
Shortest paths in dynamic road networks

Master's thesis

Dániel Góbor

Applied mathematics MSc.

Specialization in computer science

Supervisor:

Zoltán Király

Department of Computer Science

Eötvös Loránd University, Institute of Mathematics

Eötvös Loránd University, Budapest

Faculty of Science

2015

Contents

1 Introduction 4

1.1 Dijkstra's algorithm . 4
1.1.1 Description of the algorithm 4
1.1.2 Finding the minimal element 5
1.1.3 Bidirectional Dijkstra . 5

1.2 The A* algorithm . 6
1.3 Methods with preprocessing . 6

1.3.1 Highway Hierarchies . 6
1.3.2 Highway Node Routing 7
1.3.3 Contraction Hierarchies 7
1.3.4 Transit Node Routing . 7

1.4 Summary . 8

2 Contraction hierarchies 8

2.1 Preprocessing . 9
2.2 Finding the shortest paths . 10
2.3 Retrieving the path . 11
2.4 Combination with Transit Node Routing 11

3 Highway Hierarchies 11

3.1 Preprocessing . 12
3.2 Finding the shortest paths . 13

3.2.1 An example . 13
3.2.2 Stopping the search . 14

4 Highway Node Routing 14

4.1 Preprocessing . 15
4.2 Finding covering sets . 16

4.2.1 The conservative approach 16
4.2.2 The aggressive approach 16
4.2.3 Stall-in-advance . 17
4.2.4 Stall-on-demand . 17
4.2.5 Directed stall-on-demand 18

4.3 Examples . 19
4.4 Finding the shortest paths . 21

5 Dynamic scenario 22

5.1 Contraction Hierarchies . 22
5.1.1 Disabling arcs . 22
5.1.2 Preprocessing in the same order 23
5.1.3 Combining with A* . 24

5.2 Highway Node Routing . 24
5.2.1 The formal algorithm . 24
5.2.2 Managing the sets . 25

2

6 Tests 25

6.1 Implementation di�culties . 25
6.2 The graphs . 25
6.3 LEMON . 26

6.3.1 Features . 26
6.3.2 Disadvantages . 26

6.4 Static tests . 27
6.4.1 Contraction Hierarchies 27
6.4.2 Highway Hierarchies . 29
6.4.3 Highway Node Routing 31

6.5 Dynamic scenario tests . 34
6.5.1 Testing methods . 34
6.5.2 Contraction Hierarchies 34
6.5.3 Highway Node Routing 37

6.6 Conclusion . 38

3

1 Introduction

With the advance of GPS technology and mobile internet access, it has become
increasingly important to quickly and precisely answer shortest path queries in
large graphs both on the GPS device and on servers that might be accessed by
hundreds of people at the same time.

In 2005, with the beginning of the 9th DIMACS implementation challenge
[22], numerous new methods were introduced with query times hundreds of
times less than the existing classical algorithms for �nding shortest paths. At
the same time, the graphs of the European and American road networks became
available for the public [10].

With the further advancement in technology, there are ways to measure the
tra�c �ow of certain roads, so we have real time data of possible tra�c jams
and accidents. This means that the algorithms must be prepared to provide
correct results even if the arc costs change.

We will see that there is no �best� algorithm. Some of them may provide
good query times but require a large amount of RAM, while others may be
easily adapted to the dynamic scenario, but provide smaller speedups.

Our aim was to examine a few algorithms, implement them using C++
and LEMON [20], and to test them under di�erent conditions, including the
changing of arc costs and simulating tra�c jams.

In this section, we will describe the classical algorithms, since most of the
new methods use them as a subroutine. We also examine the results of several
papers that study the same methods we chose.

1.1 Dijkstra's algorithm

Dijkstra's algorithm [18], developed by computer scientist Edsger Dijkstra in
1956, is an algorithm for �nding shortest paths from a node s to the other
nodes of the graph G = (V,E) given a cost function c : E → R+.

1.1.1 Description of the algorithm

During the algorithm, we build a shortest paths tree B rooted at s. A node can
belong to one of the following three sets:

• S: the unvisited nodes

• L: the reached nodes

• Q: the �nalized nodes

Initially, S = V \ {s}, L = {s}, Q = ∅.
We assign a distance label dist(v) to every node v. At the beginning of the

algorithm, dist(s) = 0 and dist(v) =∞ for every other node v.
We also store the parent pointers p(v). Initially, p(v) = null for every node

v.

4

A typical step of the algorithm is when we �nalize a reached node v ∈
L whose distance label dist(v) is minimal. Finalizing the node v means the
following:

• v becomes �nalized, that is L = L \ {v} and Q = Q ∪ {v}.

• we relax every edge e = (v, w) by doing the following:

� if w is unvisited, that is w ∈ S, then S = S \ {w} and L = L ∪ {w}.
� if dist(w) > dist(v) + c(v, w), we update the distance label of w, so
the new label will be dist(w) = dist(v) + c(v, w).

� if we updated the distance label, we also update the parent pointer:
p(w) = v.

When the algorithm terminates, the distance label of a �nalized node v will be
the cost of the shortest P (s, v) path. The path can be obtained by traversing
the parent pointers from v to s.

Note. The algorithm works on directed graphs without modi�cation.

1.1.2 Finding the minimal element

During the algorithm we have to �nd a node v ∈ L whose distance label dist(v)
is minimal. Using the naive approach, we �nd the minimal element in O(|V |)
time, so we get O(|V |2) for the total running time of Dijkstra's algorithm.

However, if we use a binary heap data structure by storing the reached nodes
in the heap, we get a total running time of O(|E| log |V |), since every operation
in a binary heap takes O(log n) time, where n is the number of elements in the
heap.

Note. Instead of saying that a node v is reached, we may say it is in the heap.

Note. We will use the following terms throughout the thesis: �nalize a node,
relax an edge, �nalized nodes. They all mean what we described above unless
otherwise noted.

1.1.3 Bidirectional Dijkstra

We want to �nd the shortest path from node s to node t. We alternate between
two Dijkstra algorithms. The forward search runs from s in the original graph,
while the backward search runs from t on the reverse graph (the graph where
the arcs are reversed). When a node v becomes �nalized in both algorithms we
stop. The shortest path will be either P (s, v) ∪ P (v, t) or there is an arc (u,w)
so the shortest path will be P (s, u)∪{(u,w)}∪P (w, t) where node u is �nalized
in the forward search and node w is �nalized in the backward search.

5

1.2 The A* algorithm

The A* algorithm [16], proposed by Nils Nilsson, is an extension of Dijkstra's
algorithm.

When performing an s, t query, similarly to Dikstra's algorithm, we have
unvisited, reached and �nalized nodes.

We also have a function h : V × V → R+ with the following attribute:
∀(u, v) ∈ E h(v, t) − h(u, t) ≤ c(u, v), that is, h is a consistent lower estimate
for the distance between a node v and t.

We have a modi�ed arc cost function c′, where c′(u, v) = c(u, v) + h(v, t)−
h(u, t). To answer an s, t query, we run a simple Dijkstra algorithm on the graph
from s using this modi�ed cost function.

If h ≡ 0, then the A* algorithm is the same as Dijkstra's algorithm. If h(u, v)
is the cost of the shortest path between u and v, the algorithm will only �nalize
the nodes on the shortest path.

In road networks, if c(u, v) is the distance we must travel, we can also use
the Euclidean distance for h(u, v).

By using the function h, we try to reduce the number of nodes we �nalize,
since the search will select nodes that are closer to the target node.

Similarly to Dijkstra's algorithm, there is a bidirectional version of the A*
algorithm.

1.3 Methods with preprocessing

Most modern methods require a preprocessing phase before we can answer
queries. In this phase we calculate same data, which we can use later to speed
up the queries. The methods we examined all depend on �nding �important�
nodes. The importance of a node is determined by heuristics.

Most articles claim that the algorithm they describe is very e�cient and
thousands of times faster than Dijkstra's algorithm. These claim are true under
certain conditions, however, we have to keep in mind that comparing methods
are di�cult, as the query speeds largely depend on the chosen s, t pairs and the
structure of the graphs as well.

1.3.1 Highway Hierarchies

Highway Hierarchies (from now on HH) tries to take advantage of the hierarchy
of road networks. Basically, the more shortest paths go through an edge, the
higher it is in the hierarchy. We examine this method more closely in section 3.

In [11] we can clearly see that the method provides large speedup only with
very distant s, t pairs in the USA and European graphs, which have 18 million
nodes. An average query will only be a few hundred times faster than Dijkstra's
algorithm.

In [12], they claim that the method is almost ten thousand times faster than
Dijkstra's algorithm and that Dijkstra's algorithm �nalizes 12000 times as many
nodes.

6

1.3.2 Highway Node Routing

Highway Node Routing (HNR from now on) is very similar to Highway Hierar-
chies. In fact, in [1], they use the results of the preprocessing method of HH to
obtain the level of the nodes. We examine this method very closely in section
4, since in the article, they claim that it can be easily adapted to the dynamic
scenario. A more recent version of the same article is present in [8]. They
only compare the method with HH in [8] and [13], and it turns out that the
performance is almost the same.

In [2] they obtained the original implementation of HNR and integrated it
into their application. The tests they performed show that HNR is at most a
thousand times faster than Dijkstra's algorithm. However, the same measure-
ments show that calculating a larger distance table yields a signi�cantly larger
speedup, which suggests that the original implementation contains additional
functionality that is not mentioned in the original article.

1.3.3 Contraction Hierarchies

Contraction Hierarchies (from now on CH) is a special version of HNR that is
faster and simpler [4]. We examined this method in the BSc thesis [19]. Section
2 contains a summary. We expanded our implementation to account for the
dynamic case.

In the original article [4], they show that CH is 5-6 times faster than HNR.
In [5] they suggest that using the same �importance� of the nodes that was

determined during the preprocessing can be used when arc costs change, so the
preprocessing will be faster. We will examine this later in section 6.5.2.

In [7], they split the preprocessing into a �rst metric-independent and second
fast metric-dependent phase, so when the arc costs change, we only have to
repeat the second phase. They claim that this does not reduce the query times
signi�cantly.

1.3.4 Transit Node Routing

Calculating all pairs of shortest paths in the preprocessing phase is too expensive
both in terms of time and memory required.

In a road network however, every node s has a set of access nodes A(s) such
that every long distance s, t shortest paths goes through a node in A(s). Good
examples are bridges on a river or the endpoints of the routes into towns.

We can select a suitable subset T ⊆ V of transit nodes and calculate the
node sets A(v) ⊆ T for every node v. Finally, we create a distance table on
the nodes of T and we store the shortest paths between v and the nodes of
A(v) for every v. Then we can answer a query with a few table lookups, that is
d(s, t) = min{d(s, v) + d(v, w) + d(w, t) : v ∈ A(s), w ∈ A(t)} [3].

We can combine Transit Node Routing with other methods. We can either
select T as the set of most important nodes that the other method �nds, or we
can use the other method to run the search on the less important nodes and use
the distance table of Transit Node Routing on the most important nodes.

7

We examined the combination of Transit Node Routing and CH in the BSc
thesis [19], and expanded the implementation and tested it in section 6.4.1.

1.4 Summary

A summary of the di�erent methods can be found in [9]. The following �gure,
taken from the article, shows preprocessing times and speedup of the di�erent
techniques.

Figure 1: Summary of the di�erent techniques taken from [9]

As we can see, there are several di�erent methods and combinations, and
even those can have di�erent versions with small changes that a�ect both the
preprocessing and the query times.

2 Contraction hierarchies

In a road network there are more important intersections, such as large in-
terchanges. And there are less important intersections which lie only on local

8

shortest paths, for example in small villages. If we could eliminate such unim-
portant nodes to reduce the search space, we could achieve much shorter query
times.

The aim of Contraction Hierarchies (CH) method is to achieve this goal.
The algorithm contains a preprocessing phase in which we identify unimportant
nodes using heuristics. Later we answer the queries using a slightly modi�ed
bidirectional Dijkstra algorithm.

2.1 Preprocessing

Our input is a (directed) graph G = (V,E) and the cost function c : E0 → R+.
During the preprocessing we assign priorities to the nodes of the graph and

contract the least important node until there are nodes in the graph.

De�nition. Contracting a node v means the following: for every pair of u,w ∈
V where (u, v) ∈ E and (v, w) ∈ E we examine the shortest u → w path.
If this path is P = u, v, w, then we add an arc (u,w) to E with c(u, v) =
c(u, v) + c(v, w), the cost of the path. When we have checked all pairs, we
remove v from the graph for the remainder of the preprocessing.

Figure 2: Contracting node v: we need to add the edge (u,w1), but we do not
need (u,w2).

Note. After contracting a node, the cost of the shortest paths between the
remaining nodes do not change.

Calculating the priority of the nodes is based on heuristics.
The most important one is the edge di�erence of a node v [4]. It is the number

of new arcs we need to insert when contracting v minus the arcs incident to v.
If this is small, it means that locally only a few shortest paths go through v. In
the example above, the edge di�erence of v is −2.

It is also important to contract nodes in a uniform fashion in the graph.
That is, the priority of a node v is larger if there are more contracted nodes
around it. A good heuristic is the number of contracted neighbors. This will
hopefully speed up the search between both local and distant pairs of nodes.

There are many additional heuristics we can use to gain small amounts of
additional speedup [6]. However, when we contract a node, the priority of the

9

other nodes change, so we have to recalculate the priorities. So if we use too
many or too complex heuristics, then the preprocessing will be slower.

When the preprocessing is �nished, we get the order of the nodes they were
contracted in, and the original graph with the new arcs. We create two new
graphs: G↑ = (V,E↑) that contains arcs (u, v) where u comes before v in the
order, and G↓ = (V,E↓) that contains the rest.

Notation. Let P↑(s, v) denote the shortest path between s and v in G↑, and
d↑(s, t) the cost of this path. Similarly, P↓(v, t) and d↓(v, t) is the shortest path
and its cost between v and t in G↓ .

2.2 Finding the shortest paths

To �nd the shortest path between nodes s and t, we simply run a bidirectional
Dijkstra algorithm. The forward search runs from s in G↑ and the backward
search runs from t in G↓. We synchronize the searches by alternately �nalizing
the nodes in them.

The shortest path will be of the form P↑(s, v) ∪ P↓(v, t), where the node
v was �nalized in both searches (v can also be s or t). When we �nd such a
node v, we only get an upper estimate d′ = d↑(s, v) + d↓(v, t) for the cost of
the shortest path. During the searches, we keep the value dmin, which is the
minimum of all d′ estimates we have found so far. Since this in only an estimate,
we must not stop the searches. We have to continue the forward search until
the distance d↑(s, v) of the next �nalized node v is smaller than the value of
dmin. Similarly, we have to continue the backward search as well. When the
searches terminate, the value of dmin will be the cost of the shortest path. The
following �gure shows a small example:

Figure 3: Example CH search: the nodes are in the order of contraction

The forward search will �nalize v with distance d↑(s, v) = 1, and the back-
ward search will �nalize it with d↓(t, v) = 1000, giving an estimate for the
shortest path cost of d′ = 1001.

The backward search terminates, while the forward search will �nalize b and
�nally t with d↑(s, t) = 1000, which is the cost of the shortest path.

Note. If we have a node v that was �nalized in both directions, then the nodes
of P↑(s, v) and the nodes of P↓(v, t) are in ascending order according to the
order of contraction. That is, from the nodes on the path P↑(s, v) ∪ P↓(v, t),
node v was contracted last.

10

Note. We can reuse the information of the backward search if we want to answer
multiple queries whose targets are the same node t. Similarly, we can reuse the
forward search if the sources are the same.

2.3 Retrieving the path

The path we �nd usually contains arcs that we added during the preprocessing
algorithm. If we want to �nd the actual path, for example to draw it on a GPS,
then we have to store additional data during the preprocessing phase.

A new arc that we add during the contraction of v represents two arcs
incident to v: (u, v) and (v, w). It is enough if we store these two arcs on the
new arc. Note, that a new arc can represent other new arcs, not only original
arcs.

Additionally, during the search, we have to maintain the node nodemin,
from which we got the current value of dmin.

When the searches terminate, we obtain the paths P↑(s, dmin) and P↓(dmin, t)
from the searches using the parent pointers from dmin. We can now recursively
�unpack� the arcs of the path P↑(s, dmin) ∪ P↓(dmin, t) to obtain the original
path.

2.4 Combination with Transit Node Routing

We can gain additional speedup of the queries if we compute a distance table
between the last few nodes T ⊆ V that we contract. In our experiments, we
chose the last |T | =

√
|V | nodes.

The searches do not continue from these nodes. Instead, when we �nalize a
node v ∈ T in the forward search, we have to examine every node w ∈ T that
was already �nalized in the backward search, whether d↑(s, v)+d(v, w)+d↓(w, t)
is a better estimate than the current dmin, and update it if necessary. We do
the same with the backward search.

If we want to obtain the actual path, we have two choices. We can explicitly
store the shortest paths between the

(|T |
2

)
nodes, which requires a lot of memory.

Or when the searches terminate, we �nd out which two nodes from T are on the
path, and run a CH search between these two nodes, which is fast, since they
are both at the end of the contraction order.

3 Highway Hierarchies

The road networks are hierarchical by nature. The farther we are from our
starting location toward our destination, the more we want to take a faster
road, such as a highway.

The Highway Hierarchis (HH) identi�es the highway edges of a graph, and
creates a hierarchy in the preprocessing phase to make the queries faster.

11

3.1 Preprocessing

Our input is a graph G = (V,E) and the cost function c : E0 → R+.
During the preprocessing we will create new graphs Gi,A = (Vi,A, Ei,A) and

Gi,B = (Vi,B , Ei,B) for every i = 1, . . . , L, if we want to create L number of
additional levels in the hierarchy. The original graph G will be G0,B with our
notation.

De�nition. For every level i = 0, . . . , L − 1, we have a neighborhood radius

ri(v) for every node v of the graph Gi,B . The radius is usually chosen so that
for Ri(v) = {w : d(v, w) < ri(v)}, |Ri(v)| = H for a parameter H.

De�nition. We call an edge (u, v) a highway edge in level i if there exists s, t
such that the shortest path between s and t contains (u, v) and v /∈ Ri(s) and
u /∈ Ri(t). The following �gure contains an example.

Figure 4: The dashed edges are the highway edges. The edge (a2, b1) for example
is a highway edge, since b1 /∈ R0(s).

We have two additional methods:

• edgeReduction: this method creates Gi,A from Gi−1,B by removing edges
that we do not consider highway edges.

• nodeReduction: this method creates Gi,B from Gi,A by contracting certain
nodes of the graph. The contraction algorithm is the same as the one
used in Contraction Hierarchies. A node v is contracted if #newEdges ≤
c ·#deletedEdges for a parameter c. This method will always remove the
isolated nodes.

Finally the algorithm to preprocess a graph:

Algorithm 1 preprocessHH(G)

G0,B = G
for i = 1 . . . L:

calculate ri(v) for every v ∈ Vi−1,B
Gi,A = edgeReduction(Gi−1,B , ri)
Gi,B = nodeReduction(Gi,A)

12

3.2 Finding the shortest paths

After the preprocessing is done, we have access to the graphs Gi,A, Gi,B and
the radii functions ri for i = 0, ..., L. For consistency, rL(v) =∞ for every node
v, and ri(v) =∞ if v ∈ Vi,A \ Vi,B .

To answer an s, t query, we use a modi�ed bidirectional Dijkstra algorithm
similarly to CH.

The idea is that we limit the search using the radii functions, that is, when
the search leaves the neighborhood of a node, it continues on the next level.

In addition, when searching on level i, we can bypass the nodes that were
contracted during the nodeReduction step, that is the nodes in Vi,A \ Vi,B .

The rules of the forward search are the following (the rules for the backward
search are the same):

• We begin searching from s in G0,B , that is the original graph.

• The Dijkstra search is not modi�ed if a node v ∈ R0(s).

• When relaxing an edge (u, v) and v /∈ R0(s) we only insert v into the heap
if (u, v) is a level 1 edge. We call such a node v an access node to level 1A
or 1B.

1. If v ∈ V1,B then we continue the search from v in G1,B using the
same rules.

2. If v ∈ V1,A and v /∈ V1,B , we continue the search from v in G1,A. In
this case, r1(v) =∞, so we have to search the whole component that
was contracted until we �nd the access nodes to G1,B .

Note. In nodeReduction, we only contract less important nodes, similarly to the
edge di�erence heuristic used in CH. This way, a typical search is less likely to
enter a contracted component, so the query will be faster.

Note. The algorithm works on directed graphs as well. We only need to modify
the de�nition of ri(v). In the new de�nition, d(u, v) means the distance between
u and v using the directed arcs of the graph as undirected edges.

3.2.1 An example

The rules are very complicated. Hopefully the following �gure will make it easier
to understand.

13

Figure 5: An example of the HH search algorithms.

The solid lines are the level 0 arcs, the dashed lines are the level 1 arcs, and
the dotted lines are the level 2 arcs.

We begin the search from s. The nodes v1 and v2 are in R0(s), so they will
be �nalized. When �nalizing v1, we do not relax the arc e1, since d1 /∈ R0(s).

The node b1 is a level 1A access node. It is located in a contracted component
whose nodes are not in G1,B . So from b1, we have to continue the search until
every node in the component is �nalized (the nodes b2, b3, b4 in the �gure) and
we �nd c3 who will become the access node to level 1B.

The node c1 will be a level 1 access node, so we will only search in graph
G1,B from there. Therefore, the edge e2 will not be relaxed. We also do not
relax the edge f since it goes to a contracted component, so f is not part of
G1,B .

Finally, the level 2 access node will be x1 and x2.

3.2.2 Stopping the search

Similarly to CH, the shortest path will be of the form P↑(s, v) ∪ P↓(v, t) where
node v was �nalized in both directions. The stopping criterion is the same as
well: when we �nalize a node v in both directions, we get an upper estimate for
the cost of the shortest path. Let dmin be the best estimate we found. We can
stop a search if the next �nalized node has a greater distance label than dmin.

4 Highway Node Routing

In a road network, most shortest paths run through a relatively small number
important intersections. We will denote these nodes with S0 and the graph

14

representing the road network by G0. If we precompute the shortest paths
information between the nodes of S0, we can speed up the queries, since the
information can be used to bypass some nodes during the search.

We store the precomputed information in an overlay graph G1. This graph
will contain the nodes from S0, while the edges of the graph will have the
following property: the cost of the shortest path between s, t ∈ S0 in G1 must
be the same as the shortest path between the same nodes in G0.

The same approach can be used again: we identify important nodes S1 in
G1, and construct G2, and so on.

De�nition. By the level of a node v we mean the following: level(v) =
max {i : v ∈ Gi}.

De�nition. The level of an edge e = (u, v) belonging to the graph Gi is i, that
is level(u, v) = i.

Finding a shortest paths between nodes s, t can be achieved by using a
modi�ed bidirectional Dijkstra algorithm. During the search, we do not go down
in the hierarchy, that is, we only relax an edge (u, v) if level(u, v) = level(u).

Note. The important nodes are obtained from the Highway Hierarchies prepro-
cessing method. Node v ∈ Si if v was not removed during the nodeReduction

phase of the construction of level i.

4.1 Preprocessing

We are given the graph G0 = (V0, E0), the cost function c : E0 → R+ and the
level one nodes S. From this input we have to create the graph G1. We will
provide more details about constructing G1. The other levels can be created in
a similar fashion.

During the preprocessing, we have to �nd the shortest path between s, t ∈ S
in G0 and add an (s, t) edge to G1. We do not need to calculate the shortest
path between every pair of node in S. So our aim is to minimize the number of
additional edges.

When we run a Dijkstra algorithm from s ∈ S in G0, we get a shortest paths
tree B. We have to �nd a set of nodes C ⊆ S that �cover� the branches of B.

De�nition. We are given S, s and B as before. The set C ⊆ S is a covering

set if ∀t ∈ S \C the path P from s to t in B contains an internal node from C.

Using this terminology, to create the overlay graph G1, we have to �nd a
covering set C for s ∈ S and add the edges (s, v) to G1 for every v ∈ C. We
have to do this for every s ∈ S.

Note. The Contraction Hierarchies method is a special case of Highway Node
Routing: in CH, Si+1 = Si \ {v}, where v is the ith node that we contract
(i = 0, 1, . . . , n− 1).

15

4.2 Finding covering sets

We are given the set of level 1 nodes and a node s. We have a shortest paths
tree I rooted at node s obtained from a Dijkstra search in G0. We get the
tree I ′ by deleting the descendants of every level 1 node from I. Our aim is to
determine the correct distance labels of the nodes in I ′ without running a full
Dijkstra search from s.

Note. The tree I ′ will contain only nodes v for which the shortest P (s, v) path
does not contain level 1 internal nodes. Only the leafs of the tree can be level
1 nodes, but not necessarily all of them.

Since we do not know when to stop the search exactly, we need some stopping
criterion. We examined four approaches. All of them involve running a modi�ed
Dijkstra's algorithm from s [1].

Note. As we will see, some of these approaches will incorrectly label some of
the nodes. However, this will not be a problem, since these nodes are not in the
tree I ′.

To describe the techniques, we will use the following notations:

Notation. We will refer to the current shortest paths tree built by the modi�ed
Dijkstra algorithm by B.

Notation. We will denote the path from s to v that the modi�ed Dijkstra found
by P (s, v).

Notation. The distance from s to v in the tree B will be denoted by d(s, v).
This is also the distance label of v in the Dijkstra algorithm, and the cost of
P (s, v).

An example can be found in 4.3 with explanations regarding all the tech-
niques that we will now de�ne.

4.2.1 The conservative approach

We stop the regular Dijkstra search when every node in the heap has at least
one ancestor in level 1.

If there is a long path that is not covered by a level 1 node for a while, this
method will be very ine�cient as we can see in the example later.

In the implementation, we store on every node v whether the s → v path
in B is covered. And we store a counter which stores the number of uncovered
nodes that are in the heap. The counter can be easily updated. The algorithm
stops, when it reaches zero.

4.2.2 The aggressive approach

We modify the Dijkstra search by not relaxing the edges leaving a �nalized level
1 node.

The problem with this approach is that the search may continue around
these nodes on level 0 and �ag many more level 1 nodes as covering nodes. The

16

distance labels of such nodes can be incorrect. However, since these nodes are
not in the tree I ′, this is not a problem.

4.2.3 Stall-in-advance

We continue but limit the search from a level 1 node to compensate for the
de�ciency of the previous method.

The article suggests that we do not continue the search from v, if v is covered
by c number of level one nodes. If c is one, this corresponds to the aggressive
variant.

The implementation is similar to the conservative approach. We store a
counter so we know the number of uncovered nodes in the heap. And on a node
v, instead of a boolean value, we store how many level 1 nodes are on the s→ v
path in B.

Note. All of the three previous algorithms work on directed graphs without
modi�cation.

4.2.4 Stall-on-demand

In this technique, every node can have two additional states: stopped or stalled.
We do not relax the edges leaving a level 1 node when �nalizing it. Such

a node will be stopped. As we have seen earlier, because of this, the search
continues around stopped nodes, and some can have wrong distance labels.
During the search, if we �nd a node w whose distance label is incorrect, then
w becomes stalled. We also do not relax the edges leaving a stalled node when
�nalizing it.

Finding incorrectly labeled nodes: When we �nalize a node u, and relax the
edge (u, v), we check if v is stalled or stopped. If that is the case, we begin a
search from u, for example a BFS. We are only interested in nodes w that are
in B, the partial shortest paths tree that we are currently building, so we limit
the search to the nodes of this tree. If we �nd that d(s, v) + c(v, u) + d′(u,w) <
d(s, w), then w becomes stalled. The values of d(s, v) and d(s, w) are known
from the distance labels. The value of d′(u,w) can be calculated by traversing
the path we found during the BFS from u to w. When we stall a node, we also
update its distance label as we have just realized that the previous one was not
correct. That is, we set d(s, w) = d(s, v) + c(v, u) + d′(u,w). This way, it is
possible that later on more nodes will be stalled because of w.

Note. Instead of the BFS, we could use another Dijkstra algorithm. However,
in [1] they claim that a BFS produces similarly good results and has a much
smaller overhead.

Note. During the BFS, we have to use all edges of the graph, not only the edges
of B since these additional edges can also belong to a shorter P (s, w) path. We
can see an example of this in 4.3.

17

Note. If we stall a reached but not �nalized node w, it is possible that later we
�nd a shorter path from s to w than the current label of w that we updated
when we stalled w. In this case, we have to remove the stalled state from w.

Note. Continuing the search from an unstalled node will not stall additional
nodes. Therefore it is enough to add nodes the are stalled to the queue of the
BFS.

Note. If a node v has a stalled ancestor, then v will be stalled as well.

Note. We do not add a level one node v to the covering set at the end of the
algorithm if it is stalled, since we know that the shortest s, v path contains
another level one node.

The stall-on-demand technique was only described for undirected graphs in
the articles. In the directed case, there are multiple problems that need to be
addressed. We need one additional notation before we continue.

Notation.
←−
P (u, v) will denote a path from u to v that uses arcs of the reversed

graph.

4.2.5 Directed stall-on-demand

In the undirected case, we checked if v is stalled or stopped when relaxing an
edge (u, v). If we found that the path P (s, v) ∪ {(v, u)} is shorter than the
current path P (s, u) then we stalled u.

In the directed case, regardless if the arc (u, v) does not exists, the �backward
arc� (v, u) can still be used to stall u. So we have to consider paths of the form

P (s, w) ∪
←−
P (w, v) when we decide whether we stall w.

We store two labels on every node v: df (s, v) is the regular distance label,

while db(s, v) will be the cost of a path that has the form P (s, w)∪
←−
P (w, v) for

some node w.
When we �nalize a node u because df (s, u) was minimal, we relax the out-

arcs (u, v) by updating df (s, v) = df (s, u) + c(u, v), and the in-arcs (v, u) by
updating db(s, v) = df (s, u) + c(v, u) if necessary. We will not �nalize u again.

When we �nalize a node u because db(s, u) was minimal, we only relax the
in-arcs (v, u) and update db(s, v) = db(s, u) + c(v, u) if necessary. In this case,
u may be �nalized again if its df (s, u) label becomes minimal.

When relaxing the in-arc (v, u) in either case, if v is stopped or stalled, we
begin a search from u to stall some nodes.

The modi�ed search: Since there are paths whose arcs are not directed the
same way, a simple search is not enough. It would not stall every node that has
a stalled ancestor.

We limit our search to the nodes of our treelike object as can be seen in
�gure 7.

There are two phases. In both phases we use a modi�ed BFS. We have two
queues of nodes. Initially the �rst queue contains u, while the second one is
empty.

18

In the �rst phase we use the �rst queue. We add the out-neighbors of the
currently searched node to the �rst queue, and the in-neighbors to the second
queue. During this phase, we wish to stall nodes that have a regular P (s, w)
path that do not contain reversed arcs.

In the second phase, starting when the �rst queue becomes empty, we use
the second queue and add the in-neighbors to the second queue. We do not
�nalize nodes that were �nalized in the �rst phase as they are stalled already.
However, the �rst phase will not stall nodes whose path contains a reversed arc.

In the �rst phase, if we �nd a node w for which df (s, v)+c(v, u)+d′(u,w) <
df (s, w), then w becomes stalled. The values of df (s, v) and df (s, w) are known
from the labels. The value of d′(u,w) must be calculated during the search.

In the second phase, if we �nd a node w for which df (s, v)+c(v, u)+d′(u,w) <
db(s, w) and df (s, w) =∞, then w becomes stalled. This is necessary, since we
only want to stall nodes in phase two that have stalled ancestors (that we stalled
in phase one). If df (s, w) 6= ∞ and phase one did not �nalize w, then one of
the arcs on the P (s, v) ∪ {(v, u)} ∪ P (u,w) path faces in the wrong direction.
See the second example in 4.3.

Note. The notes regarding the undirected case apply here as well.

Note. Suppose we stall node w because db(s, w) was incorrect (in the second
phase of the search). This means that df (s, w) = ∞. When w gets a new
df (s, w) label, the stalled status has to be removed.

Proposition. The algorithms correctly determine the distance labels of every

node in I ′.

Proof. By limiting a Dijkstra search, we know that the distance label of a node
v can only be equal to or larger than the distance label of v in the unmodi�ed
Dijkstra search.

We prove by induction by the order in which the nodes were �nalized in I ′

that the distance labels d(s, u) (and df (s, u) in the case of the directed stall-on-
demand) are equal for the nodes in I ′.

The node s will be the �rst �nalized node, with distance label 0.
Suppose the �rst k �nalized nodes in I ′ have correct labels. Let the next

�nalized node in I ′ be v. We know that the shortest P (s, v) path does not
contain a level 1 internal node. This means that none of the approaches will
alter the behavior of a regular Dijkstra on this node. More speci�cally, in the
stall-on-demand approach, we do not stall a node w for which the shortest
P (s, w) path does not contain a level 1 internal node. Since the labels of the
previous nodes were correct, the label of v will be correct as well.

4.3 Examples

We will describe how the di�erent techniques operate on the following graph.

19

Figure 6: The graph

The square node v1, v2, v3 are the level one nodes. We begin the Dijkstra
search from s. The tree I ′ will consist of the three nodes s, v1 and v2.

It is easy to see that the conservative approach will �nalize every node, since
v2 will be �nalized last.

The aggressive approach will not relax the arc (v1, a1), since v1 is a level one
node. Therefore a1, a2 and v3 will be �nalized with wrong distance labels, and
v3 will be falsely marked as a covering node.

In the case of the stall-in-advance technique, if we continue the search from
v1 for a while (for example we �nalize its children a1 and b1), then v3 will not
be �nalized and marked a covering node.

When using the stall-on-demand technique, the arc (v1, a1) will not be re-
laxed, since v1 is a stopped node. When we �nalize a1 with distance label
df (s, a1) = 6, v3 will be inserted into the heap. When relaxing the in-arc
(a1, v1), we notice that v1 is stopped, so we begin our modi�ed BFS from a1.
Since the path s, v1, a1 is shorter then s, a1, we stall a1. The arc (a1, a2) is not
part of the shortest paths tree, but it can still be used to stall a2, since the path
s, v1, a1, a2 is shorter than the path s, a2. Finally the BFS �nds v3 and stalls it
so it will not be a covering node.

The next �gure shows the stall-on-demand technique in more detail on a
di�erent example.

20

Figure 7: The treelike object

The square nodes v, v1, v2 are the level one nodes. Only the dashed nodes are
not �nalized. The heap currently contains the node c2 with the label db(s, c2) =
103 (and df (s, c2) =∞)

Later, when we �nalize c1, we will begin the modi�ed BFS from c1. The �rst
phase will stall the following nodes: c1, c2, c3, a2, v2. However, the �rst phase
will not reach the nodes b1, b2 and b3. Nevertheless, b1 and b2 will be inserted
into the second queue, so the three nodes will be stalled in the second phase.

The second phase also reaches node w. However, since df (s, w) = 100 6=∞,
we do not stall w.

In conclusion, we needed to relax the in-arcs during the Dijkstra search to
�nd the shorter v, c1, c2, c3, a2 path, and we needed the second phase of the BFS
to stall the b1, b2, b3 nodes.

4.4 Finding the shortest paths

When the preprocessing is �nished, we get the level of the nodes and arcs.
To answer a query, we use a modi�ed biderictional Dijkstra algorithm where

we only relax an arc (u, v) if level(u, v) = level(u), that is, we do not go down
in the hierarchy. This approach corresponds to the aggressive variant of the
preprocessing method, so it has the same problems.

Fortunately we can apply the stall on demand technique as well. The only
modi�cation we have to make is due to the fact that the de�nition of stopped
nodes is no longer valid, since we continue the search from every node. So
instead, when �nalizing node u and relaxing the backward arc (v, u) we begin

21

the stalling process if v is �nalized and level(v) > level(u) (or if v is already
stalled).

The stopping criterion is the same as in the case of CH. Nodes that we
relay in both searches give an upper estimate for the cost of the shortest path.
We keep track of the best estimate dmin, and continue the forward (and the
backward) search, until the distance label of the next �nalized node is greater
than dmin.

5 Dynamic scenario

Road conditions constantly change. There are tra�c jams resulting from ac-
cidents and high road congestion in rush hours or during road constructions.
These conditions translate to the increase of the arc costs in our graphs. When
these conditions come to an end, the arc costs revert to their original values.

The methods we previously examined all rely on precomputed data. When
the cost of an arc changes, it invalidates a large portion of this data which we
have to correct to ensure that the results of the queries are correct.

5.1 Contraction Hierarchies

In CH, we add a �shortcut edge� (u,w) to the graph instead of the arcs (u, v)
and (v, w) when contracting a node v if P = u, v, w is the shortest u→ w path.
Thus an added edge e always represents a path Pe that contains only original
edges.

When we increase the cost of an original edge f , there are two problems that
arise:

1. We must also change the length of all edges a whose path Pa contains f .
Finding edges e such as a is possible by storing the edge e on the arcs
of Pe. This, however, requires a lot of memory and it does not solve the
second problem.

2. It is possible that there is an edge b that we did not add during pre-
processing because another path trough f was shorter. After the change
however, we should add b. But by adding b, we might have to insert addi-
tional �shortcut edges� as well. So a small change can ripple through the
entire hierarchy.

5.1.1 Disabling arcs

We examined what happens when we do not account for the second case.
�Unpacking� an edge e = (u,w) to obtain Pe is done recursively. During

this recursive procedure we can mark every arc f we encounter if Pf contains a
changed arc as the following algorithm shows:

22

Algorithm 2 unpackMark(e)

input: the arc e
if (original(e)):
if (changed(e)):
mark(e)
return true

else: return false
else:
a = unpack(e.�rst)
b = unpack(e.second)
if (a || b): mark(e)
return a || b

Note. As explained before, if the arc e is not an original arc, it represent the
arc e.first = (u, v) and e.second = (v, w) arcs.

We modify the search the following way:

1. We run a CH search using the original data structure and obtain a path
P .

2. We unpack the arcs of P using the unpackMark(e) method to obtain its
original arcs and �nd the actual cost of this path taking into account the
changed costs.

(a) If the unpackMark(e) returns with true for at least one arc we run
the search again, but we exclude the marked arcs, that is, they will
not be relaxed.

(b) If we do not �nd a changed arc on the path, or we do not �nd a path
at all, we stop and return the path with the minimal cost from the
previous searches.

Note. Naturally, when we run a new s, t query, we unmark every marked arc.

This method will not always �nd the shortest path since it is possible that we
disable an arc that is actually part of it. In addition, since we do not consider
the second problem, that is, we do not run the construction algorithm so we do
not account for arcs that need to be inserted, we may not be able to �nd the
shortest path at all.

5.1.2 Preprocessing in the same order

To ensure that the queries return the exact shortest paths after changing the
arc costs, the easiest solution is to run the preprocessing again.

We can use the same order of the nodes so we do not have to calculate and
update the priorities. Hopefully, if the changes are small, using the same order
will not result in much slower queries, but the preprocessing will be much faster.

23

5.1.3 Combining with A*

We may use the A* algorithm for an s, t query. As explained in section 1.2,
we need an estimate h(v, t) for every node v in the heap. Since a CH query is
fast, we can use the unmodi�ed data structure to provide lower estimates for
the v → t shortest path costs [17]. This estimate will be the value of h(v, t).

This estimate should be very accurate, so hopefully we only need to �nalize
a few nodes. Speci�cally, when the shortest path does not contain changed arcs,
this method will only �nalize the nodes on the shortest path. In addition, since
during an s, t query we only need estimates for h(v, t), it is enough to run the
backward search only once.

Note. We can only use this method if the arc costs increase.

5.2 Highway Node Routing

HNR is very similar to CH. The added edges represent paths here as well, and
this presents the same problems.

However, one advantage we have over CH is the limited number of levels
and the method we use for construction. When we change the cost of a level 0
arc, that is an original arc, there is a relatively well de�ned and hopefully small
set of nodes on level 1 that are a�ected by the change. If we run the level 1
construction again only on these nodes, we can �repair� our data structure so
the queries will be answered correctly. And if we �nd that a level 1 arc changed
its cost, that change will only a�ect a small portion of level 2 nodes, and so on.

5.2.1 The formal algorithm

The following algorithm is a formal description of the above idea:

Algorithm 3 HNR.update(E
′
)

input: E
′
, the set changed arcs

V
′

0 = {u : (u, v) ∈ E}
for l = 1, . . . , L:
V
′

l = ∅
Rl = ∪u∈Vl−1

Au
l

for v ∈ Rl:
repeat the construction step of v in level l
if something changes, put v into V

′

l

The variables are the following: L is the number of levels of the hierarchy,
Au

l is the set of nodes whose level l construction depends on the node u, and

V
′

l is the changed node set on level l (since Vl denotes the nodes of the overlay
graph Gl).

24

5.2.2 Managing the sets

We must somehow store the sets Au
l . Fortunately, during the preprocessing

phase, we can do this.
Recall, that during preprocessing, we run a construction algorithm on every

level l = 1, . . . , L for every node v ∈ Vl. Suppose we are constructing a node v
on level l. For this we run a modi�ed Dijkstra algorithm from v as explained in
section 4.2.

The faster but more memory-consuming approach is to store node v on every
�nalized node during the algorithm. When we complete the preprocessing of
level l, every node u will contain a set of nodes, which is exactly Au

l .
A slower, less precise but more memory-e�cient approach is to store the

maximum distance on the �nalized nodes. That is, we store a number dul on
every node u, initially dul = 0, for every u and l = 1, . . . , L. When we run
the construction on node v in level l, for every �nalized node u we update dul :
dul = max(dul , d(v, u)). This way, when we want to obtain the set Au

l , we simply
run a Dijkstra algorithm from u in the reverse graph of Gl until the distance of
the next �nalized node is bigger than dul . Then Au

l will be set of �nalized nodes.
Since this is a superset of the set we would obtain using the previous method,
the update algorithm will be slower.

6 Tests

We implemented the algorithms for Contraction Hierarchies, Highway Hierar-
chies and Highway Node Routing using the LEMON C++ library. We tested
the implementations on an Intel Core i7 4770 processor clocked at 3400 MHz,
and 16 gigabytes of RAM.

6.1 Implementation di�culties

The details about these algorithms in the articles are vague at best, except for
HH, which is described well in [8].

For example, as we already mentioned, the stall-on-demand technique origi-
nally only works on undirected graphs, and some details and explanations were
missing from the article.

Because of the lack of information, our implementations cannot hope to
match the e�ciency reported by the authors. However, we found that we get
similar performance variations between our implementations as we can �nd in
[9].

6.2 The graphs

We tested the implementations on some of the graphs provided for the 9th
DIMACS Implementation Challenge in 2006 [22], and a graph of the Hungarian
road network available on the LEMON home page [20].

The graphs, all of them directed, are the following:

25

Location Abbreviation Nodes Arcs

Rome RO 3353 8870
New York NY 264346 733846
Hungary HU 292366 777988
Colorado COL 435666 1057066
Florida FLA 1070376 2712798

California CAL 1890815 4657742
West USA WUSA 6262104 15248146

Table 1: The graphs

We have previously found that the methods work di�erently on distance
graphs and travel time graphs. In the results, the -d after a graph name means
that it is the distance graph, and the -t means it is the travel time graph.

Note. Not all graphs have both distance and travel time information.

6.3 LEMON

The open source project was started in 2003 by Egerváry Research Group on
Combinatorial Optimization (EGRES) at the Department of Operations Re-
search, Eötvös Loránd University.

The aim of the LEMON library is to e�ciently implement the algorithms
and data structures in connection with graphs and networks [20].

6.3.1 Features

There are multiple graph implementations in the library which have di�erent
goals. The ListDigraph contains methods with which we can add and delete
nodes and edges, while the StaticDigraph, as its name suggests, is static, that is
we cannot add additional edges to it, however, the implementation is faster.

We can store any type of data we want on the nodes and the arcs of a graph
using NodeMaps and ArcMaps. These map implementations are faster than the
standard template library map implementation.

There are other auxiliary data structures that we use, for example a binary
heap data structure. There is also support for reading graphs in DIMACS
format.

These algorithms and data structures are well documented at [21].

6.3.2 Disadvantages

The authors of [10] claim that using an existing library for implementing such
algorithms, where the performance is key, is not recommended. With a special-
ized implementation, we could gain additional speedups.

26

For example, Dijkstra's algorithm, while fast in LEMON, does not consider
a scenario where we have to run the algorithm multiple times and only in a
small part of the graph. When resetting the algorithm, every data structure,
that is the node maps containing the distances, predecessors and the heap are
deleted and new ones are allocated. Instead of this, we reset the values of the
nodes that were a�ected by the previous search, which is much faster, since in
a local search only a handful of nodes are a�ected.

Another example are the graph implementations. For example, if we could
iterate through the outarcs of a node in a prede�ned order, we could gain addi-
tional speedups. However, this is not possible using LEMON.

Unfortunately we did not have time for a custom tailored implementation of
the necessary data structures.

6.4 Static tests

We tested the di�erent methods by focusing on the query speed, the number of
�nalized nodes and the time needed for the preprocessing.

The times are given in seconds. The speedup and �nalized nodes are always
compared to a simple Dijkstra search. A value of x means that Dijkstra's
algorithm �nalized x times more nodes than the method under test. Similarly,
if the speedup is x, it means that the tested method was x times faster.

We always ran 100 tests between random source and target node pairs but
we use the same 100 pairs for the di�erent tests on the same graphs.

We measured what happens if we increase the number of tests from 100 to
1000 and 10000, and we found very little di�erence in the results regardless of
the method we examined and the graph we run the tests on.

6.4.1 Contraction Hierarchies

We tested multiple implementations of CH in the BSc thesis [19]. The following
table shows the results of the default implementation.

27

Graph Preprocess time Finalized nodes Speedup

RO-d 0.73 15.75 9.66
NY-d 149.636 205.21 134.57
HU-d 200.466 303.2 219.02
COL-d 92.001 444.64 233.92
FLA-d 182.991 473.54 507.13
CAL-d 540.016 884.53 442.87
WUSA-d 1920.09 1935.29 769.15

NY-t 72.133 345.52 258.2
HU-t 94.220 496.27 404.18
COL-t 34.326 960.26 501.25
FLA-t 75.025 2072.94 1131.8
CAL-t 205.420 1966.31 1018.86
WUSA-t 680.905 5233.08 1841.77

Table 2: CH results

As we can see, the CH is multiple times faster than a simple Dijkstra algo-
rithm, but performs less e�ciently on distance graphs. The additional speedup
compared to the BSc thesis can be contributed to a small refactoring of the code
and the better hardware we used for testing. Since the CH method has more
data structures associated with it than a simple Dijkstra algorithm, the faster
memory and larger CPU cache will have greater e�ect on its performance.

We also tested the CH and Transit Node Routing combination. Finding the
actual path instead of the total cost was not implemented in the BSc thesis.
Now we do this by using the second method explained in section 2.4, namely,
to obtain the path after the search �nished, we run a CH search between the
two transit nodes to �nd the path between them instead of storing it explicitly.

Graph Preprocess time Speedup Speedup with path output

NY-t 74.463 392.21 297.67
HU-t 97.502 574.94 363.35
CAL-t 215.659 2281.05 1049.7

Table 3: CH + Transit Node Routing results

The results show that the CH and Transit Node Routing combination is
10-20% faster than the simple CH with only a small increase in preprocessing
time. The retrieval of the actual paths makes the queries slower.

28

6.4.2 Highway Hierarchies

We implemented the HH preprocessing and search algorithms based on [8].
Compared to CH and HNR, the algorithmic details are relatively well written.

Parameters: As a reminder, H is the neighborhood size to determine highway
edges, and c is a constant that determines when to contract a node.

We chose the following parameters for the preprocessing: H = 50, c = 0.5,
and we increased H by 20 per every level.

These parameters turned out to be a safe choice for most of the graphs.
Precisely �nding the best ones would require weeks of trial and error as the
preprocessing time is largely a�ected by these parameters.

However, we have found the following correlations:

• Increasing H reduces the number of nodes on each level, makes the queries
a little faster, and signi�cantly increases the preprocessing time.

• The values for c below 0.5 result in hours of preprocessing time and less
nodes per level.

• The values for c above 1 usually removes all nodes from the graph in the
�rst few levels.

Note. We run the preprocessing until no more nodes remain, that is all of them
are contracted by the nodeReduction method.

Speedup test: The following table contains the results:

Graph Preprocess time Finalized nodes Speedup

NY-d 75.547 5.33 2.16
HU-d 178.614 6.71 2.88
CAL-d 289.375 20.65 6.48

NY-t 32.345 7.64 3.81
HU-t 94.428 11.08 4.66
CAL-t 130.123 48.43 17.16
WUSA-t 447.533 111.13 36.71

Table 4: HH results

As we can see, similarly to CH, HH works better on the travel time graphs.
Compared to CH, we see similar di�erences in performance as we can see in [9].

29

Testing termination condition: We examined what happens during an s, t
query if we immediately stop the search when we �nd a node v that was �nalized
in both directions and take a path of the form P↑(s, u) ∪ P↓(w, t) where u and
w were �nalized in the forward and backward search respectively. Since we do
not always �nd the shortest path this way, we also measured the average error
of the found path, that is, how many times longer it is than the shortest path.
We found that only 10% of the found arcs are incorrect, and even in those cases
the error is small.

Graph
Preprocess Finalized

Speedup Error
Original

time nodes speedup

NY-t 32.501 17.69 8.39 1.00090 3.81
HU-t 92.320 25.38 11.33 1.00033 4.66

Table 5: HH results: early stop

The results are similar on the other graphs as well. As we can see, we gained
additional speedups and the errors are not substantial, which suggests that other
termination conditions might be more e�cient.

Finalized nodes per level: Since we only have a limited number of levels,
we also examined how many nodes the searches �nalize on each level. We ran
the test on the HU-t graph. The following chart shows the number of nodes per
level, that is, how many nodes remain on the level after the nodeReduction step.

Figure 8: Nodes per level

As we can see, most of the nodes are eliminated in the beginning and only
a small amount of nodes remain on the upper levels.

The following chart shows the number of �nalized nodes per level:

30

Figure 9: HH �nalized nodes per level

The blue line with square points shows the number of �nalized nodes in the
contracted components, while the red line with the diamond symbols shows the
number of �nalized nodes that are not in a contracted component on that level.

As we can see, the most nodes were �nalized in the middle levels relative to
the number of nodes in the corresponding level.

6.4.3 Highway Node Routing

Covering set test: In addition to the speedup test, we examined the di�erent
methods for �nding the covering sets. Here we ran the HH algorithm, and
selected 1000 random level 0 nodes from which we ran the covering set �nding
algorithm treating the non level 0 nodes as level 1 nodes.

We ran the tests on the NY-t graph. We measured the time, the number of
�nalized nodes and the number of covering nodes. There are 70396 nodes on
level 0 and 193950 on level 1. Since the times are too short, we give them in
milliseconds. The results are the following:

Method Time (ms) Finalized nodes Covering nodes

Conservative 7.07 23534 1961
Aggressive 4.80 13709 2585

Stall-in-advance 5.824 16407 2079
Stall-on-demand 522.629 13379 2492

Table 6: Finding covering nodes

As a reminder, the less covering nodes we �nd the better, since during pre-
processing we would have to add a new arc for every found covering node.

31

As we can see, the conservative approach �nds the least amount of covering
nodes but it is slower than the aggressive and Stall-in-advance methods. The
stall-in-advance technique has the best overall performance in that it is faster
than the conservative approach and provides a smaller covering set than the
aggressive method, so we use this for the preprocessing.

The surprising result comes from the Stall-on-demand approach. It �nalizes
the least amount of nodes, but has poor performance. It only stalled a total of
315 nodes. This means that the stalling process in Stall-on-demand is relatively
expensive and we should not expect wonders from it. However, this method was
originally developed to increase the query speeds and not for preprocessing. As
we will later see, it performs better during the search.

Speedup test: Here we compared the aggressive and stall on demand tech-
niques, as the conservative approach would be the same as running a simple bidi-
rectional Dijkstra algorithm, and the Stall-in-advance technique cannot even be
de�ned appropriately for the search. The following tables contains the results:

Stall-on-demand Aggressive

Graph
Preprocess Finalized

Speedup
Finalized

Speedup
time nodes nodes

NY-d 83.121 137.11 0.48 49.10 0.79
HU-d 201.334 439.23 0.495 154.89 0.858
COL-d 64.791 104.03 1.48 47.35 2.27
FLA-d 116.163 162.166 5.07 96.32 6.0
CAL-d 309.307 917.87 1.41 228.6 2.22

NY-t 35.078 62.52 3.43 20.22 2.68
HU-t 108.808 223.099 0.66 66.64 2.26
COL-t 27.118 188.61 17.34 43.22 10.59
FLA-t 60.209 344.42 74.59 105.41 25.19
CAL-t 141.037 457.43 25.08 71.64 10.59
WUSA-t 480.722 1309.82 63.64 147.40 19.13

Table 7: HNR results

The results are very surprising. The preprocessing contains the preprocessing
of HH to obtain the node levels as well. Compared to this, HNR only takes a
few seconds.

Similarly to CH and HH, we obtained better results in the travel time graphs.
The method does not really work well with distance graphs.

On larger graphs, the stall on demand technique works better than the ag-
gressive variant of the search on the travel time graphs. And it seems that the
aggressive method performs better on the distance graphs.

32

The most surprising result is the number of �nalized nodes compared to the
speedup. For example in CAL-d, Dijkstra's algorithm �nalizes 900 times as
many nodes as HNR, but we only got a very small speedup. This suggests that
the stall-on-demand technique has a large overhead.

We performed an additional test where the arcs were ordered according to
their level in descending order. This way, the searches were faster by two times
then without it. Unfortunately, in the dynamic scenario, the ordering of the
arcs is lost.

The HNR described in [1] was only tested on undirected graphs. In that
case, the stall on demand technique is simpler and faster, since we do not have
to perform additional backward steps during the search as explained in section
4.2.5. We tested this method with our modi�cations on directed ones and we
can see that it works on larger graphs with the travel time metric.

Finalized nodes per level: We examined the number of �nalized nodes per
level the same way as in the HH test on the same HU-t graph.

The graph had 25 levels and there were 107 nodes on the last level. The
following �gure shows the number of �nalized nodes per level:

Figure 10: HNR �nalized nodes per level

Tests on other graphs show similar patterns. Therefore a good improvement
could be made by either breaking up the last 2-3 levels into more smaller ones, or
creating a distance table on their nodes, since they only contain a few hundred
nodes. However, this would defeat the purpose of why we examined HNR more
closely, namely we want to update the data structure quickly when the arc costs
change, and if we have a distance table, we cannot do that.

In HH, we limit the search on a level to the neighborhood of the access
nodes. In the beginning of the search, we will have an increasing number of
access nodes on the successive levels, but after a while, this number will start
to decrease as there are fewer nodes on the upper levels. In contrast, the HNR

33

search quickly reaches the upper levels since we jump to the highest possible
level as soon as we can.

6.5 Dynamic scenario tests

We tested all the methods we described in section 5 using di�erent scenarios.

6.5.1 Testing methods

We examined two methods: randomly changing the cost of a few arcs, and
simulating a tra�c jam.

Random method: After the static tests, we examined how many of the short-
est paths went through each arc. In order to successfully test the dynamic sce-
nario, we selected arcs that were used by many paths, since if we had chosen
randomly, there would have been no guarantee that the shortest paths would
be di�erent. Finally, we multiplied the costs of these arcs by a random number
c ∈ (1,m] for each arc for a parameter m.

Simulating a tra�c jam: It is very hard to describe tra�c jams mathemat-
ically. There are many variables to consider from vehicle density to the number
of lanes and weather conditions [15].

Since we only know the travel times on the arcs of the road network we
simulated a tra�c jam the following way: we chose a random arc (u, v) whose
cost was multiplied by a random number c ∈ (1,m] with probability 1− p and
with probability p, the arc was completely blocked. Then iteratively we chose a
new arc (a, b), where b is the tail of an already changed arc, and we either block
that arc with probability p or multiply its cost with 1 + c · 0.75i where i is the
number of arcs between a and the initially selected tail of (u, v), that is u. We
choose a total of x arcs.

We also examined what happens when we simulate 5 tra�c jams.

Note. We tried other distributions as well. However, the tests show that there
is no signi�cant di�erence between the distributions when they result in similar
changes to the arc costs. The only general observation we can make is that the
greater the change, the less e�cient the methods become.

6.5.2 Contraction Hierarchies

As mentioned before, we have three methods from handling the dynamic sce-
nario in CH. We can use the same order of the nodes to preprocess that graph
again, we can try to �nd the right path by iteratively disabling changed arcs
and we can use the CH in an A* algorithm.

34

Using the same order: Wemeasured the preprocessing time and the speedup
compared to Dijkstra's algorithm. The following table contains the results for
changing 100 arcs with m = 5 and p = 1

10 :

Graph Method Update time Speedup Original speedup

NY-t
Random 7.0 253.23

258.2
Jam simulation 5.03 259.05

HU-t
Random 10.05 355.14

404.18
Jam simulation 10.127 362.20

FLA-t
Random 21.763 1119.53

1131.8Jam simulation 21.433 1149.98
5 Jam 21.649 1130.01

Table 8: CH results, preprocessing using same order

As we can see, preprocessing the graph using the same order is relatively
fast, it can be done under a minute even on larger graphs. The speedups are a
little lower compared to the static CH.

We also tested what happens when we increase the number of changed arcs.
We ran the test using 1000 random s, t pairs. The following chart shows the
measurements on the NY-t graph (the time is in seconds).

Figure 11: Update time per number of changed arc

Figure 12: Speedup per changed arc

35

As the �gures suggests, if the number of changed arcs increase, the queries
take longer. However, the update time does not seem to be a�ected signi�cantly,
although we can see a small increase. To explain the drop in the update time
at 700 changed arcs we have to remember that the construction time depends
on the order that we process the nodes in. This order gets worse and worse as
we change more arcs. However, it is possible that by changing those additional
100 arcs, the original order became �good� again.

Increasing the number of changed arcs or the value of p or m has similar
e�ects on other graphs as well.

Disabling arcs: Here we tested the method explained in 5.1.1, that is, after
running a search on the unmodi�ed CH, we disable the arcs whose path contain
changed arcs and run the search again until we �nd an unchanged path.

We used the same graphs and scenarios as in the previous test. We counted
the number of times we had to repeat the search, and since we do not always
get the shortest path, we also measured the error of the method. We ran 100
tests and we used m = 5 and p = 1

10 .

Graph Method Average number of repeated searches Error

NY-t
Random 2.688 1.08

Jam simulation 2.43 1.0002

HU-t
Random 4.89 1.086

Jam simulation 5.64 1.003

FLA-t
Random 3 1.105

Jam simulation 2.12 1.003
5 Jam 2.066 1.002

Table 9: CH results, disabling arcs

When selecting the arcs, it is possible that more than one changed arc will
be on the tested shortest path, making this method less reliable as shown by
the error amounts.

Furthermore, it seems that trying to �nd an alternate route using CH in a
city is easier than doing so in a more rural area as we can see from the number
of tries we had to make on the di�erent graphs.

The number of tries we have to make is independent of the severity of the
change, since we always run the searches on the same unmodi�ed CH.

Increasing m or p or the number of changed arcs produces worse results. We
tested this on NY-t with 1000 changed arcs instead of the original 100. The
results were 4.64 average repeats and 1.21 error ratio.

36

Combining with A*: We ran an A* search on the NY-t graph using the
static CH as lower estimates for the distance from the target. Unfortunately,
we had to run the CH too many times, so overall the algorithm was slower than
a simple Dijkstra algorithm. It took 2.5 times as long to �nd the correct path.

The performance is similar on other graphs as well.

6.5.3 Highway Node Routing

Here we tested the method described in section 5.2. We also tested the same
approach for disabling arcs as we did with CH.

Updating the data structure: We tested the method similarly to the re-
construction of CH using the same order. We changed the length of 100 arcs
with m = 5 and p = 1

10 in the case of tra�c jam simulation. We also measured
the speedup compared to a Dijkstra search.

The following table shows the results of our experiments:

Graph Method Update time Speedup Original speedup

COL-t
Random 0.72 17.4

17.34
Jam simulation 0.66 18.27

FLA-t
Random 0.27 73.47

74.59Jam simulation 0.22 71.51
5 Jam 0.23 75.84

CAL-t
Random 4.08 23.62

25.08
Jam simulation 2.745 25.07

Table 10: HNR results, updating data structure

Updating the data structure when simulating a tra�c jam is faster. This is
not surprising, since the tra�c jam is local, so we have to run the reconstruction
on less nodes in the upper levels.

When we increase m or p or the number of arcs we change, the update times
can increase. However, it is unlikely that more than a 100 arcs change their
costs in less than 10 seconds.

We can also see that the query times are not signi�cantly a�ected by the
changes.

All in all, the results show that we can compensate for the changing of arc
costs quickly even on large graphs.

Disabling arcs: This is the exact same experiment as we did when testing
CH. The results are the following:

37

Graph Method Average number of repeated searches Error

FLA-t
Random 5.7 1.12

Jam simulation 4.83 1.002
5 Jam 5.032 1.0001

CAL-t
Random 3.72 1.03

Jam simulation 2.625 1

Table 11: HNR results, disabling arcs

The results show, that we have to run the algorithm more times than in CH,
and the errors are similar. This is due to the fact that we have less levels, which
means we have more paths that we can check, since in CH, paths that are not
shortest paths sooner or later disappear.

However, since HNR is not as fast as CH, this method is not recommended,
as we have to run HNR too many times to get any signi�cant speedup.

6.6 Conclusion

We have seen that adapting algorithms for the dynamic case, which were de-
signed to work well for the static scenario, is di�cult. We have to �nd the
balance between the e�ciency of the method and the time required to update
the data structures behind it.

Using HNR provides small speedups, but we can easily adapt to arc changes
in seconds and continue to provide correct results.

Using CH, the update procedure takes longer. During this time, we could
use the arc disabling method to quickly provide results with only small errors.

If we have a large server park with multiple machines, we could combine
both methods. When there are no changes, we can use CH, and when the CH
is updating, we can answer the queries a little slower using the already updated
HNR.

References

[1] Schultes, D., Sanders, P. (2007). Dynamic highway-node routing. In Exper-
imental Algorithms, LNCS 4525, (pp. 66-79). Springer Berlin Heidelberg.

[2] Van Wol�elaar, J., & Hoogeveen, J. A. (2010). Highway Node Routing:
increasing �exibility and putting it into practice.

[3] Bast, H., Funke, S., Sanders, P., & Schultes, D. (2007). Fast routing in road
networks with transit nodes. Science, 316(5824), (pp. 566-566).

[4] Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction
hierarchies: Faster and simpler hierarchical routing in road networks. In
Experimental Algorithms (pp. 319-333). Springer Berlin Heidelberg.

38

[5] Geisberger, R., Sanders, P., Schultes, D., & Vetter, C. (2012). Exact rout-
ing in large road networks using contraction hierarchies. Transportation
Science, 46(3), (pp. 388-404).

[6] Funke, S., & Storandt, S. (2013, June). Polynomial-time construction of
contraction hierarchies for multi-criteria objectives. In Sixth Annual Sym-
posium on Combinatorial Search.

[7] Dibbelt, J., Strasser, B., & Wagner, D. (2014). Customizable contraction
hierarchies. In Experimental Algorithms (pp. 271-282). Springer Interna-
tional Publishing.

[8] Schultes, D. (2008, February). Route Planning in Road Networks. In Aus-
gezeichnete Informatikdissertationen (pp. 271-280).

[9] Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T.,
Sanders, P., ... & Werneck, R. (2014). Route planning in transportation
networks. In Technical Report MSR-TR-2014-4. Microsoft Research, Mi-
crosoft Corporation.

[10] Delling, D., Sanders, P., Schultes, D., Wagner, D. (2009). Engineering route
planning algorithms. In Algorithmics of large and complex networks (pp.
117-139). Springer Berlin Heidelberg.

[11] Sanders, P., & Schultes, D. (2005). Highway hierarchies hasten exact short-
est path queries. In Algorithms�Esa 2005 (pp. 568-579). Springer Berlin
Heidelberg.

[12] Sanders, P., & Schultes, D. (2006). Engineering highway hierarchies. In
Algorithms�ESA 2006 (pp. 804-816). Springer Berlin Heidelberg.

[13] Sanders, P., & Schultes, D. (2007). Engineering fast route planning algo-
rithms. In Experimental Algorithms (pp. 23-36). Springer Berlin Heidel-
berg.

[14] Sanders, P., & Schultes, D. (2012). Engineering highway hierarchies. Jour-
nal of Experimental Algorithmics (JEA), 17, (pp. 1-6).

[15] Bellomo, N., & Dogbe, C. (2011). On the modeling of tra�c and crowds:
A survey of models, speculations, and perspectives. (pp. 409-463). SIAM
review, 53(3),

[16] Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the
heuristic determination of minimum cost paths. Systems Science and Cy-
bernetics, IEEE Transactions on, 4(2), (pp. 100-107).

[17] Ohshima, T., Eumthurapojn, P., Zhao, L., Nagamochi, H. (2010). An
A* Algorithm Framework for the Point-to-Point Time-Dependent Short-
est Path Problem. CGGA (pp. 154-163).

39

[18] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.
Numerische mathematik, 1(1), (pp. 269-271).

[19] http://www.cs.elte.hu/blobs/diplomamunkak/bsc_alkmat/2013/gobor_daniel.pdf

[20] http://lemon.cs.elte.hu/trac/lemon

[21] http://lemon.cs.elte.hu/pub/doc/latest/index.html

[22] http://www.dis.uniroma1.it/challenge9/

40

	1 Introduction
	1.1 Dijkstra's algorithm
	1.1.1 Description of the algorithm
	1.1.2 Finding the minimal element
	1.1.3 Bidirectional Dijkstra

	1.2 The A* algorithm
	1.3 Methods with preprocessing
	1.3.1 Highway Hierarchies
	1.3.2 Highway Node Routing
	1.3.3 Contraction Hierarchies
	1.3.4 Transit Node Routing

	1.4 Summary

	2 Contraction hierarchies
	2.1 Preprocessing
	2.2 Finding the shortest paths
	2.3 Retrieving the path
	2.4 Combination with Transit Node Routing

	3 Highway Hierarchies
	3.1 Preprocessing
	3.2 Finding the shortest paths
	3.2.1 An example
	3.2.2 Stopping the search

	4 Highway Node Routing
	4.1 Preprocessing
	4.2 Finding covering sets
	4.2.1 The conservative approach
	4.2.2 The aggressive approach
	4.2.3 Stall-in-advance
	4.2.4 Stall-on-demand
	4.2.5 Directed stall-on-demand

	4.3 Examples
	4.4 Finding the shortest paths

	5 Dynamic scenario
	5.1 Contraction Hierarchies
	5.1.1 Disabling arcs
	5.1.2 Preprocessing in the same order
	5.1.3 Combining with A*

	5.2 Highway Node Routing
	5.2.1 The formal algorithm
	5.2.2 Managing the sets

	6 Tests
	6.1 Implementation difficulties
	6.2 The graphs
	6.3 LEMON
	6.3.1 Features
	6.3.2 Disadvantages

	6.4 Static tests
	6.4.1 Contraction Hierarchies
	6.4.2 Highway Hierarchies
	6.4.3 Highway Node Routing

	6.5 Dynamic scenario tests
	6.5.1 Testing methods
	6.5.2 Contraction Hierarchies
	6.5.3 Highway Node Routing

	6.6 Conclusion

