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1 Introduction

Since the financial crisis, the valuation of financial products has reached a high level

of interest. In the world of financial mathematics more and more sensitive and precise

models were constructed. Also the investors tend to look for long-dated products, which

are not so effected by the short-term market changes. It is important to have a model

which incorporates all relevant patterns from the market (see [12]).

The Power-Reverse Dual-Currency is a complex FX product which is commonly

traded in the Japanese financial market. It is long-dated, pays an FX-linked coupon in

exchange for a floating payment. Its sensitivity to volatility smiles or skews makes the

product more interesting from modeling aspects.

In this thesis we are focusing on the pricing of the above mentioned PRDC products.

In the second chapter we give a general overview of this product, have a look on the

Japanese economical background which led to the popularity of PRDCs, and on the

development of this security, i.e. how the exotic features appeared in this population.

In the third section a cross-currency model with a local volatility function is introduced,

based on the paper of Vladimir V. Piterbarg from 2005. In this article Piterbarg took a

strong emphasis on how the volatility skew can be represented, and how the calibration

of the model parameters can be done easily. In this thesis we also walk through on these

topics.

We can say, that the Partial Differential Equation (PDE) pricing framework is not so

commonly used. In the fourth section we give a numerical methodology on solving the

PDE, which comes from the model described previously for pricing such securities like

PRDCs. Of course, before using a model for pricing, the issue of calibration is also

needed to be discussed.

To summarize, in this thesis we study the cross-currency model with local volatility

function from [3]: how it can be used for the valuation of a PRDC; how the calibration

problem is easier in this framework and finally how it can be implemented in practice.

Let me note that, for all topics mentioned later on in these pages it is worth taking more

and more deeper investigation. This area of financial mathematics - like all the others

as well- is always under development.
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2 PRDC – Power Reverse Dual Currency swap

Power Reverse Dual Currencies (PRDCs) are cross-currency exotics widely traded by

Japanese investors. In this chapter we will look through briefly the Japanese economical

factors which led to the circumstances where PRDCs could satisfy Japanese traders

looking for higher yield. Also, the main properties of this exotic financial product will

be described.1

2.1 The economical background

If someone takes a look at interest rates in Japanese yen (at least prior to 2008), they

can recognize how low were they, especially versus the US or Australian dollar. Japan

has faced nearly zero interest rates for much of the first decade of the 21st century. This

can be seen in Figure 1.2

Figure 1: Bank of Japan uncollateralized overnight call rate

From 1998 to 2008 even the 5-year swap rates remained below 2%, compared to the

US rates which showed a trend around 4% - 5% (except a short period in 2003).

The question speaks for itself: why not borrow in a currency where interest rates are low

(in this case JPY), and convert it to such a currency where we can expect high interest

(like USD or AUD)? This is what the Carry Trade is about.
1This section is based on [1] - Chapter 10.
2Source: www.global-rates.com
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In a Carry Trade investors are betting against the appreciation of the Japanese yen.

As we have seen it above, the yen rates are below the dollar rates, and because of no-

arbitrage arguments, we expect forward USD/JPY to be lower than the spot USD/JPY.

Let’s see a simple example. Suppose that the spot USD/JPY FX-rate is at 100, yen

interest rates are 2% and dollar interest rates are 5%. (Data is from 2007.) With these

rates, if I borrow 100 yen, the cost is 100 × (1 + 0.02)5. If I buy dollars for the 100

yen and invest it, the dollar investment is 1 × (1 + 0.05)5. We want to determine the

forward FX-rate (FXfwd), so the yen value of the investment is FXfwd × (1 + 0.05)5.

From no-arbitrage, the investment and the borrowing need to give the same result, i.e.

100× (1 + 0.02)5 = FXfwd × (1 + 0.05)5 ⇒ FXfwd = 86.5

Someone, who invests in a Carry Trade is betting against the fall of the USD/JPY FX-

rate, expecting it to remain at current levels, i.e. they are betting that forwards will not

be realized.

Figure 2: Value of spot USD/JPY from 1995 to 2014

Looking at the graph of the USD/JPY rate in the period 1996 to 2007 (Figure 2), we

can see that it remained between 100 and 135.3 One reason of this behavior of the spot
3Source: http://www.oanda.com/currency/historical-rates/
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USD/JPY FX-rate is that Japanese government is trying to prevent yen appreciation to

avoid hurting exporters.

To see the whole picture, we need to mention, that Carry Trades are not risk-free to

invest in. If yen gets appreciated significantly, this leads to unwind the Carry Trades,

which means selling US dollars and buying back Japanese yen. The effect will appear

in the USD/JPY FX-rate as well, as it will show a dramatic fall. This happened from

September 2008, when the circumstances of the global economy made people opt for

safety. The USD/JPY dropped under 90, having the unwinding of the Carry Trades on

the list of the causes. A similar situation was faced regarding the Australian dollar.

PRDCs have maturity like 20 - 30 years, and the long-dated foreign exchange market

had the opportunity for its development, as most investors rather believe that USD/JPY

will not follow what the forward rate suggests, even in 30 years from now.

2.2 About PRDCs in general

PRDCs first appeared in the market in 1995, and their rise is highly related to the above

mentioned economical background in Japan. Investors are hungry for higher yield, and

a coupon from a 30-year bond, with Japanese rates being so low, is not so attractive.

The idea of having coupons linked to the spot FX-rate holds out a promise to gain more.

The name – Power Reverse Dual Currency – suggests, that the first PRDC notes were

a leveraged version of the common reverse dual note, i.e. an investment denominated in

yen, while paying coupons in another, higher-yielding currency.

PRDC swaps (investigating from the issuer’s side) pay FX-linked coupons (the so called

PRDC coupons) in exchange for LIBOR floating-rate payments. The simple PRDC

coupon is nothing more, but a call option on the FX-rate, having the payoff at a coupon

date t:

L×max(S(t)−K, 0)×DCF,

where S(t) is the spot FX-rate at time t, K is strike and L is a multiplier. DCF is the

accrual multiplier, i.e. if the coupons are not accrued annually, they are multiplied by

the appropriate Day Count Fraction. For the sake of simplicity, we assume for the rest

of this chapter, that coupons are paid annually, so DCF equals to 1.
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With a typical choice of the parameters, when L = 0.0016;K = 80, and if USD/JPY

remains at 115, the investor can reach a coupon level of 5.6%, which is much more

favorable than a 3% annual coupon of a bond. Of course, if the FX-rate drops below 80,

than the investor gets nothing, but they are convinced, that if it ever was under 80, it

would not happen in a short time.

The more common coupon, which is the so called PRDC coupon has the following

structure:

usdcpn× S(t)

K
− jpycpn,

where usdcpn and jpycpn are the foreign and domestic coupons, and K is often called

the initial FX-rate.

As PRDC notes have gone through a development from highly exotic to most commonly

traded and liquid product in the Japanese market, variations of some extra features are

added to the basic PRDC structure to have it fitted more to the taste of the investors.

A fixed rate period at the beginning of a trade guarantees a quite large fixed coupon

(e.g. 6-8%) for the first couple of periods. This is about to compensate less preferential

payoff parameters. Other examples is to floor (e.g. at 0.01%) and cap (typically at the

same level of the fixed coupon) the FX-linked payoff. It is worth mentioning, that the

PRDC coupon is always floored at 0.0%, the extra feature is when the floor value is

above zero. Floor (if it is above zero) protects against the situation when the investor is

stucked with having zero coupons, and cap gives a protection for the issuer. With these

two parameters (flr, cap), the payoff has the form of

min

(
max

(
usdcpn× S(t)

K
− jpycpn, flr

)
, cap

)
.

If we assume, that flr = 0; cap = +∞ (which are widely used settings), the PRDC

coupon can be written still in the form of a call option on the FX-rate:

hmax(S(t)− k, 0), where k = K
jpycpn

usdcpn
, h =

usdcpn

K
.

2.2.1 Early Termination

To ensure protection for the issuer, and also to obtain higher yields for the investor,

in most cases there is an embedded early termination. Without this, the terms of the
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PRDC coupon would look much worse for the investor (for example strike at higher

level). These features are not applied immediately from the effective date, but after the

first couple of periods.

In Callable PRDCs, there are Bermudan callable structures, where the issuer has the

right to call the trade. It is reasonable, when USD/JPY tends to stay high for long,

as the attractive high coupons cannot be payed forever. KnockOut PRDCs have a

trigger level – KO barrier –, and if the USD/JPY FX-rate reaches or get above the KO

barrier the whole structure get cancelled. As the forward FX-rate is decreasing while

the PRDC is getting closer to maturity, the typical trigger level also steps down for

example in every year. Callables have been traded from 1997, KnockOut PRDCs have

been available since 1999. TARN PRDCs represent such a feature, that the structure

is cancelled when the total coupon (the sum of the PRDC coupons in the history of the

trade) exceeds a TARN level. This TARN level is usually between 15% - 40%. All of the

above three have the danger for the investor, that if USD/JPY drops, and a floor higher

than zero is not set, then they face the situation of receiving zero coupons. We note,

that many combinations exist, like Callable TARN PRDC, Callable KnockOut PRDC.

2.2.2 Redemption Strike

There is an other extra appearing on PRDC trades, called the redemption strike. If

a redemption strike R is given, the investor receives 1
R

on the termination date (T ) in

foreign currency, instead of its yen principal. To express this in yen, its value is S(T )
R

,

where S(T ) is the spot FX-rate at expiry. Investors can lose their principal protection,

as this fractional can happen to be less than 1. In the market, trades usually both have

redemption strike and early termination feature as well, however if early termination

occurs, the redemption does not have effect, it is considered only when the trade survives

until termination. As Japanese investors do believe that early termination will occur, or

if it will not, then the FX-rate will not drop under the redemption strike, they are happy

to risk their principal protection for being compensated with a higher initial coupon or

a higher coupon multiplier. On the other hand, we need to mention, that the forward

FX-rate goes below the value of R between about the 15th − 20th year of the trade. So
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again, the bet is against the expectation of what is suggested by the forward rate.

2.3 Chooser PRDCs

A more complicated version of PRDCs described above, is the Chooser PRDC. In-

vestors are really hungry for high yields and declining margins also have led to newer

financial products. The name is confusing, as not the investor is who can choose, but

the issuer. A Chooser PRDC pays the minimum of USD/JPY and AUD/JPY PRDC

coupons. They also come with redemption strikes. If the product does not terminate

early, the minimum amount of applying the dollar or Australian dollar redemption strikes

is paid, instead of the yen notional. TARN and KnockOut features are represented for

them as well, however the dimensionality of the product makes it non-conducive to PDE

pricing and this makes dealers not to apply callability to it. The other question of the

pricing is the correlation between AUD/JPY and USD/JPY. A high correlation between

them increases the price of the product for the issuer, as a rise in one of them will not

be followed by a fall in the other. In this thesis, because of the mentioned reasons,

the pricing of Chooser PRDCs is not in scope, but it would be a really interesting and

challenging project for future work.
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3 A cross-currency model with FX volatility skew

We have seen in the previous chapter, that there is a continuing interest in PRDC

swaps. This leads to the requirement of a sophisticated model and numerical val-

uation of cross-currency interest rate derivatives. The valuation of them using a

PDE (Partial Differential Equation) method is not well-developed, the popular ap-

proach among financial institutes for pricing PRDC swaps is Monte-Carlo simulation,

however the slow convergence is just one of the known disadvantages of this methodology.

Foreign exchange (FX) interest rate hybrids face the effect of the movement of the

spot FX rate and also the interest rates in both currencies. The most common modeling

of such products is a three-factor modeling framework, which consists of a one-factor

log-normal model for the spot FX rate, and the interest rates of the two currencies are

driven by one-factor Gaussian models.

3.1. Definition. (Gaussian class) A short term interest rate model is said to belong

to the Gaussian class if it can be written as the following linear differential equation

dr(t) = µr(t, r(t))dt+ σr(t, r(t))dW (t) = (µ1(t)r(t) + µ2(t))dt+ σ2(t)dW (t).

3.1. Note. The well-known lognormal model has the relationship with the Gaussian,

that a short term interest rate model is lognormal ⇐⇒ ln r(t) is Gaussian.

This way the number of factors is kept to the minimum (a total of three), and a very

efficient calibration to the at-the-money options on the FX rate can be used.

On the other side, the lognormality of the FX rate do not allow us to model an important

behavior which exists in reality, namely that FX options exhibit a significant volatility

skew. This cannot be well captured by the log-normal distribution. Moreover, cross-

currency derivatives with exotic features mentioned earlier, are really sensitive to the

FX volatility skew. Therefore a model, which incorporates the FX skew is needed. By

using stochastic volatility we would introduce a new stochastic factor, so for the sake

of holding the speed and accuracy of the calibration, staying in the context of local

volatility seems to be a good choice.
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V. V. Piterbarg in his paper [3] has built a cross-currency model that incorporates FX

volatility skew by using a local volatility function.

3.1 The model

As we have a cross-currency model, there must be a ’domestic’ and a ’foreign’ currency

considered (signed as d, f in indices). In our case, Japanese yen is the domestic and US

dollar is the foreign currency.

Let

• P be the domestic risk-neutral measure;

• Pi(t, T ), i = d, f be the prices of the domestic and foreign zero-coupon discount

bonds (in their respective currencies)4;

• ri(t), i = d, f be the short rates in the domestic and foreign currencies;

• S(t) be the spot FX-rate, expressed in the units of domestic currency per one unit

of the foreign currency.

The model is the following:

dPd(t, T )/Pd(t, T ) = rd(t)dt+ σd(t, T )dWd(t),

dPf (t, T )/Pf (t, T ) = rf (t)dt− ρfSσf (t, T )γ(t, S(t))dt+ σf (t, T )dWf (t),

dS(t)/S(t) = (rd(t)− rf (t))dt+ γ(t, S(t))dWS(t),

(3.1)

where (Wd(t), Wf (t), WS(t)) is a Brownian motion under P, having the correlation

matrix as 
1 ρdf ρdS

ρdf 1 ρfS

ρdS ρfS 1

 .

3.2. Note. There is a ’quanto’ drift adjustment for dPf (t, T ), which comes from chang-

ing the measure from the foreign risk-neutral to the domestic risk-neutral (see [5]). Know-

ing that e−rd(t)tS(t)Pf (t, T ) is a martingale under P, the drift of
d(e−rd(t)tS(t)Pf (t, T ))

e−rd(t)tS(t)Pf (t, T )

4The risk-free bond is used, as the probability of bankruptcy is not considered in the short rates.
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should be zero.

Assuming
dPf (t, T )

Pf (t, T )
= µf (t)dt+ σf (t, T )dWf (t),

we want to find µf .

d(e−rd(t)tS(t)Pf (t, T ))

e−rd(t)tS(t)Pf (t, T )
= −rd(t)dt+

dS(t)

S(t)
+

dPf (t, T )

Pf (t, T )
+

d [S(t), Pf (t, T )]t
S(t)Pf (t, T )

=

= −rd(t)dt+ (rd(t)− rf (t))dt+ γ(t, S(t))dWS(t) + µf (t)dt+

+ σf (t, T )dWf + γ(t, S(t))σf (t, T )ρfSdt

From ’drift = 0’ we get

rd(t)− rf (t) + µf (t) + γ(t, S(t))σf (t, T )ρfS = rd(t).

Therefore

µf (t) = rf (t)− γ(t, S(t))σf (t, T )ρfS.

Continuing the model description, we have

σi(t, T ) = σi(t)

T∫
t

e
−

s∫
t

κi(u)du
ds, i = d, f, (3.2)

where σd(t), σf (t), κd(t), κf (t) are deterministic functions.

The local volatility function γ(t, x) imposes the FX volatility skew on the model. It is

common choosing this function independent from x, but for the stability of calibration

the following parametrization is used,

γ(t, x) = ν(t)

(
x

L(t)

)β(t)−1
, (3.3)

where ν(t) is the ’relative volatility function’, β(t) is a time-dependent constant elasticity

of variance (CEV) parameter and L(t) is a time-dependent scaling constant (see [3]).

The forward FX rate (F (t, T )) can be obtained from the spot FX-rate and the inter-

est rates in the two currencies by the well-known formula, coming from no-arbitrage

arguments:

F (t, T ) =
Pf (t, T )

Pd(t, T )
S(t). (3.4)
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3.2 The PDE for valuation

For the short rates in a one-factor model a Markovian representation holds true. Let’s

assume the extended Vasicek model:

dri(t) = (θi(t)− κi(t)ri(t))dt+ σi(t)dWi(t), i = d, f, (3.5)

under the respective risk-forward measures (it uses a bond with maturity T as numeraire).

The closed forms for θi(t) are the following (see [11]):

θi(t) =
∂f(0, t)

∂T
+ κif(0, t) +

σ2
i

2κi
(
1− e−2κit

)
i = d, f. (3.6)

As zero-coupon bonds arise from the short rates via deterministic functions, the model

(3.1) gives us a Markovian representation in three variables (rd(.), rf (.), S(.)). The

price of any product whose payoff is a function of the FX-rate and the interest rates of

the two currencies must satisfy a PDE described in the following theorem (see also [6]).

3.1. Theorem. Let V = V (t, rd, rf , S) denote the value of a security (such as a PRDC)

at time t, with a terminal payoff measurable to the σ- algebra at maturity time. Assume,

that V ∈ C1,2 on [Tstart, Tend)× R3
+.

Then V satisfies the PDE

Vt + (θd(t)− κd(t)rd)Vrd+

+(θf (t)− ρfSσf (t)γ(t, S(t))− κf (t)rf )Vrf+

+(rd − rf )SVS+

+1
2
σ2
d(t)Vrdrd + 1

2
σ2
f (t)Vrfrf + 1

2
γ2(t, S)S2VSS+

+ρdfσd(t)σf (t)Vrdrf + ρdSσd(t)γ(t, S)SVrdS + ρfSσf (t)γ(t, S)SVrfS =

= rdV.

(3.7)

Proof: The dynamics of the foreign interest rate rf will be the following, after changing

the measure to the domestic one:

drf (t) = (θf (t)− κf (t)rf (t)− ρfSσf (t)γ(t, S(t)))dt+ σf (t)dWf (t).

If we look at the normalized price process of any security, i.e. the discounted value by

the bond price, they are martingales. This holds for V , and since it is an Itô process,
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the drift must be zero. Calculating the drift using the Itô formula, and setting it to zero

we get the following.

d
V (s, rd, rf , t)

B(t)
=

1

B(t)
dV + V (−rd)

1

B(t)
dt =

=
1

B(t)

(
Vtdt+ Vrddrd + Vrf drf + VSdS +

1

2
γ2(t, S(t))S2VSS+

+
1

2
σ2
d(t)Vrdrd +

1

2
σ2
f (t)Vrf rf +

1

2
2ρdSσd(t)γ(t, S(t))SVSrd+

+
1

2
2ρfSσf (t)γ(t, S(t))SVSrf +

1

2
2ρdfσd(t)σf (t)Vrdrf − rdV

)
,

where B(t) denotes the domestic bond, i.e. dB(t) = rd(t)B(t)dt.

If we substitute the dynamics of the interest rates and the FX rate, collect the ’dt’ part,

set it equal to zero, then finally multiply the equation with B(t), we got exactly the

PDE (3.7).

�

3.3 Pricing options on the FX rate

As it was mentioned above, we expect the volatility skew to be imposed by the local

volatility function of the FX-rate (3.3). The main question is how this function can be

calibrated. Normally, a volatility is calibrated to the prices of options on the underlying

asset. Options on the FX rate are traded with a lot of maturity and strike, and it is

impossible to choose one maturity and strike to be relevant for our security (in the case of

PRDCs). Moreover, PRDCs with exotic features cannot be decomposed into simple FX

options. All in all, the volatility function needs to be calibrated to prices of all available

FX options.

A call option with strike K and maturity T pays (S(T ) −K)+ at T , and at time 0 its

value equals to

c(T,K) = E0

e− T∫
0

rd(s)ds
(S(T )−K)+

 .
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The dynamics of the spot FX rate are quite complex, but the forward FX rate is a

martingale under the domestic forward measure. So it is convenient to rewrite c(T,K)

in the terms of the forward FX rate, and study the dynamics of F (t, T ) under the

domestic T -forward measure PT (for which Pd(., T ) is a numeraire. Then, the value of

an FX option is

c(T,K) = Pd(0, T )ET
0

(
(F (T, T )−K)+

)
,

and for the dynamics the following holds true.

3.2. Theorem. The forward FX rate F (t, T ) has the dynamics

dF (t, T )/F (t, T ) = σf (t, T )dW T
f (t)− σd(t, T )dW T

d + γ(t, F (t, T )D(t, T ))dW T
S (t), (3.8)

where (W T
d (t), W T

f (t), W T
S (t)) is a Brownian motion under the domestic T-forward

measure PT . What is more, there exists a Brownian motion WF (t) under PT , such that

dF (t, T )

F (t, T )
= Λ(t, F (t, T )D(t, T ))dWF (t), (3.9)

where
Λ(t, x) = (a(t) + b(t)γ(t, x) + γ2(t, x))

1
2 ,

a(t) = (σf (t, T ))2 + (σd(t, T ))2 − 2ρdfσf (t, T )σd(t, T ),

b(t) = 2ρfSσf (t, T )− 2ρdSσd(t, T ),

and

D(t, T )
d
=
Pd(t, T )

Pf (t, T )
.

Proof: To apply Itô’s lemma to (3.4), we need the following dynamics (also computed

with Itø’s lemma):

d
1

Pd(t, T )
= − 1

Pd(t, T )

[
(rd(t) + σ2

d(t, T ))dt+ σd(t, T )dWd(t)
]
,

d
Pf (t, T )

Pd(t, T )
=

Pf (t, T )

Pd(t, T )

(
rf (t)dt− ρfSσf (t, T )γ(t, S(t))dt+ σf (t, T )dWf (t)−

−(rddt+ σd(t, T )dWd(t))− σ2
d(t, T )dt−

−1

2
2σd(t, T )σf (t, T )ρfddt+

1

2
2σ2

d(t, T )dt

)
=

15



=
Pf (t, T )

Pd(t, T )
[(rf (t)− rd(t)− ρfSσf (t, T )γ(t, S(t))− σd(t, T )σf (t.T )ρfd)dt+

+σf (t, T )dWf (t)− σddWd(t)] .

Now we can calculate the dynamics of F (t, T ) :

dF (t, T ) = d

(
Pf (t, T )

Pd(t, T )
S(t)

)
=

=
Pf (t, T )

Pd(t, T )
dS(t) + S(t)d

Pf (t, T )

Pd(t, T )
+ d

[
Pf (t, T )

Pd(t, T )
, S(t)

]
t

=

= F (t, T )
[
(rd(t)− rf (t))dt+ γ(t, S(t))dWS(t)+

+(rf (t)− rd(t)− ρfSσf (t, T )γ(t, S(t))− σd(t, T )σf (t, T )ρfd)dt+

+σf (t, T )dWf (t)− σddWd(t)+

+(σf (t, T )γ(t, S(t))ρfS − σd(t, T )γ(t, S(t))ρdS)dt
]
. ⇒

dF (t, T )

F (t, T )
= σf (t, T )dWf (t)− σd(t, T )γ(t, S(t))ρdSdt−

−σd(t, T )dWd(t)+

+γ(t, S(t))dWS(t)− σd(t, T )σf (t, T )ρfddt.

Using that F (t, T ) is a martingale under PT , and defining W T
f (t), W T

d (t), W T
S (t) the

following way

dW T
f (t) = dWf (t)−

σd(t, T )γ(t, S(t))ρdS
σf (t, T )

dt,

dW T
d (t) = dWd(t),

dW T
S (t) = dWS(t)− σd(t, T )σf (t, T )ρfd

γ(t, S(t))
dt,

(3.8) is proven. Let’s denote dWF as

dWF =
1

Λ(t, F (t, T )D(t, T ))

(
σf (t, T )dW T

f (t)− σd(t, T )dW T
d + γ(t, F (t, T )D(t, T ))dW T

S (t)
)
,

(3.10)

so the equation (3.9) comes from (3.8). Then the only thing need to be proven is that

WF is a Brownian motion under PT , and this can be seen by computing the quadratic

variation of dWF from (3.10), as it gives [WF ]t = t, from the Lévy-theorem the result is

as expected.

�
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3.3. Note. If γ(t, x) had been chosen to be independent from x, then we would have also

got a deterministic function for the diffusion coefficient in (3.8). For this parametrization

F (T, T ) is lognormally distributed.

3.3.1 Simplifying the dynamics of the forward FX rate

In the general case, the term distribution of F (., T ) is not so easy to identify. The

diffusion coefficient of dF/F not just depends on F , but also on an other stochastic

variable D(t, T ). The first step in simplifying the dynamics of the forward FX rate, is

to write the SDE in a form that contains only F as stochastic variable.

V. V. Piterbarg in [3] derived an autonomous representation of the forward FX rate

process that is exact for European options. Firstly, extension of the set of options being

considered is introduced, by having T > 0, the settlement date of the forward FX rate,

to be fixed, and including expiries before T .

c(t, T,K) = Pd(0, t)E
T
0

(
(F (t, T )−K)+

)
(3.11)

The task is to find the local volatility function Λ̃(t, x), and it is motivated by Dupire’s

approach, as the values of options {c(t, T,K)} in the model (3.1) are considered to be

given, and Λ̃(t, x) needs to be determined from them. Consider the model

dF (t, T )

F (t, T )
= Λ̃(t, F (t, T ))dWF (t). (3.12)

With this the values of European options {c(t, T,K)}, for all 0 < t < T, 0 ≤ K < ∞,

should match exactly the values of the same options from the original model. The

following theorem gives us the solution (see [3]). The SDE which comes from Λ̃(t, x) is

called the ’Markovian representation’ of the original one.

3.3. Theorem. The local volatility function Λ̃(t, x) for which the values of all European

options {c(t, T,K)}t,K in the model (3.12) are the same as in the model (3.1) is given

by

Λ̃2(t, x) = ET
0

(
Λ2(t, F (t, T )D(t, T ))

∣∣F (t, T ) = x
)
.

Proof: We have the definition of c(t, T,K) in (3.11). Using Dupire’s formula (see [7])

to get the local volatility Λ̃(t, x), for which the values of European options in the model
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(3.12) match {c(t, T,K)}t,K , we get

(
KΛ̃(t,K)

)2
= 2

∂

∂t

c(t, T,K)

Pd(0, t)

∂2

∂K2

c(t, T,K)

Pd(0, t)

(3.13)

Now we have to compute the right hand side of the above equation. For the first step

d(F (t, T )−K)+ = χ{F (t,T )>K}dF (t, T ) +
1

2
δ{F (t,T )=K}d[F (t, T )].

We get the following from the fact, that F (t, T ) is a martingale under PT :

ET (F (t, T )−K)+ − (F (0, T )−K)+ =
1

2

t∫
0

ET
(
δ{F (t,T )=K}d[F (t, T )]

)
.

It is obvious, that

ET
(
δ{F (t,T )=K}d[F (t, T )]

)
= ET

(
δ{F (t,T )=K}

)
· ET

(
d[F (t, T )]

∣∣F (t, T ) = K
)
,

and that

ET
(
δ{F (t,T )=K}

)
=

∂2

∂K2
ET (F (t, T )−K)+ =

∂2

∂K2

c(t, T,K)

Pd(0, t)
.

From Theorem 3.2.

d[F (t, T )] = F 2(t, T )Λ2(t, F (t, T )D(t, T ))dt

is given, so

ET
(
δ{F (t,T )=K}d[F (t, T )]

)
=

∂2

∂K2

c(t, T,K)

Pd(0, t)
·K2·ET

(
Λ2(t, F (t, T )D(t, T ))

∣∣F (t, T ) = K
)

dt.

In particular,

∂

∂t

c(t, T,K)

Pd(0, t)
=

∂

∂t

(
ET (F (t, T )−K)+ − (F (0, T )−K)+

)
=

=
1

2
· ∂2

∂K2

c(t, T,K)

Pd(0, t)
·K2 · ET

(
Λ2(t, F (t, T )D(t, T ))

∣∣F (t, T ) = K
)
.

Substitute this equality to (3.13),

Λ̃2(t,K) = ET
(
Λ2(t, F (t, T )D(t, T ))

∣∣F (t, T ) = K
)
,

and the theorem is proved.

�
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3.1. Corollary. For the purposes of European option pricing, the dynamics of the for-

ward FX rate F (., T ) under the measure PT are approximately given by

dF (t, T )

F (t, T )
= Λ̂(t, F (t, T ))dWF (t), (3.14)

where

Λ̂(t, x) = (a(t) + b(t)γ̂(t, x) + γ̂2(t, x))
1
2 ,

γ̂(t, x) = ν(t)

(
x
D0(t, T )

L(t)

)β(t)−1(
1 + (β(t)− 1)r(t)

(
x

F (0, T )
− 1

))
,

D0(t, T ) =
Pd(0, t, T )

Pf (0, t, T )
,

where Pi(s, t, T ), i = d, f stand for the forward prices of the corresponding zero-coupon

discount bonds,

and

r(t) =

t∫
0

χZ,F (s)ds

t∫
0

χF,F (s)ds

,

where

χZ,F (t) = −a(t)− b(t)

2
γ(t, F (0, T )D0(t, T )),

χF,F (t) = a(t) + b(t)γ(t, F (0, T )D0(t, T )) + γ2(t, F (0, T )D0(t, T )).
(3.15)

For getting the corollary we need the following lemma.

3.1. Lemma. For any c ∈ R

ET ((D(t, T ))c
∣∣F (t, T ) = x) ≈ (D0(t, T ))c

1 + c ·

t∫
0

χZ,F (s)ds

t∫
0

χF,F (s)ds

·
(

x

F (0, T )
− 1

) ,

where the definition of χZ,F (t), χF,F (t) is in (3.15).

The lemma is proven in [3].

We know from Theorem 3.3., that for purposes of computing European option values,
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the dynamics of the forward FX rate follow

dF (t, T )

F (t, T )
= Λ̃(t, F (t, T ))dWF (t),

where

Λ̃2(t, x) = ET
0

(
Λ2(t, F (t, T )D(t, T ))

∣∣F (t, T ) = x
)
.

From Theorem 3.2.

Λ2(t, x) = a(t) + b(t)γ(t, x) + γ2(t, x).

Then

Λ̃2(t, x) = a(t)+b(t)ET
(
γ(t, F (t, T )D(t, T ))

∣∣F (t, T ) = x
)
+ET

(
γ2(t, F (t, T )D(t, T ))

∣∣F (t, T ) = x
)
.

Define

γ̃(t, x)
d
=ET

(
γ(t, F (t, T )D(t, T ))

∣∣F (t, T ) = x
)
,

and approximate

ET
(
γ2(t, F (t, T )D(t, T ))

∣∣F (t, T ) = x
)
≈ γ̃2(t, x),

then

Λ̃2(t, x) ≈ a(t) + b(t)γ̃(t, x) + γ̃2(t, x).

We have, from the form (3.3) of γ(t, x), that

γ̃(t, x) = ν(t)

(
F (t, T )

L(t)

)β(t)−1
ET
(

(D(t, T ))β(t)−1
∣∣∣F (t, T ) = x

)
.

Denoting

γ̂(t, x) = ν(t)

(
x

L(t)

)β(t)−1
(D0(t, T ))β(t)−1

1 + (β(t)− 1) ·

t∫
0

χZ,F (s)ds

t∫
0

χF,F (s)ds

·
(

x

F (0, T )
− 1

) ,

Λ̂2(t, x) = a(t) + b(t)γ̂(t, x) + γ̂2(t, x),

and applying Lemma 3.1. with c = β(t)− 1, we get the Corollary 3.1.
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Corollary 3.1. gives us an autonomous equation for the forward FX rate. It is a

one-dimensional SDE, and the diffusion coefficient is given by a local volatility function

Λ̂(t, x).

Moving forward in simplifying the dynamics of the forward FX rate, secondly we

apply the so called ’skew averaging’ technic (see also [3], [15]). With the approach

of ’parameter averaging’, time-dependent parameters are replaced by time-independent

ones, which are called ’effective’ parameters. This way we are able to directly relate the

model and market parameters without any option calculations performed. The next step

is based on the following generic result (see [3]).

3.2. Definition. For the below theorem let us define well approximated in the follow-

ing way: Let us define

gε(t, x) = g
(
tε2, x0 + (x− x0)ε

)
.

And with this definition

dXε(t) = gε(t,Xε(t))dW (t),

dXε(t) = σ(t)ḡε(Yε(t))dW (t),

Xε(0) = X0,

Yε(0) = X0.

Then

E (Xε(T )−X0)
2 − E (Yε(T )−X0)

2 = o
(
ε2
)
.

3.4. Theorem. Let X(t) be a stochastic process defined by

dX(t) = g(t,X(t))dW (t), X(0) = X0.

Then the distribution of X(T ) is well-approximated by the distribution of Y (T ), where

the stochastic process Y (T ) is defined by

dY (t) = σ(t)ḡ(Y (t))dW (t), Y (0) = X0.
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The functions σ(t), ḡ(y) are the following

σ(t) = g(t,X0),

ḡ(X0) = 1,

∂

∂x
ḡ(x)

∣∣∣∣
x=X0

=

T∫
0

w(t)

∂
∂x
g(t, x)

∣∣
x=X0

g(t,X0)
dt,

and the weights w(t) are given by

w(t) =
u(t)

T∫
0

u(t)dt

,

u(t) = g2(t,X0)
t∫
0

g2(s,X0)ds.

This theorem says that a time-dependent local volatility function g(t, x) can be replaced

with a time-constant one ḡ(x), which has the slope at x = X0 as a weighted average of

time-dependent slopes of g(t, x) with given weights.

One can apply this theorem to the forward FX rate from (3.14), then the result is the

following.

3.5. Theorem. To value options on the FX rate with maturity T , the forward FX rate

can be approximated by the following SDE

dF (t, T ) = Λ̂(t, F (0, T ))(δFF (t, T ) + (1− δF )F (0, T ))dWF (t), (3.16)

where,

δF = 1 +

T∫
0

w(t)
b(t)η(t) + 2γ̂(t, F (0, T ))η(t)

2Λ̂2(t, F (0, T ))
dt, (3.17)

η(t) = γ̂(t, F (0, T ))(1 + r(t))(β(t)− 1),

w(t) =
u(t)

T∫
0

u(t)dt

,

u(t) = Λ̂2(t, F (0, T ))

t∫
0

Λ̂2(s, F (0, T ))ds.
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In particular, F (., T ) follows a ’standard displaced-diffusion SDE’ with the skew param-

eter δF . The value of a call option on the FX rate with maturity T and strike K is

c(T,K) = Pd(0, T )cBlack

(
F (0, T )

δF
, K +

1− δF
δF

F (0, T ), σF δF , T

)
, (3.18)

σF =

 1

T

T∫
0

Λ̂2(t, F (0, T ))dt


1
2

, (3.19)

where cBlack(F,K, σ, T ) is the Black formula value for a call option with forward F , strike

K, volatility σ and time to maturity T .

3.4. Note. The Black formula is similar to the Black - Scholes formula except that the

spot price of the underlying is replaced by a discounted forward price F .

cBlack(F,K, σ, T ) = e−rT [FΦ(d1)−KΦ(d2)] ,

d1 =
log(F/K) + (σ2/2)T

σ
√
T

,

d2 = d1 − σ
√
T .

Proof: Here, we only prove the equations (3.16), (3.17). We need to apply Theorem 3.4.

to
g(t, x) = xΛ̂(t, x),

ḡ(x) = δF
x

F (0, T )
+ (1− δF ),

X0 = F (0, T ).

Then

∂

∂x
ḡ(x)

∣∣∣∣
x=X0

=
δF

F (0, T )
,

∂

∂x
g(t, x) = Λ̂(t, x) + x

∂

∂x
Λ̂(t, x) =

= Λ̂(t, x) + x
∂

∂x

((
a(t) + b(t)γ̂(t, x) + γ̂2(t, x)

) 1
2

)
=

= Λ̂(t, x) + x
b(t) ∂

∂x
γ̂(t, x) + 2γ̂(t, x) ∂

∂x
γ̂(t, x)

2 (a(t) + b(t)γ̂(t, x) + γ̂2(t, x))
1
2

.
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From these, we get

∂
∂x
g(t, x)

g(t, x)

∣∣∣∣∣
x=X0

=
1

F (0, T )
+
b(t)η(t) + 2γ̂(t, F (0, T ))η(t)

2F (0, T )Λ̂2(t, F (0, T ))
,

where

η(t) = F (0, T )
∂

∂x
γ̂(t, x)

∣∣∣∣
x=F (0,T )

.

From Theorem 3.4. we have

δF
F (0, T )

=

T∫
0

(
1

F (0, T )
+
b(t)η(t) + 2γ̂(t, F (0, T ))η(t)

2F (0, T )Λ̂2(t, F (0, T ))

)
w(t)dt,

and the expression for δF is proven.

�

With this theorem the problem of approximately pricing options on the FX-rate in the

model (3.1) is solved.
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4 Implementation

In previous sections we got familiar with the financial product – Power Reverse Dual

Currency swaps, and studied a multi-currency model, that how can it be used for pricing

such securities, like PRDCs. In this section, I am going to look through the implemen-

tation of Section 3, the challenge of calibration and the numerical solving of the PDE

given for the price of any product whose payoff is a function of the FX-rate and the

interest rates of the two currencies.

4.1 Calibration of the parameters

If we want to use a model for valuation, the appearing parameters must be calibrated

to real market data, i.e. they need to be chosen to match the prices from the market of

related securities.

The volatility structures of the zero coupon bonds in both currencies have

the parameters σd, σf , κd, κf . They are chosen to match European swaption values

in the respective currencies. A swaption (Swap Option) is an option on an interest rate

swap, i.e. it reserves the right to purchase a swap at a specific time and interest rate in

the future. For detailed information about swaptions and their pricing see [9].

A swaption is an option on a forward interest rate. From the implied volatilities in

the two currencies we get two tables, where the rows indicate the option maturity, the

columns are for the different swap tenors. For details see [11]. As a first step, we have

to calculate the volatilities for every one-year interval, e.g. we have the volatility 1Y2Y

(i.e. when the option maturity is 1 year and the swap tenor is 2 years) and 2Y1Y and

we want to determine the volatility for the interval [1Y,2Y] from them. Let σ̃i be the

volatility for the ith ’one-year’ period.

σ̃2
i+1 = (i+ 1)σ2

i+1,i+2 − iσ2
i,i+2/(i+ 1);

Although we have the implied volatilities for every one-year period for the forward inter-

est rates, we want to define the volatility of the logarithm of the zero coupon bond. The

relationship between them is described below, with the notation f(t, T ) for the forward
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interest rate and P (t, T ) is for the zero coupon bond. Assume that the forward rate has

the dynamics

df(t, T ) = µ(t, T )dt+ σ(t, T )dW (t).

As P (t, T ) = exp

{
−

T∫
t

f(t, u)du

}
, we have

d logP (t, T ) = d

− T∫
t

f(t, u)du

 = f(t, t)dt−
T∫
t

df(t, u)du.

The volatility coming form the above is

T∫
t

[σ(t, u)dW (u)] du =

 T∫
t

σ(t, u)du

 dW (u).

The result justifying this interchange of the order of integration is known as the

Stochastic Fubini Theorem.

From the above results we have the value of the zero coupon volatilities, and we have the

formula for them as well (3.2) with 2-2 parameters for each currency. We have to cali-

brate the parameters to fit the given values ’the best’. Here ’the best’ means to minimize

the sum of the square differences between the two values. We have to solve nonlinear

least-squares curve fitting problems of the form min
x

(f1(x)2 + f2(x)2 + · · ·+ fn(x)2).

The algorithm which was used in MATLAB5 is a subspace trust region method and is

based on the interior-reflective Newton method (see [10] for details). The idea of the

trust region method is to approximate the function, which we want to minimize, with a

simpler function, which reflects the behavior of the original function in a neighborhood,

around the point x. This neighborhood is the trust region. The algorithm in each

iteration involves the approximate solution of a large linear system using the method of

’preconditioned conjugate gradients’ (see e.g. [16]).

The correlation parameters ρdf , ρdS, ρfS are also chosen by historical es-

timation. Assume that we have historical data for equidistant points for all the three
5The MATLAB command which is for the purpose of parameter calibration is lsqnonlin. As we

need upper and lower bounds for the parameters (1 and 0 respectively), the ’Large Scale’ method cannot

be switched off.
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processes (rd, rf , S). For the FX rate we actually have the dynamics for logS(t) (3.1).

Thus, after we get the logarithm of the time-series data, then we can approximate the

drift with (logS(n) − logS(1))/n, and the volatility with the quadratic variation. For

the parameter estimation of the short rates in each currency (3.5) Maximum Likelihood

estimation can be used, based on [13]. Assume equivalent dynamics with (3.5) for the

short rates, such as

dri = κ(µ− ri)dt+ σdW.

We have a data set (x0, x1, x2, . . . , xn) at time points (t0, t1, t2, . . . , tn). Then the ML

estimation for the parameters is the following:

κ̃ =

n
n∑
i=1

xi−1xi − n
n∑
i=1

x2i−1 − (xn − x0)
n∑
i=1

xi−1((
n∑
i=1

xi−1

)2

− n
n∑
i=1

x2i−1

)
dt

,

µ̃ =

xn − x0 + κ̃dt
n∑
i=1

xi−1

nκ̃dt
,

σ̃2 =

n∑
i=1

(xi − xi−1 − κ̃(µ̃− xi−1)dt)2

ndt
.

After the parameter estimation, we have equations

logSt = logSt−1 + drift∆t+ vol∆tNS
t ,

rit = rit−1 + drift∆t+ vol∆tN ri
t , i = d, f,

where ’drift’ and ’vol’ are the appropriate numbers from the parameter estimation

and Nt are normally distributed. We need to calculate the correlation between these

normally distributed vectors {NS}nt=0, {N rd}nt=0, {N rf}nt=0.6

We have seen what parametrization is used for the γ(t, x) local volatil-

ity function (3.3), which means in the aspect of calibration, that the time-

dependent functions ν(t), β(t) is needed to be determined. The function L(t) is
6In MATLAB the command corrcoef can be used.
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chosen to be the forward FX rate, L(t) = F (0, t), t ≥ 0. Assume, that the maturities

are given as

0 = T0 < T1 < · · · < TN ,

and the parameters are to be calibrated to the market prices of options on the FX

rate with maturities {Tn}Nn=1 (see [3] Section 8.). We can choose ν(t) and β(t) to be

step-functions i.e. constant between maturities

ν(t) =
N∑
n=1

νnχ(Tn−1,Tn](t),

β(t) =
N∑
n=1

βnχ(Tn−1,Tn](t).

In Theorem 3.5., the result was the approximation of the forward FX rates by a displaced-

diffusion process. It is natural, to express the market prices of FX options in the same

form. This means, that for each maturity, we have a market volatility σ∗n and a market

skew parameter δ∗n that if we write the displaced-diffusion model of the form of

dF (t, T ) = σ∗n(δ∗nF (t, T ) + (1− δ∗n)F (0, T ))dWF (t), n = 1, . . . , N,

then we need to chose σ∗n, δ∗n that the market prices of FX options with expiry Tn across a

collection of strikes are being well-matched. This can be done by the volatilities fitted to

at-the-money volatilities, and the skews to match the slopes of the market FX volatility

smiles for each expiry. After we have the market prices expressed with {(σ∗n, δ∗n)}Nn=1, we

need to set the model parameters {(νn, βn)}Nn=1 in order to the ’effective’ volatility σF =

σF (Tn) from formula (3.19), and the ’effective’ skew δF = δF (Tn) from formula (3.17)

computed from the model parameters, match the market-implied values {(σ∗n, δ∗n)}Nn=1.

In practice this means an algebraic root-search problem and it can be split into N

sequential problems, as e.g. σF (T1) and δF (T1) only depend on ν1, β1. So they can be

calculated from the two equations

σF (T1) = σ∗1,

δF (T1) = δ∗1.

σF (T2), δF (T2) depend on ν1, ν2, β1, β2, and the values of ν1, β1 can be used from the

first step, so the problem is reduced again to a two-dimensional root-search problem.

This can be done recursively, until all model parameters {(νn, βn)}Nn=1 are found.
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4.2 Numerical solving of the PDE

In the previous section we have already seen the PDE 3.7 which is needed to be solved.

Let’s see it again, with a new notation L for the differential operator.

Vt + LV ≡ Vt + (θd(t)− κd(t)rd)Vrd+

+(θf (t)− ρfSσf (t)γ(t, S(t))− κf (t)rf )Vrf+

+(rd − rf )SVS+

+1
2
σ2
d(t)Vrdrd + 1

2
σ2
f (t)Vrfrf + 1

2
γ2(t, S)S2VSS+

+ρdfσd(t)σf (t)Vrdrf + ρdSσd(t)γ(t, S)SVrdS+

+ρfSσf (t)γ(t, S)SVrfS − rdV = 0.

Solving this PDE numerically has several challenges: time progress is in the opposite

direction than usual; the space is three-dimensional; the coefficients depend on time; all

of the cross-derivatives can be found; and the run-time of the program should also be

optimized. The main ideas of the solution can be seen in [6].

This equation is solved backward in time, as we know the value of a security at the

last payment (we will exactly define it later), so for the sake of simplicity the change of

variable τ = Tmax − t is used. Then the PDE has the form of Vτ = LV . Originally, the

pricing is defined in an unbounded domain

{(s, rd, rf , τ)|s ≥ 0, rd ≥ 0, rf ≥ 0, τ ∈ [0, Tmax]}.

We want to use Finite Difference (called FD) approximations for the space variables, so

a finite-sized domain is used

{(s, rd, rf , τ) ∈ [0, S]× [0, Rd]× [0, Rf ]× [0, Tmax]} ≡ Ω× Tmax,

where S = 3s(0), Rd = 3rd(0), Rf = 3rf (0). Regarding the boundary conditions,

Dirichlet-type ’stopped process’ boundary conditions were used, i.e. we stop the pro-

cesses s(t), rd(t), rf (t) when one of them hits the boundary. Then we assume, that

they are constant for the life-time of the product, which left after (at least) one process

reached the boundary. This means, that we used the discounted payoff for the current

values of the state variables.
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4.2.1 Implementation of the Crank-Nicolson scheme

The discretization of the PDE is needed to be done first. We haveNx, Ny, Nz andNt grid

points in the directions of s, rd, rf , τ . We denote the uniform grid stepsizes by hi = imax

Ni+1
.

Let V m
i,j,k be the grid point value of a FD approximation, i.e. V m

i,j,k ≈ V (si, rdj, rfk, τm) =

V (ihx, jhy, khz,mht). where i = 1 . . . Nx, j = 1 . . . Ny, k = 1 . . . Nz, m = 1 . . . Nt + 1.

We used the following FD approximations (the example is for the s variable):

∂V

∂s
≈

V m
i+1,j,k − V m

i−1,j,k

2hx
,

∂2V

∂s2
≈

V m
i+1,j,k − 2V m

i,j,k + V m
i−1,j,k

h2x
,

∂2V

∂s∂rd
≈

V m
i+1,j+1,k + V m

i−1,j−1,k − V m
i−1,j+1,k − V m

i+1,j−1,k

4hxhy
.

(4.20)

In the differential operator L every spatial derivative is replaced by its corresponding

FD scheme (like (4.20)). The FD discretization of L at (si, rdj, rfk, τm) is denoted by

LV m
i,j,k. Then, the Crank-Nicolson scheme is used to step from time τm−1 to τm:

V m
i,j,k − V m−1

i,j,k

∆τ
=

1

2
LV m

i,j,k +
1

2
LV m−1

i,j,k ,

where i = 1 . . . Nx, j = 1 . . . Ny, k = 1 . . . Nz. If um is the vector of the approximated

values at time τm on the mesh Ω, the Crank-Nicolson method gives us the following

equation for m = 1 . . . Nt(
I− 1

2
∆τAm

)
um =

(
I +

1

2
∆τAm−1

)
um−1 +

1

2
∆τ
(
gm + gm−1

)
, (4.21)

where I is the NxNyNz × NxNyNz identity matrix and Am is the same sized matrix

coming from the FD discretization of the differential operator L. The matrix Am can

be written in an explicit form using tensor products. Let In be the n-dimension identity

matrix, Tn be the tridiagonal matrix with entries {1,−2, 1}, and Qn be the tridiagonal

matrix with entries {1, 0,−1}. Then the coefficient matrix can be written in the following
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form (with n = Nx, p = Ny, q = Nz):

Am(t) = (rd − rf )S
1

2hx
(Iq ⊗ Ip ⊗Qn)+

+(θd(t)− κd(t)rd)
1

2hy
(Iq ⊗Qp ⊗ In)+

+(θf (t)− ρfSσf (t)γ(t, S(t))− κf (t)rf )
1

2hz
(Qq ⊗ Ip ⊗ In)+

+
1

2
γ2(t, S)S2 1

h2x
(Iq ⊗ Ip ⊗Tn)+

+
1

2
σ2
d(t)

1

h2y
(Iq ⊗Tp ⊗ In) +

1

2
σ2
f (t)

1

h2z
(Tq ⊗ Ip ⊗ In)+

+ρdSσd(t)γ(t, S)S
1

4hxhy
(Iq ⊗Qp ⊗Qn)+

+ρfSσf (t)γ(t, S)S
1

4hxhz
(Qq ⊗ Ip ⊗Qn)+

+ρdfσd(t)σf (t)
1

4hyhz
(Qq ⊗Qp ⊗ In)− rdInpq,

where

T =



−2 1 0 . . . 0

1 −2 1 0 . . . 0

0 1 −2 1 0 . . . 0
... . . . . . . . . . . . .

...

0 . . . 0 1 −2 1



Q =



0 −1 0 . . . 0

1 0 −1 0 . . . 0

0 1 0 −1 0 . . . 0
... . . . . . . . . . . . .

...

0 . . . 0 1 0 −1


.

The method is implicit, i.e. in every time-step we need to solve a linear system to get

the actual value for um.

The calculations were done in MATLAB 7.1.

For the MATLAB implementation there were some main ideas which were followed in

order to simplify the program code. The whole code can be found in the Appendix

(Section 5). The first step to start with is that, as it can be seen above, there is a

NxNyNz-size vector um. The solution of the boundary condition was much easier with
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the collection of the indexes which are effected by the boundary conditions. To have an

acceptable run-time, cycles should have been avoided, and vector operations were used,

when it was possible. Also the sparse command appears often, as it provides good

storage conditions for matrices with many zero elements. In order to solve the linear

system, the simple ’\’ command was implemented, and did not calculated the matrix

inverse.

4.2.2 Pricing a PRDC swap

Now we need to set the trade specific parameters, i.e. how can the PDE be implemented

for a PRDC trade. Suppose that the tenor structure is the following:

0 = T0 < T1 < · · · < Tβ−1 < Tβ = Tmax, να = ν(Tα−1, Tα) = Tα−Tα−1, α = 1, 2, . . . , β−1.

That means, there is a payment on every Ti i = 1, 2, . . . , β − 1, and the PRDC coupon

rate Cα issued at time Tα for the period [Tα, Tα+1] is equals to ναCαNd, as να is the day

count fraction using the Actual/365 day count basis, and Nd is the domestic currency

principal. We have the coupon definition as it is in the previous section

hmax(S(t)− k, 0), where k = K
jpycpn

usdcpn
, h =

usdcpn

K
,

with the assumption that floor = 0; cap = +∞. The payment of the funding leg for

the period [Tα−1, Tα] is ναLd(Tα−1, Tα)Nd, where Ld(Tα−1, Tα) =
1− Pd(Tα−1, Tα)

ναPd(Tα−1, Tα)
. Note

that the floating payments are ’in arrears’ in most cases, which means, that the LIBOR

rate is observed at time Tα−1 for the period [Tα−1, Tα]. Assume that we have annual

payments, so να ≡ 1.

For the ’vanilla’ PRDCs (often called Bullet PRDCs) the valuation is quite simple, but

it is needed to be done before one can move forward to pricing exotic products. Let

V c
α(t) and V f

α (t) denote the value at time t of all PRDC coupons and floating coupons

of the PRDC swap, which are paid on or after Tα+1. The payoff of the PRDC coupon

part at Tα is

V c
α(Tα) + ναCαNd.

The value of the payoff at Tα−1 can be obtained by solving the PDE backward from Tα

to Tα−1. The terminal condition at Tβ−1 (note that with the variable change described
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before, this is the condition for τ = 1) is the following

V c
β−1(Tβ−1) = νβ−1Cβ−1Nd.

We can get V c
0 (T0) by progressing backward to T0. The floating payment’s value at T0 is

1− Pd(T0, Tmax),

because, with B(t) denoting the bond price,

B(t)EP

(
Tmax∑
α=1

να(L(Tα−1, Tα))

B(Tα)

∣∣∣∣F (t)

)
=

= B(t)
Tmax∑
α=1

EP

(
1− Pd(Tα−1, Tα)

Pd(Tα−1, Tα)
EP

(
1

B(Tα)

∣∣∣∣F (Tα−1)

)∣∣∣∣F (t)

)
=

= B(t)
Tmax∑
α=1

EP

(
1− Pd(Tα−1, Tα)

B(Tα−1)

∣∣∣∣F (t)

)
=

=
Tmax∑
α=1

(Pd(t, Tα−1)− Pd(t, Tα)) = p(t, T0)− p(t, Tmax),

which for t = T0 is 1− p(T0, Tmax). The value of the PRDC swap is V f
0 (T0)− V c

0 (T0).

The solution was computed with the following input data:

period ν(t) β(t)

Pd(0, T ) = exp(−0.02T ); (0, 0.5] 9.03% −200%

Pf (0, T ) = exp(−0.05T ); (0.5, 1] 8.87% −172%

σd(t) = 0.7%; (1, 3] 8.42% −115%

κd(t) = 0.00%; (3, 5] 8.99% −65%

σf (t) = 1.2%; (5, 7] 10.18% −50%

κf (t) = 5.0%; (7, 10] 13.31% −24%

ρdf = 25.0%; (10, 15] 18.18% 10%

ρdS = −15.00%; (15, 20] 16.73% 38%

ρfS = −15.00%; (20, 25] 13.51% 38%

S(0) = 105.00; (25, 30] 13.51% 38%
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From ν(t), β(t) and with L(t) = F (0, t) the value of the local volatility function γ(t, S(t))

can be computed based on (3.3). The parameters θi(t) also can be computed from the

above data with (3.6). Note that only these two of the coefficients depend on t in our

example. The coupon parameters were chosen to jpycpn = 4.36%; usdcpn = 6.25%.

With this input, and with 6 grid points for each spacial variable, the value of

the PRDC swap is −17.45%. This is expressed as a percentage of the notional Nd.

The negative value of the PRDC swap determines the price that the investor has to pay

for the PRDC coupon payer to enter into the ’vanilla’ PRDC swap.

4.2.3 Pricing a Callable PRDC

It is worth mentioning how can all of these be used for an exotic product like a Callable

PRDC. (For more details see [6].) The actual implementation is out of the scope of this

thesis, but for a future improvement it is an ideal topic. The main idea of valuing a

cancellable swap is that terminating the underlying PRDC means the same with con-

tinuing the original swap and at the same time entering into the offsetting swap (i.e.

the same swap but with the opposite pay-recieve direction). The long position in a

Bermudan swaption with the underlying asset being the offsetting swap is called for now

the offsetting Bermudan swaption. Let V e
α (t) be the value at time t of all fund flows

in the offsetting swap, i.e. V e
α (Tα) = −

(
V f
α (Tα)− V c

α(Tα)
)
. This can be understood

as the ’exercise value’. Denote with V h
α (t) the value at time t of the offsetting Bermu-

dan swaption that has the exercise opportunities on dates {Tα+1, . . . , Tβ−1}. This is the

’hold value’ of the option. Then the payoff of the offsetting Bermudan swaption at Tα is

max
(
V h
α (Tα), V e

α (Tα)
)
. We can solve the PDE backward in time just as it was the case

with the ’vanilla’ PRDC, with the terminal condition

V h
β−1(Tβ−1) = V e

β−1(Tβ−1) = 0.

Then we can get the value of a Callable PRDC, which is V h
0 (T0) +

(
V f
0 (T0)− V c

0 (T0)
)
.
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5 Appendix

In this appendix the MATLAB codes can be found which were referred to in the previous

section.

The basic program cranknicolson.m contains the input data, the discretization of the Ω

finite spacial domain, the definition of the T, Q tridiagonal matrices, the collection of the

indices needed for the boundary conditions, and the cycle of the time-steps, with calling

the getAcoeffmx.m and the getgboundaryvector.m for calculating the appropriate Am

coefficient matrix and gm boundary condition vector respectively.

cranknicolson.m

S=315;%FX ra t e upper bound

Rd=0.06; %JPY i n t e r e s t ra t e

Rf=0.15; %USD

%cons tan t s

sigmad=0.007;

khid=0;

s igmaf =0.012;

kh i f =0.05;

ro =[0.25 −0.15 −0 .15 ] ;

spo t fx =105;

spotrd =0.02;

s p o t r f =0.05;

R=spot r f−spotrd ;

Tmax=30;%maxtenor

% time dependent parameters

tetad=zeros (1 ,Tmax) ;

for i =1:Tmax

tetad ( i )=−R∗getFwdFX( i −1, spot fx ,R) ;%khid=0;
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end

t e t a f=zeros (1 ,Tmax) ;

for i =1:Tmax

t e t a f ( i )=−R∗getFwdFX( i −1, spot fx ,R)+kh i f ∗getFwdFX( i −1, spot fx ,R)+

sigmaf^2∗(1−exp(−2∗ kh i f ∗( i −1)))/(2∗ kh i f ) ;

end

%number o f g r i d p o i n t s

Nx=6;

Ny=6;

Nz=6;

n=Nx∗Ny∗Nz ;

hx=S/(Nx+1);

hy=Rd/(Ny+1);

hz=Rf /(Nz+1);

%s vec to r

a=(1:Nx ) ’ ;

b=hx∗ones (Ny , 1 ) ;

c=ones (Nz , 1 ) ;

s=kron ( c , kron (b , a ) ) ;

%rd vec to r

d=(1:Ny ) ’ ;

e=hy∗ones (Nx , 1 ) ;

f=ones (Nz , 1 ) ;

rd=kron ( f , kron (d , e ) ) ;
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%r f vec t o r

g=(1:Nz ) ’ ;

h=hz∗ones (Nx , 1 ) ;

i=ones (Ny , 1 ) ;

r f=kron ( g , kron ( i , h ) ) ;

%gamma (Nx x Ny x Nz) x 30 matrix

nu=[0.0903 0 .0887 0 .0842 0 .0842 0 .0899 0 .0899 0 .1018

0 .1018 0 .133 0 .133 0 .133 0 .1818 0 .1818 0 .1818 0 .1818

0 .1818 0 .1673 0 .1673 0 .1673 0 .1673 0 .1673 0 .1351 0 .1351

0 .1351 0 .1351 0 .1351 0 .1351 0 .1351 0 .1351 0 . 1 3 5 1 ] ;

beta=[−2 −1.72 −1.15 −1.15 −0.65 −0.65 −0.5 −0.5 −0.24

−0.24 −0.24 0 .1 0 .1 0 .1 0 .1 0 .1 0 .38 0 .38 0 .38 0 .38

0 .38 0 .38 0 .38 0 .38 0 .38 0 .38 0 .38 0 .38 0 .38 0 . 3 8 ] ;

gamma=zeros (Nx∗Ny∗Nz ,Tmax) ;

for i =1:Tmax

L=getFwdFX( i −1, spot fx ,R) ;

gamma( : , i )=(nu( i )∗ ( s /L) .^ ( beta ( i )−1)) ;

end

%i d e n t i t y matr ices

Ix=sparse (eye (Nx ) ) ;

Iy=sparse (eye (Ny ) ) ;

I z=sparse (eye (Nz ) ) ;

%t r i d i a g o n a l matr ices

Qx=sparse ( toeplitz ( [ 0 , 1 , zeros (1 ,Nx−2)] , [0 ,−1 , zeros (1 ,Nx−2 ) ] ) ) ;

Qy=sparse ( toeplitz ( [ 0 , 1 , zeros (1 ,Ny−2)] , [0 ,−1 , zeros (1 ,Ny−2 ) ] ) ) ;

Qz=sparse ( toeplitz ( [ 0 , 1 , zeros (1 ,Nz−2)] , [0 ,−1 , zeros (1 ,Nz−2 ) ] ) ) ;
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Tx=sparse ( toeplitz ( [−2 ,1 , zeros (1 ,Nx−2)] , [−2 ,1 , zeros (1 ,Nx−2 ) ] ) ) ;

Ty=sparse ( toeplitz ( [−2 ,1 , zeros (1 ,Ny−2)] , [−2 ,1 , zeros (1 ,Ny−2 ) ] ) ) ;

Tz=sparse ( toeplitz ( [−2 ,1 , zeros (1 ,Nz−2)] , [−2 ,1 , zeros (1 ,Nz−2 ) ] ) ) ;

%BOUNDARY CONDITIONS

%c o l l e c t i n g indeces

%x r i g h t

xperem_jobb_helyek = [ ] ;

xpj2d = [Nx :Nx :Nx∗Ny ] ;

for i =0:(Nz−1)

xperem_jobb_helyek = [ xperem_jobb_helyek , xpj2d+i ∗Nx∗Ny ] ;

end

%x l e f t

xperem_bal_helyek = [ ] ;

xpb2d = [ 1 :Nx : (Ny−1)∗Nx+1] ;

for i =0:(Nz−1)

xperem_bal_helyek = [ xperem_bal_helyek , xpb2d+i ∗Nx∗Ny ] ;

end

%y back

yperem_hatul_helyek = [ ] ;

yph2d = [ (Ny−1)∗Nx+1:Ny∗Nx ] ;

for i =0:(Nz−1)

yperem_hatul_helyek = [ yperem_hatul_helyek , yph2d+i ∗Nx∗Ny ] ;

end

%y f r on t
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yperem_elol_helyek = [ ] ;

ype2d = [ 1 :Nx ] ;

for i =0:(Nz−1)

yperem_elol_helyek = [ yperem_elol_helyek , ype2d+i ∗Nx∗Ny ] ;

end

%z down

zperem_lent_helyek =[1 :Nx∗Ny ] ;

%z up

zperem_fent_helyek=[(Nz−1)∗Nx∗Ny+1:Nz∗Nx∗Ny ] ;

%product s p e c i f i c inpu t s

%low l e v e r a g e

%cd=0.0225;

%c f =0.045;

%medium l e v e r a g e

cd=0.0436;

c f =0.0625;

%high l e v e r a g e

%cd=0.081;

%c f =0.09;

t=1;% Tmax−t

C29=getCoupon ( t ,Tmax, spot fx ,R, cd , c f , s ) ;

u=C29 ;
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for t=2:Tmax

T_alfa2=Tmax−t ;%index o f V^k

A_t=getAcoeffmx (T_alfa2 , n , s , rd , r f , sigmad , khid , sigmaf , kh i f , ro ,

tetad , t e t a f ,gamma, Ix , Iy , Iz ,Qx,Qy,Qz ,Tx ,Ty , Tz ) ;

b a l o l d a l=eye (n)−0.5∗A_t ;

T_alfa1=Tmax−t+1;

A_t_1=getAcoeffmx (T_alfa1 , n , s , rd , r f , sigmad , khid , sigmaf , kh i f , ro ,

tetad , t e t a f ,gamma, Ix , Iy , Iz ,Qx,Qy,Qz ,Tx ,Ty , Tz ) ;

g_t=getgboundaryvector ( t ,Tmax,Nx,Ny,Nz , n , spot fx , spotrd ,R, cd , c f , S ,

s , rd , r f , hx , hy , hz , sigmad , khid , sigmaf , kh i f , ro , tetad , t e t a f ,gamma,

xperem_jobb_helyek , xperem_bal_helyek ,

yperem_elol_helyek , yperem_hatul_helyek ,

zperem_lent_helyek , zperem_fent_helyek ) ;

g_t_1=getgboundaryvector ( t ,Tmax,Nx,Ny,Nz , n , spot fx , spotrd ,R, cd , c f , S ,

s , rd , r f , hx , hy , hz , sigmad , khid , sigmaf , kh i f , ro , tetad , t e t a f ,gamma,

xperem_jobb_helyek , xperem_bal_helyek ,

yperem_elol_helyek , yperem_hatul_helyek ,

zperem_lent_helyek , zperem_fent_helyek ) ;

j obbo lda l=(eye (n)+0.5∗A_t_1)∗u + 0 .5∗ ( g_t+g_t_1 ) ;

u=ba l o l d a l \ j obbo lda l ;

end

p r i c e=1−exp(− spotrd ∗Tmax)−u ; }

getAcoeffmx.m

function A = getAehmx( t , n , s , rd , r f , sigmad , khid , sigmaf , kh i f , ro ,

tetad , t e t a f ,gamma, Ix , Iy , Iz ,Qx,Qy,Qz ,Tx ,Ty , Tz)
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elso_matrix=sparse (diag ( ( rd−r f ) . ∗ s )∗kron ( Iz , kron ( Iy ,Qx ) ) ) ;

masodik_matrix=getMx2 ( t , n , tetad , khid , rd ,Qy, Ix , I z ) ;

harmadik_matrix=getMx3 ( t , n , t e t a f , kh i f , r f , ro , s igmaf ,gamma,Qz , Iy , Ix ) ;

negyedik_matrix=getMx4 ( t ,gamma, s ,Tx , Iy , I z ) ;

otodik_matrix=sparse ( 0 . 5∗ sigmad^2∗kron ( Iz , kron (Ty , Ix ) ) ) ;

hatodik_matrix=sparse ( 0 . 5∗ s igmaf ^2∗kron (Tz , kron ( Iy , Ix ) ) ) ;

hetedik_matrix=getMx7 ( t , ro , sigmad ,gamma, s ,Qx,Qy, I z ) ;

nyolcadik_matrix=getMx8 ( t , ro , s igmaf ,gamma, s ,Qx, Iy ,Qz ) ;

k i l enced ik_matr ix=sparse ( ro (1)∗ sigmad∗ s igmaf ∗kron (Qz , kron (Qy, Ix ) ) ) ;

t i zed ik_matr ix=diag ( rd ) ;

A=sparse ( e lso_matrix+masodik_matrix+harmadik_matrix+

negyedik_matrix+otodik_matrix+hatodik_matrix+hetedik_matrix+

nyolcadik_matrix+ki lencedik_matr ix−t i zed ik_matr ix ) ;

end

function mx = getMx2 ( t , n , tetad , khid , rd ,Qy, Ix , I z ) ;

mx=sparse (diag ( tetad ( t+1)∗ones (n,1)− khid∗ rd )∗kron ( Iz , kron (Qy, Ix ) ) ) ;

end

function mx = getMx3 ( t , n , t e t a f , kh i f , r f , ro , s igmaf ,gamma,Qz , Iy , Ix )

mx = sparse (diag ( t e t a f ( t+1)∗ones (n,1)− kh i f ∗ r f−

ro (3)∗ s igmaf ∗gamma( : , t +1))∗kron (Qz , kron ( Iy , Ix ) ) ) ;

end
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function mx = getMx4 ( t ,gamma, s ,Tx , Iy , I z )

mx = sparse ( 0 . 5∗ diag (gamma( : , t +1).^2.∗ s .^2)∗kron ( Iz , kron ( Iy ,Tx ) ) ) ;

end

function mx = getMx7 ( t , ro , sigmad ,gamma, s ,Qx,Qy, I z )

mx = sparse (diag ( ro (2)∗ sigmad∗gamma( : , t +1).∗ s )∗kron ( Iz , kron (Qy,Qx ) ) ) ;

end

function mx = getMx8 ( t , ro , s igmaf ,gamma, s ,Qx, Iy ,Qz)

mx = sparse (diag ( ro (3)∗ s igmaf ∗gamma( : , t +1).∗ s )∗kron (Qz , kron ( Iy ,Qx ) ) ) ;

end

getFwdFX.m

function fwdfx = getFwdFX(T, spot fx ,R)

i f (T==0)

fwdfx=spot fx ;

else

fwdfx = spot fx ∗exp(−R∗T) ;

end

end

getgboundaryvector.m

function gout = getgperemvektor ( t ,Tmax,Nx,Ny,Nz , n , spot fx , spotrd ,R,

cd , c f , S , s , rd , r f , hx , hy , hz ,

sigmad , khid , sigmaf , kh i f , ro , tetad , t e t a f ,gamma,
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xperem_jobb_helyek , xperem_bal_helyek ,

yperem_elol_helyek , yperem_hatul_helyek ,

zperem_lent_helyek , zperem_fent_helyek )

T_alfa=Tmax−t ;

d i s count=exp(− spotrd ∗T_alfa ) ;

%%%se t the boundary cond i t i on s

%depending on t

%xbound_right

payo f f j =0;

for i =1: t

p ayo f f j=payo f f j+getCoupon ( i ,Tmax, spot fx ,R, cd , c f , S ) ;

end

xperem_jobb=zeros ( length ( xperem_jobb_helyek ) ,1)+ di scount ∗ payo f f j ;

%xbound_le f t

xperem_bal=zeros ( length ( xperem_bal_helyek ) , 1 ) ;

%ybound_front

s_e lo l=s ( yperem_elol_helyek ) ;

payo f f e=zeros ( length ( yperem_elol_helyek ) , 1 ) ;

for j =1: t

payo f f e=payo f f e+getCoupon ( j ,Tmax, spot fx ,R, cd , c f , s_e lo l ) ;

end

yperem_elol=di scount ∗ payo f f e ;

%ybound_back

s_hatul=s ( yperem_hatul_helyek ) ;

payof fh=zeros ( length ( yperem_hatul_helyek ) , 1 ) ;

for k=1: t

43



payof fh=payof fh+getCoupon (k ,Tmax, spot fx ,R, cd , c f , s_hatul ) ;

end

yperem_hatul=di scount ∗payof fh ;

%zbound_down

s_lent=s ( zperem_lent_helyek ) ;

p a y o f f l=zeros ( length ( zperem_lent_helyek ) , 1 ) ;

for l =1: t

p a y o f f l=pay o f f l+getCoupon ( l ,Tmax, spot fx ,R, cd , c f , s_lent ) ;

end

zperem_lent=di scount ∗ pay o f f l ;

%zbound_up

s_fent=s ( zperem_fent_helyek ) ;

p ayo f f f=zeros ( length ( zperem_fent_helyek ) , 1 ) ;

for m=1: t

p ayo f f f=payo f f f+getCoupon (m,Tmax, spot fx ,R, cd , c f , s_fent ) ;

end

zperem_fent=di scount ∗ payo f f f ;

%%se t the boundary cond i t i on s

%%on the s i d e s o f the cube f o r the cross−d e r i v a t i v e s s h i f t

xperem_jobb_lap=zeros (Nz+2,Ny+2)+di scount ∗ payo f f j ;

xperem_bal_lap=zeros (Nz+2,Ny+2);

yperem_elol_lap=zeros (Nz+2,Nx+2);

Ke=reshape ( yperem_elol ,Nx ,Nz ) ’ ;

perm5=[Nz : −1 : 1 ] ;

yperem_elol_lap ( 2 :Nz+1 ,2:Nx+1)=Ke(perm5 , : ) ;

yperem_elol_lap ( : ,Nx+2)=yperem_elol_lap ( : ,Nx+2)+di scount ∗ payo f f j ;
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yperem_elol_lap (1 , : )= yperem_elol_lap ( 2 , : ) ;

yperem_elol_lap (Nz+2 ,:)=yperem_elol_lap ( 2 , : ) ;

yperem_hatul_lap=yperem_elol_lap ;

zperem_lent_lap=zeros (Ny+2,Nx+2);

Kl=reshape ( zperem_lent ,Nx,Ny ) ’ ;

perm14=[Ny: −1 : 1 ] ;

zperem_lent_lap ( 2 :Ny+1 ,2:Nx+1)=Kl ( perm14 , : ) ;

zperem_lent_lap ( : ,Nx+2)=zperem_lent_lap ( : ,Nx+2)+di scount ∗ payo f f j ;

zperem_lent_lap (1 , : )= zperem_lent_lap ( 2 , : ) ;

zperem_lent_lap (Ny+2 ,:)= zperem_lent_lap ( 2 , : ) ;

zperem_fent_lap=zperem_lent_lap ;

%%f i l l i n g v ec t o r g

g=zeros (n , 1 ) ;

%x f i r s t order

g ( xperem_jobb_helyek ) = g ( xperem_jobb_helyek)+

( rd ( xperem_jobb_helyek)− r f ( xperem_jobb_helyek ) ) . ∗

s ( xperem_jobb_helyek ) . ∗ xperem_jobb/2∗hx ;

g ( xperem_bal_helyek ) = g ( xperem_bal_helyek)−( rd ( xperem_bal_helyek)−

r f ( xperem_bal_helyek ) ) . ∗ s ( xperem_bal_helyek ) . ∗ xperem_bal/2∗hx ;

%y f i r s t order

g ( yperem_elol_helyek ) = g ( yperem_elol_helyek)−

( tetad ( T_alfa+1)−khid∗ rd ( yperem_elol_helyek ) ) . ∗ yperem_elol /2∗hy ;

g ( yperem_hatul_helyek ) = g ( yperem_hatul_helyek)+

( tetad ( T_alfa+1)−khid∗ rd ( yperem_hatul_helyek ) ) . ∗ yperem_hatul /2∗hy ;
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%z f i r s t order

gammat=gamma( : , T_alfa+1);

g ( zperem_lent_helyek ) = g ( zperem_lent_helyek)−

( t e t a f ( T_alfa+1)−kh i f ∗ r f ( zperem_lent_helyek)−

ro (3)∗ s igmaf ∗gammat( zperem_lent_helyek ) ) . ∗ zperem_lent /2∗hz ;

g ( zperem_fent_helyek ) = g ( zperem_fent_helyek)+

( t e t a f ( T_alfa+1)−kh i f ∗ r f ( zperem_fent_helyek)−

ro (3)∗ s igmaf ∗gammat( zperem_fent_helyek ) ) . ∗ zperem_fent /2∗hz ;

%x second order

gammat=gamma( : , T_alfa+1);

g ( xperem_jobb_helyek ) = g ( xperem_jobb_helyek)+

(0 . 5∗ ( gammat( xperem_jobb_helyek ) . ^ 2 ) . ∗

s ( xperem_jobb_helyek ) . ^ 2 ) . ∗ xperem_jobb/hx^2;

g ( xperem_bal_helyek ) = g ( xperem_bal_helyek)+

(0 . 5∗ ( gammat( xperem_bal_helyek ) . ^ 2 ) . ∗

s ( xperem_bal_helyek ) . ^ 2 ) . ∗ xperem_bal/hx^2;

%y second order

g ( yperem_elol_helyek ) = g ( yperem_elol_helyek)+

0.5∗ sigmad^2∗yperem_elol /hy^2;

g ( yperem_hatul_helyek ) = g ( yperem_hatul_helyek)+

0.5∗ sigmad^2∗yperem_hatul/hy^2;

%z second order

g ( zperem_lent_helyek ) = g ( zperem_lent_helyek)+

0.5∗ s igmaf ^2∗zperem_lent/hz ^2;

g ( zperem_fent_helyek ) = g ( zperem_fent_helyek)+

0.5∗ s igmaf ^2∗zperem_fent/hz ^2;
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%%%%cros s d e r i v a t i v e s

%%xy

%%%s h i f t i n g v e c t o r s

%xbound

s h i f t 1=xperem_jobb_lap ( 2 :Nz+1 ,1:Ny ) ;

perm1=[Nz : −1 : 1 ] ;

A1=s h i f t 1 (perm1 , : ) ’ ;

xperem_jobb_hatra=A1 ( : ) ;

s h i f t 2=xperem_bal_lap ( 2 :Nz+1 ,1:Ny ) ;

perm2=[Nz : −1 : 1 ] ;

A2=s h i f t 2 (perm2 , : ) ’ ;

xperem_bal_hatra=A2 ( : ) ;

s h i f t 3=xperem_jobb_lap ( 2 :Nz+1 ,3:Ny+2);

perm3=[Nz : −1 : 1 ] ;

A3=s h i f t 3 (perm3 , : ) ’ ;

xperem_jobb_elore=A3 ( : ) ;

s h i f t 4=xperem_bal_lap ( 2 :Nz+1 ,3:Ny+2);

perm4=[Nz : −1 : 1 ] ;

A4=s h i f t 4 (perm4 , : ) ’ ;

xperem_bal_elore=A4 ( : ) ;

%ybound

s h i f t 5=yperem_elol_lap ( 2 :Nz+1 ,1:Nx ) ;

perm5=[Nz : −1 : 1 ] ;

A5=s h i f t 5 (perm5 , : ) ’ ;

yperem_elol_jobbra=A5 ( : ) ;

47



s h i f t 6=yperem_hatul_lap ( 2 :Nz+1 ,1:Nx ) ;

perm6=[Nz : −1 : 1 ] ;

A6=s h i f t 6 (perm6 , : ) ’ ;

yperem_hatul_jobbra=A6 ( : ) ;

s h i f t 7=yperem_elol_lap ( 2 :Nz+1 ,3:Nx+2);

perm7=[Nz : −1 : 1 ] ;

A7=s h i f t 7 (perm7 , : ) ’ ;

yperem_elol_balra=A7 ( : ) ;

s h i f t 8=yperem_hatul_lap ( 2 :Nz+1 ,3:Nx+2);

perm8=[Nz : −1 : 1 ] ;

A8=s h i f t 8 (perm8 , : ) ’ ;

yperem_hatul_balra=A8 ( : ) ;

%f i l l i n g g f o r xy cros s d e r i v a t i v e

gammat=gamma( : , T_alfa+1);

g ( xperem_jobb_helyek)=g ( xperem_jobb_helyek)+

ro (2)∗ sigmad∗gammat( xperem_jobb_helyek ) . ∗

s ( xperem_jobb_helyek ) . ∗

((−xperem_jobb_hatra+xperem_jobb_elore )/4∗hx∗hy ) ;

g ( yperem_hatul_helyek)=g ( yperem_hatul_helyek)+

ro (2)∗ sigmad∗gammat( yperem_hatul_helyek ) . ∗

s ( yperem_hatul_helyek ) . ∗

( ( yperem_hatul_balra−yperem_hatul_jobbra )/4∗hx∗hy ) ;

g ( xperem_bal_helyek)=g ( xperem_bal_helyek)+

ro (2)∗ sigmad∗gammat( xperem_bal_helyek ) . ∗
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s ( xperem_bal_helyek ) . ∗

((−xperem_bal_elore+xperem_bal_hatra )/4∗hx∗hy ) ;

g ( yperem_elol_helyek)=g ( yperem_elol_helyek)+

ro (2)∗ sigmad∗gammat( yperem_elol_helyek ) . ∗

s ( yperem_elol_helyek ) . ∗

( ( yperem_elol_jobbra−yperem_elol_balra )/4∗hx∗hy ) ;

%%xz cros s d e r i v a t i v e

%%%s h i f t i n g v e c t o r s

%xbound

s h i f t 9=xperem_jobb_lap ( 3 :Nz+2 ,2:Ny+1);

perm9=[Nz : −1 : 1 ] ;

A9=s h i f t 9 (perm9 , : ) ’ ;

xperem_jobb_fel=A9 ( : ) ;

s h i f t 1 0=xperem_bal_lap ( 3 :Nz+2 ,2:Ny+1);

perm10=[Nz : −1 : 1 ] ;

A10=sh i f t 1 0 ( perm10 , : ) ’ ;

xperem_bal_fel=A10 ( : ) ;

s h i f t 1 1=xperem_jobb_lap ( 1 :Nz , 2 :Ny+1);

perm11=[Nz : −1 : 1 ] ;

A11=sh i f t 1 1 ( perm11 , : ) ’ ;

xperem_jobb_le=A11 ( : ) ;

s h i f t 1 2=xperem_bal_lap ( 1 :Nz , 2 :Ny+1);

perm12=[Nz : −1 : 1 ] ;

A12=sh i f t 1 2 ( perm12 , : ) ’ ;

xperem_bal_le=A12 ( : ) ;
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%zbound

s h i f t 1 3=zperem_fent_lap ( 2 :Ny+1 ,1:Nx ) ;

perm13=[Ny: −1 : 1 ] ;

A13=sh i f t 1 3 ( perm13 , : ) ’ ;

zperem_fent_jobbra=A13 ( : ) ;

s h i f t 1 4=zperem_lent_lap ( 2 :Ny+1 ,1:Nx ) ;

perm14=[Ny: −1 : 1 ] ;

A14=sh i f t 1 4 ( perm14 , : ) ’ ;

zperem_lent_jobbra=A14 ( : ) ;

s h i f t 1 5=zperem_fent_lap ( 2 :Ny+1 ,3:Nx+2);

perm15=[Ny: −1 : 1 ] ;

A15=sh i f t 1 5 ( perm15 , : ) ’ ;

zperem_fent_balra=A15 ( : ) ;

s h i f t 1 6=zperem_lent_lap ( 2 :Ny+1 ,3:Nx+2);

perm16=[Ny: −1 : 1 ] ;

A16=sh i f t 1 6 ( perm16 , : ) ’ ;

zperem_lent_balra=A16 ( : ) ;

%f i l l i n g g f o r xz c ros s d e r i v a t i v e

gammat=gamma( : , T_alfa+1);

g ( xperem_jobb_helyek)=g ( xperem_jobb_helyek)+

ro (3)∗ s igmaf ∗gammat( xperem_jobb_helyek ) . ∗

s ( xperem_jobb_helyek ) . ∗

((−xperem_jobb_fel+xperem_jobb_le )/4∗hx∗hz ) ;

g ( zperem_fent_helyek)=g ( zperem_fent_helyek)+
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ro (3)∗ s igmaf ∗gammat( zperem_fent_helyek ) . ∗

s ( zperem_fent_helyek ) . ∗

( ( zperem_fent_balra−zperem_fent_jobbra )/4∗hx∗hz ) ;

g ( xperem_bal_helyek)=g ( xperem_bal_helyek)+

ro (3)∗ s igmaf ∗gammat( xperem_bal_helyek ) . ∗

s ( xperem_bal_helyek ) . ∗

((−xperem_bal_le+xperem_bal_fel )/4∗hx∗hz ) ;

g ( zperem_lent_helyek)=g ( zperem_lent_helyek)+

ro (3)∗ s igmaf ∗gammat( zperem_lent_helyek ) . ∗

s ( zperem_lent_helyek ) . ∗

( ( zperem_lent_jobbra−zperem_lent_balra )/4∗hx∗hz ) ;

%%yz cros s d e r i v a t i v e

%%%s h i f t i n g v e c t o r s

%ybound

s h i f t 1 7=yperem_elol_lap ( 3 :Nz+2 ,2:Nx+1);

perm17=[Nz : −1 : 1 ] ;

A17=sh i f t 1 7 ( perm17 , : ) ’ ;

yperem_elol_fel=A17 ( : ) ;

s h i f t 1 8=yperem_hatul_lap ( 3 :Nz+2 ,2:Nx+1);

perm18=[Nz : −1 : 1 ] ;

A18=sh i f t 1 8 ( perm18 , : ) ’ ;

yperem_hatul_fel=A18 ( : ) ;

s h i f t 1 9=yperem_elol_lap ( 1 :Nz , 2 :Nx+1);

perm19=[Nz : −1 : 1 ] ;

A19=sh i f t 1 9 ( perm19 , : ) ’ ;

51



yperem_elol_le=A19 ( : ) ;

s h i f t 2 0=yperem_hatul_lap ( 1 :Nz , 2 :Nx+1);

perm20=[Nz : −1 : 1 ] ;

A20=sh i f t 2 0 ( perm20 , : ) ’ ;

yperem_hatul_le=A20 ( : ) ;

%zbound

s h i f t 2 1=zperem_fent_lap ( 3 :Ny+2 ,2:Nx+1);

perm21=[Ny: −1 : 1 ] ;

A21=sh i f t 2 1 ( perm21 , : ) ’ ;

zperem_fent_hatra=A21 ( : ) ;

s h i f t 2 2=zperem_lent_lap ( 3 :Ny+2 ,2:Nx+1);

perm22=[Ny: −1 : 1 ] ;

A22=sh i f t 2 2 ( perm22 , : ) ’ ;

zperem_lent_hatra=A22 ( : ) ;

s h i f t 2 3=zperem_fent_lap ( 1 :Ny , 2 :Nx+1);

perm23=[Ny: −1 : 1 ] ;

A23=sh i f t 2 3 ( perm23 , : ) ’ ;

zperem_fent_elore=A23 ( : ) ;

s h i f t 2 4=zperem_lent_lap ( 1 :Ny , 2 :Nx+1);

perm24=[Ny: −1 : 1 ] ;

A24=sh i f t 2 4 ( perm24 , : ) ’ ;

zperem_lent_elore=A24 ( : ) ;

%f i l l i n g g f o r yz c ros s d e r i v a t i v e

g ( yperem_hatul_helyek)=g ( yperem_hatul_helyek)+
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ro (1)∗ sigmad∗ s igmaf ∗

((−yperem_hatul_fel+yperem_hatul_le )/4∗hy∗hz ) ;

g ( zperem_fent_helyek)=g ( zperem_fent_helyek)+

ro (1)∗ sigmad∗ s igmaf ∗

( ( zperem_fent_elore−zperem_fent_hatra )/4∗hy∗hz ) ;

g ( yperem_elol_helyek)=g ( yperem_elol_helyek)+

ro (1)∗ sigmad∗ s igmaf ∗

((−yperem_elol_le+yperem_elol_fel )/4∗hy∗hz ) ;

g ( zperem_lent_helyek)=g ( zperem_lent_helyek)+

ro (1)∗ sigmad∗ s igmaf ∗

( ( zperem_lent_hatra−zperem_lent_elore )/4∗hy∗hz ) ;

gout=g ;

end
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