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Introduction

There are several node centrality measures that try to determine important vertices of a

directed graph. These measures are constrained to use only the structural properties of

the network. While these centrality indices are widely investigated, yet there is less focus

on their performance in temporal graphs. In this thesis, we intend to give a method for

predicting the central nodes of dynamic graphs in advance.

In Chapter 1, we present most of the well known centrality measures, by following

the thorough categorization of Paolo Boldi and Sebastiano Vigna [4]. Later, we conduct

experiments on a subset of indices, discussed in the first chapter. Particularly, we examine

how indegree (Section 1.1.1), outdegree, negative β-measure (Section 1.1.2), PageRank

(Section 1.2.4) and SALSA authority and hub scores (Section 1.2.6) can be applied for

temporal networks.

Our goal is to solve the centrality prediction problem explained in Section 7.1. The

task is to infer the top k central nodes of a dynamic graph for the next time interval, using

only graph information from previous intervals. In order to predict central vertices, we

solve the link prediction problem introduced by Liben-Nowell and Kleinberg [19]. From

the predicted edges we construct a graph for the next time interval, on which centrality

measures can be computed. In Section 5.3, we show that the link prediction problem

for temporal graphs can be viewed as a recommendation task with implicit ratings. The

instances of the training data are the formerly seen links of the directed network. In our

model, we solve the link prediction problem with matrix factorization. The optimization

method used in the experiments is online stochastic gradient descent (SGD), which is

detailed in Section 5.2.

After computing centrality scores of a particular measure, ranked lists of length k can

be constructed. These lists contain the top k central node according to each measure. For

the evaluation of our model, we used precision (P@k) and normalized discounted cumu-

lative gain (NDCG@k). These are both popular metrics for comparing graded lists [4].

Furthermore in Section 2, we mention other ideas for comparisons proposed by information

retrieval.

In this thesis, we examined the Twitter movement datasets described in Chapter 6.

The corresponding world-wide events are the Occupy Wall Street, 15-October and 20-

N global protests from 2011 [28–30]. There is an additional dataset from 2012 as well,

which is related to the Yo Soy 132 movement [31]. Twitter is a highly temporal social

system with dynamically evolving communities. Several different dynamic graphs can

be constructed from the user interactions of this social network. These graph types are

explained in Section 3.2. Myers and Leskovec [21] showed that the Twitter network is

highly dynamic with about 9% of all connections changing in a month. Thus, in order

to infer central nodes, the factors driving the dynamics of this social network must be

considered. In Chapter 4, we present some recent results about information diffusion on

dynamic graphs [1, 9, 21,24].
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We evaluated our model on the mention graphs (Section 3.2.3) that were extracted

from our movement datasets. Here, a link x → y corresponds to the event when user x

mentioned user y in a Twitter message. These graphs are indeed temporal as the mention

time is available for all edges. The experiments showed that these networks are higly

dynamic as well. In any time interval, the fraction of the new incoming users is high.

Therefore, new edges dominate the links of each time frame. However, we also realized

that new edges with previously present endnodes can be the key to effective centrality

predictions. These are called homophily edges (Section 7.3.1).

For the proper evaluation of our model we introduced a baseline model in Section 7.2.

The proposed baseline gives the top k central nodes of the previous time interval graph as

a prediction for the next. After solving the link prediction problem for the given mention

graphs, we computed the formerly mentioned centrality measures on the inferred networks.

Finally in Section 7.4, we compare our results with the baseline model. We find that for

some measures our model performs better than the baseline. Thus, it can be useful for

predicting key users in a global movement.
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Chapter 1

Centrality measures

A graph is an ordered pair G = (V,E). Set V contains the vertices or nodes of G, and

E consists of two-element subsets of V . The elements of E are the edges or links of G.

A graph is directed, when the end-points of its edges are not interchangeable. These

graphs are denoted by D = (V,A), where A is the set of directed edges or arcs. Every

directed edge x → y has a source x, and a target y. Graphs are widely used because

they can represent various real world networks like electrical, social and transportation

networks. When using graphs for modelling these networks, many natural processes can

be generalized into a graph theoretic problem.

For example, from a social network one can define a graph, whose nodes represent the

people, and the edges every relations between them. In this social graph, the most crucial

information we would like to extract is its relevant nodes. This task is far from obvious, as

the number of measures that we can use for such purposes is quite abundant. In [4] there

is a thoroughly detailed enumeration based on the defining property of these centrality

measures. In this section, we will follow the same categorization and notations.

1.1 Geometric measures

In case of geometric measures the defining property is distance. Let d(x, y) denote the

distance between x and y vertices of the directed graph. These measures mostly depend

only on the number of nodes existing at given distances.

1.1.1 Indegree

The indegree of node x is the number of its incoming arcs and it is denoted by d−(x). It is

one of the most elementary and oldest measures, as it represents majority voting in case

of directed edges. For example, x → y directed edge could mean, that node x voted for

node y. One of its advantages is that it can be efficiently computed with one linear scan.

On the contrary it is easily manipulated, for example with spam hyperlinks for a website.

As a result it may not be the best choice for centrality measure but surely it can be used

as a good baseline.

1.1.2 Negative β-measure

Equivalently to indegree only the 1-distance in-neighbourhood of node x is relevant. Let

d+(v) denote the outdegree of vertex v. Negative β-measure is defined by
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∑
y→x

1

d+(y)
.

and it can be considered as ”Markovian indegree”. This measure is inspired by the

same l1 normalization that is used for Seeley’s index, PageRank, and SALSA described in

Sections 1.2.2, 1.2.4, and 1.2.6.

1.1.3 Closeness

The closeness of node x is defined by

1∑
y d(y, x)

,

where d(y, x) denotes the distance of x from y in the directed network. While indegree

and negative β-measure were relying on the local graph structure, closeness is defined by

the global graph structure. Thus, it is more costly to compute.

It is important to remark that the graph must be strongly connected. Without this

condition the result will be a null score for all x node, that cannot coreach the whole

graph. Nevertheless there have been many propositions on how to mend this troublesome

quality of closeness. But the most straightforward idea is to exclude infinite distances

1∑
d(y,x)<∞ d(y, x)

.

1.1.4 Lin’s index

One of the ideas that tried to repair the definition of closeness for graphs with infinite dis-

tances was Nan Lin’s. Lin’s index defines the score of node x with a nonempty coreachable

set as

|{y|d(y, x) <∞}|2∑
d(y,x)<∞ d(y, x)

.

Nodes with an empty coreachable set have centrality 1 by definition.

This change in the definition means that closeness is not the inverse of a sum of

distances, but rather the inverse of the average distance. One of the results of this modi-

fication is that closeness is normalized across the graph.

1.1.5 Harmonic centrality

Paolo Boldi and Sebastiano Vigna in [4] gave another solution on how to eliminate the

problem of non-finite distances between nodes. The main idea is to use harmonic mean

instead of arithmetic averaging. The reason why harmonic mean is involved is that it

conveniently deal with ∞ distances, as 1
∞ = 0.

The precise definition for the harmonic centrality of node x is∑
x 6=y

1

d(y, x)
=

∑
d(y,x)<∞,x 6=y

1

d(y, x)
, (1.1)
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which is the reciprocal of the denormalized harmonic mean of distances. In [4] the

authors found that harmonic centrality is strongly correlated to closeness in simple net-

works. Moreover, this definition also accounts for nodes y that cannot reach x. Thus, this

measure can also be used in cases when the given graph is not strongly connected.

1.2 Spectral measures

In case of spectral measures the defining property is the left dominant eigenvector of some

matrix derived from the graph. Naturally, the left dominant eigenvector is computed from

the adjacency matrix A. Although, in many cases some kind of normalization is applied to

A before computing the left dominant eigenvector. Depending on the chosen normalization

we can get numerous spectral measures.

1.2.1 The left dominant eigenvector

Regarding spectral measures the first measure to remark is obviously the left dominant

eigenvector of the adjacency matrix. The dominant eigenvector is the fixed point of an

iterated process. Initially, every node have the same score. In each iteration, these values

are replaced with the summed scores of in-neighbours for all vertices. Before the next

iteration, the score vector is normalized. The process is repeated until convergence. How-

ever for non-strongly connected graphs, the dominant eigenvalue of the strongly connected

components determines, whether the dominant eigenvector might or might not be nonzero

on non-terminal components [2].

1.2.2 Seeley’s index

Formerly in Section 1.2.1, it was emphasized that the dominant eigenvector was the fixed

point of the iterated process in which every node was giving its score to its out-neighbours

for summation in each iteration. At the beginning of the process all nodes had the same

initial score. Seeley proposed one major modification regarding this process. He suggested

that a node should equally divide its score among its successors rather that passing its

entire reputation to its out-neighbours.

From a linear-algebra point of view, this corresponds to normalizing each row of the

adjacency matrix using the l1 norm. The matrix derived from the l1-normalization process

is stochastic, so the score to which the iterated computation converges can be interpreted

as the stationary state of a Markov chain.

1.2.3 Katz’s index

Katz defined his index through summation of all paths coming into a node x. In order

to get a finite score he introduced an attenuation factor β with which a weight could be

calculated for the paths. Katz’s index can be expressed as

k = 1 ·
∞∑
i=0

βiAi (1.2)

due to the interplay between the powers of the adjacency matrix and the number of

paths connecting two nodes. To get a final value from the above summation, β must be

smaller than 1
λ , where λ is the dominant eigenvalue of A.
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Katz also recognised that the index can be expressed using linear algebra operations

k = 1 · (1− βA)−1, (1.3)

where 1 is the vector with uniformly 1 coordinates. Furthermore, due to Brauer’s

theorem on the displacement of eigenvalues, Katz’s index is the left dominant eigenvector

of a perturbed matrix

βλ ·A+ (1− βλ) · eT · 1,

where e is a right dominant eigenvector of A such that 1eT = λ. Hubell [11] rec-

ommended a generalization for Katz’s index in which some preference vector v is used

instead of 1. For (1.2) this generalization means, that paths can be weighted individually

depending on their starting node. The normalized limit of Katz’s index is he dominant

eigenvector when β → 1
λ . Nevertheless, the limit depends on v, if the dominant eigenvector

is not unique [26].

1.2.4 PageRank

Recently, PageRank is one of the most frequently discussed and cited spectral measure

in use, mainly because of its alleged use in Google’s ranking algorithm. PageRank [5] is

defined by the unique vector p which satisfies equation

p = α · pĀ+ (1− α)v, (1.4)

where Ā is derived from the adjacency matrix A with the same l1-normalization, that

was used in the formulation of Seeley’s index and the negative β-measure. PageRank has

two additional parameter. A damping factor α ∈ [0, 1), and a preference vector v. The

only constraint for v is that it must be a distribution.

However, it is important to note that p is not necessarily a probability distribution

if A has null rows. There has been several propositions on how to make Ā stochastic.

A common solution is to replace every null row with the preference vector v. Another

popular idea is to add loop arcs to all nodes with zero outdegree (dangling nodes).

Equation 1.4 is solvable even without any patching, as after reorganizing the formula

we get

p = (1− α)v(1− αĀ)−1. (1.5)

Moreover, another equation can be formulated for PageRank

p = (1− α)v

∞∑
i=0

αiĀi, (1.6)

which shows that Katz’s index and PageRank differ only by a constant factor and by

the l1 normalization applied to the adjacency matrix. This is similar to the difference

between the dominant eigenvector and Seeley’s index. If A has no null rows, or Ā has

been patched to be stochastic, PageRank can be equivalently defined as the stationary

distribution of the Markov chain whose transition matrix is

αĀ+ (1− α)1T v.
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1.2.5 HITS

HITS algorithm was introduced by Kleinberg in a web-based context [15]. The main

difference from the former measures is that this algorithm examines two different qualities,

”authoritativeness” and ”hubbiness”, for each node at once. The important nodes will be

those where these two qualities mutually reinforce each other. Thus, a page is a good

authority if many good hubs link to it. Likewise, a page is a good hub if it links to many

good authorities.

This recursive definition suggests an iterative process that computes the ai authority

and hi ”hubbiness” vectors for each iteration i at the same time. Initially let a0 = 1, and

then applying the following update rule

hi+1 = ai ·AT , (1.7)

ai+1 = hi+1 ·A. (1.8)

Although, the limit of the process can be concluded easier if one uses the following

formulas for the recursions

ai+1 = ai ·ATA, (1.9)

hi+1 = hi ·AAT . (1.10)

This method converges to a∗, the left dominant eigenvector of the matrix ATA, which

contains the final authority scores. Shifting the process with one step it follows, that h∗,

the left dominant eigenvector of AAT , will contain the final hubbiness scores.

Let σi denote the ith singular value of A. Suppose, that l is the index of the last

non-zero singular value (σ1 ≥ σ2 ≥ · · · ≥ σl > 0 = σl+1). A theorem from linear algebra

states, that the best at most k-rank approximation of A is

Ak =
k∑
i=1

σiuiv
T
i (k ≤ l),

where vi is the ith dominant eigenvector of ATA, and ui is the ith dominant eigenvector

of AAT . Thus, the limit authority and hub vectors yield the best rank one approximation

of the adjacency matrix

A1 = σ1h
∗a∗

T
.

1.2.6 SALSA

Formerly, in 1.1.2 and 1.2.2 it was shown that with l1-normalization new measures can be

discovered from already existing ones.

SALSA measure was introduced by Lempel and Moran [17] and similarly to HITS it

also computes authority and hubbiness scores for each node, but there is an additional

l1-normalization on A and AT matrices. The process starts with a0 = 1 and proceed with

hi+1 = ai · ĀT , (1.11)

ai+1 = hi+1 · Ā (1.12)
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However, SALSA does not necessarily need such an iterative process to be computed.

An alternative way is to compute the connected components of the symmetric graph

induced by the matrix ATA. In this graph, x and y are adjacent if x and y have some

common predecessor in the original graph. In [17] it was shown that the SALSA score of

a node is the ratio between its indegree and the sum of indegrees in the same component,

multiplied by the ratio between the component size and the number of vertices.

1.3 Path-based measures

In addition to distance, all shortest paths coming into a node are taken into account in case

of path-based measures. Some of the aforementioned centrality measures, like indegree

and Katz’s index, could also belong to this category. Thus, only betweenness will be

detailed in this section, which relies on an entirely different aspect.

1.3.1 Betweenness

Let σyz denote the number of shortest paths going from y to z. A subset of these paths

also passes through node x, and suppose their number is σyz(x). The betweenness measure

of node x is defined by

∑
y,z 6=x,σyz 6=0

σyz(x)

σyz

The definition tries to capture the intuition that if a significantly large fraction of

shortest paths passes through x, then x is an important junction point of the graph.

Moreover, Boldi et al. in [3] showed that removing nodes with high betweenness score

results in an instant network disruption.
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Chapter 2

Comparing centrality measures

2.1 Metrics for comparing rankings

In Chapter 1 it was shown that several centrality measures could be used to extract the

most important nodes from a graph. But, which should be applied for temporal network

analysis remains a question. After computing centrality scores of a particular measure,

ranked lists can be constructed. In this section, we present several metrics that are used

for evaluating models by comparing ranked lists. Naturally, common metrics such as

precision and recall can be used for this task. Nevertheless, information retrieval (IR) has

developed ranking metrics, that capture the user behaviour more effectively.

In pattern recognition and information retrieval with binary classification, precision

and recall is a common method to evaluate the performance of a model. A binary clas-

sificator assigns positive or negative labels to each data point of the test dataset. For

example, a data item is true positive, if both of its original and the classifier-assigned la-

bel are positive (Figure 2.1). The model performs well, when the assigned values correlate

with the labels in the original dataset.

To access the goodness of information filtering methods sometimes it is enough to

examine only a subset of the result. In these models every document, or item has a

relevance judgement. Our goal is to find a model that can extract the most relevant items

from the data. Especially for recommender systems and search engines, the list of the first

original

label

assigned label

p n total

p′
True

Positive

False

Negative
P′

n′
False

Positive

True

Negative
N′

total P N

Figure 2.1: Item sets of a binary classificator
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k highly rated elements, returned by the model, is compared to the graded list of items

with the biggest relevance judgements. Precision and recall do not consider the relevance

of the items. Thus to exploit the performance of models through graded list, other metrics

should be used.

In general for metrics, that can evaluate graded lists, there are two main types of

user models, position models and cascade models. In position models, such as discounted

cumulative gain in Section 2.1.2 and rank biased precision in Section 2.1.4, independence

is assumed between documents in distinct positions. It means that the probability of

examination for a given position does not depend on whether the user was content with

the documents on the former positions. In the cascade model it is presumed that there

is some dependency among the documents on the result list. This model assumes that

users view the elements of the graded lists from top to bottom. Moreover, the user has a

certain probability of being satisfied at each position. In other words, a session ends when

the user finds the document that he was looking for. Expected reciprocal rank, detailed

in Section 2.1.5, is an example for cascade model.

2.1.1 Precision and recall

Precision tries to capture the amount of relevant items by the ratio of the true positive

and positively rated data points.

Precision =
|{true positive items} ∩ {positively labelled items}|

|{positively labelled items}|
(2.1)

In many real world application the size of the dataset in enormous. Therefore, we are

only interested in the model performance evaluated on a subset of the data. Indeed, there

is a generalization of precision on the first k most important data points, which if often

denoted by P@k.

P@k =
|{first k true positive items} ∩ {positively labelled items}|

k
(2.2)

Although we prefer classifiers with good precision, sometimes this metric can be mis-

leading. Suppose that the dataset is dominated by negative items. In this case, we cannot

expect a good precision. Hence, models that can identify most of the true positive items

are considered better. Recall is defined by

Recall =
|{true positive items} ∩ {positively labelled items}|

|{true positive items}|
. (2.3)

The main disadvantage of precision and recall is that these metrics does not support

graded relevance. Thus, in a model with distinct item relevancies, other metrics should

be considered.

2.1.2 Discounted cumulative gain

Examination of ranked lists is a possibility to evaluate the performance of web search

engines. The proposed methods and metrics are usually tested on the same fixed set of

documents and queries. The relevance judgements of the documents related to a given

query are collected by asking human editors. The judgement for document i is denoted

by reli. There are two main assumptions regarding the relevance scores [13].

1. Highly relevant documents are more valuable than marginally relevant documents,

14



2. and the greater the ranked position of a relevant document, the less valuable it is for

the user. In other words it is less likely that the user will ever examine the document.

In particular, metrics for graded relevance generally evaluated on the first k items

returned by an information filtering method. First, there is cumulative (CG) gain that

still does not integrate the position of an item, but it takes into account the relevance of

a document. Cumulative gain based on the first k item is defined by

CG@k =
k∑
i=1

reli. (2.4)

Järvelin and Kekäläine [13] proposed a modification of cumulative gain, which considers

the position of the documents too. In discounted cumulative gain (DCG) the graded

relevance values are reduced logarithmically proportional to their position in the result.

DCG@k =
k∑
i=1

reli
log2(i+ 1)

. (2.5)

With this logarithmic reduction a relevant item is indeed penalized if it gets ranked

lower. Moreover, if we want to focus on the top of the ranked list, there is an alternative

formula for discounted cumulative gain. Burges et al. [6] defined this metric as

DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)
. (2.6)

With this formulation there is an extra emphasis on retrieving relevant documents.

2.1.3 Normalized discounted cumulative gain

Discounted cumulative gain is a proper metric to evaluate graded lists. However, the length

of these lists can vary for different queries. A normalization must be introduced in order

to compare search methods over multiple queries consistently. Assume that the length

of a particular query’s result is k. Then the ideal discounted cumulative gain (IDCG)

for k is computed to normalize the DCG@k of the given method. Let L be the ranked

list containing the k document with the biggest relevance judgements. Ideal discounted

cumulative gain for k is the DCG@k of list L

IDCG@k = DCG@k(L). (2.7)

The normalized discounted cumulative gain is defined by

NDCG@k =
DCG@k

IDCG@k
. (2.8)

From the definition it is obvious that NDCG takes values from interval [0, 1]. Thus, it

is well comparable across multiple queries. Indeed, a perfect ranking algorithm finds the

ideal graded list L. Thus the NDCG for this algorithm is 1.

2.1.4 Rank biased precision

This metric was proposed by Moffat et al. in [20]. It is also based on the assumptions

stated in Section 2.1.2. Thus, relevant documents with higher positions in the graded list

are penalized. In contrast to discounted cumulative gain it is done in a more realistic way.
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Rank Biased Precision (RBP) tries to capture user behaviour by introducing a persis-

tence factor p. This is the probability that the user will go on looking at the next element

in the list. Thus, in RBP the relevance of a document at a given position is reduced by

the probability of the user discovering it.

RBP@k = (1− p) ·
k∑
i=1

reli · pi−1 (2.9)

An ideal rank biased precision (IRBM) can be defined similarly as the ideal discounted

cumulative gain. By introducing normalized RBP this measure is also cross-queryable.

nRBM@k =
RBM@k

IRBM@k
(2.10)

Furthermore, with persistence factor p this measure can be personalized for each user.

Although in case of search engines it is not intended.

2.1.5 Expected reciprocal rank

Expected reciprocal rank (ERR) proposed by Chapelle et. al [7] is a cascade model. In

this subsection, the same notations will be used as in [7].

Let Ri denote the probability for a given user, that he is satisfied with the document

returned by the filtering method at position i. These values are estimated from the click

logs by maximum likelihood. Especially, in [7] it is assumed that a user finds a document

relevant as an R function of the relevance judgement.

Ri = R(reli) (2.11)

In this model, R can be chosen arbitrarily. The authors of [7] also gave a generalized

definition for cascade model using Equation (2.11) and a utility function ϕ. With a fixed

ϕ they defined expected reciprocal rank by

ERR@k =
k∑
i=1

1

i
· Pr(user stops at position i) =

k∑
i=1

1

i
·
i−1∏
j=1

(1−Rj)Ri. (2.12)

As for a given set of Ri, the likelihood of a session when the user stops at position r is

r−1∏
j=1

(1−Rj)Rr.

2.1.6 Kendall Tau correlation coefficient

Let L1 and L2 be two ranked lists with the same length k. The (x, y) document pair is

concordant if their order is the same in both list. If X denotes the number of concordant

and Y the number of unconcordant pairs, then the Kendall tau correlation coefficient is

defined by

τ =
X − Y
X + Y

. (2.13)

From the definition it follows that if L1 and L2 are perfectly the same then τ = 1.

Contrarily, if they perfectly disagree then τ = −1.
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2.2 Using centrality measures in information retrieval

In information retrieval mostly text based algorithms are used (e.g. BM25). But Paolo

Boldi and Sebastiano Vigna [4] researched how centrality measures can perform in this

problem. They conducted experiments on the classical TREC GOV2 collection [10] (about

25 million web documents) and the 149 associated queries. It was showed that harmonic

centrality achieved the best overall scores among centrality measures. It was surprising as

geometric measures have not been used in IR so far.

In [4] the authors have solved the corresponding Boolean conjunction of terms for each

query, that resulted in a subset of matching web pages. From each subset an induced

graph was defined. Then the nodes were ranked separately according to the centrality

measures detailed in Chapter 1. Finally the results were compared for every measure to

the state-of-the-art BM25 function.

In the performance evaluation of these measures they used P@10 and NDCG@10 met-

rics. The results were reported twice. With and without nepotistic links (inter-host

links). With all induced links harmonic centrality, indegree and HITS performed the

best. Although the NDCG@10 = 0.1438 of harmonic centrality is still small compared to

NDCG@10 = 0.5842 of BM25. Without nepotistic links β-measure, SALSA and PageR-

ank achieved the best precision and normalized cumulative gain scores, which were less

than in the former case.

However, the ranking based on centrality measures could not outperform text-based

state-of-the-art methods, it has still given an idea about which measures should we use

for temporal network analysis.
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Chapter 3

Centrality on Twitter

Over the last years social network analysis came into the spotlight as there is a ever-growing

demand from commercial enterprises to extract some ground truths about how information

diffuses on these networks. With these information, the efficiency of recommender systems

could be improved significantly which would lead to the general satisfaction of the users.

Although there are numerous popular social networks in use (e.g. Facebook, LinkedIn,

MySpace), recently the most researched one is Twitter. In this chapter, we will present

the basic building blocks of Twitter along with its most favourable properties.

3.1 Twitter microblogging framework

Lately, Twitter has become a popular microblogging tool. In this case, microblogging

means that registered users are enabled to post only 140-character messages. The messages

posted by a user are called tweets and the user who posted them is the tweeter. By default

all tweets a user posts is accessible to the public. Therefore, a general user must direct his

attention towards specific users. Indeed, in Twitter every user can follow other users, and

the tweets of users followed by him will be present on his personal timeline. However, it

is important to note that beside this dense follower network there is a sparse and hidden

underlying ”friendship” network which drives the usage of Twitter [12].

Retweeting is an intensely analyzed feature of Twitter. When a user posts a tweet, that

is seen by his followers immediately, they can decide whether the tweet is worth spreading

within the network. The followers who decided to re-share the content of the tweet are

called retweeters. Usually, the retweeted message remains unchanged, but the retweeter

can append arbitrary message to it. One constraint is that the retweeted message always

contains ”RT: @originaluser” followed by the original message. By this feature, informa-

tion can spread through all over the world within minutes, as the immediate followers of

the retweeter will also be aware of the original tweet, thus they can also retweet.

Besides retweeting, there is another way how information can propagate on Twitter.

Users are given the opportunity to mention each other. A mention can be any Twitter

update that contains ”@username” anywhere in the body of the tweet. In this case,

the users appointed in the mention will be notified about this tweet, independently from

the fact whether they are followers of the tweeter or not. Another popular use case for

mentions is when they mark some reference, for example the news media or the blogger

the information originated from.
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The basic motivation of users to join Twitter is to keep track of friends and keep friends

updated. Moreover, it is also perfect as a mass media source. Besides normal users, several

news agencies are presented in Twitter, such as CNN Breaking News (@cnnbrk), BBC

News (World) (@BBCWorld) and Reuters Top News (@Reuters). Twitter is very relevant

as a social network as well as a news media.

The number of Twitter users, as well as the tweet and retweet traffic is increasing

in a terrific pace. This huge amount of message must be categorized in order to keep it

accessible. Therefore, the microblogging community started to use so-called hashtags with

which the tweets are categorized manually. Hashtags are indeed practical as they can be

used for either searching for certain topics or to be able to follow certain conversations

about a certain topic on Twitter. The only constraint for hashtags is to start with a hash

symbol #. On the other hand, there is no other regulation about hashtag usage, which

leads to some incoherence. In Twitter the main problem of hashtags is that for a given

topic many different hashtags can exist. The name or the abbreviation of an event often

differ geographically. For example, for Tour de France the #tdf, #tourdefrance, #cycling

or #procycling occurred as well [32]. The lack of structure and uniformity in hashtags

can lead to information leakage as the users cannot know about all existing hashtags of

an ongoing event. There have been some attempt to recommend commonly used hashtags

for users, before they post their tweet, in order to avoid messages without hashtags and

discrepancy [32].

As we have shown, Twitter has many useful features. The tweet length limit encourages

users to create posts frequently as long status reports cannot fit into a message. Moreover,

they should use mentions and hashtags in order to create understandable and informal

tweets. Furthermore, the tweets and retweets of users are accessible through JSON logs,

which is a very compact and convenient file format to work with. Nevertheless, Twitter

is popular among researchers due to the tremendous amount of up-to-date information.

3.2 Twitter-induced temporal graphs

Twitter is an ever-changing network, thus every graph mentioned in this section mutates

over time. In structure these graphs can significantly differ as separate features of Twitter

determine the edges and their direction. In every subsection we will give a small example

of the actual Twitter-induced graph. These examples are based on the same user activity

example displayed in Figure 3.1. The data is in JSON format is indeed the file format of

Twitter logs. Retweet messages include ”RT @user” in their text attribute, while there is

no such prefix for tweet messages. The marked user in this prefix is the original tweeter

of the related retweet cascade. In this example the messages are sorted according to their

time of creation.

3.2.1 User-follower graph

In the follower graph a directed edge from node x to node y represents that x follows y.

This is a very viral graph. On the one hand new vertices are added to the graph when

new users join to Twitter. On the other hand, edges can be added and deleted according

to whether the given user decided to follow or unfollow an other user.

Here, we will present the user-follower graph based on Figure 3.1. Initially, user A and
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{
"created_at": "2015-03-20 10:59",
"text": "I hate London. It’s always rainy.",
"place": "London",
"user": {

"id": 01,
"name": "user_A"

}
}
{

"created_at": "2015-03-20 11:09",
"text": "The wheather is nice today",
"place": "Budapest",
"user": {

"id": 02,
"name": "user_B"

}
}
{

"created_at": "2015-03-20 11:15",
"text": "RT @user_B: @user_A says in London it’s rainy",
"user": {

"id": 03,
"name": "user_C"

}
}
{

"created_at": "2015-03-20 11:16",
"text": "RT @user_B: @user_A is always complaning. Rather check out @bbcweather.",
"user": {

"id": 04,
"name": "user_D"

}
}
{

"created_at": "2015-03-20 11:18",
"text": "RT @user_A: Me too",
"user": {

"id": 05,
"name": "user_E"

}
}
{

"created_at": "2015-03-20 11:20",
"text": "RT @user_B: Yes, indeed",
"place": "Budapest",
"user": {

"id": 06,
"name": "user_F"

}
}
{

"created_at": "2015-03-20 11:22",
"text": "RT @user_B: Yeah, @bbcweather is usually reliable.",
"user": {

"id": 07,
"name": "user_G"

}
}

Figure 3.1: User activity example for Twitter users. The data is in JSON format. Retweet

messages include ”RT @user” in their text attribute. The marked user in this prefix is

the original tweeter of the related retweet cascade.
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user B tweeted 2 different messages. Thus, user C follows user B and user E follows

user A in order to be able to retweet the former tweets. Similarly, if we suppose that

there was no intermediary user between user B and user F , than user F follows user B.

The same can be said about user D and user C, or user G and user D. Furthermore,

user C and user D follows user user A, because they are both aware of user A’s tweet

and his tweeting habits. Finally, user G follows @bbcwheather as it seems he has some

experience about it. Although user D’s retweet include @bbcwheather, maybe he does

not follow that medium.

B

A

C

D

E

F

G

@bbcweather

Figure 3.2: User-follower graph example.

This is one of the most extensively studied Twitter-induced graph. Through empirical

experiments Myers and Leskovec [21] gave a model for follower count burst prediction,

which I will detail in Section 4.1.2. However, Huberman et al. [12] expressed that a link

between any two people does not necessarily imply an interaction between them. The

reason for this is a general social network phenomenon. Most of the users are intent on

having large follower or friend count, but only with a few of them do they really keep in

touch on a daily manner.

3.2.2 Retweet graph

In Twitter a tweet can diffuse through the network by persistent retweeting. As a specific

tweet is retweeted from user to user, large cascades can form. These cascades contain

edges that represent information spread between the corresponding nodes of retweeters.

There are two different retweet graphs. In both cases the source of the directed edge is

the retweeter, but the target of the edges do differ.

Non-rooted retweet graph

From the two version of retweet graph, non-rooted retweet graphs represent better the

cascade of the original tweet spreading through the network. Suppose the original tweeter

was z and y was the first through whom user x saw z’s tweet. In this case, there is a link

from x to y in the retweet graph.

Now, we will present the non-rooted retweet graph based on Figure 3.1. The diffusion

of 2 cascades will be examined, as originally there was 2 tweets. The edges corresponding

two separate cascades have different colors.
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1. The cascade originating from user A’s tweet is very simple. It only consists of one

edge, which represents that user E retweeted user A’s tweet.

2. The second cluster contains five nodes. The original tweeter user B. Then from the

timestamps it can be concluded that user D retweeted user C. Instantly, after he

saw that user C retweeted user B’s tweet. Finally, user G retweeted after he saw

user D writing about @bbcwheather.

B

A

C

D

E

F

G

@bbcweather

Figure 3.3: Non-rooted retweet graph example.

The growth of similar cascades is a well researched topic in social network related

context. Cheng et al. found a robust model for relative cascade growth prediction. They

showed that a cascade becomes more predictable over time as more of its reshares can be

observed [8].

Nevertheless, it is important to note that non-rooted retweet graphs cannot be con-

structed directly. In Twitter logs only the original tweeter is listed, but not the user who

the retweeter first saw in the actual cascade. However, there are some results on how to

infer the non-rooted retweet graph from cascade time-series on the follower graph [24].

The proposed method will be detailed in Section 4.3

Rooted retweet graph

Rooted retweet graphs represent retweet cascades as we can directly extract it from the

data. Suppose the original tweeter was z and y was the first through whom user x saw z’s

tweet. In this case, the link’s target will be z instead of y. Information diffusion cannot

be represented in this retweet graph.

The rooted retweet graph of Figure 3.1 also contains 2 cascades. Each cascade is a

star whose center node is the original tweeter, with all retweeters linking to it.
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Figure 3.4: Rooted retweet graph example.

3.2.3 Mention graph

In the former sections it was showed how links can be defined by follower relationships and

retweeting. The main disadvantage of the former models is that typically the information

needed to construct the graphs is not directly accessible. However, for mention graphs

all edges can be constructed conveniently, as @-mentions are easily extractable from the

text. Suppose that x mentioned y, then there is a directed edge from x to y in this

Twitter-induced graph. There is no difference between mentions occurring in tweets or

retweets.

Now, the mention graph based on Figure 3.1 is sparser than the user-follower graph

and retweet graphs induced by the same example. It consists of 4 edges as only user A

and @bbcwheather were mentioned.

B

A

C

D

E

F

G

@bbcweather

Figure 3.5: Mention graph example.

Particularly, in our experiments we focus on mention graphs induced by the datasets

described in Chapter 6.

3.2.4 Event induced subgraphs

The amount of daily messages occurring in Twitter is quite immense. Most of the tweets

and retweets are public, thus they must be filtered by hastags if we are interested in a

special events. If hastags corresponding to this topic are selected, then the messages that

contain any of these tokens induce the subgraph of this event. The main problem about
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event filtering is how to determine every related hashtag. Zangerle et al. [32] developed a

hashtag recommendation method that can help users finding these tokens. Now we will

give a short outline of their recommender system.

First the user inputs the tweet message that he intends to post. Then all hastags con-

tained in the most similar previously posted messages are returned from a database. Sim-

ilarity was evaluated using term frequency–inverse document frequency (TF-IDF) statis-

tic [25], that was also used in [21] for tweet content based user comparisons. Finally, all

hastags extracted from queried messages are ranked. The system will recommend hastags

for the user’s given message according to this ranked list. In [32] the authors evaluated

their recommender system using three different strategies.

• Overall popularity: hastags with the most occurrences are preferred.

• Recommender popularity: hashtags with the most occurrences within the set of

recommendation candidates are preferred.

• Similarity ranking: hashtags contained in the most similar message are preferred.

Among the former cases similarity ranking performed the best.
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Chapter 4

Information diffusion on dynamic

networks

Myers and Leskovec [21] showed that the Twitter network is highly dynamic with about

9% of all connections changing in a month. Thus, in order to infer central nodes, the

factors driving the dynamics of this social network must be considered. In this chapter,

we will present some novel results about information diffusion on dynamic graphs. Usually,

these experiments were tested on Twitter related data.

In Section 4.1 the results of Myers et. al [21], and Chierichetti et al. [9] will be

discussed. They both designed models on how to identify key events or bursts in the

information flow. While Chierichetti et al. [9] predicted global events from the amount

of tweets and retweets, in [21] the authors focused on local bursts in the user-follower

network.

The results of Bakshy et al. [1] will be detailed in Section 4.2. In this article, the

authors tried to predict the influential users of a Twitter user-follower graph by generating

diffusion cascades, according to several propagation rules. At first, they tried to extract

influential vertices with regression merely based on network features. The main problem

was the minority of cascades with significant size. They tried to introduce cascade content

information into the model, but it did not improve the results.

Finally, in Section 4.3 the algorithm of Rodriguez et. al [24] is discussed, which can be

used for inferring the structure and the edges of a latent temporal diffusion networks from

node activation time series. Moreover, they examined an interesting aspect of centrality

for many real-time events. However, their work is not Twitter related, but it has a direct

application for non-rooted retweet graphs. As we mentioned in Section 3.2.2, the main

problem for these graphs is that the edges, that belong to a given tweet cascade, cannot

be recovered from Twitter data. Only the activation times of the retweeters are known for

each cascade. Nevertheless, once the edges of the non-rooted retweet graph are inferred,

centrality measures can be applied to extract important nodes.

4.1 Predicting bursts in network dynamics

Myers et. al [21] found that the dynamics of Twitter network structure can be charac-

terized by steady rates of change, interrupted by sudden bursts. Significant events can

generate a sudden increase in the amount of information flowing through the system.

Otherwise, the number of follower relationships in the network is slowly increasing.
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4.1.1 Event detection

Chierichetti et al. [9] proposed a robust model for the real-time identification of key events.

They examined tweet and retweet production/consumption patterns around these inci-

dents. The experiments showed that there is a “heartbeat” phenomenon in the balance

of primary and secondary information spreading. When and important event unfolds, the

users are busy with tweeting about it, as they try to report everything. Therefore, nobody

has time to retweet these messages. Whereas after the event, there is a huge amount of

tweets to be retweeted. Thus in this case, the secondary information spreading dominates

the network. The authors used this phenomenon to obtain a simple classifier which, by

only evaluating the tweet/retweet volume could detect these events.

4.1.2 Changes in the number of followers

Besides event detection, the bursts in tweet or retweet volume can be used for predicting

local changes in the user-follower network (Section 3.2.1). Myers and Leskovec [21] also

studied when would a burst in tweet count result in an unfollow burst for a particular

user. Similarly, it was also considered whether a change in retweet count would cause a

follower burst.

• Unfollow burst: Users in a coordinated way can drop their connections to the infor-

mation source, in case of offensive tweets or high tweet frequency.

• Follow burst: Simultaneously, they can also create new connections to the informa-

tion source. It is more likely when a specified user retweets more often. In this case,

he can gain new followers, as new users are exposed to his tweets.

Naturally in [21], there were periodic fluctuations in the arrival rate across the hours

of the day. To identify these bursts, periodicity had to be removed from the data. Let ti
denote the ith hour of the month and x = {x1, x2, · · · , xn} be the number of new follows

a user receives for each hour of the month. The authors examined the difference between

actual new follows and expected follows during ti:

f(ti) = xi − E[x|h(ti)] = xi −
∑

j;|ti−tj |≤48,h(ti)=h(tj) xj · w(ti − tj)∑
j;|ti−tj |≤48,h(ti)=h(tj)w(ti − tj)

, (4.1)

where h(t) is the hour of day for t, and w(t) is an exponentially decaying weight

function. The parameters of this function are set using maximum likelihood.

They defined the ego-network of a user. For a given person, it is the subgraph con-

taining its followers and all induced follow relationships. The result showed that during

a follower burst the tweet similarity increases between the user and his followers. More-

over, this relation also escalates among members of the ego-network. For the comparisons

Myers et al. used the cosine similarity of the term frequency–inverse document frequency

(TF-IDF) weighted word vectors between the two users’ aggregated tweet documents.

Nevertheless, the number of weakly connected components, and the follow edge density of

the ego-network also increased after such a burst.

In addition to the former observations, they also developed a model for predicting

retweet-follow bursts. They realized that the majority of new follows are the result of

triadic closure. For example, suppose there is an increase in the retweet count of user A.
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Then the probability that a given follower B will retweet is also higher. So the followers of

B can discover A for the first time. The model is based on the idea, that the set of similar

users in A’s 2-hop neighbourhood are the most likely to connect after a retweet burst.

4.2 Influence prediction

In word of mouth marketing there are two strategies for maximizing the diffusion [1].

1. Seeding the information, or new products with a few particular individuals, called

“influentials”. It is possible that the factors causing their significance are unknown.

2. Or targeting a broader spectrum of users (”influencers”), whose user parameters are

desirable.

Bakshy et al. [1] measured influence in terms of the size of the entire diffusion tree as-

sociated with the events. Their Twitter related data consisted of several diffusion events.

The seed users of these incidents were active in each month of the two month long ob-

servation window. The goal of this research was to predict the most influential users of

the second month from the first with regression trees. The independent seeders were the

root nodes. Then according to three different assumptions about the influence process,

cascades were forming from each seeder along the follower relationships:

1. first influence: Suppose that a particular user u is exposed by multiple followee. Let

v be the first among them who got acquainted with a given topic T . Then, u will

belong to the same cascade, in which v is present.

2. last influence: In this case, u will be linked to the cascade of the followee, who got

last infected with T .

3. split influence: Finally, in this assumption there is equal probability of all followees

infecting u. Only those followees matter, who were exposed to T .

After the cascades were generated for a chosen influence rule, they computed individual-

level influence as the logarithm of the average size of all cascades for which that user was

a seed. Bakshy et al. [1] fit regression tree for two models, with cross validation. In the

first only network properties, while in the second additional content informations were

also used as features.

4.2.1 Prediction without content

In this model they tried to classify influencial users based on these features:

• Seed user attributes: #followers, #friends, #tweets, date of joining

• Past influence of seed users: average, minimum, and maximum past total/local

influence

where past local influence indicates the average number of reposts by that user’s immediate

followers in the first month. On the other hand, past total influence refers to average total

cascade size over the same time period [1].

The authors found that only the past local influence and follower count were the two

informative attributes. For these features, they got almost perfect predictions for the
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average value at each cut of the regression tree. However, the prediction for leaf nodes are

very far from the actual values. This ambiguity is the result of the fact, that only a few

cascades gets to be enormous and succesful. Most of them remain insignificantly small.

So personalized predictions cannot be made on the average size of cascades.

4.2.2 Prediction with content

It was also examined whether information about the content of the seeded message can

improve the model. They used Amazon’s Mechanical Turk (AMT) to recruit human

classifiers. With this popular service for survey and experimental research, Bakshy et.

al. [1] could extract content related features from the data, such as rated interestingness,

rated positive feeling, willingness to share via social networks etc. They found that none

of the formerly introduced content features could improve the model’s performance.

4.3 Inferring network structure from time series

4.3.1 Modelling diffusion networks

Rodriguez et. al [24] researched this problem in general for both static and dynamic

diffusion networks. They modelled information diffusion as a continuous process over the

edges of an unobserved network. The transmission rate for edge i → j is denoted by αij
in the static setting. For every i, j nodes αij → 0 means that the transmission from i to

j tends to be arbitrary long. In the dynamic case, the rate of information diffusion can

change over time for each edge. Thus, in this setting the transmission rate at time t is

denoted by αij(t). The authors developed an online inference algorithm (NetRate) which

can determine the transmission rates from cascade time series. Their method computes

the unknown αij(t) variables for all i,j pairs. At a given time t the edges with positive

αij(t) are the predicted links for the latent diffusion network.

Figure 4.1: In [24] the αij transmission rates are computed from the cascade activation

time series.

In both settings, the number of nodes N is fixed. For each cascade the information

always spread from activated nodes to non-activated ones. This way cascades are induced

on the fixed population (Figure 4.1). Rodriguez et. al [24] observed multiple cascades

spreading at the same time. However, they assumed that these cascades propagate inde-

pendently from each other. For a given cascade c the activation times for each node form a

vector tc = (tc1, · · · , tcN ). They denoted the conditional likelihood of transmission between

nodes j and i by f(ti|tj ;αj,i). Here, ti and tj are the activation times corresponding to
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j → i transmission (tj < ti). To properly analyze the transmission process several other

functions were examined.

1. Cumulative density function, denoted as F (ti|tj ;αj,i) for ti and tj activations.

2. The survival function for j → i edge express the probability, that node j does not

cause node i to activate by time ti

S(ti|tj ;αj,i) = 1− F (ti|tj ;αj,i).

3. The hazard function incorporates the instantaneous activation rate, of edge j → i

H(ti|tj ;αj,i) =
−S′(ti|tj ;αj,i)
S(ti|tj ;αj,i)

=
f(ti|tj ;αj,i)
S(ti|tj ;αj,i)

.

Let A denote the set of all transmission rates for the static case

A :=
{
αj,i|i, j ∈ {1, · · · , n}, i 6= j

}
. (4.2)

Similarly, A(t) is the set of transmission rates for the dynamic case. Consider a given

cascade t with activation vector (t1, · · · , tN ). For cascade t, the survival of node i until

time ti can be computed by taking the product of the survival functions of the formerly

activated nodes.

S(ti|t1, · · · , tN \ ti;A) =
∏
tk<ti

S(ti|tk;αk,i) (4.3)

Suppose, there is a T time observation window. The subset of cascade t activated

until T is denoted by t≤T . In the diffusion model of Rodriguez et. al [24], it is assumed

that activations are conditionally independent given the parents of the activated nodes.

In other words, the likelihood factorizes over the vertices

f(t≤T ;A) =
∏
ti≤T

f(ti|(t1, · · · , tN ) \ ti;A) (4.4)

Each factor of the former product can be computed by summing over disjoint events.

These events correspond to a node j that first infected node i. Otherwise, i survived from

other active nodes.

f(ti|(t1, · · · , tN ) \ ti;A) =
∑
tj<ti

f(ti|tj ;αj,i)×
∏

k:k 6=j,tk<ti

S(ti|tk;αk,i) (4.5)

The product in (4.5) can be expanded with a factor that causes independence from

the summation.

f(ti|(t1, · · · , tN ) \ ti;A) =
∏

k:tk<ti

S(ti|tk;αk,i)
∑
tj<ti

f(ti|tj ;αj,i)
S(ti|tj ;αj,i)

(4.6)

If we use the definition of the hazard function and the former simplification (4.6), the

likelihood (4.4) can be expressed as

f(t≤T ;A) =
∏
ti≤T

∏
k:tk<ti

S(ti|tk;αk,i)
∑
j:tj<ti

H(ti|tj;αj,i). (4.7)

However, the information about not activated notes must be also considered.
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f(t;A) =
∏
ti≤T

∏
tm>T

S(T |ti;αi,m)×
∏

k:tk<ti

S(ti|tk;αk,i)
∑
j:tj<ti

H(ti|tj;αj,i) (4.8)

Let C = {t1, · · · , t|C|} denote the set of cascades. Using the assumed independency,

the likelihood over all cascades is the following

f({t1, · · · , t|C|};A) =
∏
tc∈C

f(tc;A) (4.9)

The value of the transmission rates is computed with maximum likelihood estimation

on f({t1, · · · , t|C|};A).

For the experiments, Rodriguez et. al [24] considered the exponential (Exp), power-

law (Pow), and Rayleigh parametric models (Ray) (Figure 4.2). Nevertheless, for these

models the likelihood of transmission tends to zero, as αij → 0. Furthermore, with

Rayleigh model infection spreading can be simulated as it was formerly used in some

epidemiological researches [14], [27].

Figure 4.2: Pairwise transmission models examined in [24].

4.3.2 The NetRate algorithm

The likelihood over the examined cascade set C was formulated in (4.9) for the static

case. A similar equation can be derived for the dynamic case with A(t). Rodriguez

et. al [24] defined the corresponding maximum likelihood optimization problem for each

network inference problems. Although in both cases, the overall log-likelihood function is

minimized.

1. Static network inference problem:

minimizeA −
∑
c∈C

log(f(tc;A))

subject to αij > 0; i, j = 1 · · ·N ; i 6= j (4.10)

The inferred links of the network will be i→ j pairs with positive αij transmission

rate.
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2. Dynamic network inference problem:

minimizeA(t) −
∑
c∈C

wc(t) log(f(tc;A(t)))

subject to αij(t) > 0; i, j = 1 · · ·N ; i 6= j, (4.11)

where wc(t) > 0 are weights that penalize old cascades. With these weights, the

authors tried to simulate the priority of recent cascades over older ones. Indeed,

new cascades have higher importance in inferring current network structure. The

dynamic setting can be reduced to the static case (4.10), if the weights in (4.11) are

equal for all c ∈ C and constant over time.

In [24] it was proved that for log-concave survival functions and concave hazard func-

tions both (4.10) and (4.11) problems are convex in A or A(t) respectively. These condi-

tions hold for the examined parametric models (Exp,Pow,Ray), detailed in Figure 4.2.

NetRate originally uses a full gradient method to solve the convex optimization

problems (4.10) and (4.11). Moreover, Rodriguez et. al [24] also implemented this method

with stochastic gradient descent, which they called InfoPath algorithm. They found that

InfoPath was approximately one order of magnitude faster than NetRate, that uses

full gradient method 4.3.

Figure 4.3: Similar accuracy (a) and Mean Square Error (MSE) (b) could be achieved

approximately one order of magnitude faster with InfoPath for the same input [24].

In Section 5.2, we also discuss stochastic gradient descent because later we will use

this method to solve the link prediction problem for dynamic graphs.

4.3.3 Results of NetRate related to node centrality

In [24], there is a meticulous evaluation about how NetRate performs on synthetic and

real-world data. Due to space constraints only centrality related results will be emphasized.

Rodriguez et. al [24] run their experiments on several 2011 world events-induced

dynamic graph. They investigated the ratio of mainstream media and blogs among the

top-100 most central nodes over time on these diffusion networks. For extracting central

nodes they used the inverse definition of harmonic centrality detailed in Section 1.1.5. In

their work the centrality of node x was defined by

c(x) :=
∑
y

1

d(x, y)
, (4.12)

31



where d(x, y) = ∞ if node y is not reachable from x. Harmonic centrality prefers nodes

that are reachable from most of the vertices by a short path. While for the measure defined

in (4.12) the vertices, from whom most of the other nodes are close, are more central.

After inferring the edges with their algorithm, the authors could compute the centrality

score for each node. Rodriguez et. al [24] found that the percentage of mainstream media

and blogs among central nodes do vary for different topics. In Figures 4.4(a) and (b)

mainstream media is always more central. On the other hand, for other topics like Gaddafi

in Figure 4.4(c), blogs have higher percentage among central nodes during the entire event.

The balance between these two source of information can also change over time. While for

UK Royal Weeding and NBA in Figures 4.4(d) and (e) the ratio remained approximately

constant, for other topics like Occupy in Figure 4.4(f) a few bursts occurred. The aspect of

separating central users, similar to the decomposition of nodes to mainstream media and

blogs, is very important. In real time events sometimes a very small subset of supposedly

insignificant users can dominate the network. Thus, to extract true central nodes, a

filtering must be applied.

In Section 4.3 we gave a short description about the work of Rodriguez et al. They

developed an algorithm for predicting the structure of an unknown diffusion network.

Although the authors examined centrality on the inferred network, their method cannot

be used for predicting central nodes in advance, as the forthcoming activation times of

nodes are unknown. In Chapter 5 we will present a method that can be used for link

prediction.
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Figure 4.4: Percentage of blogs and mainstream media in the top-100 sites with highest

centrality score. Mainstream media are represented in red, and blogs are represented in

blue [24].
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Chapter 5

Stochastic gradient descent and

link prediction

In many real-life problems, the appearance of a link in a dynamic network can be associated

with an event. The related task of inferring these directed edges is the link prediction

problem introduced by Liben-Nowell and Kleinberg [19]. Particularly, in our work each

directed edge corresponds to a mention event between Twitter users. In this thesis, we

examine the link prediction problem as a matrix factorization problem for recommender

systems. In Section 5.1, we give a short preview on how matrix factorization is used in

recommender systems. Then, we solve the corresponding matrix factorization problem,

explained in Section 5.3, with online stochastic gradient descent (SGD), which is described

in Section 5.2.

5.1 Matrix factorization in recommender systems

Over the last few years, due to the Netflix prize several novel methods were proposed for

collaborative filtering [16]. When recommendations are based on latent factors, matrix

factorization methods proved to be effective. Suppose, we have n users and m items. The

training set T consists of real user-item interactions, that are stored in a sparse rating

matrix R ∈ Rn×m. These ratings can be explicit or implicit. In case of explicit rantings,

there is available information about how the given user u felt about a particular item i.

For example, a popular way is to rate items on a 1 to 5 scale. On the contrary, for an

implicit rating there is no feedback on whether the user was satisfied with his choice. Only

the fact that u saw item i is known. Therefore, rui = 1 for the elements of the training

set.

Recently, several matrix factorization algorithms were proposed for recommender sys-

tems. These methods compute P ∈ Rn×k and Q ∈ Rm×k that minimize the objective

function

F =
∑

(u,i)∈T

(rui − puqTi )2, (5.1)

where k � min{n,m} in practice. Parameter k is the number of assumed latent factors

that characterize user-item interactions. It can affect the quality of the approximation,

but for bigger k values the runtime also increases significantly. After decomposing R into

P and Q, the prediction for an arbitrary (u, i) /∈ T user-item pair is
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r̂ui := puq
T
i , (5.2)

where pu is the uth row of the user matrix P and qi is the ith row of the item matrix

Q. In other words, we approximate the rating matrix R with

Rk = PQT .

This is similar to the dimensionality reduction of full matrices, which can be solved

with singular value decomposition (SVD) [18]. Here, the difference is minimized only for

the elements of the training set T (5.1).

There are several techniques to improve the quality of the user-item recommendations,

which can be used independently in most cases for factor models.

1. For factor models, we can avoid over-training with regularization [16]. Here, the

original objective function (5.1) is shifted

F =
∑

(u,i)∈T

(rui − puqTi )2 + λ · (‖pu‖2 + ‖qi‖2), (5.3)

where λ parameter is the regularization rate. If regularization is not considered

(λ = 0), then the factor model may place too much focus on the known sparse

elements of R. As a result, the model may give poor predictions for the unknown

(u, i) /∈ T user-item pairs.

2. Sometimes it can be useful if the model incorporates some additional information

about the users and the items which is independent from the factors. One possibility

is to introduce biases into the model [16]. Let bu denote the bias of user u. Similarly,

a b̄i bias is set for each item i. These variables should be taken into account for each

(u, i) user-item prediction.

r̂ui := puq
T
i + bu + b̄i (5.4)

Moreover, the objective function F (5.3) has to be adjusted according to

F =
∑

(u,i)∈T

(rui − puqTi − bu − b̄i)2 + λ · (‖pu‖2 + ‖qi‖2) + λb · bu + λ̄b · b̄i, (5.5)

where λb is the regularization rate for the user biases, and λ̄b is the regularization

rate for the item biases.

3. Another technique is to use an additional g transformation on the predicted r̂ui
value. For example, the formula is

r̂ui := g(puq
T
i + bu + b̄i), (5.6)

if biases are also introduced. Generally, this transformation is the sigmoid function

sigmoid(t) =
1

1 + e−t
. (5.7)
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5.2 Stochastic gradient descent (SGD)

5.2.1 SGD in general

Stochastic gradient descent is widely used in machine learning problems. It is used for

minimizing objective functions that has the form of a sum. Compared to the standard

gradient approach it is more cost-effective as in each iteration only an approximation of the

gradient is needed. Let F denote the given objective function, which takes its minimum

value at ω. While for the standard gradient method the gradient 5F must be computed,

SGD uses 5Fi for approximation in the ith iteration. From the former notations the

update rule follows for both iterative processes

ω = ω − α5 F (ω) = ω − α5 Fi(ω), (5.8)

where α is a parameter, called the learning rate.

5.2.2 SGD for matrix factorization

The main difference between factor models is the order of how the pu and qi vectors are

updated. Stochastic gradient descent is a method, which can learn the model in two

different settings.

1. Offline (Batch) SGD: In each iteration, it loops through on all (u, i) ∈ T ratings

in an arbitrary order. For a given (u, i) ∈ T , first the user vector pu, then the item

vector qi is updated.

2. Online SGD: in this setting the model is updated for each (u, i) user-item pair of

the training set only once. Therefore, each iteration corresponds to a given (u, i) ∈ T .

Similarly to offline SGD, for a given (u, i) ∈ T , first pu, then qi is updated.

The objective function, that is used in this factor model is mean square error (MSE).

For a particular rij rating, it is defined by

Fij = (rij − r̂ij)2 = (rij − puqTi )2. (5.9)

First, the pi user vector is updated according to (5.8).

pi = pi − α
∂Fij
∂pi

, (5.10)

After pi has been updated, the item vector qj needs to be refreshed as well.

qj = qj − α
∂Fij
∂qj

, (5.11)

From the definition of Fij (5.9) the final update formula follows

pi = pi + γ(rij − r̂ij)qj = pi + γ · err · qj (5.12)

qj = qj + γ(rij − r̂ij)pi = qj + γ · err · pi, (5.13)

where the learning rate of the factor model is denoted by γ. It is important to note, that

regularization can be applied for SGD as well. Although, for regularization the objective

function is modified
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Fij := (rij − r̂ij)2 + λ · (‖pi‖2 + λ‖qj‖2). (5.14)

In this case, the following update formula can be derived [16]

pi = pi + γ(err · qj − λpu) (5.15)

qj = qj + γ(err · pi − λqi). (5.16)

Stochastic gradient descend can be also modified to incorporate biases or sigmoid

transformation, that were mentioned in Section 5.1. Independently from these techniques,

there is a way to improve SGD, when the given ratings are implicit. When a given (u, i)

user-item pair is updated in the model, τ negative samples are generated to adjust the

majority of positive samples for implicit ratings. The parameter τ is called the negative

sample rate. For example, when pu vector is updated an Lu list of items are sampled,

where (u, j) /∈ T for all j ∈ Lu. Moreover, a new objective function will be used, which

contains the negative samples as well.

Fui := (rui − puqTi )2 + (puq
T
j1)2 + · · ·+ (puq

T
jτ )2 (5.17)

Similarly, for item i an Li list of users are chosen, where (w, i) /∈ T for all w ∈ Li. The

formerly generated negative list of users, will be used in the following objective function.

Fui := (rui − puqTi )2 + (pw1q
T
i )2 + · · ·+ (pwτ q

T
i )2 (5.18)

5.3 Link prediction with online SGD

For the link prediction problem, R ∈ {0, 1}n×n is a squared matrix. Here, the elements of

the T training set are the directed edges of the graph. When there is a link from node i

to j, then rij := 1. The ith row of the user matrix pi, that is a k dimensional vector, tries

to capture the quality of node i as a link source. Similarly, the jth row of the item matrix

qj , represents node j being a link’s target. Therefore, link prediction can be reduced to a

recommendation problem with implicit ratings. The model is trained with online SGD.

Each iteration corresponds to the occurrence of a directed edge ij. However, one should

generate negative samples to train the model properly. In our case, it means that in the

corresponding iteration of ij edge, we generate a list of nodes that node i did not link to.

In our experiments, we generate these sample nodes uniformly.
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Chapter 6

Movement datasets

We conducted our experiments on four different Twitter datasets. Each dataset is related

to a civil protest or movement. First, we will give a summary on the size of the full

datasets. Especially, the number of users and several other Twitter-related metric will be

presented in Table 6.1.

15-o occupy yosoy 20-n

Number of users 96,935 371,401 395,988 366,155

Number of tweets 410,482 1,947,234 2,439,109 3,535,155

Number of retweets 280,387 1,272,443 1,716,994 1,406,399

Tweets with mention(s) 281,830 1,396,051 1,844,134 2,340,840

Table 6.1: Twitter movement datasets

We extracted all tweets, that contained any mentions. Our dynamic mention graphs

were constructed, from these messages. Figures 6.1, 6.2, 6.3, and 6.4 show, that these

graphs are indeed dynamic, with several bursts in the number of edges and nodes. The

graph and temporal parameters are shown in Table 6.2. It is important to note, that

several directed edges in these graphs can correspond to a single message, as the number

of mentions in a tweet is not fixed. For each experiment, we divided these events into time

intervals. In this chapter, we will give a short description of each event, on which our aim

is to predict central users in advance for the next time interval.

15-o occupy yosoy 20-n

Number of vertices 67,153 335,167 336,081 282,944

Number of edges 247,329 1,837,946 2,252,070 1,503,633

Start date 2011-10-10 2011-10-10 2012-05-18 2011-10-29

End date 2011-10-31 2011-10-31 2012-12-27 2011-11-25

Number of days 22 22 223 27

Table 6.2: Dynamic mention graphs generated from the datasets

OccupyWallStreet dataset (occupy)

The original Occupy Wall Street protest began on September 17, 2011 in New York [30].

The participants demonstrated against the unequal distribution of wealth in the United

Stated. On October 15, several local movements took place in many major cities in the
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US. It is the reason, why we can observe a huge burst in the graph size on that day in

Figure 6.1. Finally, the protesters were forced out of Zuccotti Park on November 15, 2011.

Our dynamic graphs were constructed only from messages that contained mentions.

Thus, the directed edges of the mention graphs are from 2011 October 10 to 2011 October

31. In Figure 6.1, the number of nodes and edges are shown for each day.

Figure 6.1: Number of users and edges in the occupy mention graph.

20-N dataset (20-n)

November 20, was the death date for both José Antonio Primo de Rivera and Gener-

alissimo Franco. They are the two best known and controversial Spanish persons in the

20th-century. The 20-N symbolic abbreviation refers to their date of death, that is com-

memorated every year [29]. In 2011, the Spanish general election coincided with the 75th

anniversary of de Rivera’s death.

The mention graph, extracted from 20-N Twitter messages, contains directed edges

from 2011 October 31 to 2011 November 24. The second burst in the number of edges

and vertices in Figure 6.2 corresponds to November 20, that was the day of the election.

With the exception of November 19, there is a steady increase in the size of the dynamic

graph in the preceding 6 days of the anniversary.

15 October global protests dataset (15-o)

On October 15, 2011 several protests were held in the major cities of the United States

and Europe [28]. These movements were mainly the results of the Arab Spring and the

Occupy Movement.

On the formerly mentioned date of the demonstrations, an immense burst occurs in

the number of edges and vertices of the mention graph. Nevertheless, Figure 6.3 shows

that beside the main event our temporal graphs is stable.
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Figure 6.2: Number of users and edges in 20-n mention graph.

Figure 6.3: Number of users and edges in 15-o mention graph.

Yo Soy 132 dataset (yosoy)

This social movement started on May 11, 2012 in Mexico [31]. Originally, 131 university

students began this protest. Soon, students from several campuses started to support the

founders. They were stating that ”I am 132”, that is ”Yo soy 132” in Spanish. The protest

was self-proclaimed as the ”Mexican spring”. On the other hand, the international media

named it as the ”Mexican occupy movement”.

The directed edges are from 2012 May 18 to 2014 December 27. Figure 6.4 show that

this data is highly dynamic, with several bursts in the number of edges and vertices.
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Figure 6.4: Number of users and edges in yosoy mention graph.

The main similarity of the formerly mentioned movements is their leaderless structure.

It means that there was no leader appointed. The participants posted their point of view

and demands on several social networking systems. Thus, over a short period of time these

events got huge publicity and won the support of the masses. In these kind of leaderless

movements, the key problem is to identify central, influential persons in advance. In the

next chapter, we will present our factor-model based method for predicting centrality on

dynamic graphs corresponding to such real-world events.
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Chapter 7

Centrality prediction for dynamic

graphs

In order to give centrality predictions, we solve the link prediction problem explained in

Chapter 5. We proposed online SGD for this task. We compare the effectiveness of our

model with the baseline method explained in Section 7.2. In the experiments, we compute

the indegree (Section 1.1.1), outdegree, negative-β measure (Section 1.1.2), PageRank

(Section 1.2.4) and SALSA (Section 1.2.6) centrality measures on the dynamic mention

graphs, that correspond to the Twitter datasets described in Section 6. For PageRank

and SALSA computation, we use iterative algorithms, that run for 10 iteration for both

measures. In case of PageRank, the damping factor α was set for 0.85. All centrality score

is computed with our C++-based framework, that is detailed in Appendix A.

7.1 Centrality prediction problem

Let D be a dynamic mention graph from a finite time window. Then a static directed G

graph with a corresponding w weight function can be constructed from D. G will contain

all ever existed vertices and edges of the dynamic graph. For an arbitrary uv edge of

G, w(uv) is the time when u mentioned v. Of course, multiple edges can occur. After

G was constructed from the original dynamic graph, we decomposed it into subgraphs

that correspond to consecutive disjoint time intervals with equal length. Gi is the induced

subgraph of G, that contains all edges from the ith time interval. Let ∆t denote the length

of each time interval. Usually, in the experiments ∆t was set for one day.

In this thesis, our goal was to infer the top k central nodes of Gi, from the previous

subgraphs Gj (j < i). In our experiments, central nodes were extracted according to

various centrality measures shown in Figure 7.1. However, it is important to note that

we did not enable multiple edges in the Gi subgraphs. Therefore in each interval, only

the directed edge related to the first u → v mention is present in the graph for all u,v

pair of nodes. In the ith time interval, let Li(k) denote the original ordered list of top

k central vertices for a given measure. Suppose, that our model M also predicted these

nodes for the same centrality measure and stored them in L̂Mi (k). Naturally, the more

match exists between these list, the better our model performs. For precise evaluations we

used precision (2.1.1) and NDCG (2.1.3), that are both appropriate metrics for comparing

Li(k) and L̂Mi (k). The results for our online SGD-based model can be found in Section 7.4.

Although, to find out whether our model is effective it should be compared to baseline
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methods.

7.2 Baseline prediction from the previous interval

For centrality predictions, the first idea that comes to mind is probably to give the same top

k nodes, that were central in the previous interval. Formally, it means L̂Bi (k) := Li−1(k).

The quality of this baseline depends on ∆t. Indeed, a highly dynamic graph can change

significantly in structure over a longer ∆t time frame. In Figure 7.1 the changes in the

top 10 central users are shown for the occupy dataset from the first day to the second.

Figure 7.1: Changes in the top k = 10 central users in occupy from the first day to the

second. The numbers and colors mark the number of position changes. In the first day

every user is new.

Moreover, according to Figure 7.1, there are significant similarities between the top

10 central nodes of indegree, negative β-measure, PageRank and SALSA authority score.

Several users occur in both of the formerly mentioned measure toplists. The same can be

observed for outdegree and SALSA hub score.

The quality of this baseline prediction can be also evaluated with metrics detailed in

Chapter 2. In Figures 7.2 and 7.3, for each interval i we computed NDCG for L̂Bi (10) and

Li(10). If the top 10 central nodes in interval i were the same as in the (i − 1)th time

frame, then NDCG score would be 1.0 for interval i. For both occupy and 20-n datasets,

the baseline prediction performed the best for SALSA authority score among the other

centrality measures. For 20-n dataset the previous interval based prediction performed

better in average, than for occupy. Finally, while for occupy there were intervals were

SALSA hubbiness and outdegree could perform better than the others, for 20-n these two

measures usually achieved significantly smaller NDCG than indegree, negative β-measure,

PageRank and SALSA authority.

In Section 7.4 the experiments prove, that our online SGD-based model performs better
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Figure 7.2: Quality of the previous interval based baseline prediction for occupy (k = 10).

Figure 7.3: Quality of the previous interval based baseline prediction for 20-n (k = 10).

for several centrality measures, than the baseline prediction introduced in this section.

Moreover, we also recover the main feature driving centrality in the next interval. These

are the homophily edges occurring in the next time frame. The precise definition and the

related experiments are presented in the next section.
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7.3 Link prediction results

In this thesis, we examined link prediction for a special case. Our goal was to infer the

edges of Gi from the data of the first (i− 1) time interval. We proposed online stochastic

gradient descent (SGD) for this task. The result can be found in Section 7.3.2. We also

discovered, that a special type of edges, called homophily edges, dominate the centrality

in Gi. This definition is explained in Section 7.3.1.

7.3.1 Homophily edges dominate centrality

First, for each interval i group the edges according to, whether any endpoints of an arbi-

trary uv ∈ Gi directed edge, have been seen in the first (i− 1) time interval.

• former edges: uv directed edge occurred before the ith time interval as well.

• new edges: uv directed edge did not occurred before the ith time interval.

– Neither u nor v occurred before

– Only the source vertex u occurred before

– Only the target vertex v occurred before

– homophily edges: Both u and v occurred before the ith time interval.

(a) 15-o: ∆t = 1 day (b) 20-n: ∆t = 1 day

(c) occupy : ∆t = 1 day (d) yosoy : ∆t = 1 week

Figure 7.4: The number of new vertices compared to the current number of vertices in each time

interval for the given mention graphs.

In Figure 7.4 the number of new vertices are shown for each interval in the examined

Twitter mention graphs. Naturally, a vertex is new in interval i, if it never occurred before.
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Figures 7.4a, 7.4b and 7.4c show, that in average nearly half of the users of each interval

are new for the mention graphs related to 15-o, 20-n and occupy datasets. In Figure 7.4d

it can be observed, that the dynamic network constructed from yosoy dataset contains

less new vertices.

That is the reason, why the number of new edges are also high in Figure 7.5. Although

in case of dynamic graphs, the appearance of edges connected to new vertices cannot be

predicted, but from the data of previous intervals one may be able to infer homophily

edges. Furthermore, it is an important question whether the new homophily edges or the

former edges dominate the centrality in Gi.

(a) 15-o: ∆t = 1 day (b) 20-n: ∆t = 1 day

(c) occupy : ∆t = 1 day (d) yosoy : ∆t = 1 week

Figure 7.5: The number of new edges and homophily edges compared to the current number of

edges in each time interval for the given mention graphs.

Now, let Ĝi be the subgraph of Gi that is induced by only the homophily edges of

the ith interval. In order to access the potential of the homophily edges, we conducted an

experiment, where Gi was approximated by Ĝi. Then, the formerly mentioned centrality

measures were computed on Ĝi. The result of this experiment are shown in Figure 7.6.

We found that the average precision (P@10) nearly doubled for each measure compared

to the baseline prediction. Therefore, it worth to put an emphasis on homophily edge

prediction.

7.3.2 Link prediction results for online SGD

In this section, we present link prediction results for our model. For each experiment,

a global timeline is generated from a given mention graph. This timeline contains all

mention events related to an uv directed edge for all u, v pairs of nodes. From this

global timeline, we generate a toplist of length L for each interval using online stochastic
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(a) 15-o (b) 20-n

(c) occupy (d) yosoy

Figure 7.6: Average P@10 for centrality ”predictions” based on current homophily edges. Here,

previous pred denotes the result of the baseline model discussed in Section 7.2

gradient descent. Let TLi denote this toplist for the ith interval, that contains the predicted

links for Gi. T
L
i is ordered according to the scores, that the edges achieved in the factor

model described in Section 5.2.2. Every toplist was generated by a C++ recommender

framework, that was developed by the Data Mining and Search Group of the Institute

for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) [23].

There are three tunable parameters for the online SGD model, that we use. The learning

rate (l rate), the negative sample rate (n rate), and the regularization rate (r rate), that

were both mentioned in Section 5.2.2. In our experiment, we do proper parameter tuning

for each variable.

First, we execute some experiments to find the best learning rate, that turns out to be

different for several datasets. Figure 7.7 presents some of the l rate-s, that we experiment

with. Here, the number of predicted edges are set L = 10000 for all movement data. We

find that choosing the appropriate learning rate can indeed improve the quality of the

factor model. For these experiments, n rate = 100 was fixed as well.

After finding the best learning rates for the datasets, we try to improve the link pre-

dictions by changing the the number of generated negative edges for each ui real edge.

Negative sample generation was properly described in Section 5.2.2. Figure 7.8 shows some

of the n rate-s, that was used in the experiments. The experiments show that without

negative samples the performance of the model decreases abruptly. Especially, it can be

observed in Figure 7.8d.

Finally, we examine whether regularization can improve the factor model. Figure 7.9
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(a) 15-o (b) 20-n

(c) occupy (d) yosoy

Figure 7.7: Precision of the online SGD link predictions with l rate ∈ {0.05, 0.08, 0.1, 0.2}.

(a) 15-o (b) 20-n

(c) occupy (d) yosoy

Figure 7.8: Precision of the online SGD link predictions with n rate ∈ {10, 50, 100, 200}. Here

we used the best l rate for each dataset.

shows that the best parameter was r rate = 0.0 for all datasets. In other words, regu-

larization only decreases the performance of the model. Moreover, the precision for link
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prediction drops significantly even for a slight change in the regularization rate. Similarly

to the former experiments, we predict L = 10000 edges in each time interval.

(a) 15-o (b) 20-n

(c) occupy (d) yosoy

Figure 7.9: Precision of the online SGD link predictions with r rate ∈ {0.0, 0.01, 0.02}. Here we

used the best l rate and n rate from former experiments.

In this section, we were able to improve the link prediction with proper parameter tun-

ing for online SGD. Choosing the appropriate learning rate resulted in the most significant

gain in precision.

7.4 Centrality prediction with online SGD

In this section, we present our results that we achieved for centrality prediction on dy-

namic mention graphs. These networks were constructed from the datasets described in

Chapter 6. In the former section, we were able to determine the best parameters for online

stochastic gradient descent. Now, we compute indegree, outdegree, negative β-measure,

PageRank and SALSA centrality measures on each inferred Ĝi interval subgraphs. Then,

we extract the top k = 10 central nodes to L̂Mi (10) for each time frame i. M denotes our

centrality prediction model that is based on link prediction with online SGD.

Before presenting our results, we show that each centrality measure can be interpreted

as a model of importance for Twitter users.

1. Indegree: In this model, the users who are mentioned by many other users are

important, e.g. mass media sources or celebrities.

2. Outdegree: Here, users who mention many other users are relevant. Although, this

aspect can be deceptive, as spammer users could be identified as important members

of the network.
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3. Negative β-measure: The former mentions of the users are known. In this model,

we suppose that every user u chooses user v uniformly from the nodes he formerly

mentioned. Then a u→ v mention occurs. The important users have high expected

number of mentions.

4. PageRank: Initially, all user get the same importance score. In each step a user

uniformly distributes his score among the users he formerly mentioned. These iter-

ations are repeated until the process converges. Finally, users with high importance

scores are relevant.

5. SALSA: Here, every user has an authority score and a hub score (Section 1.2.6).

The hub score reflects whether a given user u usually mentions relevant users. The

authority score represents whether u was mentioned by users with high hub scores.

After computing these variables with an iterative process, central users are presumed

to have high authority scores. Although, the salsa hub score cannot be corrupted

as easily as outdegree, but important users are not identified according to their

hubbiness.

In Figures 7.10, 7.12 the experiments show that our model is capable of identifying

central nodes for indegree, negative β-measure, PageRank and SALSA authority score.

On the contrary, the predicted central nodes for outdegree and SALSA hub score are

completely indifferent. Nevertheless, it may not be a problem as important users are

usually not defined according to their outdegree and hub score in dynamic mention graphs.

Figure 7.10: Average, minimum and maximum NDCG@10 for the days of occupy with

different learning rates. Here, previous pred denotes the result of the baseline model

discussed in Section 7.2.

In Section 7.3, we were able to improve our link prediction model by finding the

appropriate learning rate. Figure 7.10 show that the centrality predictions were indeed

better for the best l rate in case of occupy. The results are presented in Figure 7.11 for

each time interval related to the formerly mentioned centrality indices. Similar increases

can be observed in NDCG for the other datasets as well.

Moreover, we tried to improve the performance of our factor model based centrality

prediction with changing the number of inferred edges L. Although, in Figure 7.12c we

find that for occupy predicting more links cannot improve the model significantly, while
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(a) occupy : indegree (b) occupy : negative β-measure

(c) occupy : PageRank (d) occupy : SALSA authority score

Figure 7.11: Centrality prediction for different centrality measures related to occupy. Here,

∆t = 1 day and previous pred denotes the result of the baseline model discussed in Section 7.2.

The changes in the learning rate (l rate ∈ {0.05, 0.1}) improves the centrality predictions as well.

for 20-n and yosoy it turned out to be a good idea. Furthermore, the results show that

for occupy the performance with L = 5000 is nearly as good as with L = 20000 predicted

edges. It is good to know that our model is capable of extracting central nodes from 5000

predicted edges compared to the average number of edges, that is approximately 60000

for this movement data (Figure 6.1). Unfortunately for 20-n, even with this improvement

we cannot achieve the performance of the baseline model described in Section 7.2. These

results are presented in Figure 7.12b.

15-o occupy yosoy 20-n

l rate 0.08 0.05 0.05 0.2

n rate 50 100 200 200

r rate 0.0 0.0 0.0 0.0

L 10000 10000 20000 20000

Table 7.1: Best configurations for each dataset.

Finally, Table 7.1 contains the optimal parameters for our model related to each

dataset. These are the results of the proper parameter tuning that we carried out for

the learning rate, the negative sample rate, the regularization rate and the number of

predicted edges. It is a common observation that regularization should not be used for

our case because it results in poor predictions. On the contrary, an appropriate learn-

ing rate can indeed improve centrality predictions for all datasets. After setting the best

l rate, we find that negative samples are crucial for our model. For small n rate values
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(a) 15-o (b) 20-n

(c) occupy (d) yosoy

Figure 7.12: Centrality predictions with different number of predicted edges. Here, previous pred

denotes the result of the baseline model discussed in Section 7.2.

the performance of our online SGD based link prediction model decreases. Altering the

number of predicted edges also proves to be effective for some datasets.

15-o occupy yosoy 20-n

Indegree - 2,5% 2% -

Negative β-measure - - 1% -

PageRank - 5% 3% -

SALSA authority - 1,5% - -

Table 7.2: In several cases our online SGD based model can improve the baseline predic-

tion. The gain in NDCG is presented for the configurations mentioned in Table 7.1.

Altogether, we could improve the baseline prediction for some centrality measures.

The results are presented in Table 7.2. Our model has best performance on the occupy

movement data. For PageRank there is a 5% gain in the average NDCG of time intervals.

Moreover, we could also improve the prediction for indegree and SALSA authority score

as well. The online SGD based model also improved the prediction for PageRank with

3% in case of yosoy. For this dataset, there was a 2% gain for indegree as well. For 20-n

the baseline model is surprisingly strong. However, the baseline proves to be better for all

measures, but our model can also identify central users as for indegree, negative β-measure

and PageRank the results are only a bit worse. Our centrality prediction model has poor

performance on 15-o. It is important to note that 15-o has significantly lower average

edge count compared to the other movement datasets (Figure 6.3). It is likely that the

lack of edges causes the poor performance of our model for this movement data.
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(a) 15-o (b) 20-n

(c) occupy (d) yosoy

Figure 7.13: Centrality predictions where the parameters are set according to Table 7.1 for each

datasets. These are the best results compared to the baseline model.
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Summary

In this thesis, our goal was to propose a model that can identify central users of dynamic

graphs in advance. We focused on Twitter mention graphs that were constructed from

datasets related to global movements from 2011 and 2012. In these graphs the nodes

represents Twitter users. Our experiments showed that these graphs are highly dynamic

as the fraction of the new incoming users is high for each time interval. However, we

realized that homophily edges can be the key to effective centrality predictions.

Our model first solves the link prediction problem for these temporal graphs with

matrix factorization. For this task, we used online stochastic gradient descent. Using

negative samples, this factor model could recover 6− 7% of the edges in average for most

of the datasets. From the edges that our model predicted for interval i we constructed

a directed graph Ĝi that tries to approximate the original subgraph Gi of the related

time frame. After we computed indegree, outdegree, negative β-measure, PageRank and

SALSA centrality measures for Ĝi, we gave centrality predictions for interval i. For a

given measure it is the top k node with highest centrality score in Ĝi.

For the proper evaluation of our model we introduced a baseline model. It predicts the

top k central users of Gi−1 for interval i. The results show that our model could improve

the baseline centrality prediction for indegree, negative β-measure, PageRank and SALSA

authority score for some datasets. Our online stochastic gradient descent based model

performed the best for PageRank. For this measure it achieved a 5% gain in the average

NDCG of time intervals compared to the baseline model.

In our experiments, we tried to improve link prediction with regularization, negative

sample generation and changing the number of predicted edges. There are other techniques

to improve the quality of the underlying factor model which were not tested in this thesis.

One possibility is to introduce biases into the model. It may improve the performance of

online SGD. Altogether, we found that our model can identify central vertices of Twitter

mention graphs related to social events. Therefore, it can be useful for predicting key

users in global movements.
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Appendix A

Experimental C++ framework

Overview

Our framework is based on the LEMON open source project [22]. LEMON is a C++

library that aims to provide efficient algorithms and data structures related to graphs. I

implemented additional graph objects for computing centrality measures. These objects

incorporate iterative methods for computing PageRank and SALSA. These features are

not part of the original LEMON source code.

Beside providing objects for centrality computation, our framework supports the tem-

poral analysis of dynamic graphs. The start date, the number and the length of the time

intervals can be set as parameters for the experiments. The centrality results are written

to JSON output files which can be parsed easily.

Usage

The graph objects and the runner environment have several parameters. Thus, due to

space constraints the documentation of the framework is presented in my online GitHub

repository (https://github.com/ferencberes/msc-thesis). The source code is acces-

sible through Git. To download the repository use the following command.

git clone https://github.com/ferencberes/msc-thesis.git

About dependencies

The framework is developed under Unix environment. There are scripts for installing most

of the dependencies. The details can be found in the formerly mentioned online GitHub

repository.
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