
Secure Multi-Party
Computations On Graphs

Applied Mathematics M.Sc. Thesis

By:

Szilvia Lestyán

Advisor:

András Lukács
Department of Computer Science

Eötvös Loránd University

Faculty of Natural Sciences

2016

Acknowledgements

I would like to thank my friends and colleagues for the listening and thought-
ful discussions, not limited to the scope of this present work. I would also
like to acknowledge the patience and understanding of my family. Finally I
would like to thank my advisor, András Lukács, for his interesting ideas and
guidance.

Budapest, 01. January, 2016

Szilvia Lestyán

Contents

1 Introduction 4

2 Preliminaries 6

2.1 Distributed Algorithms . 6

2.2 Privacy-Preserving Data Mining 8

2.2.1 Models of PPDM . 9

2.3 Secure Multi-Party Computations 11

2.3.1 Adversarial power . 14

2.3.2 Definitions of security 17

2.3.3 Techniques for building secure multiparty computation

protocols . 19

2.4 Applied model . 24

3 Algorithms 27

3.1 Secure BFS . 27

3.2 Leader election . 29

3.3 Secure Min/Max Search on graphs 31

3.4 Secure Sum on graphs . 33

3.5 Secure Vertex Coloring . 36

4 Future Challenges 42

CONTENTS

Summary

The importance of secure multi-party computations has risen in the past
decade, nowadays we are not only considering secret sharing in the origi-
nal two-party environment, but trying to extend it on arbitrary numbers of
participants. Many combinations exist on the setting of the model, i.e. the
distribution of the secret, the topology of the parties, the available connection
among them etc. This thesis focuses on the graph model as in distributed
computing. The parties correspond to the nodes (or processors), one party
can do any local computations, can communicate only directly with its neigh-
bours, and knows nothing about the structure of the global graph or or the
data held by other nodes. The communication has to proceed privately, i.e.
parties engaging in a protocol cannot get hold of any information besides its
own input and the output of the algorithm. To respect this principle cryp-
tographic functions are applied which are known to be secure. In this paper
new protocols are created for the following problems: breath-first-search,
leader election, secure sum, minimum and maximum search of all inputs and
also graph colouring. For the latter four problems the below detailed al-
gorithms are completely new, moreover the approach of the problems, i.e.
the combination of secure computation and distributed computing are also
unprecedented.

3

Chapter 1

Introduction

Data mining is a technology that blends traditional data analysis methods
with sophisticated algorithms for processing large volumes of data [4]. It has
also opened up exciting opportunities for exploring and analyzing new types
of data and for analyzing old types of data in new ways.
Data mining techniques can be used to support a wide range of business intel-
ligence applications such as customer profiling, targeted marketing, workflow
management, store layout, and fraud detection. It can also help retailers an-
swer important business questions such as "Who are the most profitable
customers?" "What products can be cross-sold or up-sold?" and "What is
the revenue outlook of the company for next year?". Researchers in medicine,
science, and engineering are rapidly accumulating data that is key to impor-
tant new discoveries.
Data mining is the process of automatically highlighting useful information
in large data repositories. Data mining techniques are deployed to scour large
databases in order to find novel and useful patterns that might otherwise re-
main unknown. They also provide capabilities to predict the outcome of a
future observation.
Techniques from high performance (parallel) computing are often important
in addressing the massive size of some data sets. Distributed techniques can
also help address the issue of size and are essential when the data cannot be

4

1. Chapter Introduction

gathered in one location.

Confidentiality issues in data mining. A key problem that arises in any
en masse collection of data is that of confidentiality. The need for privacy is
sometimes due to law (e.g., for medical databases) or can be motivated by
business interests. However, there are situations where the sharing of data
can lead to mutual gain. A key application domain of large databases today
is research, whether it be scientific, or economic and market oriented. Thus,
for example, the medical field has much to gain by pooling data for research;
as can even competing businesses with mutual interests. Despite the poten-
tial gain, this is often not possible due to the confidentiality issues which arise.

The concept of Secure Multiparty Computation was introduced in [18]
and has been proved that there is a secure multi-party computation solution
for any polynomial function [19]. Thus, in the case of private data mining,
more efficient solutions are required. Secure two party computation was first
investigated by Yao, and was later generalized to multiparty computation [1].
These works all use a similar methodology: the function f to be computed is
first represented as a combinatorial circuit, and then the parties run a short
protocol for every gate in the circuit. While this approach is appealing in
its generality and simplicity, the protocols it generates depend on the size of
the circuit. This size depends on the size of the input (which might be huge
as in a data mining application), and on the complexity of expressing f as
a circuit (for example, a naive multiplication circuit is quadratic in the size
of its inputs). We stress that secure two-party computation of small circuits
with small inputs may be practical using some protocols.

5

Chapter 2

Preliminaries

2.1 Distributed Algorithms

Distributed algorithms [5,8,10] are the cornerstone of this thesis, but not on
their own, it is combined with secure computations to create new algorithms
in a mixed context [12,15].

• ProcessesA distributed system is made up of a collection of computing
units, each one abstracted through the notion of a process. The pro-
cesses are assumed to cooperate on a common goal, which means that
they exchange information in one way or another. The set of processes
is static. It is composed of n processes and denoted Π = {p1, ..., pn},
where each pi, 1 ≤ i ≤ n, represents a distinct process. Each process
pi is sequential, i.e., it executes one step at a time. The integer i de-
notes the index of process pi , i.e., the way an external observer can
distinguish processes. It is always assumed that each process pi has its
own identity, denoted idi; then pi knows idi (in a lot of cases - but not
always - idi = i).

• Communication Medium The processes communicate by sending
and receiving messages through channels. Each channel is assumed to
be reliable (it does not create, modify, or duplicate messages).

6

2. Chapter Preliminaries

• Structural View It follows from the previous definitions that, from
a structural point of view, a distributed system can be represented by
a connected undirected graph G = (Π, C) (where C denotes the set of
channels).

• Distributed Algorithm A distributed algorithm is a collection of n
automata, one per process. An automaton describes the sequence of
steps executed by the corresponding process. In addition to the power
of a Turing machine, an automaton is enriched with two communication
operations which allows it to send a message on a channel or receive a
message on any channel. The operations are send() and receive().

• Synchronous Algorithm A distributed synchronous algorithm is an
algorithm designed to be executed on a synchronous distributed system.
The progress of such a system is governed by an external global clock,
and the processes collectively execute a sequence of rounds, each round
corresponding to a value of the global clock. During a round, a process
sends at most one message to each of its neighbors. The fundamental
property of a synchronous system is that a message sent by a process
during a round r is received by its destination process during the very
same round r. Hence, when a process proceeds to the round r + 1, it
has received (and processed) all the messages which have been sent to
it during round r, and it knows that the same is true for any process.

• Asynchronous Algorithm A distributed asynchronous algorithm is
an algorithm designed to be executed on an asynchronous distributed
system. In such a system, there is no notion of an external time. That
is why asynchronous systems are sometimes called time-free systems.
In an asynchronous algorithm, the progress of a process is ensured
by its own computation and the messages it receives. When a pro-
cess receives a message, it processes the message and, according to its
local algorithm, possibly sends messages to its neighbors. A process
processes one message at a time. This means that the processing of

7

2. Chapter Preliminaries

a message cannot be interrupted by the arrival of another message.
When a message arrives, it is added to the input buffer of the receiving
process. It will be processes after all the messages that precede it in
this buffer have been processed.

• Initial Knowledge of a Process When solving a problem in a syn-
chronous/asynchronous system, a process is characterized by its input
parameters (which are related to the problem to solve) and its initial
knowledge of its environment. This knowledge concerns its identity, the
total number n of processes)which is usually unknown at the begin-
ning), the identity of its neighbors, the structure of the communication
graph, etc.

2.2 Privacy-Preserving Data Mining

Privacy-preserving data mining considers the problem of running data min-
ing algorithms on confidential data that is not supposed to be revealed even
to the party running the algorithm [9,11]. There are two classic settings
of privacy-preserving data mining (although these are by no means the only
ones [2]). In the first, the data is divided among two or more different parties;
the aim being to run a data mining algorithm on the union of the parties’
databases without allowing any party to view another individual’s private
data. In the second, some statistical data that is to be released (so that it
can be used for research using statistics and/or data mining) may contain
confidential data; hence, it is first modified so that (a) the data does not
compromise anyone’s privacy, and (b) it is still possible to obtain meaningful
results by running data mining algorithms on the modified data set. In this
paper, we will mainly refer to scenarios of the first type.
A classical example of a privacy-preserving data mining problem of the first
type occurs in the field of medical research. Consider the case of a num-
ber of different hospitals that wish to jointly mine their patient data for the
purpose of medical research. Furthermore, let us assume that privacy policy

8

2. Chapter Preliminaries

and law prevents these hospitals from ever pooling their data or revealing it
to each other, due to the confidentiality of patient records. In such cases,
classical data mining solutions cannot be used. Rather, it is necessary to
find a solution that enables the hospitals to compute the desired data mining
algorithm on the union of their databases, without ever pooling or revealing
their data. Privacy-preserving data mining solutions have the property that
the only information (provably) learned by the different hospitals is the out-
put of the data mining algorithm.
This problem, whereby different organizations cannot directly share or pool
their databases, yet must nevertheless carry out joint research via data min-
ing, is quite common.
Another example relates to data that is held by governments. In the late
1990s, the Canadian Government held a vast federal database that pooled
citizen data from a number of different government ministries; this database
was officially called the Longitudinal Labor Force File, but became known
as the "big brother" database. The aim of the database was to implement
governmental research that would arguably improve the services received by
citizens. However, due to privacy concerns and public outcry, the database
was dismantled, thereby preventing such "essential research" from being car-
ried out. This is another example where privacy-preserving data mining could
be used to balance real privacy concerns with the needs of governments to
carry out important research.

2.2.1 Models of PPDM

In the study of privacy-preserving data mining (PPDM), there are mainly
four models as follows [1]:

1. Trust Third Party Model: The goal standard for security is the
assumption that we have a trusted third party to whom we can give
all data. The third party performs the computation and delivers only
the results - except for the third party, it is clear that nobody learns

9

2. Chapter Preliminaries

anything not inferable from its own input and the results. The goal
of secure protocols is to reach this same level of privacy preservation,
without the problem of finding a third party that everyone trusts.

2. Semi-honest Model: In the semi-honest model, every party follows
the rules of the protocol using its correct input, but after the proto-
col is free to use whatever it sees during execution of the protocol to
compromise security.

3. Malicious Model: In the malicious model, no restrictions are placed
on any of the participants. Thus any party is completely free to indulge
in whatever actions it pleases. In general, it is quite difficult to develop
efficient protocols that are still valid under the malicious model. How-
ever, the semi-honest model does not provide sufficient protection for
many applications.

4. Other Models - Incentive Compatibility: While the semi-honest and
malicious models have been well researched in the cryptographic com-
munity, other models outside the purview of cryptography are possible.
One example is the interesting economic notion of incentive compat-
ibility. A protocol is incentive compatible if it can be shown that a
cheating party is either caught or else suffers an economic loss. Under
the rational model of economics, this would serve to ensure that par-
ties do not have any advantage by cheating. Of course, in an irrational
model, this would not work.

I remark, that in the "real world", there is no external party that can be
trusted by all parties, so the Trust Third Party Model is an ideal model.

10

2. Chapter Preliminaries

2.3 Secure Multi-Party Computations

This problem deals with a setting where a set of parties with private inputs
wishes to jointly compute some function of their inputs [7]. Loosely speak-
ing, this joint computation should have the property that the parties learn
the correct output and nothing else, even if some of the parties maliciously
collude to obtain more information. Clearly, a protocol that provides this
guarantee can be used to solve privacy-preserving data mining problems of
the type discussed above.
Distributed computing considers the scenario where a number of distinct, yet
connected, computing devices (or parties) wish to carry out a joint compu-
tation of some function. For example, these devices may be servers who hold
a distributed database system, and the function to be computed may be a
database update of some kind. The aim of secure multiparty computation is
to enable parties to carry out such distributed computing tasks in a secure
manner. Whereas distributed computing classically deals with questions of
computing under the threat of machine crashes and other inadvertent faults,
secure multiparty computation is concerned with the possibility of deliber-
ately malicious behavior by some adversarial entity. That is, it is assumed
that a protocol execution may come under "attack" by an external entity,
or even by a subset of the participating parties. The aim of this attack may
be to learn private information or cause the result of the computation to
be incorrect. Thus, two important requirements on any secure computation
protocol are privacy and correctness. The privacy requirement states that
nothing should be learned beyond what is absolutely necessary; more exactly,
parties should learn their output and nothing else. The correctness require-
ment states that each party should receive its correct output. Therefore, the
adversary must not be able to cause the result of the computation to deviate
from the function that the parties had set out to compute.
The setting of secure multiparty computation encompasses tasks as simple
as coin-tossing and broadcast, and as complex as electronic voting, electronic
auctions, electronic cash schemes, contract signing, anonymous transactions,

11

2. Chapter Preliminaries

and private information retrieval schemes. Consider for a moment the tasks
of voting and auctions. The privacy requirement for an election protocol
ensures that no parties learn anything about the individual votes of other
parties; the correctness requirement ensures that no coalition of parties has
the ability to influence the outcome of the election beyond simply voting
for their preferred candidate. Likewise, in an auction protocol, the privacy
requirement ensures that only the winning bid is revealed (if this is desired);
the correctness requirement ensures that the highest bidder is indeed the
winning party (and so the auctioneer, or any other party, cannot bias the
outcome). Due to its generality, the setting of secure multiparty computa-
tion can model almost every cryptographic problem.

Security in multiparty computation

As we have mentioned above, the model that we consider is one where an
adversarial entity controls some subset of the parties and wishes to attack
the protocol execution. The parties under the control of the adversary are
called corrupted, and follow the adversary’s instructions. Secure protocols
should withstand any adversarial attack (the exact power of the adversary
will be discussed later). In order to formally claim and prove that a proto-
col is secure, a precise definition of security for multiparty computation is
required. A number of different definitions have been proposed and these
definitions aim to ensure a number of important security properties that are
general enough to capture most (if not all) multiparty computation tasks [1].
The most central of these properties:

1. Privacy: No party should learn anything more than its prescribed
output. In particular, the only information that should be learned
about other parties’ inputs is what can be derived from the output
itself. For example, in an auction where the only bid revealed is that
of the highest bidder, it is clearly possible to derive that all other bids

12

2. Chapter Preliminaries

were lower than the winning bid. However, this should be the only
information revealed about the losing bids.

2. Correctness: Each party is guaranteed that the output that it receives
is correct. To continue with the example of an auction, this implies
that the party with the highest bid is guaranteed to win, and no party
including the auctioneer can alter this.

3. Independence of Inputs: Corrupted parties must choose their inputs
independently of the honest parties’ inputs. This property is crucial in
a sealed auction, where bids are kept secret and parties must fix their
bids independently of others. Note that independence of inputs is not
implied by privacy. For example, it may be possible to generate a
higher bid without knowing the value of the original one. Such an
attack can actually be carried out on some encryption schemes (i.e.,
given an encryption of 100 dollars, it is possible to generate a valid
encryption of $101, without knowing the original encrypted value).

4. Guaranteed Output Delivery: Corrupted parties should not be
able to prevent honest parties from receiving their output. In other
words, the adversary should not be able to disrupt the computation by
carrying out a "denial of service" attack.

5. Fairness: Corrupted parties should receive their outputs if and only
if the honest parties also receive their outputs. The scenario where a
corrupted party obtains output and an honest party does not should
not be allowed to occur. This property can be crucial, for example, in
the case of contract signing. Specifically, it would be very problematic
if the corrupted party received the signed contract and the honest party
did not.

13

2. Chapter Preliminaries

2.3.1 Adversarial power

The above informal definition of security omits one very important issue:
the power of the adversary that attacks a protocol execution. As we have
mentioned, the adversary controls a subset of the participating parties in
the protocol. However, we have not described the corruption strategy (i.e.,
when or how parties come under the "control" of the adversary), the allowed
adversarial behavior (i.e., does the adversary passively gather information or
can it instruct the corrupted parties to act maliciously), and what complexity
the adversary is assumed to be (i.e., is it polynomial-time or computationally
unbounded). Lets now view the main types of adversaries that have been
considered:
Corruption strategy: The corruption strategy deals with the question of when
and how parties are corrupted. There are two main models:

1. Static corruption model: In this model, the adversary is given a
fixed set of parties whom it controls. Honest parties remain honest
throughout, while corrupted parties remain corrupted.

2. Adaptive corruption model: Rather than having a fixed set of cor-
rupted parties, adaptive adversaries are given the capability of corrupt-
ing parties during the computation. The choice of who to corrupt and
when can be arbitrarily decided by the adversary and may depend on
its view of the execution; for this reason, it is called adaptive. This
strategy models the threat of an external "hacker" breaking into a ma-
chine during an execution. We note that in this model, once a party is
corrupted, it remains corrupted from that point on.

Allowed adversarial behavior

There are two main types of adversaries:

1. Semi-honest adversaries: In semi-honest adversarial model, it cor-
rectly follows the protocol specification, yet attempts to learn addi-

14

2. Chapter Preliminaries

tional information by analyzing the transcript of messages received dur-
ing the execution. This is a rather weak adversarial model. However,
there are some settings where it can realistically model the threats
to the system. Semi-honest adversaries are also called "honest-but-
curious" and "passive".

2. Malicious adversaries: In malicious adversarial model, a party For
example, consider the interaction between different intelligence agen-
cies. For security purposes, these agencies cannot allow each other free
access to their confidential information; if they did, then a single mole
in a single agency would have access to an overwhelming number of
sources. Nevertheless, as we all know, homeland security also man-
dates the sharing of information! It is much more likely that suspicious
behavior would be detected if the different agencies were able to run
data mining algorithms on their combined data.may arbitrarily devi-
ate from the protocol specification. In general, providing security in
the presence of malicious adversaries is preferred, as it ensures that no
adversarial attack can succeed. Malicious adversaries are also called
"active". We remark that although the semi-honest adversarial model
is far weaker than the malicious model, it is often a realistic one. This
is because deviating from a specified program which may be buried in
a complex application is a non-trivial task.

Complexity

Finally, we consider the assumed computational complexity of the adversary.
As above, there are two categories here:

1. Polynomial-time: The adversary is allowed to run in (probabilis-
tic) polynomial-time (and sometimes, expected polynomial-time). The
specific computational model used differs, depending on whether the
adversary is uniform (in which case, it is a probabilistic polynomial-
time Turing machine) or non-uniform (in which case, it is modeled

15

2. Chapter Preliminaries

by a polynomial-size family of circuits). We remark that probabilistic
polynomial-time is the standard notion of "feasible" computation; any
attack that cannot be carried out in polynomial-time is not a threat in
real life.

2. Computationally unbounded: In this model, the adversary has no
computational limits whatsoever.

The above distinction regarding the complexity of the adversary yields two
very different models for secure computation: the information-theoretic model
and the computational model. In the information-theoretic setting, the ad-
versary is not bound to any complexity class (and in particular, is not as-
sumed to run in polynomial-time). Therefore, results in this model hold
unconditionally and do not rely on any complexity or cryptographic assump-
tions. The only assumption used is that parties are connected via ideally
private channels (i.e., it is assumed that the adversary cannot eavesdrop or
interfere with the communication between honest parties). By contrast, in
the computational setting the adversary is assumed to run in polynomial-
time. Results in this model typically assume cryptographic assumptions,
such as the existence of trapdoor permutations. These are assumptions on
the hardness of solving some problem (e.g., factoring large integers) whose
hardness has not actually been proven but is widely conjectured. Note that
it is not necessary here to assume that the parties have access to ideally
private channels, because such channels can be implemented using public-
key encryption. However, it is assumed that the communication channels
between parties are authenticated; that is, if two honest parties communi-
cate, then the adversary can eavesdrop but cannot modify any message that
is sent. Such authentication can be achieved using digital signatures and a
public-key infrastructure.

16

2. Chapter Preliminaries

2.3.2 Definitions of security

Cryptographic Preliminaries

First without establishing a mathematical definition we can say that an en-
cryption scheme is secure if no adversary can compute any function of the
plaintext from the ciphertext, eg. the ciphertext reveals nothing about the
underlying plaintext, we can also say that the distributions over messages
and ciphertexts are independent [6]. Formally:

Definition 2.3.1 An encryption scheme (Gen, Enc, Dec) over a message
space M is perfectly secret if for every probability distribution over M, every
message m ∈M , and every ciphertext c ∈ C for which Pr[C = c] > 0:

Pr[M = m|C = c] = Pr[M = m].

There are cryptographic schemes that can be mathematically proven se-
cure (with respect to some particular definition of security), even when
the adversary has unlimited computational power. Such schemes are called
information-theoretically secure, or perfectly secure, because their se-
curity is due to the fact that the adversary simply does not have enough
"information" to succeed in its attack, regardless of the adversary’s com-
putational power. In particular, as we have discussed, the ciphertext in a
perfectly-secret encryption scheme does not contain any information about
the plaintext (assuming the key is unknown).
Information-theoretic security stands in stark contrast to computational

security that is the aim of most modern cryptographic constructions. Re-
stricting ourselves to the case of private-key encryption (though everything
we say applies more generally), modern encryption schemes have the property
that they can be broken given enough time and computation, and so they
do not satisfy the above definition. Nevertheless, under certain assumptions,
the amount of computation needed to break these encryption schemes would
take more than many lifetimes to carry out even using the fastest available

17

2. Chapter Preliminaries

supercomputers. For all practical purposes, this level of security suffices.
The computational approach incorporates two relaxations of the notion

of perfect security:

1. Security is only preserved against efficient adversaries, and

2. Adversaries can potentially succeed with some very small probability.

We denote the security parameter by n (n here denotes the security parame-
ter and x is the inputs to the protocol); essentially, this parameter determines
the length of cryptographic keys (or more exactly, the length of input needed
to solve some hard problem so that real-world adversaries cannot break the
problem in a reasonable amount of time). We say that a function µ(.) is
negligible in n (or just negligible) if for every positive polynomial p(.) there
exists an integer N such that for all n > N it holds that µ(n) < 1/p(n).
Note that an event that happens with negligible probability happens so in-
frequently that we can effectively dismiss it.
All parties, including the adversary, run in time that is polynomial in n. We
assume that each party has a "security parameter tape" that is initialized to
the string of n ones, denoted 1n; the parties then run in time that is polyno-
mial in the input written on that tape.
We define efficient computation as that which can be carried out in proba-
bilistic polynomial time. An algorithm A is said to run in polynomial time if
there exists a polynomial p(.) such that, for every input x ∈ {0, 1}∗, the com-
putation of A(x) terminates within at most p(||x||) steps (here, ||x|| denotes
the length of the string x). A scheme is secure if every ppt (probabilistic
polynomial time) adversary succeeds in breaking the scheme with only neg-
ligible probability.
A typical proof of security for a cryptographic scheme might show that any
adversary running in time p(n) succeeds with probability at most 1

p(n)2n
. This

implies that the scheme is (asymptotically) secure, since for any polynomial
p(n), the function 1

p(n)2n
is eventually smaller than any inverse-polynomial in

n. A scheme is secure if for every probabilistic polynomial-time adversary

18

2. Chapter Preliminaries

”A” carrying out an attack of some specified type, the probability that A
succeeds in this attack (where success is also well defined) is negligible.

Let X(n, x) and Y (n, x) be random variables indexed by n and x, and
let X = {X(n, x)}n∈N,x∈{0,1}∗ and Y = {Y (n, x)n∈N,x∈{0,1}∗} be distribution
ensembles. We say that these two random variables are computationally
indistinguishable if no algorithm running in polynomial-time can tell them
apart (except with negligible probability). More precisely, we say that X
and Y are computationally indistinguishable, denoted X ≡ Y , if for
every non-uniform polynomial-time distinguisher D there exists a function
µ(.) that is negligible in n, such that for every a ∈ {0, 1}∗,

‖Pr[D(X(n, x)) = 1]− Pr[D(Y (n, x)) = 1]‖ < µ(n).

Thus, if X and Y are indistinguishable, it holds that for every efficient dis-
tinguisher D and for every positive polynomial p(n), there exists an N such
that for all n > N it holds that D cannot distinguish between the two with
probability better than 1/p(n). Therefore, X and Y are the same for all
intents and purposes. Typically, the distributions X and Y will denote the
output vectors of the parties in real and ideal executions, respectively. In this
case, x denotes the parties’ inputs. (The outputs of the parties are modeled
as random variables since the operation of the parties is typically probabilis-
tic, depending on random coin tosses -or random inputs- used by the parties.)

2.3.3 Techniques for building secure multiparty compu-

tation protocols

Homomorphic Encryption:

A homomorphic encryption scheme is an encryption scheme which allows
certain algebraic operations to be carried out on the encrypted plaintext, by
applying an efficient operation to the corresponding ciphertext. In partic-
ular, we will be interested in additively homomorphic encryption schemes

19

2. Chapter Preliminaries

where the message space is a ring (or, more commonly, a field). There exists
an efficient algorithm +pk whose input is the public key of the encryption
scheme and two ciphertexts, and whose output is Epk(m1) +pk Epk(m2) =

Epk(m1 + m2). (Namely, it is easy to compute, given the public key alone
and the encryption of the sum of the plaintexts of two ciphertexts.)
An efficient implementation of an additive homomorphic encryption scheme
with semantic security was given by Paillier. In this cryptosystem, the en-
cryption of a plaintext from [1, N], where N is an RSA modulus, requires
two exponentiations modulo N2. Decryption requires a single exponentia-
tion. The Damgard-Jurik cryptosystem is a generalization of the Paillier
cryptosystem which encrypts messages from the range [1, N s] using compu-
tations modulo N s+1, where N is an RSA modulus and s a natural number.
It enables more efficient encryption of larger plaintexts than Paillier’s cryp-
tosystem (which corresponds to the case s = 1). The security of both schemes
is based on the decisional composite residuosity assumption:
The decisional composite residuosity problem, roughly speaking, is to
distinguish a random element of Z∗N2 from a random element of Res(N2).
Formally, let GenModulus be a polynomial-time algorithm that, on input
1n, outputs (N, p, q) where N = pq, and p and q are n-bit primes (except
with probability negligible in n).Then:

Definition 2.3.2 We say the decisional composite residuosity problem is
hard relative to GenModulus if for all probabilistic, polynomial-time algo-
rithms A there exists a negligible function negl such that

|Pr[A(N, [rNmodN2]) = 1]− Pr[A(N, r) = 1]| ≤ negl(n),

where in each case the probabilities are taken over the experiment in which
GenModulus(1n) outputs (N, p, q), and then a random r ← Z∗N2 is chosen.

20

2. Chapter Preliminaries

Secure Sum Protocol

Each participant holds onto a number of their own, and they would like to
privately compute the sum of their inputs. One Party, lets say the Main
Party, generates a random number R, adds to its local value and sends it to
the next party. All participants add their local value to the received num-
ber. At last Main Party receives the sum, subtracts R from the result and
broadcasts the result [3].

Secure Union Protocol

Let p ≥ 3 be the number of participants, they all hold onto some sets, denote
their respective sets by Hi for i = 1...p. We would like to determine the
union of all sets without revealing any of them. First every participant has
to choose a commutative encryption function. An encryption algorithm is
commutative if given encryption keys K1, ..., Kn ∈ K, for any m in domain
M , and for any permutation i, j, the following two equations hold:
(1) EKi1

(...EKin
(M)...) = EKj1

(...EKjn
(M)...)

∀M1,M2 ∈M such that M1 6= M2 and for given k, ε < 1
sk
:

(2) (EKi1
(...EKin

(M)...) = EKj1
(...EKjn

(M)...)) < ε

Now all participants encrypt their items one-by-one, and send it to an other
party, who encrypts the received encrypted items with his own encryption
function and sends it again. They iterate it until each party encrypts the
items of the remaining parties. All parties send their r-times encrypted func-
tions to one party (from now on referred to as Main Party), who removes
the duplicates. Now this global set is passed around, each site decrypting its
items. The union is obtained.

Adversarial Attack Scenarios

We wrap up our general discussion of encryption with a brief discussion of
some basic types of attacks against encryption schemes. In order of severity,

21

2. Chapter Preliminaries

these are:

• Ciphertext-only attack: This is the most basic type of attack and
refers to the scenario where the adversary just observes a ciphertext
and attempts to determine the plaintext that was encrypted.

• Known-plaintext attack: Here, the adversary learns one or more
pairs of plaintexts/ciphertexts encrypted under the same key. The aim
of the adversary is then to determine the plaintext that was encrypted
to give some other ciphertext (for which it does not know the corre-
sponding plaintext).

• Chosen-plaintext attack: In this attack, the adversary has the abil-
ity to obtain the encryption of any plaintext of its choice. It then
attempts to determine the plaintext that was encrypted to give some
other ciphertext.

• Chosen-ciphertext attack: The final type of attack is one where the
adversary is even given the capability to obtain the decryption of any
ciphertext of its choice. The adversary’s aim, once again, is then to de-
termine the plaintext that was encrypted to give some other ciphertext
(whose decryption the adversary is unable to obtain directly).

Security in the Presence of Semi-Honest Adversaries

A multi-party protocol problem is cast by specifying a random process that
maps m-tuples (do not forget that n is the security parameter) of inputs to
m-tuples of outputs (one for each party) [1]. We refer to such a process as a
functionality and denote it
f : {0, 1}∗ × {0, 1}∗...× {0, 1}∗ → {0, 1}∗ × {0, 1}∗...× {0, 1}∗, where
f = (f1, f2, ..., fm). That is, for every pair of inputs x1, x2, ..., xm ∈ {0, 1}m,
the output-tuple is a random variable (f1(x1, x2, ..., xm), (f2(x1, x2, ..., xm), ...,

(fm(x1, x2, ..., xm)) ranging over m-touples of strings. The first party wishes

22

2. Chapter Preliminaries

to obtain (f1(x1, x2, ..., xm), and the second party wishes to obtain (f1(x1, x2, ..., xm).
We often denote such a functionality by

(x1, x2, ..., xm) 7→ (f1(x1, x2, ..., xm), (f2(x1, x2, ..., xm), ..., (fn(x1, x2, ..., xm)).

Intuitively, a protocol is secure if whatever can be computed by a party
participating in the protocol can be computed based on its input and out-
put only. This is formalized according to the simulation paradigm. Loosely
speaking, we require that a party’s view in a protocol execution be simulat-
able given only its input and output. This then implies that the parties learn
nothing from the protocol execution itself, as desired.
Let’s continue with the following notation:

• Let (f1(x1, x2, ..., xm) be a probabilistic polynomial-time functionality
and let π be an n-party protocol for computing f .

• The view of the ith party (i ∈ {1, 2, ..,m}) during an execution of π on
input (x1, x2, ..., xm) and security parameter n is denoted viewπi (n, x1, x2, .., xm)

and equals (1n, xi, r
i,mi

1, ...,m
i
t), where ri equals the contents of the ith

party’s internal random tape, and mi
j represents the jth message that

it received.

• The output of the ith party during an execution of π on input (x1, x2, ..., xm)

and security parameter n is denoted outputπi (n, x1, x2, ..., xm) and can
be computed from its own view of the execution. Denote:

outputπ(x1, x2, ..., xm) =

(outputπ1 (x1, x2, ..., xm), ..., outputπn(x1, x2, ..., xm)).

Note that viewπi (x1, x2, ..., xm) and outputπ(x1, x2, ..., xm) are random vari-
ables, with the probability taken over the random tapes of all the parties.

The definition below quantifies only over inputs xi and xj(∀{i, j} ∈
{1, ...,m}) that are of the same length. Some restriction on input lengths is
required, and padding can be used to achieve this restriction.

23

2. Chapter Preliminaries

Definition 2.3.3 (security w.r.t. semi-honest behavior): Let f = (f1, f2, ..., fm)

be a functionality. We say that π securely computes f in the presence

of static semi − honest adversaries if there exist probabilistic polynomial-
time algorithms Si (i = 1, ...,m) such that for every xi ∈ {0, 1}∗ where
|xi| = |xj|∀{i, j} ∈ {1, ...,m}, we have:

{(Si(1n, xi, fi(x1, x2, ..., xm)), f(x1, x2, ..., xm))}n∈N ≡
{(viewπi (n, x1, x2, ..., xm), outputπ(n, x1, x2, ..., xm))}n∈N ∀{i, j} ∈ {1, ...,m})

This equation states that the view of a party can be simulated by a probabilis-
tic polynomial-time algorithm given access to the party’s input and output
only. This can be seen by the fact that Si is given xi and f(x1, x2, ..., xm)

and must generate an output that is indistinguishable from the view of Pi
in a real execution. We note that it is not enough for the simulator Si
to generate a string indistinguishable from (viewπi (n, x1, x2, ..., xm). Rather,
the joint distribution of the simulator’s output and the functionality output
f(n, x1, x2, ..., xm) must be indistinguishable from (viewπi (n, x1, x2, ..., xm),

outputπ(x1, x2, ..., xm)). This is necessary for probabilistic functionalities.

2.4 Applied model

Now that we have learned the possible settings of a multi-party computation,
let’s see the details of the model applied in this thesis:
Assume that the adversary is semi− honest and static. That is, it correctly
follows the protocol specification, yet attempts to learn additional informa-
tion by analyzing the transcript of messages received during the execution.
Although the semi-honest adversarial model is far weaker than the malicious
model (where a party may arbitrarily deviate from the protocol specifica-
tion), it is often a realistic one. This is because deviating from a specified
program which may be buried in a complex application is a non-trivial task.
Semi-honest adversarial behavior also models a scenario in which both parties
that participate in the protocol are honest. However, following the protocol

24

2. Chapter Preliminaries

execution, an adversary may obtain a transcript of the protocol execution by
breaking into one of the parties’ machines.

Let P1, P2, ..., Pm be parties owning (large) private databasesD1, D2, .., Dm.
The parties wish to apply a function to the joint database

⋃
Di without re-

vealing any unnecessary information about their individual databases. That
is, the only information learned by Pi about D−i (where D−i is any other
database except Di) is that which can be learned from the output of the al-
gorithm, and vice versa. We do not assume any ”trusted” third party who
computes the joint output. (Now we can see that the processes of distributed
computing correspond to the parties in this model.)
We also assume that a unique label is given to each party (or we shall say
nodes) at the formation of the graph, or at the reformation of the graph, eg.
between two algorithms nodes can join or nodes can leave the graph.
We do not assume a peer-to-peer system to be available, eg. it is not neces-
sary for all the parties to be directly connected. (Also it corresponds better
to a real life setting.) A channel between two parties is bidirectional (can
carry messages in both directions), and between all parties leads a route,
moreover let’s assume that the channels are first in first out (FIFO) which
means that the messages received in the order in which they have been sent.
This concludes that the topology of the parties corresponds with an arbitrary
strongly connected graph. In case we were to consider networks we could
say that the model is similar to a mesh network (a mesh network is a network
topology in which each node relays data for the network, all mesh nodes co-
operate in the distribution of data in the network), but this setting is different
considering security. The channels between any two parties can be secure or
insecure as well, I will consider both cases at each protocol discussed in the
next chapter. A secure channel is a way of transferring data that is resistant
to overhearing and tampering. In case of an insecure channel an eavesdrop-
per can catch any message (ciphertext) from any existing channel and try to
break it. Each party Pi has a set of neighbors, denoted Ni . According to the

25

2. Chapter Preliminaries

context, this set contains the identities (labels) of these processes. This is
the only knowledge a node (participant) can have of the global graph, eg. it
cannot "see" anything else but its direct neighbours, it does not even know
the total number of participants initially (although it could be the result of
a given protocol).
This model is partially synchronous (timing-based), i.e. we assume some
restrictions on the relative timing of events, but execution is not completely
lock-step as it is in the synchronous model. These models are the most re-
alistic, but they are also the most difficult to program. Algorithms designed
using knowledge of the timing of event can be efficient, but they can also
be fragile in that they will not run correctly if the timing assumptions are
violated.

26

Chapter 3

Algorithms

3.1 Secure BFS

I use the breath-first-search algorithm as a basic framework for communica-
tion. Along the edges of the resulting tree proceeds the encrypted message,
thus this gives us a unique order in which the computation proceeds.
The distributed version of the BFS algorithm can be found in [8]. The basic
idea for this algorithm is the same as for the standard sequential breadth-
first-search algorithm:

Algorithm 1 At any point during execution, there are some nodes that are
"marked", initially just i0, the root. The root sends out a search message at
round 1 to all of its neighbours. At any round, if an unmarked node receives
a search message, it marks itself and chooses one of the nodes from which the
search message has arrived as its parent. At the first round after a process
gets marked, it sends a search message to all of its outgoing neighbours.

There exist a variant where each node learns not only who its parent in the
tree is, but also who all of its children are. This is very important because
during the following secure computations a node does not want to send all
of its neighbours its output (mainly because of secrecy reasons), and also it
does not want to wait for incoming messages from those neighbours of whom

27

3. Chapter Algorithms

the particular node is not a parent (the message would never arrive). Thus
it is necessary for each node receiving a search message to respond to that
message with a child or non-child message, telling the sender whether or not
it has been chosen by the recipient as the parent. Moreover we also need
to mark the end of the algorithm to let everyone know that the framework
is available and desired computations can start along the BFS tree edges.
Consequently we need to add extra messages to the algorithm.

Algorithm 2 The root sends out the search messages as before. When a
node receives a search message it instantly sets and notifies its chosen parent
with a child message, and sends non-child message to those nodes from which
it received a search message but did not choose them as parent. After this the
node sends out the search message to the rest of its neighbours. The algorithm
continues until we reach a leaf node. A leaf node realizes this by receiving
non-child message from all of its children candidates. Now we need to notify
all nodes in the graph up to the root that the search has ended. The leaf sends
an end message to its parent. A non-leaf node sends the end message to its
parent after it received the child, non-child or end message from all of its
non-parent neighbours. The algorithm ends when the root is in a position to
send the end message

Security in the presence of semi-honest adversaries:

1. Privacy: Complies. No nodes learns anything about the global graph,
they learn only their parent and children nodes, i.e. the local output.

2. Independence of inputs :Complies trivially.

3. Output delivery: Complies trivially.

4. Correctness: Complies trivially.

5. Fairness: Complies trivially.

28

3. Chapter Algorithms

Security in the presence of malicious adversaries:

Lets consider the scenario when a node intentionally deviates from the pro-
tocol. The only thing it can do without getting noticed is setting several
nodes as parents, by this it violates the property of "correctness", because
the malicious node would become the child of some nodes of which it should
not be, thus corrupts their output. It could cause circles in the output graph,
thus it looses its property as a tree and that can cause problems for further
computations (e.g.: see below the secure sum algorithm), where the protocol
demands a tree.

Complexity:

The time complexity is at most 2 ∗ diam rounds, the number of messages
transmitted is 3 ∗ |E| - one search message, one child or non-child message
and one end message are transmitted on each edge. Thus the time complex-
ity is O(diam) and the communication complexity is O(|E|).

3.2 Leader election

The above algorithm does not consider the question of the root, it starts
from the point where this problem is already decided. Of course we can
suggest that the nodes were given this information before the formulation
of the graph, but let us consider the case when the nodes have to decide on
a root, i.e. a leader. The non-secure distributed algorithm is the following [8]:

Algorithm 3 All nodes who have the need of some common result send out
search messages together with their unique label. When a node receives a
search message the first time it compares its label to its own, if the new label
is greater than its own, it continues the algorithm according to the new label,
and saves it, otherwise it does not do anything. Every time it receives a new
search message it compares it to its own or the one it saved and if necessary

29

3. Chapter Algorithms

updates the BFS algorithm according to the new label. At the end of the al-
gorithm only the largest labeled messages remain and the root of the resulting
tree is the node with that particular label.

In order to create a secure version of the above algorithm we need to
specify the notion of security. There are two versions of security in this case:
(1) no node learns the identity of the root or any other root who started the
algorithm, or (2) the identity of the leader is broadcasted at the end of the
algorithm, but the identity of other candidates remain hidden. It is clear that
the second approach easily follows the first one, but we will also consider the
scenario where the elected leader has to (or could) prove that indeed it is the
elected node. But before this let us start with the first approach:
The idea of the following secure leader election algorithm is based on the
above mentioned distributed one:

Algorithm 4 During this algorithm every node has to have two unique la-
bels, of which one is public, thus for identification, and the other is private.
The algorithm goes as the above one but with the private labels. No neigh-
bour of a node learns who has sent the label, because it is not public, so up on
receiving a label it is possible that it came from a neighbour or from anyone
else in the graph. Additionally if we want proof from the root that indeed it
was its private input. In this case everyone has to send a signature along
with its label in the message.

Security in the presence of semi-honest adversaries:

1. Privacy: Partially complies. Upon receiving the labels one node can
deduce the total number of nodes in the graph. To eliminate this
problem we can send fake values to pad the set of id-s.

2. Independence of inputs: Complies trivially.

3. Output delivery: Complies trivially.

30

3. Chapter Algorithms

4. Correctness: Complies trivially.

5. Fairness: Complies trivially.

Security in the presence of malicious adversaries:

Unfortunately a malicious adversary can alter its output to top any previous
label’s value, thus the "correctness" property cannot be fulfilled at any time.
Furthermore "output delivery" and "fairness" could be breached in some of
the cases - e.g. the adversary is the only gateway between some nodes.

Complexity:

All labels pass on each edge once and only once. Thus the complexity is n|E|.

3.3 Secure Min/Max Search on graphs

Let’s assume that all nodes hold a particular value, which is an answer to a
local question (e.g.: degree of the node, latitude or altitude of their position,
smallest or highest measured temperature values etc.); we would like to ac-
quire the extrema of them securely.

Algorithm 5 1. The root invokes its key-generating algorithm, gives it
the security parameter 1n as input. The key-generation algorithm out-
puts a pair of keys (pk, sk) (where pk is the public, sk is the secret - or
private - key).

2. The root broadcasts its public key to all nodes in the graph, along with
the protocol needed to be completed by the other parties in order to fulfil
the query.

3. All non-root nodes invoke their key-generating algorithm, give the se-
curity parameter 1n - which can be derived from the received public

31

3. Chapter Algorithms

key. The key-generating algorithm outputs only one key ki, which is a
symmetric key.

4. All non-root nodes encrypt their values with ki, and also encrypt ki with
pk, their output is the following:
ci1 ← Encki(xi) ci2 ← Encpk(ki), ci := (ci1, ci2) which they send to the
root.

5. The root decrypts the ki keys, then decrypts the xi values:
ki := Decsk(ci2), mi := Decki(ci1)) = xi.

6. The root searches the required value - maximum or minimum of all
inputs then broadcasts the result.

Remark: It is highly recommended that a leaf node would generate
dummy values and would send it along with its real output, thus its par-
ent would not learn the real size of the underlying subtree.

Security in the presence of semi-honest adversaries:

1. Privacy: The root receives all values, thus learns a great deal more than
just the prescribed output. We could eliminate this problem using the
Yao-protocol between child and parent nodes, but as said earlier, this
paper aims to avoid such protocols in order to lower complexity.

2. Independence of inputs: No node -except the root- learns any other out-
put during execution, the root could be excluded from the computation
in order to keep the independence.

3. Output delivery: If the network functions well there should be no prob-
lems during the broadcast.

4. Correctness: Each party should receive a correct output.

5. Fairness: All parties receive their outputs.

32

3. Chapter Algorithms

Security in the presence of malicious adversaries:

If the root is malicious, unfortunately we cannot guarantee any of the above
requirements. It can alter the output and also prevent the last broadcast
session, thus no other node would receive the output.
In case an inner node is malicious we can guarantee much more than before.
Privacy and independence are given, because of the encryption schema that
inner node would learn nothing about others’ inputs. The other three re-
quirements cannot be fulfiled for the sub-tree of that particular node. Upon
receiving the output it can alter it or stop the execution immediately.

Security in the presence of an evesdroppers:

We know that there are plenty symmetric key encryptions to choose from
and they would provide sufficient security in sense of encryption security, i.e.
the schema can be secure against ciphertext only attack, chosen chipertext
attack etc. depending on the chosen schema.

Complexity:

The number of edges in the BFS tree are n− 1, thus the number of messages
sent is 3 ∗ (n− 1).

3.4 Secure Sum on graphs

Another basic problem among many is the secure summation of particular
values owned or locally calculated by each and every node. In the non-secure
distributed version we can easily fan-in the sum from leaves to root, i.e.
starting from the leaves we sum the values. In case of non-equal inputs this
number does not express any information about the underlying sub-tree or
the global graph for a node. In the following algorithm I combined this with
the earlier mentioned SecureSumProtocol and for the encryption I used an
additive homomorphic function:

Algorithm 6 1. The root invokes its key-generating algorithm, gives it

33

3. Chapter Algorithms

the security parameter 1n as input. The key-generation algorithm out-
puts a pair of homomorphic keys (pk, sk).

2. The root broadcasts its public key to all nodes in the graph, along with
the protocol needed to be completed by the other parties in order to fulfil
the query.

3. All leaf-nodes generate an rl random number and do the following com-
putation:
c1 ← Encpk(rl);
c2 ← rl + xl;
cl = (c1, c2).
That is it encrypts rl, and sends Encpk(rl) and rl +xl (xl is its private
value) to its parent.

4. No non-leaf node does the same, they only fan-in the two values sep-
arately up to the root. They multiply the encrypted values which gives
the encrypted sum of the values:
c1 = c11 ∗ c12 ∗ ... ∗ c1m = Encpk(r1 + r2 + ...+ rm)

5. The root decrypts the c1 added random numbers, then subtracts them
from the c2 fanned in result:
R := Decsk(c1);
M = c2 −R.

6. The root broadcasts the result.

The above algorithm is NOT secure in the presence of an eavesdropper
(capturing the incoming and the outgoing message of one particular node a
simple subtractions would give out that nodes private value. Thus we need
two different homomorphic encryption keys:

Algorithm 7 1. The root invokes its key-generating algorithm, gives it
the security parameter 1n as input. The key-generation algorithm out-
puts TWO pairs of keys (pk1, sk1) and (pk2, sk2).

34

3. Chapter Algorithms

2. The root broadcasts its public keys to all nodes in the graph, along with
the protocol needed to be completed by the other parties in order to fulfil
the query.

3. All leaf-nodes generate an rl random number and do the following com-
putation:
c1 ← Encpk1(rl);
c2 ← Encpk2(rl + xl);
c = (c1, c2).

4. All non-leaf nodes fan-in the two values seperately up to the root the
following way:
c1 = (c11 ∗ c12) ∗ ... ∗ c1m = Encpk(r1 + r2 + ...+ rm) p← Encpk2(xl);
c2 = (c21 ∗ c22) ∗ ... ∗ c2m = Encpk(r1 + x1 + ...+ rm + xm) c = (c1, c2).

5. The root decrypts the c1 added random numbers, then substracts them
from the decrypted c2 fanned in result:
M = Decsk(c2)−Decsk(c1)

6. The root broadcasts the result.

Security in the presence of semi-honest adversaries:

1. Privacy: Complies. No node learns anything more than its prescribed
output. The root learns some additional information, but it cant derive
the individual inputs.

2. Independence of inputs: Complies. All inputs are encrtypted, one node
has to break the encryption in order to learn anything.

3. Output delivery: Complies trivially.

4. Correctness: Complies trivially.

5. Fairness: Complies trivially.

35

3. Chapter Algorithms

Security in the presence of malicious adversaries:

Privacy still complies. If the root is the adversary unfortunately even in-
dependence is failed, since the root can alter the result depending on the
received sum, moreover with this adversary we cannot guarantee any other
requierement. If an inner node is malicious independence complies, but the
rest are do not for the subtree of the malicious node.

Complexity The message complexity is 3 ∗ (n− 1) again.

3.5 Secure Vertex Coloring

An important graph problem, which is encountered when one has to model
application-level problems, concerns vertex coloring [5]. It consists in assign-
ing a value (color) to each vertex such that (a) no two vertices which are
neighbors have the same color, and (b) the number of colors is "reasonably
small". When the number of colors has to be the smallest possible one, the
problem is NP-complete.
Let ∆ be the maximal degree of a graph. Remember, that it is always pos-
sible to color the vertices of a graph in ∆ + 1 colors.
This section presents a distributed algorithm which colors the processes in at
most (∆+1) colors in such a way that no two neighbors have the same color.
Distributed coloring is encountered in practical problems such as resource
allocation or processor scheduling. More generally, distributed coloring algo-
rithms are symmetry breaking algorithms in the sense that they partition the
set of processes into subsets (a subset per color) such that no two processes
in the same subset are neighbors.

Initial Context: This algorithm assumes that the processes are already
colored in m ≥ ∆ + 1 colors in such a way that no two neighbors have the
same color. Let us observe that, from a computability point of view, this is
a "no-cost" assumption (because taking m = n and defining the color of a

36

3. Chapter Algorithms

process pi as its index i trivially satisfies this initial coloring assumption).
Differently, taking m = ∆ + 1 assumes that the problem is already solved.
Hence, the assumption on the value of m is a complexity-related assumption.

Local Variables: Each process pi manages a local variable colori[i] which
initially contains its initial color, and will contain its final color at the end of
the algorithm. A process pi also manages a local variable colori[j] for each
of its neighbors pj. As the algorithm is semi-synchronous and round-based,
the local variable ri managed by pi denotes its current local round number.

Algorithm 8 Distributed Coloring:

The processes proceed in consecutive asynchronous rounds and, at each round,
each process synchronizes its progress with its neighbors. As the rounds are
semi-synchronous, or timing-based, the round numbers are not given for free
by the computation model. They have to be explicitly managed by the pro-
cesses themselves. Hence, each process pi manages a local variable ri that it
increases when it starts a new asynchronous round.
The first round is an initial round during which the processes exchange their
initial color in order to fill in their local array colori[neighbori]. If the pro-
cesses know the initial colors of their neighbors, this communication round
can be suppressed. The processes then execute m − (∆ + 1) asynchronous
rounds.
The processes whose initial color belongs to the set of colors {1, ...,∆ + 1}
keep their color forever. The other processes update their colors in order
to obtain a color in {1, ...,∆ + 1}. To that end, all the processes execute
sequentially the rounds ∆+2, ...,m, considering that each round number cor-
responds to a given distinct color. During round r, ∆ + 2 ≤ r ≤ m, each
process whose initial color is r looks for a new color in {1, ...,∆ + 1} which
is not the color of its neighbors and adopts it as its new color. Then, each
process exchanges its color with its neighbours before proceeding to the next
round. Hence, the round invariant is the following one: When a round r ter-

37

3. Chapter Algorithms

minates, the processes whose initial colors were in {1, ..., r} (a) have a color
in the set {1, ...,∆ + 1}, and (b) have different colors if they are neighbors.

Cost The time complexity (counted in number of rounds) ism−∆ rounds
(an initial round plus m − (∆ + 1) rounds). Each message carries a tag, a
color, and possibly a round number which is also a color. As the initial colors
are in {1, ...,m}, the message bit complexity is O(log2m).
Finally, during each round, two messages are sent on each channel. The mes-
sage complexity is consequently 2e(m −∆), where e denotes the number of
channels. It is easy to see that the better the initial process coloring (i.e.,
the smaller the value of m), the more efficient the algorithm.

Theorem 3.5.1 Let m ≥ ∆ + 2. The above algorithm is a legal (∆ + 1)-
coloring of the processes (where legal means that no two neighbors have the
same color).

Proof: Let us first observe that the processes whose initial color belongs
to 1, ...,∆ + 1 never modify their color. Let us assume that, up to round r,
the processes whose initial colors were in the set 1, ..., r have new colors in
the set 1, ...,∆ + 1 and any two of them which are neighbors have different
colors. Thanks to the initial m-coloring, this is initially true (i.e., for the
fictitious round r = ∆+1). Let us assume that the previous assertion is true
up to some round r ≥ ∆+1. It follows from the algorithm that, during round
r + 1, only the processes whose current color is r + 1 update it. Moreover,
each of them updates it with a color that (a) belongs to the set 1, ...,∆ + 1

and (b) is not a color of its neighbors. Consequently, at the end of round
r + 1, the processes whose initial colors were in the set 1, ..., r + 1 have new
colors in the set 1, ...,∆ + 1 and no two of them have the same new color if
they are neighbors. It follows that, as claimed, this property constitutes a
round invariant from which we conclude that each process has a final color
in the set 1, ...,∆ + 1 and no two neighbor processes have the same color.

38

3. Chapter Algorithms

In order to turn this algorithm into a secure one there is one thing that
we must concider. Namely, how to choose privately a color different from my
neighbours’? So by choosing securely, at the end of the algorithm all nodes
are assigned to a colour, without knowing who else has the same one, and
what colours its neighbours have.

Algorithm 9 Secure Coloring:

1. The node who is next in round to update its colour send a notifying
message to its neighbours.

2. Its neighbours invoke their key-generating algorithm, which outputs a
public-private key pair: (pk, sk), then all but one of them share their
public key with the middle node (i.e. the node who notified them, who
is placed in the middle of a star during this procedure). Only the middle
node knows which of its neighbour did not send a public key- lets call
this neighbour the main neighbour.

3. The middle node sends all public keys to its main neighbour.

4. The main neighbour encrypts its own public key with the received public
keys: ci ← Encpi(pm)∀i ∈ {1, ..., N − 1}, where pm is the main neigh-
bour’s key, and N is the number of neighbours.
Then sends ci∀i back to the middle node.

5. The middle node forwards the messages to its remaining neighbours.
(It sends all encrypted values to all neighbours, since it does not know
which belongs to which neighbour.)

6. These neighbours decrypt the key, then encrypt their colour with it.
pm = Decsi∀i
ci = Encpm(colouri)

They send back the encrypted colours to the middle, who again forwards
it to the main neighbour.

39

3. Chapter Algorithms

7. The main neighbour decrypts the colours, then creates polynome with
roots of the received colours.
colouri = Decsm(ci)

p(x) = (x− colour1) · (x− colour2) · ... · (x− colourn−1) = an−1 · xn−1 +

an−2 · xn−2 · ... · a0
Then it sends back the polynom to the middle node.

8. The middle node can try any colour on the polynom, will get non-zero
for a good colour.

Note: We need an assymetric key to encrypt the colours, because with a
symmetric one the middle node could easily find out the colours and the key
as well.

Security in the presence of semi-honest adversaries:

1. Privacy: The main node learns the colour of the other neighbours, and
moreover the middle node can also learn all possible coulours it can
get, thus it learns which are occupied by its neighbours, although it
cannot identifiy them.

2. Independence of inputs: From the ramining colours the middle node
can choose independently from a particular neighbour, but - trivially -
not from the set.

3. Output delivery: Complies trivially, since the output is not delivered.

4. Correctness: Complies.

5. Fairness: Complies.

Security in the presence of malicious adversaries:

The above algorithm works only if the nodes are honest-but curious. In case
of a malicious adversary, moreover lets say that the middle node is mali-
cious, then it can substitute the main neighbours public key with its own,

40

3. Chapter Algorithms

thus learns all its neighbours colours. So what can we do in this case? Noth-
ing. This algorithm can easily be attacket with the old man-in-the-middle
attack strategy; thus it can be only applied when all parties want to reach
the correct final solution.

Complexity:

N +N − 1 + 1 + 1 +N − 1 +N − 1 + 1 + 1 = 4N + 3, where N is the number
of neighbours.

41

Chapter 4

Future Challenges

In this thesis we have seen the result from the combination of three fields,
distributed programming, secure multi-party computations and privacy pre-
serving data mining. The two latter are closely related, but introducing the
first one brought new flavour and interesting new questions to answer in
the future. P2P networks only work under well organized and maintained
conditions, on heuristical networks, such as a mesh or sensor network we
cannot assume its existence. The need for secure communication networks
is rising continuously. In the future the newly created algorithms can be
used as sub-protocols in more complex algorithms, such as secure distributed
max clique, maximum independent edge or vertex computations, Steiner-tree
approximations and many more.

42

Bibliography

[1] Yehuda Lindell, Benny Pinkas, Secure Multiparty Computation for
Privacy-Preserving Data Mining, The Journal of Privacy and Confi-
dentiality (2009)

[2] Jaideep Vaidya, Chris Clifton, Privacy Preserving Association Rule
Mining in Vertically Partitioned Data, Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data
mining (2002)

[3] Lea Kissner, Dawn Song, Privacy-Preserving Set Operations, Advances
in Cryptology â CRYPTO (2005)

[4] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data
Mining, Pearson Education, Inc. (2006)

[5] Michael Raynal, Distributed Algorithms for Message-Passing Systems,
Springer-Verlag Berlin Heidelberg (2013)

[6] Jonathan Katz, Moti Yung, Applied Cryptography and Network Security,
5th International Conference, ACNS (2007)

[7] Ronald Cramer, Introduction to Secure Computation, Springer-Verlag
London, UK (1999)

[8] Nancy A. Lynch, Distributed Algorithms, The Morgan Kaufmann Series
in Data Management Systems (1996)

43

BIBLIOGRAPHY

[9] Yehuda Lindell, Benny Pinkas, Privacy Preserving Data Mining,
CRYPTO ’00 Proceedings of the 20th Annual International Cryptology
Conference on Advances in Cryptology (2000)

[10] Hagit Attiya, Jennifer Welch, Distributed Computing, Wiley Series on
Parallel and Distributed Computing (2004)

[11] Keith B. Frikken, Mikhail J. Atallah, Privacy Preserving Route Plan-
ning, Proceeding of the ACM workshop on Privacy in the Electronic
(2004)

[12] Justin Brickell, Vitaly Shmatikov, Privacy-Preserving Graph Algorithms
in the Semi-honest Model, ASIACRYPT (2005)

[13] Kun Liu, Kamalika Das, Tyrone Granison, Hillol Kargupta, Privacy-
Preserving Data Analysis on Graphs and Social Networks, (2008)

[14] Troy Raeder, Marina Blanton, Nitesh V. Chawla, Keith Frikken,
Privacy-Preserving Network Aggregation, Springer-Verlag Berlin Heidel-
berg (2010)

[15] Dana Ron, Algorithmic and Analysis Techniques in Property Testing,
Foundations and TrendsÂŽ in Theoretical Computer Science 5.2 (2010)

[16] Oded Goldreich, Introduction to Testing Graph Properties, Property
testing. Springer Berlin Heidelberg (2010)

[17] Srdjan Capkun, Jean-Pierre Hubaux, Markus Jakobsson, Secure and
Privacy-Preserving Communication in Hybrid Ad Hoc Networks, No.
LCA-REPORT-2004-015. (2004)

[18] Andrew C. Yao, Protocols for Secure Computations, FOCS. Vol. 82.
(1982)

[19] Oded Goldreich, Secure Multi-Party Computation, Manuscript. Prelim-
inary version (1998)

44

