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Chapter 1

Introduction

Nowadays, using various planning and operating tools and software is es-

sential for the efficient operation of an airline. The range of these so-called

decision support systems is quite wide. The whole planning process, in-

cluding timetable construction, fleet assignment, manpower planning, crew

scheduling, load planning, flight planning etc. is supported by numerous

well-developed software. Besides these systems are required to be reliable,

they should provide optimal or nearly optimal plans in as short time as possi-

ble. If any disruption occurs, like bad weather, equipment failure etc. there

is not much time to recalculate, a new optimal or nearly optimal solution

must be provided as soon as possible.

Airlines are interested in applying these products because optimal utiliza-

tion of the resources is essential for the cost-effective operation. Adapting

supply to the changing passenger demand, predicting the number of pilots

needed in different seats, determining the timing of trainings and vacations

are some of the serious problems facing major airlines. Overcoming these dif-

ficulties occur in a complex planning process, called manpower planning. The

goal of manpower planning is to ”provide the right number of the right per-

sonnel at the right time at minimum cost”. This thesis focuses on manpower

planning, especially on pilot training optimization.
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There is a huge attention towards pilot trainings because most of the

accidents in the past could have been avoided if the pilots had been better-

trained. Flight planning and flight control systems are getting more and

more reliable, therefore, most of the time accidents happen because of human

mistakes. In case any unexpected disruption occurs, pilots co-operating with

the air traffic controllers must exactly know how to act. They have to be

prepared to any arising unusual, sometimes dangerous situation.

The deadliest aviation accident in the past few years was the disaster of

Air France Flight 447. On 1 June 2009, an Airbus A330 crashed into the

Atlantic Ocean, killing all 216 passengers and 12 air crew on board. Investiga-

tions of the accident continued for the forthcoming three years. The circum-

stances of the crash made the research very difficult. The flight recorder was

found much later, on 2 May 2011. Until then, there were only speculations -

based on the already known facts - regarding the cause of the accident. The

plane hit some turbulence, the autopilot disconnected and the plane started

to roll to the right. The pilot tried to correct this by deflecting the side-stick

to the left and made an abrupt nose-up. Then the plane nearly stalled two

times and tossed in the air. The airspeed indicator showed unreliable val-

ues and the pilot continued making nose-up. Unfortunately the crew didn’t

manage to coordinate the aeroplane and it started to descend rapidly and

moments later, hit the ocean.

The question was, among other failures, was there any human error in-

volved? According to the Final Report of the French Civil Aviation Safety

Investigation Authority [13], released in July 2012, the aeroplane was flying

close to the upper limit of its envelope and neither of the crew members

knew exactly how to act. The absence of any training at high altitude in

manual aircraft handling contributed to the disaster. Some changes after the

accident referred to crew training, for example flight simulator trainings were

extended to high altitudes and to land without airspeed indicators.
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That’s why we put the emphasis on pilot training optimization in this the-

sis. The more optimal schedule is created, the more savings can be achieved,

which leads to the possibility of training more pilots with more advanced

training methods.

Manual solutions to the occurrent manpower planning problems are time

consuming and not so cost-effective. Manpower planners gather data from

several database systems and build training plans using spreadsheets. Opti-

mal or close to optimal solutions can be reached in minutes by using math-

ematical models and well-designed algorithms. As soon as the concept of

decision support systems (DSS) emerged in the 1980s, the need for appli-

cations of DSS’s started growing. Verbeek designed a system to support

strategic manpower planning of airline pilots at Royal Dutch Airlines (KLM)

[2]. Another US carrier, Continental Airlines, has been using an integrated

decision support system for more than 10 years, called Crew ResourceSolver

to construct training plans. By using the system, Continental has savings

around $10 million annually [3]. Another example is Lufthansa Technical

Training GmbH (LTT), that runs training courses for Lufthansa Technik

AG and for other international airlines. LTT increased its profit by using a

course-scheduling decision support system. The overall profit of the sched-

ule created by the system is about 26 percent higher than the profit of the

manually constructed one [4]. Åsa Holm did similar work to Jeppesen (sub-

sidiary of Boeing Commercial Aviation Services). She explored various areas

of manpower planning in her thesis and built up mathematical models. She

revealed that by using optimization methodology the potential savings are

around 10 percent [1].

This thesis proposes promising solution techniques to the pilot training

problem with mathematical approach. The referenced models were tested on

generated - however realistic - data, optimal solutions could be reached in

surprisingly short time.
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Chapter 2

Business background

An airline constantly adjusts its need for pilots in different seats in response

to new market opportunities, changing passenger demand etc. Shortages

in some positions may be filled by transferring surplus pilots from other

seats. If shortages are greater than surpluses, the airline will need new hires.

Conversely, if surpluses are greater, crew will be released. Therefore, pilots

change position many times during their career. They want to move from

smaller to larger crafts and from first officer seat to captain seat to increase

their salary and responsibility. In the cockpit there are usually two positions,

captain and first officer. The captain is ultimately responsible for the oper-

ation and the safety of the flight. The first officer is the second pilot (also

known as co-pilot). The control of the aircraft is shared between the captain

and the first officer. Optionally there is a third person in the cockpit, a flight

engineer in order to monitor the engines and other flight systems.

The way that crew members move between positions is different for each

airline. One option is the traditional career ladder, when pilots change from

first officer to captain at the same type of aircraft before they change to a

bigger aircraft. An other alternative is when they change from first officer on

one aircraft to first officer on a bigger aircraft and when they reach the top,

they change to captain on the smallest one. Some airlines managed to put

positions in parallel, thus the number of possible transitions was increased.

5



The process of deciding which pilots to be transferred from one position

to another differs between carriers. This action is taken one or two times a

year. The most common is system bid award. During system bid award, the

airline offers positions to the pilots, based on forecasted needs and then they

are given the opportunity to bid on these new openings they desire. Each

pilot has a seniority number, based on the length of service within the airline,

with incidental reductions. The airline then awards positions to the pilots

in seniority order. We can break the order, but this is associated with cost

called pay-protection. It means that if two pilots are awarded the same new

position and the less senior pilot is advanced first, then the airline pays the

more senior pilot the increased amount from the advancement of the junior

pilot.

After a bidding period, pilots can be separated into four groups:

• Pilots, who are going to be transferred without training. They are

already qualified for their new position.

• Pilots to be advanced after training.

• There may be pilots to be released including pilots over age 60 who

should be furloughed.

• Pilots maintaining their current position.

After deciding the new positions a planning phase begins. Each newly

awarded position is associated with several trainings. A training plan must

be constructed that determines the timing of trainings, advancements, re-

leases and new hires. The plan also includes detailed information about all

training events for each student. When creating such a plan there are several

restrictions to be considered.
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• Pilots, who are awarded a new position must be trained within the

required period. Promotions and releases must be carried out before a

pre-defined deadline.

• Seniority rules restrict the order of promotions and releases. Pilots

must be released in reverse-seniority order and advancements should be

performed in seniority order. The order can be broken but it involves

pay-protection.

• Pilots may have longer predetermined activities, such as vacations

which must be considered when creating the schedule.

• We define block-hours as the number of flight hours to be staffed at each

position during a given period. It is measured by the time between an

aircraft is leaving the departure gate and arriving at the destination

gate. Trainings must be planned in a way that it is ensured that pilots

in service can satisfy the demand. If it is not possible, block-hour

shortage should be minimized, especially as it is associated with high

cost.

• The number of available resources is limited. In the optimal schedule

the utilization of simulators, instructors and other devices is efficient.

• Pilots are assigned to different trainings based on their work experience

and their newly awarded position. Each training consists of various

courses. A schedule must be made so that each pilot is assigned to the

required courses.
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Chapter 3

Determining the timing of

transitions

Because of the large size of the problem, it is solved with a two-phase process.

At first, the timing of transitions is determined with only monthly precision.

In the second phase a detailed assignment is created. In this chapter, the

focus is on the first stage. Only limited information is available of the re-

sources and only estimation of block-hours is known. A solution is obtained

by solving a mixed integer program (MIP). A schedule in monthly periods is

created, which minimizes the costs (including pay-protection and expenses

of block-hour shortage) while maintaining practicability.

There exist previous works regarding pilot training optimization. Yu et al.

[3] built up a basic mixed integer program in order to solve pilot-transitioning.

However their referred model does not consider some requirements, e.g. the

order of trainings. Åsa Holm examined the problem in details and also

created a MIP. In addition to the trainings she put a great emphasis on

vacation planning. The MIP shown below is based on their models and

adapted to the current problem. The output is of the form that the second

phase requires.
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3.1 Input parameters of the problem in dis-

cussion

A 6-month period in the winter season is considered because during that

half of the year less flights operate, trainings can be scheduled to the pilots’

agenda.

• T = time periods, in our case T = {1, 2, 3, 4, 5, 6}

Pilots under consideration are those who need to be trained, released or

advanced without any training.

• I = list of pilots

• Ia = sublist of pilots to be advanced both after and without training

• It = sublist of pilots who need at least one training

• Ir = sublist of pilots to be released in reverse-seniority order

• I(h) = pilots whose initial position is h

• I ′(h) = pilots whose future position is h

• IP = pairs of pilots (i, j) where pilot j may pay-protect pilot i

A position can be described with a triad of base, rank and aircraft type.

• H = set of all positions

Each training comprises various courses, which must be completed by pilots

assigned to the training. There are different types of trainings, each training

can be described by the courses involved. Only one-period-long trainings

are considered. If a training is more than one-period-long, it is divided into

several one-period-long segments. An extra constraint is added in order to

ensure the correct order.

• K = set of all training types
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• KP = pairs of trainings (k, l) where k must precede l

• I(k) = sublist of pilots, who need training type k

• K(i) = required trainings for pilot i

Each course requires resources, such as simulators, instructors etc. which are

limited.

• R = set of all the necessary resources

• K(r) = trainings which use resource r

Number of pilots who can start a specified training at any given time is

maximized. The initial supply of each resource is given, for example in a

given period the number of accesses of the simulators is determined.

• mk = maximum number of participants in training type k

• rsrt = initial supply of resource r in period t

• dkr = required number of resource r for training k

Based on the relevant planned flight schedule, the required number of block-

hours per position can be calculated. It is the number of hours to be staffed

at each position in a given period. The number of block-hours which can be

covered by the current crew can be calculated by multiplying the number of

qualified pilots by the average number of flight hours in a given period (in our

case in a certain month). Pilots in training are not productive, these missing

flight hours must be subtracted from the initial supply of block-hours.

• bdht = demand for block-hours for position h in period t

• biht = initial supply of block-hours for position h in period t

• uht = utilization of a pilot at position h in period t

• ulk = utilization loss due to participate in training type k
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A plan should be created, which minimizes the incurring costs. Expenses to

be considered are:

• cck = price of holding training type k

• cait = cost of advancing pilot i in period t

• crit = cost of releasing pilot i in period t

• cpi = pay-protection cost for pilot i

• csh = expenditures resulting from block-hour shortage at position h

3.2 Mixed integer program for the planning

If all the necessary information is available, then the planning process can

be started. In this section, a mixed integer programming formulation of

the problem is proposed. A plan can be constructed from the values of the

decision variables:

yait =

{
1 if pilot i is advanced in period t

0 otherwise

yait is defined only for pilots to be advanced, i ∈ Ia

yrit =

{
1 if pilot i is released in period t

0 otherwise

yrit is defined only for pilots to be released or furloughed, i ∈ Ir
Advancements and releases happen at the beginning of the period.

yikt =

{
1 if pilot i starts training type k in period t

0 otherwise

yikt is defined only for pilots who need training type k, i ∈ I(k) and for

periods not conflicting with long absences.
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Further variables are added in order to track the number of ongoing train-

ings, block-hour shortage and pay-protection.

xkt = number of pilots starting training k in period t

zkt = number of training type k starting in period t

sht = number of block-hours short for position h in period t

pi = number of periods in pay-protection for pilot i

The goal is to minimize the incurring costs.

Objective function:

minimize
∑
i∈Ia

∑
t∈T

caityait +
∑
i∈Ir

∑
t∈T

crityrit +
∑
k∈K

∑
t∈T

cckzkt+∑
i∈Ia

cpipi +
∑
h∈H

∑
t∈T

cshsht

Subject to:

Assignments and releases must happen exactly once.∑
t∈T

yait = 1 ∀i ∈ Ia∑
t∈T

yrit = 1 ∀i ∈ Ir

A pilot can start his/her assigned training exactly once and if he/she has

more trainings, he/she can start at most one training at a given period.∑
t∈T

yikt = 1 ∀k ∈ K, ∀i ∈ I(k)∑
k∈K(i)

yikt + yait ≤ 1 ∀i ∈ It,∀t ∈ T

Tracking the number of trainings and participants.

xkt =
∑
i∈I(k)

yikt ∀k ∈ K, t ∈ T

xkt
mk

≤ zkt ∀k ∈ K, t ∈ T
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A pilot is advanced after completing the required trainings.

n∑
t=1

yikt −
n∑
t=1

yait ≥ 0 ∀i ∈ It, n = 1..|T |,∀k ∈ K(i)

Pilots must be released in reverse-seniority order.

n∑
t=1

yrit −
n∑
t=1

yri−1t ≥ 0 ∀i ∈ Ir, n = 1..|T |

Some trainings have strict order which can’t be broken.

n∑
t=1

yikt −
n∑
t=1

yilt ≥ 0 ∀(k, l) ∈ KP, n = 1..|T |,∀i ∈ I(k) ∩ I(l)

Capacity of the resources is limited.

rsrt ≥
∑

k∈K(r)

dkrzkt ∀t ∈ T, r ∈ R

Tracking the number of periods in pay-protection for each pilot.

pj ≥
∑
t∈T

t ∗ yait −
∑
t∈T

t ∗ yajt ∀(i, j) ∈ IP

Tracking the number of block-hour shortages.

sht ≥ bdht − (biht−

(
∑

i∈I(h)∩Ia

t∑
p=1

uhtyaip +
∑

i∈I(h)∩Ir

t∑
p=1

uhtyrip +
∑

i∈I(h)∩It

∑
k∈K(i)

ulkyikt)

+
∑
i∈I′(h)

t∑
p=1

uhtyaip) ∀h ∈ H, t ∈ T

Restrictions to the variables:

yait, yrit, yikt ∈ {0, 1}

xkt, zkt, pi ∈ Z+ ∪ {0}

sht ∈ R+ ∪ {0}
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Chapter 4

Course scheduling

In the previous phase the timing of trainings are determined by solving a

mixed integer program. In the course scheduling phase, pilots are already

assigned to several trainings and trainings are already assigned to months.

Each training consists of various courses which have to be scheduled in con-

sideration of some limitations, such as working time regulations. In this

phase a detailed schedule is constructed by solving an integer program (IP).

Class scheduling is one of the most popular areas studied by operations

researchers. To the school timetabling problem there exist numerous algo-

rithms. A wide variety of methods are available, the problem can be for-

mulated as graph coloring or can be solved with network flows. Genetic

algorithms and tabu search also can be applied. Further techniques can be

found in a technical survey of Schaerf [6]. Despite the fact, that it is a

well-researched area, the existing algorithms can’t be adapted to the course

scheduling problem of pilot training. There are significant differences be-

tween school timetabling and the problem under consideration, e.g. we are

planning for one period, courses are not repeated week by week.

Specific algorithms were also constructed but not in such large numbers.

Haase et al. [4] developed a prototype course-scheduling module however the

details of realization remained a secret. Qi et al. made a research on class

scheduling for pilot training at the training center of Continental Airlines [5].
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They proved that the problem is NP-hard in the strong sense. The idea of

the proof is to reformulate as a known NP-hard problem, the 3-PARTITION.

Then a branch and bound solution technique is proposed. Our solution is

different from the existing ones, we use a widespread column generation

approach.

4.1 Problem description

Consider a specific training. This training is defined by its courses. Each

course requires some of the following elements: classroom, instructor, flight

training devices, simulator etc. Most critical resources are flight training de-

vices (FTDs) and full flight simulators (FFSs). Their complexity comes from

the fact, that most of the expenses are associated with FTDs and FFSs and

the number of available devices is very limited. Classrooms and instructors

are not significant, therefore in this thesis we put the emphasis on the perfect

utilization of FTDs and FFSs. In order to create a practicable schedule the

appropriate number of resources must be ready. Each course is denoted by

its related resource:

• T indicates that FTDs are needed

• S indicates that FFSs are is needed

• N indicates that neither an FTD nor an FFS is needed.

Using the previous notation a training can be described by a sequence con-

sisting of {N, S, T}. Each course is divided into 1-day-long events. For

example a basic template of a specific training is of the form

[N,N,N,N,N,N, T, T, T, S, S,N,N ]

which means that the training consists of a 6-day-long classroom training, a

3-day-long course using FTDs, a 2-day-long course using FFSs and a 2-day-

long classroom training again.
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There is an other restriction to take in account. After a predetermined

number of working days pilots are entitled to have days off. Various restric-

tions exist regarding days off such as contractual obligations and governmen-

tal regulations. In this thesis the following restrictions are supposed:

• After 7 consecutive days at least one day off must be given

• Length of days off is at most 3 days

Days off are given due to various obligations or strategic decisions. If there

is a lack of resources, the pilots involved are allowed to days off, the course

is shifted. Pilots in days off are paid, however they are not productive. The

goal is, that only barely enough days off are given. For example days off

can be added to the previous basic template in many ways to create a legal

training event:

[N,N,N,N,N,N,X,X, T, T, T,X, S, S,N,N ]

[N,N,N,N,X,N,N, T, T, T,X, S, S,N,N ]

The difference between templates including days off is their length. The

longer the training the more expensive it is. The length of a template is called

its footprint. The number of pilots in the class multiplied by its footprint is

the weighted footprint. The objective of the scheduling problem in question

is to minimize the weighted footprints of all training events.

4.2 Input parameters of the course schedul-

ing problem

Since trainings are already assigned to months and each training is aircraft

specific, the scheduling can be performed per month and per aircraft type

independently.
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The planning horizon and the time units are predefined, in our case 30

days in average.

• τ = time periods, in our case τ = {1, 2, ..., 30}

Suppose that n trainings are given to schedule, each training has a basic

template from which we can generate various legal training schedules by

adding days off. At first it is supposed, that all possible templates are known,

including all possible start days. Using the previous example, if we start the

training on the 5th day, the template looks like that:

[X,X,X,X,N,N,N,N,N,N,X,X, T, T, T,X, S, S,N,N,X,X, ..., X,X]

The following templates belong to the same training, however all of them are

different.

[4X,N,N,N,N,N,N,X,X, T, T, T,X, S, S,N,N, 10X]

[10X,N,N,N,N,N,N,X,X, T, T, T,X, S, S,N,N, 4X]

[6X,N,N,N,N,X,N,N, T, T, T,X, S, S,N,N, 8X]

[8X,N,N,N,N,X,N,N, T, T, T,X, S, S,N,N, 6X]

• Ti = set of all possible templates of training i

• T = ∪ni=1Ti

Each course uses either FTDs or FFS or neither of them. The required

amount of the devices is given.

• dTij = number of FTDs needed for template j on day i

• dSij = number of FFSs needed for template j on day i

The number of available resources is limited and determined in advance.

• rTi = number of available FTDs on day i

• rSi = number of available FFSs on day i
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A further parameter is introduced in order to determine which training a

template belongs to.

δij =

{
1 if template j is related to course i

0 otherwise

The cost of a template is its weighted footprint. (The length of the training

multiplied by the number of participants.)

• cj = cost of template j

4.3 Integer program for the scheduling prob-

lem

Previously we assumed, that set T of all of the legal templates of the current

trainings is known. It is have to be decided which templates to use. Decision

variable of the program for all j ∈ T :

xj =

{
1 if template j is in use

0 otherwise

The integer programming formulation:

Objective function:

minimize
∑
j∈T

cjxj

Subject to:

Resource requirements must be satisfied.∑
j∈T

dTijxj ≤ rTi ∀i ∈ τ

∑
j∈T

dSijxj ≤ rSi ∀i ∈ τ

Each training must have exactly one schedule.∑
j∈T

δijxj = 1 ∀i = 1..n
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Restriction to the variable:

xj ∈ {0, 1} ∀j ∈ T

4.4 Column generation approach

The solution obtained from the integer program corresponds to an optimal

legal schedule of all trainings. Templates where the value of xj is 1 are used.

However there is a problem with solving the integer program. Size of set T

of all templates is enormous because the number of all possible templates is

exponential. Generating set T and solving the integer program using T takes

exponential time, a solution may not be achieved.

4.4.1 Basic idea of column generation

Column generation is often used to solve problems with huge number of

variables. The general problem P is of the form:

maximize c(x)

Ax ≤ b

x ∈ S

x integer

Suppose that S is bounded. The case when S is unbounded and further

details can be seen in [7]. The basic idea is to represent the set of the integer

solutions

S∗ = {x ∈ S : x integer}

by a finite set of vectors

S∗ = {y1, ..., yp}

If x is binary, S∗ coincides with the extreme points of its convex hull. Any

feasible point y ∈ S can be represented as a convex combination of the vectors
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in S∗:

y =

p∑
k=1

λkyk

Convexity constraints:

p∑
k=1

λk = 1

λk ∈ {0, 1} k = 1..p

Let denote ck = c(yk) and ak = Ayk. The column generation form of P is

called master problem (MP) and is given by:

maximize

p∑
k=1

λkck

p∑
k=1

λkak ≤ b

p∑
k=1

λk = 1

λk ∈ {0, 1} k = 1..p

Any solution to the linear programming relaxation of P is a feasible solution

to the linear programming relaxation of the column generation form if and

only if it can be represented by a convex combination of extreme points of

conv(S∗).

The column generation form frequently contains a huge number of columns.

The idea is to work with only a subset of columns and then generate addi-

tional columns if needed. The restricted version is called restricted master

problem (RMP). Let (π, α) be an optimal dual solution to the RMP . The

pricing problem is to identify a column with maximum reduced cost.

max
x∈S∗

c(x)− πAx− α

If the maximum is greater than 0, a column to enter the basis is identified,

the augmented RMP is solved again. If the maximum is less than or equal

to 0, the current solution to RMP is also optimal for MP .
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If the LP relaxation is solved by column generation, the solution is not

necessarily integer. In order to achieve integrality branch and bound or round-

ing techniques can be applied.

4.4.2 Linear programming relaxation and the dual lin-

ear program

The master problem (MP) is the linear programming (LP) relaxation of the

IP (as a maximization problem):

Objective function:

maximize
∑
j∈T

−cjxj

Subject to: ∑
j∈T

dTijxj ≤ rTi ∀i ∈ τ

∑
j∈T

dSijxj ≤ rSi ∀i ∈ τ

∑
j∈T

δijxj = 1 ∀i = 1..n

Restriction to the variable:

0 ≤ xj ≤ 1 ∀j ∈ T

The dual linear program:

Objective function:

minimize

|τ |∑
i=1

yTi r
T
i +

|τ |∑
i=1

ySi r
S
i +

n∑
i=1

πi

Subject to:

|τ |∑
i=1

yTi d
T
ij +

|τ |∑
i=1

ySi d
S
ij +

n∑
i=1

πiδij ≥ −cj ∀j ∈ T

21



Restriction to the variables:

0 ≤ yTi ∀i ∈ τ

0 ≤ ySi ∀i ∈ τ

πi ∈ R ∀i = 1..n

At first consider a subset T0 of possible templates including a feasible

(not necessarily optimal) schedule for the n trainings. The reduced variant

(RMP) of the LP relaxation is constructed by keeping only columns related

to T0, thus we have a smaller problem. Then we find an x solution to the

RMP.

maximize
∑
j∈T0

−cjxj∑
j∈T0

dTijxj ≤ rTi ∀i ∈ τ

∑
j∈T0

dSijxj ≤ rSi ∀i ∈ τ

∑
j∈T0

δijxj = 1 ∀i = 1..n

0 ≤ xj ≤ 1 ∀j ∈ T0

The corresponding dual variables are yTi (i ∈ τ), ySi (i ∈ τ), πi (i = 1..n). It

should be checked whether the primal optimum of the reduced problem with

additional zeros is an optimum of the original one or not. If it is, an optimal

schedule can be constructed. According to the duality theorem, it should be

checked whether the dual inequalities hold for all templates. If not, we add

a violator column to the RMP and iterate until the optimum is found or a

certain limit is reached.

The goal is to find a column which violates if exists. Search for an r

column that

|τ |∑
i=1

yTi d
T
ir +

|τ |∑
i=1

ySi d
S
ir +

n∑
i=1

πiδir < −cr
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Equivalently search for a column where the negative reduced cost is minimal.

min
r=1..|T |

|τ |∑
i=1

yTi d
T
ir +

|τ |∑
i=1

ySi d
S
ir +

n∑
i=1

πiδir + cr

If the minimum is negative, column r - where the minimum is reached - is

added to the reduced problem.

4.4.3 Integer solution

By solving the LP relaxation of the problem, the solution is not necessarily

integer, although a binary solution is required. There exist several rounding

methods in order to obtain an integer solution.

The naive way is to round each entry of the solution of the LP relaxation,

but it may not be optimal (or even feasible) to the IP. A better process is

to round the value of only one variable, fix its integer value, then solve the

reduced LP again and so on. The way of selecting the variable to round can

vary. A similar method to the one that is applied in [9] can be used.

Evaluate each of the K largest primal variables and compute the increase

of the cost function when the variable is set to 1 and all others related to the

same training is set to 0. The one resulting in the least increment is chosen

and the corresponding template is fixed. Then the LP relaxation is solved

again without the training which the template relates to and the process is

repeated until all of the trainings have a fix template.

Rounding methods are heuristics, but can be useful in practice.

4.4.4 Column generation sub-problem

By solving the following minimization problem it can be decided, whether

there exists a violator column or the primal solution is an optimum for the

MP.

min
r=1..|T |

|τ |∑
i=1

yTi d
T
ir +

|τ |∑
i=1

ySi d
S
ir +

n∑
i=1

πiδir + cr
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An algorithm is presented to find the minimum and the corresponding col-

umn. The minimization problem can be formulated as finding a constrained

shortest path in a directed graph.

An auxiliary digraph is constructed G = (V,E). There is a START node

with n outgoing edges. Each edge refers to a training. For each training

there is a subgraph Gti connected by an edge to node END. The skeleton of

the graph can be seen on Figure 4.4.1.

Gt1
tr1

Gtntrn

Figure 4.4.1: Skeleton of the auxiliary digraph

Each subgraph is constructed by the basic template of the training it

refers to. Consider a specific training. Courses requiring different resources

alternate. Each level of the subgraph corresponds to a course type. For

example if the basic template of the current training is of the form

[N,N,N,N,N,N, T, T, T, S, S,N,N ]

the subgraph has 4 levels. On each level there are as many nodes as time

periods, currently 30. Node nij is the j-th node on level i. There are two

additional nodes, a START and an END. There are 4 types of edges:

• From START to all nodes on the first level

• From a node to all of the following nodes on the same level

• From a node to all of the following nodes on the next level

• To END from all nodes on the last level
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Figure 4.4.2: Sketch of a subgraph

The sketch of a subgraph can be seen on Figure 4.4.2.

We are searching for a shortest path from START to END that satisfies

some conditions (see details later). Consider a feasible path, which template

does it define. If the target of the arc coming from START is the j-th node

on the first level, then the training starts on day j. Along the path if there

is a (nij, nkl) arc, a corresponding course to level k is hold on day l.

Return back to the example. If the shortest path has the form like on

Figure 4.4.3, then the corresponding template is

●  ● ● ● ● ● ● . . . . . . . . . .

●  . . . . . ● ● ● ● ● ● . . . . .

●  . . . . . . . . . . ● ● ● ● . .

●  . . . . . . . . . . . . . . ● ●

... ...

...

...

...

Figure 4.4.3: A possible shortest path

[4X,N,N,N,N,N,N,X,X, T, T, T,X, S, S,N,N, 10X]
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There are various constraints concerning the shortest path.

• At each level the required number of nodes must be reached (It is the

number of consecutive courses of the relevant type)

• After 7 consecutive days at least one day off must be given

• Length of days off is at most 3 days

The last constraint can be satisfied by the construction of the subgraph. We

only consider edges from a node to the following 4 nodes. ”Longer” edges

can be eliminated.

Notations:

• Subgraph t refers to training t (t = 1..n)

• lt is the number of levels of subgraph t

• pt is the number of participants on training t

• st is the number of courses on training t

• dtTqt is the required number of resource T on course q

(0, if it is not necessary)

• dtSqt is the required number of resource S on course q

(0, if it is not necessary)

Each node has cost, c : V → R, coming from the dual solution of the

reduced LP. The cost on the global START and END nodes is 0.

c(globalSTART ) = 0 c(globalEND) = 0

Cost on the START and END node of subgraph t is:

c(STARTt) = πt c(ENDt) = 0
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On an internal nij node, i = 1..lt, j = 1..|τ |, its cost depends on the sequential

number of the node on a specific path. If nij is the q-th internal node along

path P ,

cP (nij) = yTj dt
T
qt + ySj dt

S
qt

that is,

cP (nij) =


yTj dt

T
qt if nij refers to a course using an FTD

ySj dt
S
qt if nij refers to a course using an FFS

0 otherwise

Arcs are also weighted. c′ : A→ R

c′(e) =


(l − j) ∗ pt if e = (nij, nkl)

1 ∗ pt if source of e is START

0 if target of e is END

Using this weighting, cost of a given P path is the following:

c(P ) =
∑

n∈ nodes of P

cP (n) +
∑

e∈ arcs of P

c′(e)

With equivalent transformations:

∑
n∈ nodes of P

cP (n) = c(STARTt) + c(ENDt) +

lk∑
i=1

|τ |∑
j=1

cP (nij) =

πt + 0 +
st∑
q=1

cP (nq|n is the q-th internal node on path P ) =

πt +
st∑
q=1

(yTj dt
T
qt + ySj dt

S
qt)

Denote r the template defined by path P .

Define dTjr as:

dTjr =

{
dtTqt if node nij ∈ P is the q-th along P and refers to a course using an FTD

0 otherwise
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Define dSjr as:

dSjr =

{
dtSqt if node nij ∈ P is the q-th along P and refers to a course using an FFS

0 otherwise

With the previous notation:

st∑
q=1

(yTj dt
T
qt + ySj dt

S
qt) =

|τ |∑
j=1

yTj d
T
jr +

|τ |∑
j=1

ySj d
S
jr

That is:

∑
n∈ nodes of P

cP (n) =

|τ |∑
j=1

yTj d
T
jr +

|τ |∑
j=1

ySj d
S
jr +

n∑
i=1

πiδir

With equivalent transformations:∑
e∈ arcs of P

c′(e) = c′(STARTt, n1f ) +
∑

(nij ,nkl)∈ arcs of P

c(nij, nkl) + c′(nltg, ENDt) =

1 ∗ pt + pt ∗ (l − j) + 0 = weighted footprint of template r = cr

Thus, cost of a given P path in subgraph t - related to training t - can be

calculated as

c(P ) =

|τ |∑
j=1

yTj d
T
jr +

|τ |∑
j=1

ySj d
S
jr +

n∑
i=1

πiδir + cr

Hence finding a feasible shortest path in the auxiliary digraph from START

to END is equivalent to the original minimization problem

min{c(P )| P is a feasbile path from START to END} =

min
r=1..|T |

|τ |∑
i=1

yTi d
T
ir +

|τ |∑
i=1

ySi d
S
ir +

n∑
i=1

πiδir + cr

4.4.5 Dynamic program for SCP

During the algorithm for creating an optimal schedule we have to find a

shortest constrained path in a well-constructed digraph. At each iteration a
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SCP is found in each subgraph and then the minimum is chosen. We propose

a dynamic programming method in order to find one.

G = (V,E) acyclic digraph. Cost of a P path is:

c(P ) =
∑

n∈ nodes of P

cP (n) +
∑

e∈ arcs of P

c′(e)

The idea of dynamic programming is to determine a set of potential paths

to each node. Nodes are examined in topologic order until END is reached.

The solution is the path which ends in node END with minimal cost.

Let Pij denote the set of paths to nij. Suppose, that the algorithm is

at node nkl. Paths to the previous nodes are already calculated. An arc is

coming from nij to nkl, further potential paths can be added to Pkl:

Pkl ←− {p+ (nij, nkl) ∀p ∈ Pij}

Paths which are invalid or more costly, than another comparable path can

be eliminated from Pkl.

A path is invalid if:

• node nkl would be the m + 1-th node on the path on the k-th level

while only m is needed

• node nkl would be the first node on the path on the k-th level while on

the k − 1-th level the number of nodes is not enough.

• node nkl would be the 8-th course without a day-off

Path S is better than T if:

• nkl is the r-th node on level k both in S and in T

• number of consecutive days without a day off in S is less than or equal

to in T

• c(S) ≤ c(T )

The algorithm iterates through the nodes from START to END and the

solution is the path which ends in node END with minimal cost.
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Chapter 5

Test Cases

For the implementation we chose the C++ programming language with a

template library, called LEMON. LEMON is a C++ template library pro-

viding efficient implementations of algorithms connected with graphs and

optimization. It was launched by the Egerváry Research Group on Combi-

natorial Optimization (EGRES) at the Department of Operations Research,

Eötvös Loránd University. In order to solve (mixed) integer programs we

used the GLPK solver.

Since we had no opportunity to test on real data, we worked with gener-

ated, but realistic data.

5.1 Determining the timing of transitions

An illustrative example.

Consider 21 pilots who have new positions. 15 of them need several train-

ings, 6 can be advanced without any trainings. There are 4 additional pilots

to be released. Changes affect 4 positions. Some pilots must complete several

trainings, here we consider 6 types of trainings with precedences. Resource

constraints are added and participants are limited to 2 or 3 on each training.

The largest expenses are associated with block-hour shortage. Costs on ad-

vancing and releasing increase over time. To this input an optimal schedule
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is obtained by solving the previously presented mixed integer program within

minutes. The output can be seen on Table 5.1 and on Table 5.2. Advances

are after trainings and happen as soon as possible in order to minimize costs

while maintaining resource availability. In this example block-hour shortage

exist, but minimal.

We also tested with larger (but realistic) amount of data. 50 pilots are

involved, 12 training types are required and 10 positions are available. A

plan can be constructed within minutes if resource availability is set to large.

The tighter the resource availability is, the more time it takes to solve. Even

if the supply of resources is less, a solution can be obtained in 15 minutes.

t0 t1 t2 t3 t4 t5

p0 c0 adv 0 0 0 0

p1 c0 adv 0 0 0 0

p2 c0 adv 0 0 0 0

p3 0 0 c0 adv 0 0

p4 c0 0 c1 0 0 adv

p5 c0 c1 adv 0 0 0

p6 c0 c1 adv 0 0 0

p7 0 c2 c3 adv 0 0

p8 0 c2 c3 adv 0 0

p9 0 c2 c3 adv 0 0

p10 0 c2 c3 adv 0 0

p11 0 0 0 c4 c5 adv

p12 0 0 0 c4 c5 adv

p13 c4 c5 adv 0 0 0

p14 c4 c5 adv 0 0 0

Table 5.1: Pilots’ planned schedule
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p15 adv 0 0 0 0 0

p16 adv 0 0 0 0 0

p17 adv 0 0 0 0 0

p18 adv 0 0 0 0 0

p19 adv 0 0 0 0 0

p20 adv 0 0 0 0 0

p21 0 0 0 0 0 rel

p22 0 0 0 0 0 rel

p23 0 0 0 0 0 rel

p24 0 0 0 0 0 rel

Table 5.2: Pilots’ planned advancement or release

5.2 Course scheduling

An illustrative example.

Consider 4 trainings to be scheduled for 10 days. Basic templates are the

following:

• [NTS]

• [NNTSS]

• [NTTSS]

• [NNTTSSNS]

To start with, T’ includes the following not at all optimal templates.

• [NXXXXTXXSX] [XNXXXTXSXX]

• [XNXNXXTXSS] [XXNXNXTXSS] [XXNNXTXSXS]

• [NTXXXTSSXX]

• [NNXTTSSXNS]
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Then the LP relaxation is solved with T’. With the dual variables, we

solve an SCP problem to generate new template. If its cost is negative it is

added to T’ and iterate, if not, the solution is optimal. On Table 5.3 a running

of the program is shown. After 7 iteration, there is no violator template, an

optimal schedule can be found by solving the LP relaxation. The process

took only seconds. Fortunately, the solution is binary, no rounding process

needed. The optimal schedule is the following:

• [XXXXXXXNTS]

• [XXXXNNTSSX]

• [XXXNTTSSXX]

• [XNNTTSSNXS]

yT yS π new template its cost

00...00 00...00 -35 -48 -56 -80 [XXXXXNTTSS] -21

00...00 00...00 21 -35 -69 -56 -101 [XXXXNNTSSX] -39

010...00 00...00 10 00 -45 -40 -35 -80 [XXXXXXXNTS] -30

00...00 00...00 20 -35 -30 -55 -100 [XNNTTSSNXS] -30

00...00 00...00 20 -35 -30 -55 -92 [XXXXXXNTSX] -20

00...00 00...00 10.5 10.5 -25.5 -40.5 -56 -82.5 [XXXNTTSSXX] -21

00...00 00...00 -15 -30 -35 -72 0

Table 5.3: A running of the program

We tested with larger (but realistic) amount of trainings. Scheduling 20

trainings to 30 days took only seconds, however the number of resources

affect the number of iterations. During testing all of the solutions were

integer but it isn’t expected. This triggers further investigation whether it

can be guaranteed or just most of the time.
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Chapter 6

Conclusion

Pilot training optimization is a complex problem, due to the various con-

straints concerning the construction of a plan. In this thesis, we presented

practically usable solution methods to the general problem. The proposed

models are flexible, which means that more constraints can be added or un-

necessary assumptions can be removed to solve airline-specific cases.

A 2-phase process were proposed as the problem consists of a planning

part and a scheduling part. A training plan with minimum cost could be

obtained by solving a mixed integer program. In the second phase the inte-

ger programming formulation of the scheduling problem were described. It

couldn’t be solved directly because of the large number of variables. Col-

umn generation method was applied, the sub-problem to solve was finding

a shortest constrained path. This sub-problem was solved by dynamic pro-

gramming. Using the idea of column generation, a schedule with minimal

cost could be constructed.
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