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I INTRODUCTION

I Introduction

The last financial crisis shed light on the vulnerability of the financial system. The bank-

ruptcy of Lehman Brothers in 2008 was the signal that dense networks exist in the financial

sector, which can pose systemic risk for the whole system. The banks were identified as the

primary transmitters of spillovers, but the bailout of American International Group (AIG)

demonstrated that insurance companies could get near to bankruptcy.

Moreover, Nyholm (2012) emphasized that the insurance companies are as important,

as banks posing systemic risk, despite the insurance sector remained less analysed. If in-

surance companies were included in researches, they did not exceed sectoral or sometimes

individual-level analysis, which missed providing a full overview of risk structure in the in-

surance branch, while the banking sector was deeply reviewed.

The importance of banks is easy to understand, thus the banks are "classical" actors of

financial markets, which implied an increased interest in the literature. While other entities,

e.g. insurers, did not stand in the spotlight. Nevertheless, several similarities and differences

can be observed between insurers and banks, which makes a relevant research topic identi-

fying the characteristics of their behaviour in financial networks.

To understand the main similarities and differences, I summarize in short, the classical

insurance and banking activities, more precisely the life- and non-life insurance and lending.

The traditional insurance activities mean that the insurance companies take over one

part of the whole risk from the policyholders for some insurance premium, and the money is

invested in different assets to assure financial background for the future uncertain pay-offs

(Insurance Europe 2014, p.10).

The stylized balance sheet of an insurance company helps to understand the structure of

the most important assets and liabilities and the possible risk factors. Table 1 highlights that

the most significant liabilities of the insurance companies derive from the collected insur-

ance premium (policyholder liabilities), which are reserved by the institutions. To fulfill the

liabilities, they invest in different assets represented by fixed assets in the balance sheet.

While in the balance sheets of banks, the dominating items among assets are the loans,

and between liabilities the deposits. This division is in accordance with the lending activity

of the banks. Moreover, the banks also have liquidity reserve, while the duration of the assets

is usually longer than the duration of the liabilities.

Naturally, the balance sheet of insurers and banks contains some equity, which is in-

evitable for running the business on the market.

However, in practice, the banking and insurance activities are overlapping, thus banks

provide insurance products, and insurance companies also utilize financial assets, like unit-

linked life insurance products, insurance-linked-securities as cat bonds (Szüle 2015, p.16-

17.), which can cause the mixture of existing risk sources at the institutional level.

The risk sources also differ in the two cases. For insurers, the problem should be divided

1



I INTRODUCTION

Balance sheet of insurers Balance sheet of banks
Assets Liabilities Assets Liabilities

+Fixed assets +Equity +Liquidity reserve +Equity
+Policyholder liabilities +Loans +Deposits

Source: Based on the illustration of Szüle (2015) (Szüle 2015, Insurance Europe 2014, p.15,
p.23)

Table 1: Stylized balance sheets of insurers and banks

into two parts, the life-insurers must cover life insurance risk (e.g., longevity, investment). In

contrast, the non-life insurers mainly depend on the non-life insurance risk. However, the

non-life-insurance risk has a higher proportion in the case of non-life insurers, than the life

insurance risk in the case of life insurers (Oliver Wyman and Company 2001, p.23). Although

for the life insurers, the asset-liability matching poses a higher risk, thus they must invest

long term assets to be able to provide services in the far future.

There are some similarities between the risks of the two branches. Szüle (2015) pointed

out that the insurance and banking activities include common features, while both fields

depend on external effects, like natural disasters or non-performing loans, which can have a

severe negative impact on the profitability and solvency of the institutions (Szüle 2015, p.19).

Besides, both institutions use risk preventing mechanisms, like credit rating or medical ex-

amination to reduce possible losses.

However, as I have mentioned, the duration of the liabilities can differ significantly. At

the same time, the deposits of the banks are easier available for the customers in compari-

son to the policyholder liabilities. Namely, the former is strictly regulated, and deductions

are applied for repurchased or cancelled contracts to avoid anti-selection on the insurance

market.

Another common point is, that the financial networks play an important role in both

markets, which can be a possible source of systemic risk, as the banks are generally highly

interrelated because of their lending activities1 and money transfers. So, the weak perfor-

mance of a bank can spill over to other parts of the network. Until, in the case of insurers,

the reinsurance activity can create deep linkages, although the reinsurers rather reduce the

risk of primary insurers, than jeopardize their solvency (Insurance Europe 2014, p.19).

The comparison highlighted that the risks originating from traditional business activi-

ties are not homogenous in the case of insurers, while life and non-life insurers face other

types of risks, or the structure of risk can be different. Despite this finding, as far as I know,

1Two main theories describe the mechanism of lending: endogenous money theory and financial interme-
diation theory. According to the endogenous money theory, banks are money creators, and their transactions
can increase the importance of liquidity management and pose higher systemic risk. For more detail, see the
publication of Jakab and Kumhof (2015).

2



I INTRODUCTION

nobody analysed the connections between insurance branches granularly compared with

banks. Only as a whole industry or separate groups, like reinsurers, life and non-life insur-

ers were involved in scientific research2. Also, I am aiming to understand the inter-sectoral

linkages of the insurance industry and its relationship with the banking sector and identi-

fying the critical institutions providing a detailed overview of the structure of the insurance

market and its relationship to banks.

The analysis is based on the Granger-causality approach measuring the directional rela-

tionship between companies, branches and sectors.

For the individual-level analysis, I applied the modified framework of Hué et al. (2019)

proposed by Song and Taamouti (2019), which based on pairwise Granger-causalities among

firms, including the first principal component calculated from the remaining data (exclud-

ing the original dependent and independent variables). This method makes it possible to

reconstruct the real financial network filtering out spurious and indirect linkages, which is a

considerable deficiency of several methodologies.

Applying the method of Song and Taamouti (2019) showed a different ranking of sys-

temically important financial institutions, but similarly, the widely used frameworks cannot

conclude on a clear order of vulnerable companies.

However, the sectoral level analysis resulted that the number of real connections dropped

dramatically during the financial crisis, which was never measured according to my best

knowledge. This means that during distressed periods the amount of non-real connections

increases, while the real linkages diminish.

The sectoral level investigation presented that the banks with high market capitalization

had a central role in the network. At the same time, small banks can also become SIFIs, but

their group did not pose a high risk, only some individual institutions.

As far as the insurance industry is concerned, the North American insurance sector was

more interconnected than the European one. In the pre-crisis period, the North American

P/C insurers were the most significant sector. Still, after the turmoil, the importance of Eu-

ropean and North American life insurers have grown.

The structure of the document organized as follows. First of all, I overview the definition

and main characteristics of systemic risk in section II, after that part III summarizes the main

findings of the literature in order to reveal relevant questions and methods and discuss the

deficiencies and merits of the literature. In section IV, I describe the used methods and data

for the investigation, the forthcoming part (V) shows the results of the econometric analysis.

VI part summarizes the main findings and suggests the path of future research. Last but not

least, I conclude the empirical study in section VII.

2According to my best knowledge, only Kaserer and Klein (2019) distinguished more separate groups in the
insurance sector, but their analysis also missed investigating the sectoral level connectedness.

3



II SYSTEMIC RISK

II Systemic risk

Understanding the basic concept between risk and uncertainty is a fundamental step to

define systemic risk. The difference between risk and uncertainty is statistical measurement.

The former one is gaugeable, while the later is not (Medvegyev 2011). Nevertheless, the sta-

tistical measurement of risk is complicated because it is a latent variable, so it can only be

approximated (Kovács 2011).

The systemic risk is hard to define (Benoit et al. 2017), so it is not surprising that the

first time the European Central Bank only highlighted the concept of systemic risk (Euro-

pean Central Bank 2009, p.134). Also, systemic risk occurs via an intense systemic event that

effects important institutions and markets.

The International Monetary Fund’s Financial Stability Board gave a more sophisticated

characterization including the depiction of effects of a crisis (International Monetary Fund

et al. 2009, p.2): systemic risk is "a risk of disruption to financial services that is (i) caused by

an impairment of all or parts of the financial system and (ii) has the potential to have serious

negative consequences for the real economy."

While the Group of Ten uses a broader approach for systemic risk. According to the Re-

port on Consolidation in the Financial Sector "systemic financial risk is that an event will

trigger a loss of economic value or confidence in, and attendant increases in uncertainly

about, a substantial portion of the financial system that is serious enough to quite probably

have significant adverse effects on the real economy. Systemic risk events can be sudden and

unexpected, or the likelihood of their occurrence can build up through time in the absence

of appropriate policy responses" (Group of Ten 2001, p.126).

The formerly mentioned designations presented that several depictions exist for sys-

temic risk. Eling and Pankoke (2014) reviewed 26 definitions from them and identified three

major elements (Eling and Pankoke 2014, p.2-3.):

• Risk of an event: there exists an associated event, which derives from the dysfunction,

institutional default, or an economic shock.

• Impact of the event: the consequences of the risk to the real economy.

• Causation of the event: the source, which implies the risk.

This framework characterizes the main points of the phenomenon, which helps to recognize

the systemic risk. Also, systemic risk means the disruption of the financial system, which

can derive from such events, like malfunction of the market actors or deficiencies of the

supervisory authority, and causes losses in the real economy or destruction of confidence

on the market, while the effects have to reach almost all market players.

However, the mentioned definitions do not interpret the source of the risk deeply. The

work of Benoit et al. (2017) is valuable for this reason, thus they divided the systemic risk

4



II SYSTEMIC RISK

literature into two parts to specify the sources of systemic risk. The first part is the source-

specific approach, which collects qualitative modells and aims to support macroprudential

supervision, while the second part includes the global measures of systemic risk (Benoit et al.

2017, p.110).

Benoit et al. (2017) analyse the source-specific approach, and distinguish three major

part among these papers (Benoit et al. 2017, p.110,117):

• Systemic risk-taking: why institutions are inclined to be exposed to similar risk factors.

• Contagion: losses spillover from one financial institution to others.

• Amplification mechanism: explaining why small shocks can end up having impacts.

While the source-specific approach focuses on the lower granularity of the network, the

global measures try to grasp systemic risk without dissolving small components but manage

all risk as a whole system.

My research only focuses on the contagion risk from source-specific aspects in order to

understand the mechanism of risk transmission in financial networks. Furthermore, this at-

tribute can be quantified the most precisely by econometric tools. I also utilize global mea-

sures, which can express the state of the network by one number.

After considering the theoretical concept of systemic risk, section III will present the rel-

evant papers of the literature.

5



III LITERATURE REVIEW

III Literature review

The bankruptcy of Lehman Brothers was the signal of the financial crisis deepening a

decade ago. After that, financial network analysis became the centre of interest, and several

studies were published. Silva et al. (2017) analysed 266 articles related to systemic risk, and it

was found that the vast majority of researchers focused on banks, while other topics, like the

insurance companies, are less researched. This fact motivated me to dive into the analysis

of interconnectedness in the insurance sector. I intend to provide a detailed overview of the

financial network literature, highlighting the most important domains. I start the review in

the III.2 section with research focusing on individual institutions. After that, I summarize

the studies highlighting the importance of system dynamics. Last but not least, I focus on

such analysis, which takes into consideration both network dynamics and the role of unique

institutions.

III.1 Classification of the literature

There exist several approaches to analyse the interconnectedness of financial networks.

Bisias et al. (2012) compared numerous measures and frameworks and differentiated four

main ways. The researcher can follow a data-driven approach and analyse public and/or

private data (Hué et al. 2019, p.87). Another differentiation can be based on the aim of the

supervising authority. Two main approaches exist, which use this interpretation of the liter-

ature, the macro- and microprudential levels. The former focuses on the behaviour of the

whole market, the latter prefers to understand the risk sources of the individual institutions

Eling and Pankoke (2014). Furthermore, the time horizon of the event or decision can be a

grouping variable. Also, the analysis can focus on pre-event, contemporaneous, and post-

event risks, which can provide signals for the supervising authority (Bisias et al. 2012, p.21).

Last but not least, the research method is also an important field of systemic risk analysis,

thus several measures exist, which try to analyse and forecast the movements of the shocks.

In general, the micro- and macroprudential classification is applied, when the research

methods are differentiated (Rodríguez-Moreno and Peña 2013, Eling and Pankoke 2014).

Rodríguez-Moreno and Peña (2013) classified the Libor spread, first principal component

and CDS indexes as macroprudential metrics (Rodríguez-Moreno and Peña 2013, p.1821),

while systemic risk indexes (elaborated by Lehar (2005)), multivariate densities and aggre-

gate co-risk as microprudential gauges.

Eling and Pankoke (2016) also followed this framework and categorized bankbeta, lower

tail dependence (LTD) and Granger-causality as macro-level indicators, as ∆CoVaR, MES,

Long-run MES (LRMES), DIP and SRISK as micro-level metrics (Eling and Pankoke 2016,

p.253-254).

A similar division was proposed by Zhang et al. (2015), who described the first group of
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indicators, which "captures risk spillovers from a financial institution to the rest of the finan-

cial system" (Zhang et al. 2015, p.1405). The ∆CoVaR and ∆ACoVaR are the representations

of this category. Nevertheless, the second tries to "quantify the degree of vulnerability of fi-

nancial institutions" (Zhang et al. 2015, p.1405). Two examples are EXSHORT (elaborated by

Lehar (2005)) and SRISK. So, the description and the examples show the similarity of the two

approaches.

Wang et al. (2018) emphasized another three categories of systemic risk measures. The

first one is based on the correlation between variables. So, the principal component-based

methodologies belong to this set, like the framework introduced by Billio et al. (2012) or the

absorption ratio proposed by Kritzman et al. (2011). The second type of measures tries to

quantify systemic risk spillover across financial institutions, like MES, CES, SES, SRISK and

∆CoVaR. Both approaches summarize the interaction of individual institutions and the fi-

nancial network (Wang et al. 2018, p.2). On the contrary, the third approach focus on network

theory and its application on the financial network, as the Dynamic Causality Index (Billio

et al. 2012), realized systemic beta (Hautsch et al. 2014) and the tail event-driven network

(Härdle et al. 2016, TENET).

Last, but not least Giglio et al. (2016) also proposed a classification including four groups

(Giglio et al. 2016, p.460). The first one catches the institution-specific risk expressed by

CoVaR, ∆CoVaR, MES, and its modification MES-BE. The second set describes comovement

and contagion between financial institutions, like the absorption ratio (Kritzman et al. 2011),

DC I (Billio et al. 2012) and Diebold-Yilmaz spillover index (Diebold and Yilmaz 2009, 2014,

2015). The gauges in the third class measure the volatility and instability, like the CatFin

(Allen et al. 2012). The fourth group includes indicators about the liquidity and credit envi-

ronment of the financial system. For example, the illiquidity measure, the difference of the

LIBOR and T-bill spread, the default spread or the credit spread (Giglio et al. 2016, p.460).

Every way of classification relies on the granularity of the data expressed by the micro-

and macroprudential categories. So it seems to be a reasonable way to split the literature

according to the level of the analysis. I follow the first way proposed by Benoit et al. (2017).

Also, I review articles reflecting on the individual institutions, the whole network and both

of them. Furthermore, I highlight the most important research topics during the overview.

III.2 SIFIs

After the financial crisis, one of the hottest topics was classifying the systemically im-

portant financial institutions (SIFIs) and characterizing the main systemic risk contributing

factors. These researches appeared in the banking industry (International Monetary Fund

et al. 2009) and later also in the insurance branch (International Association of Insurance

Supervisors 2011). The first part of the literature mainly focuses on these questions at the

individual level.

7
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Chang et al. (2018) investigated individual Taiwan life- and non-life insurers using MES,

SRISK and∆CoVaR methodologies and panel regression to identify important institutions in

the period 2005−2015. The authors found that the majority of risky insurance companies

are working in the life insurance field. The main determining factors of systemic risk are

non-core activities and leverage, but the size of the company does not matter. The three

measures caught different part of the systemic risk, while MES was almost constant during

the analysed period. SRISK indicated the end of the crisis adequately, while ∆CoVaR peaked

before the financial crises in 2008 escalated.

Chen and Sun (2019) tried to identify the Global Systemically Important Institutions (G-

SII) using network theory to analyse 157 global insurers between 2006−2015. The authors

developed their own measures, Systemic Risk Receiver and Systemic Risk Emitter (SRR and

SRE), and compared them to the traditional measures, like MES and ∆CoVaR. The results

demonstrated a quite strong rank correlation between widely used and the author’s gauges.

The time-varying network also focused on the size and the tail risk of the insurance compa-

nies. The results confirmed the importance of G-SII but also pointed out that some non-G-

SII can be as dangerous as the G-SII.

113 commercial banks, insurers, asset managers and brokers/dealers were reviewed by

Nucera et al. (2016) on the EU market in the period of 2002− 2013. Principal component

analysis, MES, SRISK, ∆CoVaR, Leverage ratio, Dollar Systemic risk and VaR were compared,

and its mixture to investigate changing rankings of systemically important institutions. The

simple combined metric was proved more stable, than individual indicators.

Nyholm (2012) tested the connections between 21 insurance companies and 31 banks

applying Granger-causality and CES on EU data from 1995− 2014. The data showed that

the sectors are highly interconnected with each other, but did not have any difference, as

far as, the extreme risk is concerned. Some variations could derive from different financing

schemes of the two branches, which means that insurers had long term liabilities, as in the

portfolios of the banks, the short term ones were dominating. Although, during turmoils, the

different funding horizons did not cause different behaviour for any sectors.

The specifications of the banking and insurance sectors were compared by Weiß and

Mühlnickel (2014). However, the empirical analysis concentrated only on insurance com-

panies from the period of the financial crisis (2007−2008). Totally, 89 US life, non-life and

reinsurers were analysed using MES, ∆CoVaR and SRISK. Weiß and Mühlnickel (2014) con-

firmed that the insurers also contribute to systemic risk—the vulnerability of insurers de-

rived from non-traditional activities. Furthermore, the size is the most determining factor

of systemic risk, but global diversification, short-term funding and substitutability did not

pose systemic risk.
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of data
Number of assets Methods

Weiß and Mühlnickel (2014)
banks and

insurers
Yes 1,7 USA 2007−2008 daily, annual

totally 89 life,
non-life and reinsurers

MES, ∆CoVaR,
SRISK, regression

Nyholm (2012)
banks and

insurers
No 5 EU 1995−2014 weekly

21 insurers,
31 banks

Granger-casuality,
CES

Chen and Sun (2019)
banks and

insurers
No 1,3 Globe 2006−2015 weekly 157 insurers

MES, ∆CoVaR,
Condtional tail loss,

SRR, SRE, Lasso,
quantile regression

Chang et al. (2018)
banks and

insurers
Yes 1,2,3,7 Taiwan 2005−2015 daily, quarterly

10 life insurers and
10 non-life insurers

MES, SRISK,
∆CoVaR,

panel regression

Notes: 1 Which companies are systemically important financial institutions?,
2 What are the main characteristics of systemically important financial institutions?, 3 Do the systemically important financial institutions change
over time?, 5 Is there any existing relationship between banks and insurance companies?, 7 Do compare the authors the different measures?

Table 2: Articles focusing on individual institutions
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III.3 System dynamics

The individual-level analysis does not provide an overview of the macro-level changes,

which can suddenly change the riskiness of the institutions. On the other hand, besides the

macroprudential purposes, the micro-level analysis does not provide enough information

for the regulating authority. So, it is not surprising that a significant part of the articles tries

to describe the movement of the financial networks highlighting risk amplification factors

and possible measures of it.

III.3.1 Dynamics of the financial sectors

Usually, banks, insurers and other financial sectors are investigated at the same time.

Still, a few papers concentrate only on one industry, like the first three papers, which depict

the banking sector characteristics.

Abendschein and Grundke (2018) analysed 80 North American and European banks to

explain the relationship of the real economy and the financial sector in the post-crisis period

(2009−2016). The widely used MES, SRISK and ∆CoVaR were applied by the authors. They

specified the relationship between measures using rank correlation, which showed a low-

level connection. The authors identified the rank correlation determining factors, and the

size was found not significant, while the leverage had a negative impact on the relationship.

The macro variables were not influential in the research, only the country-specific returns

had an effect on the rank correlation.

Rodríguez-Moreno and Peña (2013) also focused on geographically separated banks in

the USA and Europe between 2004 and 2009. 20 European and 13 US banks were in the sam-

ple, and several methods (Granger-causality, first Principal component, multivariate den-

sity, Co-risk, LIBOR spread etc.) were compared to find the most precise macro and micro

level metric. The measures were compared according to the efficiency of creating ranking

from systemically important institutions. The first principal component performed the best

among macroprudential gauges, while the multivariate density at the micro-level.

In spite of the previous papers, Castro and Ferrari (2014) concentrated only on 26 Euro-

pean banks in the period of 1999−2012, and used ∆ CoVaR framework to calculate systemic

risk contribution, and developed a modified Kolmogorov-Smirnov-test to measure the sig-

nificance given by ∆ CoVaR. They found it challenging to rank banks according to their con-

tribution to systemic risk. Still, the statistical support of rankings is a worthy contribution

from the authors because using their test statistics, the researchers can dismiss the unreal

relationships.

The following two papers focus on the insurance network. The Dutch insurers were anal-

ysed by van Lelyveld et al. (2011), who divided the insurance sector into three main groups:

77 life insurers, 238 non-life insurers and 350 reinsurers were represented in the sample. The

data derived before the financial crisis (2003−2005) and quite a large sample was chosen.
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Wang et al. (2017)
banks and

insurers
No 4,5 USA 2006−2015 daily

20 banks, 15 insurers,
22 real estate companies,
27 diversified financials

Granger-causality,
CaViaR

Cummins and Weiss (2014)
banks and

insurers
Yes 2,5,6 USA 1988−2012 annual

Aggregated data,
unique data not available

balance sheet
analysis

Bierth et al. (2015) insurers Yes 2,4,7 Globe 2000−2012
daily,

monthly,
quarterly

112 life insurers,
141 non-life insurers

MES, ∆CoVaR,
SRISK, CATFIN,
panel regression

Korobilis and Yilmaz (2018)
banks and

insurers
No 4 USA and EU 2005−2016 daily

8 commercial banks,
5 investment banks,

2 mortgage companies,
1 credit card company

and 1 insurer (USA),
17 European banks

DY spillover index,
TVP-VAR

Szüle (2019)
banks and

insurers
No 5 Hungary 2003−2015 annual

16 banks,
17 insurers

absorption ratio,
MDS

Dreassi et al. (2018)
banks and

insurers
No 2,4,7 EU 2006−2014 weekly

21 banks,
9 insurers

correlation,
factor modell

Adams et al. (2014)
banks and

insurers
No 4 Global 2003−2010 daily

8 investment banks,
26 commercial banks,

31 insurers,
47 hedge funds

SDS-VAR, PCA,
quantile regression

Kleinow et al. (2017)
banks and

insurers
No 7 USA 2005−2014 daily

49 banks, 30 insurers,
43 non-depository

financial institutions

Co-Risk, MES,
∆CoVaR, LTD

Notes: 2 What are the main characteristics of systemically important financial institutions?,
4 What are the characteristics of system dynamics?, 5 Is there any existing relationship between banks and insurance companies?,
6 Is there any existing relationship between interconnectedness and the macroeconomy?, 7 Do compare the authors the different measures?

Table 3: Articles focusing on individual institutions and financial networks I.
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Elyasiani et al. (2016)
banks and

insurers
No 5 Globe 1991−2012 daily 52 banks, 43 insurers GARCH

Diebold and Yilmaz (2015)
banks and

insurers
No 4 USA and EU 2004−2014 daily

7 banks, 1 insurer,
5 investment banks,

2 mortgage companies,
1 diversified financial

company, 1 credit card
company (USA),

18 European banks

DY spillover index

Bernal et al. (2014)
banks and

insurers
No 5 USA and EU 2004−2012 daily

banks, insurers,
financial service

companies

Kolmogorov-Smirnov
test, ∆CoVaR,

quantile regression

Castro and Ferrari (2014) banks - 1 EU 1999−2012 daily 26 banks
∆CoVaR,

test of significance,
quantile regression

Sedunov (2016)
banks and

insurers
No 2,4,7 USA 1998−2008

daily,
quarterly

50 banks,
56 insurers,
50 brokers

ExposureCoVaR, SES,
Granger-causality,

regression

van Lelyveld et al. (2011) insurers Yes 4 Netherlands 2003−2005 annual
77 life insurers,

238 non-life insurers,
350 reinsurers

solvency indicator,
stress-testing

Zhang et al. (2015)
banks and

insurers
No 7 Globe 1992−2006 daily

197 banks,
68 insurers,

38 other financial
institutions

∆CoVaR, ∆A_CoVaR,
EXShort, SRISK,
Grager-causality,

logistic regression

Notes: 1 Which companies are systemically important financial institutions?,
2 What are the main characteristics of systemically important financial institutions?, 4 What are the characteristics of system dynam-
ics?, 5 Is there any existing relationship between banks and insurance companies?, 7 Do compare the authors the different measures?

Table 4: Articles focusing on individual institutions and financial networks II.
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Giglio et al. (2016)
banks and

insurers
No 4,6,7,8 USA and EU

1946−2011
(USA),

1978−2011
(UK),

1994−2011
(EU)

monthly

20 US, UK and
European financial,
insurance and real
estate companies

PCQR, PQR

Irresberger et al. (2017)
banks and

insurers
No 2,7 Globe 2007−2008

daily,
annual

148 banks,
98 insurers

Grager-causality,
MES, quantile and
probit regression,

leverage, DGC

Rodríguez-Moreno and Peña (2013) banks - 4,7 USA and EU 2004−2009
daily,

annual
20 European,
13 US banks

Granger-causality,
correlation, CR,
GG metric, PCA,
risk index, MD,
systemic factor,

multinomial
regression,

LS, A∆CoVaR,
Aggregated ES

Abendschein and Grundke (2018) banks - 2,6
North

America
and EU

2009−2016
daily,

quarterly
80 banks

MES, SRISK,
∆CoVaR,

rank correlation,
panel regression

Berdin and Sottocornola (2015)
banks and

insurers
No 2,4,7 EU 1999−2013 daily

20 banks,
20 insurers,

20 non-financials

Dynamic-MES,
∆CoVaR,

Granger-causality

Notes:
2 What are the main characteristics of systemically important financial institutions?, 4 What are the characteristics of system dynamics?, 6 Is there any existing relation-
ship between interconnectedness and the macroeconomy?, 7 Do compare the authors the different measures?, 8 Do aggregate the authors the systemic risk measures?

Table 5: Articles focusing on individual institutions and financial networks III.
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The vast majority of the articles put emphasis on understanding the dynamics of finan-

cial institutions. Nevertheless, some papers are aiming to illustrate possible future changes

in financial networks. Stress scenarios were developed by van Lelyveld et al. (2011) to inves-

tigate the resistance of the sector. The results are promising. The bankruptcy of the whole

reinsurance sector will not cause severe changes in the stability of primary insurers. Still,

the occurrence of such event will severely affect the non-life insurance companies, who are

more interconnected with the reinsurers.

Instead of reflecting on one country, Bierth et al. (2015) included globally important

112 life insurers and 141 non-life insurers from the period of 2000− 2012. A wide range of

methods was applied in the article, like MES, SRISK, ∆CoVaR and CATFIN. MES, SRISK and

∆CoVaR corroborate that the insurers had a low impact on systemic stability before the fi-

nancial crisis. Still, their contribution peaked at the end of 2008 and decreased gradually in

the next years. Bierth et al. (2015) stated that the insurance companies contribute in a small

compass to systemic risk globally. But they could not confirm the hypothesis, that the life

insurers pose higher systemic risk than the non-life insurers. The interconnectedness is re-

sponsible for the majority of instability caused by the insurance sector, besides the leverage

is another important factor.

III.3.2 Dynamics of multi-sectoral financial networks

Other articles analyse more extended financial networks, including both banks and in-

surers, sometimes other companies, like financial holdings, real estate companies or hedge

funds.

Zhang et al. (2015) tested ∆CoVaR, ∆A_CoVaR, SRISK and EXSHORT projecting power

on the data of Asian, LTCM and the global financial crisis in 2008. The analysed sample

consisted of 197 banks, 68 insurance companies and 38 other globally important financial

institutions. The ∆CoVaR was found efficient for all shock forecasting on the sample.

Szüle (2019) investigated the relationship between banks and insurance companies re-

flecting on the Hungarian market between 2003 and 2015. The research is based on the

annual return calculated from the balance sheets of private limited companies, thus public

data is not available from this type of companies. The article used the absorption ratio devel-

oped by Kritzman et al. (2011) to catch the interconnectedness, and an existing relationship

was found. However, the return based risk is less determined in the insurance sector than

between banks.

Irresberger et al. (2017) looked for the systemic risk determining factors applying probit

regression on 148 banks and 98 insurers data from the pre-crisis and crisis periods. It con-

cluded that size is the most robust factor, but leverage and interconnectedness also have a

significant impact on systemic risk. The explaining variables included systemic risk mea-

sures, like MES, ∆CoVaR, interconnectedness index based on Billio et al. (2012) framework
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and leverage. The comparison of explaining the power of MES and∆CoVaR showed that MES

was higher for insurers, while ∆CoVaR behaved on the contrary.

The research of Elyasiani et al. (2016) also based on global financial institutions, more

precisely 52 banks and 43 insurers. The authors tried to reveal the connection between the

sectors using GARCH model in the case of mergers for quite a long period (1991 − 2012).

The results pointed out that the potentially acquired banks and insurers experience positive

abnormal returns, after the announcement of mergers. The abnormal effects seemed to be

more long-lasting in the case of insurers compared to banks. However, in the opposite case,

only the banks experience positive excess return (Elyasiani et al. 2016, p.712).

Bernal et al. (2014) aimed to characterize the most dangerous sectors to the system sta-

bility in Europe and the USA, so they used daily returns of banks, insurance companies and

financial services to calculate∆CoVar and Kolmogorov-Smirnov test confirming its explana-

tory power. They found different branches relevant in various markets between 2004 and

2012. In the EU, the other financial institutions had the highest contribution to systemic

risk, the second most dangerous sector was banking, followed by the insurers. However, the

insurance companies proved the riskiest in the USA while the banks the safest.

Cummins and Weiss (2014) used balance sheets of US banks and insurers exploring the

sectoral differences in the period of 1988−2012. It highlighted that maturity mismatch is a

more common problem in banking than in insurance (Cummins and Weiss 2014, p.500). At

the macroeconomic level, the banks posed higher risk, than insurers. Still, life insurers were

more vulnerable to inter-sectoral shocks, but both life and property and casualty insurers

are exposed to the risk of the bankruptcy of the reinsurer network. The primary sources of

systemic risk were found the non-traditional activities, like financial guarantee insurance

and derivative trading.

Adams et al. (2014) elaborated a new measure called state-dependent sensitivity VaR

(SDSVaR), which takes into consideration the "mood" of the financial market. The authors

found evidence that small shock can be more harmful during volatile periods because the

spillover effects are faster than in regular times. The riskiest part of the economy was the

banks and the hedge funds according to the SDSVaR on the analysed sample and time pe-

riod between 2003 and 2010, which consisted of 8 investment and 26 commercial banks,

31 insurance companies and 47 hedge funds. Unfortunately, this methodology can prove

the existence of risk, but cannot characterize the sources of it. Due to this recognition, the

network-based literature also tries to reflect on the most important factors.

One of the most widespread ways to determine the evaluation of financial networks is the

simple ranking of the institutions. Berdin and Sottocornola (2015) presented a ranking based

approach taking into consideration Dynamic-MES,∆CoVaR and Granger-causality network,

and demonstrated that banks dominate the rankings in the EU among 1999 and 2013, but

some insurers have also place in it. However, they found no evidence on the higher sys-

temic risk contribution of the insurance industry (Berdin and Sottocornola 2015, p.14). The
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systemic risk, caused by the insurance sector, was dominated by non-traditional activities.

Moreover, the diversification in investments increased the systemic risk, but the role of the

leverage is hard to characterize. They emphasized the size as the most crucial factor propos-

ing systemic risk. Besides, the rankings provided by the three methods showed different

results. Also, the contribution to systemic risk depends on the elected measure, thus they

grasp different parts of the risk.

Not only the dynamics of contagion is a crucial question, but also the channels, which

transfer the spillovers in crisis periods. This topic was depicted by Dreassi et al. (2018), who

used excess correlation and factor modell to identify the most dangerous risk transferring

ways across European banks and insurance companies in the period of 2006− 2014. They

concluded that asset-holding and guarantee channels jeopardize the stability of the insur-

ance companies, while the collateral channel can cause harm for the banks. Size and income

from investments were found as the main factors for insurers, while for banks, the capital ad-

equacy, the financing, and income diversification were highlighted.

In general, volatility spillover in financial networks cover the "mean spillover", but the

downside risk plays a subordinate role in the literature, because of this is outstanding the

article of Wang et al. (2017), who analysed the extreme risk spillovers on financial networks

using CaViaR and Granger-causality. The authors depicted that banks and diversified finan-

cial institutions are responsible for transferring tail-risk, while insurance and diversified fi-

nancials are receivers. Important to highlight that the financial spillover has a time lag, so

the network needs time to transport risks and information.

Kleinow et al. (2017) compared MES, CoDependence Risk, ∆CoVaR and Lower Tail De-

pendence on the data of 49 banks, 43 non-investment financial institutions and 30 insurers

from the USA 2005−2014.They found the reliability of the different frameworks quite low, so

calculating more measures is widely recommended.

Giglio et al. (2016) reviewed 19 different measures and used a mixture of them to pre-

dict macroeconomic shocks applying principal component quantile regression and partial

quantile regression on the data of the 67 largest US and 60 European financial institutions.

The methods were robust in forecasting the distribution of macroeconomic shocks.

Diebold and Yilmaz (2015) compared 18 European and 17 US financial institutions volatil-

ity spillover utilizing the DY framework between 2004− 2014. The US data consisted of 7

banks, 1 insurer, 5 investment banks, 2 mortgage companies, 1 diversified financial institu-

tion and 1 credit card company, while the European sample included only banks. The main

finding of the research was the dynamics of the crisis between the two markets, which means

during the 2008 turmoil, the contagion was transferred from the US financial institutions to

the European ones, to the contrary, the European sovereign crisis induced a reverse spillover.

Sedunov (2016) tried to identify proper systemic risk forecasting metrics. The authors

contrasted Adapted Exposure CoVaR, SES and Granger-causality and attempted to specify

the best one for forecasting. Sedunov (2016) compared the models on the US data set con-
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sisted of 50 banks, 56 insurers and 50 brokers from the period of 1998−2008. The ECoVaR

was only appropriate for projecting systemic risk. Besides, institution size, foreign equity

exposure and securitization income were concluded as systemic risk contributing factors.

Korobilis and Yilmaz (2018) compared the TVP-VAR methodology with the rolling win-

dow based version of the DY framework on 2005−2016 USA and EU institutions. In detail, 8

commercial banks, 5 investment banks,2 mortgage companies, 1 credit card company and 1

insurer and 17 European banks were included in the data. The DY spillover index completed

with TVP-VAR could better identify the turning points of the financial crisis and resulted

more accurate forecast.

III.4 Combined analysis

Several articles made complex analysis taking into consideration the behaviour of both

individual institutions and networks. New questions raised by these articles are the measur-

ing of changing SIFIs over time, the quantification of cross-sectoral effects between banks

and insurance companies and the connection between real economy and interconnected-

ness.

III.4.1 Insurance networks

I divide the papers according to the type of analysed institutions. Firstly, I review the

articles focusing only on insurance companies, after that the banking sector-specific ones,

lastly, the papers reflecting on the extended financial sector.

Chen et al. (2013) divided the insurance sector to 3 main branches: life-non-life and

credit risk insurers (CRIs). The credit risk insurers were deeply analysed splitting them into

financial guarantee insurers and CDS trading insurers. The whole sample consisted of 17

life insurers, 77 non-life insurers and 20 credit risk insurers (12 credit risk insurer and 8 CDS

trading insurers) from North America in the period of 2001−2011. The applied methods were

bankbeta, Riskinv, MES and leverage and panel regression to identify significant systemic

risk determining factors. The authors concluded that traditional underwriting activities do

not pose systemic risk for the insurance sector. In contrast, the non-traditional activities

managed by the credit risk insurers are risky, mostly the collateral insurance. Furthermore,

Chen et al. (2013) concluded that the downgrading of credit risk insurers increased the credit

spread indicating growing systemic risk.

An extensive data set was investigated by Chen et al. (2018), who collected 3012 US prop-

erty and casualty insurers and 9190 non-US regulated reinsurers from the first one and a

half-decade of the 21st century. Primarily, the network-based approach stood in the focus of

the authors, especially network density, network centrality, survival and loss given default.

The consequences of the bankruptcy of the 10 biggest insurers would be not dangerous. At
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the same time, the interconnectedness of the insurance network was not high, so it would

not cause the crash of the insurance sector.

III.4.2 Banking networks

Some authors shed light on the two-fold dimensionality of the banking sector, the indi-

vidual effects and the contagion spillover between banks.

The relationship among the economy and the globally important banks was researched

by Corsi et al. (2018), who analysed 33 banks and 36 sovereign bonds applying Granger-

causality tail networks. The investigation aimed to identify terms between 2006−2014, which

propagates the risk spillover in financial networks. Furthermore, the rating of sovereign

bonds was used to find the relevant channels of risk transmission. The European sovereign

debt crisis was characterized being an unstable period proposing high risk for the whole fi-

nancial system. The authors also identified interconnectedness as a significant variable in

forecasting sovereign bond ratings, which signaled the relationship between banks and the

real economy.

Demirer et al. (2018) also focuses on the relations among sovereign bonds and banks.

The authors’ data set included 96 banks from several countries and G-73 countries bonds

from the 2004− 2014 period. The Diebold-Yilmaz spillover index was complemented with

LASSO regression selecting proper time lag for VAR modell. The DY spillover index suggested

that the equities had a geographical component, while the bonds do not have. But the in-

terconnectedness of the bonds was increased during the last crisis, which derived from the

cross-country effects.

The Diebold-Yilmaz framework was the starting point of the methodology elaborated by

Hale and Lopez (2019). The method was compared with other measures on US bank holding

companies data between 2002−2017. The authors’ framework based on the decomposition

of gauges extracting the effect of the market using regression. The measure was contrasted

with DIP, SRISK and CoVaR. The new measure was found to be appropriate for micropru-

dential risk identification.

Hué et al. (2019) used the leave-one-out-concept to determine global systemically im-

portant institutions between 90 banks using Granger-causality. The authors proposed a new

measure to quantify the negative returns of banks. Moreover, the ranking of the most and

less risky institutions was created for pre-crisis, crisis and post-crisis periods. The Ameri-

can banks were pointed out as the most dangerous in the sample. The size and the business

model were the most significant factors contributing to systemic risk.

III.4.3 Insurance and banking networks

Chen et al. (2013) reflected on the relationship between 11 insurers and 22 banks from the

3G-7 countries are the USA, Germany, France, Japan, UK, Canada, and Italy.
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North American region between 2001 and 2011. The linear and non-linear Granger-causality

test assured that the banks had an effect on insurer companies, but not vice-versa, if the data

was adjusted with heteroscedasticity.

One fundamental article is written by Billio et al. (2012), who analysed the network of

banks, insurers, hedge funds, brokers and dealers and included 25 individual institution

from each branch between 1994−2008.

The proposed methodology is based on principal component analysis and Granger-causality

and separates the caused and suffered risks from other institutions. So, the Degree of Granger-

causality is an institution based measure, which aggregates the individual effects on the

whole system. According to the DC I , the banking sector played a leading role in transfer-

ring risk, while besides banks, the insurance sector is the second most vulnerable branch.

Geraci and Gnabo (2018) also focused on four sectors: 71 banks, 40 insurers, 21 dealer-

broker and 23 real estate companies were analysed in the time-varying VAR network. The

banks and broker-dealers were found the riskiest institutions, which transfer risks to insur-

ers. The consequence of the research was that the TVP-VAR methodology resulted more

stable ranking, like rolling-window based density metrics, while it takes into consideration

the tail behaviour of extreme events.

Gong et al. (2019) accomplished the sector level analysis on the Chinese market, review-

ing the connections between 15 banks, 2 insurer companies and 7 security companies be-

tween 2007 and 2017. The authors applied Granger-causality to determine the systemically

important institutions and observed growing connectedness during the turmoils. The inter-

connectedness was grown dynamically during the crisis. They extracted the market effect

from the data to concentrate on the individual risk transfer and concluded that the banks

and insurers were highly interrelated. A further solution of the article is that the authors

compared their gauge with other ones (like CoVaR, SRISK, MES and AR-DCC GARCH was

introduced to express non-linearity in the modells), and showed that they produce a similar

outcome in detecting systemic risk.

Lin et al. (2018) gave a complex review about the Taiwan financial system between 2005−
2014 revealing the relationship between 10 banks, 7 insurers and 14 financial holdings. Sev-

eral methods were contrasted, like Granger-causality, SRISK, MES, ∆CoVaR and DCC-GJR

GARCH to express non-linearity. The authors created rankings from the numeric results to

describe the systemically important institutions and their changes over time. The metrics

presented similar rankings for unstable institutions. However, a moderate rank correlation

was found between gauges. The systemic risk contributing factors at the institutional level

were size, leverage, profitability, and solvency.

High-frequency data are available from stock markets, but only a few studies on the topic

of interconnectedness and contagion in financial networks utilize the advantage of them.
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Number of assets Methods

Chen et al. (2014)
banks and

insurers
No 5

North
America

2001−2011
daily,

intraday
11 insurers, 22 banks

linear and non-linear
Granger-causality

Lin et al. (2018)
banks and

insurers
No 1,2,3,7 Taiwan 2005−2014 daily

10 banks, 7 insurers,
14 financial holdings

Granger-causality,
SRISK, ∆CoVaR,

DCC-GJR GARCH,
MES

Jentsch and Steinmetz (2016)
banks and

insurers
No 4 EU 2008

5 minutes
data

6 banks and 2 insurers DY spillover index

Geraci and Gnabo (2018)
banks and

insurers
No 3,4,5,7 Global 1993−2014 monthly

71 banks, 40 insurers,
21 broker-dealers,

23 real estate companies

TVP-VAR, rankings,
Granger-causality

Billio et al. (2012)
banks and

insurers
No 4,5 Global 1994−2008 monthly

25−25 banks, insurers,
hedge funds,

broker-dealers

Granger-causality,
PCA

Gong et al. (2019)
banks and

insurers
No 1,4,5,7 Asia 2007−2017 daily

15 banks, 2 insurers,
7 security companies

CoVar, SRISK, MES,
AR-DCC GARCH,
Granger-causality

Engle et al. (2015)
banks and

insurers
No 1,4,6 EU 2000−2012

daily,
quarterly

72 banks , 36 insurers,
53 financial services firms,
35 real estate companies

DCC-GARCH, SRISK,
Capital shortfall,

long-run marginal
shortfall,

Granger-causality

Notes: 1 Which companies are systemically important financial institutions?, 2 What are the main characteristics of systemically important financial institutions?,
3 Do the systemically important financial institutions change over time?, 4 What are the characteristics of system dynamics?, 5 Is there any existing relationship
between banks and insurance companies?,
6 Is there any existing relationship between interconnectedness and the macroeconomy?, 7 Do compare the authors the different measures?

Table 6: Articles focusing on financial networks I.
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Demirer et al. (2018) banks - 4 Globe 2003−2014 daily 96 banks, G-7 sovereigns
DY spillover index,
LASSO regression

Chen et al. (2018) insurers Yes 4 USA 2000−2015 annual

3012 US P/C insurers,
9190 non-US

regulated reinsurance
counterparties

network density,
centrality, LGD,

survival

Chen et al. (2013) insurers Yes 4,7
North

America
2006−2009 daily

17 life, 77 non-life
and 20 CRI insurers

Bankbeta, Riskinv,
MES, Leverage,

panel regression

Diebold and Yilmaz (2014)
banks and

insurers
No 4,7 USA

2007−2008,
1999−2010

5 minutes,
daily

7 commercial banks,
2 investment banks,

1 credit card company,
2 mortgage financial
companies, 1 insurer

DY spillover index

Nucera et al. (2016)
banks and

insurers
No 1,3,7,8 EU 2002−2013 monthly

113 commercial banks,
insurers, asset managers

and broker/dealers

PCA, MES, SRISK,
∆CoVaR, VaR,
Leverage ratio,

Dollar Systemic risk

Corsi et al. (2018) banks - 6 Globe 2006−2014 daily
33 banks,

36 sovereigns
Granger-causality
tail risk network

Notes: 1 Which companies are systemically important financial institutions?,
3 Do the systemically important financial institutions change over time?, 4 What are the characteristics of system dynamics?, 6 Is there any existing relationship
between interconnectedness and the macroeconomy?, 7 Do compare the authors the different measures?, 8 Do aggregate the authors the systemic risk measures?

Table 7: Articles focusing on financial networks II.
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Kaserer and Klein (2019)
banks and

insurers
Yes 1,4,7 Globe 2004−2014 daily

147 banks,
9 multi-line insurers,

15 life, 14 P/C insurers,
8 bond/mortgage insurers,

8 reinsurers

DIP, Marginal DIP,
CoPSD, CoPD

Hautsch et al. (2014)
banks and

insurers
No 1,4 EU 2006−2010

daily,
quarterly

13 banks,
7 insurers

time-varying systemic
risk network,

realized systemic beta

Wang et al. (2018)
banks and

insurers
No 1,4 China 2008−2016 weekly

3 insurers, 14 banks,
7 securities

dynamic TENET, TC,
GE, ISS, OSS,
SCS, ISI, OSI

Hué et al. (2019) banks - 1,2,3,4 Globe 2003−2018 daily 90 banks
Grager-causality,

leave-one-out-concept

Hale and Lopez (2019) banks - 7 USA 2002−2017
daily,

quarterly
27 banking

holding companies

network density,
Midas regression,

regression, DIP,
SRISK, CoVaR

Notes: 1 Which companies are systemically important financial institutions?,
2 What are the main characteristics of systemically important financial institutions?, 3 Do the systemically important financial institu-
tions change over time?, 4 What are the characteristics of system dynamics?, 7 Do compare the authors the different measures?

Table 8: Articles focusing on financial networks III.
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One is written by Diebold and Yilmaz (2014), who put the focus on 5-minutes return and

return volatility of 7 commercial banks, 2 investment banks, 1 credit card company and 1

insurer from the period of the financial crisis (2007− 2008) and also include a longer time

span from 1999 to 2010. The Diebold-Yilmaz framework was theoretically contrasted to the

widely used MES and∆CoVaR, but the practical analysis was made by the DY spillover index.

The spillover table showed a high connectedness not only during turmoils, but also during

tranquil times, and the outstanding connectedness of the largest banks.

Engle et al. (2015) analysed 96 financial institutions (banks insurance companies, finan-

cial service companies and real estate companies) using the DCC-GARCH method, Capital

Shortfall, LRMES and SRISK. The data derived from the 2000−2012 period. The European

financial institutions were found to be more vulnerable than the US ones (Engle et al. 2015,

p.179). The immediate and the 1 day lagged world return was identified to have the highest

impact on the European spillovers. Besides, the authors reflected on the effect of SRISK on

the macroeconomy, and they found significant Granger-causality between SRISK and indus-

trial production and business confidence index. Furthermore, the authors provided rankings

of systemically important banks and insurers, which almost totally covered the globally im-

portant institutions.

Hautsch et al. (2014) applied time-varying systemic risk network on 13 banks and 7 in-

surers in Europe between 2006 and 2010. The institutions were ranked by realized systemic

risk beta, and it was found very volatile over time. During quiet times the network effects

were dominating in contribution to systemic risk.

Kaserer and Klein (2019) analysed 147 banks and 54 insurers between 2004 and 2014 and

distinguished subgroups of insurers, like multi-line, life, property and casualty, bond/mort-

gage insurers and reinsurers. The authors quantified several measures, like Distressed insur-

ance Premium (DIP), Marginal DIP, Conditional Probability of Systemic Distress, Conditional

Probability of Default. They concluded that the banks were responsible for the majority of

systemic risk. In contrast, the insurance sector contributed in a small compass to systemic

risk, but there were some systemically important insurers. Mostly, the life and multi-line in-

surers proposed higher systemic risk. The bond and mortgage insurers were characterized

as sensitive firms to economic shocks, but they do not influence the stability of the finan-

cial system. A further result was that public companies were found to be more vulnerable in

comparison to private companies.

The modified version of ∆CoVaR and the tail-event driven network (TENET) got into the

focus of Wang et al. (2018) to describe China’s financial market dynamics in crisis and post-

crisis times, 2008−2016. A bulk of metrics were quantified to signal systemic risk, like total

connectedness (TC), global efficiency (GE), in-strength of the sector (ISS), out-strength of

the sector (OSS), the strength of cross-sector (SCS), in-strength of the institution (ISI), out-

strength of the institution (OSI). A quite small sample was utilized by the authors, including

3 insurance company, 14 banks and 7 securities. The banks were classified as the highest
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tail risk emitters, followed by securities and insurance companies, and also the top 3 most

vulnerable institution were banks. In summary, the large banks and insurers were found to

be systemically important institutions, but small companies can pose systemic risk if they

are deeply integrated into the financial network.

III.5 Conclusions of the literature

A wide range of related articles exist in the topic of systemic risk, to emphasize the main

findings of the papers, I highlight the 8 main topics of the papers.

Firstly, the identification of central agents in financial networks became a crucial re-

search field after the bankruptcy of Lehmann Brothers in 2008. In general, the banks are

characterized as systemically important institutions, which cause the majority of systemic

risk. However, the insurers are also posed systemic risk (Cummins and Weiss 2014), but the

leading role of insurers in the vulnerability of financial networks are geographically chang-

ing. For example, Wang et al. (2018) identified large insurance companies systemically im-

portant, while Wang et al. (2017) found insurers as absorbers of shocks.

Secondly, lots of papers looked for the determining factors of systemically important fi-

nancial institutions.

The majority of the articles (Irresberger et al. 2017, Berdin and Sottocornola 2015, Dreassi

et al. 2018, Sedunov 2016, Hué et al. 2019, Lin et al. 2018) concluded size as the most out-

standing factor explaining the vulnerability of individual institutions. Only Chang et al.

(2018) rejected size as a significant explaining variable of systemic risk contribution.

Furthermore, leverage was also found as an important factor according to Chang et al.

(2018), Irresberger et al. (2017), Bierth et al. (2015), Lin et al. (2018), while Irresberger et al.

(2017) doubt its relevance.

Despite some debates between researchers, the literature is conclusive about the role of

diversification of investment income, which unambiguously increases the systemic risk con-

tribution of financial institutions (Berdin and Sottocornola 2015, Dreassi et al. 2018, Sedunov

2016).

In the case of insurers, the non-insurance activities, like collateral insurance, derivative

trading etc., pose systemic risk as showed by Chang et al. (2018), Cummins and Weiss (2014),

Dreassi et al. (2018), and was demonstrated by the AIG bailout, which possessed a wide range

of poisoned assets.

Other aspects were pointed out, like the business modell of insurers, which is highly con-

nected to the classical and non-core activities (Hué et al. 2019) . The interconnectedness

was classified as a source of risk by Bierth et al. (2015), while Irresberger et al. (2017) did not

agree with this finding. Sedunov (2016) emphasized that foreign equity exposure increases

instability, similarly as profitability and solvency showed by Lin et al. (2018).

The changes of SIFIs were presented using the ranking of institutions. The central ques-
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tion was elaborating a methodology, which provides a stable ranking. Chang et al. (2018),

Geraci and Gnabo (2018), Hué et al. (2019), Lin et al. (2018), Nucera et al. (2016) also pre-

sented a solution to this problem, while Chen and Sun (2019) revealed the problems of rank-

ings, proving that some non-G-SII also can harm the financial system.

Furthermore, the dynamics of the networks were depicted several times, the most obvi-

ous statement, that the connectedness of financial networks was growing and peaked during

the financial crises, which is not surprising, taking into consideration, that the methodolo-

gies were created ex post the turmoil. The "mood" of the market is profoundly influencing

the movements showed by Adams et al. (2014), but in turbulent times small shock can lead

to high losses thanks to the amplification mechanism (Corsi et al. 2018). The USA domi-

nated the evaluation of the financial markets during the financial crises. Nevertheless, the

EU market transferred risk to the USA under the European sovereign debt crisis Diebold and

Yilmaz (2015). Dreassi et al. (2018) identified the risk transferring channels, which can help

policymakers intervening in the movements of the market.

The fifth central topic focused on the interconnectedness among banks and insurers. The

literature concludes that there is an existing relationship between the banking and insurance

industry (Nyholm 2012, Szüle 2019, Elyasiani et al. 2016, Wang et al. 2017, Chen et al. 2014,

Billio et al. 2012, Geraci and Gnabo 2018, Gong et al. 2019). The general direction of risk

spillover is from banks to insurers, but Chen et al. (2013) showed that insurers also could

Granger-cause banks.

The sixth question is whether interconnectedness can influence the macroeconomy. The

statement is usually confirmed by academic papers, like Abendschein and Grundke (2018)

investigated the relationship of banks and sovereign bonds and concluded that country-

specific returns are essential in explaining the rankings of systemically important institu-

tions. Corsi et al. (2018) also focused on sovereign bonds, especially its ratings, which could

be explained by measuring interconnectedness.

Another aspect was lit by Cummins and Weiss (2014), who showed that the underwrit-

ing cycle4 was more dangerous to property and casualty insurers than the financial crises

(Cummins and Weiss 2014, p.506).

Engle et al. (2015) analysed a different topic, the predictability of macroeconomic vari-

ables, and SRISK metric was found efficient for this purpose. Giglio et al. (2016) also inves-

tigated forecasting and summarized some stylized facts of systemic risk (Giglio et al. (2016),

p.466-470):

• Systemic risk highly depends on the downside risk.

4The underwriting cycle means the periodicity of the insurance market. Also, in the beginning, a few insurers
are on the market. They try to acquire higher market share lowering their insurance premiums, which cause the
bankruptcy of some insurance companies and low prices for the customers. After that, the insurance premiums
begin to increase gradually, which results higher profitability and attract more insurers entering the market, and
the cycle begins from the starting point.
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• The volatility of the equities provides information to future movements.

• The shocks of the financial markets project properly the monetary interventions, which

are effortless handling extreme downside risk.

These attributes help to depict and project systemically risky events, thus the extreme risk

spillovers are determining in systemic risk, so the policymakers should reflect on that kind of

change. Furthermore, equity volatility is adequate for empirical research because it contains

valuable information for possible measures of systemic risk. Last but not least, the mecha-

nism of the monetary authority can be an informative variable, while the shocks are followed

by monetary interventions.

Another important topic is the relevance of the different measures. Rodríguez-Moreno

and Peña (2013) stated that the CDS spread is more informative for empirical analysis com-

pared to the balance sheet and volatility data. Moreover, the remark of Hale and Lopez (2019)

is worth considering that the effect of the market should be excluded before the further in-

vestigation, thus it can make distortions in results.

After considering proper data sources and a best practice, I want to highlight the re-

sults of the simple comparison and evaluation of measures. Berdin and Sottocornola (2015),

Gong et al. (2019), Lin et al. (2018) identified metrics providing similar results or rankings

of SIFIs. Sedunov (2016), Zhang et al. (2015) tried to find proper measures for forecasting

and concluded that ∆CoVaR and its variations are efficient in projecting. Despite the sim-

ilarities, Kleinow et al. (2017) pointed out the inconsistency of systemic risk gauges, so the

researchers should apply different metrics. Another way - to improve the results - is using

TVP-VAR (Geraci and Gnabo 2018) or principal component analysis, which produces more

robust outcomes.

The last set of articles points out the efficiency of combining models, as mentioned above.

While the combination contains all advantages of the measures calculated from different

data sources, it can also reduce the level of noise, and thus increasing predictive power.

III.6 Discussion of the literature

Comparing a large sample of the literature, I identified three main fields, where the pub-

lications generally have some deficiencies, like the dataset, the aggregation level and the

methodology. In connection with the analysed data, I have to make some remarks.

First of all, the authors generally investigated the insurance market as a whole and ho-

mogenous industry. However, the different branches, like life, health, property and casualty,

credit and mortgage insurance and reinsurance were rarely compared to each other. (Except

Kaserer and Klein (2019), but their analysis did not treat health insurance as an independent

branch.)
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Furthermore, some papers neglected the countries, which went bankrupt during their

analysed time span, which can cause survival-bias in the results.

Another aspect is also focusing on sample choice, which usually relied on the market cap-

italization of the companies. This way of institution selection is accepted, while the size was

identified as one of the most critical risk factors, nevertheless in exceptional cases demon-

strated by Wang et al. (2018) the small companies can pose systemic risk, which are usually

omitted from the data set.

Two technical terms can have a negative influence on the results of the research. One

hand, the publicly traded companies, provide proper data for high-frequency analysis, while

private firms do not. Nevertheless, Szüle (2019) showed a method, which is suitable for pri-

vate companies and Kaserer and Klein (2019) integrated both types of institutions in their

research.

The next topic is the aggregation level of the data, which has three aspects: geographical,

temporal and institutional level.

The geographical aspect is quite widely applied, which means that institutions are in-

volved from different continents, regions and countries.

Sometimes, the time span is also distinguished in the papers as pre-crisis, crisis and

post-crisis analysis. This division is fundamental, thus some methods behave differently

in distinct periods. Finally, the level of aggregation is also essential, as the more levels are

integrated in the investigation, the deeper can be understood the transmission of risk from

lower channels to higher ones.

The third topic, which should be discussed, is the methodology used for the modelling.

The majority of the papers did not take into consideration the influence of the market on the

risk spillovers because of this was important that Gong et al. (2019) filtered out the impact of

the market using the CAPM modell.

Besides, the rarely covered topic is the question of noise, while the efficiency of the meth-

ods can depend on the level of innovations (Nucera et al. 2016, Giglio et al. 2016, p.461).

A further common phenomenon is, that the practice use linear models for the analysis,

even though non-linear impacts also exist on the market Chao et al. (2015)

Several times, there is a considerable disadvantage of the methods, especially there is no

reference point, only historical analysis can confirm that the results show high risk for the

financial market or not, like in the case of DY spillover index and DC I . However, the leave-

one-out concept was elaborated to show the precision of the DC I approach and compensate

for this deficiency.

Lastly, the crucial question is, that ex-post developed risk metrics can be able to serve as

real early warning indicators for the turmoils?

Several aspects should be considered as an integral part of the broad analysis.

Methodologically, I am trying to provide a deep, structured analysis with a classic linear

approach. I will also specify the framework in order to create a multi-level tool for individual
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institutions and aggregated data. Nevertheless, I am aiming to return to the basic principle

of systemic risk and express the economic loss caused by a systemic event.

Considering heterogeneous market structures, I will focus on large, publicly traded com-

panies from six branches multi-line, life, health, property and casualty, credit and mortgage

insurance and reinsurance. I also will reflect on individual and sectoral level linkages and

distinguish the periods adapting to the business cycle.

However, I do not treat the question of noisy data and non-linear effects. My research

will reflect on existing relations between companies without trying to make forecasts for the

future.
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IV Data and methodology

IV.1 Methods

Billio et al. (2012) proposed a suitable framework for describing the interconnectedness

of financial networks and the importance of individual firms, which was elaborated by Hué

et al. (2019) and extended by Song and Taamouti (2019). Subsection IV.1.1 summarizes the

original modell, while subsection IV.1.2 the leave-one-out approach and subsection IV.1.5

the extended version of the framework.

IV.1.1 Degree of Granger-causality

Degree of Granger-causality5 tries to summarize the information incorporated in the

pairwise relationship between individual institutions on the level of the system. However,

the framework is multiple-use, which means that it can capture the relationship between

different aggregates with higher granularity, like subsectors, sectors or whole industries.

I follow the authors’ way of thinking in the description of the method (Billio et al. 2012,

p.539-541). At the first step, focus on the lowest level of aggregation, on individual institu-

tions.

The starting point of the approach is based on the number of existing relationships be-

tween institutions measured by linear Granger-causality (Granger 1969), which highlights

not only the existence but also the directionality of linkages.6 Time series i Granger-causes

times series j , if the set of the past information included in i contains information for pre-

dicting the values of the time series j . Mathematically saying, characterize two stationary

time series R i
t and R j

t with αi , α j , βi j , β j i coefficients as follows:

R i
t+1 =αi R i

t +βi j R j
t +e i

t+1, (1)

R j
t+1 =α j R j

t +β j i R j
t +e j

t+1. (2)

Of course, e i
t+1 and e j

t+1 are white noise processes. Time series i Granger-causes time

series j , when β j i is not equal with zero. Similarly, time series j Granger-causes time series

i , when βi j significantly differs from zero.7

The formal hypothesis test was introduced by Granger (1969) investigating whether the

information deriving from one time series helps to predict the evaluation of another one. In

the depiction of the test I follow Hué et al. (2019) (Hué et al. 2019, p.91).

5The abbreviation of the measure is DC I in the literature, however, Billio et al. (2012) used DGC in their
article. Nevertheless, staying consistent with the literature, I use the DC I designation.

6Naturally, the applied mathematical formalism is adequate to test non-linear causality, but I will concen-
trate on linear effects.

7The equations were formalized if a single lag is enough to explain the dynamics. In other cases, more lags
should be involved.
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H0 : Pr (R i
t < R|Ft−1) = Pr (R i

t < R|F i
t−1), (3)

which is true for all R values, and the information sets are designed by (4) and (5). Also,

accepting the null hypothesis means that the joint information set does not consist of more

information than the information set of the i time series.

Ft−1 =
{

(R i
s ,R j

s )>, s ≤ t −1
}

, (4)

F i
t−1 = {R i

s , s ≤ t −1}. (5)

The existence of causality is indicated by the (6) formalism.

(i → j ) =
{

1, if j Granger-causes i ,

0 otherwise.
(6)

Now, I can define DC I , considering that totally N (N−1) relationship exists among insti-

tutions, where N denotes the number of market actors. So, the number of existing connec-

tions is divided by the number of all possible relationships expressed by (7).

DC I = 1

N (N −1)

N∑
i=1

∑
i 6= j

( j → i ) (7)

However, DC I varies between 0 and 1, but it is not bright what level of the measure ex-

presses growing risk in the financial network. So, the authors defined a K limit, and exceed-

ing K means rising risk in the network (Billio et al. 2012, p.540).

The number of connectedness can be divided according to the direction of edges. The

number of incoming edges to one institution is formalised as followings:

#In : ( j → S)|DC I≥K = 1

N −1

∑
i 6= j

(i → j )|DC I≥K , (8)

where S expresses the whole system. The outgoing links for a distinct company can be

gauged similarly:

#Out : (S → j )|DC I≥K = 1

N −1

∑
i 6= j

( j → i )|DC I≥K , (9)
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(8) and (9) can be summarized in one equation, as counting all significant incoming and

outgoing.

#In +Out : ( j ↔ S)|DC I≥K = 1

2(N −1)

∑
i 6= j

(i → j )+ ( j → i )|DC I≥K (10)

(10) expresses the significance of one company, based on the number of existing edges

of the Granger-network.

As a further step, consider M different groups of institutions, like banks and insurers and

M = 2. For the comparison denote λ, κ= 1, ..., M indexes. The former measures can be gen-

eralized to selected groups, see equations (11), (12) and (13). Equation (11) summarizes the

aggregated outgoing causalities, equation (12) catches the total incoming effects. In contrast,

equation (13) contains all incoming and outgoing edges from one sector to other.

#In − to −Other :

(
( j |λ) → ∑

κ 6=λ
(S|κ)

)∣∣∣∣
DGC≥K

= 1

(M −1)N /M

∑
κ 6=λ

∑
i 6= j

(
( j |λ) → (i |κ)

)∣∣∣
DGC≥K

(11)

#Out − to −Other :

( ∑
κ 6=λ

(S|κ) → ( j |λ)

)∣∣∣∣
DGC≥K

= 1

(M −1)N /M

∑
κ 6=λ

∑
i 6= j

(
(i |κ) → ( j |λ)

)∣∣∣
DGC≥K

(12)

#In +Out −Other :

(
( j |λ) ↔ ∑

κ 6=λ
(S|κ)

)∣∣∣∣
DGC≥K

=
∑
κ 6=λ

∑
i 6= j

(
(i |κ) → ( j |λ)+ ( j |λ) → (i |κ)

)∣∣∣
DGC≥K

2(M −1)N /M

(13)

As a final remark, I must mention that the DC I method is a linear approach, which is

not suitable for expressing the non-linear effects of the financial market. However, the risk

spillovers on the financial market contain non-linear effects proved by Chao et al. (2015). For

this reason, Billio et al. (2012) also applied non-linear Granger-causality in their paper, but

this is not part of the current analysis.

IV.1.2 Leave-one-out approach

To introduce the leave-one-out concept, firstly, I have to characterize a modified form of

the Granger-causality in mean (Granger 1980, 1988, Sims 1972, 1980) hypothesis (3).
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H0,1 : E(R i
t |Ft−1) = E(R i

t |F i
t−1) (14)

This statement can be tested with the (15) test statistics.

U j→i = T ln

( σ̂2
i ,2

σ̂2
i ,1

)
, (15)

where T symbolises the sample size, σ̂2
i ,2 and σ̂2

i ,1 are the estimated variances of the residuals

ˆεi ,1 and ˆεi ,2 deriving from the (16) and (17) equations.

R i
t = c1 +

M∑
s=1

φsR i
t−s +

M∑
s=1

γsR j
t−s +εi ,1,t , (16)

R i
t = c2 +

M∑
s=1

δsR i
t−s +εi ,2,t . (17)

Where M lags are included in the modell, c1 and c2 are constants, while φs , γs and δs are

coefficients. Besides, U j→i test statistics follow an asymptotic chi-squared distribution with

M degree of freedom. Denote η the significance level and 1−η the confidence level, if the

U j→i test statistics is unambiguously greater then the critical value (χ2
1−η(M)), than the null

hypothesis will be rejected. So, an indicator can be defined as measuring significant linkages

among financial companies.

I(U j→i >χ2
1−η(M) =

{
1, if j Granger-causes i ,

0 otherwise.
(18)

Counting directed linkages, Hué et al. (2019) modified metrics #In +Out based on (10)

and (18) equations to indicate the weight of an institution in the network.

InOutk = 1

2(N −1)

N∑
j=1
j 6=k

[
I(Uk→ j >χ2

1−η(M)+ I(U j→k >χ2
1−η(M)

]
, (19)

where the (19) equation measures the incoming and outgoing edges.

Hué et al. (2019) also re-formalised the DC I measure as the level of Granger-causality

(LGC ) see equation (7). Except that the LGC does not normalise the significant number of
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relationships with the number of all possible linkages.

LGC =
N∑

i=1

N∑
j=1
i 6= j

(I(U j→i >χ2
1−η(M)) (20)

Moreover, leaving out the k th institution from the sample, the LGC−k is defined as follows

for a smaller N −1 large sample:

LGC−k =
N−1∑
i=1

N−1∑
j=1

j 6=i , j 6=k

I(U j→i >χ2
1−η(M)). (21)

However, Hué et al. (2019) pointed out that this form of the LGC will neglect the linkages

coming from the left-out institution, but indirect causalities will be reserved in the system.

Let illustrate the indirect relationships using an example (Hué et al. 2019, p.92-93). Imag-

ine that there are three institutions on the market A, B and C . A not direct, also "intermedi-

ated" effect exists in the system, if A Granger-cause institution B , which has an impact on the

company C . When A is eliminated from the system, its indirect influence will be preserved

by institution B . This phenomenon expects some modification in the definition of LGC−k .

LGC−k =
N−1∑

i=1,i 6=k

N−1∑
j=1

j 6=k, j 6=i

I(U j→i |k >χ2
1−η(M)), (22)

where the U j→i |k represents the conditional Granger-causality test, this test can detect that

the effects are mediated or directly incoming to the institutions (Geweke 1984).

Formally, the conditional Granger-causality is like the (23) equation, more precisely:

U j→i |k = T ln

( σ̃2
i ,2

σ̃2
i ,1

)
, (23)

where T is the sample size, σ̃2
i ,2 and σ̃2

i ,1 are the calculated variances of the residuals ε̃i ,1 and

ε̃i ,2 calculated in the (16) and (17) equations.

R i
t = c1 +

M∑
s=1

φsR i
t−s +

M∑
s=1

γsR j
t−s +

M∑
s=1

ψsRk
t−s +ui ,1,t , (24)
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R i
t = c2 +

M∑
s=1

δsR i
t−s +

M∑
s=1

θsRk
t−s +ui ,2,t . (25)

Where ψs and θs are the new parameters in comparison to (16) and (17) equations.

The LOO measure can be described by the help of LGC (20) and LGC−k (22) for the dis-

tinct institution k:

∆LGCk = LGC −LGC−k

LGC
. (26)

This gauge summarizes the systemic importance of financial institutions neglecting im-

plicit effects from the system. Also,∆LGCk expresses in percentage, if a company is excluded

from the financial network to what extent will change the connectedness between remaining

institutions. Technically, the high positive values mean deeply interconnected institutions in

the network, which can pose systemic risk, while companies with low values are secure. Thus

the bankruptcy of central institutions will dramatically raise the interconnectedness in the

network. In contrast, the drop-out of less important firms will reduce interconnectedness.

Compared to the approach of Billio et al. (2012), the LOO was found to be more com-

patible, identifying the G-SIIs published by the Financial Stability Board (Hué et al. 2019,

p.102). Although the ranking of SIIs reported by the Financial Stability Board is considered

as a reference point in the literature, the relevance of the mentioned ranking is not clear.

IV.1.3 Holm-Bonferroni correction

The multiple hypothesis testing problems arise when pairwise Granger-causality tests are

performed, which means that the higher the number of tests, the higher the probability of re-

jecting the null hypothesis, which can result spurious consequences deriving from the data.

This problem is solved by the family-wise error rates (FWER) approach for multiple hypoth-

esis tests. Several methods belong to this framework, I have chosen the widely spread Holm-

Bonferroni Correction (also called Holm’s Sequential Bonferroni Procedure (Holm 1979)).

The steps of the correction are the followings:

1. Consider p1, p2, ...pn p-values deriving from the hypothesis tests.

2. Rank the p-values in ascending order: p∗
1 ≤ p∗

2 ≤ ... ≤ p∗
n

3. Calculate modified p-values. Select the targeted level of significance (α). Transform

the significance level for the ordered p-values using α∗
r ank = α

n−r ank+1 , where r ank =
1, ..,n and signs position in the ordered sample. So the lowest p-value has the rank 1,

and the highest n.

4. Compare p∗
r ank and α∗

r ank (r ank = 1, ..,n) given by (27).
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{
p∗

r ank <α∗
r ank Reject the null hypothesis

p∗
r ank ≥α∗

r ank Cannot reject the null hypothesis
(27)

IV.1.4 Criticism of the∆LGCk approach

In this section, I will show that the leave-one-out approach and the ∆LGCk are not care-

fully defined, which can cause distortions in empirical use. Nevertheless, the main idea of

the framework proposed by Hué et al. (2019) should not be rejected, while the basic con-

cept is correct. Primarily, the Granger-causality must be based on the knowledge of the true

network, which means the real existing relationships between institutions represented by

nodes. If the real network can be extracted from the observations, then the results of the

article published by Hué et al. (2019) will be valid.

Firstly, I explain why∆LGCk is inappropriate for detecting SIFI-s. After that, I make some

remarks to its use and deficiencies for representing systemic risk for the whole network.

The∆LGCk approach was introduced to improve the InOutk measure counting the pro-

portion of incoming and outgoing edges from the k th node. The innovation was necessary,

while the systemic risk measures usually ignore the question of spurious edges arising in

the network. However, the existence of indirect linkages can induce the misclassification of

SIFIs, which questions the economic consequences drawn from the false risky institution

rankings. So, it is a fundamental question to treat the spurious effects of the financial net-

works to present reliable analysis about the stability of the system.

Hué et al. (2019) proposed a framework to filter the false connections from the networks.

In this section, I revise the ∆LGCk measure, I will express that it cancels only some distinct

spurious edges, and the interpretability is hard thanks to the theoretical domain of the mea-

sure.

Hué et al. (2019) emphasized that the InOutk measure is only appropriate for networks

without spurious connections, but the real networks usually contain false linkages, which

can cause distortions. To understand the authors’ motivation, consider the example of Hué

et al. (2019) firstly. The authors described a graph, which is a proper demonstration of filter-

ing out all spurious connections. As figure 1 demonstrate a small network with three institu-

tions. There are existing real connections from institution 3 to institution 1 and institution 2

indicated by black lines, while a spurious relationship between institution 1 and institution

2 described by a waved grey arrow.

However, leaving-out the institutions individually, the following relationships can be ob-

served. One directed edge from institution 3 to institution 1, and other one between insti-

tution 3 and institution 2. Institution 1 and institution 2 are not connected. The described

connection map means that one spurious edge is filtered from the network, and the real

structure of the graph can be reconstructed.
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Figure 1: Example I. of Hué et al. (2019) for spurious edges in financial networks

Figure 2: Example I. of Hué et al. (2019), when leave-one-out approach clears spurious
edges from the network

The solution is quite simple and attractive, and a non-mentioned advantage of the ap-

proach is that in particular circumstances, the real network (without false linkages) can be

reproduced, putting together the edges. An example of this is presented in figure 2.

Nevertheless, this framework has methodological and economic deficiencies. On the one

hand, the weights can include spurious effects. At the same time, the methodology does not

filter all spurious effects, which implies that the cited example of Hué et al. (2019) is only a

special case, not the general rule (figure 1 and figure 2.)

On the other hand, the weights created by the ∆LGCk are not reflected in the InOutk

values of the real network.

As the first step, I show a network, which demonstrates that not all false edges disap-

pear using the conditional Granger-causality test. So, consider the modified version of the

first example displayed in figure 3. Two new institutions are added to the network (figure

1): institution 4 and institution 5. Also, new connections appear between institution 2 and

institution 5 and a spurious connection between institution 4 and institution 5.

Apply the leave-one-out framework to this modified graph. Figure 2 displays the remain-

ing edges dropping the k th node (k = 1,2,3,4,5) from the network. Spurious edges are in-

cluded in three cases in figure 2. When institution 3, institution 1 and institution 5 are ex-
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cluded, which means that the conditional Granger-test clears only the adjacent spurious

edges, not all. Furthermore, this means that putting together the leave-one-out networks

(figure 2) does not result the original connectedness graph without spurious edges. So, only

using this correction method does not grant an adequate picture of the real network and real

connectedness structure.

Figure 3: Modified example I. of Hué et al. (2019)

Furthermore, the ∆LGCk is poorly defined, which induces inappropriate economic in-

terpretability and false conclusions drawing from the results.

A good starting point is the definition of the measure: ∆LGCk = LGC−LGC−k
LGC . To conclude

the results for policymakers, the range of the gauge should be known, but the authors’ do

not clear this topic so that I will distinguish two fundamentally different cases. (Excluding

the point, when LGC = LGC−k , which results that the ∆LGCk becomes zero.)

Condition Max value Max argument Min value Min argument

LGC > LGC−k 1 LGC−k = 0 1
(n−1)(n−2)+1 ↘ 0

LGC−k = (n −1)(n −2)
LGC = (n −1)(n −2)+1

LGC < LGC−k
1

(n−1)(n−2)−1 ↗ 0
LGC−k = (n −1)(n −2)

LGC = (n −1)(n −2)−1
1− (n −1)(n −2)

LGC−k = (n −1)(n −2)
LGC = 1

Table 9: The domain of ∆LGCk

The table shows that∆LGCk ∈ [1−(n−1)(n−2),1] asymptotically [−∞,1], as n converges

to infinity. The domain of the measure questioned the interpretability of the approach, while

the authors described SIFIs owing ∆LGCk near to one, and less vulnerable companies pos-

sess lower values.However, the authors miss highlighting that ∆LGCk can fall below zero,
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Figure 4: Modified example I. of Hué et al. (2019), when leave-one-out approach does not
clear all spurious edges from the network

and the measure has no lower bounds asymptotically. However, at least on finite samples, it

is not symmetric, which aggravates the comparison of secure and vulnerable companies.

Figure 5 presents an example of how∆LGCk values can variate if one institution is dropped

out of the network. The y-axis represents the connections in the starting network, which can

be maximum n(n −1) if n institutions are included, while x-axis describes the possible link-

ages after leaving out 1 company. An important remark is that in the starting network, I

assume that there is at least 1 connection, else ∆LGCk is not meaningful. Nevertheless, in

the modified network zero connection is allowed.

Understanding the ∆LGCk gauge needs to overthink the two cases indicated in the table

9.

When LGC > LGC−k , then removing the k th institution from the system will delete some

connections, which indicates that an embedded firm is in the network. Figures 6 and 7

presents an example for this case. Leaving-out institution 2 will cancel the spurious edge

between institution 1 and institution 3.
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Figure 5: All possible ∆LGCk values, if n = 5 company is in the initial network

Figure 6: Example II. of Hué et al. (2019)

Figure 7: Leave-one-out relations of example II. (Hué et al. 2019)

39



IV DATA AND METHODOLOGY IV.1 Methods

While in the other case (LGC < LGC−k ), excluding a node from the network will create

new connections, which means that the selected institution absorbs risk, which cannot spill

over to the others. This case seems to be uncertain, but in some cases can happen, see the

simplified example of Song and Taamouti (2019) (Song and Taamouti 2019, p.916). I plotted

the network graph of the mentioned example in figure 8 and the leave-one-out analysis on

figure 9.

Figure 8: Network graph modified example of Song and Taamouti (2019)

Figure 9: Leave-one-out relations of the modified example of Song and Taamouti (2019)

Having considered the domain of∆LGCk shed light on the confusing mathematical prop-

erties and weak economic interpretability of the measure, which requires a revision for em-

pirical analysis. A possible extension can be specified following the idea of Song and Taamouti

(2019), and I will present in the next section.

IV.1.5 Testing indirect and spurious effects

Song and Taamouti (2019) formalised the definitions of indirect and spurious causali-

ties and the characterization of the testing procedure. I present their approach (Song and

Taamouti 2019, p.914-915).
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Let consider three time series {X t , t ∈Z}, {Yt , t ∈Z} and {Zt , t ∈Z}, while IX (t ) = {X (s) : s ≤
t }, IY (t ) = {Y (s) : s ≤ t } and IZ (t ) = {Z (s) : s ≤ t } the information sets of X , Y and Z stochastic

processes. Moreover, I (t ) = IX (t )∪ IY (t )∪ IZ (t ) denotes the combined information set for a

given time t . Similarly can define I−X (t ) = IY (t )∪ IZ (t ), I−Y (t ) = IX (t )∪ IZ (t ) and I−Z (t ) =
IX (t )∪ IY (t ).

The definition of indirect causality is the following (Song and Taamouti 2019, p.914):

Y indirectly Granger-causes X , if:

1. Y Granger-causes X with respect to the information set IX (t ):

P
(

X t+1|IX (t )
)
6= P

(
X t+1|I−Z (t )

)
, for some t >ω. (28)

2. Y does not Granger-cause X with respect to the information set I−Y :

P
(

X t+1|I−Y (t )
)
= P

(
X t+1|I−Z (t )

)
,∀t >ω. (29)

3. Y Granger-causes Z , while Z Granger-causes X with respect to the information sets

I−Y (t ) and I−Z (t ):

P
(

Zt+1|I−Y (t )
)
6= P

(
Zt+1|I (t )

)
, for some t >ω

P
(

X t+1|I−Z (t )
)
6= P

(
X t+1|I (t )

)
, for some t >ω,

(30)

where ω is the "starting date" of the observed sample.

All items are needed to fulfill the mentioned requirements in order to call Y as an indirect

Granger-cause of X . A proper example for indirect causality is the example II. from Hué et al.

(2019) (see figure 19), while indirect causality tries to express that the node transfers risk from

one node to other.

Definition of spurious causality (Song and Taamouti 2019, p.914-915). Y spuriously Granger-

causes X if,

1. Type I.

(a) Y Granger-causes X with respect to the information set I−Y (t ):

P
(

X t+1|I−Y (t )
)
6= P

(
X t+1|I (t )

)
, for some t >ω. (31)

(b) Y does not Granger-causes X with respect to the information set IX (t ):

P
(

X t+1|I−Y (t )
)
6= P

(
X t+1|I (t )

)
,∀t >ω. (32)
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(c) Y Granger-causes Z , Z Granger-causes X with respect to the information sets

I−Y (t ) and I−Z (t ):

P
(

Zt+1|I−Y (t )
)
6= P

(
Zt+1|I (t )

)
, for some t >ω,

P
(

X t+1|I−Z (t )
)
6= P

(
X t+1|I (t )

)
, for some t >ω.

(33)

Type I. spurious causality can be illustrated with the network 8. At the same time, the

definition induces the phenomenon, that including an institution in the network, it

can reduce the number of connections via absorbing risk. If this institution is dropped

out, new linkages appear. This type of causality was neglected by Hué et al. (2019).

2. Type II.

(a) Y Granger-causes X with respect to the information set IX (t ):

P
(

X t+1|IX (t )
)
6= P

(
X t+1|I−Z (t )

)
, for some t >ω. (34)

(b) Y does not Granger-causes X with respect to the information set I−Y (t ):

P
(

X t+1|I−Y (t )
)
6= P

(
X t+1|I (t )

)
,∀t >ω. (35)

(c) Z Granger-causes Y , while Z Granger-causes X with respect to the information

set I−Z (t ):

P
(
Yt+1|I−Z (t )

)
6= P

(
Yt+1|I (t )

)
, for some t >ω,

P
(

X t+1|I−Z (t )
)
6= P

(
X t+1|I (t )

)
, for some t >ω.

(36)

The Type II. spurious connection is visualized on network plot 2, which illustrates a situation

when an external effect causes the connection between unconnected nodes.

The authors pointed out that the X and Y are observable variables, while Z a latent

one. So, you can see that the framework of Song and Taamouti (2019) is an extension of

the method proposed by Hué et al. (2019) if Z is appropriately chosen.

The extension based on the fact that Z is the first principal component of the available

data set. Denote W = (w1, ..., wT )T a T × N multi-dimensional time series, Λ the loading

matrix, ft the factors, which decompose the original observations as follows:

wt =Λ ft + ε̃t (37)

Formally, the first principal component contains the most information about the data,
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and it will represent the other time series in the analysis.

Firstly, for testing the definition 1 (indirect causalities), the following procedure should

be applied (Song and Taamouti 2019, p.918-920).

1. Testing the first condition of definition 1. Consider the equation (38), a two dimen-

sional VAR modell.

X t+1 =µ+
p∑

i=1
βi X t+1−i +

q∑
j=1

α j Yt−1− j +εt+1 (38)

Apply an F-test to the coefficients of Yt according to (39) hypothesis.

H0 :α1 = ... =αq = 0,

H1 : ∃ at least one αk 6= 0,k = 1, .., q.
(39)

If the null hypothesis is rejected, then test condition 2. If not, you can conclude that Y

directly Granger-causes X .

2. Add as a new explaining variable the first principal component and apply a Wald-test

on the lambda coefficients based on (41).

X t+1 = η+
p∑

i=1
γi X t+1−i +

q∑
j=1

λ j Yt−1− j +
h∑

l=1
θl ft−1−l +et+1 (40)

H 0 :λ1 = ... =λq = 0,

H 1 : ∃ at least one λk 6= 0,k = 1, .., q .
(41)

If H is not rejected, then consider condition 3. Otherwise, you observed that Y directly

Granger-causes X .

3. As the last step, check the third condition.

ft+1 = ν+
ṗ∑

i=1
κi X t+1−i +

q̇∑
j=1

ψ j Yt−1− j +
ḣ∑

l=1
ρl ft−1−l +ut+1,

X t+1 =ω+
p̈∑

i=1
ξi X t+1−i +

q̈∑
j=1

δ j Yt−1− j +
ḧ∑

l=1
ζl ft−1−l +εt+1

(42)

Two null hypotheses should be rejected in (43) to conclude that between Y and X is

only an indirect relationship.
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Ḣ0 :ψ1 = ... =ψq̇ = 0,

Ḣ1 : ∃ at least one ψk 6= 0,k = 1, .., q̇ ,

Ḧ0 : ζ1 = ... = ζḧ = 0,

Ḧ1 : ∃ at least one ζr 6= 0,r = 1, .., ḧ.

(43)

Not only indirect, but also spurious relations can distort the overview of the real network,

so it is necessary to check for spurious connections. The procedure checks the three condi-

tions of Type 1 definition.

1. Test the first condition of definition 1.

X t+1 =µ+
p∑

i=1
βi X t+1−i +

q∑
j=1

α j Yt−1− j +
k∑
l
πl ft+1−l +εt+1 (44)

The coefficients of Yt are tested based on the (45) hypothesis.

H (1)
0 :α1 = ... =αq = 0,

H (1)
1 : ∃ at least one αk 6= 0,k = 1, .., q.

(45)

If the null hypothesis is rejected, to detect spurious effects check condition 2. In other

cases, Y directly Granger-causes X .

2. Add as a new explaining variable the first principal component and apply a Wald-test

on the lambda coefficients based on (47).

X t+1 = η+
p∑

i=1
βi X t+1−i +

q∑
j=1

α j Yt−1− j +et+1 (46)

H 0 :α1 = ... =αq = 0,

H 1 : ∃ at least one αk 6= 0,k = 1, .., q .
(47)

If the null hypothesis is not rejected, then test condition 3. Otherwise, Y Granger-

causes X .

3. Last but not least, a joint Wald-test will be applied in step (48).

ft+1 = ν+
ṗ∑

i=1
κi X t+1−i +

q̇∑
j=1

ψ j Yt−1− j +
ḣ∑

l=1
ρl ft−1−l +ut+1,

X t+1 =ω+
p̈∑

i=1
ξi X t+1−i +

q̈∑
j=1

δ j Yt−1− j +
ḧ∑

l=1
ζl ft−1−l +εt+1

(48)
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Both null hypotheses must be rejected in order to detect spurious connections be-

tween Y and X .

Ḣ (1)
0 :ψ1 = ... =ψq̇ = 0,

Ḣ (1)
1 : ∃ at least one ψk 6= 0,k = 1, .., q̇ ,

Ḧ (1)
0 : ζ1 = ... = ζḧ = 0,

Ḧ (1)
1 : ∃ at least one ζr 6= 0,r = 1, .., ḧ.

(49)

Finally, definition 2 of spurious causality will be tested.

1. Similarly to check definition 1, the coefficients of Y values will be controlled.

X t+1 =µ+
p∑

i=1
βi X t+1−i +

q∑
j=1

α j Yt−1− j +εt+1. (50)

To investigate the Granger-causality, the hypothesis (51) will be verified.

H (2)
0 :α1 = ... =αq = 0,

H (2)
1 : ∃ at least one αk 6= 0,k = 1, .., q.

(51)

Rejecting the null hypothesis, consider the next condition. In other cases, the conclu-

sion is that Y Granger-causes X .

2. Extending the VAR modell with the factor, repeatedly, a Wald-test will be applied to

lambda coefficients in equation (53).

X t+1 = η+
p∑

i=1
γi X t+1−i +

q∑
j=1

λ j Yt−1− j +
h∑

l=1
θl ft+1−l +et+1 (52)

H
(2)
0 :α1 = ... =αq = 0,

H
(2)
1 : ∃ at least one αk 6= 0,k = 1, .., q .

(53)

If the null hypothesis is not rejected, then the following condition should be proved to

confirm spurious effects, else Y Granger-causes X .

3. A final F-test will be applied in (54) to identify spurious effects.
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ft+1 = ν+
ṗ∑

i=1
κi X t+1−i +

q̇∑
j=1

ψ j Yt−1− j +
ḣ∑

l=1
ρl ft−1−l +ut+1,

X t+1 =ω+
p̈∑

i=1
ξi X t+1−i +

q̈∑
j=1

δ j Yt−1− j +
ḧ∑

l=1
ζl ft−1−l +εt+1

(54)

The two hypotheses should be rejected at the same time for confirming spurious link-

ages.

Ḣ (1)
0 : ρ1 = ... = ρq̇ = 0,

Ḣ (1)
1 : ∃ at least one ρk 6= 0,k = 1, .., q̇ ,

Ḧ (1)
0 : ζ1 = ... = ζḧ = 0,

Ḧ (1)
1 : ∃ at least one ζr 6= 0,r = 1, .., ḧ.

(55)

The formal way to calculate test statistics can be found in the Appendix section C.1.

IV.1.6 Validation methods for vulnerability rankings

Selecting the most suitable framework for the identification of systemically important

financial institutions is a complicated field, while several approaches exist, which are poten-

tial tools for the detection of vulnerable parts of the networks. I raise only some standard

validation methods to highlight the possible ways of testing the results.

Two main ways exist for checking the reliability of different frameworks: modell building

and comparison with the published list of global systemically important institutions. The

list is published annually by the Financial Stability Board (Financial Stability Board 2019)

for banks (G-SIB), and by the Financial Stability Board and the International Association of

Insurance Supervisors (Financial Stability Board 2016) for insurers (G-SII).

The modell building approach applies, in general, the value of the measures as indepen-

dent variables in regressions (Grundke and Tuchscherer 2019, Irresberger et al. 2017, Zhang

et al. 2015) or panel modells (Chen et al. 2013, Hué et al. 2019) in order to test the explain-

ing power of the potential early-warning indicators. However, sometimes the rank number

is also involved in the analysis (Abendschein and Grundke 2018), while Berdin and Sotto-

cornola (2015) applied difference-in-difference analysis for robustness check.

The more complicated question is what should be chosen as the dependent variable.

For forecasting purposes, Grundke and Tuchscherer (2019) used logit modell to test that the

bankruptcy of an institution will cause the fall of a given proportion of market players. At the

same time, Hué et al. (2019) predicted the possible future loss based on the leave-one-out
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framework. The spillover risk, represented by realized covariance, was measured by Zhang

et al. (2015). The authors also explained by-and-hold-return expressing systemic risk intro-

duced by Acharya et al. (2010) and capital shortfall, too.

The more convenient way is the comparison of the results with the published systemi-

cally important institutions. Although, you cannot be sure that the list contains all unstable

firms, and the involved companies are really posing high systemic risk. A further deficiency

is, that the list of the vulnerable global insurers is available only until 2016.

All in all, the rankings of vulnerable institutions can serve as a help for fast decision mak-

ing for business companies, credit rating companies, but the more profound understanding

assumes econometric analysis to be sure in the outcome of the research.

IV.2 Data

The analysis aims to give a broad overview of the risk of individual insurers, the insurance

sector, and the relationship between insurance and banking branches. So, I tried to include

as much publicly traded insurers as possible, reflecting on North American and European

locations. However, I choose only a selected group of banks to represent the banking sector,

while this industry is deeply analysed, so I only want to contrast it to the insurance sector. I

selected large and small banks measured by market capitalization from both locations, while

I tried not to miss small, but embedded banks, which can pose systemic risk pointed out

byLin et al. (2018).

I downloaded 157 insurers and 55 banks data from Bloomberg 28.12.2001−31.12.2019.

After that, I selected the institutions owing enough information to carry out the analyses.

(The selected institutions are listed in the Appendix A.) I split the time horizon to three-part:

pre-crises, crises and post-crisis periods to investigate the vulnerability of institutions and

the system in a different part of the business cycle. The grouping of periods was based on

the selection of Hué et al. (2019). The pre-crisis period started on 2001.12.28 and ended

on 2007.06.29, the crises period dated between 2007.07.02− 2009.06.30 and the post-crisis

times from 2009.07.01 to 2019.12.31. Totally 1436, 522 and 2740 days data are included in the

distinct periods. The number of institutions at different times are listed in table ??.

Period EU insurers North American insurers EU banks North American banks
∑

Pre-crisis 15 62 19 17 113

Crisis 28 77 26 23 154

Post-crisis 30 81 27 23 161

Table 10: Insurers and banks from different locations in the dataset

In order to represent the insurance sector, I grouped companies based on the Indus-
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try Classification Benchmark (ICB) codes and the Standard Industrial Classification system.

Both classifications are necessary while only using the joint grouping frameworks present

the full separation of the insurance industry. Based on the ICB codes I differentiated P/C in-

surers with subsector code 8536, life insurers with subsector code 8575, financial insurers8,

reinsurers with subsector code 6538, full line insurers with subsector code 85329 and banks

from subsectors 8355 and 8771. The accident and health insurers are categorized based on

the ICB to the life insurance sector, so I refined the classification with SIC codes using 6321

subsector index.

I downloaded daily open, low, high and close prices to calculate inputs for further analy-

sis. In general, not the return is believed to contain the most information about the market,

but volatility10 is a better source of information (Giglio et al. 2016), and C DS data have the

most outstanding quality (Rodríguez-Moreno and Peña 2013). Practically, volatility data are

available for a more extended period, so that I will use it for the investigation. I calculated

volatility based on the methodology proposed by Garman and Klass (2016). Also, the daily

volatility for the i th time series is the following:

σ̃i t = 0.511(Hi t −Li t )2 −0.019[(Ci t −Oi t )(Hi t +Li t −2Oi t )

−2(Hi t −Oi t )(Li t −Oi t )]−0.383(Ci t −Oi t )2,
(56)

where Oi t , Li t , Hi t and Ci t symbolize the natural logarithms of the open, low, high and close

prices on day t .

8Called financial guarantee and mortgage insurers in ICB framework with subsector codes 8536 and 8779,
while surety and title insurers based on SIC framework with 6351 and 6361 subsector codes. I use the name of
the SIC framework. So, I name full line insurers operating in several insurance subsectors, while there are also
called multi-line insurers in the literature.

9Only E-L Financial Corp Ltd operates in subsector 3767 according to the ICB codes, but I have checked the
operating area on Bloomberg, which describes well the full line insurance business.

10Remark: I applied VAR modells during the analysis in accordance with the empirical literature in order to
produce comparable results. Nevertheless, I am aware of the fact that there are special econometric modells
for volatility, like the widely used HAR framework proposed by Corsi and Reno (2009).
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V Empirical analysis

This part of the paper provides an overview of the European and North American insur-

ance sector and its connections with the banking industry.

V.1 Research design

I utilize the idea of Hué et al. (2019) filtering out non-real edges from the network, ex-

tended by Song and Taamouti (2019) applying principal component analysis instead in the

VAR modells. To be sure to provide a more precise solution, I implemented a Monte Carlo

simulation, which you can see in Appendix C.2. The conclusion was for large samples that

the approach of Song and Taamouti (2019) worked well in those cases if the principal compo-

nent analysis included only the variables, which were initially not represented in the Granger-

causality test. Also, the PCA method was not applied to the whole dataset as presented by

Song and Taamouti (2019), but only on the other variables to avoid multicollinearity effects.

I also made sure that every combination of the data is proper for principal component anal-

ysis in all periods. Thus the Kaiser-Meyer-Olkin measure never fell below 0.97, which ex-

presses high adequacy.

The analysis is divided into more dimensions: different periods in the business cycle

and aggregation level. I consider pre-crisis, crisis and post-crisis periods, static results and

institutional, sectoral and industrial levels of aggregation.

I calculate InOutk , DC I , MES, SRI SK and ∆CoV aR. For the quantification, I used the

common-sense parameters in the literature, like capital adequacy ratio 8%, market index

downturn C = 40% and the ordinary 5% significance level. For the ∆CoV aR calculation,

I used the state variables of Adrian and Brunnermeier (2011) (see in Appendix C.4), but I

have changed market-specific variables to SP500 Insurance Index (S5I N SU ) and the STOXX

Europe 600 Insurance Index (SXIP) to represent the insurance market on both locations. For

the DC I specification, I set the limit (K) to 0.06.

In the different periods, 1436, 522 and 2740 trading days are included and total 14 groups

from the insurance and banking industry.

In the following part, I analyse all levels of aggregation in different periods in order to

contrast similarities and differences.

V.2 Identification of SIFIs

The first aim of the static analysis is to characterize the systemically important institu-

tions, which can potentially pose systemic risk. So, I calculated several measures to provide

an overview of the vulnerability institutions. InOut 11 is the measure I mostly rely, while

11I introduced InOutk measure, but this section I write only InOut , which means I simply count the incom-
ing and outgoing edges from a node without normalization with the possible relations.
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it was calculated based on the true network, while ∆CoVaR, MES, SRISK not.12 Basu et al.

(2017) also emphasised this deficiency of ∆CoVaR.

However, as you can see on tables 11, 12 and 13 that the rankings are very diverse. The

tables contain the top 10 riskiest and the bottom 10 safest institutions indicating the sector.

However, there are some astonishing points.

V.2.1 Pre-crisis

Start the interpretation with table 11. The SIFIs detected by the InOut measure have

quite a lot connections, considering that 113 company were included about 50% of all pos-

sible relations deriving from a company and arrive at the company. The ranking enhances

the centrality of banks and P/C insurers, but it is surprising that also a health insurer is rep-

resented in the ranking, while health insurers are usually treated as a subgroup of life or P/C

insurance depending on the classification regime.

Contrasted to the InOut gauge, ∆CoVaR also detected Wells Fargo as a risky firm. The

systemically important institutions are banks, only 3 insurers were identified by ∆CoVaR

health, a multi-line and a life insurer.

∆CoVaR identified JP Morgan as a vulnerable institution, which is in accordance with the

related measures, MES and SRI SK .

Considering the marginal expected shortfall outcome, the instability of insurers stands

out of the question: property and casualty, life, full line insurers, and the MUV2 reinsurance

company are also detected, which shed light on that the sectoral division of insurers can

support policymakers.

In the case of SRISK ranking, the dominating role of banks is clear, only the Allianz SE

was found, from the insurance sector, posing a high risk.

The "security" rankings are, for me, a more exciting topic, while I am convinced if a com-

pany is found safe, it might mean that you might not have the proper toolkit to measure

it.

I also should add that the InOut framework detected several companies with zero con-

nections, so it does not deserve to much time, and may it is not proper for this role. I can

compare it to SRI SK , which also includes companies with zero values.

∆CoVaR described different types of institutions as secure ones, like life, P/C, full line

insurers and a reinsurer. Also, banks are detected, Turkiye Garanti Bankasi AS (GARAN) and

QN Finansbank AS (GNBFB).

MES also identified small banks and full line insurers as low-risk institutions.

The interconnectedness of individual institutions is expressed on network graph 10. The

picture, similar to the ranking scores, suggests a network with several edges and relations.

12∆CoVaR, MES and SRISK were calculated as averages for all institutions.
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Figure 10: Individual institutions connectedness in the pre-crisis period

V.2.2 Crisis

Considering the period of the financial crisis, it seems to be very surprising, that the

banking system caused the financial crisis, but according to the InOut measure, 9 insur-

ers were detected only one bank. Also, an important point is that the SIFIs have halved their

exposure during the most severe times of the financial crises. (See also figure 11. Compar-

ing with figure 10, the decrease of connections is easy to see.) This fact may deserve more

attention. A possible explanation is that the method proposed by Song and Taamouti (2019)

cleared all spurious and indirect edges from the network, and not the direct relations were

dominating that period. A further remark is that life insurers were described as the source of

the shocks owing to toxic assets.

Not only InOut , but also ∆CoVaR identified insurers as a critical part of the financial

system and similar to InOut , not property and casualty insurers are dominating, but the life

insurers.

MES also characterized insurers as SIFIs, but the financial surety and guarantee insurers

gave half of the ranking, which traded the toxic assets during the crises. Beverly Hills Bancorp

Inc (BHBCQ) was found a vulnerable institution, which is a small American bank. Beverly

Hills Bancorp Inc is an example to tiny, but vulnerable firms. An exciting phenomenon is

how small institutions can become systemically important. Although it is a rare event, Lin

et al. (2018) observed that small, but embedded insurers can become an essential part of

financial networks.
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SRI SK presented a ranking, which most suited my expectations. Thus the banks were

the most vulnerable companies between 2007−2009.

If you see the bottom of the rankings, similarly to the pre-crisis period, SRI SK and InOut

rankings are not too useful, while all values are zero. Nevertheless, the zeros signal that some

companies remained isolated in the financial sector, which can suggest their safety.

Considering another gauge, ∆CoVaR shows that property and casualty and full line in-

surers are the most secure institutions. This pattern is also found in the case of MES ranking

but completed with banks and one health insurer.

Figure 11: Individual institutions connectedness during the financial crisis

V.2.3 Post-crisis

Table 13 shows that after the financial crises the Del t aCoVaR, MES and SRI SK values

dropped. Except the riskiest company identified by MES - WSB Financial Group Inc (WS-

FGQ) -, WSB Financial Group Inc is operating in the banking industry, and it belongs to

the American banks with the lowest market capitalization included in the sample. Similarly,

Rainier Pacific Financial Group Inc (RPFG), Nexity Financial Corp (NXTYQ), Georgia Banc-

shares Inc (GABA) and Beverly Hills Bancorp (BHBCQ) were detected. All in all, five small

banks were found to be systemically vulnerable. I think this finding is significant, while

authors usually neglect small firms from samples, which can seemingly distort institution

rankings.

The SRI SK ranking presented that the numbers decreased, but remained higher than in

the pre-crisis period, while ∆CoVaR values did not exceed the pre-crisis level.
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Only one measure demonstrated a dynamical growth, the InOut framework. The growth

expresses the real increase of the connectedness in the financial system, while the relations

are calculated by filtering out indirect and spurious edges. Although, the sectoral relations

are hard to define, while InOut and∆CoVaR identified more risky insurers, while in the case

of SRI SK and MES banks are dominating.

A crucial change is that based on InOut , the majority of the safest institutions are not

isolated in the network. This is the following sign of the growing connectedness. Neverthe-

less, the sectoral level is hard to judge without further investigation, but the network graph

provides an insight into the possible changes (figure 12), so in the next part, I will focus on

the aggregated connectedness.

Figure 12: Individual institutions connectedness in the post-crisis period
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Top10 Name InOut Type Name ∆CoVaR Type Name MES Type Name SRISK Type

1 BMO 103 Bank WFC 0.00109 Bank ZURN 0.0224 Full line insurer UBSG 63 696.1 Bank
2 ALL 101 P/C insurer USB 0.00075 Bank UVE 0.0106 P/C insurer SWEDA57 449.5 Bank
3 WFC 92 Bank SAN 0.0007 Bank RSA 0.0101 Full line insurer SHBA 57 190.5 Bank

4 STT 91 Bank PFG 0.00068
Accident and
health insurer

MUV2 0.0099 Reinsurer SEBA 55 690.7 Bank

5 SLF 88
Accident and
health insurer

JPM 0.00066 Bank JPM 0.0096 Bank JPM 45 244.4 Bank

6 RY 88 Bank HIG 0.00065 Full line insurer INGA 0.0089 Bank INGA 35 199.6 Bank
7 PGR 85 P/C insurer GL 0.00065 Life insurer GANS 0.0085 P/C insurer DBK 34 730 Bank
8 L 85 P/C insurer COF 0.00061 Bank COF 0.0085 Bank CSGN 31 228.2 Bank
9 CM 84 Bank C 0.00056 Bank AV_ 0.0084 Life insurer BARC 27 225.4 Bank

10 CINF 82 P/C insurer BAC 0.00056 Bank ALV 0.008 Life insurer ALV 25 912.4 Full line insurer

Down10 Name InOut Type Name ∆CoVaR Type Name MES Type Name SRISK Type

1 UNAM 1 P/C insurer CIA -0.00013 Life insurer UNI -0.0281Full line insurer WFC 0 Bank
2 UFCS 1 Full line insurer GARAN -0.0002 Bank SBBG -0.0071 P/C insurer UFCS 0 Full line insurer
3 PEO 1 Bank GWO -0.00002 Life insurer QNBFB -0.0031 Bank TGIC 0 Surety and title insurer
4 NWLI 0 Life insurer HELN -0.00004Full line insurer NSEC -0.0025Full line insurer SPL 0 Bank
5 NSEC 0 Full line insurer HNR1 -0.00004 Reinsurer MINE -0.0007Full line insurer RNR 0 Reinsurer
6 MINE 0 Full line insurer IHC -0.00006 Life insurer HELN -0.0005Full line insurer RGA 0 Reinsurer

7 ITIC 0
Surety and
title insurer

QNBFB-0.00006 Bank HABK -0.0003 Bank PEO 0 Bank

8 ELF 0 Full line insurer RSA -0.00006Full line insurer GWO -0.0001 Life insurer KMPR 0 Full line insurer

9 CFIN 0
Accident and
health insurer

UNAM -0.00008 P/C insurer ELF -0.0001Full line insurer BRK_A 0 Reinsurer

10 ARGO 0
Surety and
title insurer

UVE -0.0001 P/C insurer BHBCQ-0.0001 Bank ANAT 0 Full line insurer

Table 11: SIFIs and safest institutions based on different measures in the pre-crisis period
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Top10 Name InOut Type Name ∆CoVaR Type Name MES Type Name SRISK Type

1 UTGN 57 Life insurer WFC 0.00198 Bank TGIC 0.0599
Surety and
title insurer

SEBA 147 677.1 Bank

2 RNR 52 Reinsurer UNM 0.00188
Accident and
health insurer

SYCRF 0.0514
Surety and
title insurer

RBS 140 593.3 Bank

3 PRA 51 P/C insurer UCG 0.00179 Bank RDN 0.0444
Surety and
title insurer

INGA 135 685 Bank

4 PGR 48 P/C insurer PWF 0.00168 Life insurer MTG 0.0416
Surety and
title insurer

HSBA 132 208.2 Bank

5 L 42 P/C insurer PRU 0.0016 Life insurer MBI 0.0359
Surety and
title insurer

DBK 122 035.9 Bank

6 KMPR 40 Full line insurer POW 0.00154 Life insurer LNC 0.0356 Life insurer C 113 717.3 Bank
7 CNA 37 Full line insurer PGR 0.00153 P/C insurer HIG 0.0349 Full line insurer BARC 102 950.6 Bank
8 CINF 36 P/C insurer JPM 0.00153 Bank GNW 0.033 Life insurer ACA 101 557.5 Bank
9 AFG 33 P/C insurer CB 0.00152 P/C insurer BHBCQ 0.0314 Bank UBSG 99 005.4 Bank

10 ACA 24 Bank ACA 0.0015 Bank AOREF 0.0313 Reinsurer SWEDA 94 914.1 Bank

Down10 Name InOut Type Name ∆CoVaR Type Name MES Type Name SRISK Type

1 VAHN 0 Full line insurer PROTCT -0.0004 P/C insurer SGYI 0.0026 Full line insurer Y 0 P/C insurer
2 SGYI 0 Full line insurer NSEC -0.00026 P/C insurer SFBI 0.0021 Bank TRYG 0 Full line insurer
3 SFBI 0 Bank GANS -0.00024 P/C insurer SBBG 0.0017 P/C insurer THG 0 P/C insurer
4 RBS 0 Bank FNHC -0.00018 P/C insurer RAYSG 0.0007 Full line insurer STFC 0 P/C insurer
5 PROTCT 0 Full line insurer FACO -0.00016Full line insurer PROTCT-0.0309 Bank SAFT 0 P/C insurer
6 NBG6 0 Full line insurer EFH -0.00015 P/C insurer NBG6 -0.0045Full line insurer RNR 0 Reinsurer
7 C 0 Bank VAHN -0.00009Full line insurer HABK -0.002 Bank RAYSG 0 Full line insurer

8 BNS 0 Bank UNAM -0.00007Full line insurer ELF -0.0011Full line insurer ITIC 0
Surety and
title insurer

9 BARC 0 Bank STB -0.00007Full line insurer EFH -0.0006 P/C insurer CIA 0 Life insurer

10 ALV 0 Full line insurer RAYSG -0.00003Full line insurer CFIN -0.0003
Accident and
health insurer

BRK_A 0 Reinsurer

Table 12: SIFIs and safest institutions based on different measures during the financial crisis
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Top10 Name InOut Type Name ∆CoVaR Type Name MES Type Name SRISK Type

1 TRYG 173 Full line insurer UNM 0.00073
Accident and
health insurer

WSFGQ 0.069 Bank BNP 123 951.8 Bank

2 SLF 171
Accident and
health insurer

PRU 0.0006 Life insurer TGIC 0.0258
Surety and
title insurer

BARC 118 093 Bank

3 SHBA 169 Bank PNC 0.00056 Bank SGYI 0.0242 Full line insurer BAC 111 133.4 Bank

4 RSA 168 Full line insurer PFG 0.00053
Accident and
health insurer

SFBI 0.0203 Bank ACA 107 900.2 Bank

5 PWF 164 Life insurer MET 0.00051 Life insurer RPFG 0.014 Bank SHBA 91 477.4 Bank

6 POW 162 Life insurer LNC 0.0005 Life insurer RDN 0.0134
Surety and
title insurer

SEBA 83 698.9 Bank

7 MET 158 Life insurer JPM 0.0005 Bank NXTYQ 0.0105 Bank HSBA 80 650.3 Bank
8 HNR1 158 Reinsurer BRK_A 0.00047 Reinsurer KINS 0.01 Reinsurer GLE 72 214.2 Bank
9 DBK 158 Bank BK 0.00047 Bank GABA 0.0099 Bank DNB 71 469.8 Bank

10 BK 157 Bank BAC 0.00046 Bank BHBCQ 0.0094 Bank DBK 69 589.9 Bank

Down10 Name InOut Type Name ∆CoVaR Type Name MES Type Name SRISK Type

1 UTGN 2 Life insurer VIG -0.00008 Reinsurer UIHC -0.0236 P/C insurer Y 0 P/C insurer
2 UNAM 1 P/C insurer UNAM -0.00006 P/C insurer TMCV -0.005 Bank TRYG 0 Full line insurer
3 SGYI 1 Reinsurer UIHC -0.00006 P/C insurer SBBG -0.004 Reinsurer SAFT 0 P/C insurer
4 NXTYQ 1 Bank QNBFB -0.00003 Bank NSEC -0.002 Full line insurer RNR 0 Reinsurer
5 NSEC 1 Full line insurer NSEC -0.00003 Full line insurer NBG6 -0.0012Full line insurer RE 0 P/C insurer
6 NBG6 1 Full line insurer KINS -0.00002 P/C insurer HABK -0.001 Bank PROTCT 0 Full line insurer
7 MMS 1 Reinsurer FACO -0.00002 P/C insurer GANS -0.0008 Reinsurer PRA 0 P/C insurer

8 GABA 1 Bank ELF -0.00002 Full line insurer FACO -0.0003 Reinsurer ITIC 0
Surety and
title insurer

9 BHBCQ 0 Bank ALMB -0.00001 Full line insurer ELF -0.0002Full line insurer ESGR 0 Reinsurer
10 AOREF 0 Reinsurer TGIC -0.000005 Life insurer AOREF -0.0002 Reinsurer BRK_A 0 Reinsurer

Table 13: SIFIs and safest institutions based on different measures during after the crisis
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V.3 Connections among sectors

The analysis of the sectors is not only useful to understand the vulnerability of the finan-

cial system but also can provide information for policymakers. At the same time, this type

of differentiation can be a proper clustering approach of the financial institutions, which

results separated groups based on business activities. Considering sectoral level relations

also suggest the direction of systemic level connectedness. For example, compare network

graphs calculated under and before the crisis, respectively, under and after the great reces-

sion in 2008.

V.3.1 Pre-crisis

I plotted the European and North American banking and insurance sector connectedness

in the first decade of the 21th century on figure 13. On network graph, four clusters are

isolated: European insurers (green), North American insurance sector (red), European banks

with the low and high market capitalization (gold), and North American big and small banks

(blue).

The network shows precisely that the North American insurance sector and the highly

capitalized banks were the most related to each other, while smaller banks seem to be iso-

lated. The European insurance industry is also hardly related to the other branches, except

the European multi-line insurers. The European full line insurers presented the 60% of the

European insurers included in the pre-crisis sample, which explains their importance com-

pared to the other sectors. The European reinsurance and P/C insurance sector had a weak

connection with other sectors, like the European reinsurers reduced the exposure of North

American Life insurers and banks.

The chart presents that, on the American and Canadian market, more separate insurance

sectors can be distinguished, then on the European market. The property and casualty in-

surance sector related mostly to the banking industry. The surety and financial guarantee

insurers have several linkages with inter-sectoral and external partners. However, this sec-

tor mainly absorbs shocks instead cause them similar to the health and accident insurers.

Compared to other branches, North American life insurers are the less interconnected due

to my calculation in the pre-crisis time horizon. Lastly, the leading role of the banking sector

on both continents is convincing, and the North American and European financially strong

banks are deeply interconnected.

V.3.2 Crisis

During the time of the financial crisis, expectedly would increase the number of con-

nections. Nevertheless, figure 14 shows a contrary phenomenon. The number of linkages

dropped greatly compared to the previous period. As far as I know, no similar experience

was former reported. The dramatic decrease of linkages can only be explained if the network
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Notes: PC means property and casualty insurers, Multi symbolizes multi-line or full line insurers,
Re abbreviates reinsurers, Fin summarizes surety and financial guarantee insurers, Life naturally life
insurers, SBank categorizes small banks and lastly BBank banks with higher market capitalization.

Figure 13: Network graph in the pre-crises period indicating, financial sectors

was full of indirect and spurious edges, which was cleared by the testing process. I also re-

mark that a little distortion can be derived from the PCA method, while it serves as a rule of

thumb, that the number of observations should exceed the quintuple of the number of insti-

tutions. As 154, companies are included, and only 152 were used to the principal component

analysis, so about 760 observations needed, while I had only 522 during the static analysis.

However, considering the results of the Monte Carlo simulation (Appendix C.2) the solution

is robust enough for economic analysis.

After the methodological detour, returning back to figure 14, I can state that European

life insurers, reinsurers and P/C insurer connectivity have become weaker. Similar to Euro-

pean and North American small banks. Nevertheless, seemingly the connections between

the European and North American market is reduced. The linkages diminished mainly be-

tween large banks, which contradicts Diebold and Yilmaz (2015) observation, who pointed

out that during the crisis, the American banks Granger-caused European institutions. Only

the North American property and casualty insurers have a more substantial impact on the

highly capitalized European banks.

North American P/C industry seems to be the central sector during the great depression
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Notes: PC means property and casualty insurers, Multi symbolizes multi-line or full line insurers,
Re abbreviates reinsurers, Fin summarizes surety and financial guarantee insurers, Life naturally life
insurers, SBank categorizes small banks and lastly BBank banks with higher market capitalization.

Figure 14: Network graph during the financial crisis, indicating financial sectors

in 2008, which can be explained by the contra-cyclical nature of the insurance sector and the

more developed unemployment insurance market and growing expenses.

V.3.3 Post-crisis

After the distressed period, the connectivity of the insurance and banking network started

to grow fast. The highest acceleration could be found in the European life, multi-line, rein-

surance sector and the smaller Eastern-European banks built up several new relations.

In the North American insurance sector, the volume of growth was smaller- except in

life insurance-, but the basis was higher before the turmoil period. The North American life

insurers quadrupled their connectivity, which was the most outstanding evaluation.

Of course, financially strong banks carried out also an expansion on both continents,

which contributed to the growing interconnectedness. European banks deepened its link-

ages with European full-line insurers and North American life insurers. While North Ameri-

can banks Granger-causes European multi-line insurers and North American P/C insurers.
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Notes: PC means property and casualty insurers, Multi symbolizes multi-line or full line insurers,
Re abbreviates reinsurers, Fin summarizes surety and financial guarantee insurers, Life naturally life
insurers, SBank categorizes small banks and lastly BBank banks with higher market capitalization.

Figure 15: Network graph in the post-crises period indicating, financial sectors

V.4 Industrial connectedness

The changes in the financial sectors are summarized in table 15. The table confirms the

massive drop in the interconnectedness of the insurance and banking industry, while a fast

rebuild of the network can be observed after the turmoil. During the analysed about 20 years

period, the European insurance sector produced the most substantial growth, followed by

the North American banking and insurance industry. The smallest expansion was seen in

the European banking business, maybe thanks to the sovereign debt crisis.

V.5 System connectedness

The institutional and sectoral level investigation suggested that a huge drop was ob-

served in the number of connections during the financial crisis. For validation, I calculated

the number of relations using the DCI measure in all periods, and I contrast it to the number

of real edges detected by the approach proposed by Song and Taamouti (2019).

Table 16 summarizes the identified causalities. I indicated the possible linkages, while

the number of analysed institutions is changing time after time. In the pre-crisis period, I

detected 2023 linkages, while the linear-Granger causality test more than 12000, so the ratio
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Pre-crises Crisis Post-crisis

North American P/C insurers 0.149 0.039 0.205

European P/C insurers 0.138 0.056 0.206

North American life insurers 0.086 0.015 0.325

European life insurers 0.047 0.016 0.401

North American accident and health insurers 0.202 0.008 0.332

North American surety and title insurers 0.167 0.018 0.213

North American reinsurers 0.143 0.039 0.199

European reinsurer 0.112 0.009 0.403

North American full line insurers 0.138 0.045 0.15

European full line insurers 0.13 0.011 0.243

North American big banks 0.288 0.019 0.38

North American small banks 0.058 0.009 0.061

European big banks 0.205 0.02 0.361

European small banks 0.038 0.01 0.178

Table 14: Financial sectors connectedness measured by InOutk

Pre-crises Crisis Post-crisis

European insurance sector 0.116 0.013 0.284

North American insurance sector 0.142 0.029 0.234

European banking industry 0.261 0.016 0.269

North American banking industry 0.161 0.017 0.321

Table 15: Connectedness of financial industries measured by InOutk

of the indirect or spurious causalities is about 84%, which is an enormous proportion and

indicates that several non-real relationships exist in the banking and insurance sectors.

Furthermore, there are less true, but more false linkages during the financial crises, while

the interconnectedness surprisingly decreased. The proportion of indirect and spurious

edges is approximately 97%, which is higher with 13%-point compared to the previous pe-

riod. Probably, the non-real relations played a crucial role in the amplification of the risk

spillovers.

Nevertheless, in the post-crisis term, the trend has changed. The number of real con-

nections was multiplied by 13 times, while the indirect and spurious connections increased

moderately. This phenomenon caused that the proportion of non-real linkages dropped
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26%-point and became less than in the pre-crisis period, which suggests a more organic

growth. However, the division of relationships is still unbalanced.

Pre-crises Crisis Post-crisis

Real connections 2 023 522 6 771

All detected connections 12 483 20 372 23 718

Possible connections 12 656 23 562 25 760

Proportion of non-real connections 0.838 0.974 0.715

Table 16: System connectedness and real edges in different periods

Also, a significant difference can be observed considering the DCI based on Billio et al.

(2012) and its extension DCI*, deriving from Song and Taamouti (2019). As the figure ??

shows, the measure of Billio et al. (2012) detected a dense network in the pre-crisis period

with 98.6% connectedness, while based on true linkages the DCI* shows only 16%. A typical

problem arises that without historical experience, it is hard to judge that the outcomes signal

dense or rarely connected network, despite that the DCI measure is normed between 0 and

1.

During the financial crisis (2007−2009), the level of connectedness decreased according

to both approaches, but DCI demonstrates ca. 87%, while DCI* only about 2%. However, the

more exciting thing is that in the post-crisis period, the DCI* demonstrated a more dynamic

growth compared to DCI and higher value, then before 2007. At the same time, DCI remained

less than in the pre-crisis period.

The results suggest that the number of indirect and spurious causalities increases during

distressed periods, which may amplify risk spillovers in the financial sector.

V.6 Robustness check

The proper systemic risk gauges should be able to signal the future downturns, also work

as early warning indicators. To test this feature of the InOutk measure, I follow the approach

of Hué et al. (2019) and Sedunov (2016) and build regression models to check the loss pre-

diction performance of my measure. The purpose is to predict the ranking of downside log-

returns of the institutions in different periods and make a forecast on the forthcoming term

to validate the results. I compassed the robustness check in two periods. Firstly, I built mod-

ells on the pre-crisis data and validated on crisis data. Furthermore, I also fitted regressions

on the crisis data and checked its performance on the loss of the forthcoming 250 days, while

it would not be proper to validate the outcome on a much larger post-crisis period.

There is one point of the robustness check, which differs from the literature and the

framework of Hué et al. (2019). Also, I do not use linear regression for the validation, but
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Figure 16: Connectedness of the financial system in different periods

ordinal logistic regression (McCullagh 1980). Namely, I will predict the ranking of the high-

est losses, not the amount of loss in accordance with Hué et al. (2019), but in the rankings,

the order of the numbers contains extra information. Moreover, the linear regression modell

predicts continuous variables, not whole numbers, which is statistically not correct. So, I

chose the ordinal logistic regression approach, and instead of R squared I used AUC13 (Area

Under the Curve) to compare different modells.

The testing procedure is organised as follows (Hué et al. 2019, p.103-104):

1. The losses are calculated as the average return under a given threshold (δ = −3%) for

all institutions14.

Perfk = 1

n

Tc∑
t=1

yk
t Z k

t , (57)

13Thus, the ordinal logistic regression predicts ordered classes, R squared is not meaningful in this case. De-
spite the AUC quantifies the fitness of the modell calculating the area under the ROC curve. ROC curve illus-
trates the proportion of correctly and erroneously categorised elements of the data set considering different cut
values. In poor modells, there is no distinction between different groups, and the ROC curve becomes the iden-
tity mapping on the unit square, so AUC deviates from 0.5 to 1. The higher the AUC is, the better the forecast
is.

14The construction works similar to the expected shortfall.
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where T c is the number of days, yk
t the daily log return of institution k, while

Z k
t =

{
1, if yk

t ≤ δ,

0 otherwise.
(58)

2. The institutions are ranked based on the average losses. Moreover, the proportion of

incoming edges (Ink ), the caused causalities (Outk ), and the combination of them

(InOutk ) is also transformed into rankings. The rank numbers generated from the

gauges are signaled with square brackets.

I also involved in the regression the measures calculated based on my correction and

the original results based on the approach of Billio et al. (2012) using FWER-correction.15

3. I run different ordinal logistic regression modells, for the illustration I depict the gen-

eral form of the ordinal linear regression:

ln(odd s>0) =z0 +
V∑
i

biΞi

...

ln(odd s>U−2) =zU−2 +
V∑
i

biΞi

(59)

where odd s> j = P(Y > j )
P(Y ≤ j ) , which means the proportion of the cumulative odds of the

categories is greater than j and the cumulative odds of the groups less or equal than

j ( j = 0, ...,U − 2). Totally, there are U categorizes, and the probability of the groups

is estimated. Ξi , i = 1, ...,V are the explaining variables. I used [Ink ], [Ink ], [Outk ],

[InOutk ], [In∗
k ], [Out∗k ] and [InOut∗k ] as explaining variable, which denotes the rank

number generated from the mentioned measures.

4. The modells are validated on the out-of-sample by the calculation of AUC.

Table 17 summarizes the regression outputs for the pre-crisis period validated on the

crisis losses. The aim of the robustness check is not to find the best modell predicting future

negative returns, but the confirmation of the explaining power of the calculated measures. I

computed 7 regressions, in the first 6, I tested the significance of the individual gauges, which

resulted that all of my measures were significant, while only Outk from Billio et al. (2012). I

also calculated an extended modell, including Ink ,Outk , In∗
k and Out∗k variables. I did not

involveInOutk and InOut∗k ., while InOutk measures are calculated as the sum of Ink and

Outk after some correction, and it would cause multicollinearity in the regression. I present

15A little star in the top-right corner indicates my measures.
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XXXXXXXXXXXXMeasure
Modell

1 2 3 4 5 6 7

In∗
k

0.0326***
(4.57)

- - - - -
0.0246***

(2.85)

Out∗k -
0.0223***

(4.136)
- - - -

0.0119**
(1.868)

InOut∗k - -
0.0267***

(4.762)
- - - -

Ink - - -
-0.0087
(-1.267)

- -
0.0042
(0.567)

Outk - - - -
0.026***

(2.77)
-

0.0175**
(1.813)

InOutk - - - - -
-0.0027
(-0.397)

-

AUC 0.5 0.867 0.9 0.801 0.812 0.79 0.824

Notes: In∗
k , Out∗k and InOut∗k were calculated based on my modifications. The table contains the coefficient of

the different measures in the ordinal logistic regressions. In parenthesis, I indicated the value of the t-statistics,
while the little signs express the magnitude of the p-values. *** p < 0.01 ** 0.01 ≤ p < 0.05 * 0.05 ≤ p < 0.1

Table 17: Ordinal logistic regression output calculated on the pre-crises data and validated
on the crises losses, δ=−3%

this modell to contradict Hué et al. (2019), who did not find these measures significant in the

extended regression.

The main findings can be seen in the last row of the table 17. The highest AUC value

belongs to the modell containing only the InOut∗k variable, which supports the statement

that the InOutk measure is proper for the prediction of high losses. The result also confirms

the expectations of Hué et al. (2019), that filtering out non-real relations leads to an adequate

measure for systemic risk analysis.

The second part of the test focused on the crisis data and tried to forecast the losses

that occurred in the next 250 days. The procedure is the same as the former. The table

18 describes the coefficients, test-statistics and significance values. A clear change is that

only three significant individual modell exists (at the common 5% significance level). Both

InOut∗k and Outk are quite efficient modells, but the Out∗k performed the best. However, in

the joint modell only the Outk variables are significant. Considering the appropriate indi-

vidual modells, modell 3 has a better performance in prediction in comparison to modell 5.

The difference is not too high, but the results confirm that in other periods of the business

cycle, the predicting power remains at least so punctual as in the case of Outk .

All in all, the robustness tests verified the predicting power of the framework indepen-

dently from the business cycle.moreover, in the forecast of the crisis losses, my measure was

found more appropriate.
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XXXXXXXXXXXXMeasure
Modell

1 2 3 4 5 6 7

In∗
k

0.0085
(0.887)

- - - - -
0.00298

0.286

Out∗k -
0.0095∗∗∗

(2.756)
- - - -

0.00832∗∗

2.225

InOut∗k - -
0.0078∗∗

(2.273)
- - - -

Ink - - -
-0.0014
(-0.438)

- -
0.00106

0.314

Outk - - - -
0.0063∗∗

(2.257)
-

0.00581∗∗

1.913

InOutk - - - - -
0.0024
(0.751)

-

AUC 0.742 0.912 0.894 0.769 0.884 0.859 0.893

Notes: In∗
k , Out∗k and InOut∗k were calculated based on my modifications. The table contains the coefficient of

the different measures in the ordinal logistic regressions. In parenthesis, I indicated the value of the t-statistics,
while the little signs express the magnitude of the p-values. *** p < 0.01 ** 0.01 ≤ p < 0.05 * 0.05 ≤ p < 0.1

Table 18: Ordinal logistic regression output calculated on the crises data and validated on
the next 250 days losses, δ=−3%
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VI Further research

My investigation focused on a large financial network utilizing causality-analysis in insti-

tutional, sectoral and industrial level to provide a broader overview of the relations of insur-

ers and banks. Despite the detailed research, my work offers three primary ways for further

extensions.

The first possible research way is based on data complexity. I included an extended

database in my investigation, but I reflected only on the European and North American mar-

kets. Nevertheless, the most important companies and developed regions were covered, in-

volving other institutions that can result interesting observations based on local regulation

or particular market structure (e.g. China), as presented by Lin et al. (2018).

Moreover, other types of institutions can also be examined following the stepwise aggre-

gation approach, which can help recover the exposure of one sector to the other one. So, not

only the financial sector can be relevant for network analysis, but others like technological

companies or the FMCG industry with long supply chains.

As I have pointed out in section III.6., I did not put a high emphasis on dealing with noisy

data, which can cause distortions in the calculations highlighted by Nucera et al. (2016), who

proposed a potential method to solve this problem. It suggests the combination of measures

to filter out noise, which proposes another path for academic work considering noise filter-

ing, model combination, or hybrid modelling to improve the applied framework.

Secondly, further methodological aspects can be included in my analysis. The financial

econometrics literature usually operates with linear models, nevertheless, financial data are

usually non-linear. So, non-linear Granger-causality analysis is a relevant extension for my

modelling results in order to reveal further effects, which are failed to detect by linear models.

Accordingly, a robustness check could confirm the sensitivity of the approach.

As the last point, I must mention the topic standing on the crossroads of data linked

questions and methodological considerations, namely, an exciting work could be comparing

the results deriving from tail-return and CDS price analysis. While CDS prices cover the

most information from the state of the network (Rodríguez-Moreno and Peña 2013), until

returns are characterized as a less informative source of systemic risk, but the tail behaviour

of returns might present some similar or different characteristics compared to CDS prices.
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VII Summary

My research focused on the European and North American insurance and banking in-

dustries to reveal true connections among individual firms, subsectors and branches. My

investigation covered three fields: literature review, methodological framework and empiri-

cal analysis.

In the first part, I summarized the empirical papers according to the level of aggregation

(individual institutions, sectors, industries). I pointed out that this is a different categoriza-

tion of statistical methodologies and practical analysis. The literature review revealed the

unanswered questions related to the insurance sector. Also, the insurance sector was usu-

ally treated as a homogenous branch of the financial sector, which stands in contrast to the

business lines of insurers. Also, the insurers operate in more or less disjunct field. (Some

overlapping activities, of course, exist,e.g. life insurance vs. health insurance. However, life

and P/C insurance differs very much.)

So, I decided to understand the connections between insurance sectors and their relation

with the banking industry. Moreover, I tried also to characterize SIFIs in both branches.

For the investigation, I tried to reconstruct the real network of financial firms based on

pair-wise Granger causality testing. Although the original test does not handle the indirect

and spurious effect existing between companies, so firstly, I tried to utilize the leave-one-

out approach of Hué et al. (2019). Which idea was perfect, but the practical application via

∆LGC measure was found methodologically and economically inadequate (section IV.1.4).

So, I extended the testing procedure with the methodology of Song and Taamouti (2019),

also I used principal component analysis to represent the not involved institutions in the

pairwise-causality testing removing indirect and spurious effects from the network.

The improved Granger-causality test was applied to insurance companies and banks be-

tween 2001 and 2019, dividing the timeline into three periods: pre-crisis (2001−2007), crisis

(2007− 2009) and post-crisis (2009− 2019). This division served to compare the results in

different periods of the business cycle.

In the pre-crisis period, large banks and North American insurers were detected as im-

portant edges of the financial network, while the European market was less related thanks to

the lot multi-line insurers, which were included in the sample and which operates in more

businesses, so the shock was held inside the sector.

The time of the financial crisis presented the most surprising results. The connectedness

of the financial network dropped dramatically, which stands in contrast with the common

sense in the literature. However, the phenomenon means that during turmoils, the indirect

and spurious cause problems in the solvency of companies.

A further interesting result was found, that small a bank was detected as SIFI in accor-

dance with Lin et al. (2018), while the firms with low market capitalization are in general

excluded from the researches, which can create distortions during distressed periods.
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Moreover, the number of connections between European and North American banks be-

came weaker in spite of the finding of Diebold and Yilmaz (2015). This is also in accordance

with the effect of non-real causalities.

Finally, the post-crisis analysis demonstrated a clear up-warding trend in connectedness

statistics. The connectedness of banking and insurance industries became equalized, but

the leading role of North American banks stand out of the question. Accordingly, in the in-

surance sector, life and accident and health insurers showed the most dynamical growth in

connectedness.

I believe that this paper can serve as stop-gap research in the insurance sector, shedding

light on the importance of the detection of SIFIs, inter-sectoral linkages, and connections

among industries in order to provide a full overview about the movements and risk of the

financial sector.
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Appendix

A Data

Ticker Company name Location Sector Pre-crisis Crisis Post-crisis

AFG American Financial Group Inc North America P/C insurer x x x
ALL Allstate Corp North America P/C insurer x x x
AXS Axis Capital Holdings Ltd North America P/C insurer x x

CINF Cincinnati Financial Corp North America P/C insurer x x x
DGICA Donegal Group Inc North America P/C insurer x x x

EFH Echelon Financial Holdings Inc North America P/C insurer x x
FACO First Acceptance Corp North America P/C insurer x x
FFH Fairfax Financial Holdings Ltd North America P/C insurer x x x

FNHC FedNat Holding Co North America P/C insurer x x x
GANS GAINSCO Inc North America P/C insurer x x x
HCI HCI Group Inc North America P/C insurer x
IFC Intact Financial Corp North America P/C insurer x x

KINS Kingstone Cos Inc North America P/C insurer x x x
L Loews Corp North America P/C insurer x x x

MCY Mercury General Corp North America P/C insurer x x x
MKL Markel Corp North America P/C insurer x x x
PGR Progressive Corp North America P/C insurer x x x
PRA ProAssurance Corp North America P/C insurer x x x

PTVCB Protective Insurance Corp North America P/C insurer x x x
RE Everest Re Group Ltd North America P/C insurer x x x

SAFT Safety Insurance Group Inc North America P/C insurer x x
SBBG Seibels Bruce Group Inc North America P/C insurer x x x
SIGI Selective Insurance Group Inc North America P/C insurer x x x

STFC State Auto Financial Corp North America P/C insurer x x x
THG Hanover Insurance Group Inc North America P/C insurer x x x
TRV Travelers Cos Inc North America P/C insurer x x x

UIHC United Insurance Holdings Corp North America P/C insurer x
UNAM Unico American Corp North America P/C insurer x x x

UVE Universal Insurance Holdings Inc North America P/C insurer x x x
WRB WR Berkley Corp North America P/C insurer x x x

WTM
White Mountains Insurance

Group Ltd
North America P/C insurer x x x

Y Alleghany Corp North America P/C insurer x x x
CB Chubb Ltd Europe P/C insurer x x x

Table 19: Companies in the dataset I.
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Ticker Company name Location Sector Pre-crisis Crisis Post-crisis

AEL
American Equity Investment

Life Holding Co
North America Life insurer x x

CIA Citizens Inc North America Life insurer x x x
FFG FBL Financial Group Inc North America Life insurer x x x
GL Globe Life Inc North America Life insurer x x x

GNW Genworth Financial Inc North America Life insurer x x
GWO Great-West Lifeco Inc North America Life insurer x x x
IHC Independence Holding Co North America Life insurer x x x
KCLI Kansas City Life Insurance Co North America Life insurer x x x
LNC Lincoln National Corp North America Life insurer x x x
MET MetLife Inc North America Life insurer x x x

NWLI
National Western Life

Group Inc
North America Life insurer x x x

POW Power Corp of Canada North America Life insurer x x x
PRU Primerica Inc North America Life insurer x x
PWF Power Financial Corp North America Life insurer x x x

UTGN UTG Inc North America Life insurer x x x
AGN Aegon NV Europe Life insurer x x
AV/ Aviva PLC Europe Life insurer x x x

PRU LN Prudential PLC Europe Life insurer x x x

AFL Aflac Inc North America
Accident and
health insurer

x x x

AIZ Assurant Inc North America
Accident and
health insurer

x x

CFIN Citizens Financial Corp North America
Accident and
health insurer

x x x

CNO CNO Financial Group Inc North America
Accident and
health insurer

x x

MFC Manulife Financial Corp North America
Accident and
health insurer

x x x

PFG Principal Financial Group Inc North America
Accident and
health insurer

x x x

SLF Sun Life Financial Inc North America
Accident and
health insurer

x x x

UNM Unum Group North America
Accident and
health insurer

x x x

Table 20: Companies in the dataset II.
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Ticker Company name Location Sector Pre-crisis Crisis Post-crisis

AGO Assured Guaranty Ltd North America
Surety and
title insurer

x x

ARGO
Argo Group International

Holdings Ltd
North America

Surety and
title insurer

x x x

ITIC Investors Title Co North America
Surety and
title insurer

x x x

MBI MBIA Inc North America
Surety and
title insurer

x x x

MTG MGIC Investment Corp North America
Surety and
title insurer

x x x

ORI Old Republic International Corp North America
Surety and
title insurer

x x x

RDN Radian Group Inc North America
Surety and
title insurer

x x x

STC
Stewart Information

Services Corp
North America

Surety and
title insurer

x x x

SYCRF Syncora Holdings Ltd North America
Surety and
title insurer

x x

TGIC Triad Guaranty Inc North America
Surety and
title insurer

x x x

AOREF American Overseas Group Ltd North America Reinsurer x x
BRK/A Berkshire Hathaway Inc North America Reinsurer x x x
ESGR Enstar Group Ltd North America Reinsurer x x

MHLD Maiden Holdings Ltd North America Reinsurer x

RGA
Reinsurance Group

of America Inc
North America Reinsurer x x x

RNR RenaissanceRe Holdings Ltd North America Reinsurer x x x

RQIH
Randall and Quilter Investment

Holdings Ltd
North America Reinsurer x

DNREM Dunav Re a.d Europe Reinsurer x
HNR1 Hannover Rueck SE Europe Reinsurer x x x

MUV2
Muenchener

Rueckversicherungs-Gesellschaft
AG in Muenchen

Europe Reinsurer x x x

SCR SCOR SE Europe Reinsurer x x
SREN Swiss Re AG Europe Reinsurer x x x

Table 21: Companies in the dataset III.
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Ticker Company name Location Sector Pre-crisis Crisis Post-crisis

AIG
American International

Group Inc
North America Full line insurer x x x

ANAT
American National

Insurance Co
North America Full line insurer x x x

CNA CNA Financial Corp North America Full line insurer x x x
ELF E-L Financial Corp Ltd North America Full line insurer x x x

HIG
Hartford Financial
Services Group Inc

North America Full line insurer x x x

KMPR Kemper Corp North America Full line insurer x x x

NSEC
National Security

Group Inc
North America Full line insurer x x x

SGYI
Strategy International
Insurance Group Inc

North America Full line insurer x x

UFCS United Fire Group Inc North America Full line insurer x x x
ALMB Alm Brand A/S Europe Full line insurer x x

ALV Allianz SE Europe Full line insurer x x x
BALN Baloise Holding AG Europe Full line insurer x x x

CS AXA SA Europe Full line insurer x x
FBD FBD Holdings PLC Europe Full line insurer x x

G Assicurazioni Generali SpA Europe Full line insurer x x x
HELN Helvetia Holding AG Europe Full line insurer x x x
MAP Mapfre SA Europe Full line insurer x x

MINE
Minerva Insurance

Co Public Ltd
Europe Full line insurer x x x

MMS MAXIMUS Inc Europe Full line insurer x

NBG6
NUERNBERGER
Beteiligungs AG

Europe Full line insurer x x

PROTCT Protector Forsikring ASA Europe Full line insurer x x
RAYSG Ray Sigorta AS Europe Full line insurer x x

RSA RSA Insurance Group PLC Europe Full line insurer x x x
STB Storebrand ASA Europe Full line insurer x x x

TRYG Tryg A/S Europe Full line insurer x x
UNI Unipol Gruppo SpA Europe Full line insurer x x x

UQA
UNIQA Insurance

Group AG
Europe Full line insurer x x

VAHN
Vaudoise Assurances

Holding SA
Europe Full line insurer x x

VIG
Vienna Insurance

Group AG
Wiener Versicherung

Europe Full line insurer x x

ZURN
Zurich Insurance

Group AG
Europe Full line insurer x x x

Table 22: Companies in the dataset IV.
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Ticker Company name Location Sector Pre-crisis Crisis Post-crisis

BAC Bank of America Corp North America Bank x x x
BMO Bank of Montreal North America Bank x x x

BK
Bank of New York

Mellon Corp
North America Bank x x x

BNS Bank of Nova Scotia North America Bank x x x

CM
Canadian Imperial Bank

of Commerce
North America Bank x x x

COF Capital One Financial Corp North America Bank x x x
C Citigroup Inc North America Bank x x x

JPM JPMorgan Chase and Co North America Bank x x x

PNC
PNC Financial Services

Group Inc
North America Bank x x x

RY Royal Bank of Canada North America Bank x x x
STT State Street Corp North America Bank x x x
TD Toronto-Dominion Bank North America Bank x x x

TFC Truist Financial Corp North America Bank x x x
USB US Bancorp North America Bank x x x
WFC Wells Fargo and Co North America Bank x x x

BHBCQ Beverly Hills Bancorp Inc North America Bank x x x
GABA Georgia Bancshares Inc North America Bank x x
HABK Hamilton Bancorp Inc North America Bank x x x

NXTYQ Nexity Financial Corp North America Bank x x

RPFG
Rainier Pacific

Financial Group Inc
North America Bank x x

SFBI SFSB Inc North America Bank x x
TMCV Temecula Valley Bancorp Inc North America Bank x x

WSFGQ WSB Financial Group Inc North America Bank x x
ACA Credit Agricole SA Europe Bank x x

BARC Barclays PLC Europe Bank x x x

BBVA
Banco Bilbao Vizcaya

Argentaria SA
Europe Bank x x x

BNP BNP Paribas SA Europe Bank x
CSGN Credit Suisse Group AG Europe Bank x x x
DBK Deutsche Bank AG Europe Bank x x x
DNB DNB ASA Europe Bank x x x
GLE Societe Generale SA Europe Bank x x

HSBA HSBC Holdings PLC Europe Bank x x
INGA ING Groep NV Europe Bank x x x

Table 23: Companies in the dataset V.

81



APPENDIX

Ticker Company name Location Sector Pre-crisis Crisis Post-crisis

ISP Intesa Sanpaolo SpA Europe Bank x x x
KBC KBC Group NV Europe Bank x x
LLOY Lloyds Banking Group PLC Europe Bank x x

RBS
Royal Bank of Scotland

Group PLC
Europe Bank x x

SAN Banco Santander SA Europe Bank x x x
SEBA Skandinaviska Enskilda Banken AB Europe Bank x x x
SHBA Svenska Handelsbanken AB Europe Bank x x x
STAN Standard Chartered PLC Europe Bank x x x

SWEDA Swedbank AB Europe Bank x x x
UBSG UBS Group AG Europe Bank x x x
UCG UniCredit SpA Europe Bank x x x

GARAN Turkiye Garanti Bankasi AS Europe Bank x x x
ING ING BANK ŚLĄSKI Europe Bank x x x
PEO Bank Polska Kasa Opieki SA Europe Bank x x x
PKO Pko Bank Polski SA Europe Bank x x

QNBFB QNB Finansbank AS Europe Bank x x x
SPL Santander Bank Polska SA Europe Bank x x x

Table 24: Companies in the dataset VI.

Sector North America Europe Pre-crisis Crisis Post-crisis

P/C insurance
x 25 30 32

x 1 1 1

Life insurance
x 12 15 15

x 2 3 3

Accident and health insurance
x 6 8 8

Surety and title insurance
x 8 10 10

Reinsurance
x 3 5 7

x 3 4 5

Full line insurance
x 8 9 9

x 9 20 21

Big bank
x 15 15 15

x 14 20 21

Small bank
x 2 8 8

x 5 6 6

Table 25: Sectorial aggregation of companies in different locations and period
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B Examples

B.1 Remarks to the examples

Five examples will be discussed related to networks (m = 1,2,3,4,5). Using consistent

formalism during the discussion, I declare some common signs I will use.

• Y m
t describes the multivariate time series matrix in the mth case reflecting its values

on time t .

Y (m) =


y (m)

1

y (m)
2

y (m)
3


, where (m)

i i = 1,2,3, (4,5) signs the whole time series.

• A(m) is the coefficient matrix in the mth case.

• u(m)
t is the matrix of innovations in the mth example on time t . Where u(m)

k,t k = 1,2,3

follows standard normal distribution.

• The α(m)
i , i = 1,2 coefficients expresses the contribution of the own first and second

lags to the dependent variable, while γ(m)
j , j = 1,2 provides information for the effect

of first and second lagged values of the dependent variable. E.g. y (m)
1 is explained by

its own lags and y (m)
2 , then the αi coefficients belongs to y (m)

1,t , while γ(m)
j values to the

y (m)
2 time series.

B.2 Example I. of Hué et al. (2019)


y (1)

1,t

y (1)
2,t

y (1)
3,t


︸ ︷︷ ︸

Y (1)
t

=


0.5 0 0

0.2 0.5 0

0.2 0 0.5


︸ ︷︷ ︸

A(1)

·


y (1)

1,t−1

y (1)
2,t−1

y (1)
3,t−1


︸ ︷︷ ︸

Y (1)
t−1

+


u(1)

1,t

u(1)
2,t

u(1)
3,t


︸ ︷︷ ︸

u(1)
t

(60)

The structure of the network implies that institution 1 Granger-causes institution 2 and

institution 3, and a spurious connection appears between institution 2 and institution 3.
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Figure 17: Network graph I. of Hué et al. (2019)

Figure 18: Leave-one-out relations I. of Hué et al. (2019)

B.3 Example II. of Hué et al. (2019)


y (2)

1,t

y (2)
2,t

y (2)
3,t


︸ ︷︷ ︸

Y (2)
t

=


0.5 0 0

0.2 0.5 0

0 0.2 0.5


︸ ︷︷ ︸

A(2)

·


y (2)

1,t−1

y (2)
2,t−1

y (2)
3,t−1


︸ ︷︷ ︸

Y (2)
t−1

+


u(2)

1,t

u(2)
2,t

u(2)
3,t


︸ ︷︷ ︸

u(2)
t

(61)

The network graph is designed as follows: institution 1 Granger-cause institution 2, in-

stitution 2 has an effect on institution 3. Last but not least, a side-effect arises thanks to the

described linkages a spurious causality from institution 1 to institution 3.
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Figure 19: Network graph II. of Hué et al. (2019)

Figure 20: Leave-one-out relations II. of Hué et al. (2019)

B.4 Modification of example I. (Hué et al. 2019)



y (3)
1,t

y (3)
2,t

y (3)
3,t

y (3)
4,t

y (3)
5,t


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Y (3)
t

=



0.5 0 0 0 0

0.2 0.5 0 0 0
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0 0 0.2 0.5 0

0 0 0 0 0.5


︸ ︷︷ ︸

A(3)

·



y (3)
1,t−1

y (3)
2,t−1

y (3)
3,t−1

y (3)
4,t−1

y (3)
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
︸ ︷︷ ︸

Y (3)
t−1

+



u(3)
1,t

u(3)
2,t

u(3)
3,t

u(3)
4,t

u(3)
5,t


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u(3)
t

(62)

The structure of the network implies that institution 1 Granger-causes institution 2 and

institution 3, and a spurious connection appears between institution 2 and institution 3.

Furthermore, institution 3 Granger-causes institution 4, but institution 5 is an isolated node,

which means that this node has effects only on itself.
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Figure 21: Modified network graph of the example I. from Hué et al. (2019)

Figure 22: Leave-one-out relations of the example I. from Hué et al. (2019)
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B.5 Example IV. based on the idea of Song and Taamouti (2019)


y (4)

1,t

y (4)
2,t

y (4)
3,t


︸ ︷︷ ︸

Y (4)
t

=


0.5 0 0 0 0 0

−0.2 0.5 0 0 0 0

0 0.5 0.5 0.1 0 0


︸ ︷︷ ︸

A(4)

·



y (4)
1,t−1

y (4)
2,t−1

y (4)
3,t−1

y (4)
1,t−2

y (4)
2,t−2

y (4)
3,t−2


︸ ︷︷ ︸

Y (4)
t−1

+


u(4)

1,t

u(4)
2,t

u(4)
3,t


︸ ︷︷ ︸

u(4)
t

(63)

Figure 23: Network graph modified example of Song and Taamouti (2019)

Figure 24: Leave-one-out relations of the modified example of Song and Taamouti (2019)

This example is unique, while it demonstrates the case when leaving out a node will re-

veal a new connection in the network.

In this network, institution 1 Granger-causes institution 2, and institution 2 has an effect

on institution 3. Although seemingly institution 1 and institution 3 are related, they are not,

while:
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y (4)
3,t =0.5y (4)

3,t−1 +0.1y1,t−2 +0.5y (4)
2,t−1 +u(4)

3,t =
0.5y (4)

3,t−1 +0.1y1,t−2 +0.5(0.5y2,t−2 −0.2y1,t−2 +u2,t−1)+u(4)
3,t =

0.5y (4)
3,t−1 +0.1y1,t−2 +0.25y2,t−2 −0.1y1,t−2 +0.5u2,t−1 +u(4)

3,t =
0.5y (4)

3,t−1 +0.25y2,t−2 +0.5u2,t−1 +u(4)
3,t

(64)

Excluding the 2nd institution from the network will create a new edge between institution

1 and institution 3.

B.6 Example V. (Feizi et al. 2013)



y (5)
1,t

y (5)
2,t

y (5)
3,t

y (5)
4,t

y (5)
5,t


︸ ︷︷ ︸

Y (5)
t

=



0.5 0 0 0 0

0.2 0.5 0 0 0

0 0.2 0.5 0 0

0 0.2 0.2 0.5 0

0 0 0.2 0.2 0.5


︸ ︷︷ ︸

A(5)

·



y (5)
1,t−1

y (5)
2,t−1

y (5)
3,t−1

y (5)
4,t−1

y (5)
5,t−1


︸ ︷︷ ︸

Y (5)
t−1

+



u(5)
1,t

u(5)
2,t

u(5)
3,t

u(5)
4,t

u(5)
5,t


︸ ︷︷ ︸

u(5)
t

(65)

Figure 25: Network graph of Feizi et al. (2013)

The network is quite complex. There are direct connections between institution 1 and

institution 2, institution 2 and institution 3, institution 2 and institution 4, institution 3 and

institution 5 and institution 4 and institution 5. Further spurious edges rise from node 1 to

node 3, node 4 and node 5. Another indirect relation exists from node 2 to node 5 and from

node 3 to node 5.
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Figure 26: Leave-one-out relations of Feizi et al. (2013)

89



APPENDIX

C Methodological supplement

C.1 Testing indirect and spurious effects

Variable/Statistics Value

τInd
1 (η,γT ,λT ,θT )T

z1t (1, X t , ..., X t+1−p ,Yt , ...,Yt+1−q , ft , ..., ft+1−h)
R Ind ,λ (0q ,1+p , Iq ,0q ,h)

εt+1 X t+1 − z1tτ
Ind
1

ΣτInd
1

(
1
T

∑T−1
t=1 z1t zT

1t

)−1(
1
T

∑T−1
t=1 ε

2
t+1z1t zT

1t

)−1(
1
T

∑T−1
t=1 z1t zT

1t

)−1

F Ind ,λ
T

(p
T (τInd

1 )T (R Ind ,λ)T
)(

R Ind ,λΣτInd
1

(R Ind ,λ)T
)−1(p

T (τInd
1 )T (R Ind ,λ)T

)T
∼χ2

q

Source: Song and Taamouti (2019), p.923-924
Table 26: Parameters for testing indirect causality condition 2

Variable/Statistics Value

τInd
2 (ν,κT ,ψT ,ρT )T

z2t (1, X t , ..., X t+1−ṗ ,Yt , ...,Yt+1−q̇ , ft , ..., ft+1−ḣ)
R Ind ,ψ (0q̇ ,1+ṗ , I q̇ ,0q̇ ,ḣ)

ut+1 ft+1 − z2tτ
Ind
2

ΣτInd
2

(
1
T

∑T−1
t=1 z2t zT

2t

)−1(
1
T

∑T−1
t=1 u2

t+1z2t zT
2t

)−1(
1
T

∑T−1
t=1 z2t zT

2t

)−1

F Ind ,ψ
T

(p
T (τInd

2 )T (R Ind ,ψ)T
)(

R Ind ,ψΣτInd
2

(R Ind ,ψ)T
)−1(p

T (τInd
2 )T (R Ind ,ψ)T

)T
∼χ2

q̇

τInd
3 (ω,ξT ,δT ,ζT )T

z3t (1, X t , ..., X t+1−p̈ ,Yt , ...,Yt+1−q̈ , ft , ..., ft+1−ḧ)
R Ind ,ζ (0ḧ,1+p̈+q̈ , Iḧ)

ut+1 ft+1 − z3tτ
Ind
3

ΣτInd
3

(
1
T

∑T−1
t=1 z3t zT

3t

)−1(
1
T

∑T−1
t=1 ε

3
t+1z3t zT

3t

)−1(
1
T

∑T−1
t=1 z3t zT

3t

)−1

F Ind ,ζ
T

(p
T (τInd

3 )T (R Ind ,ζ)T
)(

R Ind ,ζΣτInd
3

(R Ind ,ζ)T
)−1(p

T (τInd
3 )T (R Ind ,ζ)T

)T
∼χ2

ḧ

Source: Song and Taamouti (2019), p.924-925
Table 27: Parameters for testing indirect causality condition 3
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Variable/Statistics Value

τsi
1 (µ,βT ,αT ,πT )T

zsi
1t (1, X t , ..., X t+1−p ,Yt , ...,Yt+1−q , ft , ..., ft+1−h)

R si ,α (0q ,1+p , Iq ,0q ,h)

εt+1 X t+1 − zsi
1tτ

si
1

Στsi
1

(
1
T

∑T−1
t=1 zsi

1t (zsi
1t )T

)−1(
1
T

∑T−1
t=1 ε

2
t+1zsi

1t (zsi
1t )T

)−1(
1
T

∑T−1
t=1 zsi

1t (zsi
1t )T

)−1

F si ,α
T

(p
T (τsi

1 )T (R si ,α)T
)(

R si ,αΣτsi
1

(R si ,α)T
)−1(p

T (τsi
1 )T (R si ,α)T

)T
∼χ2

q

Source: Song and Taamouti (2019), p.925-926
Table 28: Parameters for testing spurious causality type 1 condition 1

Variable/Statistics Value

τsi
2 (ν,κT ,ψT ,ρT )T

z2t (1, X t , ..., X t+1−ṗ ,Yt , ...,Yt+1−q̇ , ft , ..., ft+1−ḣ)
R si ,ψ (0q̇ ,1+ṗ , I q̇ ,0q̇ ,ḣ)

ut+1 ft+1 − z2tτ
si
2

Στsi
2

(
1
T

∑T−1
t=1 z2t zT

2t

)−1(
1
T

∑T−1
t=1 u2

t+1z2t zT
2t

)−1(
1
T

∑T−1
t=1 z2t zT

2t

)−1

F si ,ψ
T

(p
T (τsi

2 )T (R si ,ψ)T
)(

R si ,ψΣτsi
2

(R si ,ψ)T
)−1(p

T (τsi
2 )T (R si ,ψ)T

)T
∼χ2

q̇

τsi
3 (ω,ξT ,δT ,ζT )T

z3t (1, X t , ..., X t+1−p̈ ,Yt , ...,Yt+1−q̈ , ft , ..., ft+1−ḧ)
R si ,ζ (0ḧ,1+p̈ , I q̈ ,0q̈ ,ḧ)

εt+1 ft+1 − z3tτ
si
3

Στsi
3

(
1
T

∑T−1
t=1 z3t zT

3t

)−1(
1
T

∑T−1
t=1 ε

3
t+1z3t zT

3t

)−1(
1
T

∑T−1
t=1 z3t zT

3t

)−1

F si ,ζ
T

(p
T (τsi

3 )T (R si ,ζ)T
)(

R si ,ζΣτsi
3

(R si ,ζ)T
)−1(p

T (τsi
3 )T (R si ,ζ)T

)T
∼χ2

ḧ

Source: Song and Taamouti (2019), p.925-926
Table 29: Parameters for testing spurious causality type 1 condition 3

Variable/Statistics Value

τsi i
1 (η,γT ,λT ,θT )T

zsi i
1t (1, X t , ..., X t+1−p ,Yt , ...,Yt+1−q , ft , ..., ft+1−h)

R si i ,λ (0q ,1+p , Iq ,0q ,h)

εt+1 X t+1 − zsi i
1t τ

si i
1

Στsi i
1

(
1
T

∑T−1
t=1 zsi i

1t (zsi i
1t )T

)−1(
1
T

∑T−1
t=1 ε

2
t+1zsi i

1t (zsi i
1t )T

)−1(
1
T

∑T−1
t=1 zsi i

1t (zsi i
1t )T

)−1

F si i ,λ
T

(p
T (τsi i

1 )T (R si i ,λ)T
)(

R si i ,λΣτsi i
1

(R si i ,λ)T
)−1(p

T (τsi i
1 )T (R si i ,λ)T

)T
∼χ2

q

Source: Song and Taamouti (2019), p.926-927
Table 30: Parameters for testing spurious causality type 2 condition 2
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Variable/Statistics Value

τsi i
2 (ν,κT ,ψT ,ρT )T

z2t (1, X t , ..., X t+1−ṗ ,Yt , ...,Yt+1−q̇ , ft , ..., ft+1−ḣ)
R si i ,ψ (0ḣ,1+ṗ+q̇ , Iḣ)

ut+1 Yt+1 − z2tτ
si i
2

Στsi i
2

(
1
T

∑T−1
t=1 z2t zT

2t

)−1(
1
T

∑T−1
t=1 u2

t+1z2t zT
2t

)−1(
1
T

∑T−1
t=1 z2t zT

2t

)−1

F si i ,ψ
T

(p
T (τsi i

2 )T (R si i ,ψ)T
)(

R si i ,ψΣτsi i
2

(R si i ,ψ)T
)−1(p

T (τsi i
2 )T (R si i ,ψ)T

)T
∼χ2

ḣ

τsi i
3 (ω,ξT ,δT ,ζT )T

z3t (1, X t , ..., X t+1−p̈ ,Yt , ...,Yt+1−q̈ , ft , ..., ft+1−ḧ)
R si i ,ζ (0ḧ,1+p̈ , I q̈ ,0q̈ ,ḧ)

εt+1 ft+1 − z3tτ
si i
3

Στsi i
3

(
1
T

∑T−1
t=1 z3t zT

3t

)−1(
1
T

∑T−1
t=1 ε

3
t+1z3t zT

3t

)−1(
1
T

∑T−1
t=1 z3t zT

3t

)−1

F si i ,ζ
T

(p
T (τsi i

3 )T (R si i ,ζ)T
)(

R si i ,ζΣτsi i
3

(R si i ,ζ)T
)−1(p

T (τsi i
3 )T (R si i ,ζ)T

)T
∼χ2

ḧ

Source: Song and Taamouti (2019), p.926-927
Table 31: Parameters for testing spurious causality type 2 condition 3

C.2 Monte Carlo simulation

I applied the Monte Carlo simulation method to compare the efficiency of the methods

proposed by Hué et al. (2019) and Song and Taamouti (2019). A simulated two examples ??

and B.6. I tried to detect Granger-causality transferred by non-zero coefficients, and I created

table 32 to compare how many times was identified significant relationships among nodes.

I repeated the causality test in the first case 1000 times and in the latter case 500 times. I run

the simulation for sample sizes T = 100,250,500,1000,3000,5000. After that, I calculated the

average hit ratios for every non-zero parameter in all cases.

The table shows clearly that for small samples (T = 100,250), the former method admit-

ted more precise, but in medium sample size (T = 500), the outcome is very close. For larger

samples, you cannot find any difference in the hit ratio.

The simulation concluded that for medium and large samples are only adviced to use the

framework of Song and Taamouti (2019). Nevertheless, I remark, in this particular case, the

principal component was calculated only from one variable, so the exercise was too small to

enjoy the advantages of the PCA method.

To check the efficacy of the PCA method in larger samples, I also simulated example V.

from Feizi et al. (2013). This example contains 5 time series, so it is meaningful to calculate

the principal components.

The structure of the procedure was the same, as in the former case. I choose different

sample sizes (T = 100,250,500,1000,3000,5000), and I run the Monte Carlo simulation with

1000 repetitions in the first case and 500 repetitions in the second case.
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Unconditional test
from leave-one-out approach

PCA approach of Song and Taamouti (2019)

T a(4)
2,1 a(4)

3,2 a(4)
2,1 a(4)

3,2

100 0.274 0.981 0.028 0.006
250 0.746 1 0.418 1
500 0.984 1 0.914 1

1000 1 1 1 1
3000 1 1 1 1
5000 1 1 1 1

Notes: Coefficient a(K )
u,v means that institution v Granger-causes institution u. K only in-

dicates the number of example, while a(K )
u,v measures the coefficient. But in this ex-

ercise I only highlighted the existance of the given relationship, not its strength.

Table 32: Hit ratio of different methods in the modified example of Song and Taamouti
(2019)

Unconditional test
from leave-one-out approach

PCA approach of Song and Taamouti (2019)

T a(5)
2,1 a(5)

3,2 a(5)
4,2 a(5)

4,3 a(5)
5,3 a(5)

5,4 a(5)
2,1 a(5)

3,2 a(5)
4,2 a(5)

4,3 a(5)
5,3 a(5)

5,4

100 0.355 0.443 0.436 0.446 0.488 0.555 0.01 0.009 0.008 0.01 0.009 0.014
250 0.601 0.668 0.69 0.707 0.725 0.791 0.237 0.221 0.237 0.265 0.313 0.312
500 0.771 0.795 0.811 0.839 0.84 0.892 0.811 0.844 0.877 0.875 0.893 0.91

1000 0.851 0.858 0.854 0.903 0.902 0.94 1 1 1 1 1 1
3000 0.908 0.93 0.924 0.949 0.937 0.961 1 1 1 1 1 1
5000 0.941 0.953 0.947 0.96 0.95 0.977 1 1 1 1 1 1

Notes: Coefficient a(K )
u,v means that institution v Granger-causes institution u. K only in-

dicates the number of example, while a(K )
u,v measures the coefficient. But in this ex-

ercise I only highlighted the existance of the given relationship, not its strength.

Table 33: Hit ratio of different methods in the example of Feizi et al. (2013)

The output table 33 shows similar tendencies, then in a smaller one. In small sample

sizes (T = 100,250), the framework of Song and Taamouti (2019) underperforms the uncon-

ditional version of the leave-one-out approach. However, the hit ratios are a little bit better

in the medium sample size (T = 500). Utilizing larger samples demonstrates the advantages

of the PCA based methodology, which makes it suitable for large sample analysis. Only one

thing must be considered. The widely used 250 day-long window cannot be applied with

enough confidence. The simulation results are in accordance with the widely spread exer-

cise: the number of observations is recommended to exceed the quintuple of the variables.
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C.3 ∆CoVaR

The literature summary pointed out that the generally used methodologies are ∆CoVaR,

MES and SRISK. For producing robust results, it is inevitable to contrast the econometric

solution to the widely spread frameworks.

The ∆CoVaR framework is not only comparable with the causality approach, while it is

a comprehensive methodology, but like Berdin and Sottocornola (2015) observed similar re-

sults using both methods.

The Conditional Value-at-risk (CoVaR) was proposed by Adrian and Brunnermeier (2011).

The CoVaR framework is based on the definition of Value-at-Risk.

Pr (R i ≤V aR i
q ) = q (66)

V aR i
q assigns that institution i will suffer a given level of loss or higher for a target horizon

- generally one year - with q% probability.

Consider two institutions, institution i and institution j . C(R i ) summarizes the event

set affecting institution i , which usually means the V aR i
q . So, CoV aR i | j

q represents the q th

quantile of the conditional probability distribution of institution j .

Pr (R j ≤CoV aR j |C(R i )
q ) = q (67)

A formal property of the CoVaR is that in general CoV aR i | j
q 6=CoV aR j |i

q , which is similar-

ity with the Granger-causality.

Economically, CoVaR means that if institution i suffers a loss generated by event (R i ),

then institution j will suffer higher or equal loss with q% probability thanks to institution i .

So, CoVaR can express pairwise connections among financial institutions. However, the ap-

proach misses the reference point, which helps to judge the seriousness of a shock. ∆CoVaR

corrects this deficiency of CoVaR comparing the level of the shock to the median ("normal")

state of the institution, formally:

∆CoV aR j |i
q =CoV aR

j |X i=V aR i
q

q −CoV aR j |X i=Medi ani

q (68)

Typically, the index j denotes the financial system, and the∆CoVaR measures the marginal

contribution of institution i to the systemic risk. Adrian and Brunnermeier (2011) proposed

∆CoVaR to measure the spillovers between institutions, while these effects are responsible

for risk amplification. Also, the measure is specified on risk transmission quantification, and

selecting the j entity properly, will make it applicable for the analysis of the different levels
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of the market (individual institutions, sectors and whole industries). Furthermore, the Con-

ditional Value-at-Risk method is suitable for cross-sectional and time-varying data sets. You

can see the detailed description of the time-varying ∆CoVaR in the Appendix C.4.

C.4 Estimation of∆CoVaR

Adrian and Brunnermeier (2011) proposed the Conditional Value-at-Risk (CoVaR) frame-

work, which is adequate for both cross-sectional and time-varying datasets. I will propose

only the estimation of the time-varying version, followed by Adrian and Brunnermeier (2011).

Thus the cross-sectional modification assumes that CoVaR is constant for a given time hori-

zon, which is not an adequate assumption in distressed periods when market conditions

change suddenly. So, it is not surprising that financial econometricians prefer the time-

varying framework.

The steps of the estimations are the followings (Adrian and Brunnermeier 2011, Bernal

et al. 2014, p.14-15 and p.273-275):

1. Use quantile regression to estimate tail behaviour of i th time series (69).

R i
t (q) =αi

q +γi
q Mt−1 +εi

t (69)

αi
q and γi

q are constants, Mt−1 represents the lagged value of the state variables - speci-

fied later -, and εi
t error term is assumed to be i.i.d. probability variable with zero mean

and unit variance.

2. Similarly, compute the q th VaR for institution i at time t .

�V aR i
t (q) = α̂i

q + γ̂i
q Mt−1, (70)

where α̂i
q and γ̂i

q are the estimated parameters in the equation (69)

3. Model the behaviour of th q th quantile of the system variable at time t :

R s y stem
t (q) =αs y stem|i

q +βs y stem|i
q

�V aR
i
t +γs y stem|i

q Mt−1. (71)

The state of the system is modelled individually for all time series (R i
t ). Also state vari-

able are included (Mt−1), and α
s y stem|i
q ,βs y stem|i

q ,γs y stem|i
q constants and ε

i |s y stem
t in-

novation.
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4. Similarly, use the estimated parameters from equation (71) to compute the CoVaR of

the system:

áCoV aR
s y stem
t (q) =αs y stem|i

q +βs y stem|i
q R i

t +γs y stem|i
q Mt−1 +εi |s y stem

t . (72)

5. Next step is the quantification of á∆CoV aR, you need both the median and the selected

q th quantile of the system CoVaR.

á∆CoV aR
s y stem|i
t (q) =áCoV aR

s y stem|i
t (q)− áCoV aR

s y stem|i
t (50%) =

β
s y stem|i
q (�V aR

s y stem|i
t (q)− �V aR

s y stem|i
t (50%))

(73)

As a remark I should add that ∆CoVaR is calculated on company returns time series,

as far as I know, it was never used on volatility data. Furthermore, ∆CoVaR values

are, in general, negative while it expresses the highest losses. Naturally, the higher the

possible loss is, the more important the individual institution is, thus it prose higher

systemic risk.

Adrian and Brunnermeier (2011) suggested a few state variables (Adrian and Brunner-

meier 2011, p.15-16):

• VIX index, which captures the implied volatility

• Short term liquidity spread, measured by the difference of the three-month repo rate

and the three-month bill rate.

• The change in the three-month Treasury bill rate, which explains the tails of financial

sector market-valued asset returns.

• The change in the slope of the yield curve, defined by the yield spread of the ten-year

Treasury rate and the three-month bill rate.

• The change in the credit spread between BAA-rated bonds and the Treasury rate.

• Weekly equity market return from CRSP.

• Weekly real estate sector return above the market return.16

16The last to items should be adapted to the analysed markets and data types, like volatility.
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C.5 MES

Marginal Expected Shortfall (MES) summarizes at the institutional level the average re-

turn for the 5% worst days of the market, which makes this measure simply to calculate and

interpret.

MESi
5% = 1

#d ay s

∑
t: system in 5% tail

R i
t , (74)

where Rt are the returns of institution i .

The marginal expected shortfall was introduced by Acharya et al. (2010) based on sys-

temic expected shortfall (SES), which was decomposed to leverage and marginal expected

shortfall (Acharya et al. 2010, 2012).

To better understand the marginal expected shortfall, it useful to derive its formula from

the expected shortfall (ES).

Let consider the equation (75) characterizing the expected shortfall, which quantifies the

expected loss if the loss exceeds −V aRq in the lower tail.

ESi
q =−E(R i |R i ≤−V aR i

q ) (75)

Assume that institution i has a portfolio with returns of r j and portfolio weights of y j ,

then the return of institution is R i = ∑
j y j r j . So the expected shortfall can formulate as

follows:

ESi
q =−∑

j
y j E(r j |R i ≤−V aR i

q ). (76)

Then the risk exposure of institution i to institution j can be seen in equation (77).

∂ESi
q

∂y j
= E(r j |R i ≤−V aR i

q ) ≡ MESi | j
q (77)

MESi | j measures the risk contribution of institution i to the overall exposure of institu-

tion j , where j is selected in general the whole market. (In that case, MESi
q symbolises the

contribution of institution i to the systemic risk of the whole market. More insights about

the empirical calculation of the MES you can see in the Appendix C.6.))
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C.6 Estimation of MES

The dynamic version of marginal expected shortfall is widely used in order to quan-

tify risk exposure of institutions based on Acharya et al. (2010, 2012), Brownlees and Engle

(2017).

Consider R j
t and RM

t as the time series of institution j and the market (e.g. returns,

volatilities, CDS etc.)17

RM
t =σM

t ε
M
t ,1

RM
t =σ j

t ρ
j
t ε

M
t ,2 +σM

t

√
1− (ρ j

t )2ε
j
t ,2(

εM
t ,1,ε j

t ,2

)∼ H ,

(78)

where σ j
t and σM

t are the conditional volatility of the institution j and the market, while ρ j
t

is the conditional correlation between institution j and the market.

The bivariate process of the error term
(
εM

t ,1,ε j
t ,2

)
is a i.i.d. vector variable with zero mean,

unit variance and zero covariance (E(εi
t ,k ) = 0, V ar (εi

t ,k ) = 1, i∈ j , M and k ∈ 1,2). So, thanks to

the joint distribution of the innovation (H), the error terms are uncorrelated, but in general

not independent.

The one period-ahead MES can be rewritten as follows:

MES j
q,t−1(1) = Et−1(R j

t |RM
t ≤−V aRM

q ) =σ j
t Et−1

(
ρ

j
t ε

M
t ,1 +

√
1− (ρ j

t )2ε
j
t ,2

∣∣∣∣−V aRM
q

σM
t

)

=σ j
t ρ

j
t Et−1

(
εM

t ,1

∣∣∣∣−V aRM
q

σM
t

)
+σ j

t

√
1− (ρ j

t )2Et−1

(
ε

j
t ,2

∣∣∣∣−V aRM
q

σM
t

)
,

(79)

where σM
t and σi

t are estimated by a GJR-GARCH modell, while ρ j
t is characterized by a dy-

namical conditional correlation modell.

C.7 SRISK

Brownlees and Engle (2017) proposed SRISK to gauge the capital shortfall institutions are

facing if a serious systemic event happens. To introduce SRISK, let define firstly the capital

shortfall (CS) for institution i at time t :

C Si
t = k(D i

t +W i
t −W i

t ), (80)

where W i
t gauges the market capitalisation of institution i at time t , D i

t the current liabilities,

17I follow the formalism of Weiß and Mühlnickel (2014) (Weiß and Mühlnickel 2014, p.112)
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while k expresses the prudential capital ratio fixed at 8% level. Capital shortfall takes positive

values in distressed periods, while negative during normal times.

Brownlees and Engle (2017) constructed SRISK based on the capital shortfall conditional

on a systemic event C for the time horizon h.18 Formally equation (81) assigns the correct

mathematical formula for SRISK of institution i at time t .

SRI SK i
t = Et (C Si

t+h |RM
t+1:t+h <C ) = kEt (D i

t+h |RM
t+1:t+h <C )− (1−k)Et (W i

t+h |RM
t+1:t+h <C ),

(81)

where RM
t+1:t+h denotes the arithmetic mean of the market portfolio between t + 1 and t +

h. Equation (81) demonstrates the theoretical form of SRISK, but for empirical analysis is

handier to look equation (82).

SRI SK i
t = E

((
k(D i

t +W i
t )−W i

t

)∣∣∣Cr i si s
)
= kD i

t − (1−k)(1−LRMESi
q,t )W i

t , (82)

while LRMESi
t the long run marginal expected shortfall for company i at time t . LRMES

quantifies the expected loss of the equity in stress scenarios. Which can be approximated as

1−exp(−18MESi
q,t ).

Economically, SRISK depends on the firm size and the leverage, which are essential con-

tributing factors to systemic risk, which usually captures company-related characteristics

and accordingly can provide new information about the companies.

SRISK can also express the contribution of individual companies at time t to systemic

risk as (Acharya et al. 2012, p.61):

SRI SK i
t % = SRI SK i

t∑
j :SRI SK

j
t >0

SRI SK j
t

(83)

Equation (83) is convenient for creating rankings from the systemically important insti-

tutions representing a clear order of risk spillovers.

18The C threshold was set to 10%, h to 22 days (Brownlees and Engle 2017, p.52)

99


	List of Tables
	List of Figures
	Introduction
	Systemic risk
	Literature review
	Classification of the literature
	SIFIs
	System dynamics
	Dynamics of the financial sectors
	Dynamics of multi-sectoral financial networks

	Combined analysis
	Insurance networks
	Banking networks
	Insurance and banking networks

	Conclusions of the literature
	Discussion of the literature

	Data and methodology
	Methods
	Degree of Granger-causality
	Leave-one-out approach
	Holm-Bonferroni correction
	Criticism of the LGCk approach
	Testing indirect and spurious effects
	Validation methods for vulnerability rankings

	Data

	Empirical analysis
	Research design
	Identification of SIFIs
	Pre-crisis
	Crisis
	Post-crisis

	Connections among sectors
	Pre-crisis
	Crisis
	Post-crisis

	Industrial connectedness
	System connectedness
	Robustness check

	Further research
	Summary
	Bibliography
	Appendix
	Data
	Examples
	Remarks to the examples
	Example I. of Hue2019
	Example II. of Hue2019
	Modification of example I. Hue2019
	Example IV. based on the idea of Song2019
	Example V. Feizi2013

	Methodological supplement
	Testing indirect and spurious effects
	Monte Carlo simulation
	CoVaR
	Estimation of CoVaR
	MES
	Estimation of MES
	SRISK



