part in the system as a result of the symmetry of the construction.

We can now de�ne a new n× 1 vector with the real and imaginary parts of IX(t) as

c =
[
Re I1,Re I2, . . . ,Re Ik, Im I1, Im I2, . . . , Im Ik

]
and a new n× n matrix A as

ai,j =

Reψi,j, i = 1, . . . , k

Imψi,j, i = k + 1, . . . , n

Fortunately, the system Aλ = c is now non-singular and the solution will be a real vector,

however still not usable. The problem is, that the solution may contain negative weights,

which we cannot interpret.

Step 4/2

To get non-negative weights we must modify the system once more. To be able to guarantee

non-negativity, we rede�ne the problem as a quadratic programming problem as

min
λ
‖c−Aλ‖2 = min

λ
(c−Aλ)T(c−Aλ), λ ≥ 0.

With this last step, we constructed the estimation procedure, which now can be imple-

mented and be used to solve practical problems. Later in the applications, I will estimate

Λ with this approach, implemented in R programming langauge.

3.2 Properties

Before going on, we need to note some important facts and properties about the estimation

procedure.

• We can approximate the real spectral measure with the discrete Λ theoretically too.

Byczkowski, Nolan and Rajput showed in [20], that for a stable vector X, with Λ

spectral measure, where 0 < α < 2 exists a discrete Λ∗, so that

sup
x∈Rd
|p(x)− p∗(x)| ≤ ε,
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where p(x) is the theoretical density, p∗(x) is the corresponding density to Λ∗, ε > 0.

The proof is long and di�cult, therefore I don't include it in here, but can be found in

[20]. Additionally, since both the quantile and the maximum likelihood methods are

consistent and asymptotically unbiased, using these methods to estimate parameters

of the projections give consistent results in the multivariate estimation procedure.

• The number of points of S2 has to be an even number, n = 2k, where k ∈ N \ {1}.
We saw in step 4/1, that we can perform the necessary transformations only with

this restriction. Also k 6= 1 is needed too, as it would result a simple estimation

on the �rst marginal distribution with the selected set of points of S2. Apart from

these, n is a free parameter, but picking n as a power of two is the most preferable.

• Picking the appropriate number of points is not trivial. If the chosen n is not large

enough, the �tted distribution's dependence structure will not match the sample's.

However, if n is too large, the distribution can be over�tted, although theoretically

it would give us the best results.

3.3 Goodness of �t

First, we have to check if the individual marginals can be accepted as being stable at all.

The most ideal test statistic in our case is the Anderson-Darling method.

3.3.1 Anderson-Darling (AD) test

The AD test is distribution function based: the test measures the quadratic distance

between the empirical and theoretical distribution functions, putting more weight on the

tails [13]. This is where we want the better �t, because we would like to model the

occurrence of extremal events as well as we can. The test statistic is de�ned as

A2 = n

∫ ∞
−∞

(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x),

where Fn(x) is the empirical, F (x) is the theoretical distribution function. For stable

distributions, when the parameters of the distribution have to be estimated, the limit

distribution of the test statistic is not available, so we must use Monte-Carlo simulation

to be able to perform the test. In practice, we calculate the test statistic as

A2 = −n−
n∑
i=1

2i− 1

n
(log zi + log(1− zn+1−i)) ,

where zi = F (Xi) and Xi is the i-th element of the n long ordered sample.

17



3.3.2 Multivariate testing

Testing a multivariate distribution's �t is a more di�cult task. One possible way is to

use Kendall functions. I de�ne the function in two dimensions, which can be analogously

introduced in higher dimensions.

3.1. De�nition. Given two random variables X, Y with joint distribution function F ,

de�ne the random variable Z = F (X, Y ). The Kendall function ofX and Y is then de�ned

as

K(t) = P (Z < t) .

The function transforms the bivariate distribution into one dimension, while keeping the

information about the dependence structure. With this transformation, testing goodness

of �t is a much easier task, as we can apply Cramér�von Mises type of tests to the

functions. When we compute Kendall functions for samples, we have to calculate the

corresponding empirical (discrete) functions. First, on a sample with n elements, we have

to calculate

Mi =
1

n

∑
j 6=i

1(Xj < Xi, Yj < Yi), i = 1 . . . n.

In words, for every i = 1, . . . , n we compute Mi as the relative frequency of points in

the lower quadrant of (Xi, Yi). Next, we calculate the empirical cumulative distribution

function of theMi values, which gives us the empirical Kendall function of the distribution

[16]. We can use these in testing, if we compute the Kendall function for both the sample

and the �tted distribution. Since it has no closed form for multivariate stable distributions,

it is approximated by a sample from the distribution.

With the help of the Kendall functions, the test statistics can be de�ned as the

quadratic distance between the two Kendall functions:

D =
∑
i

(Kn(Mi)−K∗n(Mi))
2, (8)

where Kn and K
∗
n are the empirical Kendall functions of the sample and the �tted distri-

bution. Formally, our hypothesises are

H0 : The distribution of the sample is stable

H1 : The distribution of the sample is not stable.

Unfortunately, the limit distribution of D is unknown too, so we must use Monte-Carlo

sampling in order to be able to perform the test. Once we have done that, the test can be

evaluated on the given α signi�cance level. If X ∈ X0 = {X : D(X) < L1−α}, where L1−α

is the (1 − α)-quantile of the test statistics estimated distribution, then we can't reject

H0.
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3.3.3 Block bootstrap

Not exactly a goodness of �t method, but �ts here the best. The estimation procedure,

with high number of points from Sd can result to an over�tted model. One way to check

it, is to repeat the same estimation process on bootstrapped samples. There are many

di�erent ways to construct these samples for the given sample. Since we deal with �nan-

cial data, where dependence is usually present, we should use the circular block bootstrap

method. The substance of the procedure is to make the original time series X circular, i.e.

create a new time series like Y(t∗) = X(t)[t∗≡t mod n], so after the last element the begin-

ning of the time series is attached. Next, we have to split this new series into overlapping

blocks, with a given block length b [2]. The optimal block length should be chosen the

way as Politis and White suggested in [4]. With the optimal b and the constructed blocks,

the new bootstrap samples will be sampled with replacement from the blocks, until the

length of the bootstrapped sample will be at least as long as the original sample. This

way, the new samples will still have similar dependence structure as the original sample.

To be able to check if our model is over�tted, we have to construct many of these

bootstrap samples, then repeat the same estimation process on them. If we have the

su�cient number of results, we can construct a con�dence interval for every λi value

and we will be able to compare them to the original results to see if the variance of the

originally estimated λ is small enough.

4 Application in 2 dimensions

In the applications, I �t multivariate stable distributions to cryptocurrency daily logre-

turns with large market capitalizations: Bitcoin, Ripple and Litecoin. At �rst, I think it

is necessary to give a brief overview of cryptocurrencies in general, although I will not go

into the technological details much.

4.1 Cryptocurrencies

Cryptocurrencies drew a lot attention in the past few years as an alternative investing

asset. They are digital assets with way di�erent mechanics compared to stocks or regular

currencies. The very �rst of it's kind was Bitcoin, founded by Satoshi Nakamoto in 2009

as an open-source software. It is still unclear who worked under the name of Satoshi, as

nobody ever met him/them and has vanished from every platforms they were present

since 2011. With the creation of the currency, he also created the block-chain technology,

the base of the currency's mechanics. Since the birth of the Bitcoin, many other cryp-
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tocurrencies have been developed. By the time I am writing this, there are more than 3900

di�erent cryptocurrencies, with di�erent mechanics and purposes. Also, the total market

capitalization of cryptocurrencies have grown in a rapid rate over the past years and at

the moment it is over 420 billion USD (according to www.coinmarketcap.com), which is

around 2.2% of the total market capitalization of the largest stock exchange of the world,

the New York Stock Exchange (19.6 trillion USD).

There are many unique properties and interesting questions around these currencies.

Most of them don't have any reserve behind them and have decentralized control, however

for example, the cryptocurrency Petro is backed up by Venezuela's reserves of oil and is

centralized by the government of Venezuela. That brings up an important question: why

do they have any value and what in�uences the price? It's hard to answer this question

directly, because many restrictions are setting back these currencies to be used as a regular

currency, therefore they cannot be viewed as money based on it's functions. The Bitcoin,

the largest cryptocurrency is not accepted as a medium of exchange in many countries

and fully banned from certain nations. It is hard to use it as a measure of value or store of

value, because it is so volatile, that it's value from 2013 to 2017 grew more than +10 000%

with many massive ups and downs. Also, there are built in limitations in Bitcoin's and

in other cryptocurrencies mechanism. Firstly, in case of Bitcoin, new coins arise through

mining, which is an important part of blockchain technology. Mining is the activity, which

veri�es new transactions in the system, keeping the blockchain complete with the addition

of the new blocks. Whenever someone successfully veri�es a transaction, they are rewarded

with a given amount of bitcoin. This amount in the early times was 50 bitcoin (BTC) and

after every 210 000 veri�ed transactions this amount gets halved (at the moment, 12.5

BTC per transactions is awarded). Also, the maximum supply limit of BTC is 21 million,

which is expected to be reached by 2140. After this, no new BTC will be rewarded, so

the growth is limited, therefore it cannot be paired to a growing economy, which would

require more and more amount of money for the growing number of transactions. Another

problem is that the veri�cation of the transactions are requiring more processing power

and time as more BTC is rewarded and the di�culty of the veri�cation (solving the

cryptographic hash) rises. All these properties are paying roles in how the price changes,

but the most important drivers in the price at the moment are the speculative interests.

The speculation with Bitcoin and other cryptocurrencies makes so heavy �uctuation in

the prices, that it may need to be modeled with the help of new tools and not with the

classic models. That's where stable distributions could play a role.
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4.2 Data and the univariate estimation, goodness of �t

The data is from April of 2013 to February of 2018. I split the whole data into 10 over-

lapping, ≈ 4 months wide windows with ≈ 1000 observations. The �rst period is the

oldest, and the 10th period is the most recent in the applications. At �rst, I �t stable

distributions to Bitcoin and Litecoin daily logreturns. I take these two at �rst to see how

the bivariate �t looks like and to see how the dependence structure between the two asset

changes over time. The prices of the three assets can be seen on the �gure below.
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Figure 2: Prices of the selected cryptocurrencies in US dollar. Axis for Bitcoin is on the

left, axis for Litecoin and Ripple on the right with di�erent scale. The price of Ripple is

multiplied by 100 for better visualization.
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Figure 3: Daily logreturns of the selected cryptocurrencies

To be able to apply multivariate stable distributions to the logreturns, we have to

check whether the marginal distributions of them can be accepted as being stable at all.
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I estimated the parameters using MLE for α and quantile method for β, γ and δ. The

reason to use both methods was necessary, but more on that later. I follow the same logic

at the multivariate estimation procedure.

Bitcoin parameters Litecoin parameters

α β γ δ α β γ δ

1.319 -0.014 1.768 0.064 1.211 0.015 2.058 -0.246

1.292 0.043 1.636 0.033 1.15 0.064 1.824 -0.24

1.254 -0.014 1.418 0.072 1.117 0.016 1.607 -0.121

1.291 -0.067 1.243 0.069 1.15 -0.041 1.426 0.021

1.3 0.014 1.131 0.08 1.144 -0.035 1.21 0.016

1.295 -0.059 1.144 0.163 1.107 -0.027 1.169 0.012

1.27 -0.005 1.136 0.217 1.063 0.046 1.175 -0.02

1.273 0.001 1.167 0.244 1.058 0.115 1.262 -0.054

1.225 -0.054 1.223 0.283 1.043 0.149 1.395 -0.078

1.184 -0.07 1.381 0.361 1.051 0.096 1.5 -0.054

Table 1: The estimated parameters for Bitcoin and Litecoin daily logreturns for every

period (from oldest (1.) to the newest (10.)). Note that with time, α decreases, while γ

slightly grows after a rapid fall. The e�ects of these parameter changes are that more

probability is getting concentrated on the tails. Also, in the case of Litecoin, a slight

positive skewness appears in the last periods.

I performed Anderson-Darling test on Bitcoin and Litecoin logreturns for all periods. I

have simulated 1000 test statistic values for both to get critical values, however there were

some issues during the calculation. Problem is, that some of the values from the simulation

will always be non-interpretable, because when we calculate the test statistic on a sample

from a stable distribution having so small α, some values will be so small/large that R

won't be able to calculate precisely the distribution function at that value and will truncate

the value to 0 or 1. That means, the logarithm in the test statistic can easily get a value

of in�nity. Fortunately, the vast majority of the simulated values are usable, therefore I

could perform the tests. The whole process took about 7 hours, because calculating the

probability distribution function for stable distributions is very slow, as it can only be

calculated by the help of inverting the characteristic function.
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Bitcoin 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Critical Value 2.428 2.387 2.399 2.664 2.343 2.426 2.55 2.659 2.57 2.491

Test statistic 1.709 1.123 0.824 1.232 1.269 1.582 1.777 2.473 3.906 4.054

Litecoin 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Critical Value 2.625 2.591 2.334 2.577 2.358 2.366 2.594 2.548 2.172 1.967

Test statistic 0.747 0.787 1.041 1.807 1.963 1.069 1.011 1.293 1.397 1.663

Table 2: Results of the performed Anderson-Darling tests for every period. Null hypothesis

(univariate stability) rejections happened only at Bitcoin's last two tested periods.

The results from the test statistics are promising, nevertheless I got two rejections.

This may be caused by the rapid change of volatility over the last years, which is contained

in the last two windows. The price �uctuated from a few hundred to over 10 thousand with

very di�erent gain/loss asymmetry in these years. In these two cases I still �t multivariate

stable distributions as it may show interesting changes in dependence structure between

the two currencies.

4.3 Multivariate estimation and goodness of �t

Now we are ready for carrying out the multivariate �t. The estimation is performed

with using both ML and quantile method: the former is used for α at the two marginal

distributions, and the quantile method for the other parameters on every projection,

similarly as we can see in Table 1. This is why the univariate estimation and testing was

done that way. The pooled α∗ is now calculated only from the estimated α parameters

at the marginals. The main reason behind this, is that ML method usually performs

better at estimating the tails and the quantile method tends to overestimate them. This

can be critical, since a small di�erence in the value of α means signi�cant change in the

probability of extremal events. Also, the other problem is, if we would like to calculate

α with ML for all the projections, we should de�nitely be using the quantile method,

because even for one dataset, with ≈ 1000 elements ML runs for at least 5 minutes. This

amount of time is acceptable for two marginals, but it is not practical if we would like to

use it for every projection. Computing the necessary values for the multivariate parameter

estimation with these changes gives us the best results with the least consumed time.

I estimated the measure on 8, 16 and 32 points to be able to compare the di�erent

results, as I expect better �t by increasing the number of points. The estimation itself,

without re-estimating α for all period run in a few seconds, because quantile method is

computationally very light. However, performing the Kendall function based test statistic
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with Monte-Carlo simulation took about 33 hours. This is because, I simulated 1000 test

statistics for all periods and for the three di�erent approaches. In ideal case, the number

of Monte-Carlo simulations should be increased, but even this experimentation took a

very long time.

8 points 16 points 32 points

Window
Test

statistic

Critical

value

Test

statistic

Critical

value

Test

statistic

Critical

value

1. 1.257 0.355 0.081 0.213 0.074 0.610

2. 1.390 2.342 0.169 1.115 0.049 0.221

3. 1.785 0.376 0.929 0.302 0.351 0.635

4. 2.434 0.563 0.276 1.066 0.525 0.682

5. 2.832 0.684 0.368 0.278 0.441 0.684

6. 2.518 0.495 0.481 0.495 0.423 0.444

7. 2.121 4.093 0.455 0.399 0.286 0.230

8. 0.472 0.986 0.171 0.323 0.306 0.873

9. 2.540 5.315 0.361 1.141 0.214 2.810

10. 6.072 0.457 1.266 0.840 1.280 0.335

Table 3: Results of the performed Cramér�von Mises type test statistics based on Kendall

functions for the 3 di�erent estimation approaches. Critical values were chosen at the 95%

signi�cance level. The values with red background are the tests, where the null hypothesis

has to be rejected.

For the last period, none of the �tted multivariate stable distributions are acceptable.

This is not that surprising, as we could see, that for the last period I couldn't �t an

univariate stable distribution to Bitcoin's logreturns. For the second, eighth and ninth

period, we didn't get rejection, however the Anderson-Darling test for Bitcoin at the

ninth period resulted in a rejection. For the rest of the periods, apart from the seventh

period, by increasing the number of points on the circle, we usually get acceptable �t.

Also, it is important that some of the estimated critical values were extremal compared

to the others. This could have been mitigated, if the number of simulations was higher,

although most of these extremal values can be seen for one period (9.), so this may be

partially caused by the underlying distribution.

To be able to visualize and understand better the estimated spectral measures, it can

be useful to look at the �gures below. These plots are giving an idea about how the density

may look like too, because the spectral measure characterizes the shape of the density.
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Period 2

n=8
n=16
n=32

Period 5

n=8
n=16
n=32

Period 8

n=8
n=16
n=32

Period 10

n=8
n=16
n=32

Figure 4: Visualization of the estimated spectral measures for the periods 2-5-8-10, with

di�erent number of points. Dashed line means that the �t was not acceptable (parallel to

Table 3). Figures for the remaining periods can be found in the Appendix.

The di�erent number of points are giving signi�cantly di�erent estimated spectral

measures. With less points from S2, the measure is concentrated on fewer points and

results in a simpler dependence structure. Best example is the measure at period 2, where

all the �ts are acceptable. It is visible, that the weights in the lower left quadrant are

getting spread to more and more points by increasing the number of points. Another

good example, is period 5, where with 8 points, the procedure found weight on the very

�rst point s1, but with 32 points, the method couldn't �nd any.

I got the best results, when the estimation was done on 32 points, which is expected

based on theoretical property showed in [20]. However, in applications, especially in �-

25



nancial applications with such number of points we can get over�tted models. This is

absolutely true for cryptocurrencies, where the dependence structure can change really

fast, due to their unpredictable nature. I checked the �tted distributions (32 points) if

they are over�tted by repeating the same estimation procedure, with the same calibration

for all the period on 500-500 bootstrapped samples, as I mentioned in section 3.3.3. Un-

fortunately, I couldn't go over 500 iterations as my computer couldn't handle more then

that within a reasonable amount of time. The results can be seen on the �gures below.
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Figure 5: The 95% con�dence region for every estimated weight with 32 points from S2,

evaluated on bootstrapped samples. If the width of the con�dence region is 0, no line or

region is displayed behind the given weight.

The results are showing that the �tted distributions are slightly over�tted. The original

weights are sometimes out of the con�dence region, however, the method always found

the absolute 0 weights. These are mostly the points s10, . . . , s18 and s24, . . . , s32, where
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the negative dependence would be present. It is promising, that the method always �nds

the big weights too, even if they are out of the con�dence region. The reason behind this,

is that if we increase the number of points during the estimation procedure, the bigger

weights are getting split around the adjacent points. A good example is the �rst period

and the point s22, where we can see that with the bootstrapped results, the adjacent

points are signi�cantly weighted, but the original result of the estimation only puts bigger

weight on s22. My suggestion is that it is unnecessary to go beyond 32 points. Based on

the results, any even number of points between 16 and 32 are ideal choices, with some

trade-o�s. One can lower the points to 16 to get a more stable result, but statistically it

may not be acceptable.

By looking at the spectral measures, we can say that the dependence structure changed

over time, but the best way to tell this is to look at the densities. Although, it would take

a lot of time to compute the actual density function, we can simulate a larger sample from

the given distribution and run a simple density estimation on it. The results of these for

every period can be seen on the �gures below.
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Figure 6: The 95% probability covering regions based on the density estimations with the

estimations on 16 points (�rst) and 32 points (second) from S2, and the estimated pooled

α∗ for all periods. Distribution of Bitcoin and Litecoin logreturns on the horizontal and

vertical axises in order.

With time, the dependence structure visibly changes with both calibrations. The two

results are similar, the angles with bigger weights are mostly present at both. The two

dominant angles at the upper right quadrant are shifting with time, at �rst far from each

other then in the end closer together, while moving back and forth in the interim periods.

The lower left quadrant also has two dominant angles, both moving back and forth with

time. In the last period both changes, having shifted these angles closer to the horizontal
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axis and a new angle appears in the lower right quadrant, giving more probability to

opposite movement in price changes. The contour lines around the covering region are

nothing like the classic elliptic contour lines we are used to, e.g. the normal distribution.

This is partially caused by the low estimated α, giving heavy tails to the distribution and

making the already dominant angles more dominant and spreading the covering region

into a larger area.

We can easily calculate probabilities or risk measures with the distribution. I calculate

probabilities, because a simple VaR should be calculated from the sum of the variables and

the goal is to take into consideration the dependence structure directly. For comparison,

I'm calculating the conditional probability

P (Litecoin logreturn < −10% | Bitcoin logreturn < −10%)

based on the estimated stable distributions on 32 points and �tted bivariate normal dis-

tributions.

Period 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Normal 0.88% 0.31% 0.17% 0.25% 0.29% 0.23% 0.61% 2.95% 3.19% 3.51%

Stable 46.5% 59.02% 76.81% 73.68% 72.91% 80% 89.84% 61.96% 66.98% 71.76%

Table 4: Calculated conditional probabilities. The probabilities from the stable distribu-

tion are calculated from samples with the given parameters.

The results are very illustrative. The conditional probabilities calculated from the

�tted normal distributions are always around a few percent, but the probabilities from

the �tted stable distributions are huge compared to them. These results are in line with

the extremal (tail) independence and dependence of the normal and stable distributions.

We say that a distribution has extremal independence or dependence, if the probabilities

θl = lim
q→0

P (Y < F−1
2 (q)|X < F−1

1 (q)),

θu = lim
q→1

P (Y ≥ F−1
2 (q)|X ≥ F−1

1 (q))

tend to zero or nonzero, where F1 and F2 are the two distribution functions of X and

Y [15]. Although -10 isn't an extreme quantile, these properties can already be observed

from the calculations.

5 Parameter estimation in higher dimensions

In d > 2 dimensions the estimation procedure gets a bit more di�cult, because Λ is

concentrated on a sphere. The main di�culty is to select a proper set of points from
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the surface of the sphere, where we can repeat the same modi�cations as in Section 3. I

haven't found any sources, where the higher dimensional estimation was studied in any

way, therefore I show a simple generalization of the estimation, built on the previously

seen bivariate method, which has a fast running time.

The key of estimating parameters for a d > 2 dimensional stable distribution is to

select the points of Sd pairwise from the marginals. My suggestion is to pick the points

from the circular cross section of the sphere, where one coordinate is always 0 for a given

circle. This means, by picking n points pairwise, we will perform the estimation, based on(
d
2

)
· n points.
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Figure 7: The suggested set of points from S3.

Assume that the distribution of the X1, . . . ,Xm d-dimensional sample is stable. Also,

we assume that Λ is discrete and concentrated on
(
d
2

)
· n points.

Step 1

The �rst step can be analogously done based on the bivariate estimation method. This

case, we have to estimate the vector δ =
[
δ1, . . . , δd

]T
by components with e.g. quantile
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method, which we have to subtract from the original sample to have the sample shifted

to the origin.

Step 2

We saw in Section 3, that the number of points from a circle had to be even. We still need

this assumption, but for every individual circular cross section of the sphere. Additionally,

we can't pick the same points from every circular cross section, because then we would be

having duplicated points at the intersections of them and it would give us uninterpretable

results. Therefore we pick the points rotated as

sl,kj =

0, . . . , 0, cos

(
2π(j − 1)

n
+
π

n

)
︸ ︷︷ ︸

l-th coordinate

, 0, . . . , 0, sin

(
2π(j − 1)

n
+
π

n

)
︸ ︷︷ ︸

k-th coordinate

, 0, . . . , 0

 ,

where sl,kj is the circular cross section from the sphere constructed for the l-th and k-th

marginals, l 6= k, j = 1, . . . , n. We pick the grid points as tl,kj = sl,kj to be able to compute

the projections 〈tl,kj ,X1〉, . . . , 〈tl,kj ,Xm〉.

Step 3

We have to calculate (2), (3) and (4) for every projection as before. The pooled α remains

essentially the same, the only real di�erence is that it is calculated from more projections

as α̂∗ = 1

(d2)·n
∑

l 6=k
∑n

j=1 α̂(tl,kj ). After these, we can compute every

Il,k(tj) =
n∑
j=1

ψ
(
tTsj; α̂

∗)λl,kj
values, where l 6= k and j = 1, . . . , n. However, the equation system we solved in Section

3 needs to be modi�ed.

Step 4

The modi�ed system is

Ψ∗ =


Ψ1,2 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 Ψd−1,d

 , I∗ =


I1,2

I1,3
...

Id−1,d

 ,
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where Ψ∗ ∈ R(d2)·n×(d2)·n, contains every calculated Ψl,k matrices, which are the same as

(6), but calculated from the l-th and k-th marginals. The Ψ∗ matrix has the Ψl,k matrices

in it's diagonal, while it's other elements are zero. The vector I∗ ∈ R(d2)·n is modi�ed with

the same logic as Ψ∗, so it contains every Il,k vectors combined together. So now, we are

ready to write the equation system

Ψ∗λ∗ = I∗X, (9)

which also has to be modi�ed, because it is singular too due to the symmetrical construc-

tion of the points.

Step 4/1

We have to restrict the method to even number of points (n = 2r) as before. Now, it

is true, that IX(tl,ki ) = IX(tl,ki+r) and ψ
(
ti

Tsj;α
)

= ψ
(
(ti+r

l,k)Tsj;α
)
. We have to do the

same transformation on the system as before in Section 3, so we calculate the vectors

Re I l,ki =
I l,ki + I l,ki+r

2
=

n∑
j=1

Reψl,ki,jλj

Im I l,ki = −
I l,ki − I

l,k
i+r

2
=

n∑
j=1

Imψl,ki,jλj,

where IX(tl,ki ) = I l,ki and ψl,ki,j = ψ
(

(tl,ki )Tsj; α̂
∗
)
. We now de�ne the new

(
d
2

)
· n × 1

vector with the real and imaginary parts of IX(tl,k) as

c∗ =
[
Re I1,2

1 , Im I1,2
1 ,Re I1,2

2 , Im I1,2
2 , . . . ,Re I1,2

r , Im I1,2
r ,Re I1,3

1 , Im I1,3
1 , . . . ,Re In−1,n

r , Im In−1,n
r

]
and the new

(
d
2

)
· n×

(
d
2

)
· n matrix A∗ as

a∗i,j =



Reψ1,2
i,j , i, j = 1, . . . , r

Imψ1,2
i,j , i, j = r + 1, . . . , n

Reψ1,3
i,j , i, j = n+ 1, . . . , n+ r

Imψ1,3
i,j , i, j = n+ r + 1, . . . , 2n

...

Reψd−1,d
i,j , i, j =

(
d
2

)
(n− 1) + 1, . . . ,

(
d
2

)
(n− 1) + r

Imψd−1,d
i,j , i, j =

(
d
2

)
(n− 1) + r + 1, . . . ,

(
d
2

)
n

Now the system A∗λ∗ = c∗ is non-singular and real, so we can perform the last modi�-

cation step, to get positive weights.
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Step 4/2

We can analogously rede�ne the problem as a quadratic programming problem with A∗

and c∗:

min
λ
‖c∗ −A∗λ∗‖2 = min

λ∗
(c∗ −A∗λ∗)T(c∗ −A∗λ∗), λ ≥ 0.

The solution gives us the desired results for λ.

6 Application in 3 dimensions

Now we are able to look into �tting 3 dimensional stable distributions to the data. I �t

the distribution to all the three cryptocurrency's logreturns that I showed in section 4.2.

For that, I must perform the preliminary estimation and testing.

In this case, I do the �tting only on the last three periods, which are the equivalent to

the 8.,9. and 10. periods in section 4.2. We have to keep in mind, that the AD test resulted

in rejection for Bitcoin's last two period and the Kendall function based test completely

rejected the last period for the three calibration. Despite these problems, these periods

are the most interesting for us, because the drastic changes in the prices happened in

these periods. The estimation and testing is done with the same logic as before, therefore

I am estimating α with MLE, β, γ and δ with quantile method.

Ripple parameters

α β γ δ

1.168 0.212 1.565 -0.479

1.168 0.223 1.619 -0.485

1.114 0.177 1.882 -0.473

Table 5: The estimated parameters of the �tted stable distribution calculated from Ripple

logreturns for the three periods.

The univariate estimations for the periods gave similar results to Bitcoin's and Lite-

coin's. The α is decreasing, while γ is rising as time passes. The β shows a signi�cant

skewness to the right, however the shift δ is always negative.

Ripple 1. 2. 3.

Critical Value 2.818 2.154 2.269

Test statistic 1.020 1.255 1.209

Table 6: The results of the Anderson-Darling tests for the distribution of Ripple logreturns.
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The AD test didn't reject the null-hypothesis for any of the three periods, all the

value of the test statistics are under the critical values chosen on 95% con�dence level.

Unfortunately, many of the simulated test statistic values were non-interpretable again,

but enough remained usable to evaluate the tests.

I performed the multivariate goodness of �t tests too with Kendall functions. In 3

dimensions, the empirical Kendall functions are calculated from the values

Mi =
1

n

∑
j 6=i

1(Xj < Xi, Yj < Yi, Zj < Zi), i = 1 . . . n.

In words, for a given point triplet we have to count how many points fall under it within

all three coordinates, then from the calculated values, we construct the empirical Kendall

function of the distribution and we are ready for testing and for the simulation. I performed

the �tting of the distributions with three di�erent point calibrations again, with 8, 16 and

32 points, but now from the earlier mentioned circular cross section of the sphere. In 3

dimensions this means I did the �tting on
(

3
2

)
·8 = 24,

(
3
2

)
·16 = 48 and

(
3
2

)
·32 = 96 points

in total, which is a signi�cant raise in the number of parameters. Since I only selected

three periods now, the total running time of the Cramér�von Mises tests were way lower

than before. (
3
2

)
· 8 points

(
3
2

)
· 16 points

(
3
2

)
· 32 points

Window
Test

statistic

Critical

value

Test

statistic

Critical

value

Test

statistic

Critical

value

1. 2.142 3.501 4.802 1.633 1.453 3.388

2. 1.052 4.173 2.077 0.659 0.460 2.076

3. 0.996 3.661 1.278 4.303 0.890 0.490

Table 7: Results of the performed Cramér�von Mises type test statistics with three di�er-

ent calibrations. Critical values were chosen based on 95% signi�cance level as before. The

values with red background are the tests, where the null hypothesis had to be rejected.

The results are interesting, however they are not really parallel to the result seen in

Table 3. The estimations based on 16 points per circular cross sections of the sphere were

the worst of all, two periods got absolutely rejected. The third period is not rejected, but

it can be generally said that the values of the test statistic are all higher with 16 points

than the other two approaches. Based on the results, estimation on 8 points was the best

overall. The testing for the third period with 32 points is rejected too, but these results

may have changed, if the simulation were done using more repetitions.
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Since the spectral measure is now concentrated on the surface of a sphere, visualiza-

tions gets more di�cult. Density plots are not feasible, so I show the spectral measures,

but on simpli�ed �gures, showing every λl,k, l 6= k, when the estimation was done on 32

points per circles.
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Figure 8: Estimated spectral measures (32 points per circles). Notion for the margins:

1�Bitcoin, 2�Litecoin, 3�Ripple.

It is visible, that every possible pair of cryptocurrency logreturns have overall similar

dependence structures, so the three asset's price seems to react in a similar way to each

other and to new information on the market. The change in the dependence structure is

similar to what we could see on Figure 6: two dominant angles are present in the positive

region of R3, caused by the weights λl,k1 , . . . ,λ
l,k
10 , which are getting closer to each other

as time passes. The weights in the negative region of R3 are showing some realignment,

focusing more onto a fewer density points, creating more dominant angles.

Despite the di�culties in visualizing the density, it is easy to calculate probabilities.

Here, I take all three cryptocurrencies into consideration and estimate the probability

P (Ripple logreturn < −10% | Bitcoin logreturn < −10%,Litecoin logreturn < −10%)

from the �tted normal and earlier �tted stable distributions. The results are a bit di�erent

though, as the probability calculated from the normal distributions are higher now, unlike

in Table 4.

Period 1. 2. 3.

Normal 30.243% 22.018% 20.21%

Stable 87.903% 86.385% 63.481%

Table 8: Calculated conditional probabilities from the 3 dimensional normal and stable

distributions, �tted to the logreturns.
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The probabilities based on the stable distributions are still signi�cantly higher than

the ones from the normal. It is interesting that for both, the probabilities decrease parallel

to each other, but with di�erent intensity.
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7 Summary

The thesis started o� with a general overview of univariate stable distributions, stressing

the most important and interesting properties along with the often used parameter es-

timating methods. After these, multivariate stable distributions were introduced, where

several key properties were presented. With the help of these features and the univariate

stable distributions, we could construct a general bivariate estimation method.

In the applications, after a brief overview of cryptocurrencies we could see that the

univariate stable distributions, apart from a few cases always had a good �t on the given

set of cryptocurrency logreturn data based on the AD tests. Also, the changes of the

estimated parameters nicely re�ected the changes in the characteristics of the returns. At

the bivariate estimations, we could see 3 di�erent point calibrations. The results of the

goodness of �t tests clearly showed that by increasing the number of points, the �t becomes

better, although becomes slightly over�tted. With the estimated spectral measures, we

could observe how the dependence structure changed over time through the visualized

spectral measures and the estimated densities. It was easy to detect the changes, as there

were several angles, where the density was highly concentrated on.

After the application of the bivariate procedure, a higher dimensional parameter esti-

mation procedure was proposed, which heavily builds on the earlier seen bivariate method.

The application of this new approach was successfully used in 3 dimensions, although re-

sults were harder to be visualized in this case, but we could see the essence of the results.

We can say, that �tting stable distributions to logreturns of cryptocurrencies in the tested

dimensions can be used very well, nevertheless the distribution family was rejected by a

few authors, when modeled stock returns. Based on the results, stable distributions could

be used for modeling the price changes of cryptocurrencies.

Let me bring attention to a few properties that I didn't mention before. Despite that I

had promising results, there are a few problems with stable distributions in applications.

First, when we are simulating from stable distributions with such low α that we could

see before, there will be unusually big or small values in our samples. This is why it is

necessary to use ML method for estimating α, which usually doesn't underestimate α.

Second, we need su�cient amount of elements in the samples to be able to perform the

univariate estimation as best we can. Low sample sizes will cause the estimations to result

in false parameters α. Third, for the multivariate estimation, if the estimated α param-

eters of the marginal distributions di�er too much, we shouldn't try to �t multivariate

stable distribution. In this case, the pooled α∗ would give absolutely false results, because

every individual α should be close to each other. This is a consequence of the Proposition

2.3. Also, e.g. if we have estimations of the α parameters with values 0.9 and 1.1, the
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corresponding �rst marginal would have in�nite expected value, while the second distri-

butions expected value is �nite. The pooled α∗ would suppose a �nite expected value,

therefore we can't �t a multivariate distribution, even though the two estimations are not

that far from each other.

The cryptocurrency data are from www.kaggle.com. These data and many more cryp-

tocurrencies soon will be available in the crypto package of R. The calculations of prob-

abilities and sampling from univariate stable distribution were done with the help of [22]

package, while the univariate parameter estimations were performed with [23]. I used both

of them for my own codes in the multivariate estimation and sampling, along with the

package [24], which solves the QP problem. Anderson-Darling tests were done with [21],

the determination of optimal block lengths for bootstrapping with [26] and the density

estimations with [25].
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8 Appendix

Period 1

n=8
n=16
n=32

Period 3

n=8
n=16
n=32

Period 4

n=8
n=16
n=32

Period 6

n=8
n=16
n=32

Period 7

n=8
n=16
n=32

Period 9

n=8
n=16
n=32

Figure 9: Visualization of the estimated spectral measures for the periods 1-3-4-6-7-9, with

di�erent number of points. Dashed line means that the �t was not acceptable (parallel to

Table 3).
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