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Chapter 1

Introduction

Volatility forecasting has a vital role in risk management, derivative pricing, portfolio selection and

other financial activities, which is not only useful for investment banks, but for retail investors.

Generally these models are used to predict the absolute magnitude of returns. The volatility

forecasting for a panel is legitimately important in practical applications, such as portfolio risk,

portfolio with volatility constraint in which the portfolio must be adjust when the volatility exceed

certain level. The panel is a bucket of assets where the parameters and the explanatory variables

are common for each asset. There is a tremendous literature in the field of volatility forecasting.

We will discuss various approaches that involve not only returns, but other explanatory variables.

We will formulate their characteristic that they should satify.

In this thesis we will first present the single asset models, which are the Mixed Data Sam-

pling (henceforth MIDAS), Generalized Autoregressive Conditional Heteroskedasticity (henceforth

GARCH), GARCH-MIDAS and Exponentially Weighted Moving Average (henceforth EWMA)

models with their specification, properties and parameter contraints. We attempt to keep models

as parsimonious as it can be. After that, we are going to present these models panel version, where

we tried to keep the parameter space tight.

The structure of the thesis is as follows: In Chapter 2, I am going to present every single model

I implemented througout the thesis. In this chapter, my main objective is to discuss the properties

of the models, then show how to estimate them. Finally, the Monte Carlo experiment, which is not

only a good experiance in visualizing the estimated paramters from the simulation, but a test for

the implementation. In Chapter 3, I am going to show the technical part of the implementation

stategy and describe the trick we used for parameter estimations. In Chapter 4, I am going to

introduce the predictive ability tests. In Chapter 5, I am going to demonstrate the empirical results

visually and numerical. In this chapter, I am going to present the model specifications, which I

used for volatility forecasting, then I provide all outcomes from the predictive ability tests. Finally,

in Chapter 6, the thesis ends with the conclusion.
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1.1 Literature Review

The Mixed Data Sampling regression models are introduced in the paper of Ghysels et al. [2004].

MIDAS regression models involve data sampled at different frequencies and usually tightly pa-

rameterized. The idea come from the situations where the explanatory variables are sampled at a

higher frequency, as they pointed out, in empirical work the treatment of higher frequency data is

the aggregation. After that, the estimation of the lower frequency data with standard regression.

In the following years the MIDAS framework has developed and researched. For instance, Ghy-

sels et al. [2005] investigate the trade-off between conditional variance and conditional mean of

the stock market return and find that MIDAS can forecast better the stock market variance than

GARCH estimators due to the flexibility of taking account of data sampled at various frequencies.

Furthermore, Eric Ghysels [2006] investigate further the perdictability of return volatility, where

emphasized the approach three main attriutes, namely, simplicity, robustness and parsimony. Ghy-

sels et al. [2007] introduce several new specification of MIDAS, such as the stepfunctions. Clements

and Galvão [2008] analyze the quarterly output growth from monthly indicators, as they show MI-

DAS approach is outstandingly useful to eliminate the need of choose the number of lagged values.

Alper et al. [2008] compare a linear univariate MIDAS regression model with the GARCH(1, 1)

model for equity return volatilities in several emerging and developed marekts, they conclude that

MIDAS can forecast better in more volatile markets. Santos and Ziegelmann [2014] employs a study

on Brazilian capital market volatility forecasting using MIDAS approach. Moreover, Walther et al.

[2019] use the MIDAS framework on cryptocurrency markets, where they investigate the advantage

of exogenous drivers to predict volatility. Finally, Foroni et al. [2015] and Ghysels and Qian [2019]

present MIDAS specifications, which can be estimated by OLS.

In financial econometrics, an immense amount of research papers have investiaged the model

of volatility consists of multiple components. Schwert [1989] study the relation between stock

volatility, macroeconomic volatility and several other factors. More recently, a new class of compo-

nent volatility model were introduced in Engle et al. [2013] which is the GARCH-MIDAS model.

This model is especially useful to characterize the linkage between short-and long-term volaility

components. Short-term volatility refers to the intradaily or daily volatility, in constrast with

long-term, which refes to monthly or quarterly volatility. Many more research paper has pub-

lished in the following years. For example, Asgharian et al. [2013] compare the GARCH-MIDAS

model predictive ability with the traditional GARCH model. Conrad and Loch [2014] show that

long-term volatility is driven by related to the state of economic and future business condtions.

Wang and Ghysels [2015] study the model from a probabilistic and statistical perspective. Conrad

et al. [2018] forecast Bitcoin volatility with the model and show it is superior to forecasts based on

simple GARCH models. Conrad and Kleen [2019] compare GARCH-MIDAS with wide range of

competitor models and the results suggest that the model is specially good at forecaste for longer

time horizon. Finally, Xu et al. [2019] develope a modified GARCH-MIDAS model to investigate

the usefulness of Google search index.



Chapter 2

Volatility Models

In this chapter we will describe all the models that we implemented and developed. First, I would

like to start with the basic models, which include the MIDAS, GARCH and GARCH-MIDAS

models, where we describe all the necessesary changes and assumption for the modeling we made.

In the models we relied on the existing papers about the topic and we tried to be consisent with

them. On the other hand, there were some cases, where we modified them in order to suit for our

available data. For instance, MIDAS is mainly used for high-frequency data, but we are lack of

such data, so we adjust the specification for lower frequency data. The assumptions we imply are

based on parminiousness, to make models under parameterized as possibe and can be modified to

panel version easily. In the following sections reflets to the way we implemented the models. The

first subsection contains all the necessary specification and constraint for the models, meanwhile

the second is about how to estimate the parameters and finally the Monte Carlo approaches to

test our implementation.

2.1 MIDAS

The first appearance of MIDAS in the literature was Ghysels et al. [2004] paper, where they de-

veloped a model for data sampled at different frequencies. In this paper, they compare distributed

lag models with the MIDAS regression. Moreover, they highlighted the applicability of this model

in finance. The main objective of MIDAS is to avoid aggregating higher frequency data into lower

frequency to be modeled with standard linear regression, so it applies a lag polynomial operator

to capture the whole potential from the available data. The main focus in Ghysels et al. [2005]

and Ghysels et al. [2007] was on volatility, where they examined several lag sturctures to be tight

parameterized the model. We use the previously mentioned papers expressions to describe the

MIDAS model.

Let yt denote to the lower frequency dependent variable for t = 1, ..., T refers to a certain period

(say, a month), within that period x
(m)
t the higher frequency explanatory variable is sampled m

times between this period (say, daily or m = 22). We want to describe the relationship between yt
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and x
(m)
t , in the sense of using lagged observations of x

(m)
t . The MIDAS regression is the following:

yt = β0 + β1B(L
1
m , θ)x

(m)
t + ε

(m)
t (2.1)

where B(L
1
m , θ) =

∑K
k=0B(k, θ)L

k
m , where L

k
m is a lag operator such that L

1
mx

(m)
t = x

(m)

t− 1
m

and

K refers to the number of lagged values. The lag coefficients in B(k, θ) of the corresponding lag

operator L
k
m are parameterized as a function of a small-dimensional vector of parameters Θ. β1

is a scale parameter for the lag coefficients. Next, we continue with the specification of the lag

structure.

2.1.1 The specification of weighting scheme

The usage of finite polynomial operator is one of the key component of the MIDAS framework, so

we present the three most commonly mentioned finite polynomials. Starting with the ”Beta Lag”,

which is considered throughout the literature Ghysels et al. [2007], Engle et al. [2013], Ghysels and

Qian [2019]. The Beta Lag involves two parameters, Θ = (θ1, θ2), and the parametrization is the

following:

B(k, θ1, θ2) =
f
(
k
K , θ1, θ2

)∑K
k=1 f

(
k
K , θ1, θ2

) (2.2)

where

f(x, a, b) =
xa−1(1− x)b−1Γ(a+ b)

Γ(a)Γ(b)
(2.3)

Γ(a) =

∫ ∞
0

e−xxa−1dx (2.4)

The following figure will deonstrate how flexiable it is correspond to different parameters:

Figure 2.1: Plot of Beta Lag weighting function in equation (2) with K = 100, θ1 = 1 and

θ2 = 2, ..., 10

We can see that if we choose to fix θ1 = 1 and in the case of θ2 > 1 cause a monoton decliyin

weighting structure. This weight function specification provide us positive coefficients, which is



crucial when we want to modeling volatility. The next polynomial specification is the ”Exponential

Almon Lag”, where there are also two parameter to be used. It also shares the ability to be flexible

as Beta Lag does. The specification is the following:

B (k, θ1, θ2) =
eθ1k+θ2k

2∑K
k=1 e

θ1k+θ2k2
(2.5)

In the modeling, we found this specification fragile due to the scale of it’s parameter throughout

the optimization process.

Last, but not least we would like to present the exponentially weighted scheme which can be

handy in the sense of there is only one parameter to be estimated. The weights are normalized to

the sum be equal to 1:

B (k, θ) =
θk∑K
k=1 θ

k
(2.6)

2.1.2 Parameter Estimation

In this section I am going to describe the multivariate MIDAS parameter estimation. We can apply

equation (2.1), but we can subtract N number of lagged explanatory variables from the dependent

variable yt. For the specification of polynomial lag operator we decided to use the so-called Beta

lag. The parameter estimation happens through the mean squared estimate of error is as follows:

MSE =
1

T
εT ε =

1

T

T∑
t=1

(
yt − β0 −

N∑
n=1

βnB(L
1
m , θn)x

(m)
t,n

)2

(2.7)

where the desired parameter set is Θ = (β0, β1, ..., βN , θ1, ..., θN ) to be estimated. Since the MSE

is a quadratic function we can find the optimal Θ parameter set by minimizing it:

arg min
Θ

MSE

2.1.3 Simulations

Not only serve as a test for our implementation, but also to see how precise is the estimation with

certain sample sizes. The Monte-Carlo approach we presenet is originally from Conrad and Kleen

[2019] to be able to check the consistency between the results. Let Xi,t denote to be the high

frequency explanatory variable for t = 1, ..., T, where t represent the low frequency and i = 1, ...,

I to be the intra steps and it is following an AR(1) process:

Xi,t = φXi−1,t + εt

where we set φ = 0.9, I = 22 and assume εt ∼ N (0, 1) standard normal variable. Then the MIDAS

equation will satify the following:

yt = β0 + β1

K∑
k=0

ξk(1.0, θ)Xi−k,t + zt

where we set β0 = 0.1, β1 = 0.3 and θ = 4 and zt ∼ N (0, 1). The ξk (1.0, θ) represent the beta

weighting scheme we used for simulation. We run the simulation on T = {96, 192, 382}, which



can be interpreted as 8, 16 and 32 years of data. The results are presented in the following figure,

where we used the kernel density estimation method for receiving smoother histograms:

Figure 2.2: The estimated parameter distributions with sample sizes of 96, 192, 384

The simulation results met with our expectation, so the incerement in the sample size reduces

the uncertainity in the parameter estimations.

2.2 GARCH

In this section, I would like to give a brief overview about the GARCH model. The underlying

concept was first developed in Engle [1982], the ARCH model, where we associated rt with the

daily log return (rt = logPt − logPt−1, Ptis the stock price at time t) for t = 1, ..., T, and assume

that it can be written as rt = µtεt, εt are modelled with ARCH model:

εt = σtZt

σ2
t = α0 +

p∑
i=1

αiε
2
t−i

where the innovation Zt are iid random variables with mean 0 and variance 1. Suppose Zt ∼

N (0, 1). The innovation’s distribtion can be modelled with various ways, such as Student-t dis-

tributed or, the most common, Normally distributed. The parameter constraints are: α0 > 0, αi ≥



0 This model was extended in Bollerslev [1986] to the Generalized ARCH model, where previous

values of σ2
t are added to the volatility process. This developement creates phenomenons that can

be observed in markets, such as volatility clustering, where high volatility peroids tends to persist.

The GARCH(1, 1) process is given by

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

where εt are real-valued discrete-time stochastic process and Ft is the information set of all infor-

mation up to time t.

εt | Ft−1 ∼ N (0, σ2
t )

where α0 > 0, α1 ≥ 0, β1 ≥ 0 and 1 > α1 + β1 is enough for wide-sense stacionarity.

E(rt) = 0

V ar(rt) = E(r2
t )− E(rt)

2 = E(σ2
tZ

2
t ) = E(σ2

t )E(Z2
t )

Since Zt ∼ N(0, 1), so E(Z2
t ) = 1. Then,

E(σ2
t ) = E(α0 + α1r

2
t + β1σ

2
t−1) = α0 + α1E(r2

t−1) + β1E(σ2
t−1)

From rt = σtZt, it is known that E(r2
t ) = E(σ2

t ) and for the process to be stationary E(σ2
t ) must

be a constant for all t :

E(σ2
t ) = E(σ2

t−1) = E(r2
t−1) = σ2

the unconditional mean of the volatility process and the unconditional variance of the returns

hence,

E(σ2
t ) = V ar(rt) =

α0

1− α1 − β1

To examine the tail behavior we have to examine the excess kurtosis, which implies that the forth

moment to exist and be finite. The excess kurtosis of rt with normally distributed innovations is

then
E(r4

t )

V ar(rt)2
− 3 =

3(1 + α1 + β1)α0

(1− α1 − β1)(1− 2α2
1 − (α1 + β1)2)( α0

1−α1−β1
)2
− 3

= 3
1− (α1 + β1)2

1− 2α2
1 − (α1 + β1)2

− 3

=
2α2

1

1− α2
1 − (α1 + β1)2

> 0

which means that rt is fat-tailed, in other words extreme returns can be observed more frequently

than they would with normally distributed innovations.

2.2.1 Parameter Estimation

We applied the Maximum Likelihood Estimation (henceforth MLE) for parameter estimation. In

general, we assume an underlying distribution, which has some kind of probability density function,

and we have θ the set of parameters to be estimated. In the assumption of normal distribution:

f(εt|θ) =
1√

2πσ̂2
t (θ)

exp

(
− ε2t

2σ̂2
t (θ)

)



where εt are the innovations in GARCH type models, and σ̂2
t (θ) are the volatility estimates with

given θ parameters. The loglikelihood function will be

L(θ) = f(ε1, ..., εT |θ) =

T∏
t=1

1√
2πσ̂2

t (θ)
exp

(
− ε2t

2σ̂2
t (θ)

)

since the logarithm is a monotonically increasing function, the value which maximize the likelihood

function will also maximize its logarithm as well. We can write a sum instead of a product in the

log-likelihood function:

logL(θ) =
1

T

T∑
t=1

(
1

2
log 2π +

1

2
log σ̂2

t (θ) +
1

2

ε2t
σ̂2
t (θ)

)
(2.8)

The QMLE is then

θ̂ = arg max
θ

logL(θ) = arg min
θ
− logL(θ) (2.9)

In order to find the optimal parameter, we have to calculate with the negative loglikelihood func-

tion, since the optimization algorithms try to find the minimum of functions. Another usefully

specification of the probility density function is the Student-t distribution. The log-likelihood of a

Student-t distributed specification is the following:

logL(θ) = −
T∑
t=1

− log Γ

(
ν + 1

2

)
+ log Γ

(ν
2

)
+ log

√
2π(ν − 2) +

1

2
log σ̂t

2(θ)

+
ν + 1

2
log

(
1 +

ε2t
σ̂t

2(θ)(ν − 2)

)

2.2.2 Simulations

To ensure our implementation will truely estimate the desired parameters, we perform a Monte-

Carlo simulation for the GARCH(1, 1) model with different sample sizes. In the simulation process

we assume that, the log returns follow a normal distribution with the variance from the current

state’s σ2
t . The results from the simulations estimated by QMLE as it was described in the

previously. Formally we can write as

εt ∼ N (0, σ2
t ) (2.10)

for t = 1, ..., T, where T is the length of the sample size. The results of the parameter estimations

is shown:



Figure 2.3: The estimated parameter distributions with sample sizes of 500, 1000, 2000, 5000

The parameter distributions are presented with Kernel Density Estimation (KDE) for the better

visualization. The peaks of the distributions are in the theoretical values, moreover, we can see that

as we increase the sample size, the more accurate will be the parameter estimations and decrease

the variances of the parameters.

2.3 GARCH-MIDAS

In this section we present a a new class of component GARCH model based on the MIDAS

regression. This GARCH-MIDAS framework gives us the possibility to incorporate macroeconomic

variables sampled at a different frequency. All macroeconomic variables will be in the specification

of the long-term component.

Several papres have been published in the recent years about the topic of GARCH-MIDAS

model. Engle et al. [2013] was one of the first to discusion about this model. They rely on long his-

torical time series and examined what was the impact of adding economic variables to the GARCH

model. Asgharian et al. [2013] used this framework to predict future volatility, they incorporate

with a principal component approach as well to reduce the dimensions of the explanatory vari-

ables. To conduct their results they found that GARCH-MIDAS forecast volatility bettter than

a GARCH model. In Conrad and Loch [2014] found that long-term financial volatility behaves

counter-cyclically and certain macroeconomic variables help GARCH-MIDAS model to predict

better the long-term volatility. Wang and Ghysels [2015] showed thet GARCH-MIDAS model has

fat-tailed marginal distribution.

The GARCH-MIDAS framework give us the opportunity to incorporate macroeconomic vari-



ables sampled at a different frequency. In the recent years many studies showed the effectiveness of

this approach, the only pitfall, we found, is the amount of underlying data that we provide for the

algorithm. Let rt be the daily log-returns, for t = 1, ..., T refers to certain period (say a month)

and the index i = 1, ..., It (say days) within that period. We assume that the daily log-returns are

following:

ri,t = εi,t =
√
gi,tτtZi,t (2.11)

where εi,t | Fi−1,t ∼ N (0, git , τt) with Fi−1,t is the information set up to day i-1 of period t. gi,t

denote to the short-term component of conditional variance and follows a unit-variance GARCH(1,

1) process:

gi,t = α0 + α
ε2i−1,t

τt
+ βgi−1,t (2.12)

where α0 > 0, α ≥ 0, β ≥ 0 and 1 > α + β is enough for wide-sense stacionarity. τt is defined

as a function of the explanatory variables X
(m)
t , where m refers to the m-th explanatory variable.

This will serve as the long-term component that varies at lower frequency. We specified with the

MIDAS regression as

τt =

M∑
m=1

βm

K∑
k=0

φk(1.0, θm)X
(m)
t−k (2.13)

where K is the lag parameter and φk refers to the weighting scheme, which we can specify and

M is the number of explanatory variables we use. We chose the Beta weighting scheme such as

most of the papers suggested. As we fixed the first paramter of the Beta weighting scheme to 1.0,

then it will allow us to get monotoneously declining or increasing weights, as it was showed in the

MIDAS section. If we want to use explanatory variables that can take positive or negative values,

we used the exponential specification of the τt

τt = exp

(
M∑
m=1

βm

K∑
k=0

φk(1.0, θm)X
(m)
t−k

)
(2.14)

We tried to minimize the number of estimated parameters, so we changed the short-term volatity

component’s equation with a few assumptions.

E(ri,t) = 0

V ar(ri,t) = E(r2
i,t)− E(ri,t)

2 = E(ri,t) = E(σ2
i,tZ

2
i,t)

where they are indepent, since Zi,t ∼ N (0, 1), so the expected value of squared Zi,t is equal to 1.

Then,

E(σ2
i,t) = E(gi,tτt) = E(gi,t)E(τt)

since we assumed that these two factors contibute for the underlying volatility process, namely, for

σ2
i,t. The other assumption, that we used, is the expected values of the macroeconimic variables

is equal to 0, namely, E(X
(m)
t ) = 0. Hence, the logarithm of τ has an expected value 0 and τt is

equal to 1.

E(gi,t) = E(α0 + α
ε2i−1,t

τt
+ βgi−1,t) = α0 + αE(gi−1,t) + βE(gi−1,t)



From ri,t = σi,tZi,t, it is known that E(r2
i,t) = E(σ2

i,t) and as we see in the GARCH section the

unconditional variance of the returns henceforth

E(σ2
i,t) = V ar(ri,t) =

α0

1− α− β

We used the moment matching to eliminate the α0 parameters in the following way:

µ̂ =
1

TIt

T∑
t=1

It∑
i=1

r2
i,t

then we can rewrite the short-term volatility equation:

gi,t = µ̂(1− α− β) + α
ε2i−1,t

τt
+ βgi−1,t (2.15)

where we can implicitly characterize α0 by µ̂(1−α− β), so we recude the parameter space by one

parameter.

2.3.1 Parameter Estimation

The GARCH-MIDAS estimation made by maximum likelihood estimation, where the underlying

two volatility component’s parameters are estimated by a single-step. It was neceserry to highlight

the single-step estimation, because in the further sections we will introduce the two-step method,

which worked better for us in panel models. The loglikelihood function, then

logL(Θ) = − 1

TIt

T∑
t=1

It∑
i=1

(
1

2
log 2π +

1

2
log (gi,tτt) +

(
ε2i,t

2gi,tτt

))
(2.16)

arg min
Θ

logL(Θ)

2.3.2 Simulations

In the simulations, we assumed that the long-term volatility component is generated from Xt an

AR(1) process:

Xt = ψXt−1 + ut

where ut is a random process with mean zero and variance h2 and X0 = 0. We set them to ψ = 0.8

and h2 = 0.3. Hence,

log(τt) = 0.3

K∑
k=0

φk(1.0, 4.0)Xt−k

where we chose β1 = 0.3, θ = 4.0 and K = 12. In the short-term volatility component α = 0.1 and

β = 0.8. As we described above, the returns generated in the following way:

ri,t ∼ N (0, gi,tτt)

The simulations ran in T = 60, 120, 180, in other words they can be interpeted as 5-year, 10-year

or 15-year length of data. The main objective was to about to see the increase the accuracy and

the decrease of the variance of the parameter estimation.



Figure 2.4: The estimated parameter distributions with sample sizes of T = 60, 120, 180

The α0, β0 and β1 median of distributions tend to converge to the theoretical values. Not only

we can experinance huge deviations in parameter’s accuary, but the θ estimated parameter’s are

not accurate at all. We conducted from these simulations, that we need to provide more data for

this algorithm to excel in the parameter estimations, so in the following sections we will describe

panel models.

2.4 Panel MIDAS

In this section I would like to introduce a new application of the MIDAS framework, namely,

the panel version of the model. This approach not only provide better understanding about

the underlying long term volatility, but it is parsimonious. The main idea was that there are a

panel of stock returns and we would like to say something about the common long-term volatility

component. In our application, we used the macroeconomic explanatory variables to model the

volatility.

Let ri,t,j denote the j-th stock’s daily return for j = 1, ... N, at i-th day for i = 1, ..., It

of t-th month for t = 1, ..., T. The indexes came from the GARCH-MIDAS section and we use

the same symbols to be consistent. We assumed that these stocks share the same underlying

volatility component that will be marked as τt. The long-term volatility component contains all



the explanatory variables, which can describe the volatility. If we choose It = 1 means we would

like to calculate the monthly returns volatility, so both r and τ will be at the same frequency.

Furthermore, we can apply weekly, daily or even intra daily explanatory variables in modeling the

volatility. In the lack of intra day data and to keep the modeling as parsimonious as possible we

used only monthly sampled data.

We describe τt as we did in GARCH-MIDAS section:

τt =

M∑
m=1

βm

K∑
k=0

ψk(1.0, θm)X
(m)
t−k (2.17)

where m refers to the m-th explanatory variable, K is the lag parameter and φk refers to the

weighting scheme, which we can specify. We used the Beta weighting scheme for modeling as most

of the papers suggested. We fixed the first paramter of the Beta weighting scheme to 1.0, then it

will allow us to get monotoneously declining or increasing weights, as it was showed in the MIDAS

section. We used the exponentail specification of τt as we used explanatory variables which can

take negative values:

τt = exp

(
M∑
m=1

βm

K∑
k=0

φk(1.0, θm)X
(m)
t−k

)
(2.18)

2.4.1 Parameter Estimation

The Panel MIDAS model estimated by MLE that was described previously. We assumed that the

stock’s returns mean are equal to zero, then the negative loglikelihood function will be:

logLj(Θ) = − 1

TIt

T∑
t=1

It∑
i=1

(
log 2π + log τt +

(ri,t,j)
2

τt

)
(2.19)

The log likelihood of each individual stock is summed up to be minimized:

arg min
Θ

N∑
j=1

logLj(Θ) (2.20)

2.4.2 Simulations

The simulation was conducted in the spirit of MIDAS simulation with same changes. Let suppose

we have one explanatory variable that define the volatility say Xt is an AR(1) process:

Xt = ψXt−1 + εt (2.21)

where t = 1, ..., T, ψ = 0.9 and εt ∼ N (0, 1) standard normal variable, than the MIDAS model

will be:

log τt = β1

K∑
k=0

φk(1.0, θ)Xt−k (2.22)

where β1 = 0.3 and θ = 4.0.τt remains the same throughout the whole period. The τt will determine

the return’s volatility, the returns are generated from normal distribution with zero mean and τt

variance:

ri,t,j ∼ N (0, τt) (2.23)



as τt is set to be a monthly variable, we generate daily return, so i mark mean that the i-th day

of t-th month, i = 1, ..., It, where It = 22 and j refers to the size of the panel.

Figure 2.5: The estimated parameter distributions with sample sizes of N = 100, 200, 500

The distributions show that as we increase the panel size we get better parameter estimation.

We simulated 100 month of data, which means around 2200 day’s of returns. In the case of N =

500, we can say the model can estimate the parameters which we used for simulations.

2.5 Panel GARCH

In this section we would like to present the panel version of the GARCH model we described above.

Our main goal was here to make the model as parsimonious as we could to become the benchmark

model for our further analysis.

Let ri,t,j denote to the j-th stock’s daily return for j = 1, ..., N at i-th day for i = 1, ..., It of

t-th month for t = 1, ..., T. In order to be consistent with the indexation, we decided to choose

the ones that we used in Panel MIDAS section. Not only it will make easier to describe Panel

GARCH-MIDAS model, but it also create consistency in indexes. We used the assumption of that

the parameters for the dynamics of the volatilites are common to every stocks. In addition, the

unconditional means of the volatilies are asset specific. The daily returns follow:

ri,t,j = εi,t,j = σi,t,jZi,t,j (2.24)

where Zi,t,j the innovations which identiacally independent distributed random variables with

mean 0 and variance 1. As we described in GARCH section, we specified the distributions for this

innovation term, the first one is the Normal distribution and the other is the Student-t distribution

to capture more extreme returns. The volatility equation can be written as:

σ2
i,t,j = µj(1− α1 − β1) + α1ε

2
i−1,t,j + β1σ

2
i−1,t,j (2.25)

where µj refers to the unconditional variance and the parameters of α1 and β1 satisfies α1 ≥

0, β1 ≥ 0 and 1 > α1 + β1 for wide-sense stacionarity. If we would like to estimate α and β for



each individual stock, we have to estimate N + 2 number of parameters. This can be challenging

to estimate as the number of the assets increase, hence we assumed that the parameters in the

volatility equations are common as we said earlier.

2.5.1 Parameter estimation

First of all we take advantage of the moment matching to calculate µj . Not only make it easier the

estimation, but it will be more parsimonious. As µj is the unconditional variance of the returns,

we can estimate by averaging the squared returns:

µ̂j =
1

TIt

T∑
t=1

It∑
i=1

r2
i,t,j

In the second step given the unconditional variance estimates, the parameter space will reduce into

just two parameter Θ = α1, β1. We used the MLE to minimize the negative log likelihood function

given by:

logLj(Θ) = − 1

TIt

T∑
t=1

It∑
i=1

(
1

2
log 2π +

1

2
log σ2

i,t,j +
1

2

ε2i,t,j
σ2
i,t,j

)
(2.26)

where σ2
i,t,j is the function of the α1, β1

arg min
Θ

N∑
j=1

logLj(Θ)

2.5.2 Simulations

We applied the same simulation scheme as we previously did in GARCH section. The only dif-

ference is we simulated matrix of returns. Here we sampled returns in arrays these are the rows

in the matrix and in the end the columns mean the individual stock returns. As we simulated

the returns we matched the individual volatility component which related to the desired ”stock”

return, so in each row every return has its unique variance.

Figure 2.6: The estimated parameter distributions with sample sizes of 500 and N = 50, 100, 200



ri,t,j ∼ N (0, σi,t,j)

In the simulations we simulated panels with 50, 100, 200 number of individual stocks and 500

number of returns for each. In the above figure, we can see, as we increase the number of stocks

in the panel the accurate will be the parameter estimations.

2.6 Panel GARCH with cross sectional adjustment

In this section, I would like to give you an overview of this unique model. The key concept of

the model based on the cross sectional adjustment part, where we adjust the individual volatilites

with the ci,t component. We used the same notations as we did in the Panel GARCH section, to

be consistent and the reader can easily get familiar with the changes we made. Let ri,t,j denote to

the daily return of the j-th stock j = 1, ..., N at i-th day for i = 1, ..., It of t− th month for t =

1, ..., T. The daily returns follow:

ri,t,j = σi,t,jci,tεi,t,j (2.27)

where εi,t,j is the innovation, which identically independent distributed random variables with

mean 0 and variance 1. The ci,t component is the cross sectional adjusment term, which can

interpret as the common short-term volatility throughout the panel. Our theory for this particular

term is when there are more and more abnormal returns in the panel, the ci,t component’s value is

rising. On the other hand, when the panel has a lower volatility period than it tends to decrease.

ci,t = (1− φ) + φ

√√√√√ 1

N

N∑
j=1

 ri−1,t,j

σi−1,t,jci−1,t
− 1

N

N∑
j=1

ri−1,t,j

σi−1,t,jci−1,t

2

(2.28)

where 1 ≥ φ ≥ 0 is the parameter of the adjustment. We can see if we observe φ equal to zero,

then it is identically the same model with the Panel GARCH. This whole models lie on the ci,t

last term, which is tecnically is the standard deviation of the innovations throughout the panel.

The equation for σ2
i,t,j given by

σ2
i,t,j = µj(1− α1 − β1) + α1ε

2
i−1,t,j + β1σ

2
i−1,t,j (2.29)

where we applied the moment matching that we did in Panel GARCH section. The parameters of

α1 and β1 satisfies α1 ≥ 0, β1 ≥ 0 and 1 > α1 + β1

For illustration purposes, we would like to present the an estimated ci,t about a panel, which

we will use in the modelling section:



Figure 2.7: Plot of cross sectional adjustment componet

In the above figure, we used a panel that consist of 492 stocks and the investigated period is

between 2014-12-1 and 2009-12-31. You can clearly spot the higher volatility regimes in the plot.

2.6.1 Parameter estimation

As we mentioned in previously, we approximated the unconditional variance of the returns by

averaging the squared returns. Moreover, we applied the same parameter estimation sheme for

this model, namely the QMLE where the parameter space is then Θ = φ, α, β. We asssumed

that the innovations are normally distributed, but as we would assume Student-t distribution, the

parameter space would be expand with the parameter of the Student-t distribution’s degree of

freedom. We minimize the negative log likelihood function, which is given by:

logLj(Θ) = − 1

TIt

T∑
t=1

It∑
i=1

(
1

2
log 2π +

1

2
log σ2

i,t,j +
1

2

ε2i,t,j
σ2
i,t,j

)
(2.30)

arg min
Θ

N∑
j=1

logLj(Θ)

2.6.2 Simulations

The simulations are made by a fairly simulare way, which we did in Panel GARCH. The returns

are generated randomly from normal distribution with variance of σi,t,j :

ri,t,j ∼ N (0, σi,t,j) (2.31)

The ci,t component effect is take place in εi,t,j . We simulated different size of simulated panels

with the same sample size, T = 500. The parameters which we used for simulation purposes are φ

= 0.9, α1 = 0.2 and β1 = 0.6. The results are the following:



Figure 2.8: The estimated parameter distributions with N = 50, 100, 200

We can clearly see, as we increase the panel size, the lower the variance of the estimated

parameters. Unfortunatelly, in the case of φ and β1 the median estimated parameters are less,

then what we used for simulations. In the case of α1 the median estimation is higher. These miss

estimation can be easily come from the relatively small sample size, the high α1 and low β1. In

the modeling section we will point out, this model required quite huge size of samples and the α1

+ β1 tend to be close to 1.0.

2.7 Panel GARCH-MIDAS

In this section we specify the Panel version of the GARCH-MIDAS model. During the implemen-

tation process of this model some issues arised such as identification issues in th estimation of

parameters. Finally we decided that we will make a two-step estimation and combine the best of

the two world namely Panel MIDAS and Panel GARCH. The implementation is design to handle

both multiple asset and single assets, in order to compare the accuracy of parameter estimation

with the original single-step GARCH-MIDAS model. The first step is to calculate the long-term

volatility component by the Panel MIDAS model. Let τi,t to be:

τi,t = β0 +

M∑
m=1

βm

K∑
k=0

ψk(1.0, θm)X
(m)
t−k (2.32)

where m refers to the m − th explanatory variable, K is the lag parameter and φk refers to the

weighting scheme. We used the exponentail specification of τi,t as we used explanatory variables



which can take negative values:

τi,t = exp

(
β0 +

M∑
m=1

βm

K∑
k=0

φk(1.0, θm)X
(m)
t−k

)
(2.33)

The estimation will provide us the τi,t, the i index refers to have the same length of the returns,

but τ is constant between intra periods. With the long-term component we can rescale the returns,

by dividing them with the square root of τi,t:

r̂i,t,j =
ri,t,j√
τi,t

(2.34)

This rescaled return will be modeled by Panel GARCH model to get the short-term volatility

component. The daily rescaled log returns follow:

r̂i,t,j = εi,t,j = σi,t,jZi,t,j (2.35)

where Zi,t,j is the innovations, and we can rewrite this equation as the original literatures suggested

if we replace the rescaled returns:

ri,t,j =
√
τi,tσ2

i,t,jZi,t,j (2.36)

where the returns are driven by the short- and long-term volatility components. Let’s take a look

at the short term volatility component’s equation:

σ2
i,t,j = µj(1− α− β) + αε2i,t−1,j + βσ2

i,t−1,j = µj(1− α− β) + α
r2
i,t−1,j

τi,t−1
+ βσ2

i,t−1,j (2.37)

where α ≥ 0, β ≥ 0 and 1 > α+ β.

2.7.1 Parameter Estimation

As we discussed, the estimation is a two-step QMLE estimation. In which we first optimize the

parameter’s of the long-term volatility component where assumed the normal distribution, then

the negative log - likelihood function looks like:

logL(Θ1) = − 1

NTIt

N∑
j=1

T∑
t=1

It∑
i=1

log 2π + log τ̂i,t(Θ1) +
r2
i,t,j

τ̂i,t(Θ1)
(2.38)

In order to get the optimal parameters we minimize the argument’s of the negative log likelihood

arg min
Θ1

logL(Θ1)

Then in the case of short-term volatility component, we calculate with r̂i,t,j the rescaled return, so

logL(Θ2) = − 1

NTIt

N∑
j=1

T∑
t=1

It∑
i=1

log 2π + log ĝi,t(Θ2) +
r̂2
i,t,j

ĝi,t(Θ2)
(2.39)

This approach is slower in respect of take two optimization instead of one, but we found out that

it can estimate the best parameters better in that case.



2.7.2 Simulations

This model basically used the same simulation framework, which we previously described in

GARCH-MIDAS section. In the simulations, we assumed that the common long-term volatility

component is generated from Xt an AR(1) process:

Xt = ψXt−1 + ut (2.40)

where ut is a random process with mean zero and variance h2 and X0 = 0. We set them to

ψ = 0.8 and h2 = 0.3. Hence,

log(τi,t) = 0.3

K∑
k=0

φk(1.0, 4.0)Xt−k (2.41)

where we chose β1 = 0.3, θ = 4.0 and K = 12. In the short-term volatility component α = 0.06

and β = 0.8.

Figure 2.9: The estimated parameter distributions with sample sizes of 500 and N = 50, 100, 200



As we described above, the returns generated in the following way:

ri,t,j ∼ N (0, gi,t,jτi,t) (2.42)

The simulations ran in T = 100, 200, in other words they can be interpeted as 8-year, or 16-year

length of data. The main objective was to about to see the increase the accuracy and the decrease

of the variance of the parameter estimation.

In the the case of the first three parameters, we can see the expected tendency, what we waited

for. Not only we can experinance huge deviations in parameter’s accuary, but the θ estimated

parameter’s are not accurate at all. We conducted from these simulations, that we need to provide

more data for this algorithm to excel in the parameter estimations, so in the following sections we

will describe panel models.

2.8 Panel EWMA

In this section we present the industry standard volatility model, namely the Exponentially

Weighted Moving Average (henceforth EWMA) model. In Morgan [1996] used EWMA with

λ = 0.94. Let rt denote to the daily log return (rt = logPt − logPt−1, Ptis the stock price at

time t) for t = 1, ..., T. We assumed conditional normality for the distribution of returns rt, with

the volatility eqution is the following

σ2
t = (1− λ)r2

t−1 + λσ2
t−1 (2.43)

where λ is our only parameter to be estimated, which can only take 1 ≥ λ ≥ 0. The above

equation can be familiar with the one I described in GARCH section, this is not a coincidence.

The EWMA is a special case of the GARCH model, namely the Integrated-GARCH (IGARCH),

where we choose α0 = 0, α1 = 1 − λ and β1 = λ, so 1 = α1 + β1 which import a unit root to the

GARCH process. For the unconditional variance of the returns we use the mean of the squared

returns.

σ̂2 =
1

T

T∑
t=1

r2
t (2.44)

Let us describe the panel version of the EWMA model, where Let rt,j denote to the j − th

stock’s daily return for j = 1, ..., N at time t for t = 1, ..., T. We also assumed conditional normality

for the distribution of returns rt,j , with the volatility eqution is the following

σ2
t,j = (1− λ)rt−1,j + λσ2

t−1,j (2.45)

2.8.1 Parameter estimation

As I previously mentioned the only parameter we would like to estimate is λ, so the parameter

space is Θ = λ. We used the QMLE to minimize the negative log likelihood function given by:

logLj(λ) = − 1

T

T∑
t=1

(
1

2
log 2π +

1

2
log σ2

t,j +
1

2

ε2t,j
σ2
t,j

)
(2.46)



where σ2
t,j is the function of the λ

arg min
Θ

N∑
j=1

logLj(Θ)

2.8.2 Simulations

We applied the same simulation scheme as we previously did in Panel GARCH section. The returns

are generated randomly from a normal distribution with variance σt,j :

rt,j ∼ N (0, σt,j) (2.47)

We simulated different size of simulated panels with the same sample size, namely T = 500. The

parameter which we used for simulation purposes is λ = 0.94. The results are in the following

figure:

Figure 2.10: The estimated parameter distributions with N = 100 and the sample size is T = 100,

200

We can observe from the simulation results, that the increment of panel size reduce the variance

of the parameter estimation.



Chapter 3

Implementation Strategy

In this chapter I am presenting the way we implemented, developed and tested our models. One

of our objective was to not use the standard libraries, which befenit is the ability to modify and

understand the models mechanism in a deeper level. First we declared a so-called metaclass, where

we can define all the non-model specific functions. The metaclass is a class whose instances are

classes in object-oriented programing. Not this approach provide clear script where we can debug

more effectively, but we define new models in an straightforward way. In order to do that we relied

on the Python’s abc package to create the metaclass, which we denote to Base. For the choice of

optimization algorithm we relied on the L-BFGS-B, which has a wide range of usage in machine

learning. The L-BFGS-B algorthm is in the family of quasi-Newton methods that uses the estimate

of the inverse Hessian matrix to go through the parameter space. That feature of the algorithm is

well suited take advantage of information matrix equality, so we can simply calculate the standard

errors of the parameters with it.

One of the first issue we faced in the optimization process is the optimizer mishandling bounds

and contraints. In order to avoid such failure of optimization, we implemented the so called

parameter transformations

3.1 Parameter Transformation

In this section I am presenting the paraneter transformation approach to transform a constrained

optimization problem into a unconstrained optimization. The main idea behind this strategy is

that estimators can treat bounds, but in applications it is much more convenient to transform

our parameters. With this approach we can create bounds without explicitly programming to the

estimator function. First we describe the transform and the back-transform function, then show

how they incoperate to the function that will be estimated. In our code these restrictions have to

be desclared before the optimization process. Let θ denote to the parameter, we want to transform:

27



θ̃ =


log(θ) if ’pos’

log(θ)− log(1− θ) if ’01’

θ otherwise

θ =


eθ̃ if ’pos’

1

1+e−θ̃
if ’01’

θ̃ otherwise

The ’pos’ refers to parameters which can take values from the interval of [0.0, inf), as this parameter

cannot be equal to zero we can take the log, so we transform to the interval of (− inf, inf). In

other words, if we want a parameter to be strictly positive, we will apply this transformation and

the restriction will stands throughout the optimization. In the case of ’01’ the parameters can

only take values from [0, 1] interval. This constraint is especially useful, when we estimate the

GARCH model parameters. In the log likelihood function instead of calculting with the actual

θ, the estimation will take place with θ̃. Then the optimization finished, we can easily transform

back. The only issue, which we had to handle was that the estimation of standard errors is not

correct, so we impelemented a function called gradient. In this function, you can see we calculated

the first derivatives of the possible transformation. θ∗ marked as the estimated parameters that

were previously transformed.

gradient =


eθ

∗
if ’pos’

eθ
∗

(1+eθ∗)
2 if ’01’

1 otherwise

The above presented gradient function can treat the correction that come from the parameter

transtion. This function plays a vital rule in the calculation of the standard errors of the estimated

parameters, because without that our standard errors would be incorrect. In order to calculate

the standard errors of the estimated parameters, now we can calculate their gradients, the inverse

Hessian matrix was estimated throughout the optimization process, so we have to take the square

root of the diagonal of the inverse Hessian and multiple by the gradients.

3.2 Model definition framework

In this section I am presenting the structure of the model definition framework, where I will define

the rest of the functions. These functions are the minimum amount for creating new models, but

we also implemented functions for simulation, prediction and other purposes.



Figure 3.1: The model definition framework

In Figure 3.1 we can see how we defined certain parts of the model definition. As I described

previously in this chapter, the main objective was to create a metaclass, where we define all the

common functions. That is denoted withBase, meanwhileModel contains model specific functions.

This class is unique for each and every model, so this mean all the model what we described in

Chapter 2 are one-one model class. The optimization algorithms requires initial guesses for the

parameters to be estimated, so we have to define an initial parameters setting function. These

initial guesses are the starting points of the optimization, so it is crutial to find good ones. Some

libaries imply basic estimation for such values to help algorithm converge to optimum faster. We

didn’t implemented such technique, so we relied on a trial-error scheme. In this we used the Monte

Carlo approach to find robust initial values.





Chapter 4

Predictive Ability Tests

In this chapter I am going to present the most commonly used test to evaluate the volatility

predictions. We mainly reiled on previous research papers that used these methodologies for

testing predicting capability. First, I am describing the Diebold-Mariano Test (henceforth DM

Test), which was first developed by Diebold and Mariano [1995].

In the research of Conrad and Kleen [2019] refers to Patton [2011] paper about to compare the

most commonly used loss functions for volatility forecast comparison. He found that there are only

two robust loss functions, namely the mean squared error (MSE) and the QLIKE. He described

the following family of loss functions, indexed by the scalar parameter b:

L
(
σ̂2, h; b

)
=


h− σ̂2 + σ̂2log σ̂

2

h , b = -1

σ̂2

h − log
σ̂2

h − 1 , b = -2

1
(b+1)(b+2)

(
σ̂2b+4 − hb+2

)
− 1

b+1h
b+1
(
σ̂2 − h

)
, otherwise

In order to define different loss functions with only one parameter, namely with b, we implemented

the above family of loss functions in our DM test. The author pointed out, the MSE loss function

is obtained when b = 0 and the QLIKE when b = -2. These two function are the only robust

ones, moreover the QLIKE is less sensitive with respect to extreme observation than the MSE

loss. Meanwhile, QLIKE punishes more the assymetric underestimation of loss. DM test relies on

assumptions made directly on the forecast error loss differential Diebold [2015]. In DM test we

compare two rival models, by taking there loss differencies in the following way:

d12t = L
(
σ̂2, h(1); b

)
− L

(
σ̂2, h(2); b

)
(4.1)

where σ̂2 is the volatility proxy variable. Diebold [2015] presented that DM assumes:

DM =


E(d12t) = µ , ∀ t

cov(d12t, d12(t−τ)) = γ(τ) , ∀ t

0 < var(d12t) = σ2 <∞ , otherwise

DM =
E (d12t)√
var (d12t)

∼ N (0, 1) (4.2)
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where E(d12t) is the sample mean loss differential and
√
var (d12t) is a consistent estimate of the

standard deviaton of d12t.

The DM-test is a handy when we compare two forecasts for a single asset, what if we would

like to compare two forecasts for panels. Timmermann and Zhu [2019] gave an approach us to do

that. They developed new methods for testing forecasting powers in panels Let’s start with the

calculation of the mean loss throughout the whole panel, where we denote L̄m as

L̄h =
1

NT

N∑
j=1

T∑
t=1

L
(
σ̂t

(j)2 , h
(j)
t ; b

)
(4.3)

Their first hypothesis was that the panel’s mean loss for a pair of forecasts, h(1) and h(2) is equal

in expectation:

Hpanel
0 : E

(
L̄h(1)

)
= E

(
L̄h(2)

)
(4.4)

In order to test the null hypothesis let’s use the above defined d12t, which is now a matrix and not

an array, so the loss differential between foecasts h(1) and h(1) as

d12t = L
(
σ̂2, h(1); b

)
− L

(
σ̂2, h(2); b

)
(4.5)

We can test the null hypothesis in (37) using the test statistic

DM = (NT )−
1
2

∑N
j=1

∑T
t+h=1 d12t

σ̂ (d12t)
(4.6)

where σ̂ (d12t) is a consistent estimator of standard deviation of d12t.

Furthermore, we used the Mincer-Zarnowitz Regression Mincer and Zarnowitz [1969], which is

basically a simple regression to be estimated:

σ2
t+1 = β0 + β1σ̂

2
t+1 + εt (4.7)

where σ̂2
t+1 is the predicted value of the volatility for t+1. If the prediction is unbiased, then the

coefficients are β0 = 0 and β1 = 1. We also investigate the R2 aswell.

Another measure, what we investigated is the RMSE (root mean squared error)

RMSE =

√√√√ 1

NT

N∑
j=1

T∑
t=1

(
σ

(j)2

t − σ̂(j)2

t

)2

(4.8)

where we can compare the RMSE values to eachother.



Chapter 5

Empirical Results

In this chapter, I am going to turn to the application of the above presented models. First, in

Section 5.1 I introduce out data set, then I am going to present the estimated parameters for our

models. Thereafter, in Section 5.2 I show our results from the RMSE, Mincer-Zarnowitz Regression

and Panel version of Diebold Mariano Test. I am going to compare the models in the sense of the

tests.

5.1 Descriptive Analysis

I use the Standard & Poor’s 500 Index components for modeling purposes, which can be tricky,

because in time several stocks come into the index and drop out. In order to avoid such problems

like component changes, I decided to use those stock which are in the S&P 500 Index at 2020/11/01.

This fixation raised another issue in modeling, namely there are stocks in the panel, which didn’t

exist or cannot be observed properly in time. For example, Etsy, Inc. was introduced to S&P 500

Index at 2020/09/21 and it was first introduced to Nasdaq at 2015/04/16, so you cannot trade this

particular stock before that period. Our solution is when you sum up the negative loglikelihood,

you can skip those whose not exists. In the case of stocks that were introduced to the market

during the investiagated period, I add their negative loglikelihood to the sum where there was

data. I also examined the case of drop out those stocks which have partial price history, it turned

out no significant change arised.

First of all, I am going to present the models, which only involved stock returns. In this case I

use two specifications of Panel GARCH model and a single for Panel EWMA and Panel GARCH

with cross sectional adjustment model will be shown. The Panel GARCH models differ with respect

to the definition of the underlying distribution. As I disgussed earlier in GARCH section we can

define the negative loglikelihood function with Normal and Student-t distributions, so in contrast

them I use the ”normal” and ”student-t” notation to differentiate them.

Our estimations are based on a five year long training period, where I estimate the model pa-

rameters and forecast one-day ahead. The first training period was from 1999/12/01 to 2004/12/31,
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then I shifted them by 1 month up until 2020/10/31. This shifting indicate 190 estimation and

forecast for each and every models. In Figure 5.1 and Figure 5.2 we can observe the estimated pa-

rameters for Panel GARCH models in time. I would like to mention that I found quite interesting

how β1 decreases and α1 increases after 2017.

Figure 5.1: The estimated parameters for Panel GARCH (normal) model

Figure 5.2: The estimated parameters for Panel GARCH (student-t) model

The first thing I investigate is to make sure this phenomenon arised from the increasing number

of new stocks in the panel or not. I filter out the panel for stocks which have a full price history and

estimate the parameters with them, then compare the results. I find that this phenomenon doesn’t

come from the increment in panel size. The other interesting observation is the ν parameter

in Figure 5.2. The ν parameter is the degree of freedom or normality parameter in Student-t

distribution. As ν increases, we get closer and closer to the normal distribution, in other word,

the smaller the ν the fatter the tails, so more extreme return could happen. In the figure we can

observe a tendency of decreasing ν after 2012 and a little plummet in 2020 when COVID hit the

markets.

Let’s turn into the Panel EWMA λ parameter. As I mentioned in Panel EWMA section we



can interpret λ as β and 1 − λ as α from the GARCH equation. In the case of high λ means the

daily volatility respond relatively slowly to the daily return changes. On the other hand lower λ

indicates that daily returns have a higher contribution for the volatility, so more volatility could

be observed in the market

Figure 5.3: The estimated λ parameter for Panel EWMA

We can see that after the subprime crisis and the COVID crisis the λ starts to decrease sharply.

Furthermore, we can observe an intense increase when we don’t use stressed period anymore for

training.

Finally, the Panel GARCH with cross sectional adjustment, where φ shows us the level of

adjustment. In generally speaking the higher the φ, the more extreme daily returns could be

captured in the market and vice versa.

Figure 5.4: The estimated parameters for Panel GARCH with cross sectional adjustment

For this particular model the choice of training period is crutial. As the training data involves

stressed period the φ remain relatively high, see the period between 2009 and 2013. We let this

issue investigation for a further research.

Now, I am going to present the Panel GARCH-MIDAS model results. Most of the macroeco-



nomic time-series for modeling came from several research papers. You can read more about in

Appendix A, where I describe all the time-series and their transformations. As I mentioned in

Panel GARCH-MIDAS section I applied a two-stage estimation due to indentification issues, so

I was totally handy to run the second stage, namely the GARCH, on two specification, which I

described above.

Figure 5.5: The estimated coefficients parameters for MIDAS equation in Panel GARCH-MIDAS

In Figure 5.5 we can see the estimated coefficients for the particular time-series. What I find

impressive, how the certain macroeconomic variables play roles in periods. For instance, the VIX

index has a really high contribution on low volatility regime, but it disappers in stressed periods.

The following figure is going to present the lag coefficients.



Figure 5.6: The estimated weighting parameters for MIDAS equation in Panel GARCH-MIDAS

The literature mainly rely on the Beta weighing scheme, so GARCH-MIDAS is specified with

that. Figure 5.6 presents the estimated θ parameters for the weighing, where the first parameter

sets to be 1.0 to make the parameter space as parsimonious as possible. In the optimization

rutine the only problem with this parameter is that it can go onwords to positive infinite, so the

algorithm can estimate different parameters with the same underlying meaning. In other words,

if we estimate θ to 1000 or 1 million, they will both return the same value. The eximination of θ

parameter drives me to cap in the value of 500, because Beta weighting with {1.0, 500.0} means

the first observation get aprroximately one houndred percentage of weight and zero for the rest.

In order word, the incerement of θ after a certain value does not matter.

In the following two figures I am going to present the estimated GARCH parameters, for

normally distribution assumption and Student-t. Let’s start with the normally, where we can see

the simular effect I describe in vanilla Panel GARCH model.



Figure 5.7: The estimated parameters for GARCH (normal) equation in Panel GARCH-MIDAS

I also investigate the panel size increment in this model as well and find that it has so little

effect on the estimated parameters. What we observed in Panel GARCH with cross sectional

adjustment model, the β starts to decrease and α increases as we drop out the stressed period.

As I subtract the returns with the long-term volatility component, which come from the MIDAS

part, we can see that the ν parameter is a bit upward shift than the unfiltered one. Moreover, we

can also capture the same shrinkage in this parameter after 2013.

Figure 5.8: The estimated parameters for GARCH (student-t) equation in Panel GARCH-MIDAS

Table 5.1 provides summary statistics for the estimated parameters in the MIDAS part. While

the table shows there are several variables that have absolutelly little contribution for the long-term

volatility, see CFNAI or ∆PPI, where the coeffients are zeros up to 75 percent percentile. In the

table we can see that the weighting parameter for the VIX variable is 500 most of the cases, so it

would be more parsiminous if we just use the last observation.



mean std min 25% 50% 75% max

β0 0.123 0.221 0.000 0.000 0.000 0.185 0.910

βV IX 1.408 0.931 0.000 0.516 1.631 2.143 3.412

θV IX 465.062 119.194 0.005 500.000 500.000 500.000 500.000

βNFCI 1.163 1.285 0.000 0.000 0.800 2.181 5.267

θNFCI 339.100 221.789 0.000 43.462 500.000 500.000 500.000

βCFNAI 0.001 0.005 0.000 0.000 0.000 0.000 0.062

θCFNAI 88.756 152.055 0.000 4.645 20.172 69.518 500.000

β∆IP 0.008 0.039 0.000 0.000 0.000 0.000 0.280

θ∆IP 74.894 140.399 0.001 0.592 15.074 64.989 500.000

β∆HOUST 0.012 0.045 0.000 0.000 0.000 0.001 0.319

θ∆HOUST 89.362 162.229 0.000 1.672 9.590 69.569 500.000

βDTB3 1.299 1.605 0.000 0.113 0.863 1.702 8.244

θDTB3 136.342 216.862 0.000 0.059 0.859 479.935 500.000

βSOY C 0.278 0.287 0.000 0.000 0.250 0.416 1.366

θSOY C 233.717 230.906 0.000 3.891 113.813 500.000 500.000

βBAA10Y 0.544 0.735 0.000 0.000 0.001 1.153 2.470

θBAA10Y 340.812 210.839 0.000 120.335 500.000 500.000 500.000

βINFLATION 0.038 0.118 0.000 0.000 0.000 0.001 0.770

θINFLATION 58.145 132.918 0.000 0.139 3.351 28.239 500.000

βUNRATE 0.168 0.836 0.000 0.000 0.000 0.000 5.992

θUNRATE 124.791 184.858 0.000 8.003 23.292 123.233 500.000

β∆PPI 0.007 0.038 0.000 0.000 0.000 0.000 0.304

θ∆PPI 65.414 140.406 0.000 0.055 2.281 28.113 500.000

β∆M2 2.192 1.476 0.000 0.999 2.270 3.576 5.505

θ∆M2 324.795 220.850 0.000 29.210 500.000 500.000 500.000

β∆CSH 0.029 0.133 0.000 0.000 0.000 0.000 0.857

θ∆CSH 72.195 129.914 0.000 2.221 11.025 70.402 500.000

Table 5.1: The estimated parameters for MIDAS equation in Panel GARCH-MIDAS



5.2 Forecast Evaluation

In this section I am preseting the predictive ability test results. I am going to start with the

root-mean squared error, then I turn into the Mincer-Zarnowitz regression for the different time

horizion, where I compare the R2. Finally, the panel Diebold-Mariano test with MSE and QLIKE

criteria for all the forecasting horizon. In the tables I marked the best models according to the

particular test with a star.

Table 5.2 presents the RMSE results, where the Panel GARCH (student-t) model has the lowest

score for 1-5 day ahead forecasting and Panel GARCH-MIDAS (student-t) come out the best for

longer forecasting horizon, namely the 10-22 day ahead frame.

Daily Two daily Weekly Two weekly Monthly

Panel GARCH (normal) 30.91 27.41 27.71 41.00 56.04

Panel GARCH (student-t) 30.86* 27.33* 27.46* 40.69 55.70

Panel GARCH-MIDAS (normal) 31.52 28.08 28.27 41.17 56.03

Panel GARCH-MIDAS (student-t) 31.07 27.58 27.60 40.61* 55.55*

Panel EWMA 31.11 27.52 27.64 40.81 55.74

Panel GARCH with cross sectional adjustment 32.87 29.63 31.17 44.53 59.55

Table 5.2: The table of RMSE results for all models and all forecasting horizons.

The Mincer-Zarnowitz Regression results show us the Panel GARCH (student-t) to be the

best in all forecasting horizon. Conrad and Kleen [2019] agrue that the R2 of Mincer-Zarnowitz

regression can be a misleading measure of forecast accuracy across volatility regimes.

Intercept Coefficient R2

Panel GARCH (normal) -0.430 1.290 0.130*

Panel GARCH (student-t) -0.040 1.200 0.130*

Panel GARCH-MIDAS (normal) 1.020 0.820 0.100

Panel GARCH-MIDAS (student-t) 0.490 0.940 0.120

Panel EWMA 0.260 1.120 0.120

Panel GARCH with cross sectional adjustment 2.600 0.720 0.020

Table 5.3: The table of Mincer-Zarnowitz Regression results for One-day ahead forecasting horizon

for all models

Table 5.3 provides the results from the regressions and the R2, where the Panel GARCH

models achived the highest values, but they are still very low. Table 5.4 shows the two-day ahead

forecasting regression coefficients and the R2 start to increasing and the Panel GARCH models

have the highest scores.



Intercept Coefficient R2

Panel GARCH (normal) 0.834 1.359 0.180*

Panel GARCH (student-t) 1.245 1.262 0.180*

Panel GARCH-MIDAS (normal) 2.447 0.850 0.126

Panel GARCH-MIDAS (student-t) 1.899 0.977 0.154

Panel EWMA 1.434 1.205 0.165

Panel GARCH with cross sectional adjustment 3.441 0.900 0.029

Table 5.4: The table of Mincer-Zarnowitz Regression results for Two-day ahead forecasting horizon

for all models

Intercept Coefficient R2

Panel GARCH (normal) 1.626 1.967 0.343

Panel GARCH (student-t) 2.194 1.833 0.345*

Panel GARCH-MIDAS (normal) 4.201 1.189 0.223

Panel GARCH-MIDAS (student-t) 3.356 1.380 0.278

Panel EWMA 2.351 1.773 0.324

Panel GARCH with cross sectional adjustment 4.954 1.407 0.065

Table 5.5: The table of Mincer-Zarnowitz Regression results for One-week ahead forecasting horizon

for all models

Table 5.5 and Table 5.6 show, for forecast horizons of one and two weeks the highest R2 achieved

by Panel GARCH (student-t), where the GARCH-MIDAS models start to drop behind and EWMA

get closer.

Intercept Coefficient R2

Panel GARCH (normal) 2.852 2.719 0.332

Panel GARCH (student-t) 3.624 2.536 0.334*

Panel GARCH-MIDAS (normal) 6.442 1.637 0.214

Panel GARCH-MIDAS (student-t) 5.291 1.898 0.267

Panel EWMA 3.754 2.471 0.319

Panel GARCH with cross sectional adjustment 7.286 1.983 0.065

Table 5.6: The table of Mincer-Zarnowitz Regression results for Two-week ahead forecasting hori-

zon for all models



Intercept Coefficient R2

Panel GARCH (normal) 5.935 3.540 0.327

Panel GARCH (student-t) 6.922 3.305 0.330*

Panel GARCH-MIDAS (normal) 10.741 2.108 0.206

Panel GARCH-MIDAS (student-t) 9.290 2.438 0.256

Panel EWMA 6.905 3.259 0.323

Panel GARCH with cross sectional adjustment 11.156 2.711 0.071

Table 5.7: The table of Mincer-Zarnowitz Regression results for One-month ahead forecasting

horizon for all models

Finally, we consider the regression for one month ahead forecasting horizion, where the Panel

GARCH (student-t) remains the best model according to the particular value. As we compare the

R2 scores with the root mean squared error the results are mixed, especially for longer horizon.

The following tables provides the results for the panel Diebold Mariano test, where we eximane

two test criteria, namely the MSE and QLIKE, which are the only robust ones Patton [2011].

Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) 0.894 (0.371) -0.973 (0.331) -0.414 (0.679) -1.021 (0.307) -1.395 (0.163)

Panel GARCH (student-t) -0.99 (0.322) -0.519 (0.604) -1.041 (0.298) -1.39 (0.165)

Panel GARCH-MIDAS (normal) 1.34 (0.18) 0.604 (0.546) -0.929 (0.353)

Panel GARCH-MIDAS (student-t) -0.087 (0.931) -1.153 (0.249)

Panel EWMA -1.452 (0.147)

Table 5.8: The table of Panel Diebold-Mariano Test results for One-day ahead forecasting horizon

with MSE criteria

Table 5.8 and Table 5.9 shows, for forecast horizons of one day. Table 5.8 provide the results

with MSE, which is more permissive criteria, so according to that all the models have the same

predictive power. On the other hand QLIKE is less consessive, as Table 5.9 shows, in which

GARCH (normal) and GARCH-MIDAS (normal) are better than EWMA and almost every model

better the GARCH with cross sectional adjustment model.

Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) -1.923 (0.055) 0.28 (0.779) -0.302 (0.763) -1.994* (0.046) -2.5* (0.012)

Panel GARCH (student-t) 1.184 (0.237) 0.785 (0.432) -1.714 (0.087) -2.251* (0.024)

Panel GARCH-MIDAS (normal) -1.711 (0.087) -2.108* (0.035) -2.521* (0.012)

Panel GARCH-MIDAS (student-t) -1.916 (0.055) -2.361* (0.018)

Panel EWMA -1.756 (0.079)

Table 5.9: The table of Panel Diebold-Mariano Test results for One-day ahead forecasting horizon

with QLIKE criteria



Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) 1.418 (0.156) -0.926 (0.354) -0.4 (0.689) -0.715 (0.474) -1.581 (0.114)

Panel GARCH (student-t) -0.983 (0.326) -0.559 (0.576) -0.913 (0.361) -1.582 (0.114)

Panel GARCH-MIDAS (normal) 1.358 (0.175) 0.727 (0.468) -1.047 (0.295)

Panel GARCH-MIDAS (student-t) 0.106 (0.916) -1.315 (0.189)

Panel EWMA -1.677 (0.093)

Table 5.10: The table of Panel Diebold-Mariano Test results for Two-day ahead forecasting horizon

with MSE criteria

Table 5.10 and Table 5.11 shows, for forecast horizons of two day. Table 5.10 provides the

results with MSE, where there is not a single model significantly better than the other. Table 11

shows the results with QLIKE in which the GARCH-MIDAS (normal) turn out to be the best

model.

Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) -4.21* (0.0) 0.405 (0.686) -0.699 (0.484) -3.213* (0.001) -2.42* (0.016)

Panel GARCH (student-t) 2.16* (0.031) 1.171 (0.242) -2.3* (0.021) -1.934* (0.053)

Panel GARCH-MIDAS (normal) -4.102* (0.0) -3.445* (0.001) -2.417* (0.016)

Panel GARCH-MIDAS (student-t) -2.768* (0.006) -2.112* (0.035)

Panel EWMA -1.261* (0.207)

Table 5.11: The table of Panel Diebold-Mariano Test results for Two-day ahead forecasting horizon

with QLIKE criteria

Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) 1.768 (0.077) -1.077 (0.282) 0.414 (0.679) 0.311 (0.756) -1.689 (0.091)

Panel GARCH (student-t) -1.266 (0.206) -0.468 (0.64) -0.612 (0.541) -1.71 (0.087)

Panel GARCH-MIDAS (normal) 1.569 (0.117) 0.936 (0.349) -1.495 (0.135)

Panel GARCH-MIDAS (student-t) -0.082 (0.934) -1.613 (0.107)

Panel EWMA -1.838 (0.066)

Table 5.12: The table of Panel Diebold-Mariano Test results for One-week ahead forecasting horizon

with MSE criteria

Table 5.12 and Table 5.13 shows, for forecast horizons of one week. In Table 5.12 there is not

a single model significantly better than the other. In Table 5.13 we can see GARCH (normal) and

GARCH-MIDAS (normal) are the best ones.

Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) -4.729* (0.0) 1.017 (0.309) -0.261 (0.794) -3.468* (0.001) -1.884 (0.06)

Panel GARCH (student-t) 3.123* (0.002) 1.733 (0.083) -2.414* (0.016) -1.345 (0.178)

Panel GARCH-MIDAS (normal) -6.361* (0.0) -4.68* (0.0) -1.927 (0.054)

Panel GARCH-MIDAS (student-t) -3.49* (0.0) -1.58 (0.114)

Panel EWMA -0.636 (0.525)

Table 5.13: The table of Panel Diebold-Mariano Test results for One-week ahead forecasting horizon

with QLIKE criteria



Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) 1.998* (0.046) -0.712 (0.476) 1.333 (0.182) 0.741 (0.459) -1.819 (0.069)

Panel GARCH (student-t) -1.446 (0.148) 0.375 (0.708) -0.377 (0.706) -1.845 (0.065)

Panel GARCH-MIDAS (normal) 1.856 (0.063) 0.732 (0.464) -1.726 (0.084)

Panel GARCH-MIDAS (student-t) -0.392 (0.695) -1.788 (0.074)

Panel EWMA -1.982* (0.047)

Table 5.14: The table of Panel Diebold-Mariano Test results for Two-week ahead forecasting

horizon with MSE criteria

Table 5.14 and Table 5.15 shows, for forecast horizons of two week. Table 5.14 provides the

results with MSE, where the GARCH (student-t) turn out to be better than the GARCH (normal).

However in Table 15, where the criteria is QLIKE, the GARCH (normal) is better, than the

GARCH (student-t) and the GARCH-MIDAS models are better or equivalent to the others.

Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) -3.88* (0.0) 1.258 (0.209) 0.229 (0.819) -2.363* (0.018) -1.644 (0.1)

Panel GARCH (student-t) 2.947* (0.003) 1.969* (0.049) -1.719 (0.086) -1.233 (0.218)

Panel GARCH-MIDAS (normal) -3.732* (0.0) -3.039* (0.002) -1.746 (0.081)

Panel GARCH-MIDAS (student-t) -2.372* (0.018) -1.475 (0.14)

Panel EWMA -0.46 (0.645)

Table 5.15: The table of Panel Diebold-Mariano Test results for Two-week ahead forecasting

horizon with QLIKE criteria

Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) 1.962* (0.05) 0.12 (0.905) 1.611 (0.107) 1.027 (0.304) -1.833 (0.067)

Panel GARCH (student-t) -1.718 (0.086) 0.916 (0.36) -0.118 (0.906) -1.855 (0.064)

Panel GARCH-MIDAS (normal) 1.911 (0.056) 0.77 (0.442) -1.809 (0.071)

Panel GARCH-MIDAS (student-t) -0.425 (0.671) -1.834 (0.067)

Panel EWMA -1.985* (0.047)

Table 5.16: The table of Panel Diebold-Mariano Test results for One-month ahead forecasting

horizon with MSE criteria

Finally, Table 5.16 and Table 5.17 shows, for forecast horizons of one month. These tables

provide the same conlusions as Table 5.14 and Table 5.15 does, so the QLIKE criteria the GARCH-

MIDAS models are better or eqivalent to the competitor models.

Panel GARCH

(student-t)

Panel GARCH-MIDAS

(normal)

Panel GARCH-MIDAS

(student-t)
Panel EWMA

Panel GARCH

with CSA

Panel GARCH (normal) -4.276* (0.0) 0.998 (0.318) -0.076 (0.939) -2.19* (0.029) -1.456 (0.145)

Panel GARCH (student-t) 3.037* (0.002) 1.84 (0.066) -1.603 (0.109) -1.039 (0.299)

Panel GARCH-MIDAS (normal) -3.806* (0.0) -2.775* (0.006) -1.511 (0.131)

Panel GARCH-MIDAS (student-t) -2.14* (0.032) -1.241 (0.215)

Panel EWMA -0.135 (0.893)

Table 5.17: The table of Panel Diebold-Mariano Test results for One-month ahead forecasting

horizon with QLIKE criteria



Chapter 6

Conclusion

In this chapter, I present the results of my thesis and the conclusions. My main question was

whether the Panel GARCH-MIDAS model outperform the standard volatility models. First, I

implemented the original models as the presented literature suggested, than I turned to the panel

versions. One of my empirical result is the GARCH-MIDAS model’s long-term volatility component

can be better estimated in the panel version due to the increase of underlying data.

In this thesis, I start with the theoretical background of the volatility models, parameter esti-

mations and simulations. I mainly relied on the research papers for specifying our models. Since I

implemented the GARCH-MIDAS model in a two-stage estimation method, so basically we could

mix the MIDAS models with other volatility models. I presented the Monte Carlo approach for

every single implemented models, to make sure the models are capable to capture the parameters.

Next I have introduced our implementation strategy to make models easy to diagnose and to create

new models as agile as possible. Following this I have presented the predictive ability tests relied

on the literature. Finally, I have shown our results. I have found that our volatility models we can

forecast volatility with almost the same accuracy up to a week ahead than the GARCH-MIDAS

models are provide a bit better forecasts due to the excess variables. The panel Diebold-Mariano

test suggested the GARCH-MIDAS models are better or at least equivalents to the competitor

models. However, we could enchance the GARCH-MIDAS models with other specifications of

weighting function or select further explanatory variables.

In conclusion, the panel GARCH-MIDAS models are much more suitable for longer forecasting

horizon and the variable selection is one of its crutuil point. However, for shorter range we could

apply the industial standard EWMA model, since there is only one parameter to be estimated.
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Appendix A

Data

In this appendix, we walkthrough the macroeconomic explanatory variables which we used for

modeling and what changes we made. It is worth to mention, that all of our data come from free

resources. One of our main objective was to select macroeconomic variables which were previosly

used in research papers and supplement with our notion. These are the papers which we relied on

the selection Conrad and Kleen [2019], Asgharian et al. [2013], Engle et al. [2013], Conrad et al.

[2018]. The time series we used for modeling are the following:

� The AAII Investor Sentiment Survey (AAII) measures the percentage of individual investors

who are bullish, bearish, and neutral on the stock market for the next months. The series

reported on a weekly basis.

https://www.aaii.com/files/surveys/sentiment.xls

� Moody’s Seasoned BAA Corporate Bond Yield Relative to Yield on 10 Year Treasury Con-

stant Maturity (BAA10Y) is a daily series.

https://fred.stlouisfed.org/series/BAA10Y

� The Chicago Fed National Activity Index (CFNAI) is a weighted average of 85 monthly

filtered and standardized economic indicators. Whereas positive CFNAI values indicate an

expanding US-economy above its historical trend rate, negative values indicate the opposite.

Conrad and Kleen [2019]

https://alfred.stlouisfed.org/series?seid=CFNAI

� Consumer Price Index for All Urban Consumers: All Items in U.S. City Average (CPI-

AUCSL) is a measure of the average monthly change in the price for goods and services paid

by urban consumers between any two time periods.

https://alfred.stlouisfed.org/series?seid=CPIAUCSL

� Case-Shiller U.S. National Home Price Index (CSUSHPINSA) is a monthly index the leading

measures of U.S. residential real estate prices, tracking changes in the value of residential

real estate nationally.

https://fred.stlouisfed.org/series/CSUSHPINSA
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� 10-Year Treasury Constant Maturity Rate (DGS10) is a daily percent.

https://fred.stlouisfed.org/series/DGS10

� 3-Month Treasury Bill: Secondary Market Rate (DTB3) is a daily percent. Asgharian et al.

[2013]

https://alfred.stlouisfed.org/series?seid=DTB3

� Housing Starts Total: New Privately Owned Housing Units Started (HOUST) is a monthly

unit. Conrad and Kleen [2019]

https://fred.stlouisfed.org/series/HOUST

� Industrial Production: Total Index (INDPRO) is a monthly economic indicator that measures

real output for all facilities located in the U.S. Conrad and Kleen [2019]

https://alfred.stlouisfed.org/series?seid=INDPRO

� M2 Money Stock (M2SL) is a monthly value in units of dollar billions.

https://fred.stlouisfed.org/series/M2SL

� Chicago Fed National Financial Conditions Index (NFCI) provides a weekly update on U.S.

financial conditions in money markets. Positive values of the NFCI indicate financial con-

ditions that ar tighter than average, negative values indicate financial conditions that are

looser than average. Conrad and Kleen [2019]

https://fred.stlouisfed.org/series/NFCI

� Producer Price Index by Commodity: All Commodities (PPIACO) is a monthly measure of

the average change over time in the selling prices received by domestic producers for their

output.

https://alfred.stlouisfed.org/series?seid=PPIACO

� Unemployment Rate (UNRATE) represents the number of unemployed as a monthly per-

centage of the labor force. Asgharian et al. [2013]

https://fred.stlouisfed.org/series/UNRATE

� CBOE Volatility Index: VIX (VIXCLS) is a daily close index that measures market expecta-

tion of near term volatility conveyed by stock index option prices. Conrad and Kleen [2019]

https://fred.stlouisfed.org/series/VIXCLS

All of the above time series start in 1997/01/01 and end in 2020/11/01. In order to calculate the

inflation, there are two commonly used time series to calculate from, namely the Consumer Price

Index (∆CPI) and Producer Price Index (∆PPI) differences. The ∆CPI measure the inflation from

the changes of prices paid for goods, ∆PPI measure the inflation from the changes of prices received

for goods. We see ∆CPI as the true measure of inflation, so it will appear as ”INFLATION”. We

take the differences of M2 Money Stock (henceforth ∆M2), Case-Schiller U.S. National Home

Price Index (henceforth ∆CSH), Housing Starts Total (henceforth ∆HOUST ) and Industrial



Production (henceforth ∆ IP). Asgharian et al. [2013] specified the slope of the yield curve by

subtract the 10-Year Treasury Constant Maturity Rate with the 3-Month Treasury Bill, so we

used the same transformation to get this variable, which we will refers as SOY C. You could

spot there were time series which were sampled in a weekly and daily bases, in order to simplify

the modeling, we aggregated them to monthly, technically we took their monthly average. The

following figure will show the time series of the above described variables:

Figure A.1: The time series plots of macroeconomic variables

The stocks we used for modeling are the components of the S&P 500 Index, more technically

those who were in the S&P 500 Index at 2020/11/01. The stocks prices start at 1999/12/01 and

end at 2020/10/31. All this mean we can observe two stressed period in the modeling, namely

the 2007-2008’s subprime and the 2020’s COVID crisis. The following table will present summary

statistics for the macroeconomic variables we used:



Min. Max. Mean Median Sd. Skew. Kurt

AAII -0.30 0.51 0.08 0.08 0.15 0.21 -0.30

VIX 10.12 62.25 20.43 19.17 8.27 1.87 5.56

NFCI -0.80 2.68 -0.36 -0.51 0.51 3.35 13.73

CFNAI -17.73 5.96 -0.10 -0.01 1.28 -8.89 128.41

∆ IP -13.26 5.74 0.09 0.14 1.13 -5.80 72.17

∆ HOUST -343.00 279.00 0.73 -3.00 99.74 -0.26 0.79

DTB3 0.01 6.17 2.00 1.41 1.97 0.61 -1.14

Soyc -0.53 3.69 1.64 1.62 1.11 0.03 -1.04

BAA10Y 1.45 6.01 2.53 2.50 0.75 1.57 4.73

Inflation -3.84 2.70 0.36 0.39 0.59 -1.48 10.54

UNRATE 3.50 14.80 5.81 5.10 1.92 1.34 1.72

∆ PPI -10.50 5.70 0.24 0.30 1.98 -1.28 5.75

∆ M2 -0.01 0.06 0.01 0.01 0.01 5.64 46.91

∆ Csh -3.53 3.04 0.52 0.51 1.14 -0.60 0.92

Table A.1: The table of summary statistics for the macroeconomic variables.



Appendix B

Implementation code

B.1 base.py

import pandas as pd

import numpy as np

from s c ipy . opt imize import minimize

import s c ipy . s t a t s as s t a t s

from abc import ABCMeta, abstractmethod

class BaseModel ( object , metac las s = ABCMeta ) :

def i n i t ( s e l f , p l o t = True , * args ) :

s e l f . p l o t = p lo t

s e l f . a rgs = args

def trans form ( s e l f , params , r e s t r i c t i o n s ) :

params trans = np . z e ro s ( params . shape )

for i in range ( len ( params ) ) :

i f r e s t r i c t i o n s [ i ] == ’ pos ’ :

params trans [ i ] = np . l og ( params [ i ] )

e l i f r e s t r i c t i o n s [ i ] == ’ 01 ’ :

params trans [ i ] = np . l og ( params [ i ] ) = np . l og (1 = params [ i ] )

else :

params trans [ i ] = params [ i ]

return params trans

def trans form back ( s e l f , params trans , r e s t r i c t i o n s ) :

params = np . z e r o s ( params trans . shape )

for i in range ( len ( params trans ) ) :
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i f r e s t r i c t i o n s [ i ] == ’ pos ’ :

params [ i ] = np . exp ( params trans [ i ] )

e l i f r e s t r i c t i o n s [ i ] == ’ 01 ’ :

params [ i ] = 1 / (1 + np . exp(=params trans [ i ] ) )

else :

params [ i ] = params trans [ i ]

return params

def grad i en t ( s e l f , param trans , r e s t r i c t i o n s ) :

g = np . z e r o s l i k e ( param trans )

for i in range ( len ( g ) ) :

i f r e s t r i c t i o n s [ i ] == ’ ’ :

g [ i ] = 1

e l i f r e s t r i c t i o n s [ i ] == ’ pos ’ :

g [ i ] = np . exp ( param trans [ i ] )

else :

g [ i ] = np . exp ( param trans [ i ] ) / np . power (1 + np . exp ( param trans [ i ] ) , 2)

return g

def s t a nd a rd e r r o r ( s e l f , opt imizat ion , r e s t r i c t i o n s , y l e n ) :

grad = s e l f . g rad i en t (

s e l f . t rans form back ( opt imiza t i on . x , r e s t r i c t i o n s ) , r e s t r i c t i o n s )

var i ance = opt imiza t i on . h e s s i n v . todense ( ) / y l e n

return np . mult ip ly (np . s q r t (np . diag ( var i ance ) ) , grad )

@abstractmethod

def i n i t i a l i z e p a r a m s ( s e l f ) :

pass

@abstractmethod

def l o g l i k e l i h o o d ( s e l f ) :

pass

def l o g l i k e l i h o o d t r a n s ( s e l f , params trans , r e s t r i c t i o n s , X, *y ) :

params = s e l f . t rans form back ( params trans , r e s t r i c t i o n s )

return s e l f . l o g l i k e l i h o o d ( params , X, *y )

def f i t ( s e l f , r e s t r i c t i o n s , X, *y ) :

r e s = minimize ( s e l f . l o g l i k e l i h o o d t r a n s ,



s e l f . t rans form ( s e l f . i n i t i a l i z e p a r a m s (X) , r e s t r i c t i o n s ) ,

a rgs = ( r e s t r i c t i o n s , X, *y ) ,

method = ’ l=bfgs=b ’ ,

opt i ons = { ’ d i sp ’ : Fa l se })

s e l f . opt = r e s

s e l f . optimized params = s e l f . t rans form back ( s e l f . opt . x , r e s t r i c t i o n s )

s e l f . s t a n d a r d e r r o r s = s e l f . s t an da r d e r r o r ( s e l f . opt , r e s t r i c t i o n s , len (X) )

high = s e l f . optimized params + s t a t s . norm . ppf ( 0 . 9 7 5 ) * s e l f . s t a n d a r d e r r o r s

low = s e l f . optimized params = s t a t s . norm . ppf ( 0 . 9 7 5 ) * s e l f . s t a n d a r d e r r o r s

s e l f . t a b l e = pd . DataFrame ( data = { ’ Parameters ’ : s e l f . optimized params ,

’ Standard Error ’ : s e l f . s t andard e r ro r s ,

’95% CI Lower ’ : low ,

’95% CI Higher ’ : high })

i f s e l f . p l o t == True :

print ( ’ L o g l i k e l i h o o d : ’ , s e l f . opt . fun , ’ \n ’ )

print ( s e l f . t a b l e )

return

B.2 volatility.py

import numpy as np

import pandas as pd

from base import BaseModel , GarchBase

from s t a t s import l o g l i k e l i h o o d n o r m a l , l o g l i k e l i h o o d s t u d e n t t

from weights import Beta

from h e l p e r f u n c t i o n s import c r ea t e mat r i x

from datet ime import datetime , t imede l ta

import time

import s c ipy . s t a t s as s t a t s

class MIDAS( BaseModel ) :

def i n i t ( s e l f , l ag = 22 , p l o t = True , * args ) :

s e l f . l ag = lag

s e l f . p l o t = p lo t

s e l f . a rgs = args

def i n i t i a l i z e p a r a m s ( s e l f , X) :



s e l f . i n i t pa rams = np . l i n s p a c e ( 1 . 0 , 1 . 0 , int ( 1 . 0 + X. shape [ 1 ] * 2 . 0 ) )

return s e l f . i n i t pa rams

def m o d e l f i l t e r ( s e l f , params , x ) :

model = params [ 0 ]

for i in range (1 , len ( x ) + 1 ) :

model += params [ 2 * i = 1 ] * Beta ( ) . x weighted ( x [ ’X{num} ’ . format (num = i ) ] ,

[ 1 . 0 , params [ 2 * i ] ] )

return model

def l o g l i k e l i h o o d ( s e l f , params , X, y ) :

X = crea t e mat r i x (X, s e l f . l ag )

return np .sum( ( y = s e l f . m o d e l f i l t e r ( params , X) ) ** 2)

def p r e d i c t ( s e l f , X) :

X = crea t e mat r i x (X, s e l f . l ag )

return s e l f . m o d e l f i l t e r ( s e l f . optimized params , X)

def s imulate ( s e l f , params = [ 2 . 0 , 0 . 5 , 5 . 0 ] , l ag = 12 , num = 5 0 0 ) :

y = np . z e ro s (num)

x = np . exp (np . cumsum(np . random . normal ( 0 . 5 , 2 , num) / 100))

alpha , beta , theta = params [ 0 ] , params [ 1 ] , params [ 2 ]

for i in range (num ) :

i f i < l ag :

y [ i ] = alpha

else :

y [ i ] = alpha + beta * Beta ( ) . x weighted (

x [ i = l ag : i ] [ : : = 1 ] . reshape ( ( 1 , l ag ) ) ,

[ 1 . 0 , theta ] )

return x , y

class GARCH( BaseModel ) :

def i n i t ( s e l f , p l o t = True , * args ) :

s e l f . p l o t = p lo t

s e l f . a rgs = args

def i n i t i a l i z e p a r a m s ( s e l f , y ) :



s e l f . i n i t pa rams = np . asar ray ( [ 0 . 0 , 0 . 05 , 0 . 02 , 0 . 9 5 ] )

return s e l f . i n i t pa rams

def m o d e l f i l t e r ( s e l f , params , y ) :

sigma2 = np . z e r o s ( len ( y ) )

r e s i d = y = params [ 0 ]

for i in range ( len ( y ) ) :

i f i == 0 :

sigma2 [ i ] = params [ 1 ] / (1 = params [ 2 ] = params [ 3 ] )

else :

sigma2 [ i ] = params [ 1 ] + params [ 2 ] * r e s i d [ i = 1 ] ** 2

sigma2 [ i ] += params [ 3 ] * sigma2 [ i = 1 ]

return sigma2

def l o g l i k e l i h o o d ( s e l f , params , y ) :

sigma2 = s e l f . m o d e l f i l t e r ( params , y )

r e s i d = y = params [ 0 ]

return l o g l i k e l i h o o d n o r m a l ( r e s id , sigma2 )

def s imulate ( s e l f , params = [ 0 . 0 , 0 . 2 , 0 . 2 , 0 . 6 ] , num = 5 0 0 ) :

y = np . z e ro s (num)

s t a t e = np . z e ro s (num)

for i in range (num ) :

i f i == 0 :

s t a t e [ i ] = params [ 1 ] / (1 = params [ 2 ] = params [ 3 ] )

else :

s t a t e [ i ] = params [ 1 ] + params [ 2 ] * y [ i = 1 ] * y [ i = 1 ]

s t a t e [ i ] += params [ 3 ] * s t a t e [ i = 1 ]

y [ i ] = s t a t s . norm . rvs ( l o c = params [ 0 ] , s c a l e = np . s q r t ( s t a t e [ i ] ) )

return y , s t a t e

def p r e d i c t ( s e l f , X) :

return s e l f . m o d e l f i l t e r ( s e l f . optimized params , X)

class T GARCH( BaseModel ) :

def i n i t ( s e l f , p l o t = True , * args ) :

s e l f . p l o t = p lo t

s e l f . a rgs = args



def i n i t i a l i z e p a r a m s ( s e l f , y ) :

s e l f . i n i t pa rams = np . asar ray ( [ 0 . 1 , 0 . 02 , 0 . 95 , 3 . 7 5 ] )

return s e l f . i n i t pa rams

def m o d e l f i l t e r ( s e l f , params , y ) :

sigma2 = np . z e ro s ( len ( y ) )

r e s i d = y = params [ 0 ]

for i in range ( len ( y ) ) :

i f i == 0 :

sigma2 [ i ] = params [ 1 ] / (1 = params [ 2 ] = params [ 3 ] )

else :

sigma2 [ i ] = params [ 1 ] + params [ 2 ] * r e s i d [ i = 1 ] ** 2

sigma2 [ i ] += params [ 3 ] * sigma2 [ i = 1 ]

return sigma2

def l o g l i k e l i h o o d ( s e l f , params , y ) :

sigma2 = s e l f . m o d e l f i l t e r ( params , y )

r e s i d = y = params [ 0 ]

nu = params [ 4 ]

return l o g l i k e l i h o o d s t u d e n t t ( r e s id , sigma2 , nu)

def s imulate ( s e l f , params = [ 0 . 0 , 0 . 2 , 0 . 2 , 0 . 6 , 3 . 0 ] , num = 5 0 0 ) :

y = np . z e ro s (num)

s t a t e = np . z e r o s (num)

for i in range (num ) :

i f i == 0 :

s t a t e [ i ] = params [ 1 ] / (1 = params [ 2 ] = params [ 3 ] )

else :

s t a t e [ i ] = params [ 1 ] + params [ 2 ] * y [ i = 1 ] * y [ i = 1 ]

s t a t e [ i ] += params [ 3 ] * s t a t e [ i = 1 ]

y [ i ] = s t a t s . t . rvs ( params [ 4 ] ,

l o c = params [ 3 ] ,

s c a l e = np . s q r t ( s t a t e [ i ] ) )

return y , s t a t e

def p r e d i c t ( s e l f , X) :

return s e l f . m o d e l f i l t e r ( s e l f . optimized params , X)

class GARCH MIDAS( BaseModel ) :



def i n i t ( s e l f , l ag = 22 , p l o t = True , * args ) :

s e l f . l ag = lag

s e l f . p l o t = p lo t

s e l f . a rgs = args

def i n i t i a l i z e p a r a m s ( s e l f , X) :

d a i l y i n d e x = np . array ( [ ] )

monthly index = np . array ( [ ] )

garch params = np . array ( [ 0 . 0 5 , 0 . 05 , 0 . 02 , 0 . 9 5 ] )

midas params = np . array ( [ 1 . 0 ] )

for i in range (X. shape [ 1 ] ) :

r a t i o = X. i l o c [ : , i ] . unique ( ) . shape [ 0 ] / X. shape [ 0 ]

i f r a t i o <= 0 . 0 5 :

midas params = np . append ( midas params , [ 1 . 0 ] )

monthly index = np . append ( monthly index , i )

else :

midas params = np . append ( midas params , [ 1 . 0 , 1 . 0 ] )

d a i l y i n d e x = np . append ( da i l y index , i )

s e l f . monthly = monthly index

s e l f . d a i l y = d a i l y i n d e x

s e l f . i n i t pa rams = np . append ( garch params , midas params )

return s e l f . i n i t pa rams

def m o d e l f i l t e r ( s e l f , params , X, y ) :

s e l f . g = np . z e r o s ( len ( y ) )

r e s i d = y = params [ 0 ]

sigma2 = np . z e r o s ( len ( y ) )

p l c = [ ]

uncond var = params [ 1 ] / (1 = params [ 2 ] = params [ 3 ] )

per = X. index . t o p e r i o d ( ’M’ )

uniq = np . asar ray ( per . unique ( ) )

s e l f . tau = np . z e ro s ( len ( uniq ) )

for t in range ( len ( uniq ) ) :

i f t == 0 :



p l c . append (np . where ( ( per >= uniq [ t ] . s t r f t i m e ( ’%Y=%m’ ) ) &

( per < uniq [ t + 1 ] . s t r f t i m e ( ’%Y=%m’ ) ) ) [ 0 ] )

new d = np . array ( [ ] )

e l i f t != len ( uniq ) = 1 :

p l c . append (np . where ( ( per >= uniq [ t ] . s t r f t i m e ( ’%Y=%m’ ) ) &

( per < uniq [ t + 1 ] . s t r f t i m e ( ’%Y=%m’ ) ) ) [ 0 ] )

dd = X. i l o c [ p l c [ t = 1 ] , s e l f . d a i l y ] . va lue s

i f len (dd) < s e l f . l ag :

pad = np . z e r o s ( ( s e l f . l ag = len (dd ) , dd . shape [ 1 ] ) )

new d = np . vstack ( [ dd [ : : = 1 ] , pad ] ) . T

else :

new d = dd [ len (dd) = s e l f . l ag : ] [ : : = 1 ] .T

else :

p l c . append (np . where ( per >= uniq [ t ] . s t r f t i m e ( ’%Y=%m’ ) ) [ 0 ] )

dd = X. i l o c [ p l c [ t = 1 ] , s e l f . d a i l y ] . va lue s

i f len (dd) < s e l f . l ag :

pad = np . z e r o s ( ( s e l f . l ag = len (dd ) , dd . shape [ 1 ] ) )

new d = np . vstack ( [ dd [ : : = 1 ] , pad ] ) . T

else :

new d = dd [ len (dd) = s e l f . l ag : ] [ : : = 1 ] .T

s e l f . tau [ t ] = params [ 4 ] + np . dot (X. i l o c [ p l c [ t ] ,

s e l f . monthly ] . va lue s [ 0 ] ,

params [ 5 : 5 + len ( s e l f . monthly ) ] )

for j in range ( len ( new d ) ) :

x = new d [ j ] . reshape ( ( 1 , s e l f . l ag ) )

s e l f . tau [ t ] += params [ 5 + len ( s e l f . monthly ) + j ] * Beta ( ) . x weighted (x ,

[ 1 . 0 , params [ ( 5 + len ( s e l f . monthly + s e l f . d a i l y ) + j ) ] ] )

for i in p l c [ t ] :

i f i == 0 :

s e l f . g [ i ] = uncond var

sigma2 [ i ] = s e l f . g [ i ] * s e l f . tau [ t ]

else :

s e l f . g [ i ] = uncond var * (1 = params [ 2 ] = params [ 3 ] )

s e l f . g [ i ] += params [ 2 ] * ( ( r e s i d [ i =1] ** 2) / s e l f . tau [ t ] )



s e l f . g [ i ] += params [ 3 ] * s e l f . g [ i = 1 ]

sigma2 [ i ] = s e l f . g [ i ] * s e l f . tau [ t ]

return sigma2

def l o g l i k e l i h o o d ( s e l f , params , X, y ) :

sigma2 = s e l f . m o d e l f i l t e r ( params , X, y )

r e s i d = y = params [ 0 ]

return l o g l i k e l i h o o d n o r m a l ( r e s id , sigma2 )

def p r e d i c t ( s e l f , X, y ) :

return s e l f . m o d e l f i l t e r ( s e l f . optimized params , X, y )

class Panel GARCH( BaseModel ) :

def i n i t ( s e l f , p l o t = True , d i s t = ’ normal ’ , * args ) :

s e l f . p l o t = p lo t

s e l f . d i s t = d i s t

s e l f . a rgs = args

def i n i t i a l i z e p a r a m s ( s e l f , X) :

i f s e l f . d i s t == ’ normal ’ :

s e l f . i n i t pa rams = np . array ( [ 0 . 4 , 0 . 4 ] )

e l i f s e l f . d i s t == ’ student=t ’ :

s e l f . i n i t pa rams = np . array ( [ 0 . 4 , 0 . 4 , 4 . 0 ] )

else :

raise ValueError ( ” ValueError except ion thrown” )

return s e l f . i n i t pa rams

def m o d e l f i l t e r ( s e l f , params , X) :

sigma2 = np . z e r o s l i k e (X)

alpha , beta = params [ 0 ] , params [ 1 ]

uncond var = np . nanmean(X ** 2 , a x i s = 0)

nans = X. i sna ( ) .sum ( ) . va lue s

X = X. va lue s

for i in range ( sigma2 . shape [ 0 ] ) :

for j in range ( sigma2 . shape [ 1 ] ) :



i f nans [ j ] == i :

sigma2 [ i ] [ j ] = uncond var [ j ]

e l i f nans [ j ] < i :

sigma2 [ i ] [ j ] = uncond var [ j ] * (1 = alpha = beta )

sigma2 [ i ] [ j ] += alpha * (X[ i = 1 ] [ j ] ** 2) + beta * sigma2 [ i = 1 ] [ j ]

else :

pass

return sigma2

def l o g l i k e l i h o o d ( s e l f , params , X) :

sigma2 = s e l f . m o d e l f i l t e r ( params , X)

i f s e l f . d i s t == ’ normal ’ :

l l s = l o g l i k e l i h o o d n o r m a l (X, sigma2 ) .sum( )

e l i f s e l f . d i s t == ’ student=t ’ :

l l s = l o g l i k e l i h o o d s t u d e n t t (X, sigma2 , params [ 2 ] ) . sum( )

return l l s

def s imulate ( s e l f , params = [ 0 . 0 6 , 0 . 9 1 ] , num = 100 , l ength = 1000) :

sigma2 = np . z e ro s ( ( length , num) )

r = np . z e ro s ( ( length , num) )

alpha , beta = params [ 0 ] , params [ 1 ]

for t in range ( l ength ) :

i f t == 0 :

sigma2 [ t ] = 1 .0

else :

sigma2 [ t ] = 1 = alpha = beta + alpha * ( r [ t = 1 ] ** 2)

sigma2 [ t ] += beta * sigma2 [ t = 1 ]

r [ t ] = np . random . normal ( 0 . 0 , np . s q r t ( sigma2 [ t ] ) )

return sigma2 , r

def f o r e c a s t ( s e l f , X, H) :

X new = X

X new . l o c [X. shape [ 0 ] ] = 0

sigma2 = s e l f . m o d e l f i l t e r ( s e l f . optimized params , X new)

sigma2 = sigma2 * np . s q r t (H)

return sigma2 [=1]



class Panel GARCH CSA( BaseModel ) :

def i n i t ( s e l f , p l o t = True , d i s t = ’ normal ’ , * args ) :

s e l f . p l o t = p lo t

s e l f . d i s t = d i s t

s e l f . a rgs = args

def i n i t i a l i z e p a r a m s ( s e l f , X) :

i f s e l f . d i s t == ’ normal ’ :

s e l f . i n i t pa rams = np . array ( [ 0 . 1 , 0 . 5 , 0 . 5 ] )

e l i f s e l f . d i s t == ’ student=t ’ :

s e l f . i n i t pa rams = np . array ( [ 0 . 1 , 0 . 5 , 0 . 5 , 4 . 0 ] )

return s e l f . i n i t pa rams

def m o d e l f i l t e r ( s e l f , params , X) :

c = np . z e ro s (X. shape [ 0 ] )

sigma2 = np . z e r o s l i k e (X)

phi , alpha , beta = params [ 0 ] , params [ 1 ] , params [ 2 ]

uncond var = np . nanmean(X ** 2 , a x i s = 0)

nans = X. i sna ( ) .sum ( ) . va lue s

X = X. va lue s

for i in range ( sigma2 . shape [ 0 ] ) :

i f i == 0 :

c [ i ] = 1

else :

c [ i ] = (1 = phi ) + phi * np . nanstd (X[ i =1] / (np . s q r t ( sigma2 [ i =1])

* c [ i = 1 ] ) , ddof = 1)

for j in range ( sigma2 . shape [ 1 ] ) :

i f nans [ j ] == i :

sigma2 [ i ] [ j ] = uncond var [ j ]

e l i f nans [ j ] < i :

sigma2 [ i ] [ j ] = uncond var [ j ] * (1 = alpha = beta )

sigma2 [ i ] [ j ] += alpha * ( (X[ i = 1 ] [ j ] / (np . s q r t ( sigma2 [ i =1] [ j ] ) * c [ i =1])) ** 2)

sigma2 [ i ] [ j ] += beta * sigma2 [ i = 1 ] [ j ]

else :

pass



return sigma2 , c

def l o g l i k e l i h o o d ( s e l f , params , X) :

sigma2 , = s e l f . m o d e l f i l t e r ( params , X)

i f s e l f . d i s t == ’ normal ’ :

l l s = l o g l i k e l i h o o d n o r m a l (X, sigma2 ) .sum( )

e l i f s e l f . d i s t == ’ student=t ’ :

l l s = l o g l i k e l i h o o d s t u d e n t t (X, sigma2 , params [ 3 ] ) . sum( )

return l l s

def s imulate ( s e l f , params = [ 0 . 1 , 0 . 2 , 0 . 6 ] , num = 100 , l ength = 50 0 ) :

c = np . z e ro s ( l ength )

sigma2 = np . z e ro s ( ( length , num) )

r e t = np . z e r o s ( ( length , num) )

phi , alpha , beta = params [ 0 ] , params [ 1 ] , params [ 2 ]

for t in range ( l ength ) :

i f t == 0 :

c [ t ] = 1 .0

sigma2 [ t ] = 1 .0

else :

c [ t ] = (1 = phi ) + phi * np . nanstd ( r e t [ t = 1 ] / (np . s q r t ( sigma2 [ t = 1 ] )

* c [ t = 1 ] ) , ddof = 1)

mu = np . mean( r e t [ : t ] ** 2 , a x i s = 0)

sigma2 [ t ] = mu * (1 = alpha = beta )

sigma2 [ t ] += alpha * ( r e t [ t = 1 ] / ( np . s q r t ( sigma2 [ t = 1 ] ) * c [ t = 1 ] ) )**2

sigma2 [ t ] += beta * sigma2 [ t = 1 ]

r e t [ t ] = s t a t s . norm . rvs ( l o c = 0 . 0 , s c a l e = np . s q r t ( sigma2 [ t ] ) )

return ret , sigma2 , c

def f o r e c a s t ( s e l f , params , X, H = 1 ) :

X new = X

X new . l o c [X. shape [ 0 ] ] = 0

sigma2 , = s e l f . m o d e l f i l t e r ( params , X new)

sigma2 = sigma2 * np . s q r t (H)



return sigma2 [=1]

class Panel MIDAS ( BaseModel ) :

def i n i t ( s e l f , l ag = 12 , p l o t = True , exp = True , * args ) :

s e l f . l ag = lag

s e l f . p l o t = p lo t

s e l f . exp = exp

s e l f . a rgs = args

def i n i t i a l i z e p a r a m s ( s e l f , X) :

s e l f . i n i t pa rams = np . l i n s p a c e (1 , 1 , int ( 1 . 0 + X. shape [ 1 ] * 2 . 0 ) )

return s e l f . i n i t pa rams

def m o d e l f i l t e r ( s e l f , params , X) :

X = crea t e mat r i x (X, s e l f . l ag )

model = params [ 0 ]

for i in range (1 , len (X) + 1 ) :

model += params [ 2 * i = 1 ] * Beta ( ) . x weighted (X[ ’X{num} ’ . format (num = i ) ] ,

[ 1 . 0 , params [ 2 * i ] ] )

i f s e l f . exp == True :

return np . exp ( model )

else :

return model

def l o g l i k e l i h o o d ( s e l f , params , X, y ) :

try :

y l en , y c o l = y . shape

except :

y l en , y c o l = y . shape [ 0 ] , 1

y nan = y . i sna ( ) .sum ( ) . va lue s

s e l f . t au t = np . z e r o s ( y l e n )

tau = s e l f . m o d e l f i l t e r ( params , X)

T = X. shape [ 0 ]

j = 0

for i in range (T = 1 ) :

i f i == 0 :

index = y [ y . index < X. index [ i + 1 ] ] . index



else :

index = y [ ( y . index >= X. index [ i ] ) & ( y . index < X. index [ i + 1 ] ) ] . index

mat = np . l i n s p a c e ( tau [ i ] , tau [ i ] , index . shape [ 0 ] )

s e l f . t au t [ j : j + index . shape [ 0 ] ] = mat

j += index . shape [ 0 ]

l l s = 0

for i in range ( y c o l ) :

i f y nan [ i ] >= y l e n :

l l s += 0

else :

l l s += l o g l i k e l i h o o d n o r m a l ( y . i l o c [ y nan [ i ] : , i ] . va lues ,

s e l f . t au t [ y nan [ i ] : ] )

return l l s

def s imulate ( s e l f , params = [ 0 . 1 , 0 . 3 , 4 . 0 ] , num = 500 , K = 12 , panel = 1 0 0 ) :

X = np . z e ro s (num)

tau = np . z e r o s (num)

r = np . z e ro s ( (num * 22 , panel ) )

j = 0

month = [ ]

m dates = [ ]

y date s = [ ]

for t in range (num ) :

i f t == 0 :

X[ t ] = np . random . normal ( )

else :

X[ t ] = 0 .9 * X[ t = 1 ] + np . random . normal ( )

for t in range (1 , num + 1 ) :

i f t < K + 1 :

tau [ t = 1 ] = np . exp ( params [ 0 ]

tau [ t = 1 ] += params [ 1 ] * Beta ( ) . x weighted (X [ : t ] [ : : = 1 ] . reshape ( ( 1 , X [ : t ] . shape [ 0 ] ) ) ,

[ 1 . 0 , params [ 2 ] ] ) )

else :

tau [ t = 1 ] = np . exp ( params [ 0 ]

tau [ t = 1 ] += params [ 1 ] * Beta ( ) . x weighted (X[ t = K : t ] [ : : = 1 ] . reshape ( ( 1 , K) ) ,



[ 1 . 0 , params [ 2 ] ] ) )

r [ ( t = 1) * 22 : t * 22 ] = np . random . normal ( s c a l e = np . s q r t ( tau [ t = 1 ] ) ,

s i z e = (22 , panel ) )

for i in range (num ) :

month . append ( i % 12)

for i in month :

i f i == 0 :

j += 1

m dates . append ( datet ime (2010 + j , 1 , 1 ) )

else :

m dates . append ( datet ime (2010 + j , 1 + i , 1 ) )

for i in m dates [ : = 1 ] :

for j in range ( 2 2 ) :

y date s . append ( i + t imede l ta ( j ) )

y = pd . DataFrame ( data = r [ : =22 ] , index = y date s )

X = pd . DataFrame ( data = X, index = m dates )

return X, y , tau

def c r e a t e s i m s ( s e l f , number of s ims = 500 , l ength = 100 ,

K = 12 , params = [ 0 . 1 , 0 . 3 , 4 . 0 ] , panel = 2 0 0 ) :

l l s = np . z e r o s ( number of s ims )

b0 , b1 = np . z e ro s ( number of s ims ) , np . z e r o s ( number of s ims )

th , runtime = np . z e r o s ( number of s ims ) , np . z e r o s ( number of s ims )

for i in range ( number of s ims ) :

np . random . seed ( i )

X, y , = s e l f . s imulate ( params = params , num = length , K = K, panel = panel )

s t a r t = time . time ( )

s e l f . f i t ( [ ’ pos ’ , ’ pos ’ , ’ pos ’ ] , X, y )

runtime [ i ] = time . time ( ) = s t a r t

l l s [ i ] = s e l f . opt . fun

b0 [ i ] , b1 [ i ] = s e l f . optimized params [ 0 ] , s e l f . optimized params [ 1 ] ,



th [ i ] = s e l f . optimized params [ 2 ]

print ( ”{} s t i t e r a t i o n ’ s runTime : {} s ec .\n” . format ( i + 1 , round( runtime [ i ] , 4 ) ) )

return pd . DataFrame ( data = { ’ LogLike ’ : l l s ,

’ Beta0 ’ : b0 ,

’ Beta1 ’ : b1 ,

’ Theta ’ : th })

class Panel GARCH MIDAS ( ) :

def i n i t ( s e l f , l ag = 12 , p l o t = True , exp = True , * args ) :

s e l f . l ag = lag

s e l f . exp = exp

s e l f . p l o t = p lo t

s e l f . a rgs = args

def f i t ( s e l f , r e s t r i c t i o n m i d a s , r e s t r i c t i o n g a r c h , X, y ) :

s e l f . midas = Panel MIDAS ( lag = s e l f . lag , p l o t = s e l f . p lot , exp = s e l f . exp )

i f s e l f . p l o t == True :

print ( ’ Estimated parameters f o r the MIDAS equat ion :\n ’ )

else :

pass

s e l f . midas . f i t ( r e s t r i c t i o n m i d a s , X, y )

y hat = s e l f . c a l c u l a t e y h a t (y , s e l f . midas . t au t )

s e l f . garch = Panel GARCH( p lo t = s e l f . p l o t )

i f s e l f . p l o t == True :

print ( ’ \nEstimated parameters f o r the GARCH equat ion :\n ’ )

else :

pass

s e l f . garch . f i t ( r e s t r i c t i o n g a r c h , y hat )

def c a l c u l a t e y h a t ( s e l f , y , tau ) :

y hat = np . z e r o s l i k e ( y )

for i in range ( y . shape [ 0 ] ) :

for j in range ( y . shape [ 1 ] ) :

y hat [ i ] [ j ] = y . i l o c [ i , j ] / np . s q r t ( tau [ i ] )



y hat = pd . DataFrame ( data = y hat , index = y . index , columns = y . columns )

return y hat

def s imulate ( s e l f , midas params = [ 0 . 1 , 0 . 3 , 4 . 0 ] ,

garch params = [ 0 . 0 6 , 0 . 8 ] , num = 500 , K = 12 , panel = 1 00 ) :

beta0 , beta1 , theta = midas params [ 0 ] , midas params [ 1 ] , midas params [ 2 ]

alpha , beta = garch params [ 0 ] , garch params [ 1 ]

X = np . z e ro s (num)

tau = np . z e ro s (num)

r = np . z e ro s ( (num * 22 , panel ) )

g = np . z e ro s ( (num * 22 , panel ) )

j = 0

month = [ ]

m dates = [ ]

y date s = [ ]

for t in range (num ) :

i f t == 0 :

X[ t ] = np . random . normal ( )

else :

X[ t ] = 0 .9 * X[ t = 1 ] + np . random . normal ( )

for t in range (1 , num + 1 ) :

i f t < K + 1 :

tau [ t = 1 ] = np . exp ( beta0 +

beta1 * Beta ( ) . x weighted (X [ : t ] [ : : = 1 ] . reshape ( ( 1 , X [ : t ] . shape [ 0 ] ) ) ,

[ 1 . 0 , theta ] ) )

else :

tau [ t = 1 ] = np . exp ( beta0 +

beta1 * Beta ( ) . x weighted (X[ t = K : t ] [ : : = 1 ] . reshape ( ( 1 , K) ) ,

[ 1 . 0 , theta ] ) )

for i in range ( ( t = 1) * 22 , t * 2 2 ) :

i f i == 0 :

g [ i ] = np . ones ( panel )

else :

g [ i ] = (1 = alpha = beta )

g [ i ] += alpha * ( r [ i = 1 ] ** 2) / tau [ t = 1 ] + beta * g [ i = 1 ]



r [ i ] = np . random . normal ( s c a l e = np . s q r t ( g [ i ] * tau [ t = 1 ] ) , s i z e = panel )

for i in range (num ) :

month . append ( i % 12)

for i in month :

i f i == 0 :

j += 1

m dates . append ( datet ime (2010 + j , 1 , 1 ) )

else :

m dates . append ( datet ime (2010 + j , 1 + i , 1 ) )

for i in m dates [ : = 1 ] :

for j in range ( 2 2 ) :

y date s . append ( i + t imede l ta ( j ) )

y = pd . DataFrame ( data = r [ : =22 ] , index = y date s )

X = pd . DataFrame ( data = X, index = m dates )

return X, y , tau , g

def c r e a t e s i m s ( s e l f , number of s ims = 500 , l ength = 100 ,

K = 12 , midas params = [ 0 . 1 , 0 . 3 , 4 . 0 ] , garch params = [ 0 . 0 6 , 0 . 8 ] ) :

b0 , b1 = np . z e ro s ( number of s ims ) , np . z e r o s ( number of s ims )

th , a l = np . z e ro s ( number of s ims ) , np . z e r o s ( number of s ims )

bt , runtime = np . z e r o s ( number of s ims ) , np . z e r o s ( number of s ims )

for i in range ( number of s ims ) :

np . random . seed ( i )

X, y , , = s e l f . s imulate ( midas params = midas params ,

garch params = garch params ,

num = length , K = K, panel = 100)

s t a r t = time . time ( )

s e l f . f i t ( [ ’ pos ’ , ’ pos ’ , ’ pos ’ ] , [ ’ 01 ’ , ’ 01 ’ ] , X, y )

runtime [ i ] = time . time ( ) = s t a r t

b0 [ i ] , b1 [ i ] = s e l f . midas . optimized params [ 0 ] , s e l f . midas . optimized params [ 1 ]

th [ i ] , a l [ i ] = s e l f . midas . optimized params [ 2 ] , s e l f . garch . optimized params [ 0 ]

bt [ i ] = s e l f . garch . optimized params [ 1 ]



print ( ”{} s t i t e r a t i o n ’ s runTime : {} s ec .\n” . format ( i + 1 , round( runtime [ i ] , 4 ) ) )

return pd . DataFrame ( data = { ’ Beta0 ’ : b0 ,

’ Beta1 ’ : b1 ,

’ Theta ’ : th ,

’ Alpha ’ : a l ,

’ Beta ’ : bt })

def f o r e c a s t ( s e l f , y , H = 5 , p l o t t i n g = True ) :

from pandas . t s e r i e s . o f f s e t s import BDay

import matp lo t l i b . pyplot as p l t

f o r e c a s t = np . z e ro s (H)

mu = np . mean( y ** 2)

alpha = s e l f . garch . optimized params [ 0 ]

beta = s e l f . garch . optimized params [ 1 ]

y hat = y / s e l f . midas . t au t

sigma2 = s e l f . garch . m o d e l f i l t e r ( s e l f . garch . optimized params , y hat )

for i in range (1 , H + 1 ) :

f o r e c a s t [ i = 1 ] = (mu * (1 = ( alpha + beta ) ** ( i = 1) )

f o r e c a s t [ i = 1 ] += sigma2 [=1] * ( alpha + beta ) ** ( i = 1) ) * s e l f . midas . t au t [=1]

f o r c = np . z e r o s ( len ( y ) + H)

f o r c [:=H] = sigma2 * s e l f . midas . t au t

f o r c [=H : ] = f o r e c a s t

i f isinstance (y , pd . core . s e r i e s . S e r i e s ) or isinstance (y , pd . core . frame . DataFrame ) :

index = [ ]

for i in range ( len ( y ) + H) :

i f i < len ( y ) :

index . append ( y . index [ i ] )

else :

index . append ( y . index [=1] + BDay( i = len ( y . index ) + 1) )

f o r e c a s t e d s e r i e s = pd . S e r i e s ( data = forc , index = index )

i f p l o t t i n g == True :

p l t . f i g u r e ( f i g s i z e = (15 , 5 ) )

p l t . p l o t ( f o r e c a s t e d s e r i e s [ f o r e c a s t e d s e r i e s . index <=



pd . to date t ime ( y . index [ =1 ] ) ] , ’ g ’ )

p l t . p l o t ( f o r e c a s t e d s e r i e s [ f o r e c a s t e d s e r i e s . index >

pd . to date t ime ( y . index [ =1 ] ) ] , ’ r ’ )

p l t . t i t l e ( ” V o l a t i l i t y Pred i c t i on f o r the next {} days” . format (H) )

p l t . t i g h t l a y o u t ( )

p l t . show ( )

else :

f o r e c a s t e d s e r i e s = f o r c

return f o r e c a s t e d s e r i e s

class EWMA( BaseModel ) :

def i n i t ( s e l f , p l o t = True , lam = 0 .94 , * args ) :

s e l f . p l o t = p lo t

s e l f . lam = 0.94

s e l f . a rgs = args

def i n i t i a l i z e p a r a m s ( s e l f , y ) :

s e l f . i n i t pa rams = np . array ( [ s e l f . lam ] )

return s e l f . i n i t pa rams

def m o d e l f i l t e r ( s e l f , params , y ) :

T = y . shape [ 0 ]

sigma2 = np . z e ro s (T)

lamb = params

for t in range (T) :

i f t == 0 :

sigma2 [ t ] = 1 .0

else :

sigma2 [ t ] = lamb * sigma2 [ t = 1 ] + (1 = lamb ) * y [ t = 1 ] ** 2

return sigma2

def l o g l i k e l i h o o d ( s e l f , params , y ) :

sigma2 = s e l f . m o d e l f i l t e r ( params , y )

return l o g l i k e l i h o o d n o r m a l (y , sigma2 )

def s imulate ( s e l f , lamb , T) :

sigma2 = np . z e ro s (T)



r e t = np . z e r o s (T)

for t in range (T) :

i f t == 0 :

sigma2 [ t ] = 1 .0

else :

sigma2 [ t ] = lamb * sigma2 [ t = 1 ] + (1 = lamb ) * r e t [ t = 1 ] ** 2

r e t [ t ] = np . random . normal ( s c a l e = np . s q r t ( sigma2 [ t ] ) )

return ret , sigma2

class Panel EWMA( BaseModel ) :

def i n i t ( s e l f , p l o t = True , lam = 0 .94 , * args ) :

s e l f . p l o t = p lo t

s e l f . lam = 0.94

s e l f . a rgs = args

def i n i t i a l i z e p a r a m s ( s e l f , y ) :

s e l f . i n i t pa rams = np . array ( [ s e l f . lam ] )

return s e l f . i n i t pa rams

def m o d e l f i l t e r ( s e l f , params , y ) :

T = y . shape [ 0 ]

sigma2 = np . z e r o s (T)

lamb = params

for t in range (T) :

i f t == 0 :

sigma2 [ t ] = 1 .0

else :

sigma2 [ t ] = lamb * sigma2 [ t = 1 ] + (1 = lamb ) * y [ t = 1 ] ** 2

return sigma2

def l o g l i k e l i h o o d ( s e l f , params , y ) :

l l s = 0

for i in range ( y . shape [ 1 ] ) :

idx = np . where (np . i snan ( y . i l o c [ : , i ] ) == False ) [ 0 ]

s i g = s e l f . m o d e l f i l t e r ( params , y . i l o c [ idx , i ] . va lue s )



i f len ( s i g ) == 0 :

l l s += 0

else :

l l s += l o g l i k e l i h o o d n o r m a l ( y . i l o c [ idx , i ] . va lues , s i g )

return l l s

def f o r e c a s t ( s e l f , y ) :

row nul = pd . DataFrame ( [ [ 0 ] * y . shape [ 1 ] ] , columns = y . columns )

y = y . append ( row nul )

f o r e c a s t = np . z e ro s ( len ( y . columns ) )

for i in range ( ret mat . shape [ 1 ] ) :

idx = np . where (np . i snan ( y . i l o c [ : , i ] ) == False ) [ 0 ]

i f len ( idx ) == 0 :

f o r e c a s t [ i ] = np . nan

else :

s i g = model . m o d e l f i l t e r ( model . optimized params , y . i l o c [ idx , i ] . va lue s )

f o r e c a s t [ i ] = s i g [=1]

return f o r e c a s t

def s imulate ( s e l f , lamb = 0 .94 , T = 500 , num = 1 00 ) :

sigma2 = np . z e ro s ( (T, num) )

r = np . z e ro s ( (T, num) )

for t in range (T) :

i f t == 0 :

sigma2 [ t ] = 1 .0

else :

sigma2 [ t ] = lamb * sigma2 [ t = 1 ] + (1 = lamb ) * r [ t = 1 ] ** 2

r [ t ] = np . random . normal ( 0 . 0 , np . s q r t ( sigma2 [ t ] ) , s i z e = num)

return r , sigma2

B.3 weights.py

import numpy as np

from s c ipy . s t a t s import beta as b

from abc import ABCMeta, abstractmethod

class WeightMethod ( object , metac las s = ABCMeta ) :

def i n i t ( s e l f , * args ) :



s e l f . a rgs = args

@abstractmethod

def weights ( s e l f ) :

pass

def x weighted ( s e l f , x , params , arg = False ) :

i f arg == False :

try :

w = s e l f . we ights ( params , x . shape [ 1 ] )

except :

w = s e l f . we ights ( params , 1)

else :

try :

w = s e l f . we ights ( params , x . shape [ 0 ] )

except :

w = s e l f . we ights ( params , 1)

return np . matmul (x , w)

class Beta ( WeightMethod ) :

def weights ( s e l f , params , n lags ) :

eps = 1e=6

x = np . l i n s p a c e ( eps , 1 = eps , n lags )

b e t a v a l s = b . pdf (x , params [ 0 ] , params [ 1 ] )

b e t a v a l s /= np .sum(b . pdf (x , params [ 0 ] , params [ 1 ] ) )

return b e t a v a l s

class ExpAlmon( WeightMethod ) :

def weights ( s e l f , params , n lags ) :

i t h = np . arange (1 , 1 + n lags )

a lmon vals = np . exp ( params [ 0 ] * i t h + params [ 1 ] * i t h ** 2)

a lmon vals /= np .sum(np . exp ( params [ 0 ] * i t h + params [ 1 ] * i t h ** 2) )

return almon vals

class Exp( WeightMethod ) :

def weights ( s e l f , params , n lags ) :

i t h = np . arange (1 , 1 + n lags )

ew = params ** i t h / np .sum( params ** i t h )

return ew



B.4 stats.py

import numpy as np

from s c ipy . s p e c i a l import gammaln

from s c ipy . s t a t s import t

import pandas as pd

def l o g l i k e l i h o o d n o r m a l ( r e s id , sigma2 ) :

l l s = =0.5 * (np . l og (2*np . p i ) + np . l og ( sigma2 ) + r e s i d ** 2 / sigma2 )

return np .sum(= l l s ) / len ( r e s i d )

def l o g l i k e l i h o o d s t u d e n t t ( r e s id , sigma2 , nu ) :

l l s = gammaln ( ( nu + 1) / 2) = gammaln( nu / 2) = np . l og (np . p i * (nu = 2) ) / 2

l l s == 0.5 * np . l og ( sigma2 )

l l s == ( ( nu + 1) / 2) * (np . l og (1 + ( r e s i d ** 2) / ( sigma2 * (nu = 2 ) ) ) )

return np .sum(= l l s ) / len ( r e s i d )

def squared re turn ( df ) :

r t = np . l og ( df . Close ) = np . l og ( df . Close . s h i f t ( 1 ) )

v o l a t i l i t y = r t ** 2

df [ ’ Squared Return ’ ] = v o l a t i l i t y . f i l l n a (0 )

return df

def park inson h igh low ( df ) :

h i gh l ow t = np . l og ( df . High ) = np . l og ( df . Low)

v o l a t i l i t y = ( h i gh l ow t ** 2) / (4 * np . l og ( 2 ) )

df [ ’ High Low Est ’ ] = v o l a t i l i t y . f i l l n a (0 )

return df

def dm test ( act , pred1 , pred2 , h = 1 , degree = 0 , p l o t = False ) :

e 1 l s t , e 2 l s t , d l s t = [ ] , [ ] , [ ]

a c t l s t = np . asar ray ( act )

p r e d 1 l s t = np . asar ray ( pred1 )

p r e d 2 l s t = np . asar ray ( pred2 )

def f a m i l y o f l o s s f u n c ( actua l , pred ic ted , degree ) :



i f degree == =2:

# QLIKE

l o s s = ac tua l / p r ed i c t ed = np . l og ( ac tua l / p r ed i c t ed ) = 1

e l i f degree == =1:

l o s s = pred i c t ed = ac tua l + ac tua l * np . l og ( ac tua l / p r ed i c t ed )

else :

# MSE i f degree = 0

l o s s = (np . s q r t ( ac tua l ) ** (2 * degree + 4)

= pred i c t ed ** ( degree + 2) ) / ( ( degree + 1) * ( degree + 2) )

l o s s == (1 / ( degree + 1) ) * ( p r ed i c t ed ** ( degree + 1) ) * ( ac tua l = pred i c t ed )

return l o s s

T = f loat ( len ( a c t l s t ) )

for a , p1 , p2 in zip ( a c t l s t , p r e d 1 l s t , p r e d 2 l s t ) :

e 1 l s t . append ( f a m i l y o f l o s s f u n c ( a , p1 , degree ) )

e 2 l s t . append ( f a m i l y o f l o s s f u n c ( a , p2 , degree ) )

for e1 , e2 in zip ( e 1 l s t , e 2 l s t ) :

d l s t . append ( e1 = e2 )

d mean = np . mean( d l s t )

def autocovar iance ( Xi , N, k , Xs ) :

autoCov = 0

T = f loat (N)

for i in np . arange (0 , N = k ) :

autoCov += ( ( Xi [ i + k ] ) = Xs) * ( Xi [ i ] = Xs)

return autoCov / T

gamma = [ ]

for l ag in range (0 , h ) :

gamma. append ( autocovar iance ( d l s t , len ( d l s t ) , lag , d mean ) )

V d = (gamma [ 0 ] + 2 * np .sum(gamma [ 1 : ] ) ) / T

DM stat = d mean * V d ** =0.5

p va lue = 2 * t . cd f (=np . abs ( DM stat ) , df = T = 1)



i f p lo t == True :

print ( ’DM = ’ , DM stat , ’ \nDM p value ’ , p va lue )

return DM stat , p va lue

def f a m i l y o f l o s s f u n c ( actua l , pred ic ted , degree ) :

i f degree == =2:

# QLIKE

l o s s = ac tua l / p r ed i c t ed = np . l og ( ac tua l / p r ed i c t ed ) = 1

e l i f degree == =1:

l o s s = pred i c t ed = ac tua l + ac tua l * np . l og ( ac tua l / p r ed i c t ed )

else :

# MSE i f degree = 0

l o s s = (np . s q r t ( ac tua l ) ** (2 * degree + 4)

= pred i c t ed ** ( degree + 2) ) / ( ( degree + 1) * ( degree + 2) )

l o s s == (1 / ( degree + 1) ) * ( p r ed i c t ed ** ( degree + 1) ) * ( ac tua l = pred i c t ed )

return l o s s

def panel DM ( act , pred1 , pred2 , degree = 0 ) :

l 1 = f a m i l y o f l o s s f u n c ( act , pred1 , degree )

l 2 = f a m i l y o f l o s s f u n c ( act , pred2 , degree )

d12 = l 1 = l 2

d12n = np . nansum( d12 , a x i s = 1)

n = np .sum(˜np . i snan ( d12 ) , a x i s = 1)

T = d12 . shape [ 0 ]

nT = np .sum(˜np . i snan ( d12 ) )

hat d12 = np . nansum( d12 , a x i s = 1) / np .sum(˜np . i snan ( d12 ) , a x i s = 1)

R12 = np . s q r t (n) * hat d12

hat R0 = np . nansum(R12) / T

hat R1 = np . nansum(R12 [ 1 : ] ) / (T = 1)

hat R11 = np . nansum(R12 [ : =1 ] ) / (T = 1)

g0 = np . nansum ( ( R12 = hat R0 ) * (R12 = hat R0 ) ) / T

g1 = 2 * np . nansum ( ( R12 [ 1 : ] = hat R11 ) * (R12 [ : =1 ] = hat R1 ) ) / (T = 1)

s i g = np . s q r t ( g0 + g1 )

DM = np . nansum( d12 ) / (np . s q r t (nT) * s i g )

p va lue = 2 * t . cd f (=np . abs (DM) , df = nT = 1)

return DM, p va lue



B.5 helper functions.py

import pandas as pd

def c r e a t e l a g g e d v a r i a b l e ( data , name , l ag ) :

new df = pd . DataFrame ( data = {name : data })

for i in range ( l ag ) :

new df [ ’ Lag {number} ’ . format ( number = i + 1 ) ] = new df [ name ] . s h i f t ( i ) . f i l l n a (0 )

return new df

def c r ea t e mat r i x ( data , l ag ) :

X = {}

for i in range (1 , len ( data . columns ) + 1 ) :

i f isinstance ( lag , int ) or isinstance ( lag , f loat ) :

X[ ’X{num} ’ . format (num = i ) ] = c r e a t e l a g g e d v a r i a b l e ( data . i l o c [ : , i = 1 ] ,

data . columns [ i = 1 ] , l ag ) . i l o c [ : , =l ag : ] . va lue s

e l i f isinstance ( lag , l i s t ) or isinstance ( lag , np . ndarray ) :

X[ ’X{num} ’ . format (num = i ) ] = c r e a t e l a g g e d v a r i a b l e ( data . i l o c [ : , i = 1 ] ,

data . columns [ i = 1 ] , l ag [ i = 1 ] ) . i l o c [ : , =l ag [ i = 1 ] : ] . va lue s

else :

raise ValueError ( ” ValueError except ion thrown” )

return X


