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1 Introduction

In this thesis we are going to present Asian option pricing methods. Asian
options are also known as average price options (APO) and there are two types
of them. Depending on the contract Asian options pay the difference between the
average of the underlying asset price and the strike – that is pre-specified in the
contract–, or they take the difference between the mean of the strikes and the spot
price of the underlying asset at the maturity. The average is taken over the pre-set
period of time and it can be either arithmetic or geometric (Mack, 2014). This
thesis is mainly focusing on arithmetic average price options.

The first traded Asian option took place in Bankers Trust’s Tokyo office, in
Japan, in 1987. This type of exotic option is a very popular financial product in
commodity markets. The high popularity is based on their benefits and these are
the following. First but not least in commodity markets the transactions are related
to huge quantities. So tradesmen’s aim is to reduce the manipulation of the asset
prices before the expiration. Hence by taking the average of the underlying asset
prices makes harder to push the market up or down during the pre-set period and
so it tends to be less volatile than plain vanilla option, whose payoff depend only
on the asset price at the exercise day. Thus the risk of manipulation is decreased
by taking the average of the assets’ prices, precede wild fluctuation impacting on
the trade and also the value of the option is cheaper than the plain vanilla options’
values (Geman, 2009).

In contrary to European options, Asian options are hard to price. In practice
traders usually use discrete monitoring and arithmetic averaging. This is a very ob-
vious decision, since observed prices on markets are discrete, and arithmetic average
is easy to count. However there is no closed form for pricing arithmetic average price
options. Since, under the Black-Sholes model, where we assume that the underlying
asset prices are log-normally distributed, the arithmetic average of the prices is not
log-normal. This fact stimulated me to carry out research in this topic.

The rest of this thesis is organized as follows. In Section 2, we briefly introduce
the theoretical framework for Asian options. It also contains a summary of the
used methodologies to price Asian options and we detail four methods. In Section
3, we implement and compare the methods described before by simulation results.
Finally, this thesis ends with a conclusion in Section 4.
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2 Theoretical results

This section provides the theoretical basis for pricing APOs under the Black-
Scholes model. It starts with a summary of the mathematical framework used for
pricing APOs. Then we will give a brief overview of the pricing methods found in
the literature we came across during the preparation of this thesis. Also, there will
be a digression, where we will shortly present further techniques from the latest
results. Later a basic pricing formula to price geometric Asian options will be
given since this formula is needed for another technique. This thesis mainly focuses
on the arithmetic average under discrete monitoring, in this case the option price
doesn’t have a closed form. At the end of this section we present some methods to
price them. One of the highlighted techniques is the MC simulation. We show two
variance reduction techniques as well, namely the Control variate and the Antithetic
methods. The other highlighted technique is the Moment Matching method with
the log-normal approximation.

2.1 Mathematical framework

Before going into details of the Asian option specialties, we will describe the
necessary notations, definitions, theorems and formulas to create the mathematical
framework for this thesis. The fundamental concepts of stochastic processes and
financial mathematics can be found for example in Shreve (2004), Márkus (2017)
or in the Stochastic Processes lecture notes by Vilmos Prokaj.

The following proposition will be used for several calculations later.

Proposition 1. Let ↵ 2 R be a constant real number. If Z is standard normal,
then

E
�
e

↵Z

�
= e

↵2

2 (2.1)
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The following propositions are needed, because techniques discussed later in this
master thesis will use them. When we would like to determine the moments of the
underlying asset prices S

t

in Section 2.5, Itô Isometry will be useful.
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The Black-Scholes model

Let (⌦,F ,F
t

,Q) be a filtered, complete probability space, where {F
t

}
t�0 is a

right-continuous filtration, Q is the risk-neutral measure on (⌦,F). Henceforward
E will denote the expected value, while P the probability under Q.

We define the market model as the usual Black-Scholes model, which assumes
that there are no arbitrage opportunities, taxes or transaction costs, no restrictions
on short selling and the market is perfectly liquid. It also considers two asset price
processes with given dynamics. One is the risk-free asset (B

t

)

t2[0,T ], the other one
is the risky asset (S

t

)

t2[0,T ] that follows Geometric Brownian Motion (GBM). The
dynamics are given by

dB

t

= rB

t

dt (2.4)

dS

t

= rS

t

dt+ �S

t

dW

t

(2.5)

where r, � are deterministic constants corresponding to the interest rate and the
volatility and W

t

, 0  t  T is the Brownian motion under the Q risk-neutral
measure.

It is well known that the analytical solutions for stochastic differential equations
(2.4) and (2.5) are

B

t

= B0e
rt

= e

rt

S

t

= S0e

⇣
r��2

2

⌘
t+�Wt (2.6)

where B0 is the amount of the initial risk free asset, we consider it to be equal to 1,
S0 � 0 is the initial risky asset price. The distribution of S

t

is log-normal under Q:

ln
✓
S

t

S0

◆
⇠ N

✓✓
r � �

2

2

◆
t, �

2
t

◆

It is also known that the discounted asset price process St
Bt

is a martingale under Q.
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Theorem 1 (General risk-neutral pricing formula). Let V

T

denote the payoff of
a given derivative on the exercise day, at time T . The general risk-neutral pricing
formula and the initial price of any contingent claim with V

T

payoff are the following:

V

t

B

t

= E

V

T

B

T

����Ft

�

V0 = B0 · E

V

T

B

T

����F0

�
= E


V

T

B

T

�
= e

�rT E [V

T

] (2.7)

where 0  t  T . F0 = {⌦, ;} is the trivial �-algebra.

Throughout this thesis V0 will denote the initial price of any contingent claim,
and c = V0 will stand for call options with any V

T

payoff.

Fisher Black and Myron Scholes gave us a pricing formula for European options
under the model and assumptions described above. The holder of an European
option can only exercise it on the expiry day. The European call payoff is V

T

=

(S

T

� K)

+ and the European put payoff is V

T

= (K � S

T

)

+, where S

T

is the
underlying asset price at time T , and K is the predefined strike price.

Theorem 2 (Black-Scholes option pricing formula). The value of the European call
option on stock asset S with K strike price and T exercise date is the following:

c

BS

(r, �, T ) = S0�(d1)� e

�rT

K�(d2) (2.8)

where �(·) denotes the standard normal cumulative distribution function and

d1 =
ln
�
S0
K

�
+

�
r +

1
2�

2
�
T

�

p
T

d2 = d1 � �

p
T (2.9)

r is the risk-free interest rate and � is the volatility as defined in the Black-Scholes
model.
The price of the European put option can be easily calculated from the put-call
parity.

The payoff of Asian options

As mentioned in Section 1, Asian options are exotic options and also known as
average price options (APO). Since V

T

, the payoff depends on the average of a series
of underlying prices, it can be clearly seen that Asian options are path-dependent
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options, which makes their pricing quite cumbersome. There are two types of Asian
options:

Fixed-strike Asian options:

call: (A

T

�K)

+ (2.10)

put: (K � A

T

)

+

Floating strike Asian option:

call: (S

T

� A

T

)

+

put: (A

T

� S

T

)

+

where T denotes the maturity, S
T

is the underlying asset price at time T , and K is
the fixed strike price. A

T

denotes the average of the underlying asset prices at time
T . This thesis focuses on Fixed-strike Asian call options (2.10). Fixed-strike Asian
put option prices can be easily calculated from the put-call parity. However, A

T

the average can be of various types, which will be discussed in the next subsection
2.2.1.
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2.2 Overview of pricing methods

This section contains the different types of Asian options, presents an overview of
the numerous pricing methods and shows the recent directions of research activities.

2.2.1 Averaging types

In the theory of Asian options, the mean is usually either geometric or arithmetic,
and the underlying asset prices are either discretely or continuously monitored. The
formulas of the averages are shown in Table 1. Also, we would like to highlight that
in practice financial markets usually use the arithmetic average and the prices are
discretely monitored. The prices of other types are either good-to-have theoreti-
cal results or they are tools for approximating the discretely monitored arithmetic
averaged APOs.

Averaging formulas Continuously monitored Discretely monitored

Geometric exp

✓
1
T

TR
0

lnS
u

du

◆ ✓
NQ
i=0

S

ti

◆ 1
N+1

Arithmetic
TR
0

1
T

S

u

du

NP
i=0

1
N+1Sti

Table 1: Averaging formulas.

The discretely monitored geometric mean can be written as the following:

 
NY

i=0

S

ti

! 1
N+1

= exp

 
1

N + 1

ln

 
NY

i=0

S

ti

!!
= exp

 
1

N + 1

NX

i=0

lnS
ti

!
(2.11)

The discrete cases can be thought as an approximation of the continuous cases.
In case of geometric averages:

exp

 
1

N + 1

NX

i=0

lnS
ti

!
for large N

⇡ exp

0

@ 1

T

TZ

0

lnS
u

du

1

A (2.12)

In case of arithmetic averages:

NX

i=0

1

N + 1

S

ti

for large N

⇡
TZ

0

1

T

S

u

du (2.13)

where 0  t0  t1  . . .  t

N

= T are so-called monitoring points (usually days), T
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is the exercise date.
If S

t

is the Geometric Brownian Motion, then it can be seen that Asian options
with geometric averaging have an explicit pricing formula. However, in practice,
in futures markets the Asian options usually use arithmetic averaging that do not
have an easy formula to implement, because the arithmetic average of log-normally
distributed random variables is not log-normally distributed. In this master’s thesis
we will concentrate on pricing discretely monitored Asian options with arithmetical
averaging, therefore from now on

A

T

=

1

N + 1

NX

i=0

S

ti (2.14)

2.2.2 Brief overview of pricing APOs under the Black-Scholes model

Since the valuation of arithmetically averaged APOs is not trivial even under the
basic GBM asset price process, researchers during the last three decades have devel-
oped several exact and approximation methods to price them. The main purpose of
this section is to give an overview on these methods, which can be categorized into
three groups. The grouping in Table 2 is based on several books and articles I have
read. The remaining part of this subsection contains a short summary of those that
I have found the most valuable in Asian option pricing.

Monte Carlo simulation Approximations Exact formula
1. Classical Monte Carlo Moment Matching for Geometric averaged

2. Variance Reduction Log-normal priced options (continuous,
Antithetic variate Edgeworth Series discrete)
Control variate Transformations
Important sampling Laplace

Fourier
PDE methods
Boundaries

Upper
Lower

Table 2: Pricing methods under the Black-Scholes model

In Table 2, the methods taken in bold will be detailed later in Sections 2.4 and
2.5.
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The related books in this topic are the following:

Clark (2014) provides the exact formula for both geometric averaged priced op-
tions under continuous and discrete monitoring. He also presents arithmetic aver-
aged option pricing methods. For continuous averaging, he shows that the arithmetic
average can be rewritten by the geometric average with a correction. For the discrete
mean, he presents the moment matching technique with log-normal approximation
for averaging the spot and future price averages as well. During my internship at a
multinational investment bank I have found that several approaches written in this
book are applied in practice for APO pricing with commodity underliers.

Eydeland and Wolyniec (2002) introduce the Vorst and Curran methods for
pricing the discrete arithmetic averaged options. The Vorst method is based on
giving boundaries for the price with geometric average priced option prices. The
method also corrects the strike price with the difference between the expected value
of arithmetic and geometric averages. They also show the basics of the Curran
method, which is as well based on giving a lower boundary with the geometric
mean, but provides better results in practice than the Vorst method.

Geman (2009) presents several methods to price arithmetic averaged Asian op-
tion with continuous monitoring. The author describes the formulas of the Kemna
and Vorst method, which is an approximation of the arithmetic average by the geo-
metric average considering it as the control variate. She also shows the technique of
Levy (1992) (see later in this section). The writer also compares Asian and Euro-
pean options and shows that Asian options are not always cheaper than Europeans.
It depends on the difference between the r interest rate and the y convenience yield,
if r � y is positive, that Asian is cheaper than European option, in the other case
the relation between the prices is not clear and depends on more variables.

All the techniques shown by Privault (2013) price the continuous arithmetic
averaged options. He provides the Laplace transform method, moment matching
with the log-normal approximation and gives boundaries for the price and shows
PDE schemes. The book includes proofs for each proposition.

Roncoroni et al. (2015) demonstrate us pricing techniques for both arithmetic
Asian options with discrete and continuous averaging. We get a high-level insight
into several methods. First they present the Moment matching technique by log-
normal approximation (detailed in Section 2.5) and using the Edgeworth series ex-

9



pansion. The authors summarize the algorithm of the MC and its variance reduction
techniques (detailed in Section 2.4). They also illustrate a lower boundary on the
prices of the options mentioned above. This book is very practical as it describes
the algorithms step by step and describes some trades in real commodity markets.

The book of Shreve (2004) provides us a general introduction to Asian options
and gives us a PDE method to price both of the continuously and discretely moni-
tored arithmetical Asian options. The shown method involves a numéraire changing
technique.

The related articles in this topic are the following:

Levy (1992) is a seminal paper that approximates the discrete arithmetic aver-
aged Asian options by matching the first two moments of the discrete arithmetic
average with the log-normal distribution. He shows us that the accuracy of this
approach is not much worse than Edgeworth series expansion, also it is easier to
implement and it is less time-consuming. Many books and articles refer to his paper.

Lo et al. (2014) illustrate us the moment matching method for continuous arith-
metic averaged Asian options. They provide the moment matching techniques for
different approximate distributions such as normal, shifted gamma, shifted log-
normal and shifted reciprocal gamma distribution. This approach values both of
the fixed and floating strike Asian options and the results are very important, as
it is well known that (due to the central limit theorem) the log-normal moment
matching gets more inaccurate by increasing the number of averaging points.

Li and Chen (2016) propose a method by the Edgeworth series expansion to
price continuous arithmetic averaged Asian options. Their approach also give us
explicit formulas for the Greeks.

In Horvath and Medvegyev (2016) the authors compare the continuous arith-
metic averaged Asian option prices calculated using the Laplace transform method
with the prices simulated with MC and two variance reduction techniques for MC.
They also study the efficiency of computational time. They have found that the
control variate method performs better than the antithetic method in the aspect
of standard errors. They also highlighted that the magnitude of �2

T matters if we
want to achieve time efficiency.

Chen and Lyuu (2007) describe a lower boundary both for continuously moni-
tored arithmetic averaged Asian option with fixed and floating strike. They sum-

10



marize several approaches from the literature and They also compare their results
with various pricing techniques. They conclude that their approximated prices are
extremely close to the real prices.

As mentioned earlier in this master thesis, the prices of geometrical APOs have
a closed form under the Black-Scholes model, which is unfortunately not the case
for arithmetical averaged APOs. Further in this thesis, the MC simulation and
two variance reduction techniques will be detailed in section 2.4. Also, the moment
matching method will be presented in section 2.5 based on the books and papers
above. I have chosen to detail these methods, as during my internship I have found
that in the banking industry these are the most popular techniques for APO pricing.

2.2.3 Review of the recent results in the literature

Since considerable effort was put by researchers on finding exact enough yet
efficient techniques for pricing APOs under the Black-Scholes model in the past
decades, now we have several valuable approaches for pricing them, which have
been detailed in the previous Section 2.2.2. This subsection describes the most
recently published research papers that either present important extensions such as
pricing APOs under a more complicated market model, or show new mathematical
pricing techniques.

Kirkby (2016) gives us a method under the exponential Lévy model for both
discrete and continuous arithmetical averages. The method approximates the sum
of random variables by another random variable, with any given arbitrary density
function. The pricing algorithm reduces the computational cost, and therefore it is
very efficient. The author generalizes this method for basket options as well.

In Kirkby and Nguyen (2020), the authors detail us a method to price discrete
and continuous arithmetical average options under a general regime switching jump
diffusion models. The presented, quite complicated technique is based on recursion.
Their approach for pricing Asian options also works well under certain stochastic
volatility jump diffusion models.

Fusai and Kyriakou (2016) show us a method for pricing both the arithmetical
Asian options with discrete and continuous averaging under general asset model set-
tings, such as under the exponential Lévy models, stochastic volatility models, and
the CEV diffusion which is a family of volatility models with � elasticity parameter.
The approximation is based on giving a lower bound and improving the accuracy
with optimization. Their approach is competitive since its volatility is low, and the
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technique is easy to implement.
Mehrdoust et al. (2017) present us an efficient MC simulation under the CEV

model which is a local volatility model. They also present two variance reduction
techniques, namely the control variate and the antithetic variate methods.

Willems (2019) describes us a new approach for pricing continuously monitored
arithmetical Asian options under the Black-Scholes model. The approach is fairly
new, it approximates the price with orthogonal polynomials. The advantages of this
technique are that it is explicit and numerical integration is not required. On the
other hand, the main disadvantage is that it does not always guarantee convergence
to the correct price.

Corsaro et al. (2019) give us a recursion based method for pricing discretely
monitored arithmetical Asian options under general stochastic volatility models.
The technique speeds up the pricing with parallelizing the algorithm and utilizing
multiple cores, reducing its computational cost significantly.

12



2.3 Closed form for geometric Asian options

If the asset price process is the GBM process, then its geometric averages (see
in Table 1) are log-normally distributed. This entails that there is a closed, explicit
form for the price of the geometrically averaged Asian options which we are going to
present in this subsection, because techniques discussed later will use these results.
The formulas shown in this part will be needed for the control variate technique
(see in Section 2.4.1.2) and for the moment matching method (see in Section 2.5).
Clark (2014) and Roncoroni et al. (2015) contain a closed form to price the geometric
Asian options with discrete averaging, which is based on the following proposition.

Proposition 5 (General pricing formula for log-normal distribution). Let us assume
the Black-Scholes setting detailed earlier, and under the risk neutral measure Q, the
general payoff V

T

is log-normally distributed with parameters m and ⌫. In this case
the price of the derivative with payoff V

T

at time 0 is the following:

c = S0e
m+ ⌫2

2 �rT

�(d1)� e

�rt

K�(d2) (2.15)

where �(·) denotes the standard normal cumulative distribution function and

d1 =
ln(S0

K

) +m+ ⌫

2

⌫

d2 = d1 � ⌫

Proof. Using the general risk-neutral pricing equation (2.7) to calculate the initial
price with payoff V

T

= (U

T

�K)

+ (see in Theorem 1), the equation is the following:

c = e

�rT E(U
T

�K)

+

with U

T

= S0e
X , where X is normally distributed with m expected value and ⌫

2

variance.

c =

�rT E(S0e
X �K)

+

= e

�rT E(S0e
m+⌫Z �K)

+ (2.16)

where Z ⇠ N(0, 1). Focusing on the expected value

E(S0e
m+⌫Z �K)

+
= E

�
(S0e

m+⌫Z �K) {S0e
m+⌫Z�K}

�

= E
�
S0e

m+⌫Z

{S0e
m+⌫Z�K}

�
� E

�
K {S0e

m+⌫Z�K}
�

(2.17)

13



Let us see the first part of the Equation 2.17:

S0e
m E

�
e

⌫Z

{S0e
m+⌫Z�K}

�
= S0e

m

1Z

�1

e

⌫z

1p
2⇡

e

� z2

2 {S0e
m+⌫z�K}dz = (2.18)

= S0e
m

1Z

y

1p
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e

⌫z� z2

2
dz

= S0e
m

1Z

y

1p
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e

� (z�⌫)2

2 + ⌫2

2
dz = ⇤ (2.19)

In (2.18) the use of the indicator function changes the integral boundary for the
following:

S0e
m+⌫z � K

e
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S0

m+ ⌫z � ln
✓
K

S0

◆
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ln
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K

S0

⌘
�m

⌫

=: y

Also in (2.19) e v2

2 is constant, while 1p
2⇡
e

� (z�⌫)2

2 is the density function of a N(⌫, 1)
distributed random variable. Hence we can integrate by substitution, using
u = z � ⌫. So the integral boundary changes to the following:

y � ⌫ =

ln
⇣

K

S0

⌘
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2

⌫

Since the density function of a standard normal distribution is integrated from y�⌫

to infinity, (2.19) can be expressed as
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m
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du = S0e

m+ ⌫2

2
(1� �(y � ⌫)) = ~

Using the 1� �(x) = �(�x) formula, where x denotes

�y + ⌫ =

ln
�
S0
K

�
+m+ ⌫

2

⌫

= d1

14



we obtain

~ = S0e
m+ ⌫2

2
�(�y + ⌫)

= S0e
m+ ⌫2

2
�(d1) (2.20)

In the second part of Equation 2.17, K is a non-negative constant and when taking
the expected value of an indicator we get the probability of the event, so

K E
�

{S0e
m+⌫Z�K}

�
= KP(S0e

m+⌫Z � K)

= KP
✓
e

m+⌫Z � K

S0

◆

= KP

0

@
Z �

ln
⇣

K

S0

⌘
�m

⌫

1

A

= K

0

@
1� P

0

@
Z <

ln
⇣

K

S0

⌘
�m

⌫

1

A

1

A

= K

0

@
1� �

0

@
ln
⇣

K

S0

⌘
�m

⌫

1

A

1

A

= K�

 
ln
�
S0
K

�
+m

⌫

!

= K�(d2) (2.21)

where using notation ln

(

S0
K )

+m

⌫

= d2 = d1 � ⌫.
After putting the first (2.20) and the second (2.21) part all together and plugging
into Equation 2.16, the proof is done.

Corollary 1. If the payoff V

T

is log-normally distributed with parameters m and
⌫ parameters

m =

✓
r � �

2

2

◆
T

⌫ = �

p
T

then we get the classical Black-Scholes formula described in Theorem 2.
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Proposition 6 (Parameters for log-normal distribution in case of geometric aver-
aging and discrete monitoring). Using the general pricing formula in Proposition 5,
the parameters of payoff V

T

in case of discrete monitoring and geometric averaging
are the following:

m = lnS0 +
1

2

✓
r � �

2

2

◆
T (2.22)

⌫ = �

p
T

s
2N + 1

6(N + 1)

(2.23)

Proof. Using the form of A
T

such that in Equation 2.11, let us recall the logarithm
of S

t

from Equation 2.6.

lnS
t

= lnS0 +

✓
r � �

2

2

◆
t+ �W

t

(2.24)

Let us denote the discrete monitoring dates by {t
i

: i = 0, . . . , N, t

i

< t

i+1}, where
the time points are equally distributed over the time interval [0, T ], so t

i

=

iT

N

.
Applying lnS

t

(2.24) into (2.11), the average will be the following:

A

geo

T

= exp

 
1

N + 1

NX

i=0

lnS
ti

!

lnAgeo

T

=

1

N + 1

NX

i=0

lnS
ti

= lnS0 +
1

N + 1

NX

i=1

✓
r � �

2

2

◆
t

i

+

1

N + 1

NX

i=1

�W

ti

It can be clearly seen that A

geo

T

is log-normally distributed, because in the expo-
nential function W

t

is Brownian motion under Q, so the sum also stays normally
distributed. The distribution’s parameters are the following:
The expected value:

m = E(lnAgeo

T

) = E
 

lnS0 +
1

N + 1

✓
r � �

2

2

◆
NX

i=0

t

i

+

1

N + 1

�

NX

i=0

W

ti

!
=

= lnS0 +
1

N + 1

✓
r � �

2

2

◆
NX

i=0

t

i

=

= lnS0 +
1

N + 1

✓
r � �

2

2

◆
T (N + 1)

2

= lnS0 +
1

2

✓
r � �

2

2

◆
T

16



where

• E
✓

�

N+1

NP
i=0

W

ti

◆
is zero, because W

ti is a Brownian motion under Q, therefore

its expected value is zero and

•
NP
i=0

t

i

=

T

N

NP
i=0

i =

T

N

N(N+1)
2 =

T (N+1)
2

Let us concentrate on the variance:

⌫

2
= Var(lnAgeo

T

) = Var

 
1

N + 1

NX

i=0

�W

ti

!
=

�

2

(N + 1)

2
Var

 
NX

i=0

W

ti

!

Var

 
NX

i=0

W

ti

!
= E

 
NX

i,j=0

W

tiWtj

!
=

NX

i,j=0

min(t
i

, t

j

)

NX

i,j=0

min(t
i

, t

j

) =

T

N

NX

i,j=1

min(i, j) =
T

N

(1(N + (N � 1)) + 2((N � 1) + (N � 2)) + . . . )

=

T

N

(1(2N � 1) + 2(2N � 3) + 3(2N � 5) + . . . )

=

T

N

NX

i=1

(2N � 2i+ 1)i =

T

N

NX

i=1

(2(N � i) + 1)i

=

T

N

NX

i=1

((2N + 1)i� 2i

2
) =

T

N

 
NX

i=1

((2N + 1)i)�
NX

i=1

2i

2

!

=

T

N

✓
(2N + 1)

N(N + 1)

2

� 2

N(N + 1)(2N + 1)

6

◆

= T (N + 1)

6N + 3� 4N � 2

6

= T (N + 1)

2N + 1

6

So the variance is the following:

⌫

2
= Var(lnAgeo

T

) =

�

2

(N + 1)

2
T (N + 1)

2N + 1

6

=

2N + 1

6(N + 1)

�

2
T

Corollary 2 (Parameters in continuous case). When N tends to infinity, the pa-
rameters in Proposition 6 reduce to

m = lnS0 +
1

2

✓
r � 1

2

�

2

◆
T

⌫ = �

r
1

3

T

17



which are the parameters of payoff V

T

in case of continuously monitored geometric
average.

Proof. The expected value does not depend on N . For variance, using the L’Hôspital’s
rule we get the parameter above.

Combining Proposition 5., Corollary 1., and Proposition 6., lead us to the fol-
lowing assumption.

Assumption 1. We can rewrite the discretely monitored geometric averaged Asian
option’s pricing formula using the general Black-Scholes formula (in Proposition 2)
for European call options with er discount rate. The formula is the following:

c

gt

= e

�rT E (A

geo

T

�K)

+
= e

�(r�er)T
S0�(d1)�Ke

�rT

�(d2) (2.25)

where A

T

is the discrete geometric average of the asset prices (see in Table 1) and
the parameters:

er = 1

2

✓
r � �

2 N + 2

6(N + 1)

◆
d1 =

ln
�
S0
K

�
+

�
er + 1

2e�
2
�
T

e�
p
T

e� = �

s
2N + 1

6(N + 1)

d2 = d1 � e�
p
T

Proof. Let us suppose that A

T

is the discrete geometric average of the underly-
ing asset prices. The general risk-neutral pricing formula (see in Theorem 1) for
discretely monitored geometric averaged Asian call option is the following:

V0 = e

�rT E
�
(A

geo

T

�K)

+
�
= e

�rT E

0

@
 

NY

i=0

S

ti

! 1
N+1

�K

1

A
+

= ⇤

with
✓

NQ
i=0

S

ti

◆ 1
N+1

= S0e
X , where X ⇠ N(m, ⌫

2
). The parameters of X (can be

found in Proposition 6) are the following:

m =

1

2

✓
r � �

2

2

◆
T ⌫ = �

p
T

s
2N + 1

6(N + 1)

(2.26)

By inverting the parameters in Corollary 1., we get the parameters used for Black-
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Scholes formula, which are the following:

er = 1

T

✓
m+

⌫

2

2

◆
e� =

⌫p
T

(2.27)

Plugging (2.26) into (2.27), we obtain

er = 1

T

✓
1

2

✓
r � �

2

2

◆
T + �

2
T

2N + 1

6(N + 1)

◆

=

1

2

✓
r � �

2

2

◆
+ �

2 2N + 1

6(N + 1)

=

1

2

✓
r � �

2

✓
1

2

� 2N + 1

6(N + 1)

◆◆

=

1

2

✓
r � �

2 N + 2

6(N + 1)

◆
(2.28)

e� = �

s
2N + 1

6(N + 1)

(2.29)

Thus we get the price of the discretely monitored geometric averaged Asian call
option using the classical Black-Scholes formula (see in Theorem 2) with parameters
above (see in Equation 2.28 and 2.29).
The deduction is the following:

⇤ = e

�(r�er)T
e

�erT E(V BS

T

(S0, er, e�)) = ~

where V

BS

T

(S0, er, e�) = (S

T

� K)

+ denotes the European call option’s payoff with
certain parameters.

~ = e

�(r�er)T
c

BS

(S0, er, e�)

= e

�(r�er)T �
S0�(d1)�Ke

�erT
�(d2)

�

= e

�(r�er)T
S0�(d1)�Ke

�rT

�(d2)

In the following the c

gt

formula in Assumption 1 will be used in Section 2.4.1.2,
where c

gt

will be the control variate.
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2.4 Monte Carlo methods

This section starts with a brief overview of the classical Monte Carlo simulation
technique for discretely monitored and arithmetically averaged Asian options to
determine the exact price. After that, two methods will be presented how to reduce
the variance of the MC, namely the Control Variate method and the Antithetic
Variate method. This section is mainly based on Chapter 18 of Roncoroni et al.
(2015).

MC simulation is a very popular tool to examine the properties of stochastic
processes and hence it is a good choice to calculate the price of options. First, the
method will be presented in general settings.

Let g(x) be a measurable real function and Z

i

be an independent and identically
distributed random variable from an arbitrary distribution. The Strong Law of
Large Numbers claims that if E(g(Z

i

)) < 1, then the arithmetic average of g(Z
i

)

random variables converges to their common expected value with probability 1:

1

n

nX

i=1

g(Z

i

)

n!1���!
a.s

E(g(Z))

The efficiency of MC simulation techniques can be described by the convergence
rate and the variance. The convergence rate of the MC is 1

n

and the order of conver-
gence is 1

2 . The disadvantage is that it is computing-intensive. On the other hand
it is a suitable method for option pricing, as it is easy to implement, it also allows
us to simulate the prices of derivatives based on a more complicated payoff (such
as path dependent ones) and there are also several variance reduction techniques,
which improve the accuracy of the MC, see in Section 2.4.1. Further details can be
found in Horvath and Medvegyev (2016).

Applying MC for Asian options, the g(·) function is the following:

g(Z) = e

�rT

V

T

(Z)

where V
T

is the payoff of the fixed strike Asian call option, defined in Equation 2.10.
The first step of the algorithm is sampling S

t

with fixed initial price S0 = s0, as
follows

S

(j)
ti

= s0e

⇣
r��2

2

⌘
ti+�W

(j)
ti

with j = 1, 2, . . . , n, which is the path of the simulation and n denotes the number
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of simulations, t
i

denote the monitoring days and t

i

=

iT

N

with i = 1, 2, . . . , N . Since
Asian options are path dependent, the paths need to be simulated such that

S

(j)
ti

= S

(j)
ti�1

e

⇣
r��2

2

⌘
(ti�ti�1)+�

⇣
W

(j)
ti

�W

(j)
ti�1

⌘

(2.30)

Let � = t

i

� t

i�1 denote the time difference. The increments of the Brownian
motion:

W

(j)
ti

�W

(j)
ti�1

=

p
��

�1
(U

(j)
i

) =

p
�Z

(j)
i

(2.31)

where U

(j)
i

, (i = 1, . . . , N), (j = 1, . . . , n) are uniform random variables on interval
[0,1]. It is well known from probability theory that �

�1
(U

(j)
i

) = Z

(j)
i

⇠ N(0, 1).
The average also needs to be calculated on each path:

A

(j)
T

=

1

N + 1

NX

i=0

S

(j)
ti

(2.32)

Now we can calculate the arithmetic Asian option price:

c

(j)
= e

�rTmax(A(j)
T

�K, 0) (2.33)

c

MC

=

1

n

nX

j=1

c

(j) (2.34)

By the strong law of large numbers c

MC

converges to the correct price with 1
probability. The variance and the standard error of the MC method is the following

�

2
MC

=

1

n

nX

j=1

(c

(j) � c

MC

)

2 (2.35)

se

MC

=

r
�

2
MC

n

(2.36)

By observing P (| Z | �

�1
(1� ↵

2 )) = 1�↵ for a small ↵ > 0 real number (typically
0.05 or 0.01). We define the 1� ↵ confidence interval as

c

MC

± �

�1
⇣
1� ↵

2

⌘
· se

MC
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2.4.1 Variance reduction techniques

In this section two variance reduction techniques will be presented, namely
the Control variate (CV) and the Antithetic (AV) methods. The point of variance
reduction techniques is that we need fewer simulations to achieve the same accuracy
as for the basic MC, thus they also enable us to reduce the running time of MC
simulation.

2.4.1.1 Antithetic variate method

The basic idea behind this technique is that we would like to decrease Y = g(Z)

random variable’s variance. For this, let us consider two identically distributed,
correlated random variables Y1 and Y2, with common expected value as Y , hence
Y1+Y2

2 is an unbiased estimator of E(Y ).

E
✓
Y1 + Y2

2

◆
= E(Y ) = c

AV

The variance can be written as follows:

V ar

✓
Y1 + Y2

2

◆
=

�

2
Y1

+ �

2
Y2

+ 2Cov(Y1, Y2)

4

(2.37)

Equation 2.37 shows that the estimator Y1+Y2
2 will have smaller variance than �

2
Y1

and �

2
Y2

, if there is negative correlation between Y1 and Y2. The disadvantage of
this method is that the negative correlation between them is not always assured.

Using this technique for Asian options, we generate Z

i

according to (2.31) and
we also take the minus of it, �Z

i

, and the rest of the algorithm stays the same as
in the MC method, but for both of Z

i

and �Z

i

. Hence the underlying asset prices
are simulated also on the so-called antithetic path (denote as ˜

S):

˜

S

(j)
ti

=

˜

S

(j)
ti�1

e

⇣
r��2

2

⌘
(ti�ti�1)+�

⇣
W̃

(j)
ti

�W̃

(j)
ti�1

⌘

where ˜

S

(j)
ti

is simulated with the increment of ˜

W , which is given by

˜

W

(j)
ti

� ˜

W

(j)
ti�1

= �
p
�Z

(j)
i

where �Z

(j)
i

⇠ N(0, 1). The arithmetical average needed to be calculated on the
original (denoted as A(j)

T

, same as in Equation 2.32) and also on the antithetic paths,
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which is the following:

˜

A

(j)
T

=

1

N + 1

NX

i=0

S

(j)
ti

So the arithmetic Asian option price according to the AV technique is the following:

c

(j)
AV

= e

�rTmax(A(j)
T

�K, 0)

c

AV

=

1

n

nX

j=1

c

(j)
+ c

(j)
AV

2

(2.38)

where c

(j) is calculated such as in MC simulation in Equation 2.33.
We also define the variance and the standard error of AV method:

�

2
AV

=

1

n

nX

j=1

 
c

(j)
+ c

(j)
AV

2

� c

AV

!2

(2.39)

se

AV

=

r
�

2
AV

n

(2.40)

The 1� ↵ confidence interval of AV method is given by

c

AV

± �

�1
⇣
1� ↵

2

⌘
· se

AV
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2.4.1.2 Control variate method

This method also aims to decrease Y = g(Z) random variable’s variance. Instead
of using the basic MC simulation to get the expected value of Y , let us focus on X,
which is created as follows:

X = Y � �(⇠ � E(⇠))

where � is a constant and ⇠ is a so-called control variate, which is another random
variable with known E(⇠) value. Taking the expected value of X, it will be equal
to the expected value of Y , which was our original aim to get.

E(X) = E(Y )� �(E(⇠)� E(⇠)) = E(Y ) = c

CV

(2.41)

Let us compute the variance of X, which should be as small as possible:

V ar(X) = V ar(Y ) + �

2
V ar(⇠)� 2�Cov(⇠, Y ) (2.42)

The optimal value of � that minimizes the variance in Equation 2.42 is

2�V ar(⇠)� 2Cov(⇠, Y ) = 0

�

⇤
=

Cov(⇠, Y )

V ar(⇠)

(2.43)

After the optimal �⇤ is plugged into Equation 2.42, it can be seen that the variance
of Y is successfully reduced as follows:

V ar(X) = V ar(Y )� Cov(⇠, Y )

2

V ar(⇠)

(2.44)

while the Cov(⇠, Y ) 6= 0.
One question remains, how to choose the control variate ⇠. In the literature

(such as in Horvath and Medvegyev (2016); Roncoroni et al. (2015)) for arithmetic
averaged Asian option, the usage of the geometric averaged Asian option price is
proposed as the control variable, as we have an explicit formula for it (see Section
2.3 for details).

The first part of CV’s algorithm remains the same as the MC method.
We simulate S(j)

ti
, the underlying prices (2.30), calculate A(j)

T

, the arithmetic average
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(2.32) and c

(j), the prices of the arithmetic Asian options on each path such as in
Equation 2.33.

The second part of the algorithm is the following. We take the geometric aver-
age of S(j)

ti
(see in Table 1) on each path, let us denote them as A

geo(j)
T

.

A

geo(j)
T

=

 
NY

i=0

S

(j)
ti

! 1
N+1

So the geometric Asian option prices on each path are the following:

c

geo(j)
= e

�rTmax(Ageo(j)
T

�K, 0)

The next step is that we calculate the optimal �⇤ as in (2.43) for each path

�

⇤(j)
=

Cov(c

geo(j)
, c

(j)
)

V ar(c

geo(j)
)

Using Equation 2.41, we get the arithmetic averaged Asian option price by the CV
method as follows:

c

(j)
CV

= c

(j) � �

⇤(j)
(c

geo(j) � c

gt

)

c

CV

=

1

n

nX

j=1

c

(j)
CV

(2.45)

where c

gt

is the explicit formula to price the geometric averaged Asian option as in
Equation 2.25, in Assumption 1.
We also define the variance and the standard error of CV method:

�

2
CV

=

1

n

nX

j=1

⇣
c

(j)
CV

� c

CV

⌘2
(2.46)

se

CV

=

r
�

2
CV

n

(2.47)

The 1� ↵ confidence interval of CV method is given by

c

CV

± �

�1
⇣
1� ↵

2

⌘
· se

CV
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2.5 Moment matching method

The basic idea behind this method is that we approximate a usually complicated
distribution with an easy to handle, specific distribution by matching their first 2, 3
or 4 moments. This technique is a very popular approach for pricing Asian options
on arithmetic average, as the distribution of the sum of log-normally distributed
random variables is unfortunately not log-normally distributed.

The procedure of the moment matching technique contains two steps. First
we compute the exact first k (2  k 2 Z) moments of the complicated random
variable of interest (see in Section 2.5.1), then we match them with the assigned
distribution’s moments (see the log-normal approximation in Section 2.5.2). In
our case the complicated random variable is the sum of log-normals, the assigned
distribution is the log-normal distribution and k = 2, i.e. we match the first 2
moments.

2.5.1 Moments of the arithmetic average in discrete case

In this section the exact moments of discretely monitored arithmetic averaged
Asian options will be presented. The moment matching methodology will be exposed
under a more general market model setting: when the interest rate, r

t

and the
volatility, �

t

depend on time, but they still remain deterministic functions. In this
general case the solution of S

t

, (2.6) changes to

S

t

= S0e

tR

0

✓
rs�

�2
s
2

◆
ds+

tR

0
�sdWs

(2.48)

To calculate the moments of A
T

, first let us examine the distribution of the stochastic

integral,
tR
0

�

s

dW

s

in Equation 2.48. As �

t

is deterministic and constant for 8t,

it satisfies the conditions of progressive measurability, see in Proposition 2. Also
E(
R
�

2
s

ds) < 1, hence (�

s

) 2 S (see Definition 1). We know from Proposition 3
that if (�

s

) 2 S, then (�

s

) is a Gaussian process with 0 expected value. Moreover

Itô-isometry in Proposition 4 can be used. Let denote X

t

=

tR
0

�

s

dW

s

. Hence

X

t

⇠ N(0,

tR
0

�

2
s

ds) and X

t

= Z

t

tR
0

�

s

ds, where Z ⇠ N(0, 1). Using Proposition 1,
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we get the expected value of eXt :

E
�
e

Xt
�
= E

 
e

tR

0
�sdWs

!
= e

1
2

tR

0
�

2
sds

The first moment of A
T

M1 = E(A
T

) =

1

N + 1

NX
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E(S
ti) =

1

N + 1
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@
tiZ
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ds
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A
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Using the same arguments as above, let us examine the stochastic integrals in (2.49).
We saw earlier that (�
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) is a Gaussian process with 0 expected value
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When the interest rate, r and the volatility, � are constants, the first two moments
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Recursive formula to calculate an arbitrary moment

Roncoroni et al. (2015) presented a recursive algorithm to calculate any moment
of A

T

, which is the following. Here we assume that � and r do not depend on time.
The increment of lnS
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(see in Equation 2.24):
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The nth moment of L�
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is the following:
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2.5.2 Log-normal approximation

A very popular choice for choosing an approximate distribution is to approximate
the arithmetic mean, A

T

(see Table 1), by a log-normal distribution defined by its
first two moments. Clark (2014) and Roncoroni et al. (2015) presented the pricing
formula for log-normal approach, which is given by the following proposition.

Proposition 7 (Moment matching). Let us assume the Black-Scholes setting de-
tailed earlier and the payoff V

T

is approximated with log-normal distribution with
parameters m and ⌫, when payoff V

T

refers to a discretely monitored arithmetic
average Asian option. In this case, the price of the derivative at time 0 is the
following:

c

MM

= S0e
m+ ⌫2

2 �rT

�(d1)� e

�rt

K�(d2) (2.50)

where �(·) denotes the standard normal cumulative distribution function and

d1 =
ln(S0

K

) +m+ ⌫

2

⌫

m = 2lnM1 �
1

2

lnM2 (2.51)

d2 = d1 � ⌫ ⌫

2
= lnM2 � 2lnM1 (2.52)

Proof. The pricing formula in Equation 2.50 is the same as in Equation 2.15 in
Proposition 5, which is a general pricing formula for any log-normal distribution.
The proof of Equation 2.50 can be found in Proposition 5.
A

T

is approximated with log-normal distribution which is determined by its first
two moments. So the parameters of the log-normal distribution comes from the
following approximation:

E(A
T

) = M1 ⇡ e

m+ ⌫2

2

E(A2
T

) = M2 ⇡ e

2m+2⌫2

Solving the equations above we got the approximated parameters m and ⌫

2 accord-
ing to Equation 2.51 and 2.52 in Proposition 7.
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3 Simulation results

In the previous section, we saw different methods for pricing arithmetic averaged
Asian options under discrete monitoring. This section compares the presented tech-
niques by simulations. We implemented the pricing formulas using the statistical
language R (see the implemented functions in Appendix A), and simulated several
paths of Geometric Brownian motions with different parameter settings. In the
following, for every case, we assume that the initial asset price equals to S0 = 100.

In Section 3.1, we compare the three MC simulations with each other. We will
choose one of them to compare it with the moment matching technique which will
be described in Section 3.2.

3.1 Comparison of Monte Carlo simulations

Let us examine the three MC simulations introduced in Section 2.4. In Table
3, we compare the prices and standard errors of the given methods to find the
best performing technique from them. Also we would like to determine the optimal
simulation number with fixed parameters. We set the parameters at r = 0.01,
� = 0.02, T = 1, N = 300, K = 100, while the number of simulations m spans
between 100 and 10000.

m c

MC

se

MC

c

CV

se

CV

c

AV

se

AV

100 0.640535 0.072711 0.747978 0.000205 0.735649 0.002753
1000 0.702839 0.025566 0.747850 0.000074 0.753696 0.000316
2000 0.720403 0.018186 0.747726 0.000049 0.742714 0.000153
3000 0.740233 0.015116 0.747795 0.000044 0.749327 0.000104
4000 0.748446 0.013250 0.747815 0.000038 0.747812 0.000079
5000 0.724544 0.011666 0.747733 0.000034 0.749691 0.000063
6000 0.757631 0.010704 0.747801 0.000031 0.739119 0.000051
7000 0.743419 0.010040 0.747761 0.000029 0.748110 0.000044
8000 0.741314 0.009317 0.747784 0.000027 0.743064 0.000039
9000 0.752706 0.008860 0.747799 0.000026 0.750774 0.000035

10000 0.737109 0.008335 0.747817 0.000024 0.750744 0.000032

Table 3: Comparison of MC, CV and AV prices and standard errors with respect
to the number of simulations, m.

Parameters: S0 = 100, r = 0.01, � = 0.02, T = 1, N = 300, K = 100
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In Table 3, we can see that the difference between the Asian option prices are
fairly small for MC repetitions over 5000, while the standard errors steadily decrease
by order 1p

m

.
At 10 000 simulation runs the control variate (CV) method improves the classi-

cal MC’s standard error by 347 times, while the antithetic variates (AV) technique
improves it by 260 times. If we run only 1 000 simulation paths instead of 10 000,
the CV improves it by 345 times, while the AV improves it by 81 times.
Figure 1 illustrates how much the variance is reduced using both the CV and AV
techniques compared to MC. For these fixed parameters mentioned above, we con-
clude that the CV method performs slightly better for the chosen parameter setting.

Figure 1: Comparison of MC, CV and AV standard errors.

Parameters: S0 = 100, r = 0.01, � = 0.02, T = 1, N = 300, K = 100

Since both of the variance reduction techniques performed adequately, the other
aspect we compare them is the running time. The general observation is that the
more times we simulate, the longer the running time is. In Figure 2, we can see the
running times in seconds using the same parameters above. These running times
may differ while running these simulations on other computers depending on the
computer’s performance. Here, we can also conclude that the CV method performs
slightly better.
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Figure 2: Comparison of MC, CV and AV running times in seconds.

Parameters: S0 = 100, r = 0.01, � = 0.02, T = 1, N = 300, K = 100

In Table 4, we can see that when we run 10 000 simulations, the CV runs 1.3 times
slower than the classical MC, while the AV runs 1.4 times slower. For running only
1 000 simulations CV is 1.57, AV is 1.7 times slower. Variance reduction techniques
enable us to reduce the number of simulations to get the same precision, hence
they enable us to apply fewer MC repetitions, reducing the running time as well.
So instead of running the classical MC with 10 000 paths for 0.968 seconds, and
get 0.008335 standard error, we can choose to run it for less paths with one of the
variance reduction techniques.
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m MC CV AV
100 0.0113 0.0138 0.0129

1000 0.0742 0.1171 0.1323
2000 0.1492 0.2386 0.3382
3000 0.2199 0.3948 0.5362
4000 0.3008 0.5796 0.6171
5000 0.4157 0.7396 0.7536
6000 0.5613 0.8061 0.9367
7000 0.6307 0.9250 0.9967
8000 0.6933 1.0666 1.1827
9000 0.8772 1.2182 1.3261

10000 0.9680 1.2987 1.3873

Table 4: Comparison of MC, CV and AV running time in seconds.

Parameters: S0 = 100, r = 0.01, � = 0.02, T = 1, N = 300, K = 100

Table 5 shows the increment of the standard error / increment of running time
compared to MC. The larger number means that the performance of the method
(CV or AV) is more optimal than the other. The ratio defined by the following:

ratio =
standard error by MC

standard error by variance reduction
running time of variance reduction

running time of MC

From Table 5, we can see that for the mentioned parametrization the CV method
always works better than the AV method. In contrary to the AV technique, we
can also observe that increasing the simulation paths does not imply that the CV
technique gets more effective than for fewer simulation paths. Hence when m is
small, the CV is significantly more effective than AV, but its effectiveness decreases
as m increases. However, the efficiency of AV increases while m increases. To sum
up CV method works better for fewer m than AV.
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m CV AV
100 289.530 23.016

1000 218.272 45.411
2000 229.891 52.381
3000 189.888 59.511
4000 181.422 81.597
5000 194.500 102.533
6000 242.529 124.630
7000 239.952 143.736
8000 225.560 141.216
9000 243.243 166.306

10000 257.973 184.072

Table 5: Standard error increment/Running time increment.

Parameters: S0 = 100, r = 0.01, � = 0.02, T = 1, N = 300, K = 100

Until this point we only used one parameter set for our calculations. It is par-
ticularly interesting to see whether our conclusions remain the same for smaller
and larger volatility and strike or not. In Table 6, we can see the standard error
increment / running time increment ratios for different � volatility values. While
� increases, the efficiency of CV decreases. Up to this stage we can conclude that
for smaller � and fewer number of repetitions, the CV performs better than AV.
However, we cannot state clearly which technique is better, since it depends on the
parameters.

Let us examine the impact of the strikes. In Table 7, we can see the ratios
for different K strikes. In Table 7a, when the moneyness is ITM (at time 0) and
� = 0.02 we can observe that AV performs better than CV. We can also notice that
while K increases both of the CV’s and AV’s ratios increase. When the moneyness
is OTM (at time 0) and � = 0.02, the prices are so low (almost equal to zero) that
we cannot evaluate the behaviour of the ratios. Hence we examine the effect of
the strikes when � = 0.05. From Table 7b, we can see that for higher strikes the
efficiency of both of the methods decreases. When the moneyness is ITM, the AV
performs better than CV. Moreover when the moneyness is OTM, the AV performs
slightly better than CV.
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� = 0.01 � = 0.05 � = 0.1

m CV AV CV AV CV AV
100 365.518 35.200 117.607 20.826 70.108 19.775
1000 380.491 68.794 96.821 42.174 58.140 41.049
2000 364.330 86.122 98.289 41.645 53.385 37.200
3000 357.988 94.467 99.908 51.431 48.221 46.548
4000 365.040 133.187 88.264 61.783 44.917 58.032
5000 448.253 177.936 95.236 83.461 46.636 76.766
6000 395.889 197.189 98.050 100.336 50.066 93.231
7000 418.684 238.435 104.599 92.306 52.408 81.054
8000 395.332 202.374 93.135 107.436 49.458 98.207
9000 375.012 209.905 97.548 119.359 49.672 109.690
10000 398.839 253.344 92.287 116.211 47.418 105.830

Table 6: Standard error increment/Running time increment for different sigma pa-
rameters.

Parameters: S0 = 100, r = 0.01, T = 1, N = 300, K = 100

K = 75 K = 90

m CV AV CV AV
100 107 233 369 812
1000 56 377 235 1756
2000 46 397 769 4608
3000 56 540 247 2656
4000 56 693 477 7196
5000 60 935 343 5900
6000 65 1156 325 6481
7000 59 1031 240 4714
8000 49 972 256 5390
9000 65 1234 245 6105
10000 55 1202 235 5550

(a) � = 0.02

K = 75 K = 90 K = 100 K = 110

CV AV CV AV CV AV CV AV
205 524 59 356 118 21 5 0
100 813 156 1202 97 42 36 41
109 1090 67 920 98 42 6 33
155 2074 106 997 100 51 3 9
121 1326 90 1094 88 62 12 25
88 1392 95 1230 95 83 23 144
77 1596 81 1155 98 100 3 17
83 1636 88 1673 105 92 15 87
96 1950 89 1722 93 107 10 70
109 2188 94 1642 98 119 5 51
117 2872 93 2299 92 116 9 85

(b) � = 0.05

Table 7: Standard error increment/Running time increment for different strikes.

Parameters: S0 = 100, r = 0.01, T = 1, N = 300

Let us make a choice to compare the moment matching technique with in the
next Section 3.2. While the moneyness is ATM, according to Figure 1, Figure 2
and Table 5, we have seen that the CV technique performs slightly better for this
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parametrization than the AV method. Hence we choose CV to compare it with MM
method, which will be discussed in the next subsection. We also choose 1 000 paths
to simulate with. Since running CV with 1 000 paths still gives us accurate price
and the running time is still less than running the classical MC with 10 000 paths.
This seems as a good choice because CV method remains more effective for higher
volatilities when the moneyness is ATM.

We would like to highlight our conclusion, which is that we cannot state clearly
which technique is better. For smaller �, less m and for near ATM moneyness, the
CV performs better, which state is consistent with Horvath and Medvegyev (2016).

3.2 Comparison of Control Variate and Moment Matching

methods

In this section we will examine how the moment matching (MM) method behaves
compared to the control variate (CV) Monte Carlo technique. From the results of
Lo et al. (2014), we could see that the log-normal moment matching (MM) gets
more inaccurate by increasing the number of averaging points (denoted N). Hence
let us first examine this phenomenon using the control variate (CV) Monte Carlo
technique as a benchmark with 95% and 99% confidence intervals (↵ = 0.05 and
↵ = 0.01).

We set the parameters at S0 = 100, r = 0.01, T = 1, while N spans between
10 and 1000 which is the number of the monitoring points. Let us examine more
scenarios. We compared the moment matching technique with CV for varying K

and �. Figures 3, 4 and 5 show the relation through the prices using the moment
matching (MM) and the control variate (CV) method with respect to the number
of the monitoring points for different strikes and volatilities.
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(a) K = 90, � = 0.02

(b) K = 90, � = 0.05

(c) K = 90, � = 0.1

Figure 3: Comparison of MM and CV prices - ITM

Parameters: S0 = 100, r = 0.01, T = 1
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(a) K = 100, � = 0.02

(b) K = 100, � = 0.05

(c) K = 100, � = 0.1

Figure 4: Comparison of MM and CV prices - ATM

Parameters: S0 = 100, r = 0.01, T = 1
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(a) K = 105, � = 0.02

(b) K = 105, � = 0.05

(c) K = 105, � = 0.1

Figure 5: Comparison of MM and CV prices - OTM

Parameters: S0 = 100, r = 0.01, T = 1
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From Figures 3a, 3b and 3c, we can see that for varying � the MM method
remains accurate while the moneyness is ITM. We can also observe that the prices
increase as volatility increases.
From Figures 4a, 4b and 4c we can see that when the moneyness is ATM the
MM performs well and the number of the monitoring points has no impact on the
accuracy of the MM. In our parameter settings, the MM prices don’t fall outside of
the 95% confidence interval.
Figures 5a, 5b and 5c show the MM prices when the moneyness is OTM. In Figures
5a, the volatility (� = 0.02) is so low and and K = 105 which combination results
zero prices. For higher volatilities, in Figures 5b and 5c we can observe that the
MM technique still remains adequate. In Figure 5c, the MM prices fall outside both
of the 95% and 99% interval only once which we can explain with the simulation
errors.

From our results and parameters, our observation is that increasing the num-
ber of the monitoring points (N) does not affect the accuracy of the MM method.
In conclusion we observe that MM prices give accurate results for our mentioned
parametrization until 1000 monitoring points. We can assume these monitoring
points as monitoring days. Given an APO with maximum 4 years (1000 monitoring
points / 250 business day) the MM method gives us punctual prices which explains
its popularity in the financial industry. Longer term APOs are less common in
commodity markets. Hence the MM is a suitable and accurate method to price
APOs.
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4 Conclusion

The subject of this thesis was the problem of pricing average price options under
the Black-Scholes model. We mainly focused on pricing discretely monitored Asian
options with arithmetical averaging. These types of options are highly traded prod-
ucts in commodity markets. Under the Black-Scholes model, where the risky asset
prices follow GBM, the arithmetic average of the underlying asset prices doesn’t
stay log-normally distributed, hence there is no explicit form to price them.

In this thesis firstly we introduced the theoretical basis for pricing APOs under
the Black-Scholes model and gave a brief overview of the pricing techniques in the
literature. We presented the Monte Carlo simulation and two variance reduction
techniques, namely the control variate and the antithetic methods. We used the
geometric averaging Asian option price as the control variate to price them. We
also described the moment matching method by log-normal approximation.

The second part of this thesis aimed to compare the methods using simulated
data. We have found that the accuracy of the variance reduction techniques depend
on the parameter settings. However the control variate method performed bet-
ter than the antithetic variate method for the used parameters and for near ATM
moneyness. We used the control variate Monte Carlo technique to check the accu-
racy of the moment matching technique. From our simulations, we concluded that
the prices from the moment matching technique are accurate with our parameter
settings.
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A Appendix

The code of the implementation

GBM simulation

GBM_Sim = function(s0, r, sigma, TT, N, m)

{dt = TT/N

times = seq(0, TT, dt)

out=sapply(1:m, function(i){

dWs=rnorm(N,sd=sqrt(dt))

dlogS=(r-sigma^2/2)*dt+sigma*dWs

S=c(s0,exp(log(s0)+cumsum(dlogS))) })

rownames(out) = times

return(out)}

Generalised Black Scholes formula for call options

BSCallGen = function(ss, K, TT, tt, r, m, v)

{

dd1 = ( log(ss/K) + m + v^2 ) / v

dd2 = dd1 - v

exp(-r*(TT-tt)) * (ss * exp(m+v^2/2) * pnorm(dd1) - K*pnorm(dd2))}

Closed formula for geometric Asian call options

Pricer_Geo_theo = function(s0, r, sigma, TT, N, K)

{

mm=(r-((N+2)/(6*(N+1)))*sigma^2)/2

vv=sigma*sqrt(((2*N+1)/(6*(N+1))))

d1g=(log(s0/K)+(mm+vv^2/2)*TT)/(vv*sqrt(TT))

d2g=d1g-vv*sqrt(TT)

nd1g=pnorm(d1g)

nd2g=pnorm(d2g)

geo_theo_payoff = s0*exp((mm-r)*TT)*nd1g-K*exp(-r*TT)*nd2g

return(geo_theo_payoff)

}
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Monte Carlo method for Asian call options

Pricer_MC0 = function(s0, r, sigma, TT, N, m, K)

{

S = GBM_Sim(s0, r, sigma, TT, N, m)

avgs = apply(S, 2, mean)

payoff = exp(-r*TT)*pmax(avgs - K, 0)

out = c(mean(payoff), sd(payoff)/sqrt(m) )

names(out) = c("Price", "StdErr")

return(out)

}

Variance reduction method - Antithetic Variate

Pricer_MCA<-function(s0, r, sigma, TT, N, m, K)

{

dt = TT/N

times = seq(0, TT, dt)

dWs=sapply(1:m, function(i) dWs=rnorm(N,sd=sqrt(dt)) )

dWs_anti=-dWs

dlogS = (r-sigma^2/2)*dt+sigma*dWs

S = exp(log(s0) + rbind(rep(0,m), apply(dlogS,2,cumsum)))

dlogS_anti = (r-sigma^2/2)*dt+sigma*dWs_anti

S_anti = exp(log(s0) + rbind(rep(0,m), apply(dlogS_anti,2,cumsum)))

# Price of the asian option via Antithetic method

avg_mc=apply(S,2,mean)

payoff_mc=exp(-r*TT)*pmax(avg_mc - K, 0)

avg_anti=apply(S_anti,2,mean)

payoff_anti=exp(-r*TT)*pmax(avg_anti - K, 0)

antiout=c((mean(payoff_mc)+mean(payoff_anti))/2, sd((payoff_mc+payoff_anti)/2/m) )

names(antiout) = c("Price", "StdErr")

return(antiout)}
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Variance reduction method - Control Variate

Pricer_MCC<-function(s0, r, sigma, TT, N, m, K)

{

S = GBM_Sim(s0, r, sigma, TT, N, m)

### Price of the asian option via MC - arithmetic average /crude MC

bb2_aritm=apply(S,2,mean)

payoff_aritm=exp(-r*TT)*pmax(bb2_aritm - K, 0)

### Price of the asian option via MC - geometric average

bb2_geo=apply(S,2,geometric.mean)

payoff_geo=exp(-r*TT)*pmax(bb2_geo - K, 0)

### Theoritical price for geometic averaged option in discret case

azsian_theo_geo=Pricer_Geo_theo(s0, r, sigma, TT, N, K)

### Price of the asian option via Control variate method

bopt = ifelse(is.nan(cov(payoff_aritm, payoff_geo)/var(payoff_geo)),0,0)

payoff_control_optb=payoff_aritm-bopt*(payoff_geo-azsian_theo_geo)

contout = c(mean(payoff_control_optb, na.rm=T),sd(payoff_control_optb, na.rm=T)/sqrt(m))

names(contout) = c("Price", "StdErr")

return(contout)

}

Moment matching technique

Pricer_Mom_2Exact = function(s0, r, sigma, TT, N, K)

{

moms = momfun_exact(s0, r, 0, sigma, TT, N, 2) / c(s0, s0^2)

m = 2 * log(moms[1]) - log(moms[2]) / 2

v = sqrt(log(moms[2]) - 2 * log(moms[1]))

BSCallGen(s0, K, TT, 0, r, m, v)

}
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Calculator of the exact moments

(implementation of Roncoroni et al. (2015), Section 18.2)

momfun_exact = function(s0, r, q, sigma, TT, N, n)

{

delta = TT/N

phifv = function(x) exp((r-q-sigma^2/2)*delta*x+sigma^2/2*delta*x^2)

phik = phifv(1:n)

Emat = matrix(nrow=N, ncol=n+1)

Emat[,1] = 1

Emat[N,2:(n+1)] = phik

colnames(Emat) = paste0("n=", 0:n)

for (j in 1:n)

{

for (i in (N-1):1)

{

Emat[i,j+1] = phik[j]*sum( choose(j,0:j) * Emat[i+1,1:(j+1)] )

}

}

momszamolo = function(n) (s0/(N+1))^n * sum( choose(n,0:n) * Emat[1,1:(n+1)] )

sapply(1:n, function(i) momszamolo(i) )

}
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