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1 Introduction

Since 1973, the Black-Scholes formula has been extensively used by traders in �-
nancial markets to price options. However, the original Black-Scholes derivation is
based on several unrealistic assumptions which are not satis�ed under real market
conditions. For example, in the original Black-Scholes framework, assets are assu-
med to follow log-normal processes (i.e. with a constant volatility). This hypothesis
can be relaxed by introducing more elaborate models called local and stochastic
volatility models.

On one hand, local volatility models assume that the volatility depends only
on the underlying and on the time. The market is still complete and, as shown
by Dupire, there is a unique di�usion term, which can be calibrated to the current
market of European option prices. On the other hand, stochastic volatility models
assume that the volatility itself follows a stochastic process: in this case, the market
becomes incomplete as it is not possible to hedge and trade the volatility with a
single underlying asset.

For these two types of models (local and stochastic), the resulting Black-Scholes
partial di�erential equation becomes complicated and only a few exact solutions are
known. The most commonly used solutions are the Constant Elasticity of Variance
model (CEV), and the Heston model which assumes a mean-reverting square-root
process for the variance. In all other cases, analytical solutions are not available and
singular perturbation techniques have been used to obtain asymptotic expressions
for the price of European-style options.

By de�nition, this implied volatility is the value of the volatility that when
put in the Black-Scholes formula, reproduces the market price for a European call
option. In [1], the authors discovered that the local volatility models predict the
wrong behavior for the smile: when the price of the underlying decreases (increases),
local volatility models predict that the smile shifts to higher (lower) prices. This
problem can be eliminated with the stochastic volatility models such as the SABR
model (depending on 4 parameters: Sigma, Alpha, Beta, Rho) [1]. The SABR model
has recently been the focus of much attention as it provides a simple asymptotic
smile for European call options, assuming a small volatility.

Lewis in [3] introduced an alternative approach for computing the Asymtotic
Smile in the CEV model. This method is also applicable for the SABR model, which
is the main focus of this thesis. The gist of the technique is that �rst we de�ne a
metric in a Riemannian space using geodesics, then after some heuristic arguments
and a comparison using the probability density function �nally yields a solution to
the asymptotic smile problem for di�usions.

Recently in [5] the authors published a new methodology about e�ciently si-
mulating the SABR dynamics. The new method is an extension of the one time-step
Monte Carlo method [14], for pricing European options in the context of the model
calibration. A highly e�cient method results, with many highly interesting and
nontrivial components, like Fourier inversion for the sum of log-normals, stochas-
tic collocation, Gumbel copula, correlation approximation, that are not yet seen in
combination within a Monte Carlo simulation. The multiple time-step Monte Carlo
method what they proposed is especially useful for long-term options and for exotic
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options.
As for the structure of the thesis, in Section 2 the necessary theoretical back-

ground will be listed. As a part we will include the Eikonal equation and one of its
possible numerical solutions the fast marching method.

Section 3 is mainly built upon [3] which includes an interesting approach for
solving the asymptotic smile problem of stochastic volatility models, in case of the
CEV(p) volatility model. We will use this approach to derive the asymptotic smile
for the SABR model in 1 and 2 dimensions. The latter doesn't have a closed form
solution so numerical approximations have to be applied.

In Section 4 a recently published method will be introduced regarding the Monte
Carlo simulation. In case of the SABR model the brute force Monte Carlo simula-
tion is hugely une�cient in terms of computation cost because of an inversion of a
nontrivial distribution's CDF is required on each path. The trick for this is to only
invert at some discrete points and than linearly interpolate elsewhere. The method
that they presented is an "almost exact" SABR MC simulation, where rather than
Taylor based simulation techniques, the probability density of the stochastic di�e-
rential equation (SDE) under consideration is highly accurately approximated. It
contains several interesting components, like the Gumbel copula, a recursion plus
Fourier inversion to approximate the CDF of the integrated variance, and e�cient
interpolation by means of SCMC sampler.

Finally in Section 5 the results of my numerical experiments will be presented,
which is then followed with some conclusions in Section 6.
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2 Theoretical Basis

In this section we will list the necessary theorems and de�nitions for understanding
the thesis. For a start, we will begin with some basic de�nitions from stochastic
calculus.

2.1 The Basics of Stochastic Calculus

De�nition 2.1 (Filtration) In the theory of stochastic processes, a �ltration is an
increasing sequence of σ-algebras on a measurable space. That is, given a measurable
space (Ω, F), a �ltration is a sequence of σ-algebras {Ft}t≥0 with Ft ⊆ F where
each t is a non-negative real number and

t1 ≤ t2 =⇒ Ft1 ⊆ Ft2 .

Filtrations in �nancial mathematics are used for modelling all the available
information in the market as the time goes by. The next de�ned stopping time has
a similar objective.

De�nition 2.2 (Stopping time) A random variable τ : Ω → I is called a stop-
ping time if ∀t ∈ I : {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft.

De�nition 2.3 (Stochasic process) For a given probability space (Ω,F , P ) and
a measurable space (S,Σ), a stochastic process is a collection of S-valued random
variables, which can be written as: {X(t) : t ∈ T}.

Remark 2.4 St can be e.g. a share price. At a certain point of time t: St(ω) is a
random variable. For a �xed ω: St(ω) as t runs through the examined time interval
is called a trajectory of the stochastic process.

One of the most important stochastic processes is the Brownian motion or Wiener
process.

De�nition 2.5 (Wiener process) The Wiener process Wt is characterised by the
following properties:

1. W0 = 0 almost sure.

2. W has independent increments: ∀t > 0, the future increments Wt+u − Wt,
u ≥ 0, are independent of the past values Ws, s ≤ t.

3. W has Gaussian increments: Wt+u −Wt is normally distributed with mean 0
and variance u: Wt+u −Wt ∼ N (0, u).

4. W has continuous paths: With probability 1, Wt is continuous in t.
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2.2 The Basics of Itô Calculus

De�nition 2.6 (Itô integral) Suppose that B is a Wiener process (Brownian mo-
tion) and that H is a right-continuous, adapted and locally bounded process. If {πn}
is a sequence of partitions of [0, t] with mesh going to zero, then the Itô integral of
H with respect to B up to time t is a random variable∫ t

0

H dB = lim
n→∞

∑
[ti−1,ti]∈πn

Hti−1
(Bti −Bti−1

).

De�nition 2.7 (Itô process) An Itô process is de�ned to be an adapted stochastic
process that can be expressed as the sum of an integral with respect to Brownian
motion and an integral with respect to time,

Xt = X0 +

∫ t

0

σs dBs +

∫ t

0

µs ds.

Here, B is a Brownian motion and it is required that σ is a predictable B-integrable
process, and µ is predictable and (Lebesgue) integrable. That is,∫ t

0

(σ2
s + |µs|) ds <∞

for each t.

Remark 2.8 The stochastic integral can be extended to such Itô processes,∫ t

0

H dX =

∫ t

0

Hsσs dBs +

∫ t

0

Hsµs ds.

This is de�ned for all locally bounded and predictable integrands. More generally,
it is required that Hσ be B-integrable and Hµ be Lebesgue integrable, so that∫ t

0

(H2σ2 + |Hµ|)ds <∞.

Such predictable processes H are called X-integrable.

Itô's lemma is the version of the chain rule or change of variables formula which
applies to the Itô integral. It is one of the most powerful and frequently used
theorems in stochastic calculus.

Theorem 2.9 (Itô's lemma) For a continuous d-dimensional semimartingale X =
(X1, . . . , Xd) and twice continuously di�erentiable function f from Rd to R, it states
that f(X) is a semimartingale and,

df(Xt) =
d∑
i=1

fi(Xt) dX
i
t +

1

2

d∑
i,j=1

fi,j(Xt) d[X i, Xj]t.
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In probability theory, the Girsanov theorem (named after Igor Vladimirovich
Girsanov) describes how the dynamics of stochastic processes change when the ori-
ginal measure is changed to an equivalent probability measure. The theorem is
especially important in the theory of �nancial mathematics as it tells how to con-
vert from the physical measure, which describes the probability that an underlying
instrument (such as a share price or interest rate) will take a particular value or
values, to the risk-neutral measure which is a very useful tool for pricing derivatives
on the underlying instrument.

Theorem 2.10 (Girsanov's theorem) Let {Wt} be a Wiener process on the Wie-
ner probability space {Ω,F , P}. Let Xt be a measurable process adapted to the na-
tural �ltration of the Wiener process {FWt } with X0 = 0.
De�ne the Doléans-Dade exponential E(X)t of X with respect to W

E(X)t = exp

(
Xt −

1

2
[X]t

)
.

If E(X)t is a strictly positive martingale, a probability measure Q can be de�ned on
{Ω,F} such that we have Radon�Nikodym derivative

dQ

dP
|Ft = E(X)t.

Then for each t the measure Q restricted to the unaugmented sigma �elds FWt is
equivalent to P restricted to FWt . Furthermore, if Y is a local martingale under P ,
then the process

Ỹt = Yt − [Y,X]t

is a Q local martingale on the �ltered probability space {Ω, F,Q, {FW
t }}.

Moreover if X is a continuous process and W is Brownian motion under measure
P then

W̃t = Wt − [W,X]t

is Brownian motion under Q.

A stochastic di�erential equation (SDE) is a di�erential equation in which one
or more of the terms is a stochastic process, resulting in a solution which is also
a stochastic process. SDEs are used to model various phenomena such as unstable
stock prices or physical systems subject to thermal �uctuations. Typically, SDEs
contain a variable which represents random white noise calculated as the derivative of
Brownian motion or the Wiener process. However, other types of random behaviour
are possible, such as jump processes.

Theorem 2.11 (Existence and uniqueness of solutions) Let T > 0, and let
σ : Rn × [0, T ] → Rn×m; be measurable functions for which there exist constants C
and D such that ∣∣µ(x, t)

∣∣+
∣∣σ(x, t)

∣∣ ≤ C
(
1 + |x|

)
;∣∣µ(x, t)− µ(y, t)

∣∣+
∣∣σ(x, t)− σ(y, t)

∣∣ ≤ D|x− y|;

for all t ∈ [0, T ] and all x, y ∈ Rn, where |σ|2 =
∑n

i,j=1 |σij|2. Let Z be a random
variable that is independent of the σ-algebra generated by Bs, s ≥ 0, and with �nite
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second moment: E
[
|Z|2

]
< +∞. Then the stochastic di�erential equation/initial

value problem

dXt = µ(Xt, t) dt+ σ(Xt, t) dBt for t ∈ [0, T ];
X0 = Z;

has a Pr-almost surely unique t-continuous solution (t, ω) → Xt(ω) such that X is
adapted to the �ltration FZt generated by Z and Bs, s ≥ t, and

E

[∫ T

0

|Xt|2 dt

]
< +∞.

We will need to describe later the time evolution of the probability density
function, for which we will use the Fokker-Planck partial di�erential equation or
Kolmogorov forward equation.

Theorem 2.12 (Fokker- Planck in one dimension) For an Itô process driven
by the standard Wiener process Wt and described by the stochastic di�erential equa-
tion (SDE)

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt

with drift µ(Xt, t) and di�usion coe�cient D(Xt, t) = σ2(Xt, t)/2, the Fokker�Planck
equation for the probability density p(x, t) of the random variable Xt is

∂

∂t
p(x, t) = − ∂

∂x

[
µ(x, t)p(x, t)

]
+

∂2

∂x2

[
D(x, t)p(x, t)

]
.

The one dimensional case may be more suggestive, that's why it's mentioned
above, but the general case will be needed as follows.

Theorem 2.13 (Fokker- Planck equation) If

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt,

where Xt and µ(Xt, t) are N-dimensional random vectors, σ(Xt, t) is an N ×M
matrix andWt is anM-dimensional standard Wiener process, the probability density
p(x, t) for XXt satis�es the Fokker�Planck equation

∂p(x, t)

∂t
= −

N∑
i=1

∂

∂xi

[
µi(x, t)p(x, t)

]
+

N∑
i=1

N∑
j=1

∂2

∂xi ∂xj

[
Dij(x, t)p(x, t)

]
,

with drift vector µ = (µ1, . . . , µN) and di�usion tensor D = 1
2
σσT, i.e.

Dij(x, t) =
1

2

M∑
k=1

σik(x, t)σjk(x, t).
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2.3 Models used in the Thesis

The Black�Scholes�Merton model is a mathematical model of a �nancial market con-
taining derivative investment instruments. From the partial di�erential equation in
the model, known as the Black�Scholes equation, one can deduce the Black�Scholes
formula, which gives a theoretical estimate of the price of European-style options
and shows that the option has a unique price regardless of the risk of the security
and its expected return (instead replacing the security's expected return with the
risk-neutral rate).

The Black�Scholes formula has only one parameter that cannot be directly
observed in the market: the average future volatility of the underlying asset, though
it can be found from the price of other options. Since the option value (whether put
or call) is increasing in this parameter, it can be inverted to produce a "volatility
surface" that is then used to calibrate other models, e.g. for OTC derivatives.

Remark 2.14 The Black�Scholes equation is a partial di�erential equation, which
describes the price of the derivative over time. The equation is:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

The Black�Scholes formula calculates the price of European put and call opti-
ons. This price is consistent with the Black�Scholes equation as above; this follows
since the formula can be obtained by solving the equation for the corresponding
terminal and boundary conditions.

Theorem 2.15 (Black-Scholes formula) The value of a call option for a non-
dividend-paying underlying stock in terms of the Black�Scholes parameters is:

C(St, t) = N(d1)St −N(d2)Ke−r(T−t)

d1 = 1
σ
√
T−t

[
ln
(
St
K

)
+
(
r + σ2

2

)
(T − t)

]
d2 = d1 − σ

√
T − t

De�nition 2.16 (CEV-model) The CEV model describes a process which evolves
according to the following stochastic di�erential equation:

dSt = µStdt+ σSγt dWt,

in which S is the spot price, t is time, and µ is the drift, σ is the volatility and γ is
the elasticity of variance parameter, and W is a Brownian motion.

De�nition 2.17 (Heston-model) The basic Heston model assumes that St, the
price of the asset, is determined by a stochastic process:

dSt = µSt dt+
√
νtSt dW

S
t

where νt, the instantaneous variance, is a CIR process:

dνt = κ(θ − νt) dt+ ξ
√
νt dW

ν
t

and W S
t , W

ν
t are Wiener processes with correlation ρ, or equivalently, with covari-

ance ρdt.
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De�nition 2.18 (SABR-model) The SABR model describes a single forward F ,
such as a LIBOR forward rate, a forward swap rate, or a forward stock price. The
volatility of the forward F is described by a parameter σ . SABR is a dynamic
model in which both F and σ are represented by stochastic state variables whose
time evolution is given by the following system of stochastic di�erential equations:

dFt = σtF
β
t dWt,

dσt = ασt dZt,

with the prescribed time zero (currently observed) values F0 and σ0. Here, Wt and
Zt are two correlated Wiener processes with correlation coe�cient −1 < ρ < 1:

dWt dZt = ρ dt

The constant parameters β, α satisfy the conditions 0 ≤ β ≤ 1, α ≥ 0.

Remark 2.19 The above dynamics is a stochastic version of the CEV model with
the skewness parameter β : in fact, it reduces to the CEV model if α = 0 The
parameter α is often referred to as the volvol, and its meaning is that of the lognormal
volatility of the volatility parameter σ.

2.4 Numerical methods

The Eikonal equation is a non-linear partial di�erential equation. It is of the form

|∇u(x)| = 1/f(x), x ∈ Ω

subject to u|∂Ω = 0, where Ω is an open set in Rn with well-behaved boundary, f(x) is
a function with positive values, ∇ denotes the gradient and |·| is the Euclidean norm.
Here, the right-hand side f(x) is typically supplied as known input. Physically, the
solution u(x) is the shortest time needed to travel from the boundary ∂Ω to x inside
Ω, with f(x) being the speed at x.

In the special case when f = 1, the solution gives the signed distance from ∂Ω.
We will make this assumption later on, but until then, the general case will be used.

One fast computational algorithm to approximate the solution to the Eikonal
equation is the fast marching method (FMM). However there are other faster or more
e�cient methods such as the Bellman-Ford algorithm, the "fast sweeping method"
(FSM) or some hybrid methods like the parallelized Heap Cell Method in [8], but
in this thesis the FMM will be used, because as Hysing and Turek states in [12],
the FMM is the best way for computation when the algorithmic complexity is a
factor. Moreover later on a generalized Eikonal equation will be used for which the
algorithm need to be altered. I found that this change can be done easier in case of
the FMM.

Gremaud and Kuster in [9] studied the time needed for computation for FMM
and FSM in various cases on Cartesian grids with obstacles. They conclude that
FMM is generally faster than FSM in all but the simplest cases (with no obstacles
on the Cartesian grid).
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2.4.1 Fast Marching Method

We will discuss the method as described in [10].
First, assume that the domain has been discretized into a mesh. We will refer to

meshpoints as nodes. Each node xi has a corresponding value Ui = U(xi) ≈ u(xi).
The algorithm works just like Dijkstra's algorithm but di�ers in how the nodes'

values are calculated. In Dijkstra's algorithm, a node's value is calculated using a
single one of the neighboring nodes. However, in solving the PDE in Rn, between 1
and n of the neighboring nodes are used.

Nodes are labeled as far (not yet visited), considered (visited and value tenta-
tively assigned), and accepted (visited and value permanently assigned). Below are
stated the steps of the algorithm.

1 Assign every node xi the value of Ui = +∞ and label them as far; for all nodes
xi ∈ ∂Ω set Ui = 0 and label xi as accepted.

2 For every far node xi, use the Eikonal update formula to calculate a new value
for Ũ . If Ũ < Ui then set Ui = Ũ and label xi as considered.

3 Let x̃ be the considered node with the smallest value U . Label x̃ as accepted.

4 For every neighbor xi of x̃ that is not-accepted, calculate a tentative value Ũ .

5 If Ũ < Ui then set Ui = Ũ . If xi was labeled as far, update the label to
considered.

6 If there exists a considered node, return to step 3. Otherwise, terminate.

The Eikonal update formula mentioned in step 2 is the following. A �rst-order
accurate discretization of the Eikonal equation is obtained by using upwind �nite-
di�erences to approximate partial derivatives:

max
(
D−xij U,−D+x

ij U, 0
)2

+ max
(
D−yij U,−D

+y
ij U, 0

)2

=
1

f 2
ij

,

where

ux(xij) ≈ D±xij U =
Ui±1,j − Uij
±h

and uy(xij) ≈ D±yij U =
Ui,j±1 − Uij
±h

.

Due to the consistent, monotone, and causal properties of this discretization it is
easy to show that if UH = min(Ui−1,j, Ui+1,j) and UV = min(Ui,j−1, Ui,j+1) and
|UH − UV | ≤ h/fij then(

Uij − UH
h

)2

+

(
Uij − UV

h

)2

=
1

f 2
ij

,

which means

Uij =
UH + UV

2
+

1

2

√
(UH + UV )2 − 2(U2

H + U2
V −

h2

f 2
ij

).
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This can be simpli�ed into:

Uij =
UH + UV

2
+

1

2

√
2h2

f 2
ij

− (UH − UV )2.

This solution will always exist as long as |UH−UV | ≤
√

2h/fij is satis�ed and is larger
than both, UH and UV , as long as |UH−UV | ≤ h/fij . If |UH−UV | ≥ h/fij, a lower-
dimensional update must be performed by assuming one of the partial derivatives
is 0:

Uij = min(UH , UV ) +
h

fij
.

2.4.2 Runge-Kutta methods

In numerical analysis, the Runge�Kutta methods are a family of implicit and explicit
iterative methods, which include the well-known routine called the Euler Method,
used in temporal discretization for the approximate solutions of ordinary di�erential
equations. These methods were developed around 1900 by the German mathemati-
cians C. Runge and M. W. Kutta.

The most widely known member of the Runge�Kutta family is generally refer-
red to as "RK4", "classical Runge�Kutta method" or simply as "the Runge�Kutta
method".

Let an initial value problem be speci�ed as follows:

ẏ = f(t, y), y(t0) = y0.

Here y is an unknown function (scalar or vector) of time t, which we would like
to approximate; we are told that ẏ, the rate at which y changes, is a function of t
and of y itself. At the initial time t0 the corresponding y value is y0. The function
f and the data t0, y0 are given.

Now pick a step-size h > 0 and de�ne

yn+1 = yn + 1
6

(k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + h

for n = 0, 1, 2, 3, . . . :

k1 = h f(tn, yn),

k2 = h f

(
tn +

h

2
, yn +

k1

2

)
,

k3 = h f

(
tn +

h

2
, yn +

k2

2

)
,

k4 = h f (tn + h, yn + k3) .

The classical Runge-Kutta is a highly useful method for solving ordinary di�e-
rential equations for its fast speed and the total accumulated error is on the order
of O(h4).
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3 Implied Volatility - The Eikonal Approach

In �nancial mathematics, the implied volatility of an option contract is that value of
the volatility of the underlying instrument which, when input in an option pricing
model (such as Black�Scholes) will return a theoretical value equal to the current
market price of the option. A non-option �nancial instrument that has embedded
optionality, such as an interest rate cap, can also have an implied volatility. Implied
volatility, a forward-looking and subjective measure, di�ers from historical volatility
because the latter is calculated from known past returns of a security.

In general, it is not possible to give a closed form formula for implied volatility
in terms of call price. However, in some cases (large strike, low strike, short expiry,
large expiry) it is possible to give an asymptotic expansion of implied volatility in
terms of call price.

We can interpret the Black-Scholes formula as a function of the stock price,
strike, maturity and the volatility: CBS(S,K, T, σ). To match the market price of
an option, the implied volatility is needed so that: Cmarket = CBS(S,K, T, σimplied).

For a state-dependent model, an extra parameter is needed:

C(S,K, T, θ) = CBS(S,K, T, σimplied),

which assumes that σimplied = f(S,K, T, θ).

3.1 Geometries and Smile Asymptotics

The following method was introduced by Alan L. Lewis in [2], and it is the main
focus of my thesis. His approach is based o the CEV(p)-vol model, which is:

dSt = rS(t)dt+
√
V (t)S(t)dW1(t),

dV (t) = b(V (t))dt+ ξV (t)p
(
ρdW1(t) +

√
1− ρ2dW2(t)

)
,

where S is the stock price, t is time, r is the risk free rate, σ =
√
V is the volatility,

and W1 and W2 are independent Brownian motions.
After applied Itô's lemma to the stock price we get:

d(logS(t)) =

(
r − σ(t)2

2

)
dt+ σ(t)dW1(t).

As for this class of models the stock price is level independent or translation invati-
ant, we can get the implied volatility as:

σimplied = f(T, x, y),

where x = log(S/K) and y = V .
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In general, the implied volatility has to be numerically computed. But it can
be written in a formal power series:

σimplied =
∞∑
i=0

f (i)(x, y) · T i.

Our main task is to compute the leading T → 0 behaviour:

σimp := f (0)(x, y) = lim
T→0

σimplied(T, x, y).

The call option price is determined by

C(T, S0, V0;K) = E(S0,V0)

(
(ST −K)+

)
= e−rT

∫ ∞
0

max(0;ST−K)q(T, S0, V0;ST )dST ,

where the probability transition density

q(T, S0, V0;ST )dST = P(S0,V0) (ST ∈ dST )

re�ects arriving at the terminal stock price with any volatility. This is distinguished
from the `complete' transition density:

p(T, S0, V0;ST , VT )dSTdVT = P(S0,V0) (ST ∈ dST , VT ∈ dVT ) .

Let's denote the `state variables' by xt = (St, Vt). By the Markov property, for any
time sub-division T = n∆t,

q(T, S0, V0;ST ) =

∫
p(∆t, x0;xt1)p(∆t, xt1 ;xt2) · · · p(∆t, xtn−1 ;xtn)dxt1 · · · dxtn−1dVT .

(1)
At this point, we can generalize the problem a bit. Suppose that xt is a D-
dimensional di�usion process. It means, that we can use a model with more than
one stock price or volatility.

So with our previous notations p(∆t, x; y) is the transition density for a 2D-
dimensional di�usion process with drift bt = b(xt) and variance-covariance matrix

at = [aij(xt)], (i, j = 1, . . . D).

Let n be �xed. So we should replace T → 0 with ∆t → 0. For small enough
∆t, the transition densities must be approximately D-dimensional Gaussian:

p(∆t, x; y) ≈ 1

(2π)D/2(det a)1/2
· exp

(
− 1

2∆t

(
y − x− b∆t

)T
a−1

(
y − x− b∆t

))
.

(2)
To leading order, the drifts b∆t don't contribute. The �rst fraction in the

equation is the normalizing constant, which can be left out from the following ap-
proximation. After comparing 1 and 2 we conclude:

13



q(T, S0, V0;ST ) ≈∫
exp

− 1

2∆t

n∑
i=1

(
xti − xti−1

)T
a−1(xti−1

)
(
xti − xti−1

) dxt1 · · · dxtn−1dVT .

In the limit, the points {xti} → {xt} create a continuous path for any di�usion. This
is done by compressing the subdivision (n→∞). The integrand is a maximum along
the paths {xt} which minimize the sum and becomes concentrated there. We list a
couple of ideas, that can explain the above statement.

Remark 3.1 Saddle point is a point on the surface of the graph of a function
where the slopes (derivatives) of orthogonal function components de�ning the sur-
face become zero (a stationary point) but are not a local extremum on both axes
(for example a hyperbolic paraboloid).
Steepest descent or gradient descent is a �rst-order iterative optimization algo-
rithm for �nding the minimum of a function. To �nd a local minimum of a function
using gradient descent, one takes steps proportional to the negative of the gradient
of the function at the current point.
WKB approximation is a method for �nding approximate solutions to linear dif-
ferential equations with spatially varying coe�cients. The name is an initialism for
Wentzel�Kramers�Brillouin.

Example 3.2 We want to calculate the maximum of an integral:
∫∞
−∞ e

−f(x)dx,
where x is a vector. The idea behind computing is that after a certain level of f ,
the integrand is basically zero. And not just that, also the integral is less than ε
in those part of the parameterspace, where f is above a certain limit. So we can
concentrate on the minimum of f when evaluating the integral.

Interpret g(x) = a−1(x) = [gij(x)] as a metric tensor. This step is only needed
because of the change of aspect we are going to carry out.

Remark 3.3 A metric tensor is a type of function which takes as input a pair of
tangent vectors v and w at a point of a surface (or higher dimensional di�erentiable
manifold) and produces a real number scalar g(v, w) in a way that generalizes many
of the familiar properties of the dot product of vectors in Euclidean space.

In the following we will use the Einstein summation convention, which means
when an index variable appears twice in a single term and is not otherwise de�ned,
it implies summation of that term over all the values of the index. This notation
will be used later on without further notice. So the sum that has to be minimalized
takes the form:

1

2∆t

n∑
i=1

(
xti − xti−1

)T
a−1(xti−1

)
(
xti − xti−1

)
=

∆t

2

n∑
i=1

[g(xti−1
)]jk

(
xti − xti−1

)
∆t

j (
xti − xti−1

)
∆t

k

,

14



where the lower indeces mean the coordinate in the matrix and the upper indeces
are vector coordinates. Let ∆s = ∆t

T
, which is equivalent with ∆s = 1

n
. As ∆t→ 0

the sum approximates the following integral:

1

2T

n∑
i=1

[g(xti−1
)]jk

(
xti − xti−1

)
∆s

j (
xti − xti−1

)
∆s

k

∆s

→ 1

2T

∫ 1

0

gjk(x(s))ẋj(s)ẋk(s)ds.

Here, ẋj(s) denotes the j th coortinate of dx
ds
. So we can state that as n→∞ the

sum converges to the integral. Wrapping it all together we can state the following
lemma:

Lemma 3.4 As T → 0 the probability transition density is approximately the follo-
wing:

q(T, S0, V0;ST ) ≈ exp

{
− 1

2T
min

x(0) = (S(0), V (0)),
x(1) = (S(T ), ·)

(∫ 1

0

gjk(x(s))ẋj(s)ẋk(s)ds

)}
.

The above described approach was the way of the probability theory (large
deviation principle). In the following we turn our interest to geometry and more
explicitly the geodesics. The next theorem was proved by Varadhan in [7].

Theorem 3.5 For a D dimensional di�usion X with some set A in the metric space
with x /∈ A as T → 0

Px (XT ∈ A) ≈ exp

{
− d2(x,A)

2T

}
,

where

d2(x,A) = min
γ(0) = x,
γ(1) ∈ A

(∫ 1

0

gjk(γ(s))γ̇j(s)γ̇k(s)ds

)
.

Remark 3.6 The minimizing paths are geodesics in a Riemannian space.

Recall the price of a call option:

C(T, S0, V0;K) = e−rT
∫ ∞

0

max(0;ST −K)q(T, S0, V0;ST )dST .

Since ∂2

∂K2 max(0;ST −K) = δ(ST −K) (Dirac-delta), we have

∂2

∂K2
C(T, S0, V0;K) = e−rT q(T, S0, V0;K) ≈ exp

{
− d2(x0, y0;Ak)

2T

}
, (3)

where x0 = log S0, y0 = V0 and d2(x0, y0;Ak) is the geodesic distance to the set
Ak := {x = k := logK} (a line) in the state space (x, y).

We will compare this formula with the Black-Scholes model. Deriving the price
of a call option by the strike:

∂CBS
∂K

= S · e−
d21
2 · −1

Kσ
√
T
− e−rTN(d2)−K · e−rT · e−

d2
2 · −1

Kσ
√
T

= −e−rTN(d2).
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The second equation comes from the identity

e−rT · e−
d2
2 = e−

d21
2 · S

K
.

The second derivative is:

∂2CBS
∂K2

= e−rT ·e−
d2
2 · 1

Kσ
√
T

=
1

Kσ
√
T
·exp

{
−rT−

log2( S
Ke−rT

)

2σ2T
+

log( S
Ke−rT

)

2
−σ

2T

8

}

Let x := S
K
. Ordering the terms respect to T :

∂2CBS
∂K2

=
1

Kσ
√
T
· exp

{
− T

(
r

2
+
σ2

8
+

r2

2σ2

)
+ log x

(
1

2
− r

σ2

)
− log2 x

2σ2T

}
,

where as T → 0 the driver of the convergence is the last term, so in the limit
we can state, that:

∂2CBS
∂K2

≈ exp

{
− log2 x

2σ2
0T

}
.

It is more convenient for us to analyze the logarithm of the share price rather
than the price itself. For this we will use x0 := logS and k := logK.

∂2CBS
∂K2

≈ exp

{
− (x0 − k)2

2σ2
0T

}
.

For general stochastic volatility models this formula takes the following shape:

∂2C

∂K2
≈ exp

{
− (x0 − k)2

2σ2
imp(x0 − k, y0)T

}
, (4)

where y0 is the volatility at t = 0. Returning now to (3) we can realise the
translation invariance in the x coordinate:

d2(x0, y0;Ak) = d2(x0 − k, y0;A0),

which means that an (x0, ·) point has the same distance from the {x = k} line
that an (x0 − k, ·) point has from the {x = 0} line. Comparing this to (4) we get
our main theorem for asymptotic smiles:

σ2
imp(x, y) =

x2

d2(x, y)
, (5)

where d(x, y) is the minimum geodesic distance from (x, y) to the y-axis. Now
x and y are scalar coordinates (recall: the �nancial variables are x = log(S0/K) and
y = V0). We have suppressed the dependence on the target set A.
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3.1.1 E�ective local volatility

Given the metric g, and the starting point P0 = (x, y), one possible solution is to
compute all the geodesics that pass through P0. One of these geodesics will be the
distance minimizer to the target. It hits the target at some optimal y∗1.

It can be shown, that in the limit this y∗1 equals to the e�ective local volatility,
which we can get from Dupire's equation.

Theorem 3.7 (Dupire's equation) In local volatility models the price of a Euro-
pean call option C(T, S,K, V ) solves exactly for all T

∂C

∂T
=

1

2
α(T, S,K, V )K2 ∂

2C

∂K2
− rK ∂C

∂K
,

where α(T, S,K, V ) is the e�ective local volatility.

In [11] it is proved that

∂C

∂T
= E(S0,V0)

(
VT |ST = K

)
· 1

2
K2 ∂

2C

∂K2
.

Comparing these two we get

α(T, S,K, V ) = E(S0,V0)

(
VT |ST = K

)
.

One can see intuitively that the second component equals to y∗1. Because it is
the expected value of the volatility when we reach the target set at maturity from
the starting point P0.
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3.2 The Eikonal Approach

There are multiple possible approaches we could follow. Lewis educes a method
using purely di�erentialgeometry. The gist of the approach is computing all the
geodesics via the Christo�el symbols, use the well known conditions of the motion
and than �nd the optimal parameters.

Another method includes the characteristic functions. We should �nd d after
rescaling the characteristic function and the apply a Legendre-transformation or
saddle point method. The drawback of this approach is that is not applicable to the
general case, as for the CEV(p) models, the characteristic functions are only known
for half integers.

Our approach to computation will be solving a generalized Eikonal problem.
Let's denote ∂id = ∂d/∂xi, where x1 = x and x2 = y. The equation to be solved is
aij · ∂id · ∂jd = 1 with boundary condition d(0, y) = 0. Here [[aij]] is the variance-
covariance matrix and d is the minimum geodesic distance from the y axis de�ned
in the previous subsection. The equation written into matrix-form:

(
dx dy

)
·

(
y ρyp+1/2

ρyp+1/2 y2p

)
·

(
dx
dy

)
= 1,

which is equivalent with

yd2
x + 2ρyp+1/2dxdy + y2pd2

y = 1.

We will later prove that this is equivalent with our original problem when the
SABR model's going to be in scope. The trick to solve this equation is to note that
there is a scaling form solution:

d(x, y) = y1−pF (z), where z = xyp−3/2.

This yields, using α = p− 3/2, to the �rst-order nonlinear ODE:

(1 + 2ραz + α2z2)(F ′(z))2 + 2(1− p)(ρ+ αz)F (z)F ′(z) + (1− p)2(F (z))2 = 1.

This equation can be solved numerically in Mathematica. The following graphics
have been made with the parameter settings: ρ = 0.2, p = 1.
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(a) Implied volatility surface

(b) Meshes from imp. vol. surface

Figure 2. Implied volatility surface of the CEV(p) model with ρ = 0.2 and p = 1
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3.3 Applied to the SABR model

Consider now the SABR model with β = 1. The dinamics of the logarithm of the
forward and its volatility are the following:

dxt = −y
2
t

2
dt+ yt dWt,

dyt = αyt dZt,

where
dWtdZt = ρdt.

So the variance-covariance matrix is the following:

a(x, y) =

(
y2 αρy2

αρy2 α2y2

)
.

In section 3.1 we've intuitively shown the following lemma, for detailed proof
see Varadhan [6].

Lemma 3.8 In short time limit t the probability density function can be written in
the following form:

p(x, y; t) =
c√
t

exp

(
−d

2(x, y)

2t

)
.

Remark 3.9 This lemma is also the special case of Theorem 3.1 in Labordere's
paper [2].

We are going to prove that this minimum geodesic distance function d satis�es
a generalized Eikonal equation.

Theorem 3.10 Let d(x, y) be a function as described before and a(x, y) is the
variance-covariance matrix as above. Then the following equality holds:

(
dx dy

)
· a(x, y) ·

(
dx
dy

)
= 1.

Proof. Let's write the dinamics into matrix-form.

d

(
xt
yt

)
=

(
−y2

2

0

)
dt+

(
y 0
0 αy

)
d

(
wt
zt

)
.

We want to use the Fokker-Planck equation. For this we have to transform the
Wiener processes into independent ones: w1

t = wt, w2
t = ρwt +

√
1− ρ2zt. So the

transormed equation has the form:

d

(
xt
yt

)
=

(
−y2

2

0

)
dt+

(
y 0

ραy α
√

1− ρ2y

)
d

(
w1
t

w2
t

)
.
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Now apply the 2-dimensional Fokker-Planck equation:

∂p

∂t
+
∂

∂x

(
−y

2

2
· p

)
+
∂

∂y
(0·p)− 1

2

∂2

∂x2

(
y2 · p

)
− 1

2

∂2

∂y2
(α2y2 ·p)− ∂2

∂x∂y

(
αρy2 · p

)
= 0.

After some reduction and usage of the common notation for the partial derivatives
this yields to:

pt −

(
y2

2
+ 2ραy

)
px − 2α2y · py −

y2

2
pxx − ραy2 · pxy −

α2y2

2
pyy = α2p.

Now we apply our lemma, the partial derivatives are:

pt = p

(
− 1

2t
− d · dt

t
+
d2

2t2

)
,

px = p

(
−d · dx

t

)
,

py = p

(
−d · dy

t

)
,

pxx = p

((
d · dx
t

)2

− d2
x + d · dxx

t

)
,

pyy = p

((
d · dy
t

)2

−
d2
y + d · dyy

t

)
,

pxy = p

(
d2 · dx · dy

t2
− dx · dy + d · dxy

t

)
.

Writing these into the equation, then multiplying by t2 and taking the limit t → 0
we get:

p

(
d2

2
− y2d2d2

x

2
−
α2y2d2d2

y

2
− ραy2d2dxdy

)
= 0.

Since p is positive everywhere and d is also positive apart from the boundary (the y
axis) we get back our equation:

y2d2
x + 2ραy2dxdy + α2y2d2

y = 1.

Remark 3.11 In the end of the proof we acknowledged that it is an important
condition for the equation that d cannot be 0. This is why the equation is usually
de�ned in an open set with well-behaved boundary.
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3.3.1 Solution of the equation in 1 dimension

To solve this equation we will apply a dimension reduction as in the case of the
CEV-model. De�ne

z = α
x

y
and F (z) = d(x, y).

For the partial derivatives of d

dx(x, y) =
α

y
· F ′(z) and dy(x, y) = −αx

y2
· F ′(z)

stands. Putting this into the original equation we get:

(F ′(z))2(1− 2ρz + z2) =
1

α2
⇒ F ′(z) =

1

α
√

1− 2ρz + z2
.

The solution is the following:

F (z) =
1

α
· log

(√
1− 2ρz + z2 − ρ+ z

)
+ c.

The boundary condition of the original case was d(0, y) = 0 this implies F (0) = 0.
So the constant is

0 =
log(1− ρ)

α
+ c ⇒ c =

log
(

1
1−ρ

)
α

.

Hence

F (z) =
1

α
· log

(√
1− 2ρz + z2 − ρ+ z

1− ρ

)
.

Finally we can get the implied volatility surface from the following formula:

σimp(x, y) =
x

F (αx
y
)

=
αx

log

(√
1−2ραx

y
+(αx

y
)2−ρ+αx

y

1−ρ

) .
See Figure 3 for a volatility surface of the parameter settings α = 0.4, ρ = 0.1.
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Figure 3. Implied volatility surface from the SABR model with α = 0.4 and ρ = 0.1

In Section 5 we will confront this formula with the Runge-Kutta method and
with Monte Carlo simulation. The idea will be to �x y (the starting volatility) and
compute the implied volatility for various x values.

But what if we �x x = 0 and looking for the implied vols? Intuitively it's easy,
it must be y. But in the formula 0

0
is resulted. Using the L'Hospital's rule at x = 0:

lim
x→0

 αx

log

(√
1−2ραx

y
+(αx

y
)2−ρ+αx

y

1−ρ

)
 = lim

x→0


α

α
y

+
−2ρα 1

y+2α2 x
y2

2
√

1−2ραxy+(αxy )2√
1−2ραx

y
+(αx

y
)2−ρ+αx

y

 =
α

α(1−ρ) 1
y

1−ρ

= y.
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3.3.2 2 dimensional case

Mercurio and Moreni in [13] published a way of using multiple SABR processses
when modelling forward in�ation rates. This is the theoretical background for this
section.
Let us have two SABR processes with their own volatilities:

df1

f1

= σ1dw1,
df2

f2

= σ2dw2,

dσ1

σ1

= ν1dz1,
dσ2

σ2

= ν2dz2,

and their correlations

〈dw1, dw2〉 = ρdt;
〈
dwi, dzj

〉
= ρijdt; 〈dz1, dz2〉 = κdt.

Consider now f = f1 · f2. The idea behind this if we can construct the imp-
lied volatility of the product of two in�ation rates, than it can be constructed via
induction for the product of n in�ation rates. The dinamic of f using Itô's lemma:

df

f
= σ1dw1 + σ2dw2 +

1

2
σ1σ2 〈dw1, dw2〉 = σ1dw1 + σ2dw2 +

1

2
σ1σ2ρdt

Using Girsanov's theorem, we are zeroing out the drift, so in an equivalent
martingale-measure (we refer to it as lognormal measure)

df

f
= σ1dw1 + σ2dw2.

De�ne x1 = ln(f), x2 = σ1 and x3 = σ2. The variance-covariance matrix of
these variables is

[[aij]] =

 x2
2 + x2

3 + 2ρx2x3 x2
2ν1ρ11 + x2x3ν1ρ21 x2

3ν2ρ22 + x2x3ν2ρ12

x2
2ν1ρ11 + x2x3ν1ρ21 x2

2ν
2
1 x2x3κν1ν2

x2
3ν2ρ22 + x2x3ν2ρ12 x2x3κν1ν2 x2

3ν
2
2

 .

Writing the Eikonal equation as before aij
(
∂d
∂xi

)(
∂d
∂xj

)
= 1.

For a homogeneous solution we apply the following variable transformation

z1 = ν1
x1

x2

, z2 = ν2
x1

x3

, d(z1, z2) = d(x1, x2, x3).

The result is the following PDE

f1(dz1)
2 + 2f2dz1dz2 + f3(dz2)

2 = 1,

where

f1(z1, z2) = ν2
1 + ν2

2

z2
1

z2
2

+ 2ρν1ν2
z1

z2

+ ν2
1z

2
1 − 2ρ11ν

2
1z1 − 2ρ21ν1ν2

z2
1

z2

,
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f2(z1, z2) = 2ρν1ν2+ν2
1

z2

z1

+ν2
2

z1

z2

−ρ11ν
2
1z2−ρ21ν1ν2z1−ρ22ν

2
2z1−ρ12ν1ν2z2+κν1ν2z1z2,

f3(z1, z2) = ν2
2 + ν2

1

z2
2

z2
1

+ 2ρν1ν2
z2

z1

+ ν2
2z

2
2 − 2ρ22ν

2
2z2 − 2ρ12ν1ν2

z2
2

z1

.

Unfortunately there's no closed form solution for this 2 dimensional PDE. But
we can apply our numerical scheme which has been introduced in Section 2.4.1. Of
course, there's one important change yet to be made, the original Eikonal update
formula have to be modi�ed.
Using the same notation as in Section 2.4.1 the discretized version of the equation
is

f1(Uij − UH)2 + 2f2(Uij − UH)(Uij − UV ) + f3(Uij − UV )2 = h2,

and the solution for Uij is

Uij =
UH(f1 + f2) + UV (f2 + f3) +

√
(f 2

2 − f1f3)(UH − UV )2 + h2(f1 + 2f2 + f3)

f1 + 2f2 + f3

.

To get the implied volatility one should apply the following formula with v1 and
v2 being the initial values of the underlying volatilities:

σimp =
x

d(ν1
x
v1
, ν2

x
v2

)
.

The 1 dimensional SABR case (as in Section 3.3.1) can also be solved numerically
using the fast marching method. We can get the Eikonal uptade formula of that
case if we write

f1 = y2, f2 = αρy2, f3 = α2y2.

The resulted formula for 1 dimensional case is

Uij =
UH(1 + αρ) + UV (αρ+ α2) +

√
h2

y2
(1 + 2αρ+ α2)− α2(1− ρ2)(UH − UV )2

1 + 2αρ+ α2
.
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4 Monte Carlo simulation - The mSABR method

4.1 Introduction to the method

In this Section we will introduce a new e�cient technique for simulating SABR
dynamics, that has been published in a recent paper [5]. This e�ective method is
called the multiple time-step Monte Carlo simulation technique for SABR dynamics
or shorter the mSABR method.

This is an extension of the author's previous work [14], where the one time
step Monte Carlo method has been introduced. The technique consists of many
highly interesting and nontrivial components, like Fourier inversion for the sum of
log-normals, stochastic collocation, Gumbel copula, correlation approximation, that
are not yet seen in combination within a Monte Carlo simulation.

Using the notation in the paper, the SABR model reads

dS(t) = σtS
β(t)dWS(t), S(0) = S0 exp(rT ),

dσ(t) = ασ(t)dWσ(t), σ(0) = σ0,〈
dWS(t)dWσ(t)

〉
= ρdt.

Here S(t) = S(t) exp(r(T −t)) denotes the forward price of the underlying asset
S(t), with r the interest rate, S0 the spot price and T the maturity.
If we want to work with independent Brownian motions, consider the following
transformation:

Wσ(t) = Ŵσ(t), WS(t) = ρŴσ(t) +
√

1− σ2ŴS(t)

It is known that for some generic time interval [s; t], 0 ≤ s < t ≤ T , assuming
S(s) > 0, the conditional cumulative distribution for forward S(t) with an absorbing
boundary atS(t) = 0, given σ(s), σ(t) and

∫ t
s
σ2(z)dz, is given by

P

(
S(t) ≤ K |S(s) > 0, σ(s), σ(t),

∫ t

s

σ2(z)dz

)
= 1− χ2(a; b, c),

where a, b and c are �xed parameters respect to S(s), σ(s), σ(t) and
∫ t
s
σ2(z)dz and

χ2(a; b, c) is the non-central chi-square cumulative distribution function.
For the algorithm, several steps need to be performed, that are described in the
following:

• Simulation of the SABR volatility process, σ(t) given σ(s). The stochastic
volatility process of the SABR model exhibits a lognormal distribution. The
solution is a geometric Brownian motion, i.e. the exact simulation of σ(t)|σ(s)
reads

σ(t) ∼ σ(s) exp(α(Wσ(t)−Wσ(s))− 1

2
α2(t− s))

• Simulation of the SABR integrated variance process,
∫ t
s
σ2(z)dz |σ(t), σ(s).

This conditional distribution is not available in closed-form. We will the-
refore derive an approximation of the conditional distribution of the SABR
integrated variance given σ(t) and σ(s). The integrated variance sampling can
be done by simply inverting it.
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• Simulation of the SABR forward price process. The forward price S(t) can
be simulated by inverting the CDF above. By this, we avoid negative forward
prices in the simulation, as an absorbing boundary at zero is considered. There
is no analytic expression for the inverse distribution and therefore this inversion
has to be computed by means of some numerical approximation.

4.1.1 The Stochastic Collocation Monte Carlo sampler

The authors have proposed a procedure to sample
∫ t
s
σ2(z)dz |σ(t), σ(s) based on

the Gumbel copula. For this, the CDF of the integrated variance given the initial
volatility, σ(s), (as a marginal distribution) must be derived. They used a recursive
technique to obtain an approximation of this CDF.

Because we need to apply this recursion to approximate the characteristic
function, the PDF and the CDF of

∫ t
s
σ2(z)dz |σ(s) for each sample of σ(s) at each

time-step, this approach is expensive in terms of computational cost. To overcome
this drawback, an e�cient alternative will be employed here, based on Lagrange
interpolation, as in the Stochastic Collocation Monte Carlo sampler (SCMC).

The SCMC technique relies on the property that a CDF of a distribution (if it
exists) is uniformly distributed. A well-known standard approach to sample from a
given distribution, Y , with CDF FY reads

FY (Y )
d
= U thus yn = F−1

Y (un);

where un are samples from U [0; 1]. The computational cost of this approach
highly depends on the cost of the inversion F−1

Y , which is assumed to be rather
expensive.

We therefore consider another, "cheap", random variable X, whose inversion,
F−1
X , is computationally much less expensive. In this framework, the following rela-

tion holds
FY (Y )

d
= U

d
= FX(X).

However, this does not yet imply any improvement since the number of expen-
sive inversions F−1

Y remains the same. The goal is to compute yn by using a function
g(·) = F−1

Y (FX(·)), such that

FX(x) = FY (g(x)) and Y
d
= g(X);

where evaluations of function g(·) do not require many inversions F−1
Y .

This function g(·) is approximated by means of Lagrange interpolation, which is
a well-known interpolation also used in the Uncertainty Quanti�cation (UQ) context.
The result is a polynomial, gNY (·), which approximates function g(·) = F−1

Y (FX(·)),
and the samples yn can be obtained by employing gNY (·) as

yn ≈ gNY (xn) =

NY∑
i=1

yili(xn), li(xn) =

NY∏
j=1,j 6=i

xn − xj
xi − xj

where xn is a vector of samples from X and xj are the so-called collocation
points. NY represents the number of collocation points and yi the exact inversion
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value of FY at the collocation point xi, i.e. yi = F−1
Y (FX(xi)). By applying this

interpolation, the number of inversions is reduced and, with only NY expensive
inversions F−1

Y (FX(xi)), we can generate any number of samples by evaluating the
polynomial gNY (xn).

A crucial aspect for the computational cost is the parameter NY . The collo-
cation points must be optimally chosen in a way to minimize their number. The
optimal collocation points are here chosen to be Gauss quadrature points that are
de�ned as the zeros of the related orthogonal polynomial. This approach leads to a
stable interpolation under the probability distribution of X. Since we deal with a
conditional distribution, the 2D version of SCMC needs to be used.

4.2 Components of the mSABR method

In this section, we will discuss the di�erent components of the multiple time-step
Monte Carlo method for the SABR model. For simplicity, hereafter, we denote the
SABR's integrated variance process by Y (s, t) :=

∫ t
s
σ2(z)dz. We will explain how

to e�ciently sample the integrated variance given the initial and the �nal volatility,
as well as its use in a complete SABR simulation. Since the distribution is not
available in closed-form, some approximations need to be made.

The authors proposed an accurate sampling method based on copula theory,
which is employed to approximate the required conditional distributions. The co-
pula relies on the availability of the marginal distributions to simulate the joint
distribution. As the marginal distributions, Y (s, t)|σ(s) and σ(t)|σ(s) appear as the
natural choices. A procedure to recover the CDF of the integrated variance process
given the initial volatility will be presented.
The algorithm to sample Y (s, t) given σ(t) and σ(s) consists of the following steps:

1. Determine Flog σ(t)| log σ(s). For this to approximate we need to determine the
correlation between log Y (s, t) and log σ(t).

2. Determine Flog Ŷ | log σ(s), where Ŷ is the discretized version of Y .

3. Generate correlated uniform samples, Ulog σ(t)| log σ(s) and Ulog Ŷ | log σ(s) from the
Gumbel copula.

4. From Ulog σ(t)| log σ(s), invert the CDF Flog σ(t)| log σ(s) to get the samples σ̂ of
log σ(t)| log σ(s). This procedure is straightforward since the normal distribu-
tion inversion is analytically available.

5. From Ulog Ŷ | log σ(s), invert Flog Ŷ | log σ(s) to get the samples ŷn of log Ŷ | log σ(s).
We propose an inversion procedure based on linear interpolation. First we
evaluate the CDF function at some discrete points. Then, the insight is that,
by rotating the CDF under consideration, we can interpolate over probabili-
ties. This is possible when the CDF function is a smoothly increasing function.
The interpolation polynomial provides the quantiles of the original distribu-
tion from some given probabilities. Since Flog Ŷ | log σ(s) is indeed a smooth and
increasing function, the interpolationbased inversion is de�nitely applicable.
This procedure together with the use of 2D SCMC sampler results in a fast
and accurate inversion.
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6. The samples σn of σ(t)|σ(s) and yn of Y (s, t) =
∫ t
s
σ2(z)dz|σt, σs are obtained

by simply taking exponentials as

σn = exp(σ̂n), yn = exp(ŷn).

Step 1. Determining Flog σ(t)| log σ(s)

For the �rst step we employ the expression of a conditional normal distribution.
Hence, the distribution of log σ(t)| log σ(s) = z is given by

N

(
µlog σ(t) + Plog σ(t);log σ(s)

slog σ(t)

slog σ(s)

(
z − µlog σ(t)

)
, slog σ(t)

√
1− P2

log σ(t);log σ(s)

)
,

where µlog σ(t) and µlog σ(s) are the means and slog σ(t) and slog σ(s) are the stan-
dard deviations of log σ(t) and log σ(s), respectively. Plog σ(t);log σ(s) is the Pearson
correlation coe�cient which is approximated as follows

Plog σ(t);log σ(s) ≈
t2 − s2

2
√

1
3
t4 + 2

3
ts3 − t2s2

.

Step 2. Determining Flog Ŷ | log σ(s)

The CDF of log Ŷ | log σ(s) is resulted from

Flog Ŷ | log σ(s) =

∫ x

−∞
flog Ŷ | log σ(s)(y)dy,

where flog Ŷ | log σ(s) is the PDF of log Ŷ | log σ(s). This can be found by approx-
imating the associated characteristic function, φlog Ŷ | log σ(s), and applying a Fourier
inversion procedure. We can de�ne a recursive procedure to recover the characte-
ristic function of flog Ŷ | log σ(s).
We start by de�ning the sequence,

Rj = log

(
σ2(tj)

σ2(tj−1)

)
, j = 1, . . . ,M.

At this point, a backward recursion procedure in terms of Rj will be de�ned by
which we can recover φlog Ŷ | log σ(s). We de�ne

Y1 = RM , Yj = RM+1−j + Zj−1, j = 2, . . . ,M

with Zj = log(1 + exp(Yj)).
After applying the de�nition of characteristic function, we determine φlog Ŷ | log σ(s) as
follows

φlog Ŷ | log σ(s)(u) = exp(iu log(∆tσ2(s)))φYM (u).

As YM is de�ned recursively, its characteristic function can be obtained by a recur-
sion as well. According to the de�nition of the (backward) sequence Yj, the initial
and recursive characteristic functions are given by the following expressions,

φY1(u) = φRM (u) = φR(u) = exp(−iuα2∆t− 2u2α2∆t),
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φYj(u) = φRM+1−j(u)φZj−1
(u) = φR(u)φZj−1

(u).

By de�nition, the characteristic function of Zj−1 reads

φZj−1
(u) =

∫ ∞
−∞

(exp(x) + 1)iufYj−1
(x)dx.

Probability density function fYj−1
is not known. To approximate it, the Fourier

cosine series expansion on fYj−1
is applied. Based on the cumulant-based approach

we truncate the integration range to [a, b].

φZj−1
(u) ≈ 2

b− a

N−1∑
l=0

Bl

∫ b

a

(exp(x) + 1)iu cos

(
(x− a)

lπ

b− a

)
dx =: φ̂Zj−1

(u),

Bl = <

(
φ̂Yj−1

(
lπ

b− a
) exp

(
−ia lπ

b− a

))
,

with N the number of cosine expansion elements, and where

φ̂Y1(u) := φR(u), φ̂Yj(u) := φR(u)φ̂Zj−1
(u).

Considering the equation for φ̂Zj−1
(u) in matrix-vector form, by recursion pro-

cedure, we obtain the approximation φ̂YM of the characteristic function φYM of YM .
The authors have shown that for numerical approximation of the integral based

on a piecewise linear approximation provides a good balance between performance
and accuracy. For an e�cient sampling from the logistic distribution, we also have to
introduce a scale parameter so that the quantiles have to be more evenly distributed.

Now we have every component to derive the PDF of log Ŷ | log σ(s) using the
so-called COS method

flog Ŷ | log σ(s)(x) ≈ 2

b− a

N−1∑
k=0

Ck cos

(
(x− a)

kπ

b− a

)
,

with

Ck = <

(
φlog Ŷ | log σ(s)

(
kπ

b− a

)
exp

(
−ia kπ

b− a

))
.

Step 3. Generating samples

For generating correlated uniform samples in Step 3, we will use the Archimedean
Gumbel copula. Considering F1, . . . Fd ∈ [0, 1]d as the marginal distributions, the
Gumbel copula reads

Cθ(F1, . . . Fd) = exp

−
 d∑

i=1

(− log(Fi))
θ

1/θ
 ,

where the parameter θ is found to be equal θ = 1/(1− τ), where τ is the Kendall's
coe�cient which we can get from the Pearson's coe�cient using

P = sin

(
π

2
τ

)
.
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Step 5. E�cient sampling of log Ŷ | log σ(s)

By employing the SCMC technique, instead of directly computing Flog Ŷ | log σ(s) for
each sample of log σ(s), we only have to compute it at the collocation points. In
general, only a few collocation points are su�cient to obtain accurate approximati-
ons, which is a well-known fact from the UQ research �eld. This fact allows us to
drastically reduce the computational cost of sampling the required distribution.

For the problem at hand, we require samples from the integrated variance con-
ditional on the initial volatility, log Ŷ (s, t)| log σ(s). Therefore, we need to make use
of the 2D version of the SCMC technique. Two levels of collocation points need to
be chosen, one for each dimension. If we denote them by NŶ and Nσ, respectively,
the resulting number of inversions equals NŶ ·Nσ. The formal de�nition of the 2D
SCMC technique applied to our context reads

yn|vn ≈ gNŶ ,Nσ(xn) =

NŶ∑
i=1

Nσ∑
j=1

F−1

log Ŷ | log σ(s)=vj
(FX(xi))li(xn)lj(vn),

where xn are the samples from the standard normal distribution, which is used as
the cheap variable, and vn the samples of log σ(s); xi and vj are the collocation
points for approximating variables log Y and log σ(s), respectively. The li and lj are
Lagrange polynomials �tted to their collocation points respectively.

4.3 Simulation of S(t) given S(s), σ(s), σ(t) and
∫ t
s σ

2(z)dz

We complete the mSABR method by the conditional sampling of S(t). The most
commonly used techniques can be classi�ed in two categories: direct inversion of
the SABR distribution function given in Section 4.1 and moment-matching appro-
aches. The direct inversion procedure has a higher computational cost because of
the evaluation of the non-central χ2 distribution.

Note however that, for some speci�c values of β, the simulation of the conditi-
onal S(t) given S(s), σ(s), σ(t) and

∫ t
s
σ2(z)dz enables analytic expressions. This is

the case for β = 0 and β = 1 and we will describe the latter.

Case β = 1

The asset dynamics of the SABR model become log-normal and the solution is given
by

S(t) = S(s) exp

(
−1

2

∫ t

s

σ2(z)dz + ρ

∫ t

s

σ(z)dŴσ(z) +
√

1− ρ2

∫ t

s

σ(z)dŴS(z)

)
.

If we take the log-transform

log

(
S(t)

S(s)

)
= −1

2

∫ t

s

σ2(z)dz + ρ

∫ t

s

σ(z)dŴσ(z) +
√

1− ρ2

∫ t

s

σ(z)dŴS(z),

and by considering ∫ t

s

σ(z)dŴσ(z) =
1

α
(σ(t)− σ(s)),
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and ∫ t

s

σ(z)dŴS(z)|σ(t), σ(s) ∼ N

0,

√∫ t

s

σ2(z)dz


we obtain the distribution of log

(
S(t)
S(s)

)
|
∫ t
s
σ2(z)dz, σ(t), σ(s), which reads

N

−1

2

∫ t

s

σ2(z)dz +
ρ

α
(σ(t)− σ(s)) ,

√
(1− ρ2)

∫ t

s

σ2(z)dz

 .

So as a conclusion, the asset dynamics S(t) can be sampled from

S(t) = S(s) exp

−1

2

∫ t

s

σ2(z)dz +
ρ

α
(σ(t)− σ(s)) +X

√
(1− ρ2)

∫ t

s

σ2(z)dz

 ,

where X is the standard normal.
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5 Numerical results

The experiments were performed on a computer with CPU Intel Core i7-3610QM
2.30GHz and RAM memory of 6 Gigabytes. The employed software package was
Mathematica v10.1.

5.1 Results for 1D SABR

The �rst experiment was to compare the analytical solution to the classical Runge-
Kutta method. Because of the rather similar results we got when changing the
parameters, we will �x them as α = 0.4, ρ = 0.1 and σ0 =: v = 0.1.

As a result we plotted the implied volatility curves, the relative and absolute

di�erences (respect to the analytical solution) as a function of x = log
(
F0

K

)
in the

interval [-1,1] (see Figure 4).
The only variable that remains is the stepsize h because from that the necessary

number of data points can easily be calculated as
(

2
hv

+ 1
)
. The boundary condition

for the RK4 method was that at 0 the geodesic distance equals to 0. See below
Table for the results.

Stepsize (h) Calculation time (sec.) Relative di�erence Absolute di�erence

0.1 0.015 1.5 · 10−2 2.5 · 10−3

0.01 0.062 1.4 · 10−3 2.5 · 10−4

0.001 0.641 1.4 · 10−4 2.5 · 10−5

0.0001 6.546 1.4 · 10−5 2.5 · 10−6

As it can be observed the computation time is a linear function of the nuber of
data points and the di�erences are linear functions of the step size.

(a) Implied volatility smile
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(b) Relative di�erence of the curves (h=0.0001)

(c) Absolute di�erence of the curves (h=0.0001)

Figure 4. Implied volatility smile of the SABR model with α = 0.4, β = 1, ρ = 0.1,
σ0 = 0.1

The second experiment was to compare the analytical solution to the result we
get from Monte Carlo simulation. I worked with the same parameters as previously.
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It's an ongoing project to compare the result to the mSABR method from Section
4.

I used a brute force Monte Carlo simulation in comparison with the analytical
solution using the Euler scheme. The calculations were made with 5Y, 1Y and
1M European Call options with an initial value of the underlying 1 and various
strikes, which are evenly distributed on a logarithmic scale, on 1,000,000 paths. The
stock price and the volatility was simulated in discrete time instants. There was 50
timesteps in the 5Y case (≈ 2.5 months), 20 timesteps in the 1Y case (≈ 0.5 month)
and 10 timesteps in the 1M case (≈ 3 days). As T → 0 the result near ATM is
improving.

(a) First Monte Carlo simulation
(b) Absolute di�erence

Figure 5. Implied volatility of a 5Y European Call

(a) Second Monte Carlo simulation (b) Absolute di�erence

Figure 6. Implied volatility of a 1Y European Call

35



(a) Third Monte Carlo simulation
(b) Absolute di�erence

Figure 7. Implied volatility of a 1M European Call

We checked the e�ect of quadrupling the timesteps in case of the 1Y and the
1M European call options. As we can see from the �gures, the accuracy is greatly
improved in case of the 1M but not so much for the 1Y.

(a) First Monte Carlo simulation with times-

tep bump
(b) Absolute di�erence

Figure 8. Implied volatility of a 1Y European Call

(a) Second Monte Carlo simulation with ti-

mestep bump
(b) Absolute di�erence

Figure 9. Implied volatility of a 1M European Call

36



5.2 Results for 2D SABR

The simulation was the following. First I de�ned a discrete mesh as to represent
a square in the Euclidian space [0, L]2 ∈ R2. (The same algorithm will have to be
done for [−L, 0]2 ∈ R2 as well.)

I implemented the FMM in Mathematica as described in Section 3.3.2 and
performed the algorithm for �xed parametersets and algorithm parameters. The
two types of parametersets included are:

• Parameterset: ν1, ν2, ρ, κ, ρ11, ρ12, ρ21, ρ22, v1 and v2 (the initial value of
the volatilities);

• Algorithm parameters: h (step size), n (number of gridpoints-1), L = h ·n
(grid size) and V = L ·max

(
vi
νi

)
(size of the plot).

After the run we aquire the d(z1, z2) values on the points of the mesh. Now
comes the interpolation problem. However it seems obvious that we should use
bilinear interpolation to receive the remaining values of the square but in this case it's
not applicable for the later described reasons. I used a linear interpolation instead,
where the values on the square are approximated via the convex combination of the
highest value of the four edges and the two remaining sides.
To get the implied volatility one should apply the formula from Section 3.3.2

σimp =
x

d(ν1
x
v1
, ν2

x
v2

)
.

Note that the only variable in this is x and the values we need from the (z1, z2)
space are on a line that has a positive steepness and is passing through the origin.
If we would apply bilinear interpolation, it would result a collapse at zero, because
of the quadratic behaviour of the interpolation.

(a) Bilinear interpolation
(b) Quasilinear interpolation

Figure 10. Result from the two di�erent interpolation techniqes around 0.

The �rst experiment was to test the numerical scheme resulted from FMM
against the complete numerical solution. The test's parameterset was the same as
in Figure 12, the algorithm parameters were determined by �xing the overall grid
size (L = 4) and changing n and h accordingly. The following table includes the
evaluation time of the algorithm while in Figures 11a and 11b the resulted implied
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volatility curves are compared. (Note that these time measures contain two FMM
algorithms.)

n 10 20 30 40 50 60
Calculation time (sec.) 0.44 3.17 13.72 72.95 93.61 329.76

(a) Comparing the FMM results to the numerical solution

(b) Comparing the best FMM result to the numerical solution

Figure 11. Result of the �rst experiment
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The FMM algorithm found to be inaccurate for determining the implied vola-
tility so I wouldn't suggest using it for solving general Hamilton-Jacobi equations.
Because of the Wolfram Language being a general multi-paradigm programming
language, its built-in numerical solver is much more e�cient than my algorithm.

Figure 12. Numerical solution for ν1 = 0.6; ν2 = 0.8; ρ = 0.4; κ = 0.5; v1 = 0.5;
v2 = 0.3; ρ11 = −0.6; ρ12 = 0.2; ρ21 = −0.2; ρ22 = 0.4

The second experiment is now to compare the numerical result to our expectati-
ons. The numerical solver is selected automatically from families of arbitrary-order
implicit Runge-Kutta methods. Our expectation comes from the variance of two
correlated samples

σ =
√
σ2

1 + σ2
2 + 2ρσ1σ2,

which is not completely accurate, but gives an intuitive picture of the total implied
volatility. This expectation is perfectly accurate when the vol of vol parameters are
becoming 0. Then the two rate processes has constant volatility, so from the normal
property of the Wiener process we get the equation above.

The tests were run on various parametersets and the calculation performed the
best on those where at least one of the steepness ratios (νi

vi
) is large enough. If this

principle is used, the region around 0, where the implied volatility is mainly a�ected
by the singularity in the origin, appeared to be small enough. The results are the
following.
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(a) Implied volatility smile with parameterset ν1 = 0.1; ν2 = 0.5; ρ = 0; κ = 0; v1 = 0.1;
v2 = 0.1; ρ11 = 0; ρ12 = 0; ρ21 = 0; ρ22 = 0

(b) Implied volatility smile with parameterset ν1 = 0.1; ν2 = 0.2; ρ = 0.4; κ = 0.5;
v1 = 0.1; v2 = 0.2; ρ11 = −0.4; ρ12 = 0.2; ρ21 = −0.2; ρ22 = 0.4
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(c) Implied volatility smile with parameterset ν1 = 0.6; ν2 = 0.8; ρ = 0.4; κ = 0.5; v1 = 0.5;
v2 = 0.3; ρ11 = −0.6; ρ12 = 0.2; ρ21 = −0.2; ρ22 = 0.4

Figure 13. Results of the second experiment

As a result the numerical solution performed reasonably well apart from the
ATM's small radius. It is hard to make improvements there, because it's only
a�ected by the d function's behaviour inside a small radius of the origin. That is
why the steepness ratios should be large enough to quickly "escape" from there.

One other thing to notice is that near the ATM, the total volatility is close to
our expectation. The explanation is that ATM volatilities are roughly the same as
the starting volatilities so the intuitive formula is applicable there.
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6 Conclusions

We applied a new method of computing the short time asymptotic implied volatility
to the SABR model. A new interesting Monte Carlo simulation has been introduced,
its implementation is an ongoing project.

We tested numerically the analytic solution of the Eikonal equation and found
it satisfying. The solution has been veri�ed via brute force Monte Carlo simulation.
We also shown that for short maturities, raising the number of timesteps improves
the accuracy. However to calculate the implied vol in case of short maturities for
strikes far from ATM, a huge number of paths needed. This is really time consu-
ming in case of the brute force Monte Carlo method so this is one more reason for
implementing the mSABR method.

The 2 dimensional FMM scheme performed poorly. To mitigate the miscalcula-
tion in terms of the level of the curve probably a higher level approximation should
be applied in the algorithm. The experiments showed that the numerical solution
is close to our expectation inside a realistic range of the ATM.
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