
SCHEDULING WITH
NON-RENEWABLE RESOURCES

by
Péter Györgyi

Supervisor: Tamás Kis
Operations Research Department

Eötvös Loránd University

Budapest, 2013.

Contents

Acknowledgement 2

Notations 3

1 Introduction 4
1.1 Overview . 4
1.2 Notations . 5

2 The stock size problem 7
2.1 The problem and the mathematical model 7
2.2 Previous results, the GPS heuristic 8
2.3 ∗ The tightness of the GPS algorithm 12

3 Scheduling with raw materials 14
3.1 Minimizing Lmax if pj = p . 14
3.2 ∗ A generalization . 17
3.3 Makespan Minimization . 19
3.4 ∗ A PTAS for 1|rm = 1, q = const|Cmax 21
3.5 ∗ A PTAS for 1|rj, rm = 1, q = const|Cmax 28

3.5.1∗ Constant number of different release dates until uq 29
3.5.2 ∗ 1|rj, rm = 1, q = const|Cmax 33

4 Precedence constraints 35
4.1 Minimizing Cmax . 35
4.2 Deadline constraints . 36
4.3 Other cost functions . 36

5 Summary, other results of the topic 38
5.1 Producer and consumer jobs . 38
5.2 Only consumer jobs . 40

Bibliography 42

1

Acknowledgement

I would like to thank my supervisor, Tamás Kis, for his guidance. He always had
time for me and I am grateful for the constant help, for all the suggestions and
corrections.

2

Notations

J set of the jobs {J1, J2, . . . , Jn}
n |J |
pj processing time of job Jj
sj starting time of job Jj (for a given schedule)
Cj completion time of job Jj (for a given schedule)
R set of resources
q number of the time moments when a resource is supplied
u1, u2, . . . , uq time moments when positive amount of resource is supplied (uq+1 :=

∞)
bi amount of the supplied resource at ui (in case of one resource)
bk,i amount of the supplied resource at ui from resource k
aj required resource for job Jj (in case of one resource)
ak,j required resource for job Jj from resource k
rj release date of job Jj
dj deadline of job Jj
CAlg
max makespan of algorithm Alg

C∗max the optimal makespan
LAlgmax maximum lateness of algorithm Alg

L∗max the optimal maximum lateness

3

Chapter 1

Introduction

1.1 Overview

This thesis is a survey (with new results) on scheduling problems where non-
renewable resource constraints arise. In these problems there is a given initial stock
level from some non-renewable resources (raw materials, money) and time moments
when there is a replenishment with a known amount from a resource. We have a
set of jobs that we want to schedule, the jobs have some resource requirements.
This means that we can schedule a job only if there are enough quantities from the
required raw materials when starting the job (and after scheduling a job, we have
to decrease our stock by the applied quantities). Sometimes it is possible that after
the completion of a job it produces given quantities of raw materials.

The presented models have great practical importance. Problems like the further
arise in e. g. truck scheduling in a transshipment terminal or for construction com-
panies. In the preceding the trucks bring or carry away a known amount of items.
We can keep the items in the stock of the terminal, however if the stock is empty
we cannot start a truck which needs some items. Construction companies do not
want to (or cannot) begin a part of their project if they do not receive all necessary
money or other resources for that part.

Scheduling with non-renewable resource constraints has been studied first in [2]
and [3] in the early 80s. Kellerer et al. [10] analysed a special case of the truck
transshipment problem, called the stock size problem. Briskorn et al. [1] gave a
wide outline of the complexity results in the theme. Grigoriev et al. [8] dealt with
problems where the jobs only consume the raw materials. [3] and [5] also studied
similar problems. The main result of this thesis can be found in [9] as well.

Chapter 2 deals with the stock size problem. We introduce the problem in section
2.1, show the main result (a 3/2-approximation) of [10] in section 2.2, and present

4

an example in section 2.3∗ that proves the tightness of the approximation.
Chapter 3 studies problems where the jobs only consume raw materials. Section

3.1 based on [8] summarizes the previous results about the minimization of the max-
imal lateness. We extend these results in section 3.2∗. The rest of the chapter deals
with makespan minimization. Section 3.3 describes the previous results, in section
3.4∗ and 3.5∗ we present two Polynomial Time Approximation Schemes (PTAS)
for the problems 1|rm = 1, q = const|Cmax and 1|rj, rm = 1, q = const|Cmax (for
notations see the next section).

Chapter 4 describes the results of [3] where we do not have machines, only prece-
dence constraints, and deadlines.

The last chapter summarizes the results of this thesis and the mentioned articles.
The sections with new results are marked with a ∗.

1.2 Notations

We use the well-known α|β|γ notation of Graham et al. [7]. This was extended
by Grigoriev et al. [8] with the restrictions rm: rm = m means that there are m
resources (raw materials). If we do not indicate the number of the raw materials
then there can be arbitrary number of raw materials. Further on R will denote the
set of the raw materials. Let J = {J1, J2, . . . , Jn} be the set of the jobs. There is a
given processing time pj ≥ 0 for all Jj ∈ J and if there are due dates (dj), release
dates (rj) then these are given. There may be a precedence relation Π between
the jobs: (j, k) ∈ Π means that Jj must finish before Jk may start. We use some
common notations like sj is the starting time, and Cj is the completion time of Jj
for a given schedule. In most of the problems there is only one machine, but the
problems considered in chapter 4 do not use any machine (we use the notation ’−’
for it).

Denote q the number of time moments when positive amount of raw material is
supplied. These moments are u1, u2, . . . , uq, and sometimes it is convenient to use
uq+1 =∞. We use some separate notations for the problems where there is only one
raw material: let bi denote the amount of the supplied raw material at ui, and we
use aj for the amount of the raw material that Jj requires. If there are at least two
raw materials let ak,j be the required raw material for Jj from raw material k and let
bk,i be the amount of the supplied resource at ui from resource k. We suppose that
for each raw material the total amount delivered is equal to the total requirements

5

of the jobs, i. e.,
q∑
i=1

bk,i =
∑
Jj∈J

ak,j ∀k ∈ R.

6

Chapter 2

The stock size problem

2.1 The problem and the mathematical model

We have a warehouse and n jobs that we have to schedule on a single machine.
Every job consumes or supplies some raw material(s). If we completed a job the
amount of the raw material which we keep in our warehouse is changing. Initially,
the warehouse is empty. If a job requires some raw material we can only schedule it
if there is enough amount of raw material in the warehouse. On the other hand, if
a job produces some raw material we can schedule it only if there is enough space
in the warehouse. The jobs consume the same amount of raw material that they
produce in total. Our task is to find an ordering of the jobs which needs the smallest
inventory level and does not hurt any of the constraints. There are many natural
examples with similar characteristics.

Firstly, we introduce a new notation. Denote zj the amount of raw material with
which Jj increases (we call them x-jobs) or decreases (y-jobs) the stock size. In
the first case zj > 0, in the second zj < 0 (thus ∑n

j=1 zj = 0). Let π denote a
permutation of the jobs. If we formalize the constraints we get the following:

k∑
j=1

zπ(j) ≥ 0, ∀k = 1, . . . , n

We have to find a permutation π which minimizes the maximum inventory level,
i. e.,

min
π

max
k


k∑
j=1

zπ(j)



7

2.2 Previous results, the GPS heuristic

It is possible to show that our problem is NP-hard. [10] Kellerer et al. presented
three approximation algorithms. The best one (GPS) ensures that stock size will be
at most 3/2 times of the optimum stock size (OPT). At the end of their article they
asked whether this bound is tight or the worst case of their algorithm is better. We
will present the GPS algorithm in this section and in the next section we will give
an example showing that the bound 3/2 is tight.

Let C ≥ max |zi| be a flexible bound. Divide the jobs into two classes according
to C: if |zj| ≥ C/2 the Jj is a big-job, if |zj| < C/2 then Jj is a small-job. We will
create some pairs from the big-jobs: the ith-largest x-jobs and the ith-largest y-job
will form pairs. The subroutine STOCK will pair and sequence the jobs. STOCK
either finds an ordering where a 3C/2-size warehouse is enough or shows that there
is no sequence of jobs for which the maximum size of the warehouse is at most C. It
is easy to create a 3/2-approximation using STOCK and binary search (see later).
We will prove that STOCK is a 3/2-relaxed decision procedure, which means the
following:

Definition 2.2.1 ([10],ρ-relaxed decision procedure). Input: J , C, pj, zj; j ∈ J ;
output: NO or ALMOST. If the output is ALMOST then the procedure gives a
permutation π, where a ρC-size warehouse is enough. If the output is NO, then the
optimal warehouse is bigger than C.

If an x-job is a big-job, then we call it big-x-job. Similarly we use the small-x-job,
big-y-job, small-y-job expressions. Let A = {a1, . . . , a|A|} be the set of big-x-jobs,
B = {b1, . . . , b|B|} be the set of big-y-jobs, V = {v1, . . . , v|V |} be the set of small-
x-jobs, W = {w1, . . . , w|W |} be the set of small-y-jobs. Let p := min{|A|, |B|},
Ap := {a1, . . . , ap}, B := {b1, .., bp}, A′ := A\Ap, B′ := B\Bp. We assume that the
jobs to be sorted in a non-increasing order:

za1 ≥ za2 ≥ . . . ≥ za|A| ≥ C/2 > zv1 ≥ zv2 ≥ . . . ≥ zv|V |

−zb1 ≥ −zb2 ≥ . . . ≥ −zb|B| ≥ C/2 > −zw1 ≥ −zw2 ≥ . . . ≥ −zw|W |

Let ∑V := ∑
j∈V zj,

∑
W := ∑

j∈W |zj| and
∑
p := ∑

j∈Ap∪Bp
zj.

Some remarks for the better understanding of STOCK:
(1) If we sequence a job, we automatically remove it from the sets A,B, . . .
(2) We always refer to the actual elements of the sets (the not scheduled jobs). In

8

that sense, ai always denotes the actually ith-biggest element of A (bi, vi and wi have
similar meanings).
(3) If we sequence more than one job at the same time, we sequence the x-jobs first
(in an arbitrary order) and then the y-jobs.

Procedure STOCK3/2(C) [10]

Step 0. Initialize list L as an empty list and the current stock size S to zero.

Step 1. (Branching step)
If A = ∅ goto Step 8.
else if B = ∅ goto Step 9.
else if there is a pair ai, bi (ai ∈ A, bi ∈ B) with zai

+ zbi
< 0 and S + zai

+ zbi
≥ 0

goto Step 2.
else if there is a pair aj, bj (aj ∈ A, bj ∈ B) with zaj

+ zbj
≥ 0 and S + zaj

≤ 3C/2
goto Step 3.

else if zaj
+ zbj

≥ 0 for all pairs aj, bj (aj ∈ A, bj ∈ B)
begin
If S +∑

p−
∑
W > C/2 goto Step 4.

else goto Step 5.
end

else if zai
+ zbi

< 0 for all pairs ai, bi (ai ∈ A, bi ∈ B)
begin
If S +∑

p +∑
V < 0 goto Step 6.

else goto Step 7.
end

Step 2. Take the pair ai0 , bi0 with smallest index i0 such that zai0
+ zbi0

< 0 and
S+zai0

+zbi0
≥ 0 holds and append it to list L. Set S := S+zai0

+zbi0
. Goto Step 1.

Step 3. Take the pair ai0 , bi0 with smallest index i0 such that zai0
+ zbi0

≥ 0 and
S + zai0

≤ 3C/2 holds and append it to list L. Set S := S + zai0
+ zbi0

. Goto Step
1.

Step 4. While V 6= ∅ and S < −zb′
1

begin
Append v1 to list L, S := S + zv1

9

end
If S ≥ zb′

1
append b′1 to list L, S := S + zb′

1
. goto Step 1.

else output NO

Step 5. While A 6= ∅ and B 6= ∅
begin
While S > C/2

begin
Append w1 to list L, S := S + zw1

end
Append a1 and b1 to list L, S := S + za1 + zb1

end
If A = ∅ goto Step 8.
else goto Step 9.

Step 6. Append a′1 to list L, S := S + za′
1

While W 6= ∅ and S > 3C/2− za1

begin
Append w1 to list L, S := S + zw1

end
If S ≤ 3C/2− za1 append a1 and b1 to list L, S := S + za1 + zb1 . goto Step 1.
else output NO

Step 7. While A 6= ∅ and B 6= ∅
begin
While S + za1 + zb1 < 0

begin
Append v1 to list L, S := S + zv1

end
Append a1 and b1 to list L, S := S + za1 + zb1

end
If A = ∅ goto Step 8.
else goto Step 9.

Step 8. While V 6= ∅
begin
while S < C

10

begin
Append v1 to list L, S := S + zv1

end
Append the b1 (if B = ∅ append w1) to list L, S := S + zb1 (or S := S + zw1)
end

Append the remaining elements of B ∪W to the list in arbitrary order. Output
ALMOST STOP

Step 9. While A ∪ V 6= ∅
begin
while S > C/2

begin
Append w1 to list L, S := S + zw1

end
Append the a1 (if A = ∅ append v1) to list L, S := S + za1 (or S := S + zv1)
end

Append the remaining elements of W to the list in arbitrary order. Output AL-
MOST STOP.

Theorem 2.2.2. ([10]) Let C ≥ max |zi|. Procedure STOCK is a 3/2-relaxed deci-
sion procedure.

The theorem has a long technical proof, it can be found in [10].

We get heuristic GPS if we embed STOCK into a binary search. It is easy to see
that µ := max |zi| is a lower bound and 2µ = 2 max |zi| is an upper bound for the
stock size.

Heuristic GPS ([10])

Step 1. Sort the x-jobs and the y-jobs into the following sequences:

zx1 ≥ zx2 ≥ . . .

−zy1 ≥ −zy2 ≥ . . .

We choose a precision ε ≥ 0.

Step 2. Apply binary search in the [µ, 2µ] interval by calling STOCK. If the output

11

of STOCK(C) is NO then we have found a new lower bound, in the other case we
have found a new upper bound and a schedule. We finish the binary search when
the difference between the bounds is less than εµ.

If we use last theorem it is easy to see the following:

Theorem 2.2.3. ([10]) For every ε ≥ 0, heuristic GPS yields a stock sequence with
the maximum stock size SGPS less than 3(1 + ε)/2 times the optimum stock size S∗.
It can be implemented to run in O(n log n log(1/ε)) time.

2.3∗ The tightness of the GPS algorithm

In this section we will show an instance of the stock size problem where the bound
of 3/2 is tight (see Figure 1.). [10] mentioned that the problem of the tightness is
interesting, but they couldn’t find an instance for it.

Let

n = 6

z1 = z2 = 10

z3 = z4 = z5 = z6 = −5.

It is easy to see that the optimal stock size is 10: if we schedule in the order
J1, J3, J4, J2, J5, J6, we get an optimal schedule.

Let us see what we get if we use the GPS heuristic. The binary search starts with
C = 10 since µ = 10. Every job in our instance is a big job (C/2 = 5 ≤ |zj|, j ∈ J).

If we run STOCK3/2(10), after Step 1. we have to go to Step 3., because A,B 6= ∅
and there is no pair (ai, bi) with zai

+ zbi
< 0. At Step 3. we schedule J1 and J3

(S = 0 + 10− 5 = 5) and we go back to Step 1..

Step 1. sends us to Step 3. again (A,B 6= ∅, no pair (ai, bi) with zai
+ zbi

< 0),
where we schedule J2 and J4 (S = 5 + 10 − 5 = 10). After scheduling J2 our in-
ventory level is 15, which is 3

2 ·10. At the end of this step we go back to Step 1. again.

Now we have only J5 and J6 to schedule. Both of them is an y-job so A = ∅.
Hence, we have to go to Step 8., where we schedule J5 and J6 in an arbitrary order.
The output of STOCK3/2(10) is ALMOST, and it finishes here.

12

We found a good schedule at the lower border of the binary search, so we can
finish here (since µ = 10 is a lower bound then a schedule with a maximum inven-
tory level 15 must be a good schedule). We have seen there is a schedule where the
inventory level is at most 10, GPS provides a schedule where the maximum of the
inventory level is 15. This means that the bound 3/2 is tight for GPS.

GPS schedule

10 -5-5-510-5

5

10

15

S

t

10

t

Optimal schedule

10 -5-510-5-5

5

S

t

t

15

Figure 1. A ’tight’ instance of the stock size problem

13

Chapter 3

Scheduling with raw materials

This chapter is dealing with the different subproblems of 1|rm|Lmax and 1|rm|Cmax.
In sections 3.1 and 3.3 we summarize the results of [8]. They proved that 1|rm =
2, pj = 1|Lmax is NP-hard. They also gave four 2-approximation algorithms for
the problem 1|rm = 2, pj = p|Lmax (see section 3.1). In section 3.2 we generalize
their results: we prove that these 2-approximation algorithms are also good for the
problem 1|rm|Lmax. Sections 3.3, 3.4 and 3.5 are about the makespan minimization.
First (as we mentioned) we show the results of [8] in section 3.3. In the next section
we give a polynomial time approximation scheme for the problem 1|rm = 1|Cmax if
the number of the deliveries (q) is a constant. A modified version of this algorithm
can treat the case when we have release time constraints, it can be found in section
3.5.

3.1 Minimizing Lmax if pj = p

As usual we assume that all due dates are negative (otherwise we cannot give
sensible estimations for the approximations) and the total delivered raw materials
are exactly sufficient for the jobs. Recall that uq is the time moment when the last
delivery arrives (thus uq ≤ C∗max). Suppose that the due dates of the jobs satisfy
d1 ≤ d2 ≤ . . . ≤ dn ≤ 0.

Theorem 3.1.1. ([8]) 1|rm = 1, pj = 1|Lmax can be solved in polynomial time.

Proof. If every job has unique due date, it is easy to see that the EDD order is
optimal.

If two jobs have the same due date we can notice the following:

OBSERVATION 1: Let dk = dk+1 and ak ≤ ak+1. Let S and S ′ be schedules where

14

the only difference is the position of Jk and Jk+1, i. e.

sk = s′k+1

sk+1 = s′k

sj = s′j, ∀j 6∈ {k, k + 1}.

If sk > sk+1 and S is feasible, then S ′ is also feasible.

The next observation generalize the previous.

OBSERVATION 2: Let I is an instance of the problem and let dk = dk+1, ak ≤
ak+1. Let I ′ be an instance of the problem, which has only one difference from I:
d′k = dk − 1. Then any optimal solution for I ′ is optimal for I as well. Moreover,
these instances have the same optimal solutions.

Suppose that if dj = dj+1 then aj ≤ aj+1. The next algorithm constructs an
instance where every job has a unique due date:

1. Set j = n− 1. While j > 1 do:

2. If dj = dj+1 set dj := dj−1. Reconstruct the d1 ≤ d2, . . . , dn order (if dj = dj+1

then aj ≤ aj+1).

3. If dj 6= dj+1, set j := j − 1.

With this algorithm we can construct an easily solvable instance from every
instance. According to Observation 2 an optimal solution of the new instance is an
optimal solution for the original.

Theorem 3.1.2. ([8]) The problem 1|rm = 2, pj = 1|Lmax is strongly NP-hard.

Proof. It can be found in [8]. It reduces the problem 3-PARTITION (known strongly
NP-hard problem) to 1|rm = 2, pj = 1|Lmax.

Definition 3.1.3 (active schedule). A schedule is active if we cannot schedule any
of the jobs earlier (if the order of the jobs is given).

Definition 3.1.4 (active algorithm). An algorithm is active if every output of the
algorithm is an active schedule.

Theorem 3.1.5. ([8]) Any active approximation algorithm for 1|rm = 2, pj =
p|Lmax has a worst case ratio of at most 3.

Proof. There is a proof in [8], but we will give a proof for a more general theorem
3.2.1 in the next section.

15

Now we define four approximation algorithms. All of them are an EDD-based
algorithm and all of them are defined in [8]:

1. Strict EDD: Schedule the jobs in EDD order, all of them as early as possible.

2. Lazy EDD: Wait until all raw materials have arrived (uq), and schedule them
in EDD order without any idle time.

3. Early EDD: Starting at time moment t = 0, consider the set of jobs for which
the required raw material have arrived, and select from this set the one with
earliest due date, set t→ t+ 1 and continue.

4. First Fit EDD: Take the jobs in EDD order, and schedule the first one
from the list at the earliest possible time moment (when there is enough raw
material for the job). Delete this job from the list, the raw material which it
consumed and repeat.

Remark 3.1.6. In the next section we will make a small modification on algorithm
Early EDD, because there was a small problem with it in the proof of the next
theorem (see Remark 3.2.2).

Example: Figure 2. shows the difference among the four algorithms:

d 1=−3,d 2=−2, d3=−1

p1=p2= p3=1
a1=3,a2=1,a3=1

u1=0,u2=3,u3=4
b1=2,b2=2,b3=1

Strict EDD

First Fit EDD

Early EDD

Lazy EDD

u1=0 u2=321

J 2 J 3J 1

u3=4

u1=0 u2=321 u3=4

u1=0 u2=321 u3=4

u1=0 u2=321 u3=4

J 1

J 1

J 1 J 2 J 3

J 2

J 2

J 3

J 3

Figure 2. The four EDD-based algorithms

16

Theorem 3.1.7. ([8]) All four EDD-based algorithms have a worst case ratio of 2
for the problem 1|rm = 2, pj = p|Lmax.

Proof. It is easy to see that Strict EDD is always better than Lazy EDD, and First
Fit EDD is better than Strict EDD (some jobs may starts earlier). The proof in [8]
says Early EDD is always better than Lazy EDD, but this is not true (see Remark
3.2.2). In the next section we modify Early EDD, and we prove that the previous
claim is correct for the modified Early EDD. This means that it is enough to prove
the theorem for Lazy EDD, the other three must have a better maximum lateness.
The rest of the proof can be found in [8], but we will prove a more general theorem
(Theorem 3.2.3) in the next section.

3.2∗ A generalization

Consider the problem 1|rm|Lmax. We will prove that the theorems of the previous
section can be modified for our problem.

Theorem 3.2.1. Any active approximation algorithm for 1|rm|Lmax has a worst
case ratio of at most 3.

Proof. Let us verify the following bounds:

1. L∗max ≥ p1 − d1, because this is the minimum lateness of the first job (d1 ≤
d2 ≤ . . . ≤ dn < 0).

2. L∗max ≥ uq, because the jobs need all the raw materials, so the last job must
start after uq and the deadlines are negative.

3. L∗max ≥
∑n
j=1 pj, because this is the earliest time moment when every job can

finish, and the deadlines are negative.

Take an arbitrary active algorithm (Alg) and an arbitrary instance. The required
raw materials arrive until uq, so we have to schedule the jobs after uq without any
idle time. This means every job finishes until uq +∑n

j=1 pj, so the makespan of the
schedule is at most uq+∑n

j=1 pj and the maximum lateness is at most uq+∑n
j=1 pj−

d1. It is trivial from our bounds that

3L∗max ≥ uq +
n∑
j=1

pj − d1 ≥ LAlgmax

17

As we mentioned we have to modify Early EDD, because the proof of Theorem
3.1.7 is not correct (see Remark 3.2.2). Note that, the original definition of Early
EDD contains a trivial mistake (after scheduling a job we have to say t → t + p

instead of t→ t+ 1).

Remark 3.2.2. The original version of Early EDD did not take into consideration
whether a job which is scheduled before uq, finishes or not before uq. That can cause
problems: in the proof of Theorem 3.1.7 the authors of [8] tried to show that the
Lazy EDD is always worse than the other three. This is not true, unless everything
is integer and pj = 1. In the next example Lazy EDD is better than Early EDD:

Example: Let n = 2, p1 = p2 = 10, d1 = −10, a1 = 2, d2 = 0, a2 = 1. At
t = 0 one unit of raw material arrive and at t = 1 two units of raw material arrive.
Let see what the algorithms do: Lazy EDD waits for uq = 1, and then it schedules
J1 and at t = 11 it schedules J2. The lateness of J1 is equal with the lateness of J2,
so LLazymax = 21. Early EDD schedules J2 at t = 0 and J1 at t = 10, so LEarlymax = 30.

The next definition corrects the previously mentioned flaw:

Modified Early EDD: Starting at time moment t = 0, consider the set of jobs
for which the required raw materials have arrived and could finish until uq. Select
the Jj job from this set with earliest due date, schedule it at t, set t → t + pj and
continue. If the set of the potential jobs is empty, but we still have jobs to schedule,
let t = ux (ux is the next delivery time) and continue. After uq we schedule the
remaining jobs in EDD order without any idle time.

Now let us see the generalized (and corrected) version of Theorem 3.1.7:

Theorem 3.2.3. All four EDD-based algorithms (Strict EDD, Lazy EDD, Modi-
fied Early EDD and First Fit EDD) have a worst case ratio of 2 for the problem
1|rm|Lmax.

Proof. Earlier we proved that (in the proof of Theorem 3.1.7) Lazy EDD is worse
than algorithms Strict EDD and First Fit EDD in every case. First we prove that
Modified Early EDD is always better than Lazy EDD: we can see from the definition
that Lazy EDD does not schedule any job before uq. Modified Early EDD may
schedule some jobs before uq, but put the remaining jobs in EDD order after uq
without any idle time. This means, that every job starts later (or at the same
moment) if we schedule with Lazy EDD. So it is enough to prove the theorem for
the Lazy EDD, because it has always bigger maximum lateness than the lateness of
any of the other three algorithms.

18

First let us see what happen if we schedule the jobs in EDD order from 0 without
any idle time. Let J` be the job with the maximum lateness (this is equal with∑`
j=1 pj − d`). This lateness must be smaller than L∗max. Lazy EDD schedules the

jobs in the same order, but it starts at uq, so every lateness become longer with uq.
We get that the maximum lateness of Lazy EDD is ∑`

j=1 pj − d` + uq. Since uq is
smaller than L∗max, we have

LLazymax =
∑̀
j=1

pj − d` + uq ≤ 2L∗max

Remark 3.2.4. There is an easy example in [8], which shows that the bound of 2 can
be achieved by all four EDD algorithms. Let

rm = 1,

p1 = p2 = . . . = pn = 1,

d1 = −2, d2 = d3 = . . . = dn = −1,

a1 = n− 1, a2 = a3 = . . . = an = 1

At t = 0 n − 1 units of raw material become available and n − 1 units of raw
material arrive at t = n− 1. All four algorithms schedule J1 at t = 0 and the other
jobs from t = n − 1 (without idle time), so LStrictmax = LLazymax = LEarlymax = LFirstF itmax =
2n − 1. In the optimal scheduling, we schedule J2, J3, . . . , Jn from t = 0 without
lateness, and at t = n−1 we schedule J1. This results a maximum lateness of n+ 2.
If n tends to infinity the worst case ratio of the algorithms ((2n−1)/(n+2)) reaches
the bound of 2.

3.3 Makespan Minimization

This section is a review about the makespan minimization from [8]. Let the
algorithm A be defined by the following: schedule the jobs in nondecreasing order
of raw material consumption aj.

Theorem 3.3.1. ([8]) A gives an optimal solution for the problem 1|rm = 1, pj =
p|Cmax.

Proof. It is trivial with the standard interchanging method.

19

Theorem 3.3.2. ([8]) The problem 1|rm = 1|Cmax is strongly NP-hard.

Proof. It can be found in [8]. It reduces the problem 3-PARTITION (known strongly
NP-hard problem) to 1|rm = 1|Cmax.

Theorem 3.3.3. ([8]) 1|rm = 1|Cmax with regular unit supply of raw material
(i.e. at each time moment one unit of raw material is delivered) can be solved in
polynomial time.

Proof. We reduce the problem to the flow shop problem F2||Cmax. It is known that
Johnson’s algorithm solve this flow shop problem in O(n log n) time. Consider an
instance of our problem, we construct a corresponding flow shop instance: there are
n jobs with p1,j = aj, p2,j = pj (pi,j is the processing time of job Jj on machine Mi).
We have to schedule every job first onM1 then onM2. It is trivial that this flow shop
problem exactly models our problem (scheduling Jj on M1 corresponds to collecting
the raw materials for Jj, while scheduling on M2 corresponds to scheduling in the
original problem), so we can find the optimal solution with Johnson’s algorithm.

Theorem 3.3.4. ([8]) The problem 1|rm = 2, pj = 1|Cmax is strongly NP-hard.

Proof. It is easy based on the proof of Theorem 3.1.2.

Now we would like the construct approximation algorithms for the problem
1|rm|Cmax. Let algorithm A1 be the following: schedule the jobs in arbitrary order
after uq without idle time.

Theorem 3.3.5. ([8]) CA1
max ≤ 2C∗max and the ratio of 2 is tight.

Proof. CA1
max = uq +∑

j∈J pj ≤ 2C∗max. The next instance shows that the ratio of 2
is tight: n = 2, , rm = 1, p1 = b, p2 = 1, a1 = 0, a2 = 1. One unit of raw material
becomes available at time moment b. Then C∗max = b+ 1, CA1

max = 2b+ 1. If b tends
to infinity then CA1

max/C
∗
max tends to 2.

Now consider a better algorithm A2: it first orders the jobs in nondecreasing∑
i ai,j order. In each time moment it schedules the job with the smallest index for

which we have enough raw material. It is trivial that A2 cannot be worse than A1

for any instance, but it is still a 2-approximation:
Consider the next instance: rm = 2, a1,1 = n − 1, a2,1 = 0. For j = 2, . . . , n :

a1,j = 1, a2,j = n+j−3, ∀j : pj = 1. n−1 units of raw material 1 becomes available
at time moment 0 and at time moment n− 1. At t = 0, . . . , n− 2 n+ t− 1 units of
raw material 2 becomes available. It is easy to see that C∗max = n (it schedules the
jobs in the order 2, 3, . . . , n, 1 from t = 0 without idle time) while CA2

max = 2n − 2,

20

because it schedules J1 at t = 0, and at t = n − 1, . . . , 2n − 3 it schedules Jt−n+3.
Thus for this instance limn→∞C

A2
max/C

∗
max = 2. Hence we get the following theorem:

Theorem 3.3.6. limn→∞C
A2
max/C

∗
max ≤ 2, and the ratio of 2 is tight.

Remark 3.3.7. The instance in [8] is incorrect, but we have fixed it.

3.4∗ A PTAS for 1|rm = 1, q = const|Cmax
In this section we will give a Polynomial Time Approximation Scheme (PTAS)

for the problem 1|rm = 1|Cmax if the number of the deliveries (q) is constant.
This scheme can be found in [9]. Let u1 = 0 be the first delivery time, and let
b′i := ∑i

`=1 b`. We formulate a mathematical program for modeling the problem.
Our decision variables will be xij and Ci, where xij will be 1 if and only if Jj starts
between ui and ui+1, otherwise it is 0. Ci will be the completion time of those jobs
which are assigned to the ith supply period.

minCq (1)

s.t.∑
j∈J

pjxij ≤ Ci −max{ui, Ci−1}, i = 1, . . . , q (2)

∑
j∈J

aj

(
i∑

`=1
x`j

)
≤ b′i, i = 1, . . . , q (3)

q∑
i=1

xij = 1, j ∈ J (4)

C0 = 0 (5)

xij ∈ {0, 1}, i ∈ 1, . . . , q; j ∈ J (6)

Let psum := ∑
j∈J pj be the sum of the processing times. Fix ε > 0 as an error

ratio, δ := εC, where C is a suitable constant.

Definition 3.4.1 (big and small jobs). If pj ≥ δpsum, then Jj is a big job. Otherwise
Jj is a small job. Let B be the set of big jobs and S be the set of small jobs.

Now we give an outline from our algorithm. We will expound each step more
detailed further on.

1. First we assign the big jobs to the different time periods in every possible way.
We will show that the number of the possibilities is not too much.

21

2. We present that the remaining problem similar to a special multidimensional
knapsack problem (we have some extra constraints, but we can violate some
of the constraints a bit).

3. We search an approximate solution of the (remaining) problem: we round the
processing times of the jobs, and put them into sets according to the rounded
processing times.

4. We will determine that how many jobs will be assigned from each set to each
time period. We will try every distribution showing that the number of these
distributions is polynomial in n.

5. Finally we prove that we must find a solution which is near enough from the
optimal solution.

Recall that Jj is a big job if pj ≥ δpsum. This means the number of the big jobs is
at most 1/δ, so we want to schedule constant amount of jobs into constant number
of time periods. The number of these assignments is constant (let cB denote this
constant), so we finished the first step. Let x̄B denote a big job assignment (x̄Bij = 1
if and only if big job Jj is assigned to ith time period).

Note that we do not have to deal with every case. x̄B is eligible if it does not hurt
any of the raw material constraints, and for every time period there is an order of the
assigned jobs where each of them can start before the end of the time period (when
the next supply comes). From now on we just deal with the eligible assignments.

Let ti(x̄B) be the termination time of the big jobs which are assigned to the ith
time period if we schedule them as soon as possible (in the ith period the first job
starts when the machine becomes free, and then we schedule the remaining assigned
big jobs without idle time). If ti(x̄B) < ui+1 we can schedule small jobs into this
’gap’. Let bri (x̄B) = b′i−

∑
j∈B aj

(∑i
`=1 x̄

B
ij

)
the residual raw material if x̄B is fix. We

can formulate the following model for the problem of the small jobs scheduling:

22

OPT S(x̄B) := max
∑

i<q,j∈S
pjxij (7)

s.t.

∑
j∈S

aj

(
i∑

`=1
x`j

)
≤ bri (x̄B), i = 1, . . . , q − 1 (8)

∑
j∈S

pjxij ≤ max{0, ui+1 − ti(x̄B)}+ δpsum, i = 1, . . . , q − 1 (9)

q−1∑
i=1

xij ≤ 1, j ∈ S (10)

xij ∈ {0, 1}, i ∈ 1, . . . , q − 1; j ∈ S (11)

In the inequalities (9) we let a small lateness (δpsum), because it is possible that
a job starts in the ith time period and finishes in the (i+1)th. Since every small job
has a processing time at most δpsum we can schedule each of them in a mentioned
place. This means that some of the jobs may start a little bit later, but in that case
we filled the ’gap’ completely.

The remaining task is to find a δ-approximate solution of this program. If we can
do this we search that solution for every big job assignment and choose the best.
This solution with its big job assignment will be an ε-approximation for the original
problem.

If we cannot assign a job to any of the ’gaps’ we have to assign it somewhere after
uq. In our model we suppose that we do not have a job like this (if we have, we will
schedule them at the end of the schedule). Note that this simplification depends on
x̄B, so we use the notation S(x̄B) for the remaining small jobs.

It is enough to find an approximate solution which hurts some of the constraints
(9) but the total violation is at most δpS(x̄B)

sum (pS(x̄B)
sum = ∑

j∈S(x̄B) pj), because then we
may schedule some jobs later, but this increases our makespan by at most δpS(x̄B)

sum ,
so the solution remains δ-approximate. Let OPT denote the optimum of this new
problem.

The main idea of the small job scheduling came from [4]. In this article the
authors give a PTAS for the Multiple Knapsack Problem. We use the first part
(’guessing items’) of their algorithm, but we have to modify it, because of the raw
material constraints. On the other hand, we can allow small violation of the con-
straints in some places. Let pS(x̄B)

max = maxj∈S(x̄B) pj, and n′ = |S(x̄B)|. First we
search a value O which is just smaller than OPT i. e., (1 + δ)O ≥ OPT . Since
pS(x̄B)
max ≤ OPT ≤ n′pS(x̄B)

max , there must be a good value for O in the following (poly-

23

nomial size) set:

T = {pS(x̄B)
max · (1 + δ)i | 0 ≤ i ≤ 2δ−1 lnn′, i ∈ N}

We get the upper bound from the i ≤ log1+δ n
′ = lnn′/ ln(1 + δ) ≤ lnn′/(δ/2)

inequalities. Now we modify the processing times of our jobs in the following way:

1. We choose a value for O from the set T .

2. Discard all items where pj <
δO
n′

.

3. If (1+δ)i · δO
n′
≤ pj < (1+δ)i+1 · δO

n′
for some i ∈ N then let p′j = (1+δ)i · δO

n′
.

Notice that with this transformation we can only lose O(δ) fraction of OPT since
we can lose at most δO

n′
with one job.

Let h be the number of the different processing times after the modification.

Proposition 3.4.2. h ≤ 4
δ

lnn′.

Proof. We know that (1 + δ)h · δO
n′
≤ O, so

h ln(1 + δ) ≤ ln n
′

δ
(i)

h ln(1 + δ) ≤ 2 lnn′ (ii)

h ≤ 2 lnn′
δ/2 (iii)

We get (ii) from (i) that we suppose 1
δ
≤ n′ and similarly we use ln(1 + δ) ≥ δ/2 to

get (iii).

Let S ′ denote the set of the remaining jobs, let S` = {j ∈ S ′ : p′(j) = (1 + δ)` ·
δO/n′} and let y` = (1 + δ)` · δO

n′
denote the processing time of a job from S`. We

choose jobs from every S` to schedule them to the different time periods. Let V i
`

the set of jobs which we will assign from S` to the ith time period. Putting Jj ∈ S`
into V i

` correspond to assigning Jj to the ith time period, so if Jj ∈ V i
` then xij = 1,

otherwise xij = 0.
A h(q − 1)-tuple will clearly determine the sets V i

` (see the next algorithm how)
and thus the schedule. We prove that the number of these tuples is polynomial in
n′ (see Lemma 3.4.6).

Now we show how we determine the sets V i
` from a h(q − 1)-tuple. Initially let

i = 0, every V i
` = ∅ and let ki` (i = 1, . . . , q− 1; ` = 1, . . . , h) a given h(q− 1)-tuple.

24

Suppose that the jobs in S` are ordered in non-decreasing raw material demand.

Determining the V i
` from a h(q − 1)-tuple (see Figure 3.):

1. i := i+ 1. For every ` = 1, . . . , h do the following steps.

2. Choose the smallest number of jobs from the beginning of the ordered set S`
whose cumulative (modified) processing time is at least ki`(δO/h). Put these
jobs into V i

` . Discard the cases when we do not have enough element in S`.

3. Delete the assigned jobs from S`. If i < q − 1 go to 1., else STOP.

S1

…

…

S3

S2

V 1
3

p ' (V l
i
)≥k l

i
(εΟ/h)

0=u1 u2 u3 u4
1. period 2. period

J 1 J 2J 3 J 4J 5
3. period 4. period

V 1
1 V 1

2

V 1
3 …

V 2
1 V 3

1

V 3
2V 3

1

V 2
2 V 2

3

V 1
1 V 1

2

V 2
3V 3

2V 2
2

V 2
1

V 3
3

V 3
3 …

u2 u3 u4
1. period 2. period

J 1 J 2J 3 J 4J 5

3. period 4. period

…

Figure 3. Scheduling of the small jobs

Remark 3.4.3. It is important that we choose jobs which require the smallest amount
of raw material, because this secures that we do not hurt the raw material constraints
(8) with our later chosen h(q − 1)-tuple (see the proof of the Lemma 3.4.7).

Remark 3.4.4. We have n′ jobs and we put each of them into a set at most once, so
this algorithm is polynomial in n′ (O(n′)) for a given h(q − 1)-tuple.

We can run the previous algorithm in polynomial number of times. Our aim
is to find a tuple from which we can generate an approximate solution for prob-
lem (7)-(11). It is useless to deal with tuples that give us a ’too good solution’

25

(i.e. ∑i<q,j∈S′ p′jxij ≥ O). For a given h(q − 1)-tuple the total modified processing
time of the assigned jobs is at least ∑i,` k

i
`(δO/h), so we can use the constraint∑

l,i k
i
` ≤ h/δ. The following lemmas prove that it is enough to run the previous al-

gorithm in polynomial number of times if we want to try every possible h(q−1)-tuple
which does not hurt our constraints (and consists of only nonnegative integers). The
first lemma is used by [4] and they have a very similar lemma instead of the second.

Lemma 3.4.5. ([4]) Let f be the number of g-tuples of nonnegative integers such
that the sum of tuple coordinates is at most d. Then f =

(
d+g
g

)
. If d+ g ≤ αg, then

f = O(eαg).

Proof. The first part of the lemma is a well known result in combinatorics. If we
use it for the second part we get: f ≤

(
αg
g

)
≤ (αg)g/g!. We can approximate g! by

√
2πg(g/e)g if we use Stirling’s formula. So f = O((eα)g) = O(eαg).

Lemma 3.4.6. Let h ≤ 4δ−1 lnn′. Then the number of the h(q − 1)-tuples (k1
1,

. . . , kq−1
h) such that ∑`,i k

i
` ≤ h/δ, ki` ∈ N is O(n′ O(1/δ2)).

Proof. It is elementary counting from the previous lemma (α = 1 + 1/δ).

Now we only have to prove that we always find a tuple, which gives us a good
approximate solution for problem (7)-(11):

Lemma 3.4.7. There exists a h(q− 1)-tuple (k1
1, . . . k

q−1
h) such that we get a nearly

allowable (i.e. the total violation in constraints (9) is at most δpS(x̄B)
sum) solution for

problem (7)-(11) with the previously presented algorithm and
∑
i,`

p(V i
`) ≥ (1− (2 + q)δ)O

Proof. Let x∗ij denote the optimal solution of (7)-(11). We denote by U the set of
the jobs j with x∗ij = 1. U` := U ∩ S` and U i

` ⊆ U` is the set jobs from U` which
are scheduled in the ith time period in the optimal solution. We use the V = ∪i,`V i

`

notation.
At some time our algorithm enumerates the h(q−1)-tuple which we can get from

the U i
` in the following way: for every i and ` there is a nonnegative integer ki` for

which: ki`(δO/h) ≤ p′(U i
`) < (ki` + 1)(δO/h). We prove that this tuple is good for

us. Denote by x′ij the value of the xij which we get from our algorithm with this
tuple.

Our task is to prove that the constraints (8) are true with this choice, the total
violation in (9) is at most δpS(x̄B)

sum and p(V) ≥ (1 − O(δ))O (the other constraints
are trivial). First we prove a proposition which will be useful later:

26

Proposition 3.4.8. |V i
` | ≤ |U i

` | for every i ∈ {1, 2, . . . , q− 1} and ` ∈ {1, 2, . . . , h}.

Proof. U i
` , V

i
` ⊆ S` so for every j ∈ U i

` ∪ V i
` : p′j = y`, thus p′(V i

`) = |V i
` |y` and

p′(U i
`) = |U i

` |y`. Since p′(V i
`) is the smallest number over ki`(δO/h) which is divisible

by y` (from the definition of V i
`) and p′(U i

`) ≥ ki`(δO/h) and it is also divisible by
y`, we get |V i

` | ≤ |U i
` | for every i ∈ {1, 2, . . . , q − 1} and ` ∈ {1, 2, . . . , h}.

(continue the proof of lemma) From the previous proposition we get p′(V i
`) ≤

p′(U i
`), so there exist the c`,i for which p(V i

`) ≤ p(U i
`) + c`,i and

∑
`,i c`,i = δpS(x̄B)

sum . It
is exactly (9) with the mentioned violation in other words.

It is enough to prove instead of (8) that our schedule uses less raw material until
every ui′ than the optimal solution (because the optimal solution fulfils (8)). Since
|V i
` | ≤ |U i

` | for every i and `, ∑i′

i=1 |V i
` | ≤

∑i′

i=1 |U i
` | for every ` and i′. From the

definition of V i
` we get that jobs of ∪i≤i′V i

` have the ∑i≤i′ |V i
` | smallest aj among the

jobs of S` for every `. Therefore, the total demand of those jobs in ∪i≤i′V i
` cannot

exceed the total raw material need of the jobs in ∪i≤i′U i
` for every `. If we add up

these inequalities for every ` we get the claim.
The last step of our proof shows that: ∑i,` p(V i

`) ≥ (1 − (2 + q)δ)O. We know
that

ki`

(
δO
h

)
≤ p′(V i

`) ≤ p′(U i
`) < (ki` + 1)

(
δO
h

)
(12)

Thus

∀i, ` : p′(U i
`)− p′(V i

`) ≤ δO
h

(13)

p′(U)− p′(V) ≤ (q − 1)δO (14)

p(U)− p(V) ≤ p(U)− p′(U) + p′(U)− p′(V) ≤ 3δO + (q − 1)δO (15)

(1− (2 + q)δ)O ≤ p(V) (16)

In the first inequality of (15) we use the fact p′(V) ≤ p(V). In the second we
use (14) and the inequality (1 + δ)p′(U) + δO ≥ p(U) (δO came from the discarded
’very small’ jobs (pj < δO/n′)) and then p′(U) ≤ OPT ≤ (1 + δ)O ≤ 2O.

Theorem 3.4.9. The previous algorithm guarantees a schedule for the problem
1|rm = 1|Cmax with constant number of deliveries, where Calg

max ≤ (1 + ε)C∗max.
The run-time of the algorithm is polynomial in n.

Proof. Once our algorithm will use the same big-job assignment as the optimal
schedule. Consider the problems (7)-(11) when we use this big-job assignment.

27

According to Lemma 3.4.7 we find an x′ solution for problem (7)-(11) (with a small
violation in (9)), where:∑

i<q,j∈S
pjx
′
ij ≥ (1−O(δ))

∑
i<q,j∈S

pjx
∗
ij ≥

∑
i<q,j∈S

pjx
∗
ij −O(δ)C∗max

and x∗ is the optimal solution of (7)-(11), because (1 + δ)O ≥ OPT ≥ OPT S(x̄B).
x′ generates an assignment for us (with the mentioned big-job assignment). It is
possible that there is not enough time in a ’gap’ for the assigned small jobs to
process them (see constraints (9)), so we have to delay some jobs. Since (q −
1)δpsum + δpS(x̄B)

sum ≤ O(δ)C∗max this lateness is not big. Summarizing our results we
have a schedule where until uq + O(δ)C∗max we complete jobs with nearly the same
total processing time (at most O(δ)C∗max fewer) than the optimal solution completes
until uq. If we schedule our remaining jobs in arbitrary order without idle time as
soon as possible, we get a good approximation (Calg

max ≤ (1 + ε)C∗max), because these
jobs have a total processing time at most O(δ)C∗max more than the total processing
time of the jobs scheduled after uq in the optimal solution.

Let us see the run-time of our algorithm. We have seen that the number of the
big-job assignments is constant. After that we have to find a good value for O from
the set T . Since |T | = 2δ−1 lnn′+ 1, we can try each element of T . In Lemma 3.4.6
we proved that the number of the tuples which we have to try is polynomial in n.
Remark 3.4.4 shows that we can determine the sets V i

` -s from a tuple in polynomial
time. It is easy to see that creating a schedule from V i

` -s is very fast algorithm
(O(n) running time). To sum up our results the whole algorithm is polynomial in
n (cBO(lnn′)O(n′ O(1/δ2))O(n′)O(n) = O(nc) for a suitable constant c), so it is a
PTAS.

Remark 3.4.10. Our algorithm is not an FPTAS, because the number of the possible
tuples is not polynomial in 1/ε (see Lemma 3.4.6).

Remark 3.4.11. If we have more than one raw material, but it is true that

ai,j ≤ ai,j′ ⇒ ai′,j ≤ ai′,j′ : ∀i, i′ ∈ R, j, j′ ∈ J

then we can create a very similar PTAS.

3.5∗ A PTAS for 1|rj, rm = 1, q = const|Cmax
Let rj denote the release time of Jj. Consider the problem 1|rj, rm = 1, q =

const|Cmax. Now we have release time constraints, i.e.

sj ≥ rj ∀j ∈ J

28

We divide the solution into two parts: first we deal with the special case when
the number of the different release times until uq is constant, and then we show to
reduce our original problem to this easier problem.

3.5.1∗ Constant number of different release dates until uq

This algorithm will be similar to that presented in the previous section. We will
often refer to that algorithm, now we just mention the main steps and highlight the
differences. For details, remarks (and for some proofs) see the previous section.

Suppose that the number of the different release times smaller than uq is con-
stant. Let V = {v1, . . . , vs} be the set of release times and the ui (recall that the ui
are the time points of the raw material deliveries). Assume that 0 ≤ v1 < . . . < vs

and vs+1 = ∞. Let b′i := ∑
`:u`≤vi

b`. We formulate a mathematical program for
modeling the problem. Our decision variables will be xij and Ci, where xij will be
1 if and only if Jj starts in the ith time period between vi and vi+1, otherwise it
is 0. Ci will be the completion time of those jobs which are assigned to the ith period.

minCs (17)

s.t.∑
j∈J

pjxij ≤ Ci −max{vi, Ci−1}, i = 1, . . . , s (18)

∑
j∈J

aj

(
i∑

`=1
x`j

)
≤ b′i, i = 1, . . . , s (19)

s∑
i=1

xij = 1, j ∈ J (20)

C0 = 0 (21)

xij ∈ {0, 1}, i ∈ 1, . . . , s; j ∈ J (22)
s∑
i=1

xijvi ≥ rj, j ∈ J (23)

Let vt = uq. After vt our problem is just the same as 1|rj|Cmax thus it is optimal
to schedule the remaining jobs in non-decreasing order of their release times (every
job as soon as possible, for a proof see [11]). Note that t is constant.

It is easy to see that the number of the eligible big job assignments is a constant,
so we can try every possibility (a big job assignment is not eligible if it hurts a release
time constraint). Now we transform the rest of our problem into a maximization
problem like we did it in the previous section (we use the same definitions):

29

OPT S(x̄B) := max
∑

i<t,j∈S
pjxij (24)

s.t.

∑
j∈S

aj

(
i∑

`=1
x`j

)
≤ bri (x̄B), i = 1, . . . , t− 1 (25)

∑
j∈S

pjxij ≤ max{0, vi+1 − ti(x̄B)}+ δpsum, i = 1, . . . , t− 1 (26)

t−1∑
i=1

xij ≤ 1, j ∈ S (27)

xij ∈ {0, 1}, i ∈ 1, . . . , t− 1; j ∈ S (28)

xij = 0, ∀(i, j) : rj > vi (29)

The remaining task is to find a δ-approximate solution of this program. If we can
do this we search that solution for every big job assignment and choose the best.
This solution with its big job assignment will be an ε-approximation for the original
problem.

Like in the previous section, it is enough if we find an approximate solution which
hurts some of the constraints (26) but the total violation is at most δpS(x̄B)

sum (pS(x̄B)
sum =∑

j∈S(x̄B) pj), this increases our makespan by at most δpS(x̄B)
sum , so the solution remains

δ-approximate. Let OPT denote the optimum of this new problem.
Let pS(x̄B)

max = maxj∈S(x̄B) pj, and n′ = |S(x̄B)|. Consider the polynomial size set
T (see the previous section) and choose a value O in every possible way. Once we
must choose a value O which is just smaller than OPT ((1 + δ)O ≥ OPT). After
this, modify the processing times of the jobs, like we did it in the previous section
(p′j = (1 + δ)i · δO

n′). According to Proposition 3.4.2, the number of the different
modified processing times (h) is at most 4

δ
lnn′.

Let S ′ denote the set of the remaining jobs, let S` = {j ∈ S ′ : p′(j) = (1 + δ)` ·
δO/n′} and let y` = (1 + δ)` · δO/n′ denote the processing time of a job from S`.
Let Sk` = {j ∈ S` : rj = vk}. We choose jobs from every Sk` to schedule them to
the different time periods. Let V i,k

` the set of jobs which we will assign from Sk` to
the ith time period. Putting Jj ∈ Sk` into V i,k

` correspond to assigning Jj to the ith
time period, so if Jj ∈ V i,k

` then xij = 1, otherwise xij = 0.
A h(t−1)2-tuple will clearly determine the sets V i,k

` (see the next algorithm how)
and thus the schedule. We prove that the number of these tuples is polynomial in
n′ (see Lemma 3.5.1).

Now we show how we determine the sets V i,k
` from a h(t− 1)2-tuple. Initially let

i = 0, every V i,k
` = ∅ and let ki,k` (i = 1, . . . , t − 1; ` = 1, . . . , h, k = 1, . . . , t − 1)

30

a given h(t − 1)2-tuple. Suppose that the jobs in Sk` are ordered in non-decreasing
raw material demand.

Determining the V i,k
` from a h(t− 1)2-tuple:

1. i := i+ 1. For every ` = 1, . . . , h and k = 1, . . . , t− 1 do the following steps.

2. Choose the smallest number of jobs from the beginning of the ordered set Sk`
whose cumulative (modified) processing time is at least ki,k` (δO/h). Put these
jobs into V i,k

` . Discard the cases when we do not have enough element in Sk`
and when V i,k

` 6= ∅ for a pair i < k.

3. Delete the assigned jobs from Sk` . If i < t− 1 go to 1., else STOP.

We can run the previous algorithm in polynomial number of times (for a given
tuple it is polynomial). Our aim is to find a tuple from which we can generate an
approximate solution for problem (24)-(29). It is useless to deal with tuples that
give us a ’too good solution’ (i.e. ∑i<s,j∈S′ p′jxij ≥ O). For a given h(t − 1)2-tuple
the total modified processing time of the assigned jobs is at least ∑i,`,k k

i,k
` (δO/h),

so we can use the constraint ∑l,i k
i
` ≤ h/δ. The following lemma proves that it is

enough to run the previous algorithm in polynomial number of times if we want to
try every possible h(t− 1)2-tuple which does not hurt our constraints (and consists
of only nonnegative integers):

Lemma 3.5.1. Let h ≤ 4δ−1 lnn′. Then the number of the h(t − 1)2-tuples (k1,1
1 ,

. . . , kt−1,t−1
h) such that ∑`,i,k k

i,k
` ≤ h/δ, ki,k` ∈ N is O(n′ O(1/δ2)).

Proof. It is elementary counting from Lemma 3.4.5 (α = 1 + 1/δ).

The next lemma proves that we always find a tuple, which gives us a good ap-
proximate solution for problem (24)-(29):

Lemma 3.5.2. There exists a h(t − 1)2-tuple (k1,1
1 , . . . kt−1,t−1

h) such that we get
a nearly allowable (i.e. the total violation in constraints (26) is at most δpS(x̄B)

sum)
solution for problem (24)-(29) with the previously presented algorithm and

∑
i,`,k

p(V i,k
`) ≥ (1− (3 + (t− 1)2)δ)O

Proof. Let x∗ij denote the optimal solution of (24)-(29). We denote by U the set of
the jobs j with x∗ij = 1. U` := U ∩ S` and U i

` ⊆ U` is the set jobs from U` which are
scheduled in the ith time period in the optimal solution. U i,k

` := {j ∈ U i
` : rj = vk}

We use the V = ∪i,`,kV i,k
` notation.

31

At some time our algorithm enumerates the h(t−1)2-tuple which we can get from
the U i,k

` in the following way: for every i, k and ` there is a nonnegative integer ki,k`
for which: ki,k` (δO/h) ≤ p′(U i,k

`) < (ki,k` + 1)(δO/h). We prove that this tuple is
good for us. Denote by x′ij the value of the xij which we get from our algorithm
with this tuple.

Our task is to prove that the constraints (25) are true with this choice, the total
violation in (26) is at most δpS(x̄B)

sum , we do not hurt (29) and p(V) ≥ (1− (3 + (t−
1)2)δ)O (the other constraints are trivial).

Similarly Proposition 3.4.8 we get |V i,k
` | ≤ |U

i,k
` | for every i, k and `. From that

we get p′(V i,k
`) ≤ p′(U i,k

`), so there exist the c`,i,k for which p(V i,k
`) ≤ p(U i,k

`) + c`,i,k

and ∑`,i,k c`,i,k = δpS(x̄B)
sum . It is exactly (26) with the mentioned violation in other

words.
It is enough to prove instead of (25) that our schedule uses less raw material until

every vi′ than the optimal solution (because the optimal solution fulfils (25)). Since
|V i,k
` | ≤ |U

i,k
` | for every i, k and `, ∑i′

i=1 |V
i,k
` | ≤

∑i′

i=1 |U
i,k
` | for every `, k and i′.

From the definition of V i,k
` we get that jobs of ∪i≤i′V i,k

` have the ∑i≤i′ |V i,k
` | smallest

aj among the jobs of Sk` for every ` and k. Therefore, the total demand of those
jobs in ∪i≤i′V i,k

` cannot exceed the total raw material need of the jobs in∪i≤i′U i,k
`

for every ` and k. If we add up these inequalities for every ` and k we get the claim.
According to the definition of ki,k` , V i,k

` = ∅ if i < k (since U i,k
` = ∅ if i < k) so

the V i,k
` fulfil (29).

The last step of our proof shows that: ∑i,`,k p(V i,k
`) ≥ (1− (3 + (t− 1)2)δ)O. We

know that

ki,k`

(
δO
h

)
≤ p′(V i,k

`) ≤ p′(U i,k
`) < (ki,k` + 1)

(
δO
h

)
(30)

Thus

∀i, `, k : p′(U i,k
`)− p′(V i,k

`) ≤ δO
h

(31)

p′(U)− p′(V) ≤ (t− 1)2δO (32)

p(U)− p(V) ≤ p(U)− p′(U) + p′(U)− p′(V) ≤ 3δO + (t− 1)2δO (33)

(1− (3 + (t− 1)2)δ)O ≤ p(V) (34)

In the first inequality of (33) we use the fact p′(V) ≤ p(V). In the second we
use (34) and the inequality (1 + δ)p′(U) + δO ≥ p(U) (δO came from the discarded
’very small’ jobs (pj < δO/n′)) and then p′(U) ≤ OPT ≤ (1 + δ)O ≤ 2O.

Theorem 3.5.3. The previous algorithm guarantees a schedule for the problem
1|rj, rm = 1|Cmax with constant number of deliveries if there is constant number

32

of different the rj, where Calg
max ≤ (1 + ε)C∗max. The run-time of the algorithm is

polynomial in n.

Proof. Similar to the proof of Theorem 3.4.9.

3.5.2∗ 1|rj, rm = 1, q = const|Cmax

In this subsection we deal with the general release time case. We reduce this
case to the one with a constant number of different release times until uq (see the
previous subsection).

Let ε be fix. First we round up every release time not greater than uq to the
nearest tεuq where t ∈ Z (if (t − 1)εuq < rj ≤ tεuq then let r′j = tεuq). After the
rounding procedure we have a constant number of different release times (1/ε at
most) so we can use the algorithm described in the previous subsection. With this
algorithm we can find an ε-approximate solution of the rounded problem. We show
that this solution is also an ε-approximate solution for the original problem.

Lemma 3.5.4. Let Cr
max denote the optimum of the rounded problem. Then

Cr
max ≤ C∗max + εuq.

Proof. Consider an optimal schedule of the original problem (S). Let S ′ be a sched-
ule where every job starts εuq later than in schedule S. S ′ does not hurt rounded
release times because we know that

rj ≤ sj ∀j ∈ J ,

sj + εuq = s′j ∀j ∈ J ,

r′j ≤ rj + εuq ∀j ∈ J ,

thus

r′j ≤ rj + εuq ≤ sj + εuq = s′j ∀j ∈ J .

So S ′ is a feasible schedule for the rounded problem, hence

Cr
max ≤ CS′

max = C∗max + εuq.

Theorem 3.5.5. Let Sr be the schedule that we can find with the algorithm of the
previous subsection for the rounded problem. The makespan of this schedule (CAlg

max)
is at most (1 + ε)2C∗max.

33

Proof. We know that uq ≤ C∗max. From Theorem 3.5.3 and Lemma 3.5.4 we get

CAlg
max ≤ (1 + ε)Cr

max ≤ (1 + ε) (C∗max + εuq) ≤ (1 + ε)2C∗max.

34

Chapter 4

Precedence constraints

The problem of this chapter has a new property. Now, we do not want to schedule
our jobs on machines, it is possible to schedule any number of jobs at the same
moment. On the other hand we have some precedence constraints: for some pairs
(Jj, Jk) we have given nonnegative constants qjk which turn up in the following
precedence constraints:

sk ≥ Cj + qjk

Throughout this chapter we suppose that our problem can be described with a
directed acyclic graph (DAG), where the jobs are the nodes and we have an arc from
Jj to Jk with a length `jk = pj + qjk if and only if we have a precedence constraint
sk ≥ Cj + qjk. We have one non-renewable raw material, we use the previously
introduced notations to describe it. This chapter is based on [3].

4.1 Minimizing Cmax

We introduce two new nodes (n0, n∗) and some new arcs to the DAG: we direct
arcs from n0 to each Jj node with a 0 length and from every Jj to n∗ with a length
of pj. Let D = (V,A) denote this new DAG. First we search the critical path in
D. Let t∗ be the length of the (directed) longest path from n0 to n∗. We can
recursively calculate for every Jj the latest possible time tj when it can start if we
want to finish our scheduling until t∗ (tj = min{tk− `jk| (j, k) ∈ A}). Note that the
schedule, where Jj starts at tj is optimal if we do not take into consideration the
raw material constraints.

Proposition 4.1.1. There is an optimal schedule and a nonnegative constant δ
where sj = tj + δ, ∀j.

35

Proof. Let δ := C∗max − t∗ (δ ≥ 0, because t∗ is the makespan of problem where
we do not have raw material constraints). The schedule S, where sj = tj + δ, ∀j
does not break the precedence constraints and its makespan is C∗max. Let S ′ be an
arbitrary optimal schedule. It is easy to see that sj ≥ s′j, ∀j ∈ J . Since S ′ satisfy
the raw material constraints, S is a feasible schedule.

Let Aδ(t) = ∑
tj+δ≤t aj, B(t) = ∑

ui≤t bi, we have to find the smallest δ for which
Aδ(tj) ≤ B(tj), ∀j. Since Aδ(t) and B(t) are both stepwise increasing functions, the
optimal δ∗ is the smallest nonnegative number for which A0(tj − δ∗) ≤ B(tj), ∀j.

Remark 4.1.2. This algorithm has a time complexity of O(|A|+ n log n+ q log q) (q
is number of the deliveries). For details see [3].

4.2 Deadline constraints

In this section we still want to minimize Cmax, but now we have deadline con-
straints i.e. Cj ≤ dj, ∀j. The main idea of our algorithm is still the shifting the
graph of A0(t). Let δj = dj − tj − pj and denote π the permutation for which
δπ(1) ≤ δπ(2) ≤ · · · ≤ δπ(n). We calculate the optimal δ∗ with binary search according
to where it locates in the previous sequence. For a given δ∗ we may hurt some
of the deadline constraints (if δπ(i) ≤ δ∗ ≤ δπ(i+1) then jobs Jπ(1), . . . , Jπ(i) hurt the
constraint). If Jj hurts its deadline constraint, we schedule it at sj = dj−pj, discard
it from the problem and reduce the suitable bi by aj. A more formal version of this
algorithm can be found in [3]. It is easy to see, that the running time of this new
algorithm is still O(|A|+ n log n+ q log q).

4.3 Other cost functions

Assume that the fj(t), j = 1, . . . , n are arbitrary continuous nondecreasing cost
functions. We want to minimize maxj{fj(Cj)} in our schedule so we search the
smallest γ for which fj(Cj) ≤ γ, ∀j. A given γ generates deadlines dj(γ): dj(γ) =
min{f−1

j (γ), min{dk(γ) − pk − qjk : (j, k) ∈ A}} (d∗(γ) := ∞). Since these values
are not necessarily integers we cannot create a polynomial binary search based on
the previous section. Let U(j) = {k ∈ V \ {n∗} : ∃(j, k) path in D} the set of
successors and let Ljk denote the length of the maximal length path from j to k.

36

We need the smallest gamma such that:
∑
{aj : dj(γ)− pj ≤ ui} ≤ B(ui) ∀i (1)∑

{aj : min{f−1
j (γ)− pj,

min{f−1
k (γ)− pk − Ljk : k ∈ U(j)}} ≤ ui} ≤ B(ui) ∀i (2)

We used the definition of dj(γ). Let γij = max{fj(ui + pj), max{fk(ui + pk + Ljk :
k ∈ U(j))}}, so the problem is to find the smallest γ such that

∑
{aj : γ ≤ γij} ≤ B(ui) ∀i (3)

Gi(γ) = ∑{a : γ ≤ γij} is a stepwise nonincreasing function of γ. For a fix i we
can find the optimal γ∗i in O(n) time (see [3]). γ∗ = maxi{γ∗i }. The running time
of the whole algorithm is O(n|A| + qn2), but O(|A| + n log n + qn) is also enough
with a small modification ([3]).

37

Chapter 5

Summary, other results of the
topic

This chapter has two aims: to summarize our results and to place them between
the previous results. We present the results in tables denoting the sources of the
results. In section 5.1 we examine the problems where the jobs can deliver raw
materials, while in section 5.2 there is a review about the problems where the jobs
only consume raw materials.

5.1 Producer and consumer jobs

In this section we only consider problems where there is only one raw material.
Let J + denote the set of the producer jobs (the so-called x-jobs in chapter 2) and
J − the set of the consumer jobs (y-jobs). Recall that zj is the amount of raw mate-
rial with which Jj increases or decreases the stock size. For simplicity we introduce
some new notations for the constraints:

p+: pj = p+, ∀j ∈ J +

d+: dj = d+, ∀j ∈ J +

z+: zj = z+, ∀j ∈ J +

k+: the number of the extant constraints out of p+, d+, z+

p−: pj = p−, ∀j ∈ J −

d−: dj = d−, ∀j ∈ J −

z−: zj = z−, ∀j ∈ J −

k−: the number of the extant constraints out of p−, d−, z−

Table 1. summarizes the results (just the ’hardest’ polynomial problems and
’easiest’ NP-hard problems). "?NP" means that it is open whether it is strongly

38

or ordinary NP-hard ("sNP" - strongly NP-hard; "oNP" - ordinary NP-hard; P -
polynomial). Uj = 1 if Jj is tardy otherwise it is 0. Some earlier (weaker) result can
be found in [2]. There is a more detailed version of the results in [1].

Objective Constraints Results Source(s)
Stock size - sNP, 3/2-approx. [6], [10], chap. 2∑

wjCj k+, k− = 2 P, O(n log n) [1]∑
wjCj (p+ or w+) and k− = 3 sNP [1]∑
wjCj (p− or w−) and k+ = 3 sNP [1]
Lmax p+ or z+ P, O(n2 log(∑ pj)) [1]
Lmax d+ and k− = 3 oNP [1]
Lmax d+, p−, z− sNP [1]∑
Uj d+, p−, k+ = 2 P, O(n3) [1]∑
Uj p+, d− and (p− or z−) P, O(n6) [1]∑
Uj p+, z+, p−, z− P, O(n2) [1]∑
Uj d+, z+, d−, z− P, O(n2) [1]∑
Uj (d+, k− = 3) or (d−, k+ = 3) oNP [1]∑
Uj p+, z+ ?NP [1]∑
Uj d+, p−, z− sNP [1]

Table 1. Problems in case of producer and consumer jobs.

There are still some problems which are open (according to [1]). These problems
are listed in Table 2.:

Objective(s) Constraints∑
wjCj,

∑
Uj z+, k− = 3∑

wjCj,
∑
Uj z+, p−, w−∑

wjCj,
∑
Uj z+, p−, z−∑

wjCj,
∑
Uj z+, w−, z−∑

wjCj,
∑
Uj z+, z−∑

wjCj,
∑
Uj k+ = 3, z−∑

wjCj,
∑
Uj p+, w+, z−∑

wjCj,
∑
Uj w+, z+, z−∑

wjCj,
∑
Uj p+, z+, z−

Objective(s) Constraints∑
Uj p+, z+, p−∑
Uj p+, p−, z−∑
Uj p+, p−∑
Uj p+, z−∑
Uj z+, p−

Table 2. Open problems in case of producer and consumer jobs.

39

5.2 Only consumer jobs

We classify these problems according to their objectives. Recall that q is the num-
ber of the deliveries and we use |A| for the size of the precedence graph (number of
the arcs). First let us see the problems where we want to minimize the makespan
in Table 3.:

Problem Results Source(s)
1|rm|Cmax sNP, 2-approx. [8], sec. 3.3

1|rm = 1|Cmax sNP [2], [5], [8]
1|rm = 1, pj = p|Cmax P [8], sec. 3.3

1|rm = 1, pj = 1, prec|Cmax sNP [2]
1|rm = 1, aj = 1|Cmax P, O(n log n) [2]

1|rm = 1, pj = 1, aj = 1, prec|Cmax P, O(|A|+ q) [2]
1|rm = 1, reg. supp.|Cmax P, O(n log n) [8], sec. 3.3

1|rm = 1, q = 2|Cmax FPTAS [9]
1|rm = 1, q = const|Cmax PTAS [9], sec. 3.4

1|rm = 1, rj, q = const|Cmax PTAS sec. 3.5
PDm|rm = 1, pj = 1, prec|Cmax open if m ≥ 3 fix [2]
PDm|rm = 1, aj = 1|Cmax oNP [2]
PDm|rm = 1, pj = 1, rj|Cmax P, O(n2 + q) [2]
PDm|rm = 1, pj = 1, rj|Cmax P [2]
−|rm = 1, prec|Cmax P, O(|A|+ n log n+ q log q) [3], sec. 4.1
−|rm = 1, dj, prec|Cmax P, O(|A|+ n log n+ q log q) [3], sec. 4.2

Table 3. Makespan minimization in case of just consumer jobs.

Table 4. summarizes the problems where the objective function is ∑Cj and we
collect the remaining problems in Table 5. (Tj = max{0, Cj − dj}):

40

Problem Results Source(s)
1|rm = 1|∑Cj sNP [2], [5]

1|rm = 1, pj = 1|∑Cj P [2]
1|rm = 1, pj = 1, prec|∑Cj sNP [2]

1|rm = 1, pj = 1, aj = 1, prec|∑Cj P [2]
1|rm = 1, pj = 1, rj|

∑
Cj NP [2]

PDm|rm = 1|∑Cj sNP [2]
PDm|rm = 1, pj = 1|∑Cj P [2]

PDm|rm = 1, pj = 1, aj = 1, prec|∑Cj NP [2]
PDm|rm = 1, pj = 1, rj|

∑
Cj NP [2]

−|rm = 1|∑Cj P [2]
−|rm = 1, pj = 1|∑Cj P [2]

−|rm = 1, pj = 1, prec|∑Cj sNP [2]
−|rm = 1, pj = 1, aj = 1, prec|∑Cj NP [2]

−|rm = 1, pj = 1, rj|
∑
Cj NP [2]

Table 4. ∑Cj in case of consumer jobs only.

Problem Results Source(s)
1|rm|Lmax sNP, 2-approx. sec. 3.2

1|rm = 1|Lmax sNP [5]
1|rm = 1, pj = 1|Lmax P, O(n2) [8], sec. 3.1
1|rm = 2, pj = p|Lmax sNP, 2-approx. [8], sec. 3.1
1|rm = 1, pj = p|∑Tj NP [5]
1|rm = 1, dj = d|∑Tj sNP [5]

1|rm = 1, dj = d, aj = a|∑Tj NP [5]
1|rm = 1|∑Uj sNP [5]
−|rm = 1|∑Uj P, O(n2 + nq) [2]

−|rm = 1, pj = 1, prec|∑Uj oNP [2]

Table 5. Other problems in case of consumer jobs only.

41

Bibliography

[1] D. Briskorn, B. Choi, K. Lee, J. Leung, M. Pinedo: Complexity of sin-
gle machine scheduling subject to nonnegative inventory constraints, European
Journal of Operational Research 207 (2010), 605–619.

[2] J. Carlier: Problèmes d’ordonnancements à contraintes de ressources: Algo-
rithmes et complexité, doctorat d’état (1984) (french)

[3] J. Carlier, A. H. G. Rinnooy Kan: Scheduling Subject to Nonrenewable-
Resource Constraints, Operations Research Letters, Volume 1, Number 2 (1982)

[4] C. Chekuri, S. Khanna: A Polinomial Time Approximation Scheme for the
Multiple Knapsack Problem, SIAM Journal on Computing, Volume 35, Issue 3
(2006), 713–728.

[5] E. R. Gafarov, A. A. Lazarev, F. Werner: Single machine schedul-
ing problems with financial resource constraints: Some complexity results and
properties, Mathematical Social Sciences, 62 (2011)

[6] M. R. Garey, D. S. Johnson: Approximation Algorithms for Bin Packing
Problems: A Survey. In Analysis and Design of Algorithms in Combinatorial
Optimization., Ausiello and Lucertini (eds.), Springer, New York (1981)

[7] R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan:
Optimization and approximation in deterministic sequencing and scheduling: a
survey, Annals of Discrete Mathematics, 5 (1979), 287–326.

[8] A. Grigoriev, M. Holthuijsen, J. van de Klundert: Basic Scheduling
Problems with Raw Material Constraints, Naval Research Logistics, Vol. 52
(2005), 527–535.

[9] P. Györgyi, T. Kis: Approximation schemes for single machine scheduling
with non-renewable resource constraints, submitted to publication (2013)

42

[10] H. Kellerer, V. Kotov, F. Rendl, G. J. Woeginger: The Stock size
problem, Operations Research 7 (1996), S1–S12.

[11] E. L. Lawler: Optimal sequencing of a single machine subject to precedence
constraints, Management Sci. 19 (1973), 544–546.

[12] P. Schuurman, G. J. Woeginger: Approximation Schemes - A Tutorial,
To appear in the book "Lectures on Scheduling", edited by R. H. Moehring, C.
N. Potts, A. S. Schulz, G. J. Woeginger, L. A. Wolsey

43

