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Su�x Trees and Their Applications Introduction

Introduction

Bioinformatics is a very promising and dynamic �eld of mathematics, in which a

large scale of biological problems can be investigated using mathematical tools.

One of the crucial questions in bioinformatics is analysing large data sequences

provided by several sequencers. A certain number of problems arise here, like

�nding a short sample sequence in another, usually longer sequence (in general,

the longer sequence is called the string and the shorter sequence is the pattern) or

comparing two sequences according to some distance function. More algorithms

exist to give an answer for these problems.

When a long sequence is examined from more aspects, e.g. more patterns should

be found in that, one might not want to read the long sequence more than once,

as it consumes a lot of time. Rather, with a small extra e�ort, a handful data

structure can be built in which the time to �nd the sample is proportional only to

the length of the pattern and not of the long sequence.

This data structure is the su�x tree, which basically represents all the su�xes

of a string in O(n) space and can be built in O(n) time, where n is the length

of the string. In this thesis, we deal with an algorithm to create the su�x tree,

review some applications and discuss a few related questions. The main source of

the thesis is [10].

In Chapter 1, we introduce some basic de�nitions and examples. We also de-

tail Ukkonen's linear time construction of a compact su�x tree and de�ne the

generalized su�x tree for more strings.

In Chapter 2, we mention some applications of the su�x tree, and we give

a detailed description for some of them. Exact and inexact matching are very

important to identify several characteristic parts of the genome. The problem of the

longest common substring occurs frequently when the similarity of two sequences is

in question. A related problem is the longest common subsequence and the �reverse�

question is the super-string problem. Circular string linearisation is a task when

one have to investigate bacterial genome. Repetitive structures often appear in
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the genome, su�x trees are a good tool for �nding them. DNA-contamination can

be also examined with the aid of su�x trees. Furthermore, in some genome-scale

projects su�x trees have been used.

In Chapter 3, a related topic is in focus, namely, the matching statistics, which

is a similar question to the size of a (non-compact) su�x tree. A few distance

functions are introduced, and bounds are given for the edit distance.

In Chapter 4 We show some new results on the size of a su�x tree using a

recursive formula for the number of aperiodic strings. In this chapter, another

problem is also examined. Our question is that the length of the longest pre�x of

a string, which is also a su�x of its last n− 1 characters. Although the question is

easy in terms, the correct answer has not been found yet, and it can be the issue

of further researches.
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Chapter 1

Preliminaries

Su�x tree is a special data structure, which is useful for several combinatorial

problems involving strings. The notion of su�x trees was introduced by Weiner

in [18], although he did not use this name for them. Su�x trees have wide-range

applications, including exact and inexact matching problems, substring problems,

data compression and circular strings [10]. The motivation of this thesis is that

in computational biology, molecular biology and bioinformatics these problems are

crucially important. Numerous questions raise about sequencing and investigating

DNA or RNA, such as looking for the longest common substring of two DNA

sequences, �nding exact and inexact matchings of a sample in a long sequence etc.

It should be mentioned that there are some bioinformatical software tools based on

su�x trees, such as Multiple Genome Aligner [11] or MUMmer [4]. The interested

reader is also referred to [19], where one can �nd a useful overview of su�x trees.

1.1 Su�x tree

Following [10], we will introduce the following notations. Let S denote a string,

the length of which is n. Let S[i, j] denote the substring of S from position i to

position j. Before constructing the su�x tree, we concatenate a new character,

$ to S. The importance of this character is twofold. First, by adding it to the

string, one can avoid that a su�x is a pre�x of another su�x, which is undesirable.

Second, the generalization is also made easier by this operation. Now, we will

de�ne the su�x tree of a string. We always consider a �xed size alphabet; in [5]

the case of unbounded alphabets is discussed.) A su�x tree is a rooted, directed

tree. It has n leaves labelled from 1 to n, and its edges are labelled by characters of
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the alphabet. The label of an edge e is denoted by `(e). On a path from the root

to the leaf j one can read the su�x S[j, n] of the string and a $ sign. Such a path

is denoted by P(j) and its label is referred as the path label of j and denoted by

L(j). We call a leaf w reachable from the node v, if there is a directed path from

v to w. An illustration of a su�x tree is shown on Figure 1.1.
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Figure 1.1: Su�x tree for the text aabccb

Su�x trees can use quite a lot of space. There are long branches which could

be compressed. By compressing long branches one will receive the compact su�x

tree of the string. Formally, a compact su�x tree of S is a rooted directed tree with

n leaves. Each internal node has at least two children (the root is not an internal

node). Each edge has a label with the property that if uv and uw are edges, then

the �rst characters of the label of uv and of uw are distinct. The label of a path

is the concatenation of the labels on its edges. An illustration of a compact su�x

tree is shown on Figure 1.2.

1.2 A naive algorithm for constructing a su�x tree

Now, we will give a naive recursive algorithm for building the su�x tree of a string.

Ti stands for the su�x tree built in phase i. As initiation, take a root and add an

edge labelled by S[1, n]$. In phase i, Ti−1 is already built. First, add leaf i to the

tree. Take the su�x S[i, n] and �nd the longest path from the root whose label
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5 4 3 6 2 1

c b a

b$ cb$ ccb$ $ bccb$ abccb$

Figure 1.2: Compact su�x tree for the text aabccb

is its pre�x. Suppose this label is S[i, k]. If the end of this label does not end in

a node, create a new internal node and add a new edge from this node to leaf i

labelled by S[k + 1, n]$.

This algorithm takes O(n2) time.

1.3 Construct a compact su�x tree in linear time

Faster algorithms exist, such as Ukkonen's linear-time su�x tree algorithm ([16]),

Weiner's linear-time su�x tree algorithm ([18]) or McCreight's su�x tree algorithm

([14]) (see also [10]).

The most widely used algorithm is Ukkonen's algorithm, which is for building

the compact su�x tree. The main idea is that there are n phases, in each of them

we construct a new tree from the previous one. The tree of phase i is a su�x tree

for S[1, i]. The tree at the end of phase n is the su�x tree of S.

Now, we will give a detailed description of Ukkonen's algorithm according to

[10]. The implicit su�x tree is obtained from the compact su�x tree by removing

all $ characters, then removing all edges with no label and at last, removing all

nodes with at most one child. The implicit su�x tree encodes all the su�xes such

that each su�x can be found by read the labels of a path from the root. However,

if a path does not end in a leaf, it can correspond to a su�x, and in this case, there

is no marker of the end of this path.

1.3.1 Outline of the algorithm

In Ukkonen's algorithm, we will build an implicit su�x tree Ti for each pre�x S[1, i]

of S and �nally, we construct the compact su�x tree from Tm. The sketch of the

algorithm is as it follows:
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First, construct tree T1. In phase i (i = 2, . . . , n) and extension j (j = 1, . . . , i)

�nd the path corresponding to S[j, i−1] in the actual tree. If S[j, i] does not occur

in the tree, extend the path with this character, so that S[j, i] is assured to be

found in the implicit su�x tree of phase i.

1.3.2 Details of the algorithm

Nevertheless, it has to be speci�ed how to extend the path S[j, i − 1], which we

call a su�x extension. Let β = S[j, i− 1]. First, �nd the last character of β and

then extend it to make sure that βS[i] occurs in the tree. For the extension, the

following rules are to be applied:

Rule 1 If the end of β is a leaf, then append S[i] to the end of the label on the last

edge of the path of β. See Figure 1.3.

Rule 2 If at the end of β there is no path started with S[i], create a new edge from

this position to a new leaf, and label it with S[i]. If this position is inside an

edge, then create here a new node and divide the label of the original edge.

See Figure 1.4 and 1.5.

Rule 3 If βS[i] is already in the tree, do nothing.

β S[i]

Figure 1.3: Extension rule 1

The extension takes only constant time. The key step is to �nd the end of β. A

naive approach gives O(|β|) time by walking through P(β), where |β| is the length
of β. In this algorithm, extension j of phase i will take O(i− j) time, which means

Ti can be created from Ti−1 in O(i2) time. This algorithm takes O(n3) time.
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β

S[i]

Figure 1.4: Extension rule 2

β

x
S[i]

Figure 1.5: Extension rule 2

1.3.3 Speed-up of the algorithm

Ukkonen's linear time algorithm is a speed-up of algorithm introduced in Subsection

1.3.2 by applying a few tricks.

Su�x links

For introducing the �rst speed-up, we will de�ne su�x links. An ordered pair

(v, s(v)) of an internal and of an arbitrary node is a su�x link, if the label of P(v)

is xα and the label of P(s(v)) is α for a character x and a possibly empty substring

α. See also Figure 1.6. The proof of this theorem can be found in [10].

Theorem 1. If in extension j of phase i a new internal node is added and the label

of P(v) is xα, then either there is a su�x link from v to another node or there will
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v s(v)

xα
α

γ γy

Figure 1.6: Su�x link

be created a new internal node w in extension j + 1 such that the label of P(w) is

α.

Theorem 1 implies that any new internal node will have a su�x link after the

next extension.

Theorem 2. In an implicit su�x tree Ti there is a su�x link from each internal

node.

Proof. Consequence of Theorem 1.

This su�x link structure gives a short-cut to �nd the su�x S[j, i] of S[1, i] in

extension j of phase i, which was previously determined by walking in the current

tree. The application of su�x links is the following: in extension 1 of phase i, let

S[1, i] = xα and (v, 1) is the edge to leaf 1. Now, the end of S[2, i] has to be found

in the current tree. If v is the root, just follow the path labelled α. If v is an

internal node, there is a su�x link to s(v), the path label of which node is α, and

the algorithm can follow this su�x link. In the second extension of a phase, we

take the edge (v, 1) as in extension 1. Let γ denote its edge label. In order to �nd

α, walk back from leaf 1 to v, follow the su�x link to s(v) and then follow the path

labelled by γ. In the following extensions, start at the end of S[j − 1, i] (which is

a leaf), walk back to the �rst node v on an edge labelled γ, follow the su�x link

from it to s(v) (if it is the root, walk through α to �nd its end) and walk down

following the path which is also labelled γ.

The algorithm above using su�x links is called Single extension algorithm.

However, the time bound of the Single extension algorithm is the same as the

algorithm without su�x links, but this trick will be useful in the followings.
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Skip/count trick

In the Single extension algorithm, there is a step when we walk down following a

path labelled γ. This step takes g = |γ| time, i.e. the number of characters. The

skip/count trick can reduce this to the number of nodes on the path, which implies

that the time of all the walk downs in a phase is O(n).

The main idea of this trick is that �rst, we �nd that edge e from s(v) where

`(e)[1] = γ[1], and so, we can jump to the end of this edge without looking at the

other characters of this edge.

Formally, let g = |γ|, h = 1 and u = s(v). First, �nd the edge uw where

`(uw)[1] = γ[h]. The length of `(uw) is g′. If g′ < g, then set g = g− g′, h = g+ g′

and u = w. If g′ ≥ g, jump to character g on this edge and �nish the algorithm,

resulting in a path with label γ. Repeat these steps until reaching the end of γ.

We de�ne the node-depth of a node u as the number of nodes on P(u), and

denote this value with δ(u). The following theorem is shown in [10].

Theorem 3. If (v, s(v)) is a su�x link, then δ(v) ≤ δ(s(v)) + 1.

If the last visited node is u, then the current node-depth of the algorithm

is ∆ = δ(u). The skip/count trick ensures that any phase of Ukkonen's algorithm

takes O(n) time, implying that the whole algorithm now runs in O(n2) time.

Edge-label compression

For an O(n) algorithm, it is necessary to �nd an alternative representation of the

edge labels, as if the edge labels contain all the characters, O(n2) space is needed.

The edge-label compression is a very simple idea: on each edge e, we only store

a pair of indices, which are the indices in S of the �rst and the last character of

`(e). To �nd the corresponding characters in S takes only constant time, as the

algorithm has a copy of S. Since there are at most 2n − 1 edges, the su�x tree

implemented in this way will use only O(n) symbols.

Stop if Rule 3 applies

If in phase i and extension j Rule 3 applies, it will apply in all further extensions

in that phase, since if rule 3 applies, S[j, i] is continued with S[i + 1], therefore

S[j + 1, i] is also continued with S[i + 1]. The algorithm can be speeded up here

such that if rule 3 applies, the end of S[k, i] does not have to be found explicitly

(for all k > j).

- 13 -
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Once a leaf, always a leaf

If the algorithm creates a new leaf, there is no rule for changing it to an internal

node. For any leaf edge, the edge label is of form (p, i), if we are in phase i. The

label (p, i) will be changed to (p, i+ 1) in the next phase. The trick here is to use

a global index e meaning the current end and only changing e instead of changing

all the leaf edge labels. In Rule 1, we do not change the label of the leaf edge, but

we write the index (p, e) here instead of (p, i+ 1). This replaces a certain number

of extensions in phase i+ 1.

Single phase algorithm

Summarizing all the implementation tricks mentioned above, the algorithm will do

the following in phase i: Increment index e to i, then compute extensions explicitly

one by one, until extension rule 3 applies, in which case all extensions are done.

Ukkonen's algorithm implemented this way will take O(n) time for creating all

the implicit su�x trees.

Creating the compact su�x tree

Tn can be converted to a compact su�x tree by adding character $ to the end of

S. We also have to replace the global index e with n+ 1 which stands for the extra

$ character. These modi�cations take O(n) time.

1.4 Generalized su�x trees

It is useful to construct one single su�x tree for more strings. First, take m

strings, S1, . . . , Sm with lengths n1, . . . , nm, respectively. Add characters $i to Si,

for i = 1, . . . ,m. The generalized su�x tree has
m∑
j=1

nj leaves. Each leaf is labelled

by the number j of the string and a number between 1 and nj. The edges are

labelled similarly to the edges of the simple su�x tree. The label of the path

from the root to the leaf (i, j) represents the su�x Sj[i, nj] of the string j and a

$ character. One can de�ne the compact generalized su�x tree similarly to the

compact su�x tree.

Generalized su�x trees can be constructed in two ways. The �rst method is to

take the concatenation of all strings C = S1$1 . . . Sm$m, and build the su�x tree

of C. The leaves are numbered by the start position of the corresponding su�x in

- 14 -



Su�x Trees and Their Applications Chapter 1. Preliminaries

C, which can be converted to the correct labels. The synthetic su�xes containing

a $ symbol inside can be quickly eliminated.

Nevertheless, it is also possible to add the strings one by one by extending

Ukkonen's algorithm. When the implicit su�x tree of S1, . . . , Sj is built, search

the longest path matching to a pre�x of Sj+1. If its length is i, then all su�xes of

Sj+1[1, i] are encoded, which means the algorithm can skip to phase i+ 1.

- 15 -
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Chapter 2

Applications

In this section, some applications of the su�x tree will be given with an outlook

to the biological applications. In a su�x tree one can �nd the occurrence of one or

more patterns the total length of which is p in O(p) time. In molecular biology this

is very useful when looking for special short sequences in a long DNA sequence.

Generalized su�x trees are useful for determine some properties of strings. The

longest common substring of two or more strings is an important element of the ho-

mology (similarity) tests between two di�erent sequences. The shortest substrings

occurring only once play a very important role in gene mapping, as these can be

easily determined in a long sequence. The assembly of multiple strings, i.e. �nding

the shortest string containing each of them as a substring can be approximated by

using su�x trees. Su�x trees can be also used for �nd all palindromes, tandem

repeats or inexact matching. In the following, we will introduce some applications

in details.

2.1 Matching

2.1.1 Exact matching

As it was already mentioned, su�x trees are useful when solving the exact matching

problem. The exact matching problem is the following: we are given a string

and a pattern, which are sequences over an alphabet, and we have to �nd all the

occurrences of the pattern in the string. With a su�x tree, the solution of this

problem is very easy (i.e. in linear time in the size of the string). Let n and m

denote the length of the string S and of the pattern P , respectively.
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First of all, observe that the pattern occurs in the string if it is the pre�x of

a su�x of the string. Therefore, taking the su�x tree of the string, we should

search the �rst character of the pattern among the edges from the root. If this

character does not appear, then the pattern does not occur in the string. If the

�rst k characters of the pattern are found, then the edge labelled with the character

k + 1 of the pattern should be chosen. If there is no such edge, the pattern does

not occur in the string. If all characters were found in the tree in the appropriate

order, an occurrence of the pattern is found and the algorithm stops.

The position of an occurrence is the �rst character of the pattern in the string.

Suppose that the algorithm above found an occurrence of the pattern and stopped

at node v. Now, one would like to have all the positions of the occurrences of the

pattern. Determine the leaves which are reachable from v on a directed path. Let

the indices of these leaves be contained in the set J . If j ∈ J , then P is a pre�x

of the su�x S[j, n], so the pattern occurs at the position j. If the pattern is the

pre�x of the su�x S[j, n], then j will be obviously in J . Now, we found all the

occurrences of the pattern, thus we solved the exact matching problem.

One can easily generalize the exact matching for more strings. First, the gen-

eralized su�x tree has to be built for all the strings, and then the algorithm above

can be repeated. Now, the leaves have two labels. The pattern occurs in string i

at position j if and only if the algorithm stops at an internal node from which the

leave labelled by (i, j) is reachable on a directed path.

Complexity of the algorithm

Now, we will compare su�x trees and other linear-time algorithms (Knuth-Morris-

Pratt, Boyer-Moore, see [17]) for exact matching. The linear-time algorithms take

O(n) + O(m) time for each matching problem. If we search k patterns in the

same string, the running time is kO(n) +
k∑
i=1

O(mi), where mi is the length of the

pattern i.

Constructing the su�x tree takesO(n) time with Ukkonen's algorithm. Finding

an instance of P in S takes O(m) time. If we search k patterns in the same string,

the running time is O(n) +
k∑
i=1

O(mi).

For single searches, linear-time algorithms perform better, but if more patterns

are to be found, the algorithm using su�x trees is faster.
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2.1.2 Inexact matching

In molecular biology, the k-mismatch problem is a central topic. The nature of the

genetic code allows some mismatches in a DNA sequence. The properties of two

protein molecules can be similar even if there are several di�erences between their

amino acid sequences. In several experiments RNA sequences have to be planned

such that there are at least k mismatches between them.

Formally, the k-mismatch problem can be de�ned as it follows: given a pattern,

a string and a number k, �nd those all substrings of the string matching the pattern

with not more than k mismatches. (See [10].) For �nding all k-mismatches of a

pattern, the fastest way is to generate every string which mismatches the pattern

at most k positions, and �nd all the occurrences of them using the exact matching

algorithm. If k and the size of the alphabet is small enough, this gives a fast

algorithm. For multiple strings, one can use the generalized su�x tree instead of

the simple su�x tree.

2.2 Longest common substring

When multiple strings are given, an interesting question is to �nd the longest

common substring of them. If the generalized su�x tree is built, this becomes an

easy question.

Formally, the problem is to �nd the longest common substring ofm given strings

S1, . . . , Sm.

To solve the problem, build the generalized su�x tree as it is mentioned in

Section 1.4. Then add a label to each internal node. An internal node v is labelled

by (i1, i2, . . . , ik), if for each j there is a leaf reachable from v labelled by the

character ij. Now, an internal node which is labelled by all the strings represents

a common substring the length of which is the depth of the node. It is easy to see

that all common substrings are represented in this way, therefore in order to �nd

the longest substring it su�ces to �nd the node with highest depth.

This algorithm is polynomial, so the longest common substring can be found in

polynomial time.
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2.3 Longest common subsequence

A related question is the longest common subsequence problem. One can get a

subsequence of a string by leaving out arbitrary many characters of the string.

For two strings S1 and S2, a simple dynamic programming approach gives a

good solution. Let f(i, j) be the length of the longest common subsequence of

S1[1, i] and S2[1, j]. If the length of S1 is n1 and the length of S2 is n2, then the

goal is to determine f(n1, n2).

(2.1)f(0, i) = f(j, 0) = 0 for all i, j .

The recursion is the following:

(2.2)f(i, j) =

{
f(i− 1, j − 1) + 1, if S1[i] = S2[j],

max{f(i− 1, j), f(i, j − 1)}, otherwise.

For m strings (S1, . . . , Sm), if the number of the strings is �xed, a similar dy-

namic programming algorithm can be easily constructed. Let f(i1, . . . , im) be the

longest common subsequence of S1[1, i1], . . . , Sm[1, im].

(2.3)f(0, . . . , 0, i) = · · ·= f(0, . . . , 0, i, 0, . . . , 0) = · · ·= f(i, 0, . . . , 0) = 0 for all i

The recursion is as follows:

(2.4)

f(i1, . . . , im) ={
f(i1 − 1, . . . , im − 1) + 1, if S1[i1] = · · · = Sm[im],

max{f(i1 − 1, i2, . . . , im), . . . , f(i1, . . . , im−1, im − 1)}, otherwise.

However, if the number of strings is un�xed, the problem becomes NP-hard.

Gorbenko and Popov gave an explicit reduction to SAT and to 3-SAT in [9] and in

[8].

2.4 Super-string

In the analysis of DNA, usually a large number of short sequences are read, which

should be put together to �nd the original sequence. As a general approach, the

shortest sequence containing each sequence as substring needs to be found. The

Super-string problem is formulated as follows: s1, . . . , sn are given, and the task

is to �nd S such that for all i, si is a substring of S. The super-string problem is

NP -hard, as the Hamiltonian path problem can be reduced to it(see [6]).
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For this problem, a 4-approximation heuristic is given in [12]. The main idea

is to take two strings si and sj such that a pre�x t of si is a su�x of sj, and then

put these two strings together in a new string sij.

The greedy heuristic is the following: Let A = {s1, . . . , sn} be the set of strings.
If si is a substring of sj, remove si. If there are at least two identical strings, keep

exactly one of them. Find two strings si, sj in A such that their overlap is maximal,

and let A′ = A \ {si, sj} + si ∪ sj, where si ∪ sj is the shortest string containing

si and sj. Repeat the last step (which is called blending) until |A|= 1. For this

algorithm, the generalized su�x tree for s1, . . . , sn can be used.

Removing the strings which are substrings of the others can be done in the

following way: mark the parent nodes of the leaves with the same label as with the

leaves are labelled, then throw away all the leaves. Now, a string si is a substring

of another string if and only if label (i, 1) appears on an internal node.

A blended chain is a set of p strings such that sik starts after the beginning

of sij , and ends after the beginning of sil for j < k < l. A blended chain has to

appear in the order si1 , . . . , sip in the super-string.

The blending can be done by maintaining two array sets: chain and wrap. For

a blended chain, we maintain chain(ij) = ij+1 (j < p), chain(ip) = 0, wrap(i1) = ip

and wrap(ip) = i1.

We also need two index sets for each nodes. One for the strings with available

su�xes (Su) and one for the strings with available pre�xes (Pu).

Su = {i|∃d > 1 : (i, d)is a label on a leaf of u's subtree},

Pu = {i|(i, 1)is a label on a leaf of u's subtree}.

The su�x labels of unavailable su�xes and pre�xes are removed only when

they are processed at the corresponding nodes. The set of available su�xes is

Su ∩ {i|chain(i) = 0}. If wrap(i) = j, then si ∪ sj is not feasible. If i ∈ Su,

chain(i) = 0, pick a j from Pu such that si ∪ sj is feasible. If it is infeasible, take
another i′ from Su with chain(i′) = 0. For that, si′ ∪ sj must be feasible. Finally,
set chain(i) = j, wrap(wrap(i)) = j and wrap(wrap(j)) = i.

The algorithm is �nished when no more pair of strings is feasible. Now, the

array chain contains an order of the strings in which an approximately good super-

string is achieved. For a slight modi�cation of this algorithm, the 4-approximation

is shown in [2].
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2.5 Circular string linearisation

In biochemistry, circular molecules occur in many problems. In bacteria and in mi-

tochondria, the DNA itself forms a circular molecule, but other circular structures

are also known. One might would like to store the sequence of a circular molecule

as a linear string, which is easier to store and search.

We call S a circular string if S[n] precedes S[1]. If j > i, then a substring

S[j, i] is S[j, n] + S[1, i], where + stands for concatenation of the strings. We say

S1 is lexicographically smaller than S2 (S1 ≺ S2) if S1 is shorter than S2 or if

they are equally long, S1 precedes S2 in alphabetical order.

A cut of S at i is a linear string containing the same characters as S, and

started at position i of S, i.e. the concatenation of S[i, n] and S[1, i− 1.

The circular string linearisation problem is to �nd the lexicographically

smallest cut of S (see [10]). A naive algorithm for that is to take the lexicographical

order of all cuts, which takesO(n2 log n) time. With su�x trees, this can be reduced

to linear time in length of S.

First, take an arbitrary cut C of S and construct the su�x tree T of CC. Take

and order of the alphabet, and let $ greater than any other characters. Find a path

in T with the following rule: at every node, the path takes the edge whose label

starts with the smallest possible character. The label of this path is at least n long,

since we cannot get into a leaf in less than n steps (as $ is greater than any other

character). If the label-length of the path reached n, stop and check the leaves in

the subtree of the current node. Cut the string by using a leaf in the subtree. If

leaf l is used for the cut and 1 < l ≤ n, cut S between character l − 1 and l. If

l = 0 or l = n + 1, cut S between character n and 1. All cuts in the subtree will

give the same linear string, which is the lexicographically smallest one.

2.6 Repetitive structures

In human and other eukaryote genomes repeated substrings often occur. Various

models exist to explain the reason and the purpose of these repeats. Repetitive

structures are very important with regard to DNA sequencing, gene mapping and

other uses. Though in DNA usually inexact repeats occur, we discuss only exact

repeats (for further details, see [10]).

We call a pair of identical S1, S2 substrings of S amaximal pair if the extension
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of them in any direction would make the two strings di�erent. A maximal pair can

be represented by a tuple (i1, i2, k), where i1 and i2 are the starting positions and

k is the length of S1 and S2. The string α = S1 = S2 is a maximal repeat. R(S)

denotes the set of maximal repeats in S. A super-maximal repeat is a maximal

repeat which is not a substring of any other maximal repeats.

For example, in the string zαxzαy α is a maximal repeat, but not a super-

maximal repeat, whereas zα is super-maximal.

2.6.1 Maximal Repeats

An obvious observation is that if α ∈ R(S), then α is the path label of an internal

node v of the compact su�x tree T , as α occurs (at least) twice in S, and it is

followed by di�erent characters. Furthermore, this observation and the bound for

the size of a compact su�x tree imply that the number of maximal repeats is at

most n.

Let S[i− 1] be called the left character of position i. We say that a node v of

T is left diverse if in the subtree of v at least two leaves exist with distinct left

characters. Note that a leaf cannot be left diverse.

The following theorem is shown in [10].

Theorem 4. A node is left diverse if and only if its path label α is a maximal

repeat in S.

Proof. If α is a maximal repeat, then v is obviously left diverse, as α must occur

at least twice with distinct left characters.

If a node is left diverse, then there is an x 6= y such that xα and yα are

substrings in S. If the two occurrences are xαp and yαq (with p 6= q), then α is a

maximal repeat. Suppose that the two occurrences are xαp and yαp. As v is an

internal node, there is a substring αq in S, where q 6= p. Now, if αq is not preceded

by x, α is a maximal repeat with maximal pair zαq, yαp (where z 6= x). Similarly,

if αq is not preceded by y, α is again a maximal repeat.

According to 4, �nding the left diverse nodes in a compact su�x tree T is

su�cient to �nd all the maximal repeats. An O(n) algorithm for this question is

given in [10]. We are going through T from the bottom to the top. First, record

the left characters of the leaves. In a general step, check all children of v. If any

children is left diverse, v is also left diverse. If none of the children is left diverse,

consider the recorded characters of them. If all of them are the same, mark v with
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this character. If there are at least two distinct characters among them, v is left

diverse. Finally by deleting all nodes from T which are not left diverse, the tree of

the left diverse nodes will be obtained.

2.6.2 Super-maximal Repeats

We call α a near-super-maximal repeat if there is an occurrence of α which

is not included in another maximal repeat. Such an occurrence of α is called a

witness for the near-super-maximality. Obviously, all super-maximal repeats are

maximal repeats. For example, in aαbxαyaαb α is near-super-maximal, the witness

of which is its second occurrence, though it is not super-maximal.

Let α be a maximal repeat, v be a node with path-label α and w be one of v's

children. In the subtree of w the leaves correspond to some locations of α in S.

Let the set of these occurrences be L(w).

The following theorem [10] gives an approach to �nd all near-super-maximal

repeats in linear time.

Theorem 5. A near-super-maximal repeat is represented by a left diverse internal

node v if and only if one of v's children is a leaf such that its left character is

distinct from the left characters of all other leaves in v's subtree. A super-maximal

repeat is represented by a left diverse node v if and only if all of its children are

leaves with pairwise di�erent left characters.

Proof. Suppose that γ is the label of the edge vw. Now, the indices of L(w)

correspond to an occurrence αγ.

If w is internal, |L(w)|> 1, therefore αγ occurs twice in S, which means these

positions are not witnesses for the near-super-maximality of α.

If w is a leaf, let x be its left character. If x is the left character of any other

leaf below v, xα occurs twice implying this occurrence of α is contained in a super-

maximal repeat. If x is not the left character of any other leaf below v, xα occurs

only once. If the �rst character of γ is y, then αy occurs in S only once, since w is

a leaf. Thus a witness for the near-super-maximality of α found.

If each child of v is a leaf having pairwise di�erent left characters, α is super-

maximal, as the left character of any occurrence is di�erent and the labels on the

edges from v to the leaves are started with distinct characters.

This theorem gives an approach to �nd all near-super-maximal repeats in linear

time.
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2.7 DNA contamination

When processing DNA in a laboratory, foreign DNA sequences often contaminate

the sequence of interest, like the DNA of a vector or of the host organism. Even

a very small amount of contamination can be inserted into the DNA or can be

copied by the polymerase chain reaction (PCR), which is used to amplify the DNA

sequences. DNA contamination is a very serious problem to be solved, as it can fal-

sify the whole experiment. Usually, many potential contaminating DNA sequences

are known, like cloning vectors, PCR primers, whole genome of the host etc.

This problem can be modelled in the following way (see [10]): we are given

a string S (the DNA string of interest) and a string set C (the known possible

contaminators). The goal is to �nd all substrings of all T ∈ C which occur in S

and longer than a certain length `. These are the substrings which are likely to be

contaminators of the DNA string of interest. With su�x trees, the solution is to

build the generalized su�x tree of S and C, and mark all internal nodes v which

is part of a path representing a su�x of S and of another one representing a su�x

of an element of C. Among the marked nodes, take all with path length at least `.

These will be the parts which are likely to be contaminated.

2.8 Genome-scale projects

Su�x trees have been applied in several genome projects. Three of these projects

are the mapping of the Arabidopsis thaliana, the Saccharomyces cerevisiae (yeast)

and the Borrelia burgdorferi genomes.

In the Arabidopsis project su�x trees were used in three ways (see [1]). First,

they searched the contaminations by known vector DNA sequences. Here, a gen-

eralized su�x tree was created for the vector sequences. As a second step, all

sequenced fragments were checked to �nd duplications. The fragment sequences

were also kept in a generalized su�x tree. Third, su�x trees were also used to

�nd biologically known and important sequences in the found sequences. Patterns

were represented as regular expressions. The problem was formulated as an inexact

matching problem with a small number of errors. They used su�x trees to give an

answer to the question.

In the yeast and the Borrelia projects the su�x tree was the main data struc-

ture, and was used to solve the fragment assembly problem which is the following:
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we are given a large number of fragments which are partially overlapping, and we

have to �nd the full sequence.
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Chapter 3

String matching statistics

3.1 Motivation

Inexact matching is a very important problem in bioinformatics. A frequent appli-

cation is to �nd a mutated pattern in a mutated DNA sequence. Inexact matching

is also useful when searching in a database, in a large text �le or on the Internet

due to mistype errors or in coding theory.

As we have mentioned before, inexact matching can be handled with the aid of

su�x trees. Nevertheless, there is a large number of other methods to solve inexact

matching. In [7] a wide range of these methods are introduced and analysed.

3.2 Distance of two strings

A good approach to inexact matching is to introduce a distance function of two

strings such that the di�erence of two strings is smaller if the distance is smaller.

However, the complexity of the problem can be linear but also NP -hard, depending

on the distance function used. A family of the error models is when some substrings

can be replaced to others for a certain cost. In this family, the goal is to minimize

the cost of transforming the pattern to a substring of the text of interest.

The set of operations is a �nite number of rules which are of the form c(x, y) =

t, where x and y are di�erent strings and t ≥ 0 is the cost.

We call d(S1, S2) the distance of the strings S1 and S2 if d(S1, S2) is the minimal

cost of the sequence of operations which transform S1 to S2. d(S1, S2) is ∞ if S1

cannot be transformed to S2. If a substring was converted by an operation, it

cannot be changed by any other operations.
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The most widely used distance function is the edit distance. Generally, dif-

ferent costs are assigned to the insertion, deletion or replacement of a character,

depending on the involved character (the �rst occurrence of this distance function

is in [13]). The most simple of this type is called Levenshtein-distance, when all

costs are 1.

A lot of interesting problems can be formulated with edit distance. E.g. the

longest common subsequence problem can be solved by minimizing the edit distance

when the costs of insertion and deletion are 1, and the cost of replacement is

a very large number (practically in�nity). If only replacements are allowed, we

get back the Hamming distance. Edit distance can be also extended by allowing

the transposition as a new operation, which is swapping to adjacent character

of the string. The edit distance and the Hamming distance are symmetric (i.e.

d(S1, S2) = d(S2, S1)). The episode distance allows only insertions, hence it is not

symmetric.

3.3 Matching statistics

One might be interested about the probability of a match, or the expected value of

the number of matches. Su�x trees are also concerned at this point, as the number

of the internal nodes of a su�x tree basically depends on the maximal length of

such a pre�x of S which is a substring of S[2, n] at the same time (see 4).

For the edit distance model, a simple model is given in [7]. We suppose that

each character occurs with probability 1
σ
, where σ is the size of the alphabet. In

the referred paper, it is shown that the edit distance e(S1, S2) of two strings with

length n is between n − l(S1, S2) and 2(n − l(S1, S2)), where l(S1, S2) stands for

their longest common subsequence. In [3] it is shown that l(S1, S2) is bounded by
n√
σ
and n√

σ
e. In [15] it is proved that if σ is large enough, e(S1, S2) ≈ n

(
1− 1√

σ

)
.

The probability of a matching within k errors is another important question.

Let f(m, k) denote the probability that an m-length pattern matches the text

at a certain position with at most k errors. The analytical bounds for f(m, k)

are the followings: δm√
m
≤ f(m, k) = O(γm), where δ =

(
1

(1−α)σ

)1−α
and γ =(

1

σα
2α
1−α )(1−α)2

)1−α

and α ≤ 1− e√
σ
is the maximum error level [7].

Theorem 6. The average edit distance is at least

(3.1 )n

(
1− e√

σ

)
.
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Proof. Let p(n, k) be the probability that e(S1, S2) ≤ k for the strings S1, S2 of

length n. p(n, k) is obviously at most f(n, k). Let ed denote the value of the edit

distance of two random strings of length n.

The average distance is formulated as

(3.2)

n∑
k =0

k · P (ed = k) =
n∑

k =0

P (ed > k) =
n∑
k=0

(1− p(n, k))

≥ n−
n∑
k=0

f(n, k)≥n− n
(

1− e√
σ

)
,

using the analytical bounds for f(m, k).

3.4 Dynamic programming approach

The edit distance can be computed with an algorithm based on dynamic program-

ming. Let Ci,j = e(S1[1, i], S2[1, j]) if i ∈ {1, . . . , |S1|} and j ∈ {1, . . . , |S2|}. Let

C0,j = j and Ci,0 = i.

Ci,j =

{
Ci−1,j−1 if xi = yj

min {Ci−1,j, Ci,j−1, Ci−1,j−1} otherwise.

For a detailed description of the algorithm, see [10] or [17].

3.5 Adaptation for text searching

The algorithm of 3.4 can be adapted to �nd a pattern in a string. Now, the

initialization is slightly di�erent. As any position of the string can be the start

of an occurrence of the pattern, C0,j should be de�ned as 0 for all j ∈ {0, . . . , n},
where n is the length of the string. The rest remains the same as it was in the

algorithm for computing the edit distance.
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Chapter 4

Size of a su�x tree

When constructing a su�x tree, an interesting question is the number of the inter-

nal nodes, which are all the nodes excluding the leaves and the root. A su�x tree

of an n-long string has n leaves, but the number of internal nodes is not always the

same. A trivial upper bound is n(n+1)
2

, which one might get by adding to the su�x

tree for each su�x one branch with the length of the su�x. A trivial lower bound

is 2n+ 1, which one might get from a string which is of n same characters.

If we consider the compact su�x tree, a trivial upper bound for the number of

internal nodes is n − 1, as there are exactly n leaves, and each internal node has

at least two children.

4.1 The growth of the su�x tree

If one's goal is to give an estimation on the size of a su�x tree, a possible approach

is a recursive way. If the su�x tree of the last n − 1 character has been already

constructed, only the su�x S[1, n] have to appear in the su�x tree. The question

is how many new nodes will be created.

If S[1, n] has a pre�x which is also the pre�x of S[j, n] (where 1 < j), the tree

can be branched where this common pre�x �nishes. If it is at S[1, k], then n − k
new nodes are created. Therefore the goal is to �nd the longest substring of S[2, n]

which is a pre�x of S[1, n], whose length we call the overlap and denote by ω(S).

If the overlap is k, then n− k new nodes are created. γ(S) stands for the number

of new nodes. ω(S) + γ(S) = n by de�nition.

Ω(n, k) denotes the number of n-length strings S with γ(S) = k. (I.e. Ω(n, k) =

|{S : |S|= n, γ(S) = k}|).
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We used a program written in Python (see 5.1) to determine Ω(n, k) for n =

1, . . . , 20 over an alphabet of two characters. The results are shown in Table 4.1.

We will prove the following theorem:

Theorem 7. ∀k ∃φ(k) : ∀n ≥ 2k − 1 Ω(n, k) = φ(k).

Observation 1. For any value of k there are but only a few possibilities to create

a string with γ(S) = k. First, we decide how the overlap will occur in the string,

i.e. we set an index j ≤ k such that S[1, n−k] = S[j+1, j+1+n−k]. We call the

positions 1, . . . , j �rst-type quasi-free and j+n−k+2, . . . , n second-type quasi-

free positions. Obviously, if the �rst-type quasi-free positions are given, S[j+1, j+

1+n−k] is determined due to the condition S[1, n−k] = S[j+1, j+1+n−k]. The

�rst of the second-type quasi-free characters cannot be arbitrary: S[1, j+ 1 +n− k]

can be continued in exactly one way to make the overlap longer, therefore we have

σ − 1 ways to ensure that the overlap is k. The rest of the second-type quasi-free

characters can be chosen arbitrarily, which gives (σ − 1)σk−j−2 possibilities for a

�x j.

The possibilities for the �rst-type quasi-free characters are slightly more di�cult

to count. We should be aware of the periods which can occur in this part of the

string; if periodicity appears, the overlap becomes longer.

We have to count the number of j-length aperiodic strings, which we denote

with µ(j).

Theorem 8. µ(j) = σj −
∑

d|j,d6=j
µ(d)

Proof. µ(1) = σ is trivial.

There are σj strings of length j. Suppose that a string is periodic of period

exactly d. This implies that its �rst d characters form an aperiodic string of length

d, and there are µ(d) such strings. This �nishes the proof.

Theorem 9. If p is prime, then µ(p) = σp − σ.

Proof. It is a clear consequence of Theorem 8.

Theorem 10. If q = pt, where p is prime and t ∈ N, then µ(pt) = σp
t − σpt−1

.
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Proof.

(4.1)

µ(q) = σq −
∑
0≤s<t

µ(ps)

= σq − µ(pt−1)−
∑

0≤s<t−1

µ(ps)

= σq − σpt−1

+
∑

0≤s<t−1

µ(ps)−
∑

0≤s<t−1

µ(ps)

= σp
t − σpt−1

.

Theorem 11. If n ≥ 2k − 1, then φ(k) =
k−1∑
j=1

µ(j)(σ − 1)σk−j−1 + µ(k).

Proof. This theorem is the consequence of Observation 1.

Proof. (Theorem 7) In Theorem 11, it is clear that φ(k) is independent of n.

We veri�ed the results of Theorem 7 for the �rst few values of k and for any

alphabet of size σ (I.e. we counted all possible strings with overlap k for any j and

checked whether they are in agreement with the results of the simulation).

For k = 1, the only possibility is that all characters of the string are the same,

as S[1, n− 1] = S[2, n], therefore S[1] = S[2] = · · · = S[n]. This gives σ strings, so

φ(1) = σ. If σ = 2, it is 2.

Using Theorem 8 and Observation 1, we got the following results:

k = 2:

j = 1: σ(σ − 1)

j = 2: σ2 − σ

As a total, we have φ(2) = 2σ(σ − 1). If σ = 2, it is 4.

k = 3:

j = 1: σ(σ − 1)σ

j = 2: (σ2 − σ)(σ − 1)

j = 3: σ3 − σ

As a total, we have φ(3) = 3σ2(σ − 1). If σ = 2, it is 12.

k = 4:

j = 1: σ(σ − 1)σ2
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j = 2: (σ2 − σ)(σ − 1)σ

j = 3: (σ3 − σ)(σ − 1)

j = 4: σ4 − σ2

As a total, we have φ(4) = 4σ3(σ − 1)− σ(σ − 1). If σ = 2, it is 30.

k = 5:

j = 1: σ(σ − 1)σ3

j = 2: (σ2 − σ)(σ − 1)σ2

j = 3: (σ3 − σ)(σ − 1)σ

j = 4: (σ4 − σ2)(σ − 1)

j = 5: σ5 − σ

As a total, we have φ(5) = 5σ4(σ − 1)− σ(σ − 1)2. If σ = 2, it is 78.

4.2 Lower bound for the expectation of the growth

Now, we will give a lower bound on the expected value of γ(S).

Theorem 12. For all j > 1 µ(j) ≤ σj − σ.

Proof. µ(j) = σj −
∑
d|j
µ(d)

Considering µ(d) ≥ 0 and µ(1) = σ, we have µ(j) ≥ σj − σ.

Theorem 13. For all j > 1 µ(j) ≥ σj−1.

Proof. Given a string of length j−1, there is at most one character which makes it

periodic if we append it to the end, so there is at least one character which makes

it aperiodic.

Theorem 14. If n→∞, E(γ(S)) ≥ n
2
)

Proof. According to Theorem 12, µ(j) ≤ σj − σ (if j > 1).
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By Theorem 11, if k > 1,

(4.2)

φ(k) = µ(k) +
k−1∑
j=1

µ(j)(σ − 1)σk−j−1

≤ σk − σ + σ +
k−1∑
j=2

(σj − σ)(σ − 1)σk−j−1

= (k − 1)(σ − 1)σk−1 + σ.

1

Using Theorem 13 and Theorem 11,

(4.3)

φ(k) = µ(k) + µ(1) +
k−1∑
j=2

µ(j)(σ − 1)σk−j−1

≥ σk − σ + σ +
k−1∑
j=2

σj−1(σ − 1)σk−j−1

= σk +
k−1∑
j=2

(σ − 1)σk−2

= (k − 2)(σ − 1)σk−2 + σk

Let m =
⌈
n
2

⌉
.

Now,

(4.4)

m∑
k =1

φ(k) ≤ (m− 1)σm+1 −mσm +mσ2 −mσ − σ2 + 2σ

σ − 1
+ σ

≤ mσm,

if m is large enough. As σn � n
2
σ
n
2 , this implies that in most cases, the su�x tree

will expanded by more than n
2
new internal nodes.

A lower bound on the expectation of γ(S) is

1

σn

(n
2
σ
n
2 +

(
σn − n

2
σ
n
2

)(n
2

+ 1
))

=
1

σn

(
n+ 2

2
σn +

(
n+ 2

2
− n(n+ 2)

4

)
σ
n
2

)
=
n

2
+ 1 +O

(
1

σ
n
2

)
.

(4.5)

The right hand side of 4.5 tends to n
2

+ 1.

1The computations are performed by Wolfram Alpha.
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Using the result of Theorem 14, it can be shown that the expectation of the

size of a (not compact) su�x tree is very large, as it is larger than
n∑

m=1

E(γ(Sm)),

where Sm is a string of length m. (Remember that the trivial upper bound for the

number of internal nodes was n2.)

(4.6)

n∑
m =1

E(γ(Sm)) ≥
n∑

m=1

m

2

=
n(n+ 1)

4
.

This result illustrates that the (not compact) su�x trees use too much space in

nearly all cases, which supports the usage of compact su�x trees.

4.3 Autocorrelation of a String

An interesting related question is the following: what is the length of the longest

pre�x of S[1, n] which is a su�x of S[2, n]. This we call the autocorrelation of

the string S and denote by α(S). The autocorrelation is easy to determine for one

string, but we were curious about the expected value of the autocorrelation of an

n-long string, i.e. the quotient of the sum of all autocorrelations and the number

of all n-long strings. If the size of the alphabet is z, then there are zn di�erent

strings. The goal is to determine a formula for the sum of the autocorrelations of

all n-length strings.

We used a program written in Python (see 5.2) to determine the expected value

of the autocorrelation of an n-long string. For this purpose, we determined the sum

of autocorrelations of all n-long strings over an alphabet with size σ, for more values

of n and σ. The number of n-long strings over an alphabet with size σ is σn. The

results are shown in Table 4.3. In Table 4.4 the expected values are shown.
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Ω(n, γ(S))
Number of new internal nodes (γ(S))

1 2 3 4 5 6 7 8 9 10 11 12

L
en
gt
h
of

st
ri
n
g
(n
)

1 2

2 2 2

3 2 4 2

4 2 4 8 2

5 2 4 12 12 2

6 2 4 12 26 18 2

7 2 4 12 30 52 26 2

8 2 4 12 30 70 98 38 2

9 2 4 12 30 78 150 178 56 2

10 2 4 12 30 78 176 320 316 84 2

11 2 4 12 30 78 180 394 662 556 128 2

12 2 4 12 30 78 180 420 856 1342 972 198 2

13 2 4 12 30 78 180 432 928 1844 2676 1694 310

14 2 4 12 30 78 180 432 970 2056 3896 5282 2950

15 2 4 12 30 78 180 432 978 2174 4466 8156 10334

16 2 4 12 30 78 180 432 978 2208 4764 9636 16920

17 2 4 12 30 78 180 432 978 2220 4868 10394 20562

18 2 4 12 30 78 180 432 978 2220 4918 10688 22450

19 2 4 12 30 78 180 432 978 2220 4926 10838 23212

20 2 4 12 30 78 180 432 978 2220 4926 10888 23596

Table 4.1: Number of strings with �xed length and �xed γ(S), with an alphabet

of two characters
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Ω(n, γ(S))
Number of new internal nodes

13 14 15 16 17 18 19 20

L
en
gt
h
of

st
ri
n
g

13 2

14 490 2

15 5140 780 2

16 20074 8968 1248 2

17 34856 38774 15676 2004 2

18 43552 71358 74554 27460 3226 2

19 48156 91656 145344 142804 48212 5202 2

20 50110 102608 191896 294700 272672 84844 8398 2

Table 4.2: Number of strings with �xed length and �xed γ(S) (continuation)

- 36 -



Su�x Trees and Their Applications Chapter 4. Size of a su�x tree

∑
α(S)

Size of alphabet

2 3 4 5
L
en
gt
h
of

w
or
d

2 2 3 4 5

3 6 12 20 30

4 16 45 96 175

5 36 144 400 900

6 82 465 1676 4645

7 176 1434 6792 23390

8 372 4395 27448 117615

9 768 13296 110120 588840

10 1582 40185 441636 2947585

11 3224 120930 1767952

12 6534 363603 7076108

13 13166 1091784

14 26504 3277803

15 53244 9836580

16 106824

17 214060

18 428764

19 858400

20 1718056

21 3437734

22 6877896

23 13759154

24 27523128

Table 4.3: Sums of autocorrelations
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∑
α(S)
n

Size of alphabet

2 3 4 5

L
en
gt
h
of

w
or
d

2 0,5 0,333333 0,25 0,2

3 0,75 0,444444 0,3125 0,24

4 1 0,555556 0,375 0,28

5 1,125 0,592593 0,390625 0,288

6 1,28125 0,63786 0,40918 0,29728

7 1,375 0,655693 0,414551 0,299392

8 1,453125 0,669867 0,418823 0,301094

9 1,5 0,675507 0,420074 0,301486

10 1,544921875 0,680537 0,421177 0,301833

11 1,57421875 0,682653 0,421513

12 1,595214844 0,684183 0,421769

13 1,607177734 0,684795

14 1,617675781 0,685307

15 1,62487793 0,685528

16 1,630004883

17 1,633148193

18 1,635604858

19 1,637268066

20 1,638465881

21 1,639239311

22 1,639818192

23 1,640218973

24 1,640506268

Table 4.4: Expected values of autocorrelations
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Chapter 5

Appendix

5.1 The Program Used for Examining the Size of

the Su�x Tree

import sets

import itertools

def szoveggyar(hossz,abc):

ls = [''.join(x) for x in itertools.product(abc, repeat=hossz)]

return ls

def korrel(s1,s2):

hossz = min(len(s1),len(s2))

for i in range(0,hossz+1):

j = hossz-i

if s1[0:j] == s2[0:j] :

return j

def egyezes(s):

aktual = 0

for i in range(1,len(s)):

k = korrel(s,s[i:])

if aktual < k:

aktual = k

if aktual > len(s)-i:
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return aktual

return aktual

def newinternalnodes(s):

return len(s)-egyezes(s)

for i in range(1,21):

negyes = szoveggyar(i,'ab')

eredmenyek = []

for elem in negyes:

eredmenyek.append(newinternalnodes(elem))

darabok = []

for j in range(1,i+1):

x = eredmenyek.count(j)

darabok.append(str(j) + ': ' + str(x))

print darabok

5.2 The Program Used for Determining the Auto-

correlation

import sets

import itertools

def szoveggyar(hossz,abc):

ls = [''.join(x) for x in itertools.product(abc, repeat=hossz)]

return ls

def korrelacio(s1,s2):

hossz1 = len(s1)

hossz2 = len(s2)

hossz = min(hossz1,hossz2)

match = [0]

for i in range(1,hossz+1):

if s1[:i] == s2[-i:]:

match.append(i)

return match[-1]
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def autokorrelacio(s1):

return korrelacio(s1,s1[1:])

def szamol(j,n):

abc = ''

for s in range(0,n):

abc+=(str(s))

adatsor = szoveggyar(j,abc)

egyez = []

for szoveg in adatsor:

egyez.append(autokorrelacio(szoveg))

egyez.sort()

egyez.reverse()

exp_value = [sum(egyez),len(egyez)]

return exp_value
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Summary

In this thesis we gave a short review of su�x trees and their uses. This data

structure proved to be an e�cient tool in biomathematics. Large sequences can be

analysed and compared faster by algorithms using su�x trees.

The matching and the longest common substring problems among other ques-

tions can be solved e�ciently, and other problems, like the super-string problem,

can be approximated. Su�x trees were also used in genome scale projects.

A close issue is the matching statistics of strings, where a wide scale of open

questions raises. Although the distance of two strings can be estimated for some

kinds of distances, the autocorrelation of a string or the size of a su�x tree are

hard to approximate. The answers for these questions can be the goal of further

researches.
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