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1 Introduction

Predicting returns on the stock market and e�cient portfolio selection have been

age-old problems of the �nancial academic literature. Recently a new area of research

have emerged, which tries to connect the evolution of market returns of a given asset to

the option market of the respective assets. This information spillover was �rst analysed

in great details by Carr and Wu (2008) and Bali and Hovakimiam (2009). During my

thesis I will introduce numerous academic papers, which were written in recent years

about this topic. These papers in general de�ne some kinds of measures, which try to

grasp di�erent information from the option market. These pieces of information mainly

try to contain some features of the risk neutral distribution implied by the market

price of traded call and put options on the underlying asset. Researchers suspect that

these pieces of option-implied information has signi�cant explanatory and predictive

power for the future returns of the underlying asset. The basis of this hypothesis is

coming from the fact that measures like the Black-Scholes implied volatility surface is

containing market expectations about the future evolution of some features (like the

volatility) for the option horizon.

In my thesis, I try to analyse the connection of various option-implied measures

with the returns on equity indices and individual equities particularly in the case of

portfolio selection. To analyse the topic of connection between option-implied measures

and equity returns, I have studied two US equity indices and 24 individual equities.

I have two research question. First, I want to analyze whether these variables are

priced on the market and have statistical connection with underlying returs. In order

to answer this I will use standard methods like expectation hypothesis regression and

time series regressions. My main research questions are whether there is an information

spillover from option markets to equity markets, and whether this phenomenon is

helpful in portfolio selection?

To answer these research questions �rst I de�ne the option-implied measures used

in the thesis and then calculate them for my samples. The implied measures are

calculated using MATLAB. Then I use various statistical models to carry out a rolling
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window forecast from these variables, and these predictions will be the basis of the

portfolio selection. The predictions and the selection are carried out in Python.

The structure of my thesis is the following. Already in the Introduction chapter

I will give a short description for the implied volatility calculated from the classical

Black-Scholes model, which is the traditional concept of implied volatility. The next

chapter is dealing with the model-free way of calculating implied moments from call

and put prices available in the market. In that chapter I introduce the method of

Breeden and Litzenberger (1978) and the method of Bakshi et al (2003), which will

be the method I actually use to calculate model-free implied moments. After that I

de�ne the risk premia, which is the di�erence between realized return moments and

the implied moments from the previous chapter. Then I try to describe the empirical

features of these risk premia. The last chapter of the main part of this thesis is

answering my empirical research questions. Lastly I carry out some robustness checks

and draw my conclusions.

1.1 Black-Scholes Implied Volatility

In their seminal papers Black and Scholes (1973) and Merton (1973) introduced

a completely new philosophy of derivative security pricing and paved path to many

nowadays industry-standard �nancial mathematical models. The derivation of the

Black-Scholes-Merton model is not in the scope of this thesis, I will only report some

assumptions and results which are relevant for this work here. Interested readers are

recommended to check more details about the model from for example Shreve (2008).

The model aims to price simple European call (or put) options on an underlying

(originally equities) and assumes that the price process of this underlying follows a

Geometric Brownian Motion with a constant drift and volatility paramater, so

dS(t) = µS(t)dt+ σS(t)dW (t), (1)
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where S(t) denotes the price of the underlying and W (t) is a one-dimensional Wiener-

process. If we assume that the risk-free rate r is constant and the underlying pays no

cash-�ow during the term of the option contract (for example an equity does not pay

dividends), then these assumptions result in the following call and put prices with K

strike price and T − t maturity.

c = S(t)N(d1)− exp(−r(T − t))KN(d2) (2)

p = exp(−r(T − t))KN(−d2)− S(t)N(−d1),

where N is the cumulative distribution function of the standard normal distribution,

and,

d1 =
log
(
S(t)
K

)
+ (r + σ2

2
)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t, (3)

The most important aim of this section is to shortly introduce the Black-Scholes im-

plied volatility smile and implied volatility surface, which are derived from the classical

Black-Scholes option-pricing model of Black and Scholes (1973). The volatility smile

and surface gives a basic intuition behind the option-implied measures, which is the

basic of this thesis.

The Black-Scholes model assumes that the volatility parameter is constant, so it

does not depend on the time to maturity or the exercise price. We can test this

assumption by re-calculating the volatility parameter from option prices available in

the market, so we can see what volatility parameter was "used" by the market to

price the given derivative contract. This is possible since the partial "derivative" of

the option price with respect to σ, which is called the vega of the option, can be

calculated as

vega = S(t)φ(d1)
√
T − t = K exp(−r(T − t))φ(d2)

√
T − t, (4)
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where φ is the density function of the standard normal distribution. We can see

that the value of vega is always positive, which means that the option price is strictly

monotonically increasing with the value of the volatility parameter. This means that

the option pricing function can be inverted. So, it is possible to calculate the volatil-

ity parameter with which the Black-Scholes model would give back the option price

observable in the market. This volatility parameter is called the implied volatility.

If the assumption of consant volatility is correct, then the implied volality should be

independent from the other variables and parameters of the model.

However, we know that in general the assumption of constant volatility is not sat-

is�ed in reality, since the implied volatility of OTM and ITM options are signi�cantly

higher than the implied volatility of ATM options. This phenomenon is called the im-

plied volatility smile. This smile or smirk like behaviour can be experienced in many

asset classes with slight di�erences. For equity options we experience that for call op-

tions ITM options have higher implied volatilities, than OTM options (also there are

signi�cantly less available deep OTM options than deep ITM options on the market),

but for example for foreign exchange options the implied volatility is in some cases

more symmetric as a function of the strike price around the ATM options.

There is also another empirical phenomenon related to the implied volatility. In

general we can experience that the convexity of the smile gets smaller as we go for

longer time to maturity, this means that the implied volatility depends on both the

strike price and the time to maturity. This phenomenon is called the implied volatility

surface. The existence of the volatility surface is often connected to stylized facts of

the �nancial markets like the heavy-tails of the return distribution, the clustering of

the volatility process, or the presence of jumps in the asset price process.

In this introductory subchapter I have shortly introduced the Black-Scholes model

and the implied volatility calculated from this model. This should give a basic intuition

of the option implied information. To resolve the problem of constant volatility many

di�erent types of models have emerged, for example the local volatility models like

Dupire (1994), the stochastic volatility models like Heston (1993) or the jump-di�usion
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models like Merton (1976). However, if we calculate option implied information based

on these methods, then they would be heavily based on the model speci�cation, which

would make it hard to decide whether a connection between option-implied data and

stock returns are created by real market forces or only by the speci�cation of a given

model.

2 Implied moments

In this section, I will introduce the concept of risk neutral moments, which is crucial

for my research. I have already de�ned the implied volatility in the introductory part

of this work. However, it is easy to see that the value of that implied volatility is

fundamentally determined by the structure of the Black-Scholes model. Anderson et

al (2000) has pointed out that if we infer a measure from a misspeci�ed model, then we

can create spurious connection between the measure and our data, which is not driven

by the market, but by the model itself. Also, theoretically it is commonly argued

that the cause of the volatility smile is the negatively skewed and heavy-tailed return

distribution. However, even if our models are well-speci�ed, it is not clear that the

relation is a general property or only driven by a speci�c modelling choice (for example

Bakshi et al (2003) argues that parametrization can create arti�cial dependence on the

third or fourth moment). These reasons make it very important to have a model-free

way to calculate the risk neutral moments in order to get a good understanding of the

connection between option-implied information and underlying returns.

In this chapter I will introduce two model-free methods to recover risk neutral

moments from market data. After that I will calculate the second, third and fourth

moments based on the second, more general method.
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2.1 Risk neutral density function

A natural way to calculate the risk neutral moments is to �rst calculate the risk

neutral density function and then calculate the moments by the de�nition of the mo-

ments of a random variable. So, to calculate the risk neutral moments in a model-free

way, we only need a model-free way to calculate the risk neutral density function.

Breeden and Litzenberger (1978) proposed a method to calculate the risk neutral den-

sity function from options traded on the market. In this section, I will introduce this

methodology to recover risk neutral density function from call option prices available

in the market based on Breeden and Litzenberger (1978) and Márkus (2017).

Let
(

Ω,F ,P
)
be a probability space with �ltration F = (F )t∈[0,T ] and let f(.) be

the payo� function of a European-type security. The �rst and second fundamental law

of derivative pricing leads to the conclusion that the price of a security is the discounted

conditional expected value with respect to the risk neutral measure, interested readers

can �nd these theorems for example in Márkus (2017).

P (t) = BtE
Q(f(S(T ))|Ft) = B0 exp(r(T − t))EQ(f(S(T ))|Ft) (5)

where P (t) denotes the price of the security at time t, Q is the risk neutral measure,

r is the risk-free rate, which is assumed to be constant here, Bt is the price of a bond,

which is assumed to evolve according to the deterministic dBt = rBtdt di�erential

equation, and S(T ) is the terminal value of the underlying. In a common �nancial

modelling case, we would de�ne a stochastic process, which could describe the dynam-

ics of the underlying price, then this would de�ne the distribution of the terminal value

of the asset price. For example, the Black-Scholes model assumes that the stock price

process follows a Geometric Brownian Motion, which implies a log-normal distribution

for the asset price. However, now we reverse this approach, and we would like to �nd

the risk neutral distribution of the asset price with which the pricing formula above

gives back the price of the security observed in the market.
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De�nition based on Márkus(2017). Let's assume that B0 = 1. If a risk neutral

distribution of the asset price process can be determined, with which the pricing formula

gives back the market price of the security with f(.) payo�, then the pricing formula

can be expressed as

BtE
Q(f(S(T ))|Ft) = exp(r(T − t))

∫ ∞
0

p(S(t), t, T, S(T ))f(S(T ))dS(T ) (6)

This distribution is called the implied distribution, and p(S(t), t, T, S(T )) is the implied

density function.

So to infer the risk neutral moments, we want to calculate this implied density

function. Let τ = T − t be the time to maturity and S(t) be the asset price at time t.

If this security is a European call option, then the price can be expressed as

C(S(T ), t,K, T ) = exp(−rτ)

∫ ∞
K

(S(T )−K) · p(S(t), t, T, S(T ))dS(T ) = (7)

exp(−rτ) ·
∫ ∞
0

1(S(T )≥K) · (S(T )−K) · p(S(t), t, T, S(T ))dS(T )

where 1(S(T )≥K) is the indicator function, and K is the exercise price of the option. We

multiply both sides of the equation with exp(rτ) and we take the derivative of both

sides with respect to the exercise price. The order of the integral and the derivative

on the left-hand side can be exchanged according to the Leibniz-rule.

exp(rτ)
∂C

∂K
(C(S(t), t, T,K) =

∫ ∞
0

∂(S(T )−K)

∂K
· 1(S(T )≥K) · p(S(t), t, T, S(T ))dS(T )+

∫ ∞
0

∂1(S(T )≥K)

∂K
· (S(T )−K) · p(S(t), t, T, S(T ))dS(T ) (8)

The derivative of the indicator function is the Dirac-delta function, so the equation
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takes the form of

exp(rτ)
∂C

∂K
(S(t), t, T,K) =∫ ∞

0

−1(S(T )≥K) · p(S(t), t, T, S(T ))dS(T ) +

∫ ∞
0

δK(S(T )) · p(S(t), t, T, S(T ))dS(T ) =

∫ ∞
K

−p(S(t), t, T, S(T ))dS(T ) + p(S(t), t, T,K) · (K −K) =

−
∫ ∞
K

p(S(t), t, T, S(T ))dS(T ) = −1 +

∫ K

−∞
p(S(t), t, T, S(T ))dS(T ) (9)

Where we used the fact that by de�nition the Dirac-delta is a function, which satis�es

that
∫∞
−∞ f(s)δt(s) = f(t) for any in�nitely di�erentiable function and that the integral

of a density function on the real line is 1. Now, we take the derivative with respect to

the exercise price again.

exp(rτ)
∂2C

∂K2
= p(S(t), t,K, T ) (10)

This is called the Breeden-Litzenberger formula. So, according to this method the

price of a European type security with payo� function f(.) is

P (t) =

∫ ∞
0

∂2C

∂K2
f(K)dK (11)

This concludes the calculation of the risk neutral density function, which was the

main aim of this section. The method of Breeden and Litzenberger (1978), introduced

here, can be used to calculate the risk neutral moments with the de�nition of the mo-

ments of a given random variable. However, this method has some practical problems

in most realistic cases, therefore in the next section I am going to introduce another

methodology to calculate the risk neutral moments without having to calculate the

risk neutral density function �rst.
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2.2 Spanning derivative securities

In this section, I am going to introduce a method to calculate the risk neutral

moments without having to calculate the appropriate density function before. This

method is mainly based on the general derivative pricing methodology of Bakshi and

Madan (2000). Bakshi and Madan (2000) argues that a pricing method based on the

state-price density does not always give closed form or analytically tractable solution

in case of a general stochastic dynamics setting. For most of the realistic derivative

pricing examples the exercise region of a derivative security depends on a process for

which the risk neutral density function is mathematically intractable or cannot even be

calculated. A good example for this phenomenon would be American options, whose

exact risk neutral densities cannot be easily characterized. The source of the problem

is the lack of analyticity of the payo� function. This motivated Bakshi and Madan

(2000) to introduce a spanning methodology based on the characteristic function of

the state price density. The main advantage of spanning payo� via characteristic

function is that the function (in most cases) is in�nitely di�erentiable. This property

makes for example the boundary condition of the Black-Scholes di�erential equation

(in terms of the characteristic function) di�erentiable and mathematically tractable as

shown by Bakshi and Madan (2000). I will calculate a simple example of replicating a

general payo� structure, which is a direct consequence of the general result of spanning

derivative securities, based on the assumptions of Bakshi and Madan (2000). However,

the general methodology is not directly related to this thesis, interested readers are

advised to read more details about the framework of Bakshi and Madan (2000) in the

original article.

The problem with using the previous method to calculate the risk neutral moments

is that we have to calculate the risk neutral density �rst. If the risk neutral density

is intractable or cannot be calculated, then it would be impossible to calculate risk-

neutral moments. To overcome this di�culty Bakshi et al (2003) proposed another

model-free method to compute the risk-neutral moments. This method is based on the

general option pricing methodology of Bakshi and Madan (2000) and use the fact that
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any payo� with bounded expectations can be spanned using positions through strike

prices. The authors aim to represent features of the risk neutral distribution with

option prices available in the market. They recover the risk neutral variance, skewness

and kurtosis in a model-free manner with only OTM call and put options. In the next

theorem, I will present a simpli�ed case of replicating a general derivative security

with linear combination of options plus underlying and risk-free bond positions.

Theorem based on Bakshi et al (2003). Let S(T ) be the terminal value of the

underlying asset, and let f be a payo� function integrable with respect to the risk neutral

density. Assume that f is twice continuously di�erentiable, then for any �xed S(t)

f(S(T )) = f(S(t)) + (S(T )− S(t))fS(S(t)) (12)

+

∫ ∞
S(t)

fSS(K)(S(T )−K)+dK +

∫ S(t)

0

fSS(K)(K − S(T ))+dK,

where fS denotes the �rst order derivative of the payo� function.

Proof. The basic idea of the proof comes from Carr and Madan (2001). The funda-

mental theorem of calculus for any �xed S(t) is the basis for the calculations below

f(S(T )) = f(S(t)) +

∫ S(T )

S(t)

fS(u)du = f(S(t)) + 1S(T )>S(t)

∫ S(T )

S(t)

fS(u)du

−1S(T )<S(t)
∫ S(t)

S(T )

fS(u)du = f(S(t)) + 1S(T )>S(t)

∫ S(T )

S(t)

[
fS(S(t)) +

∫ u

S(t)

fSS(K)dK
]
du

−1S(T )<S(t)
∫ S(t)

S(T )

[
fS(S(t))−

∫ S(t)

u

fSS(K)dK
]
du (13)

Now, integrating out the parts, which do not depend on u, and applying the Fubini
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theorem results in

f(S(T )) = f(S(t)) + 1S(T )>S(t)fS(S(t))(S(T )− S(t))− 1S(T )<S(t)fS(S(t))(S(t)− S(T ))

+1S(T )>S(t)

∫ S(T )

S(t)

∫ S(T )

K

fSS(K)dudK + 1S(T )<S(t)

∫ S(t)

S(T )

∫ K

S(T )

fSS(K)dudK

= f(S(t)) + fS(S(t))(S(T )− S(t)) + 1S(T )>S(t)

∫ S(T )

S(t)

∫ S(T )

K

fSS(K)dudK

+1S(T )<S(t)

∫ S(t)

S(T )

∫ K

S(T )

fSS(K)dudK (14)

Now, calculating the �rst integrals and rearranging the indicator functions gives the

replicating equation and concludes the proof

f(S(T )) = f(S(t)) + fS(S(t))(S(T )− S(t)) + 1S(T )>S(t)

∫ S(T )

S(t)

fSS(K)(S(T )−K)dK

+1S(T )<S(t)

∫ S(t)

S(T )

fSS(K)(K − S(T ))dK

= f(S(t)) + fS(S(t))(S(T )− S(t)) +

∫ ∞
S(t)

fSS(K)(S(T )−K)+dK

+

∫ S(t)

0

fSS(K)(K − S(T ))+dK (15)

We know from no-arbitrage pricing theory that the price of a security is the risk

the discounted risk neutral conditional expectation with respect to the risk neutral

measure (Shreve (2008) or Márkus (2017)). Based on the theorem above, and the fact

that the discounted underlying price is a martingale under the risk neutral measure,
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the price at time t is

exp(−r(T − t))EQ(f(S(T )|Ft)) = exp(−r(T − t))f(S(t)) + S(t)fS(S(t))

− exp(−r(T − t))fS(S(t))S(t) +

∫ ∞
S(t)

fSS(K)C(t, T,K)dK +

∫ S(t)

0

fSS(K)P (t, T,K)dK

= exp(−r(T − t))(f(S(t))− fS(S(t))S(t)) + S(t)fS(S(t)) +

∫ ∞
S(t)

fSS(K)C(t, T,K)dK

+

∫ S(t)

0

fSS(K)P (t, T,K)dK (16)

Where we have used that the price of a call is C(t, T,K) = exp(−r(T − t))EQ((S(T )−

K)+|Ft) and the price of the put option is P (t, T,K) = exp(−r(T − t))EQ((K −

S(T ))+|Ft). Economically the formula shows that the payo� f(S(T )) can be replicated

with f(S(t)) − fS(S(t))S(t) position in a zero-coupon bond, fS(S(t)) position in the

underlying and fSS(K) positions in a linear combination of OTM call and put options.

In this section, I have introduced a model-free method to replicate payo� functions

that are twice di�erentiable based on the general result of Bakshi and Madan (2000).

In the next section, I am going to use this result to calculate the risk neutral moments

without �rst having to explicitly calculate the risk neutral density function. After

that, I will present an alternative de�nition of these moments, which are commonly

used in the academic literature based on Carr and Wu (2008) and Kozhan et al (2013).

2.3 Implied variance

Now, I will calculate the second moment of risk neutral distribution based on the

formula from the previous section, and I will shortly introduce a market instrument

called variance swap based on Carr and Wu (2008). I note here to avoid any miscon-

ceptions that I will refer to the risk neutral second moment as the risk neutral variance.

The commonly used assumptions behind this it that the mean of log returns is zero

(for example from Cont (2001)). The notion of implied variance is in close relation to

the variance swap contract. Variance swap is a contract which gives clean exposure
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to the behaviour of market volatility. The trading parties of the variance swap agree

to exchange the realized variance of an underlying over the lifetime of the swap for a

pre-agreed strike. Therefore, the payo� of the contract is

Payoff = Notional · [RVt,T − SWt,T ] (17)

The �oating leg of the swap is de�ned based on Bollerslev et al (2009) as

RVt,T =
252

T

n∑
k=1

log

(
S2
k

S2
k−1

)
(18)

There are other ways to de�ne the annualized realized variance in the literature, but

we will use this one during this thesis. The main reasons to use this realized variance

de�nition is explained in the next chapter about realized moments. According to the

no-arbitrage argument at inception the value of a swap is naturally zero, so the �oating

leg will be

SWt,T = EQ(RVt,T ) (19)

The implied variance is referred to as the market's risk neutral expectations of return

variation. This is the reason why the �xed leg of the variance swap is the implied

variance. From the de�nition of the realized variance, we can read the payo� function

that should be used to create the replicating portfolio of the previous section. Now,

to calculate the implied variance the payo� function will be

f(S(T )) =
(

log

(
S(T )

S(t)

))2
= r2(t, T ) (20)

In the next theorem, I will calculate the price of this volatility contract de�ned by this

payo� function based on Bakshi et al (2003).
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Theorem. The price of the volatility contract, which has the payo� structure f(S(T )) =

r2(t, T ) is

V (t, T ) = exp(r(T − t))EQ(RVr,T ) =

∫ ∞
S(t)

2(1− log
(

K
S(t)

)
)

K2
C(t, T,K)dK

+

∫ S(t)

0

2(1 + log
(
S(t)
K

)
)

K2
P (t, T,K)dK (21)

Proof. Let's collect all parts of the replicating formula

fS(K) = 2 log

(
K

S(t)

)
1

K
(22)

fSS(K) =
2(1− log

(
K
S(t)

)
)

K2
(23)

The expressions before the integrals are evaluated at fS(S(t)), so the logarithmic return

will be zero, which makes the whole analytical part zero. Finally, the replication of the

volatility contract is obtained by plugging in the second derivatives to the integrals.

V (t, T ) =

∫ ∞
S(t)

2(1− log
(

K
S(t)

)
)

K2
C(t, T,K)dK

+

∫ S(t)

0

2(1 + log
(
S(t)
K

)
)

K2
P (t, T,K)dK (24)

Economically, the signi�cance of the above theorem is that we do not need risk-

free bonds or underlying positions to replicate the volatility contract. It means that

taking long positions in a linear combination of OTM call and put options is enough

to recover the implied variance from the market. This also means that the �xed leg

of a variance swap would be the annualized linear combination of OTM options. The

weighting function attached to options with di�erent strikes is
2(1−log( K

S(t)))
K2 , which

gives far higher weights to deep OTM options, than near ATM options. The intuition
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behind this structure is that when we �t an implied volatility curve in practise we can

experience a parabolic shape in the space of moneyness and implied volatility.

2.4 Implied skewness

Now, I will calculate the third moment of risk neutral distribution based on the

formula from Bakshi et al (2003). Kozhan et al (2013) introduces a trading strategy

that is the purest bet on market skewness, called skew swap. The structure of this

skew swap is similar to the market convention of the variance swap introduced in the

previous section.

The payo� function used for calculating the risk neutral skewness is

f(S(T )) =
(

log

(
S(T )

S(t)

))3
= r3(t, T ) (25)

In the next theorem, I will calculate the price of this skewness contract de�ned by this

payo� based on Bakshi et al (2003)

Theorem. The price of the skewness contract, which has the payo� structure f(S(T )) =

r3(t, T ) is

W (t, T ) =

∫ ∞
S(t)

6 log
(

K
S(t)

)
− 3
(

log
(

K
S(t)

))2
K2

C(t, T,K)dK

−
∫ S(t)

0

6 log
(
S(t)
K

)
+ 3
(

log
(
S(t)
K

))2
K2

P (t, T,K)dK (26)

Proof. Let's collect all parts of the replicating formula

fS(K) = 3
(

log

(
K

S(t)

))2 1

K
(27)

fSS(K) =
6 log

(
K
S(t)

)
− 3
(

log
(

K
S(t)

))2
K2

(28)

The expressions before the integrals are evaluated at fS(S(t)), so the logarithmic return
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will be zero, which makes the whole analytical part zero. Finally, the replication of the

skewness contract is obtained by plugging in the second derivatives to the integrals.

W (t, T ) =

∫ ∞
S(t)

6 log
(

K
S(t)

)
− 3
(

log
(

K
S(t)

))2
K2

C(t, T,K)dK

−
∫ S(t)

0

6 log
(
S(t)
K

)
+ 3
(

log
(
S(t)
K

))2
K2

P (t, T,K)dK (29)

Economically, the signi�cance of the above theorem is that we do not need risk-free

bonds or underlying positions to replicate the skewness contract. We can replicate the

implied skewness by taking long position in a linear combination of OTM call options,

and taking short positions in a linear combination of OTM put options. This contract

allows a clean play on skewness since if the return distributions have negative skewness,

then the OTM put options are priced at a premium compared to OTM call options.

2.5 Implied kurtosis

Now, I will calculate the fourth moment of risk neutral distribution based on the

formula from Bakshi et al (2003). The implied kurtosis has much less literature com-

pared to the previous two measures. The reason for this is that most empirical results

show that it has no e�ect on the underlying returns. Two articles of the most impor-

tant literature examining the implied kurtosis are Amaya et al (2015) and Harris and

Qiao (2018), who calculated the measure based on Bakshi et al (2003) and showed

that the so-called kurtosis risk premium has no relation to stock returns. I will also

test these results in my work, so here I will introduce the concept of implied kurtosis

�rst.

The payo� function used to calculate the implied kurtosis is f(S(T )) = r4(t, T ).

The next theorem calculates the implied kurtosis, like with the other two moments in

the previous sections.
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Theorem. The price of the kurtosis contract, which has the payo� structure f(S(T )) =

r4(t, T ) is

X(t, T ) =

∫ ∞
S(t)

12
(

log
(

K
S(t)

))2
− 4
(

log
(

K
S(t)

))3
K2

C(t, T,K)dK

+

∫ S(t)

0

12
(

log
(
S(t)
K

))2
+ 4
(

log
(
S(t)
K

))3
K2

P (t, T,K)dK (30)

Proof. Let's collect all parts of the replicating formula

fS(K) = 4
(

log

(
K

S(t)

))3 1

K
(31)

fSS(K) =
12
(

log
(

K
S(t)

))2
− 4
(

log
(

K
S(t)

))3
K2

(32)

The expressions before the integrals are evaluated at fS(S(t)), so the logarithmic return

will be zero, which makes the whole analytical part zero. Finally, the replication of

the kurtosis contract is obtained by plugging in the second derivatives to the integrals.

X(t, T ) =

∫ ∞
S(t)

12
(

log
(

K
S(t)

))2
− 4
(

log
(

K
S(t)

))3
K2

C(t, T,K)dK

+

∫ S(t)

0

12
(

log
(
S(t)
K

))2
+ 4
(

log
(
S(t)
K

))3
K2

P (t, T,K)dK (33)

This means that quartic payo� can be replicated by long positions in a linear

combination of OTM call and put options. In these sections I have calculated three

implied moments, where the payo� of the respective contracts were de�ned by the

appropriate polynomial of the logarithmic return of the underlying. However, there

are ways to de�ne these implied measures in the literature. I will examine these

alternative de�nitions in the next section.
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2.6 Alternative formulations

In the academic literature on empirical asset pricing other de�nitions for the risk

neutral moments have appeared mainly for the risk neutral variance and the risk neu-

tral skewness in Carr and Wu (2008) and Kozhan et al (2013). In this section, I will

argue, why I have used the de�nitions presented in the previous sections. I will illus-

trate the main di�erence based on the implied variance measure. The main di�erence

stems from the de�nition of the payo� function used to represent a given implied mo-

ment. Kozhan et al (2013) de�ne the payo� function as f(S(T )) = −2 log
(
S(T )
S(t)

)
.This

results in the following replication equation.

V (t, T ) =

∫ ∞
S(t)

2

K2
C(t, T,K)dK +

∫ S(t)

0

2

K2
P (t, T,K)dK (34)

Carr and Wu (2008) arrives to the same result with a slightly di�erent methodology.

This method to calculate the implied variance is the same as the one used by the

Chicago Board of Options Exchange (CBOE) to calculate the VIX index, which is

the most well-known indicator of expected return variance. Here, I will show that this

de�nition of implied variance contains information about the higher moments, not just

the second moments. This part is based on Du and Kapadia (2012), Chow et al (2014)

and Chow et al (2016), who criticize the formulation of the VIX index for the same

reason.

First, let RT = S(T )−S(t)
S(t)

be the arithmetic return and rT = log
(
S(T )
S(t)

)
be the loga-

rithmic return of the underlying. Let's examine the �rst order Taylor series expansion

of log(S(T )) with integral remainder.

log(S(T )) = log(S(t)) +
S(T )− S(t)

S(t)
+

∫ ∞
S(t)

−1

K2
(S(T )−K)+dK

+

∫ S(t)

0

−1

K2
(K − S(T ))+dK (35)
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Rearranging the terms results in

RT − rT =

∫ ∞
S(t)

1

K2
(S(T )−K)+dK +

∫ S(t)

0

1

K2
(K − S(T ))+dK (36)

Taking the risk neutral expectation of the both sides results in

EQ(RT )− EQ(rT ) = exp(r(T − t))
(∫ ∞

S(t)

1

K2
C(t, T,K)dK

+

∫ S(t)

0

1

K2
P (t, T,K)dK

)
(37)

Now, we want to connect this equation to the risk neutral moments, to achieve this

we apply the Taylor series expansion of the exponential function.

(1 +RT ) =
S(T )

S(t)
= exp

(
log
(S(T )

S(t)

))
=

N∑
k=0

1

k!

(
log
(S(T )

S(t)

))k
+o
(
log
(S(T )

S(t)

))N
(38)

The �rst and the second parts of the sum on the right side is 1 and rT = log
(
S(T )
S(t)

)
respectively. If we take these parts to the other side and take the risk neutral expected

value, we get the same expression as in the previous equation

EQ(RT )− EQ(rT ) =
N∑
k=2

1

k!
EQ(rT )k + o

(
EQ(rT )N

)
(39)

So to combine these equations, and factor out parts of the sum, we can see that

exp(r(T − t))
(∫ ∞

S(t)

1

K2
C(t, T,K)dK +

∫ S(t)

0

1

K2
P (t, T,K)dK

)
=

1

2
EQ(r2T ) +

1

6
EQ(r3T ) +

1

24
EQ(r4T ) + o

(
EQ(r4T )

)
=

1

2
V IX2 (40)

The main consequence of this calculation is that this replicating strategy contains
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information about not only the second moment of the risk neutral distribution, but

also about higher moments. This can cause a considerable bias for this de�nition of

the implied variance since it is documented that skewness has a prominent role in

�nancial markets. For example if the price of the underlying is on a downward trend,

then demand for put options increase and their price becomes relatively higher, than

the price of call options. Hence, the value of the volatlity contract, which can be

replicated by long positions in options, increases with the put premia. However, the

skew contract can be replicated by long positions in call options and short positions in

put options, therefore in this case its value decreases. If both e�ects are incorporated

in our indicator, then we get a biased measurment of the change of expected volatility

in the market. Chow et al (2014) show that the de�nitions based on the result of

Bakshi et al (2003) is unbiased, that's why I have decided to use that de�nition. Carr

and Wu (2008) and Du and Kapadia (2012) shows that the di�erence between the two

described measures is proportional to the jump intensity. This means that this method

would create a biased estimate for the whole family of Levy-type models. Carr and

Wu (2008) also show that the two measure are identical, if the underlying follows a

di�usion process. However, Du and Kapadia (2012) explicitly calculates the di�erence

for many popular �nancial models, like the Merton jump di�usion model (Merton,

1976) to show the dependence of the di�erence on the jump intensity.

Naturally, we do not have available data for continous options neither in my

database nor on the real market, therefore we have to apply a discretization scheme. I

chose to use a method commonly used in the literature and is presented in a detailed

way in Kozhan et al (2013). Using this discretization scheme the summation is carried

out along the available strike prices, the implied skewness would be calculated as

ISt,T = 2
∑

Ki<S(t)

(
6 log

(
Ki

S(t)

)
− 3
(

log
(

K
S(t)

))2
K2
i

C(t, T,Ki)∆I(Ki))

+
∑

Ki>S(t)

(
6 log

(
S(t)
Ki

)
+ 3
(

log
(
S(t)
Ki

))2
K2
i

P (t, T,Ki)∆I(Ki)) (41)
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,where I(Ki) are the integrators de�ned as

∆I(Ki) =


Ki+1 −Ki−1

2
, if 0 ≤ i ≤ N

0, otherwise

(42)

This concludes the section, but we will return to the results in the chapter about

Other Option-Implied Factors, since there will be factors that can be de�ned from

these results.

3 Moment Risk Premia

In this chapter I am going to introduce the concept of moment risk premia based

on the de�nitions of the respective implied moments. In the Empirical Literature

chapter, I will give a detailed introduction about most of the academic results, which

have shown that it is not the level of a given implied moment, but rather the respective

risk premia, which has strong predictive power for the underlying returns. This is the

reason, why this chapter is dealing with the concept of moment risk premia. In the

chapter �rst I will introduce the variance risk premium, then the skew risk premium

and the kurtosis risk premium. The end of the chapter is dealing with the empirical

properties of these risk premia.

3.1 Variance Risk Premium

In this section I will introduce the concept of the variance risk premium. I will

show the de�nition of the variance risk premium and also give some commonly used

explanations of the existence of the premium. The variance risk premium is the di�er-

ence between the realized variance and the implied variance V RP = RV − IV (Carr

and Wu, 2008). In the previous chapter I have introduced the variance swap market

instrument. Carr and Wu (2008) was the �rst to quantify the variance risk premium

with the help of the variance swap. Their aim was to �nd the source of the variance

25



Miklós Milán Vancsa
Empirical Portfolio Selection

based on Option Implied Measures

risk premium. Carr and Wu (2008) quanti�es the VRP using a pricing kernel. I will

show their argument now. We have seen that the �xed leg of the variance swap is

SWt,T = EQ(RVt,T ) (43)

Using the theory of measure change, we can see that for a pricing kernel Mt,T

SWt,T = EQ(RVt,T ) =
EP(Mt,TRVt,T )

EP(Mt,T )
, (44)

where P denotes the physical probability measure. Du�e (1992) showed that no-

arbitrage argument guarantees that there exists at least one such pricing kernel.

Let's introduce mt,T =
Mt,T

EP(Mt,T )
, and substitute it into the equation (44) SWt,T =

EP(mt,TRVt,T ). The expected value of mt,T is 1, so using the well-known Cov(X, Y ) =

E(XY ) − E(X)E(Y ) formula for the covariance of two random variables X and Y ,

we can decompose the �xed leg of the variance swap as

SWt,T = EP(mt,TRVt,T ) = EP(RVt,T ) + CovP(mt,T , RVt,T ), (45)

The �rst term is the time-series conditional mean of the realized variance, so the

negative of the covariance term de�nes the average return variance risk premium as

this is the di�erence between the average realized variance and the implied variance.

However, if we only follow this methodology, then we would only get an estimate of the

average pro�t and loss of a strategy handling large variety of variance swap positions.

We rather calculate the individual variance risk premium for every equity in our data,

but the calculation above gives a basis for understanding the existence of the variance

risk premium.

The only thing remained to fully de�ne the variance risk premium is to de�ne the

calculation of the realized variance. I will use the result of Andersen et al (2001),

Andersen et al (2003) and Barndor�-Nielsen and Shephard (2002), who show that

summing squared high-frequency returns we get an unbiased estimator of the inte-

grated variance. These papers show mathematically that by increasing the sampling

26



Miklós Milán Vancsa
Empirical Portfolio Selection

based on Option Implied Measures

frequency, the sum of squared returns is converging to the integrated variance with

probability 1. However, they also show that in reality microstructural e�ects are caus-

ing large noise in small frequency data, which makes the econometric analysis hard.

Most papers advise to use �ve-minute return data. Following this logic, I construct

the realized variance, as the most common method in the literature, as the sum of

squared returns for a given time frequency 1
n

RVt,T =
n∑
i=1

r2i (46)

The existence of the variance risk premium is often explained by excess demand for

protection compared to the supply of protection. The negative sign before the covari-

ance is explained as the buyer of the variance swap, who pays the �xed leg, is willing

to pay a premium in order to be protected against the increase of volatility in the mar-

ket. This conclusion is also supported by Bakshi and Madan (2000), who express the

variance risk premium as a function of the risk aversion parameter of a representative

trading agent scenario.

3.2 Skewness Risk Premium

In this section I will introduce the concept of the skew risk premium. I will show

the de�nition of the skew risk premium and give some commonly used explanations of

the existence of the premium. Kozhan et al (2013) de�nes a trading strategy that is

behaving for the market skewness just as the variance swap behaves to the variance,

therefore it o�ers a clean exposure on the evolution of the skewness on the market.

They refer to this trading strategy as the skew swap. The �xed leg of the contract is

the implied skewness, while the �oating leg is the realized skewness during the lifetime

of the contract.

Payoff = Notional[RSt,T − ISt,T ], (47)
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where IS is the implied skewness calculated in the previous chapter. The calculation

of the realized skewness is carried out by the results of Amaya et al (2015), who use

RSt,T =
√
n

n∑
i=1

r3i (48)

as the measure of realized skewness. This measure tries to capture the cubic variation

process, which is zero for a pure di�usion process. If the cubic variation is signi�cantly

di�erent from zero, then it is highly probable that there is stochastic volatility or

a jump component in the underlying process. Amaya et al (2015) notes that the

multiplier before the sum is needed to have the implied and the realized skewness on

the same scale.

The skew risk premium is de�ned as the di�erence between the implied skewness

and the realized skewness SRPt,T = RSt,T − ISt,T . Kozhan et al (2013) also showed

there is a signi�cant di�erence between their implied skewness and realized skewness,

so they de�ne the skew risk premium the same way as the variance risk premium is

de�ned.

Kozhan et al (2013) also showed that the di�erence is positive, which means that

usually investors expect more negative skewness, than what is realized in the market

previously and are willing to pay a premium to be insured against high negative

skewness.
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3.3 Kurtosis Risk Premium

In this section I will introduce the concept of the kurtosis risk premium. The

implied kurtosis and kurtosis risk premium is far less documented, than the previous

two measures. The reason for this is that many empirical research have come to the

conclusion that no moments that are higher the third moment has predictive power

in case of equity returns. This is true for both the level of implied moments and the

respective risk premia. However, as I will mention in the Empirical Literature chapter,

there are studies, which show that measures proxying the implied kurtosis does have

e�ect on the dynamics of future returns.

The kurtosis risk premium is de�ned in the same way as the two previous risk

premia, so we take the di�erence between the realized kurtosis and implied kurtosis

KRPt,T = RKt,T − IKt,T (49)

The realized kurtosis is de�ned folloing Amaya et al (2015)

RKt,T = n
n∑
i=1

r4i (50)

Amaya et al (2015) also notes that the n scaling factor is needed to make sure that

the measure has an appropriate magnitude.

In the previous three sections I have introduced three moment risk premia. For

my empirical analysis I have calculated them for monthly maturity and used this to

present the statistical properties of the risk premia in the next section and the empirical

analysis in Chapter 7. However, in the last chapter I will perform a robustness check

with two di�erent risk premia maturity to check whether the results are sensible to a

given variable construction.

29



Miklós Milán Vancsa
Empirical Portfolio Selection

based on Option Implied Measures

3.4 Empirical Properties

In this section, I will show some empirical properties of the implied moments and

the moment risk premia. Most importantly I will collect some empirical regularities

mentioned separately in some of the academic research papers on option implied mo-

ments and empirical asset pricing. I will also test these empirical facts in my own

database. There are various stylized facts regarding the empirical behaviour of stock

returns. Probably the most important article in this topis is Cont (2001), who collects

and tests the previously examined stylized facts like volatility clustering, leverage ef-

fect, gain and loss asymmetry or the conditional heavy tails, together in a consistent

way. However, according to my knowledge none has tried to achieve something similar

for this option-implied information. Naturally, there would be much more possible

empirical property to analyse, than the ones I have, but this could be a complete

topic of a separate work. In this chapter I will examine whether the implied variance,

skewness and kurtosis are priced and whether these are time-varying or not for the

equities and equity indices, which are present in my dataset?

3.4.1 Are the Moment Risk Premia Priced?

I will state that a given moment risk premia is priced on average, if the sample

averages of a given daily annualized implied moment is signi�cantly di�erent from

the respective realized moment. For example the variance risk premium is considered

as priced risk premium, if the �xed leg of the variance swap contract is signi�cantly

di�erent from the �oating leg of the instrument.

In the appendix Table 10 presents the required statistical properties of the three

implied risk premia for all equities and equity indices. The �rst columns contain the

average value of the respective monthly risk premia, the second columns contain their

standard deviation, while the third value is computed in order to decide, whether the

risk premia is priced or not. Since most of the premia series are exercising signi�cant

serial autocorrelation, the t-values are computed using the methodology of Newey and

West (1986), which can account for heteroscedasticity and autocovariance. We can
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conclude from Table 10 that both for S&P500 index (SPX) and the S&P100 index

(OEX) the VRP is signi�cantly negative with large absolute t-values, which means

the investors are willing to pay premium in order to be defended against the changing

volatility in the market. This is consistent with the result of Carr and Wu (2008),

who shows that for the S&P500 index, the S&P100 index, the Dow Jones Industrial

Index and for the NASDAQ-100 index the VRP is signi�cantly negative with strong

t-values. The sign and the signi�cance of the VRP for individual equity premia are

not so unambiguous, which is also consistent with the result of Carr and Wu (2008).

However, we can see that for the majority of the equities the VRP is priced and is

negative. So, we can conclude that on average the investors are willing to pay this

price for the protection even for individual equities.

Cont (2001) establishes that in general the skewness of the return distribution is

negative, which implies that large negative stock moves are more probable, than large

positive moves. This �nding is supported in my sample as both the realized and the

implied skewness is negative in most cases. In the table the values are displayed as

percentages in order to be comparable. For the indices we can see that the implied

skewness is bigger in absolute terms, than the realized measure, which makes the risk

premium positive. This result is consistent with the result of Kozhan et al (2013). For

individual equities the sign of the risk premium is more ambiguous, more equities seem

to be positive, therefore the market expects higher skewness on the market, than the

realized one. It is also not unambigous, whether the skewness risk premium is priced

on average. However, this does not mean that the skewness premium has no e�ect for

the return generating process as we will see later. We can also conclude from Table

10 that the properties of the kurtosis risk premium are quite similar to that of the

skewness risk premium.

3.4.2 Are the Moment Risk Premia time-varying?

In this section I will examine whether these moment risk premia are time-varying

or not and also describe some time series properties of the evolution of the premia.
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Based on Carr and Wu (2008) I will carry out this analysis by �tting an expecta-

tion hypothesis regression for all three of the moment risk premia. This time series

regression takes the following form for the variance risk premium

RVt,T = a+ bIVt,T + u (51)

The appendix contains the expectation hypothesis regression results for all three mo-

ment risk premia for every equity in my dataset. In order to check the hypothesis

that a moment risk premium is time-varying, we have to analyse the null hypothesis

for the expectation hypothesis regression that a = 0 and b=1. If a = 0 and b = 1,

then the given variance risk premium is zero and constant in time. If the slope is

not signi�cantly di�erent from one, then the realized moment and the option-implied

moment are changing synchronously, which means the respective premium calculated

from them is constant in time. The tables in the appendix contain the parameter

estimates for the a and b coe�cients, the Newey-West t-statistics, and the 95% con-

�dence interval for the beta, from which we can conclude whether the coe�cient is

signi�cantly di�erent from 1 with 5% signi�cance level.

If we analyse Table 11, we can see that for that variance risk premium both indexes

are strongly time-varying and di�erent from zero, which coincides with the result of

Carr and Wu (2008), who also showed this feature for the Dow Jones Industrial Index

and the NASDAQ-100 index. If we analyse the result for individual equities, we can

see that for all of them we can reject both null hypotheses, so we conclude that the

VRP is time-varying for every element in my sample. To illustrate this property I plot

the evolution of the variance risk premium for the S&P500 index below.

About the skew risk premium, we can conclude from Table 12 in the Appendix that

both indeces the skew risk premium is time-varying, con�rming the results of Kozhan

et al (2013). However, the results for the individual equities are not as unambiguous

as for the VRP. We can conclude that in total 20 out of the 26 elements from our

sample is time-varying, for the remaining 6 we cannot reject the null hypothesis that

the SRP is constant in time. Although, the S&P500 has time-varying skew risk premia
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Figure 1: SPX VRP series

plot below for the S&P500 SRP illustrates the di�erence between the VRP and the

SRP.

Figure 2: SPX SRP series

Lastly, we have to analyse the kurtosis risk premium. We can draw the least

meaningful conclusion from this regression model about the general dynamics of the

risk premia. The reason for this is that exactly half of the sample has time-varying

KRP, while the other half has constant KRP.

Figure 3: SPX KRP series

Concluding this section, we can regard the VRP and SRP time-varying for most

cases. However, the conclusion about KRP is not clear. These results are strongly in
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line with the results of Carr and Wu (2008) about the variance risk premium, Kozhan

et al (2013) and Harris and Qiao (2018). We can also see that all three moment risk

premia reacted to the �nancial crisis of 2008 (although it seems that it a�ected the

SRP less than the two other). There are multiple other possible empirical properties

that can be analyzed, for example the correlation between the premia, which was the

main topic of Kozhan et al (2013), or the time series properties of the risk premia.

However, as I mentioned in the beginning of the chapter, the whole empirical analysis

of the individual series could be a topic of a completely di�erent work.

4 Other Option-Implied Factors

In this chapter I am going to introduce some other measures, which are derived

from the market data of options and their volatility surfaces. These measures are

documented to have individual predictive power for the underlying returns. However,

according to my knowledge they have never been examined together. Some of these

measures try to quantify the same feature of the risk neutral distribution.

In the empirical part of the thesis, I will try to be consistent in choosing, which

type of measures are used together. Most importantly, I will try to examine, which of

these measures contain independent explanatory or predictive power from the moment

risk premia de�ned previously. Also some of these measures rather give a clear view,

whether higher order moments should be examined in the predictive framework.

4.1 Upside and Downside Variance Risk Premia

Feunou et al (2017) explored the so-called implied semivariances, and the semivari-

ance premia. The basis of their argument is that numerous studies, such as Bonomo et

al (2010) and Rossi and Timmermann (2015) have shown that there is an asymmetry

in risk-return trade-o� between responses to positive and negative market scenarios.

Intuitively, investors tend to hedge against �bad uncertainty� or downward shocks and
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not hedge against �good uncertainty� or positive shocks, since there are signi�cantly

more long positions on equity markets.

Feunou et al (2017) was inspired by these �ndings to introduce the upside and

downside variance risk premia. The authors argue that variance risk premium cannot

give a clear view of the e�ect of the option implied measures to stock return, since

they mix these two opposing features. In order to overcome this, they distribute the

positive and negative parts of the variance risk premium into two separate variables.

Feunou et al (2017) notes that the �ndings in the beginning of this section would

imply that the variance risk premium is mainly driven by the downward variance risk

premium, while the e�ect of the upside variance risk premium is more subdued. In

this section, I will introduce the upside and downside realized and implied moments

and the resulting variance risk premia.

At �rst, I will shortly introduce this decomposition method with the payo� function

of the volatility contract, which would de�ne the implied semivariances needed to

calculate the semivariance risk premia. In the second chapter, we have seen that

the security with twice-continuously di�erentiable payo� function can be spanned by

positions in bond, underlying and OTM call and put options as

f(S(T )) = f(S(t)) + (S(T )− S(t))fS(S(t))

+

∫ ∞
S(t)

fSS(K)(S(T )−K)+dK +

∫ S(t)

0

fSS(K)(K − S(T ))+dK, (52)

We have also seen that the arbitrage-free price of this claim is

exp(−rT )EQ(f(S(T )|Ft))

= exp(−rT )(f(S(t))− fS(S(t))S(t)) + S(t)fS(S(t)) +

∫ ∞
S(t)

fSS(K)C(t, T,K)dK

+

∫ S(t)

0

fSS(K)P (t, T,K)dK (53)
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Feunou et al (2017) de�nes the payo� used for the upside and downside implied

variance as

fU(S(T )) =


(

log

(
S(T )

S(t)

))2
, if S(T ) ≥ S(t)

0, otherwise

(54)

fD(S(T )) =


0, if S(T ) > S(t)(

log

(
S(T )

S(t)

))2
, otherwise

(55)

The �rst order derivatives can be calculated as previously, but again they will not be

present in the �nal replicating formula, because if we plug-in S(t), then the logarithmic

returns will be zero. The respective second order derivatives are

fUSS(K) =


2(1− log

(
K
S(t)

)
)

K2
, if S(T ) ≥ S(t)

0, otherwise

(56)

fDSS(K) =


0, if S(T ) > S(t)

2(1 + log
(
S(t)
K

)
)

K2
, otherwise

(57)

However, we can see that both fD(S(T )) and fU(S(T )) are not twice-continuously

di�erentiable at S(t), but this discontinuity is not creating in�nite integrals as shown

by Da Fonseca and Xu (2017), so we will use this de�nition. This concludes the

calculation of the replicating strategy.

EQ(fD(S(T ))) =

∫ S(t)

0

2(1 + log
(
S(t)
K

)
)

K2
dK (58)

EQ(fU(S(T ))) =

∫ ∞
S(t)

2(1− log
(

K
S(t)

)
)

K2
dK (59)

We can see from these results that V (S(T )) = EQ(f(S(T ))) = EQ(fD(S(T ))) +

EQ(fU(S(T ))).
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Now, that we have de�ned an upper and a lower implied variance, we turn to

the calculation of the upper and lower realized variance. The commonly accepted

methodology to calculate realized semi-variances was developed by Barndor�-Nielsen

et al (2008), who decomposed the realized variance as RV = RV + +RV −, where the

RV − is the downside realized variance, which is de�ned as

RV −t,T =
n∑
i=1

r2i 1ri<0, (60)

while the RV + is the upside realized variance, which is de�ned as

RV +
t,T =

n∑
i=1

r2i 1ri>0 (61)

Barndor�-Nielsen et al (2008) shows that in this way if the process de�ning the dy-

namics of the underlying have both di�usion and jump components, then for example

the downside realized variance converges to half of the quadratic variation plus the

sum of negative jumps, which is exactly what we want here.

The implied and realized semivariances de�ne the two risk premia, which we will use

in the empirical part of the thesis. The upper variance risk premium is the di�erence

between the upper realized and implied variances UV RPt,T = RV +
t,T − IV +

t,T , while

the downside variance risk premium is the di�erence between downside realized and

implied variances DV RPt,T = RV −t,T − IV
−
t,T .

In this section, I have introduced two semivariance measures, which are commonly

used in forecasting underlying returns with option implied data. In the empirical

part of the thesis, I will explore the connection of these measures to other factors in

forecasting index and equity returns.
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4.2 Volatility of volatility

Park (2013) argues that most academic papers have assigned the tail risk to jump

processes. However, there can be two sources with crucial in�uence on the left tail of

the return distribution: the jump variation and the volatility of stochastic volatility.

In a stochastic volatility setting, Park (2013) also shows that the skewness or kur-

tosis of the return distribution are proportional to the volatility of stochastic volatility.

The authors try to capture this phenomenon by linking the volatility of volatility to

the tail risk using their own so-called VVIX index. Park (2013) assumes that the VIX

index is a measure of the implied volatility of the S&P500, which can be problematic

as we have seen before. We ignore this problem here in order to be able to de�ne a

measure that is an indicator of the volatility of volatility. In the market it is possible

to trade with options on the VIX index and it is possible to download the volatility

surface of VIX option data. From this point it is possible to carry out the calculation

of implied variance as we have seen before. In this way, we get a measure, which is

an implied volatility of an implied volatility measure. The VVIX index is the second

moment of the VIX return distributions. The calculation of the second moment of the

risk neutral distribution is carried out by the method of Bakshi et al (2003). Only

di�erence is that here we want to calculate a volatility not just a second moment. Be-

low, I will calculate the implied second moment, like before, and also the risk neutral

expected value to get the real variance, which would then determine the volatility, we

are looking for.

Theorem. We will use V art+1 = EQ(r2)−(EQ(r))2 formula to calculate the variance.

The second moment is calculated as before

EQ(r2) = exp(r(T − t))
(∫ ∞

S(t)

2(1− log
(

K
S(t)

)
)

K2
C(t, T,K)dK

+

∫ S(t)

0

2(1 + log
(
S(t)
K

)
)

K2
P (t, T,K)dK

)
, (62)
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where now the S(t) is the time t value of the VIX index. The expected value is

µt,T = exp(r(T − t))− 1− exp(r(T − t))
2

IV (T − t)

−exp(r(T − t))
6

IS(T − t)− exp(r(T − t))
24

IK(T − t) (63)

So, the Volatility of volatility is calculated as

V Vt,T =
EQ(r2)− µt,T

T − t
(64)

The proof of this result follows from the implied moments calculations and also

can be found in Bakshi et al (2003). Next to the theoretical arguments Park (2013)

also provides empirical evidence that the VVIX index serves as an indicator for the

tail risk. First, he shows the VVIX is consistent with stock market decline, an increase

in volatility and a dry-up of market liquidity, which are usual features of market

crashes. He also shows that spikes in the VVIX index coincides with crisis scenarios.

The empirical investigation shows that the VVIX index has strong predictive power

for equity returns. Park also distributes the e�ect of the VVIX index into integrated

volatility of volatility and volatility jumps. He shows that most of the predictive power

of the VVIX index can be attributed to the integrated volatility of volatility.

A good feature of this measure is that since it a second moment of a return dis-

tribution, it is not a�ected highly by the largely missing deep OTM options. This

phenomenon is strongly a�ecting other, mostly jump-induced tail risk measures.

Unfortunately, this measure can only be calculated for the S&P500 since the VIX is

a measure of the implied volatility of this index. My goal in this thesis is to select my

portfolio based on individual measures, so I won't be able to use this in my empirical

analysis, but I wanted to introduce this measure in this work as a possibility.
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4.3 Tail Risk Premium

In this section I will introduce a tail risk measure, called the tail risk premium

or TRP in short. One of the most important stylized facts of �nancial markets is

that return distributions has heavier tails, than the normal distribution. It means

that a measure, which can incorporate information about the tails of the risk neutral

distribution might have explanatory or predictive power regarding future returns of

the underlying. In this section, I will return to the calculations performed in the

Alternative formulations section from the Implied moments chapter.

There are several di�erent measures in the academic literature, which try to in-

corporate this phenomenon, de�ned by for example Bollerslev et al (2015). I try to

be consistent with the previous calculations, therefore I use a tail risk measure de-

rived from the Alternative formulations section. I have shown there that the de�nition

for the implied variance used by Kozhan et al (2013) contains information about the

higher moments of the risk neutral distribution. Following those results Du and Kapa-

dia (2012) and Chow et al (2016) de�ne a risk measure, which is based on the di�erence

between the implied tail (ITt,T ) and the realized tail (RTt,T ) of the return distribution.

The implied tail was �rst de�ned by Du and Kapadia (2012) as the di�erence between

the squared VIX and the replicating portfolio of the variance contract. They argue

that this measure captures the tail of a distribution, since it only contains information

about the third and higher moments as we can see from the calculation below.
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ITt = V IX2
t − IVt =

∫ ∞
S(t)

2

K2
C(t, T,K)dK +

∫ S(t)

0

2

K2
P (t, T,K)dK

−
∫ ∞
S(t)

2(1− log
(

K
S(t)

)
)

K2
C(t, T,K)dK +

∫ S(t)

0

2(1 + log
(
S(t)
K

)
)

K2
P (t, T,K)dK

=

∫ ∞
S(t)

2 log
(

K
S(t)

)
K2

C(t, T,K)dK +

∫ S(t)

0

−2 log
(
S(t)
K

)
K2

P (t, T,K)dK

=
∞∑
n=3

2

n!
EQ(rnt+1) (65)

We can see that this measure contains information about the third and the fourth

implied moments, which are already modelled by the implied skewness (skewness pre-

mium) and implied kurtosis (kurtosis premium). This measure can be used to decide,

whether higher order moments are in statistically signi�cant relationship with the un-

derlying returns, or not. It is well-documented that the risk neutral skewness possesses

an important role in the �nancial market and many articles have shown that it has

a strong relationship with stock returns. (Du and Kapadia (2012) and Chow et al

(2017))

The realized tail de�ned by Chow et (2016) as the di�erence between the so-called

polynomial variation and the realized variance. The polynomial variation is also de-

�ned following the results from the Alternative formulations as two times the di�erence

between the e�ective returns and the logarithmic returns, so PVt,T = 2(Rt,T−rt,T ) and

RTt,T = PVt,T − RVt,T . The measure I will use is the di�erence between the realized

and the implied tails, called the tail risk premium, TRPt,T = RTt,T − ITt,T .

41



Miklós Milán Vancsa
Empirical Portfolio Selection

based on Option Implied Measures

In this section, I have de�ned a measure that tries to model the tail risk of under-

lying return distribution. There are other very popular tail risk measures, one of the

most widely used ones are the jump-based measures like the signed jump measure de-

�ned by Patton and Sheppard (2015). I wanted to use these types of measures as well,

but these can only be calculated using high-frequency data, which was unfortunately

unavailable for me when I was writing this thesis.

4.4 Term structure of Implied Moment Measures

Lou and Zhang (2016) showed that their model-free forward variance measure has

strong predictive power for equity returns in short term in 1- , 3-, and 6-month horizon.

The authors use the same methodology, which is used by CBOE to construct the VIX

index with a particular maturity. As an example from Lou and Zhang (2016): on

October 31, 2008, the VIX with 126 business days is de�ned as

V IX2
t,126 =

[
T1σ

2
1

N126 −NT1

NT2 −NT1

+ T2σ
2
2

NT2 −N126

NT2 −NT1

]N252

N126

(66)

In this formula T1 and T2, which are the number of business days to March 21, 2009

and June 20, 2009, which are expiry dates of traded SPX options, the NTi denotes

the number of business days to a given date. Following this logic the [T1, T2] forward

V IX2 term at time t is de�ned as

V IX2
t,(T1,T2)

= V IX2
t,T2−t

NT2

NT2 −NT1

− V IX2
t,T1

NT1

NT2 −NT1

(67)

The forward variance in the period τ1-ahead at time t in the period [t + τ1, t +

τ1 + τ2] is de�ned by Lou and Zhang (2016) as the appropriate forward VIX term

V IX2
t,(t+τ1,t+τ1+τ2)

. Lou and Zhang (2016) use three di�erent forward variance the 3-,

6-, 9-month forward variances as FVt,(t,t+3m), FVt,(t+3m,t+6m) and FVt,(t+6m,t+9m), and

use these measures in their forecasting framework.

Borochin et al (2018) de�nes a skew term spread from, which is the di�erence

between the long-term skewness and the short-term skewness. The intuition behind
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this spread is that they observe positive predictability with short-term skewness, which

they regard to informed-trading demand, but negative predictability with long-term

skewness caused by the so-called skewness preference (for a detailed discussion of

the informed-trading demand and the skewness preference and their relationship with

skewness the reader is advised to read the original paper, Borochin et al (2018)). The

skew term spread is simply de�ned as the di�erence between 12-month risk neutral

skewness and the 1-month risk neutral skewness. The empirical results of Borochin et

al (2018) show that the skew term spread has strong predictive power, and portfolios

with low skew term spread signi�cantly outperform portfolios with high spread in their

sample.

The empirical results of these measures are encouraging. Both measures try to get

incorporate information about the term structure of the variance or the skewness. This

would imply that the term structure of the variance or the skewness has predictive

power for the underlying return. However, the de�nitions of them are rather ad hoc,

because they only use chosen points of the term structure of the implied measures and

disregards other parts. In this section I will describe a methodology to create variables,

which incorporate the whole term structure of the variance and the skewness.

4.4.1 Diebold - Li Framework

In this section I will shortly introduce a statistical method, which helps me to

construct variables that represent the term structure of risk neutral variance and risk

neutral skewness in their entirety. The de�nition of the variables is based on the

econometric framework of Diebold and Li (2006). The problem with forecasting yield

curves (just like with volatility surfaces) is that they are multi-dimensional time series,

which makes the forecasting troublesome in most cases. Diebold and Li introduced a

methodology with which these time series can be approximated with only 3 components

with high precision. The idea of �tting the Diebold-Li framework was introduced by

Simity (2018) in his thesis.

43



Miklós Milán Vancsa
Empirical Portfolio Selection

based on Option Implied Measures

Diebold and Li aimed to create an econometric model that can be e�ective in

forecasting the evolution of yield curves. The authors work around the problem of

dimensionality with using the exponential component framework Nelson and Siegel

(1987). Diebold and Li model the term structure of yield curve as

yt(τ) = β1,t + β2,t

(1− exp(−λtτ)

λtτ

)
+ β3,t

(1− exp(−λtτ)

λtτ
− exp(−λtτ)

)
(68)

The β1,t, β2,t and β3,t are the dynamic factors. The authors argue that because of the

de�nitions of the loadings, the three components can be interpreted as the level, the

slope and the curvature of the yield curve respectively. I will illustrate this interpre-

tation in the next section. The τ denotes the maturity and the λt parameter governs

the rate of the exponential decay, so a very low λt would imply a slow decay, therefore

would better capture the structure of the curve at long maturities. This parameter

can either be �xed before �tting the model or optimized to achieve the best �t.

An alternative methodology for decreasing the dimensionality of the data would be

the Principal Component Analysis (PCA). The main di�erence between PCA and the

Nelson-Siegel framework is that here we impose a structure on the factor loadings. In

short, this means that while PCA calculates di�erent components and loadings for each

time series, the Nelson-Siegel framework uses pre-determined component loadings. The

advantage of the Nelson-Siegel approach is that the factors have clear interpretation

(level, slope and curvature), which can be problematic in the case of PCA, so the use

of the Nelson-Siegel approach makes the economic interpretation lot easier.

4.4.2 Fitting Diebold - Li Framework to Implied Moments

In this section, I will describe the results of �tting the describe framework to

individual implied variance and implied skewness series. The decay parameter of the

the Diebold-Li model can be optimized together with the regression coe�cients by

nonlinear least squares algorithm to achieve the highest R2 value, which would mean

the best possible �tted model or also can be set before �tting a model. In order

to avoid higher computational time, I used �xed λt parameter. A way to �x this
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parameter is described in the original article by Diebold and Li (2006). The decay

value determines the maturity at which the curvature loading achieves its maximum.

They picked the value that maximizes the curvature at approximately one-third of the

maximum available maturity. In my dataset I could compute the model-free implied

volatility and implied skewness for at most 3 years of maturity, so the picked lambda

value should maximize the curvature around 1 year.

The Diebold-Li model was �tted to the model-free implied volatility and implied

skewness for every equity or equity indices in the dataset. To illustrate the model,

I have plotted loadings for the implied volatility of the S&P500 index against the

available maturities.

Figure 4: Diebold-Li loadings

In general the model created a very good �t for both implied moments with R2

values ranging from 0.9 to 0.98, therefore we can conclude that these three factors are

able to model the term structure of the implied volatility and the implied skewness. I

will use these factors instead of the quite ad-hoc factors of Lou and Zhang (2016) for

the implied volatility and Borochin et al (2018) for the implied skewness.
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There are some general time series properties for the Diebold-Li coe�cients for

these implied moments. These properties are illustrated in the two plots below and

two tables in the Appendix.

Figure 5: SPX VRP factor series

The plot shows that on average the mean of the slope and the curvature are around

zero, but the variances of the series are time-varying. These features are valid in

general in my dataset and are illustrated in Table 14 in the Appendix. The table also

shows that for every equity or equity indices the coe�cients are signi�cantly di�erent

from zero. It is also important to note that the coe�cients are in general highly

autocorrelated, therefore we will have to be careful when we are using these factors

in the empirical analysis, so in Table 14 the t-values are calculated by the method

of Newey-West (1986), where the authors presented a method, which enables us to

calculcate a heteroscedasticity- and autocorrelation-consistent covariance matrix.

The next plot shows the evolution of the Diebold-Li coe�cients for the implied

skewness of the S&P500 index
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Figure 6: SPX SRP factor series

The plot shows that the coe�cients of the implied skewness are signi�cantly less

stable in time, than the coe�cients of the implied volatility. Also, in general the

coe�cients are less autocorrelated. Table 15 shows the same properties for the implied

skewness as Table 14 for the implied volatility. In general the t values are signi�cantly

smaller here, which indicates that in general the coe�cients here are less likely to be

signi�cant.

In this section, I have presented the two articles which tried to incorporate the

term structure of implied moments in their analysis. I have argued that their methods

are not able the grasp the entirety of the term structure. Therefore, I have presented

a methodology created by Diebold and Li, which is often used to model the term

structure of yield curves and �tted this method to the implied volatility and implied

skewness. In general the methodology achieved a very good �t, so we can conclude

that these factors model the term structure well, therefore I will use them as proxies

for the term structure in the empirical modelling section.

5 Empirical literature

In this chapter, I will summarize the most important empirical results regarding

the measures already introduced in the thesis. These articles are mainly focused on

the empirical connection between measures derived from the call and put options or

the implied volatility surface and the time series or cross-section of underlying returns.
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After Carr and Wu (2008) �rst investigated the existence of the variance risk pre-

mium and characterized the empirical properties of the premium, many empirical

researchers have turned their attention to the possibility of forecasting underlying re-

turns with the variance risk premium. The intuition behind this idea is twofold. For

once, as I have already mentioned, the variance risk premium is in close relation with

the risk appetite of the investors. The risk appetite has great e�ect on the demand of

the investors, which a�ects the evolution of the underlying price. The other channel

which connects the variance risk premium to the returns, is the connection between

the option market and the underlying market. The option-implied variance is the

market expectation of the variance for the lifetime of an option. This forward-looking

nature of this measure could possibly create an informational channel from the option

market to the underlying market, which might make it a good predictor for underlying

returns.

Bollerslev et al (2009) was the �rst to investigate this hypothesis closely. They

analysed the returns of the S&P500 index and used simple linear regression to predict

the next period returns. They have carried out this procedure for multiple periods

and come to the conclusion that the predictive power of the variance risk premium is

strong for short horizon, especially for 4- to 6-month horizon. They argue that the

reason behind this result is the fact that the variance risk premium is simply a proxy

for market uncertainty. Later, Bollerslev et al (2014) showed that this phenomenon

cannot be explained by the bias caused by the �nite sample, and they also showed

that the result is not speci�c to the S&P500 index, rather it is satis�ed for many

international equity markets. Another branch of this literature is concerned about

the cross-sectional variation of underlying returns. The methodologies applied by this

branch are based on from one side the philosophy of the classical Fama-French factor

model (Fama and French, 1993) and Fama-Machbeth regressions (Fama and Macbeth,

1973), on the other side the methodology is more focused on portfolio selection mainly

by the sorting or the double-sorting methods from Bali et al (2016). The articles in

this area of research are not focused on prediction of underlying returns, but rather

on �nding the cause of the di�erence in their sample between the actual returns in
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a cross-section with the help of di�erent factors. Bali and Hovakimian (2009) exam-

ined the S&P500 index and all of its constituents in their article, where they both

apply a factor model regression and a sorting methodology to examine whether the

variance risk premium and the di�erence between call and put implied variance can

explain the return di�erences. They show that both variables have signi�cant pre-

dictive power, and they also show that they contain di�erent information about the

underlying returns.

Following these results many researchers have examined whether this strong re-

lationship is speci�c to the equity markets or not. Chevallier and Sévi (2014) has

examined the predictability of the WTI oil futures market and shown that the re-

lationship between the variance risk premium and underlying return is particularly

strong in this market even after controlling for market speci�c factors. Chevallier

(2013) have come to same conclusion about CO2 markets. Bams et al (2017) analysed

this relationship on the equity, crude oil and gold markets and found the existence for

all of them. However, they showed that only the equity uncertainty is priced market-

wide, the crude oil uncertainty is only priced on oil-markets, and the gold uncertainty

is only asset speci�c. Prokopczuk and Simen (2014) analysed a pro�tability of a com-

modity market portfolio, where the short positions are selected based on the variance

risk premium. They show that the short variance swap positions have Sharpe ratio of

around 40%.

Some articles have started to examine the e�ects of decomposing the variance risk

premium on the precision of the predictive models. Feunou et al (2017) decomposed

the variance risk premium to the downside variance risk premium and the upside

variance risk premium. They have come to the conclusion that the downside variance

risk premium is the main component of the variance risk premium, and there is a

signi�cant relationship between the downside measure and equity premium. These

results were also con�rmed by Da-Fonseca and Xu (2017).

Other articles have tried to examine the relationship between underlying returns

and higher moment risk premia. Kozhan et al (2013) tried to characterize the skew risk
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premium. They show some stylized facts about the skew risk premium and conclude

that the skew risk premium and variance risk premium is closely interrelated. Harris

and Qiao (2018) analysed the predictive power of all three previously described moment

risk premia together. They conclude that the variance risk premium and the skew risk

premium are signi�cantly related to the equity returns, but the kurtosis risk premium

is not, but if they control for �rm speci�c variables, then only the skew risk premium

remains signi�cantly related to equity returns. However, Park et al (2018) showed that

the implied volatility convexity, which is a proxy for the implied kurtosis level, is a

good portfolio selection criterion. They have shown that the portfolio created by the

equities, which are in the highest quantile based on the implied convexity, signi�cantly

outperform portfolios with lower implied convexity.

The academic literature has also dealt with the concept of tail risk. The tail risk

is associated with tail of the risk neutral distribution. They commonly argue that

the predictability of underlying return is caused by the risk neutral higher moments,

which researchers try to capture with tail risk measures. There are two commonly

accepted causes of the irregularity of higher moments, the volatility of volatility and

the jump component. We have to note that these two components are not exclusive,

for example Bates (1996) developed a stochastic volatility model, which is extended

by a compound Poisson process to create a jump component. Many empirical articles

have tried to attribute the tail risk to a jump component or a volatility of volatility

and examined the relationship between the tail risk and underlying premium. Park

(2013) argues that it is the volatility of volatility, which is driving the heavy-tail of the

risk neutral distribution and �nd that his VVIX index is a good predictor of S&P500

returns. However, Patton and Sheppard (2015) argues that the main driver of market

volatility is negative return jumps. The cause of the tail risk is not decided, but

the empirical results are closely related to higher moment risk premia result, which

suggest that it is skew risk premium rather than variance risk premium that is driving

the underlying returns.

Finally, Lou and Zhang (2016) de�ned the forward implied volatility, which is de-

rived from two points from the term structure of the implied volatility. They show that
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this forward variance measure is a good predictor for stock market return. Borochin et

al (2016) also analysed the term structure of the implied skewness. Their skew spread

is simply the di�erence between two points from the term structure. They show that

portfolios created from the lowest decile of the skew spread signi�cantly outperform

other portfolios with higher skew spread. These �ndings show that the term structure

of implied measure might have signi�cant information for underlying returns.

In this chapter, I have introduced some of the most important academic literature

concerning the relationship between information derived from option prices available

on the market and the return of the underlying. The most important problem with

the literature is that as far as I know most of the research papers have not carried

out a comprehensive analysis of all the de�ned measure to understand, which has

independent predictive or explanatory power from the other measures. The table

below tries to summarize the main articles mentioned in this chapter.

Table 1: Main Empirical Articles

Article Year Underlying Measure

Bali and Hovakimian 2009 Equity VRP, Kurtosis
Bams et al 2017 Equity oil and gold VRP
Bollerslev et al 2014 Index VRP
Bollerslev et al 2009 International Indices VRP
Borochin et al 2018 Equity IS Term Structure
Chevallier 2013 CO2 VRP
Chevallier and Sevi 2014 WTI VRP
Chow et al 2014 Equity VRP, TRP
Feunou et al 2017 Equity VRP, UVRP, DVRP
Harris and Qiao 2018 Equity VRP, SRP, KRP
Kozhan et al 2013 Equity VRP, SRP
Luo and Zhang 2017 Indices IV Term Structure
Park 2013 Equity Vol of Vol
Park et al 2018 Equity Kurtosis
Prokopczuk and Simen 2014 Commodity VRP
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6 Data and Methodology

In this thesis, I have used data and carried out every calculation for the period

between January 1, 2000 and December 29, 2017. I have used smoothed Black-Scholes

implied volatility surfaces data from the OptionMetrics database. The smoothing

technique applied by OptionMetrics takes the raw Black-Scholes implied volatilities

calculated from actual options traded on the market and apply a Gaussian-type kernel

smoothing algorithm to calculate Black-Scholes implied volatility for �xed time to

maturity and delta grids for every day. Most of the options traded on the market

are American-type options. In order to calculate the raw implied volatility surfaces

OptionMetrics apply a tree-based algorithm, then applies the same kernel smoothing

technique as for European-type options. There is a detailed explanation on the exact

methodologies in the handbook of OptionMetrics (OptionMetrics, 2018). From the

smoothed implied volatility grid, call and put options are re-calculated using the Black-

Scholes formula from the �rst chapter, which are then used for the �nal calculation of

implied measures. In order to calculate the option prices I needed risk free interest

rate curves and daily stock prices. The curves were downloaded from OptionMetrics

(2018), while index and stock prices were obtained from Bloomberg (2018). I also

have to note that in most literature where the aim is to select equities, the variables

include in general traditional factors (like size, liquidity or book-to-value, etc.) for

individual equities. Unfortunately, I did not have data for these, but it would be a

good improvement to include these factors next to my option-implied measures. The

appendix contains the tickers and the full name of the equities and indices used in this

work. The number of samples were selected to keep the size of the data manageable.

Also the tickers were selected from di�erent industries, and I also wanted them to be

liquid enough and be part of the S&P500 since 2000.

As I have mentioned in the introduction of realized measures, in the academia it

is the standard to calculate the daily realized measure by summing 5-minute returns

on the appropriate power. Unfortunately, it is very hard to get intraday data with

university privileges, therefore I had to resort to daily prices. Following the method-
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ology of Kozhan et al (2013) and Harris and Qiao (2018) I took the daily logarithmic

return as a proxy variable and raised it to the appropriate power. This can cause some

di�erences for my results, but I think this was the best possible option to use. I have

considered other methodology choices, like summing for daily return and then rolling

over a day, but in this way I would use a given return multiple times, which would

introduce spurious autocorrelation into my realized measure, therefore I decided to use

the simple daily returns. It can and will be a question of future research to re-calculate

every statistical model and investment decisions, when I might be able to use intraday

stock data for equities.

The empirical goal of this thesis is twofold. First, I am trying to model the con-

nection between the de�ned measures and the daily logarithmic returns. For this

objective, my method is based on Bollerslev et al (2009), who tries to predict the

underlying return for multiple horizons with linear regressions where the independent

variable is the variance risk premium. The main methodology is the dealing with the

question of portfolio selection based on option implied measures. The methodology

used in this work is based on Gu et al (2018). In the original article the authors

apply various statistical and machine learning techniques by which they try to predict

the evolution of the cross sectional variation of stock returns based on their explana-

tory independent variables. They use more traditional factor model variables such as

market premium, size, �rm-level information (for example: earnings-to-price), indus-

try variables, liquidity proxy variables, momentum-trading speci�ce variables or price

trends.

From this point, they use linear regression, regularized linear regression (lasso and

ridge regression), principal component regression, generalized linear models, regression

trees, and regression random forests and neural networks to predict the return for their

test period. I have to note that their strategy is not dynamic, they make the learning,

the validation, and the test processes on �xed time intervals. Their �rst conclusion

is that applying non-linear predictive models, especially shallow neural networks, cre-

ate signi�cantly higher out-of-sample R2 compared to linear models. After that, they

form portfolios of the sample based on the predicted values from the di�erent predic-
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tors. They sort stocks in their sample into deciles and then form a zero cost portfolio

from the highest and the lowest deciles. They again conclude that non-linear mod-

els perform better, than linear models in the portfolio selection based on comparing

Sharpe-ratios. They also noted that in both cases momentum-trading information and

liquidity variables are the most important covariates.

In this work, I will use the same methodology to select my porfolios, except for the

fact that I will try to use a dynamic strategy. I will de�ne the models which will be

used to predict the next period stock returns in the portfolio selection section, then

I will present the results for the portfolio selection processes. The next chapter is

dealing with presenting the empirical results for both empirical goals.

7 Empirical Results

In this chapter, I will present the results from the empirical framework introduced

in the previous chapter. First, I will show the result on individual stock and index

level, then I will present the results of the quantile-portfolios based on pro�tability

and Sharpe-ratio level.

7.1 Analysing variables

In this section, I try to analyse the connection between the de�ned option-implied

variables and the underlying returns. In the main part, I will show the results for

the S&P500, but the appendix contains results for the individual equities as well.

The main goal of this section is to analyse whether the previously de�ned variables

have statistical explanatory power for the dynamics of equity returns or the result of

the portfolio selection is just a mere luck. One of the most important aim here is

to analyse whether the Diebold-Li coe�cients contain any independent explanatory

power for next day returns. It is also an important aim of this section to check whether

our built intuitions about the measures are correct, and check whether my results are in

line with previous research papers. The main text contain the results for the S&P500,
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but I will state the general conclusions as well.

The analysis will be carried out by �tting linear regressions on a selected group

of the de�ned factors and the underlying return series. The methodology here is the

same as the one used by Bollerslev et al (2009), who after calculating the variance risk

premium for the S&P500 ran the following linear regression.

1

h

h∑
i=1

rt+i = β1(h) + β0(h)V RPt,t+h + ut,t+h, (69)

where h denotes the forecasting horizon. I will carry out the same analysis for the

variance risk premium and other option implied factors for one day horizon. I will

start with the risk premia calculated directly from option-implied moments. Table

2 contains the results of seven regression models. The table shows the regression

coe�cients for the models and below them the respective Newey-West t-statistics in

grey. The last line contains the adjusted R2 values for every �tted model. We can see

that the adjusted R2 values are very small, but this is common in this research area

for example Bollerslev et al (2009).

Table 2: Regression results for the S&P500 index

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

VRP 0.5842 0.60139 0.6628
2.5143 2.5579 2.2283

SRP -12.5155 -2.30318 -2.45545
-2.8343 -0.8506 -0.981

KRP -33.5891 -32.53025
-0.4998 -0.2398

DVRP 1.611
1.8979

UVRP -0.6142
-0.7139

DSRP -41.41506
-4.1664

USRP 7.90448
1.8471

TRP -4.2018
-2.9472

R-squared 0.037 0.0083 0.007273 0.021 0.00173 0.083 0.074 0.0064

The �rst three columns contain results for univariate regression for the moment

risk premia. The �rst column shows that the variance risk premia is positively related
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to the underlying returns and this result is strongly signi�cant. This means that when

the di�erence between the realized moments and option-implied moments decreases,

then the price tends to increase. This result con�rms many previous academic results

for example Bollerslev et al (2009) and Bams et al (2017) and reinforces the perception

that the variance risk premium can be interpreted as a measure of market uncertainty.

The parameter of the skewness and kurtosis are signi�cantly higher in absolute terms,

which is caused by the fact that the SRP and the KRP are in general very small in

absolute terms. The sign of the skewness risk premium coe�cient is di�erent from

the coe�cient of the VRP, which is in line with general results from the academic

literature. The SRP has signi�cant explanatory power indicated by the relatively

large negative t-value, which shows that the skew risk premium still contains some

information about the uncertainty of the dynamics of underlying returns. However,

the adjusted R2 value here is signi�cantly lower, than for the �rst model, so it provides

less information about market returns, than the VRP regression. Although the kurtosis

risk premia has a parameter, which is large in absolute terms, it's coe�cient is not

signi�cantly di�erent from zero, which is a similar conclusion as the one drawn by

Harris and Qiao (2018).

If we analyse the results from the semivariance and semiskewness measures, then

we can come to a similar conclusion as Feunou et al (2017) and Da Fonseca and Xu

(2017). First, in Model 4 we decompose the variance risk premium into downside

and upside variance risk premium. We can observe that the downside variance risk

premium is dominating the e�ect of the VRP, while the coe�cients of the upside

variance risk premium is signi�cantly lower in absolute terms and not even signi�cantly

di�erent from zero. This con�rms the existence of the asymmetry in risk-return trade-

o� between responses to positive and negative market scenarios introduced in section

4.1. A very similar conclusion can be drawn for the upside and the downside skew

risk premia. The last column contains the result of the univariate regression, where

the independent variable is the tail risk premium. The result is closest to the results

for the skew risk premium, which indicates the established empirical property that

the higher order moments and higher order risk premia are dominated by the third
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moment and third moment premia.

Now, we turn to the analysis of the Diebold-Li coe�cients. Table 3 contains the

regression results for the models containing either one speci�c factor or all Diebold-Li

factors next to the variance risk premium.

Table 3: Regression results for the S&P500 index

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

VRP 0.5790 0.5731
1.9974 2.3468

Level 0.1006 0.5470
0.4402 1.2374

Variance Slope -0.1246 -0.1102
-0.8026 -1.1744

Curvature 0.0113 0.0740
0.0872 0.9118

Level 0.5486 0.2466
0.7367 1.0564

Skewness Slope 0.4342 -0.0718
0.4075 -0.7625

Curvature 0.1007 0.0203
0.3360 0.2446

R-squared 3.90% 3.30% 0.34% 0.21% 0.08% 0.26% 0.08% 0.01%

The �rst column contains the level, the slope and the curvature of the term struc-

ture of the implied variance. The Diebold-Li factors are highly correlated with each

other, the empirical observation underlying this correlation is the fact that when mar-

kets become turbulent the general level of the implied volatility surface and the cur-

vature of the surface increases at the same time. The columns show that none of

the factor coe�cients are statistically signi�cantly di�erent from zero. This relevant

multicollinearity can make it harder to distinguish the e�ects of di�erent components

from each other. This make it intuitive to try out models where the factors are in-

cluded individually. Unfortunately, the coe�cients of the Diebold-Li factors are not

signi�cant in these cases as well. We can come to the same conclusion about the term

structure of the implied skewness as well. I have also run these models where the

variance risk premium and individual Diebold-Li factors are also included, but the

results showed no relevant di�erences. These results imply that I have to reject my

hypothesis that the term structure of the implied variance and the implied skewness
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has signi�cant information about the dynamics of underlying returns. However, both

Luo and Zhang (2017) for the implied variance and Borochin et al (2018) showed

the signi�cance of their term structure measure for the equity return for signi�cantly

longer time horizons like 1 month, 3 months or 6 months horizons. I will brie�y touch

on the relationship between the term structure of implied moments and the equity

returns in the Robustness Check chapter of this thesis.

The conclusions drawn about the measures are true in general for the equities in my

dataset. The appendix contains two tables about the regression coe�cients of implied

moments. The coe�cients of DVRP and the UVRP are estimated together, while the

coe�cients of USRP and the DSRP are estimated together and with controlling for

the VRP. We can see that for most of the equities (with 4 exceptions) the coe�ent

of the VRP is positive. The same similarity can be observed for the SRP. About

the kurtosis, we cannot come to a clear conclusion about the sign of the moment risk

premia, but these values are in most cases not signi�cant. The sign and the magnitude

of the other measures are quite similar to the presented table about the S&P500. For

example we can see that unfortunately the estimates of Diebold-Li coe�cients are not

signi�cant. In cases when there are di�erences from these conclusions we can observe

structural di�erences (meaning that not just one parameter is di�erent but most of

them are), good example for this are the NKE, KO or even DUK in some cases. It is

also important to note that the result for the OEX completely agrees with the result

for the SPX, which is in line with previous academic research papers that were mainly

dealing with indices and not with individual equities, which gives me con�dence in my

results.

To conclude the �rst part of this empirical analysis, we can see that for SPX and

OEX are in line with the intuition about the de�ned measures and are in line with

previous academic research. About the individual equities we cannot come to such a

clear conclusion since there are some exceptions, but this has already been shown by

previous research papers for example Carr and Wu (2008).
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7.2 Portfolio selection

The last subsection would enable us to select those variables only which has shown

signi�cant results. However, as it will be shown later, some statistical models are able

to "�lter out" insigni�cant variables, and I want to test out this ability as well, so I

leave every de�ned factor in the prediction models. I wanted to check the ability of

the de�ned factors for portfolio selection with a dynamically adjusted strategy. This

would make the result closer to what could happen in a real life trading scenario. How-

ever, this makes the forecasting framework very heavy computationally. The portfolio

selection is carried out in a rolling-window manner. This means that the positions

are selected by return predictions from statistical models, which are �tted to yearly

data and then rolled-over one day after it forecasts the returns for the next day. This

process is carried out throughout the whole period of the dataset for each individual

equity. After this procedure, for every model I select the tickers belonging to the high-

est quantile of the forecasted returns every day. The equities for the lowest quantile

are also selected in order to decide on the e�ectiveness of our portfolio selection. Then

next day realized returns of the selected items are aggregated and analysed.

In this subchapter, �rst I will introduce the statistical models used in this rolling-

window framework. Then I will present the results from selecting portfolios from the

highest and lowest forecasted return quantiles. Lastly, I will try to check these results

in a simpli�ed real world market scenario as well.

7.2.1 Statistical models

In this section, I will shortly describe the statistical models used in the portfolio

selection procedure. The introduction here will not be formally detailed, since the

methodology of these statistical models is not in the main scope of this thesis. However,

the basics and the estimators will be presented, and interested readers are advised to

read for example James et al (2013) and Hastie et al (2009), on which this introduction

is based, for detailed discussions regarding the models. In this analysis I will use

linear regression, ridge regression, decision tree regression, random forest regression
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and support vector regression in order to forecast the next day returns.

The �rst model used is the simple linear regression. In this framework I �t the

linear function on year of return data and option implied data, and then I predict the

next day return. The process is then repeated for the yearly data again, but the data

is rolled over by one day. The linear regression used here is de�ned as

rt+1 = β0,t +
n∑
i=1

βi,txi,t + εt, (70)

where n is the number of independent variables. The coe�cients of the regression

model is calculated using ordinary least squares method.

The second statistical method used in this thesis is the ridge regression model,

which is a modi�ed version of the previous linear regression. The ridge model belongs

to the family shrinkage methods for regression models, and imposes a penalty on the

size of the coe�cients. This means that instead of minimalizing the sum of squared

error as in the usual least squares method, the penalized sum of squared errors is

minimalized as can be observed below.

βt = arg min
β

( N∑
i=1

(ri,t+1 − β0,t −
n∑
j=1

βj,txj,t)
2 + λ

n∑
j=1

β2
j,t

)
(71)

The λ is called the penalization parameter, which is greater than 0, and controls

the shrinkage of the model. The higher this parameter, the more the coe�cients are

driven towards zero. One of the most important advantages of the ridge regression

is that it can, to a certain extent, select out insigni�cant independent variables. The

penalization parameter is not estimated during the estimation of the model, it has to

be selected in advance. In the machine learning literature, these values are referred

to as hyperparmeters, which can be optimized before the prediction. I have carried

out this hyperparameter optimization by selecting the last month of every window as

validation set, and checked the forecasting error for the pre-de�ned hyperparameter

set. In the end the best model is selected based on the mean squared error on the

validation set and only this best model is used to predict the next day return. For the
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ridge regression the λ parameter is selected here from the set [0.01, 0.1, 0.2, 0.3, ....

0.9, 1,2]. This hyperparameter optimization signi�cantly increases the computational

time, but gives a clearer view on the investment performance of a given model.

The next model used here is closer to the �eld of machine learning, than to tradi-

tional econometrics. The model is called decision tree regression, and the main goal

of the model is to capture the non-linear connection between the independent vari-

able and the dependent variable, while also incorporating the interactions between the

independent variables. In this thesis, I have used CART (Classi�cation and Regres-

sion Trees) regression trees during the prediction process. The �tting procedure of

these regression trees can be divided into two steps. First, the space of independent

variable is divided into K number of non-overlapping regions R1, R2 ... RK . After

the splitting, for every observation falling into the same Ri region we make the same

prediction, which is basically the mean of the value of the dependent variables of those

observations that fall into Ri. In theory, the regions could be created in any shape,

but in this case the regions are selected as high-dimensional rectangles. The rectangles

are selected in order to minimize the residual sum of squares (RSS)

min
K∑
k=1

∑
i∈Ri

(rt+1 − r̂t+1) (72)

However, it would be very demanding to consider every possible K steps, so instead a

recursive binary splitting algorithm is applied, where we begin with the whole dataset

and then at every step we split the space into two, therefore two new branches are cre-

ated. This branching is then repeated for the two separate branches. After the splitting

is �nished the remaining groups are called leaves and are used for the prediction.

The amount of branching performed is called the depth of the tree. The maximum

depth of a tree can be pre-de�ned in order to avoid over�tting, This depth can be

treated as a hyperparameter just like the penalization term of the ridge regression, so

it can be optimized by the train-validation splitting method. I have carried out the

same optimization as for the ridge regression and the depth of the regression trees are

chosen from [2, 3, 4, 5]. The �gure below is just an illustration of how this method
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works in practise. The regressor there is �tted on the whole time series of the S&P500

returns and factors with maximum depth of 2.

Figure 7: Decision tree illustration

The next model is really close to the decision tree regressors and is called random

forest regression. The random forest model is one of the so-called ensemble models.

The ensemble models are in general composed of multiple learning algorithms at once

in order to improve the predictive performance. In the case of the random forest the

multiple learning algorithms are di�erently initialized decision trees on di�erent subset

of predictors. After the pre-de�ned number of trees are �tted and they performed their

individual predictions, the predictions are averaged and this will be the prediction of

the random forest model.

The number of trees used in the random forest model is a hyperparameter. In

practise 100, 1000 or even more trees can be used for a given problem. However, in

order to create a dynamically adjusted strategy with random forest with optimized

hyperparameters takes considerable computational time and power. Therefore I had

to �x the number of trees at 15 and only the depth of the tree is optimized at every

step on the same set as the individual trees. Although this is a great simpli�cation,
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the running time still takes approximately 10 hours.

The last model of this thesis is the support vector regressor (SVR), which is based

on the support vector machines, which is one of the most popular classi�cation models.

The quantitative background of the support vector regressor is more sophisticated,

than the previous models and it would be really hard to summarize in this limited

space. Therefore I recommend the reader to check the building blocks of the support

vector regression from Hastie et al (2009). Here, I only note that I have used epsilon-

SVR (so I have no control over the number of support vectors in the model, but I have

control over the margin bound) and I have used Radial Basis Function (RBF) as the

transforming kernel function. I have to note that for every model, except for the linear

regression, the hyperparameter space can be signi�cantly bigger, so the scope of the

optimization should be increased. This can increase the performance of these models

in theory.

In this section, I have de�ned the models that will be evaluated in the next sec-

tion. To �nish this section it is worth noting that if we turn to the topic of machine

learning here, it would be natural to think about using Neural Networks, Deep Neural

Networks, Recurrent Neural Networks, Convolutional Neural Networks or Long Short-

Term Memory Networks, which are the most popular forecasting methods nowadays.

Interested readers can learn more about these Deep Learning techniques from for ex-

ample Goodfellow et al (2017). The main problem with using these techniques in my

thesis is that the sophisticated learning procedure of these models takes considerable

time and computational power even for one dataset. Here I would have to carry out a

�t over 4000 times, which was impossible for me with the available time and available

computational power. This should be a topic of a later research, when I will be able

to obtain the computational power of many powerful GPU systems.
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7.2.2 Quantile results

In this section, I report and analyse the results for every introduced statisctical

model. The main indicators for the comparison are the di�erence between highest

quantile cumulated returns and the lowest quantile cumulated returns, and the Sharpe

ratios of the two quantiles.

Table 4 below presents the portfolio selection results. The table contains annualized

average returns and annualized Sharpe-ratios. The �rst section of the table corresponds

to the highest quantile, where the �rst row reports the time-series average of the

cumulated returns of the selected positions, while the third line reports the Newey-

West t-values for the null hypothesis that the average return of the highest quantile

portfolios is zero. The line between them reports the Sharpe-ratio for the selected

portfolio. The Sharpe-ratio is calculated following Sharpe (1966) as

SR =
rp − rrf
σp

, (73)

where rp is the portfolio return rrf is the risk free return, and σp is the standard

deviation of the portfolios excess return. In order to be consistent, I have used the same

riskfree rates here from OptionMetrics (2018) database as previously in the calculation

of the implied moments. The section under this contains the same three lines for the

lowest quantile portfolio.

Table 4: Portfolio Selection Results

Linear Ridge Dec. Tree R. Forest SVR

Average return 0.208 0.197 0.170 0.214 0.032
Highest Sharpe ratio 0.122 0.105 0.095 0.123 0.013

t-value 9.114 8.233 7.353 9.145 1.394

Average return -0.248 -0.170 -0.181 -0.260 0.008
Lowest Sharpe ratio -0.134 -0.101 -0.106 -0.147 -0.002

t-value -8.482 -6.419 -6.671 -9.350 0.300

Di�erence 0.457 0.367 0.352 0.474 0.025
Sharpe ratio 0.322 0.272 0.261 0.334 0.010

t-value 21.354 17.671 17.362 20.241 1.182
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Table 4 shows these variables for every previously de�ned statistical models. First,

we can observe that the support vector regression with the radial basis kernel performs

signi�cantly worse than any other introduced model. This can imply that the radial

basis kernel transformation is unnecessary and even deteriorates our ability to predict

next day returns. We can see that amongst all models the Random Forest regressor

performed the best in both the di�erence in average returns and in the Sharpe-ratios.

This is not surprising, since many previous applications have shown that the random

forest is performing quite strongly in short-term time-series predictions, sometimes

even stronger then the state-of-the-art deep learning frameworks.

What is more surprising is that the linear regression is performing signi�cantly

better than the decision tree regression and the ridge regression. This is surprising since

a linear model is able to beat a model that in theory should be able to incorporate non-

linear information as well, also in theory ridge regression should be better in selecting

important variables and handle the problem of multicorrelation between explanatory

variables. I do not have a distinct answer to explain any of these results. In my

opinion less than yearly data for training and 1 month data for validating is too

few to harness the advantages that these two models have over the linear regression.

It is also possible that the relative good performance comes from the fact that the

hyperparameter optimization should be increased as I have noted in the previous

chapter.

In this subchapter, I have shown the result of the portfolio selection based on

the option-implied factors. The result are promising since for every model the higher

quantile perform better in average returns and Sharpe-ratios as well (although the

di�erence for the SVR is not signi�cant). Among the well-performing models the

random forest showed the best results, since the average return and the Sharpe ratio

were the highest for the high quantile and the lowest for the low quantile there. The

results of the previous section are very encouraging, because it implies that our option

implied factors contain useful information for portfolio selection. However, it should be
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tested whether in a real world scenario it can be pro�table. One potential boundary for

this pro�table use of a strategy based on option implied factors is the cost of creating

such a portfolio.

7.2.3 Investing results

In the last section of the main part of my thesis, I try to carry out a naive test-

ing of the above mentioned real world trading scenario with an investing strategy

based on the option-implied measures. For this I have downloaded bid-ask prices from

Bloomberg (2018) and have assumed a transaction cost of 0.5 percent. I investigate

two trading strategies. The �rst strategy is called Long strategy, and the portfolio

here consists of long positions in equities belonging to the highest quantile of pre-

dicted returns. The second strategy is called Long-Short portfolio, which completes

the previous portfolio with short positions on the lowest quantile equities. I apply

the transaction cost when there are di�erences in the elements in the respective quan-

tiles. Naturally, these strategies are not realistic since the frequency of change in the

portfolio is unrealistically high, which means that I suspect that most of the pro�t is

eaten up by price di�erences, the bid-ask spread and the transaction cost. The Table

5 below summarizes the results for the Long strategy, for every model the �rst line

contains the results without transaction costs and the results in the second line results

are exposed to transaction costs.
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Table 5: Long Strategy Results

End Wealth Annualized Return Max Min Average

Linear
1146.807 0.86% 1234.187 590.078 966.090
1135.339 0.79% 1213.470 578.276 941.496

Ridge
1169.976 0.98% 1557.586 916.144 1202.959
1134.877 0.79% 1526.434 879.498 1174.892

Dec. Tree
1127.729 0.75% 1357.937 728.258 1073.823
1105.368 0.63% 1344.358 705.897 1046.361

Rand For.
860.322 -0.94% 1240.389 654.421 964.412
834.512 -1.13% 1203.564 641.333 931.606

SVR
1101.267 0.60% 1345.237 827.602 1009.270
1090.254 0.54% 1331.784 811.050 1003.867

The results con�rm my previous concerns that this naive strategy is really costly,

since the yearly returns are very low. What is suprising that the random forest, which

was performing the best previously, is actually has the worst result on average. This is

caused by the huge variety of equities in the portfolio, which makes this strategy the

most costly. The Table 6 summarizes the same results for the Long-Short portfolio.

The low average and lowest values are caused by the huge systematic losses during the

�nancial crisis.

Table 6: Long-Short Strategy Results

End Wealth Annualized Return Max Min Average

Linear
1237.740 1.33% 1552.085 524.560 1075.259
1225.362 1.27% 1505.522 514.069 1047.893

Ridge
1714.555 3.37% 1956.431 893.708 1317.933
1663.118 3.18% 1878.174 875.382 1287.145

Dec. Tree
1415.773 2.17% 1679.459 562.424 1078.520
1401.616 2.11% 1595.486 551.176 1050.795

Rand For.
925.759 -0.48% 1460.318 459.923 931.374
888.729 -0.74% 1401.906 441.526 899.665

SVR
1174.827 1.01% 1345.237 827.602 1009.270
1102.564 0.61% 1331.784 811.050 1003.867
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The results here are a bit more encouraging, but the yearly returns are still pretty

low. One thing worth mentioning is that the Ridge regression performs signi�cantly

better than the others in both strategies (especially for the Long-Short ones), which

can be caused by the models ability to select important variables. As I mentioned

before the aim of this section was not to de�ne a highly pro�table portfolio, but to

give a naive check whether the models are pro�table with the presence of bid-ask spread

and transaction costs. The results show that the pro�t is very low (especially on 17

years horizon), but it indicates for me that it should be possible to de�ne pro�table

strategies from the de�ned indicators. One possible idea would be to forecast returns

for the next month, and hold the portfolio constant monthly. This could make the

costs signi�cantly lower.
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8 Robustness Check

In order to give an even more solid base to my results and validate the �ndings

further, I will carry out various robustness checks. The aim of robustness check is to

examine how sensitive my results are to speci�c data de�nitions or model settings.

Basically, I will recompute the analysis of the previous chapters with slightly di�erent

settings and check the sensitivity of the results to these changes.

8.1 Portfolio Selection

It is not trivial to select the upper and lower quantiles for the long-short portfolio.

It is valid to ask, whether the good selection results seen in the main text is only valid

for the higher and lower quantiles or can be observed in other selection strategies as

well. Here I will carry out the same portfolio selection for the top and bottom third

and top and bottom �fth of the return prediction. Table 7 below shows the results for

the �fth portfolio.

Table 7: Fifth portfolio

Linear Ridge Dec. Tree R. Forest SVR

Average return 0.161 0.144 0.117 0.164 0.009
Highest Sharpe ratio 0.044 0.028 0.008 0.044 -0.008

t-value 9.422 7.812 6.677 9.204 0.511

Average return -0.011 -0.006 -0.008 -0.011 0.000
Lowest Sharpe ratio -0.213 -0.174 -0.194 -0.234 -0.076

t-value -9.2447 -5.9484 -7.5256 -10.2293 0.2325

Di�erence 0.0195 0.0135 0.0141 0.0200 0.0002
Sharpe ratio 0.2168 0.1290 0.1431 0.2258 -0.0941

t-value 22.495 19.887 16.821 21.106 1.843

We can observe basically the same ordering of the statistical models (however the

highest Sharpe values are signi�cantly smaller). Also the results again show that the

measures can be good for equity selection. Table 8 below shows the results for the

third portfolio.
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Table 8: Third portfolio

Linear Ridge Dec. Tree R. Forest SVR

Average return 0.161 0.144 0.117 0.164 0.009
Highest Sharpe ratio 0.841 0.531 0.153 0.846 -0.161

t-value 8.601 8.281 6.351 8.600 1.574

Average return -0.212 -0.114 -0.152 -0.218 0.005
Lowest Sharpe ratio -0.213 -0.174 -0.194 -0.234 -0.076

t-value -7.376 -5.993 -5.309 -8.097 0.145

Di�erence 0.373 0.258 0.269 0.383 0.004
Sharpe ratio 0.217 0.129 0.143 0.226 -0.094

t-value 22.495 19.887 16.821 21.106 1.843

This section reinforces my results that the option implied information has some

potential to help selecting equities for my portfolio.

8.2 Principal Component Analysis

As I have noted previously, it is possible to model the total term structure of

the implied moments with principal component analysis instead of the Diebold-Li

framework. This is what I will carry out in this section of the Robustness check. So

I will analyse whether the components have explanatory power for next day returns.

I have carried out the principal component analysis on the term structure of implied

variance and skewness. I have consistently taken the �rst three components out of

the PCA components to make it comparable to the Diebold-Li results. The plot blow

shows that for the SPX the �rst component dominates the other two components.
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Figure 8: PCA for the SPX IV

The Table 18 contains the same regression results as I have reported for the Diebold-

Li factors. We can see the same result that unfortunately the term structure of the

implied moments has no explanatory power for the next day equity returns.

Unfortunately, I did not have enough time to �nish, what I have planned for this

chapter, since there are possibilities to carry out other robustness checks as well. For

example it would be valid to check other regression models for the variable analysis

section to get other perspective on the connection between explanatory variables, or

it would also be useful to check the results of both the explanatory regression and

the portfolio selection with di�erent forecasting horizons. The second check would be

useful for the term structure in particular, since previous articles showed its signi�cance

to longer forecasting horizons. For the portfolio selection, it would be interesting to

check the results for less frequent portfolio rebalancing. However, as I have mentioned

I did not have the time to perform these, but in future when I will extend this research,

I should do even more robustness checks.
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9 Conclusion

In this chapter, I try to summarize the results of my thesis and also draw some

conclusions about the research questions introduced in the �rst chapter. In short, my

main question was whether information calculated from option prices available on the

market has predictive power and the ability to help portfolio creation. In order to

answer this question during my work I have de�ned measures calculated from market

prices of call and put options available in the OptionMetrics database. These measures

were calculated for two US equity indices and 24 individual equities, so I have to repeat

that my conclusions and answers can only be regarded for these observations.

In this thesis, �rst I have provided a theoretical background of calculating option-

implied information from option prices. In this part, the method of Breeden and

Litzenberger (1978) to calculate the entirety of the implied density functions, and the

method of Bakshi et al (2003) to calculate moments of the implied distribution were

introduced. Since the �rst method has some limitations, I have decided to use the

"model-free" method of Bakshi et al (2003) and have explicitly calculated the second,

third and fourth implied moments from this method. Next, I have introduced the

concept of moment risk premia for the three implied moments and tried to describe

them empirically. Following this, I have de�ned other option implied variables which

try to grasp information from the implied distribution which might be ignored by the

three moment risk premia measures and have previously showed encouraging results in

some academic research papers. For my thesis I have used a di�erent methodology to

test the term structure of the implied volatility and implied skewness. Previously this

was proxied by the di�erence between random points from the term structure of the

implied moments. For my thesis I have introduced the concept of Diebold-Li, which

tries to compress the total information of the term structure of implied variance and

implied skewness with 3-3 factors. This should, in theory, give a better view on the

connection between the term structure of implied moments and the underlying return.

After this, I have introduced previous academic research literature and data and the

methodology of the empirical analyses of this work.
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In the empirical results chapter, I have answered my research questions for the

sample available for me during writing this thesis. First, I have performed a traditional

analysis based on Bollerslev et al (2009) to check the statistical predictive power for

the next day return. We have seen that the results are in line with our intuition

about the moment risk premia and are in line with previous research. About the other

measures we have seen that the tail risk premium is quite in line with the skewness risk

premium, the e�ect of VRP is dominated by the DVRP. About the term structure,

we have seen that for once the predictive power is coming from the Level and the

Slope factors. However, they do not seem to be statistically signi�cant for next day

returns. For the main research question we have seen that there is potential in using the

de�ned measure for portfolio selection, since the selected higher quantile portfolio had

strong positive average return and has signi�cantly outperformed the lower quantile

portfolio. However, we have seen that a naive strategy based on these observations

lead to a pro�table investment, but the return is very low, since it is eaten up by

price changes, bid-ask spread and transaction costs. There I have provided some ideas

which could make real world investing results better.

I think that the results of this work are encouraging for future research. During the

thesis I have noted some potential future improvements. One of the most important

steps to increase the academic value of this work would be to carry out the same

analysis for every individual equity in the S&P500 index, and also to other indices. This

would obviously make the results more meaningful and would give a clear view on what

we can use these measure for on the market. Also it would be important to get high-

frequency data to better model the daily realized volatility. The dynamical strategy

could be enhanced by more state-of-art statistical models like the deep neural networks,

for this I would need to have signi�cantly better computational power. Lastly, I would

like to test out the performance of better strategies on more realistic market scenarios.

The results of this work are encouraging me to continue this work in these directions.
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10 Appendix

Table 9: Tickers

Ticker Company Name Industry

AMD Advanced Micro Devices Inc Information Technology
BA Boeing Company Industrials
BAC Bank of America Corp Financials
CMS CMS Energy Utilities
DIS The Walt Disney Company Communication Services
DUK Duke Energy Utilities
F Ford Motor Consumer Discretionary

FDX FedEx Corporation Industrials
GE General Electrics Industrials
GPS Gap Inc Consumer Discretionary
HOG Harley-Davidson Consumer Discretionary
IBM International Business Machines Information Technology
INTC Intel Corp. Information Technology
JNJ Johnson & Johnson Health Care
KO Coca-Cola Company Consumer Staples
MCD McDonald's Corp. Consumer Discretionary
MSFT Microsoft Corp. Information Technology
NKE Nike Consumer Discretionary
ORCL Oracle Corp. Information Technology
PFE P�zer Inc. Health Care
PG Procter & Gamble Consumer Staples
VZ Verizon Communications Communication Services
WFC Wells Fargo Financials
WMT Walmart Consumer Staples
OEX S&P 100 Index
SPX S&P 500 Index
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10.1 Empirical Properties tables

Table 10: Empirical Properties of Implied Moments

VRP SRP KRP
Mean Std t Mean Std t Mean Std t

AMD -2.713 2.733 -6.197 -1.3% 0.448 -0.457 3.06% 0.174 2.823
BA -0.785 0.653 -8.600 -0.2% 0.048 -0.662 0.10% 0.008 1.878
BAC -0.946 2.812 -2.789 -0.6% 0.255 -0.421 1.89% 0.119 1.405
CMS -1.258 1.798 -7.939 -1.5% 0.198 -1.257 0.15% 0.059 0.423
DIS -0.748 0.727 -7.750 0.0% 0.049 0.068 0.11% 0.008 2.242
DUK -0.019 0.204 -1.136 -0.1% 0.024 -0.969 0.08% 0.006 2.142
F -1.509 2.343 -4.567 -2.1% 0.400 -0.920 1.42% 0.179 1.326

FDX -0.702 0.714 -5.977 0.2% 0.031 1.130 0.06% 0.004 2.635
GE -0.666 1.177 -4.580 0.4% 0.034 1.912 0.00% 0.010 -0.091
GPS -1.338 1.341 -7.013 -0.4% 0.124 -0.584 0.39% 0.024 2.782
HOG -1.073 1.525 -4.779 0.7% 0.078 1.469 0.15% 0.015 2.463
IBM -0.558 0.686 -5.892 0.2% 0.037 0.862 0.07% 0.005 2.463
INTC -0.807 1.019 -5.215 -0.5% 0.090 -0.783 0.31% 0.019 2.410
JNJ -0.222 0.312 -5.866 0.0% 0.020 0.138 0.04% 0.004 1.703
KO -0.003 0.163 -0.131 0.0% 0.013 0.263 0.06% 0.002 2.809
MCD -0.469 0.465 -7.481 0.1% 0.016 0.829 0.02% 0.002 1.791
MSFT -0.333 0.564 -4.230 0.1% 0.050 0.413 0.20% 0.008 2.782
NKE 0.069 0.261 1.444 -0.1% 0.072 -0.334 0.32% 0.014 2.848
ORCL -0.914 1.543 -3.453 -0.1% 0.220 -0.077 0.99% 0.065 2.116
PFE -0.500 0.489 -8.576 0.0% 0.018 0.364 0.02% 0.003 2.030
PG -0.137 0.317 -3.346 -1.3% 0.191 -1.028 0.49% 0.067 1.090
SPX -0.378 0.363 -8.865 0.1% 0.006 3.066 0.00% 0.001 0.136
VZ -0.320 0.498 -5.811 -0.1% 0.021 -1.233 0.02% 0.003 1.284
WFC -0.631 2.112 -2.510 2.4% 0.187 1.773 0.69% 0.060 1.994
WMT -0.470 0.552 -5.525 0.2% 0.016 2.434 0.03% 0.002 2.433
OEX -0.365 0.398 -7.461 0.1% 0.006 4.142 0.00% 0.001 -0.615
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10.2 Time-varying regression models

Table 11: VRP Expectation Hypothesis Regression

a t b Con�dence int. R squared

AMD 0.0085 4.2345 0.1162 0.0469 0.1855 0.1236
BA -0.0016 -2.3949 0.1390 0.1163 0.1618 0.7176
BAC 0.0009 0.6486 0.1772 0.1490 0.2054 0.7759
CMS -0.0003 -0.2206 0.0790 0.0522 0.1058 0.4746
DIS -0.0027 -4.4966 0.1562 0.1359 0.1764 0.7275
DUK 0.0085 4.2345 0.1162 0.0469 0.1855 0.1236
F -0.0002 -0.1274 0.1184 0.0918 0.1451 0.5590
FDX -0.0015 -2.3551 0.1372 0.1157 0.1586 0.7056
GE 0.0010 1.3351 0.1044 0.0825 0.1262 0.6542
GPS 0.0003 0.2021 0.1074 0.0789 0.1359 0.4966
HOG -0.0014 -1.5387 0.1266 0.1101 0.1431 0.7278
IBM 0.0002 0.5742 0.1071 0.0928 0.1214 0.5694
INTC -0.0010 -0.7435 0.1524 0.1236 0.1812 0.5821
JNJ 0.0005 0.7694 0.1115 0.0591 0.1639 0.2844
KO 0.0051 8.2492 -0.1148 -0.1636 -0.0660 0.0413
MCD -0.0006 -1.9489 0.1181 0.1010 0.1351 0.6483
MSFT 0.0064 3.3600 0.0660 -0.0071 0.1391 0.0678
NKE 0.0097 9.1633 -0.0808 -0.1270 -0.0346 0.0124
ORCL 0.0018 1.0208 0.1235 0.0963 0.1508 0.5526
PFE -0.0013 -2.4280 0.1359 0.1121 0.1596 0.5838
PG 0.0038 2.4905 0.0433 -0.0513 0.1379 0.0078
SPX -0.0016 -3.7215 0.1548 0.1229 0.1867 0.7739
VZ 0.0010 2.2432 0.1409 0.1115 0.1702 0.6518
WFC 0.0022 2.3364 0.1553 0.1259 0.1846 0.7434
WMT -0.0009 -2.3983 0.1299 0.1098 0.1500 0.7491
OEX -0.0013 -3.0688 0.1414 0.1095 0.1734 0.7528
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Table 12: SRP Expectation Hypothesis Regression

a t b Con�dence int. R squared

AMD 0.0005 1.7088 -0.0317 -0.2111 0.1477 0.0004
BA -0.0003 -1.4453 -0.7601 -2.5473 1.0271 0.0061
BAC 0.0007 1.1714 3.1321 -0.4585 6.7228 0.1132
CMS -0.0017 -1.4676 0.6541 0.0677 1.2404 0.0125
DIS 0.0000 -0.1762 -0.0870 -0.3051 0.1310 0.0005
DUK 0.0005 1.7088 -0.0317 -0.2111 0.1477 0.0004
F -0.0031 -1.3366 -1.9688 -3.5937 -0.3439 0.0941
FDX 0.0003 3.0136 2.2809 0.6583 3.9034 0.0759
GE 0.0000 0.2648 0.0829 -0.6594 0.8252 0.0015
GPS -0.0012 -1.7848 -0.2843 -1.8395 1.2708 0.0008
HOG 0.0005 1.5793 0.8801 -1.1609 2.9211 0.0346
IBM 0.0000 -0.2029 0.1128 -0.6615 0.8871 0.0002
INTC -0.0007 -1.4752 0.3947 -0.5920 1.3815 0.0019
JNJ 0.0001 0.9222 2.3256 -2.7290 7.3803 0.0363
KO 0.0000 0.3007 0.2709 -0.1774 0.7193 0.0004
MCD 0.0000 0.1635 0.6613 -0.6362 1.9587 0.0148
MSFT -0.0003 -1.1149 -2.7846 -4.9022 -0.6670 0.0284
NKE -0.0003 -0.7542 -1.1241 -4.8862 2.6380 0.0001
ORCL 0.0003 1.1655 0.6625 -2.8102 4.1352 0.0037
PFE -0.0001 -1.2802 0.1133 -0.0721 0.2987 0.0017
PG -0.0014 -1.2172 -0.4420 -1.4096 0.5256 0.0001
SPX 0.0001 1.7914 1.0016 0.0505 1.9527 0.1486
VZ 0.0001 0.9556 -0.0545 -0.2814 0.1724 0.0012
WFC 0.0013 1.5520 -0.4177 -1.0690 0.2337 0.0195
WMT 0.0000 0.0083 -0.8139 -1.7478 0.1201 0.0245
OEX 0.0000 1.1487 0.5224 -0.2620 1.3068 0.0616
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Table 13: KRP Expectation Hypothesis Regression

a t b Con�dence int. R squared

AMD 0.0027 2.9622 0.5851 -0.1065 1.2766 0.0248
BA 0.0000 -0.0359 7.3114 3.1129 11.5100 0.2875
BAC 0.0045 2.2026 10.3389 8.1462 12.5316 0.6152
CMS 0.0023 1.8501 2.4347 -0.2929 5.1622 0.0423
DIS 0.0001 0.8143 9.1873 5.3448 13.0299 0.2807
DUK 0.0027 2.9622 0.5851 -0.1065 1.2766 0.0248
F 0.0069 1.2173 6.7691 3.9429 9.5952 0.0682
FDX 0.0002 2.1976 4.6536 2.2808 7.0263 0.2392
GE 0.0006 3.2721 2.0622 1.1402 2.9843 0.2961
GPS 0.0019 4.0263 4.6407 1.0700 8.2113 0.0971
HOG 0.0010 2.5040 3.8009 2.2431 5.3586 0.4504
IBM 0.0003 3.2621 3.0696 1.6819 4.4573 0.0864
INTC 0.0003 1.2458 9.8348 4.2308 15.4387 0.2279
JNJ 0.0000 0.0212 13.5435 3.2895 23.7975 0.1790
KO 0.0002 3.4461 0.0890 -3.3205 3.4985 0.0000
MCD 0.0001 2.3458 4.0144 1.3937 6.6352 0.2097
MSFT 0.0007 2.9373 8.3660 5.0231 11.7088 0.1125
NKE 0.0014 3.1626 -21.5362 -37.4213 -5.6511 0.0027
ORCL 0.0007 1.8193 6.5504 2.9888 10.1120 0.3447
PFE 0.0002 3.5185 1.4961 -0.1685 3.1608 0.0971
PG 0.0026 1.2326 -3.9410 -16.8676 8.9856 0.0001
SPX 0.0000 -2.5755 6.9949 5.5063 8.4835 0.6220
VZ 0.0000 -0.4425 6.1872 3.7098 8.6646 0.4047
WFC 0.0037 2.4992 4.7431 3.4799 6.0064 0.3690
WMT 0.0000 1.5768 5.0528 3.5344 6.5712 0.4642
OEX 0.0000 -3.0019 5.9292 4.3394 7.5191 0.6092
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10.3 Diebold-Li coe�cients

Table 14: Diebold-Li Implied volatility coe�cients

Level Slope Curvature
Ticker Mean Std t Mean Std t Mean Std t
AMD 2.001 0.727 24.339 1.304 2.705 3.414 0.865 2.593 4.036
BA 0.857 0.412 10.668 0.098 0.519 1.577 -0.329 0.617 -6.446
BAC 0.858 0.835 7.025 0.445 3.142 1.088 -0.712 2.721 -3.749
CMS 0.924 0.876 10.336 0.515 1.384 4.244 -0.897 2.285 -10.213
DIS 0.755 0.439 9.210 0.146 0.582 2.233 -0.271 0.571 -9.081
DUK 0.357 0.471 4.293 -0.267 0.495 -3.123 -0.251 0.544 -5.706
F 1.285 0.839 16.371 0.510 2.622 1.696 -0.127 1.921 -0.924

FDX 0.752 0.426 8.302 0.113 0.518 1.590 -0.223 0.445 -8.762
GE 0.664 0.707 5.358 0.157 0.792 1.978 -0.379 1.084 -6.202
GPS 1.097 0.708 8.345 0.525 1.003 4.409 -0.342 1.037 -7.012
HOG 0.927 0.608 8.962 0.392 1.385 1.984 -0.346 1.216 -5.210
IBM 0.587 0.398 6.644 0.104 0.476 2.049 -0.256 0.572 -6.292
INTC 0.831 0.580 7.007 0.211 0.731 2.223 -0.295 0.647 -8.625
JNJ 0.341 0.183 11.539 -0.047 0.226 -2.169 -0.222 0.275 -12.779
KO 0.171 0.141 7.838 -0.092 0.121 -6.593 -0.218 0.228 -11.518
MCD 0.527 0.348 7.659 0.042 0.271 1.613 -0.219 0.363 -10.810
MSFT 0.548 0.342 9.077 -0.075 0.407 -1.542 -0.229 0.498 -7.401
NKE 0.077 0.185 1.607 -0.014 0.064 -3.205 -0.065 0.170 -5.325
ORCL 0.872 0.704 5.404 0.332 1.215 1.825 -0.237 1.057 -3.473
PFE 0.605 0.422 7.410 0.019 0.300 0.737 -0.249 0.404 -12.513
PG 0.295 0.200 9.295 -0.078 0.220 -3.413 -0.226 0.311 -9.339
SPX 0.492 0.195 14.972 -0.046 0.341 -1.217 -0.187 0.357 -6.570
VZ 0.526 0.350 8.860 -0.109 0.450 -2.176 0.140 0.605 3.607
WFC 0.567 0.783 5.032 0.295 1.997 1.163 -0.394 2.060 -2.684
WMT 0.588 0.459 5.270 -0.003 0.290 -0.128 -0.264 0.377 -11.160
OEX 0.413 0.239 9.724 0.017 0.349 0.414 -0.140 0.369 -4.734
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Table 15: Diebold-Li Implied skewness coe�cients

Level Slope Curvature
Ticker Mean Std t Mean Std t Mean Std t
AMD 2.861 2.534 6.067 -2.437 2.276 -5.778 -5.507 4.528 -6.982
BA 0.233 0.553 1.677 -0.178 0.480 -1.495 -0.569 0.995 -2.238
BAC 0.428 1.402 2.205 -0.331 1.246 -2.017 -1.080 2.518 -2.765
CMS 0.085 1.124 0.927 -0.037 1.058 -0.409 -0.443 1.690 -4.011
DIS 0.287 0.651 1.748 -0.231 0.565 -1.655 -0.633 1.176 -2.142
DUK -0.515 2.181 -1.836 0.449 1.936 1.729 0.934 3.781 2.154
F 0.700 2.056 2.060 -0.577 1.875 -1.880 -1.480 3.451 -2.784

FDX 0.376 0.766 1.676 -0.300 0.665 -1.544 -0.842 1.385 -2.128
GE -0.094 0.790 -0.802 0.103 0.716 0.958 0.007 1.187 0.041
GPS 0.436 1.146 1.639 -0.334 1.011 -1.435 -1.087 2.065 -2.332
HOG 0.270 0.883 1.543 -0.195 0.779 -1.266 -0.768 1.504 -2.587
IBM 0.261 0.570 1.668 -0.207 0.489 -1.571 -0.598 1.071 -1.965
INTC 0.321 0.819 3.002 -0.252 0.709 -2.898 -0.762 1.523 -2.769
JNJ 0.148 0.284 2.682 -0.113 0.236 -2.531 -0.359 0.570 -3.042
KO 0.279 0.387 3.965 -0.226 0.325 -3.933 -0.596 0.767 -4.052
MCD 0.235 0.449 2.530 -0.189 0.386 -2.377 -0.518 0.829 -2.990
MSFT 0.254 0.758 1.820 -0.207 0.667 -1.754 -0.546 1.346 -2.064
NKE 0.042 0.141 1.988 -0.031 0.117 -1.832 -0.105 0.286 -2.325
ORCL 0.545 1.246 1.464 -0.448 1.091 -1.406 -1.165 2.298 -1.650
PFE 0.163 0.533 2.141 -0.125 0.460 -1.974 -0.400 0.976 -2.478
PG 0.200 0.414 2.879 -0.158 0.347 -2.852 -0.453 0.820 -2.921
SPX -0.088 0.412 -1.011 0.086 0.352 1.171 0.092 0.777 0.539
VZ 0.328 0.474 3.557 -0.284 0.421 -3.418 -0.560 0.770 -4.326
WFC 0.084 1.079 1.117 -0.037 0.991 -0.545 -0.443 1.358 -3.012
WMT 0.327 0.677 1.757 -0.265 0.580 -1.684 -0.702 1.266 -1.969
OEX 0.039 0.254 0.779 -0.019 0.219 -0.439 -0.170 0.469 -1.808
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10.4 Regression coe�cients

Table 16: Explanatory regression coe�cients A

VRP SRP KRP DVRP UVRP TRP DSRP USRP

AMD 0.222 3.240 0.785 -0.611 -0.591 -2.060 -2.111 0.414
2.178 0.876 0.104 -1.192 -1.468 -0.841 -1.314 2.663

BA 0.533 -3.673 51.564 1.436 -0.097 -23.668 -5.129 3.091
2.421 -0.215 1.019 1.181 -0.180 -2.969 -2.146 2.440

BAC 0.208 -4.770 12.363 0.431 0.218 -1.168 0.883 -0.340
1.534 -0.465 1.496 0.241 1.600 -0.518 1.077 -0.345

CMS 0.210 -0.584 10.037 0.672 0.323 -4.586 -0.882 0.217
2.042 -1.531 1.694 0.607 1.715 -0.759 -0.558 2.149

DIS 0.495 -9.730 72.075 0.831 0.237 -9.614 2.144 0.770
2.247 -0.813 1.315 0.533 0.480 -1.675 0.674 1.692

DUK -1.786 -0.312 -62.058 -3.888 0.663 -4.968 -1.623 0.327
-2.442 -1.785 -0.044 -0.666 1.268 -1.431 -0.325 2.524

F 0.115 0.447 3.127 0.241 0.181 0.380 0.482 0.026
0.922 0.249 0.806 0.338 0.797 0.155 0.205 0.735

FDX 0.435 -42.097 170.298 0.565 0.326 -16.624 4.411 3.567
2.057 -3.776 1.792 0.655 0.548 -1.557 1.387 0.876

GE 0.286 -22.825 14.792 0.973 0.244 -14.246 -2.291 0.410
1.909 -1.843 0.819 0.383 0.757 -2.261 -0.304 1.341

GPS 0.198 -2.073 -0.281 0.610 -0.064 -4.354 -1.872 1.071
1.716 -0.337 -0.017 0.723 -0.154 -1.712 -1.586 1.634

HOG 0.230 -18.697 14.593 0.739 0.663 -7.351 -2.618 0.975
1.619 -1.587 1.475 0.521 2.383 -1.652 -0.569 1.298

IBM 0.161 -13.753 -3.288 0.904 0.306 -17.163 -6.634 2.295
0.934 -0.795 -0.070 1.748 0.576 -2.886 -1.424 1.774

INTC 0.536 -10.707 70.742 0.906 -0.052 -8.489 2.934 0.578
2.845 -2.048 1.269 0.941 -0.143 -1.822 0.644 2.085

JNJ 0.252 0.580 -160.489 1.233 0.072 -29.096 -7.745 1.069
1.011 1.906 0.025 1.551 0.123 -2.409 -0.675 1.810

KO -0.884 -171.383 -440.997 -4.414 -0.169 -35.295 5.341 -14.843
-1.476 -2.685 -1.633 -0.854 -0.280 -3.011 2.337 -2.449

MCD 0.312 -9.751 59.826 -0.640 -0.070 -16.228 -0.126 1.189
1.415 -0.401 0.855 -0.022 -0.083 -1.354 -0.446 1.036

MSFT -0.021 -17.904 -119.122 -0.035 -0.153 -11.397 -2.434 0.982
-0.098 -1.419 -1.578 -0.637 -0.329 -3.586 -0.487 0.042

NKE -2.554 -0.626 -83.915 -6.692 0.411 -20.695 -0.175 1.377
-2.185 -0.071 -1.617 -0.061 0.947 -1.760 -0.680 2.459

ORCL 0.275 -3.069 22.393 -0.844 -0.020 -5.566 -3.042 1.458
2.323 -0.280 1.025 -1.272 -0.072 -1.401 -1.610 2.769

PFE 0.244 -11.191 -4.751 -0.506 -0.163 -37.051 -0.218 0.095
0.982 -0.716 -0.163 -0.060 -0.234 -2.786 -0.066 0.940

PG 0.043 2.563 -7.909 -0.271 0.111 -28.528 -1.652 0.239
0.133 2.881 -3.573 -2.033 0.746 -1.448 -0.968 0.297

VZ 0.167 7.538 -15.608 -0.173 0.404 -13.819 -5.939 5.224
0.803 0.526 -0.254 -1.505 0.527 -2.361 -2.262 0.564

WFC 0.071 0.203 -1.404 -0.824 0.110 -1.352 -4.827 0.868
0.432 0.045 -0.198 -1.370 1.263 -0.680 -1.041 1.249

WMT 0.033 -12.737 -69.831 0.176 0.203 -26.745 -2.428 3.508
0.158 -0.522 -0.741 0.386 0.303 -2.154 -0.927 0.279

OEX 0.518 -11.818 121.939 1.600 0.257 -50.357 -5.204 -7.305
2.475 -3.571 1.603 0.671 0.516 -4.122 -0.973 -1.920
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Table 17: Explanatory regression coe�cients B

Vlevel Vslope Vcurvature Slevel Sslope Scurvature

AMD 0.269 -0.018 -0.149 -0.055 0.070 0.019
1.285 -0.297 -2.763 -0.851 0.932 0.581

BA -0.123 0.030 0.052 -0.030 0.039 0.009
-0.569 0.294 0.591 -0.268 0.304 0.143

BAC 0.199 0.034 -0.036 0.042 -0.042 -0.037
2.065 1.734 -1.351 0.818 -0.754 -1.180

CMS 0.122 0.031 -0.009 -0.011 0.020 -0.022
2.231 1.161 -0.377 -0.383 0.650 -0.868

DIS 0.200 -0.035 0.044 -0.020 0.024 0.009
1.070 -0.349 0.384 -0.188 0.198 0.142

DUK 0.373 -0.328 -0.411 0.118 -0.127 -0.075
1.227 -1.108 -1.692 1.277 -1.222 -1.407

F 0.139 0.062 0.058 0.014 -0.020 -0.001
1.329 2.389 1.433 0.348 -0.464 -0.028

FDX 0.150 0.035 0.078 0.061 -0.067 -0.037
0.959 0.343 0.679 0.867 -0.851 -0.912

GE 0.087 0.001 0.024 -0.023 0.024 0.020
1.141 0.015 0.570 -0.444 0.425 0.617

GPS 0.119 -0.011 0.115 0.053 -0.059 -0.031
0.903 -0.163 2.113 0.800 -0.785 -0.818

HOG 0.080 0.070 -0.068 -0.057 0.064 0.024
0.650 1.765 -1.390 -0.796 0.814 0.518

IBM 0.035 0.016 -0.018 -0.038 0.042 0.024
0.222 0.154 -0.248 -0.448 0.434 0.501

INTC 0.034 -0.077 0.124 0.037 -0.041 -0.020
0.205 -0.954 1.494 0.426 -0.418 -0.410

JNJ 0.085 0.011 -0.028 0.056 -0.058 -0.038
0.326 0.089 -0.216 0.404 -0.357 -0.535

KO -0.189 0.225 0.036 -0.075 0.094 0.033
-0.514 0.577 0.156 -0.602 0.643 0.505

MCD 0.498 0.092 0.046 0.096 -0.111 -0.053
2.798 0.489 0.388 0.836 -0.835 -0.827

MSFT 0.184 -0.110 -0.066 0.000 0.004 -0.003
0.774 -0.752 -0.534 0.003 0.046 -0.066

NKE 1.342 -1.362 -0.955 0.405 -0.471 -0.212
0.461 -0.413 -0.639 0.524 -0.501 -0.576

ORCL 0.100 0.026 0.030 0.020 -0.017 -0.016
0.827 0.614 0.614 0.360 -0.283 -0.543

PFE -0.009 0.158 -0.017 -0.080 0.091 0.044
-0.058 1.160 -0.127 -0.905 0.893 0.872

PG 0.234 -0.105 -0.058 0.083 -0.094 -0.048
0.864 -0.770 -0.442 0.951 -0.922 -1.021

VZ 0.181 0.088 -0.062 -0.008 0.003 0.021
1.065 0.997 -0.807 -0.069 0.021 0.288

WFC 0.046 0.013 0.004 -0.033 0.040 0.005
0.726 0.809 0.378 -0.802 0.880 0.133

WMT 0.016 -0.138 0.073 -0.007 0.006 0.007
0.139 -0.952 0.741 -0.116 0.084 0.203

OEX 0.172 -0.036 0.063 -0.239 0.279 0.127
0.870 -0.415 0.745 -1.683 1.719 1.554
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Table 18: PCA regressions

VRP1 VRP2 VRP3 SRP1 SRP2 SRP3

AMD -7.01E-05 -1.144 1.636 -7.01E-05 -1.961 8.308
-0.47 -2.670 0.628 -0.47 -1.683 1.740

BA 2.99E-05 -2.326 -6.332 2.99E-05 3.036 -50.496
0.44 -2.585 -1.244 0.44 1.133 -2.583

BAC -2.60E-05 -0.691 1.484 -2.60E-05 -1.930 -12.139
-0.35 -1.139 0.636 -0.35 -0.600 -1.069

CMS 1.20E-04 -1.103 -0.299 1.20E-04 -1.411 -17.346
1.54 -2.365 -0.159 1.54 -0.922 -2.498

DIS 1.02E-04 -1.941 -5.423 1.02E-04 -1.326 -30.627
1.44 -2.375 -1.181 1.44 -0.554 -1.527

DUK 2.59E-05 -3.592 -11.608 2.59E-05 -3.378 -7.033
0.27 -1.004 -2.125 0.27 -2.079 -0.716

F 1.51E-04 -1.131 -4.413 1.51E-04 -2.580 1.351
1.81 -1.659 -1.271 1.81 -1.218 0.160

FDX 2.30E-06 -1.276 -6.689 2.30E-06 -0.148 -16.623
0.04 -1.467 -1.190 0.04 -0.072 -0.910

GE 6.23E-05 -1.261 0.806 6.23E-05 -2.682 -26.135
0.97 -1.907 0.194 0.97 -1.052 -3.079

GPS 7.64E-05 -0.779 1.605 7.64E-05 -2.313 -5.171
0.78 -1.637 0.528 0.78 -1.128 -1.001

HOG -2.82E-05 -1.156 -7.732 -2.82E-05 -3.369 -14.822
-0.38 -1.674 -2.326 -0.38 -1.243 -1.300

IBM 9.15E-06 -0.900 -3.364 9.15E-06 -1.024 -12.726
0.14 -1.239 -0.738 0.14 -0.418 -0.714

INTC 8.02E-05 -1.623 -3.460 8.02E-05 3.077 -2.220
0.87 -2.607 -0.621 0.87 1.254 -0.212

JNJ 9.53E-06 -1.583 -1.566 9.53E-06 1.327 -21.380
0.21 -1.504 -0.311 0.21 0.320 -1.026

KO 4.05E-05 -1.449 18.653 4.05E-05 -5.251 -29.236
0.78 -0.979 1.709 0.78 -1.659 -0.810

MCD 5.71E-05 -1.795 -1.673 5.71E-05 0.351 -43.897
1.03 -2.162 -0.342 1.03 0.120 -2.310

MSFT 1.17E-04 -0.975 -0.645 1.17E-04 1.267 -20.722
1.50 -1.222 -0.161 1.50 0.734 -2.066

NKE 6.12E-05 11.704 2.532 6.12E-05 -6.735 116.701
0.80 1.820 0.049 0.80 -0.717 2.087

ORCL 7.96E-05 -1.149 -2.940 7.96E-05 -1.711 -14.611
0.81 -2.495 -0.762 0.81 -1.072 -1.711

PFE 3.23E-05 -0.750 -2.585 3.23E-05 -1.071 -6.842
0.59 -0.854 -0.483 0.59 -0.410 -0.308

PG 1.86E-05 -1.347 4.440 1.86E-05 -3.640 -8.546
0.30 -1.189 0.558 0.30 -0.900 -0.576

VZ 4.97E-05 -1.160 -1.040 4.97E-05 0.900 -9.655
0.83 -1.201 -0.299 0.83 0.364 -0.443

WFC 9.64E-06 -0.477 -3.149 9.64E-06 -0.716 5.533
0.18 -0.712 -0.943 0.18 -0.233 0.609

WMT 1.76E-05 -0.600 0.353 1.76E-05 -0.957 -4.399
0.29 -0.805 0.068 0.29 -0.384 -0.311

OEX 6.03E-05 -2.133 -6.236 6.03E-05 4.334 -46.254
1.57 -2.105 -1.132 1.57 1.325 -2.156
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