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1. Introduction

Aligning more than two sequences with as little cost as possible is a quite essential

problem for those who are interested in bioinformatical research. E.g., by this method,

some information can be gained on the conservative regions of some particular se-

quences that can generally determine the basic functions and parameters of a group of

DNA, RNA or protein sequences [3] [4]. Multiple sequence alignment (MSA) is one of

the most important tools that is used during motif �nding: e.g., if one is given some

gene sequences so that is known they perform the same function in di�erent species, it

is a plausible question that exactly what these sequences have in common?

Considering the practical signi�cance of the multiple sequence alignment, it is not

surprising that this problem is in the centre of bioinformatical research for decades.

The practical motivation of this problem indicated that most people who attended

to MSA have tried to �nd a new result for the general question, construct a better

approximation algorithm or prove something about the complexity of MSA. It was

probably the most important achievement in this topic when Isaac Elias has proved

that MSA is NP-complete if the score scheme of the characters is a metric [2]. (This

negative result can be even more interesting if we consider that for two sequences the

Needleman-Wunsch algorithm generates an optimal alignment in O(n2) time [6].)

Even though it is unlikely that one can �nd a fast and accurate general algorithm

for MSA, several heuristic approximation algorithms have been developed during last

decades, because of the importance of this problem. One of the most frequently used

among them is named Clustal and it applies a progressive method: �rst, this algorithm

builds a so-called "guide tree" to determine in which order it is the most practical to

align the sequences, then using this tree, it creates a multiple alignment. This process

starts with aligning the two closest sequences optimally, and after that, in every step,

a sequence that is not aligned yet will be aligned, or two sets of aligned sequences will

be aligned to each other optimally [8]. Many other heuristic algorithms for MSA are

1



applied widely which can use progressive methods like Clustal (e.g., T-Co�ee), iterative

methods (DIALIGN) or even tools of probability theory (e.g., Hidden Markov models

from the POA heuristic) [7].

Summing up, it is known that the MSA problem is hard in general, but it is still an

interesting question that precisely when it begins to be really hard. One can assume

that for length-1 (and perhaps even for length-2) sequences, it may not be that hard to

�nd an optimal alignment. Furthermore, if an optimal alignment for short sequences

can be determined in polynomial time, then it could also help to develop faster or more

accurate heuristic algorithms.

In my thesis, some new results regarding the alignment of short sequences are pre-

sented. In my opinion, it can be the most relevant result of the �rst part of my work

that for length-1 sequences using arbitrary metric, as well as for length-2 sequences

using some special metric, the optimum of the MSA problem can be easily, in the most

trivial way, determined. Furthermore, some new general results in aligning arbitrary

length sequences are contained in my thesis; besides that, a new heuristic algorithm

is also described. After a theoretical exposition of these heuristics, comparision re-

sults with the aforementioned MSA algorithm Clustal are presented. All of the three

heuristics are based on the same main idea (using elements of the optimal pairwise

alignments).
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2. De�nitions and notations

Let Σ = {a1, . . . , an} be a �nite alphabet. A string over Σ is called a sequence. s′1

and s′2 is an alignment of sequences s1 and s2 if (∀ i) s′i is obtained from si by inserting

gaps (spaces, denoted by −) into or at either end of si and by that, s′1 and s′2 have the

same length. (It is assumed that − is not an element of Σ.) Because of this de�nition,

every character of s′1 is uniquely corresponded to a character of s′2.

Let l be the common length of s′1 and s′2. The cost of this alignment is equal to
l∑

i=1

d(s′1(i), s
′
2(i)), where d is a score scheme over Σ∪{−} and s′j(i) is the ith character

of s′j. It is commonly required that a score scheme must satisfy triangle inequality:

∀i, j, k : d(ai, aj) ≤ d(ai, ak)+d(ak, aj). A frequently used score scheme is the so-called

unit metric, where d(ai, aj) = 0 if i = j and 1 otherwise. We call an alignment optimal

for two sequences if its cost is minimal among every possible alignments.

The de�niton of aligning two sequences can be easily generalized for more strings:

let k be the number of sequences to align. Let us insert gaps into or at either end

of every strings so that they have the same l length and in the proper order, write

them under each other. We call this matrix size of kxl a multiple alignment of these

sequences. There are di�erent scoring methods how to de�ne the cost of a multiple

alignment, perhaps the most often used one is the sum of pairs method: using this, we

get the required cost of an alignment as the sum of the costs of aligning the
(
k
2

)
pairs

from the aligned sequences. In a formula: if s1, . . . , sk are sequences to align, then their

sum of pair cost is
k−1∑
i=1

k∑
j=i+1

cost(si, sj) [10].

The next de�nition of the MSA problem that I have worked up is containing another

approach of this problem using functions.
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De�nition 1 Let S = {s1, . . . , sk} be a set of sequences over Σ where ∀i : |si| = n

and denote si(j) the j-th character of si. A set of injective functions fi : {1, . . . , n} →
{1, . . . , N} (1 ≤ i ≤ k, n ≤ N ≤ nk) is a multiple sequence alignment of S if

- ∀1 ≤ i ≤ k: fi strictly monotonically increasing and

- ∀1 ≤ j ≤ N ∃fi ∃l : fi(l) = j.

Let s′i denote an N-length string where s′i(fi(j)) = si(j) and if j 6∈ R(fi), then

s′i(j) = −.

Let d(s′i, s
′
j) =

N∑
m=1

d(s′i(m), s′j(m)), where d is a distance on Σ ∪ {−}. A multiple

sequence alignment is optimal if
k∑

i=1

k∑
j=1
j 6=i

d(s′i, s
′
j) is minimal.

Examples. i) Let S be S := {CCG,GCG,CGC}. The following set of aligned

sequences is a multiple alignment A of S:

C C G −
G C G −
− C G C

Using unit metric and considering the cost of the columns, cost(A) is equal to

3 + 0 + 0 + 2 = 5.

ii) Let Σ now contain only two characters (C and G) with the following metric:

C G −
C 0 2 1

G 2 0 1

− 1 1 0

Let S be S := {CG,GC,GG}. In this case, the following set is a multiple alignment

A of S:

− C G

G C −
G − G

Using the given metric, cost(A) will be equal to 2 + 2 + 2 = 6.
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3. Multiple sequence alignment for

short sequences

3.1. Multiple sequence alignment for length-1 sequences

In this section, let us focus on aligning length-1 sequences (equivalently, characters

of Σ). To prove a theorem regarding sequences of this kind, an important earlier result

must be used:

Theorem 1 ([1]) Let U be a subset of a set S of sequences over Σ such that U contains

only identical sequences, and let A be an optimal alignment of S. Then d(AU) =∑
ui∈U

∑
uj∈U
i<j

d(ui, uj) = 0 in A.

As an important corollary, this theorem is implying that it is enough to examine

sets of sequences where these sequences are pairwise di�erent, because in an optimal

alignment, every instance of a given sequence is aligned identically.

The next de�nition will be used frequently throughout this chapter:

De�nition 2 Let S be a set of sequences that have the same length. A is the trivial

alignment of S if A is constructed by writing every sequnce under each other, without

using gaps.
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3.1.1. Multiple sequence alignment for length-1 sequences using

unit metric

The main result of this subsection is the following theorem:

Theorem 2 Using unit metric, no multiple sequence alignment for length-1 sequences

exists that has less cost than their trivial alignment. Suppose we align k di�erent

sequences, then the cost of an optimal alignment is
(
k
2

)
.

Proof. Considering Theorem 1, it can be assumed that the characters that need to

be aligned are pairwise di�erent because if there were some identical ones among them,

then all instances of a particular character would be aligned the same way.

It is easy to see that the trivial alignment of k di�erent characters has a cost of
(
k
2

)
:

there are
(
k
2

)
pairs among these characters and in every pair, there are two di�erent

sequences, so the cost of an aligned pair is always 1.

If we assume that this alignment is not optimal, then the length of every aligned

sequence must be at least 2 in an optimal alignment, and we have to examine the cost

of an alignment of this type. If this common length of aligned sequences is l ≥ 2, then

the general structure of the nxl matrix of this multiple alignment is the next: ∀1 ≤ i

≤ l there are ki characters in the ith column (
l∑

i=1

ki = k) and they are placed so that

in every row, there is only one character and l − 1 gaps (see Figure 1).

If we focus on the �rst column, we can establish that its cost is
(
k1
2

)
+ (k − k1)k1,

since there are k1 di�erent characters with cost of
(
k1
2

)
, and besides that, all of the

(k − k1) gaps increases the cost by one with every alphabetical character. A similiar

statement is true for every column, so the cost of this alignment:
∑l

i=1

(
ki
2

)
+(k−ki)ki =

k
∑l

i=1 ki −
∑l

i=1 ki
2
−

∑l
i=1 k

2
i

2
= k2 − k

2
−

∑l
i=1 k

2
i

2
. Thus if we want to minimize the cost

of this alignment then we have to maximize
l∑

i=1

k2
i .

By examining (
l∑

i=1

ki)
2, we can see that it is equal to k2, but at the same time, it

is equal to
l∑

i=1

k2
i + 2

l∑
i=1

l∑
j=2
i<j

kikj. From this, it is clear that
l∑

i=1

k2
i ≤ k2, and by that,

the cost of this alignment can not be less than k2−k
2

=
(
k
2

)
. �
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a1 − . . . −
. . . . . . . . . . . .

ak1 − . . . −
− ak1+1 . . . −
. . . . . . . . . . . .

− ak2 . . . −
. . . . . . . . . . . .

− − . . . akl−1+1

. . . . . . . . . . . .

− − . . . akl

Figure 1. A multiple alignment for length-1 sequences on l columns.

Note. From the proof, it is also clear (by minimizing
l∑

i=1

k2
i ) that a multiple align-

ment for k di�erent length-1 sequences can not have a cost more than k2 − k
2
− k2

2l
if

the length of aligned sequences is l. Since l ≤ k, the cost can be at most k2 − k and

this limit can be reached indeed: if there is only one character in every column and in

every row, then the cost will be k(k − 1) = k2 − k.

3.1.2. Multiple sequence alignment for length-1 sequences using

arbitrary metric

In this subsection, it will be shown that for length-1 sequences, we can use any

metric as score scheme, the multiple sequence alignment problem still remains as easy

as in case of unit metric.

Theorem 3 Using arbitrary metric, no multiple sequence alignment for length-1 se-

quences exists that has less cost than their trivial alignment. Suppose we align k di�er-

ent sequences, then the cost of an optimal alignment is equal to C =
k∑

i=1

k∑
j=2
i<j

d(ai, aj).
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Proof. Because of Theorem 1, it can be assumed again that every sequence has

exactly one instance in the set S of sequences to be aligned. If we consider the trivial

alignment of the S, it is easy to see that its cost is equal to C. Induction for the

number of the columns in a multiple sequence alignment will be used to show that any

alignment can not have lower cost than C.

Let be assumed that the trivial alignment is not optimal and let A denote an

optimal alignment. Assuming that A is not the trivial alignment, A has l columns

where l ≥ 2. It can be showed that A can not have exactly two columns, because in

this case, trivial alignment would have a lower cost than A has.

Let be assumed to the contrary that A has exactly two columns; so there are k1

sequences in the �rst column and k2 in the second column, where k1 +k2 = k and there

is exactly one character in every row (see Figure 2).

a1 −
a2 −
. . . . . .

ak1 −
− ak1+1

− ak1+2

. . . . . .

− ak

Figure 2. A multiple alignment for k length-1 sequences on two columns.

It can be assumed without loss of generality that the sequences in the �rst column

are a1, a2, . . . , ak1 and every other sequence are placed in the second row. If the cost of

the �rst column of A is denoted by cost(l1), then

cost(l1) =

k1∑
i=1

k1∑
j=2
i<j

d(ai, aj) + k2

k1∑
i=1

d(ai,−).
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Similiarly, the cost of the second column is

cost(l2) =
k∑

i=k1+1

k∑
j=k1+2

i<j

d(ai, aj) + k1

k∑
j=k1+1

d(aj,−),

and cost(A) = cost(l1) + cost(l2).

A lower bound for cost(A) can be determined by pairing the d(ai,−) summands in

cost(l1) to the summands of same form in cost(l2) and using triangle inequality. E.g., for

a �x i (1 ≤ i ≤ k1) and ∀j : k1+1 ≤ j ≤ k, it is true that d(ai,−)+d(aj,−) ≥ d(ai, aj),

so k2d(ai,−)+
k∑

j=k1+1

d(aj,−) ≥
k∑

j=k1+1

d(ai, aj). It is useful to notice that the summands

on the right side of this inequality are exactly those ones that are not included in

cost(c1) when we consider summands of the form of d(ai, aj) for this �x i.

By considering this inequality for every 1 ≤ i ≤ k1, the following lower bound can

be given:

k2

k1∑
i=1

d(ai,−) + k1

k∑
j=k1+1

d(aj,−) ≥
k1∑
i=1

k∑
j=k1+1

d(ai, aj)

This is implying that

cost(A) ≥
k1∑
i=1

k1∑
j=2
i<j

d(ai, aj) +
k∑

i=k1+1

k∑
j=k1+2

i<j

d(ai, aj) +

k1∑
i=1

k∑
j=k1+1

d(ai, aj) =

=
k∑

i=1

k∑
j=2
i<j

d(ai, aj) = C.

It is assumed that the trivial alignment with cost C is not optimal, therefore A can

not be an optimal alignment of S. By this contradiction, it is proved that an optimal

alignment of S can not have exactly 2 columns.

Using induction, let be assumed that it is shown ∀i : 2 ≤ i < l that an optimal

alignment can not have exactly i columns, and let A be an optimal alignment with l

columns. Considering the cost of the �rst two columns of A, there are k1 sequences

in the �rst column and k2 sequences in the second one. It is enough to prove that by

merging these two columns, the cost of the new alignment is lower than the cost of A.
The cost of these columns in A (as it can be seen in Figure 3) is equal to

k1∑
i=1

k1∑
j=2
i<j

d(ai, aj) + (k− k1)

k1∑
i=1

d(ai,−) +

k2∑
i=k1+1

k2∑
j=k1+1

i<j

d(ai, aj) + (k− k2)

k2∑
i=k1+1

d(ai,−).
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a1 −
a2 −
. . . . . .

ak1 −
− ak1+1

− ak1+2

. . . . . .

− ak1+k2

− −
. . . . . .

− −

Figure 3. The �rst two columns of A.

Let us focus on the �rst k′ = k1 +k2 characters of these columns. It is an alignment

of {a1, a2, . . . , ak′} on two columns and it was shown that if these sequences are aligned

trivially instead of using two columns, then the cost of the alignment can not be higher.

It means the following:

k1∑
i=1

k1∑
j=2
i<j

d(ai, aj) + k2

k1∑
i=1

d(ai,−) +
k′∑

i=k1+1

k′∑
j=k1+1

i<j

d(ai, aj) +

+ k1

k′∑
i=k1+1

d(ai,−) + (k − k′)

k1∑
i=1

d(ai,−) + (k − k′)
k′∑

i=k1+1

d(ai,−) ≥

≥
k′∑
i=1

k′∑
j=2
i<j

d(ai, aj) + (k − k′)
k′∑
i=1

d(ai,−).

On the left side of this inequality, there is the cost of the �rst two columns of

A, while on the right side, there is the cost of the column that is constructed by

merging the �rst two columns of A. Therefore, a lower bound for cost(A) is given by

an alignment that has l − 1 columns, implying that A can not be optimal. �
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3.2. Multiple sequence alignment for length-2 sequences

In this section, it will be shown that using unit metric, a set of length-2 sequences

can not be aligned with less cost than their trivial alignment, however, this statement

does not hold using arbitrary metric.

Theorem 4 Using unit metric, no multiple sequence alignment for length-2 sequences

exists that has less cost than their trivial alignment. Suppose we align k di�erent

sequences (s1 = ai1aik+1
, s2 = ai2aik+2

, . . . , sk = aikai2k), then the cost of an optimal

alignment is
k∑

j=1

k∑
l=2
j<l

d(aij , ail) +
2k∑

j=k+1

2k∑
l=k+2
j<l

d(aij , ail).

Proof. Let S denote the set of sequences that need to be aligned. It is clear that

the trivial alignment of S has the cost written above, so this lower bound is accessible.

In other words, it is enough to prove that for any S, a non-trivial alignment can not

have less cost than the trivial one.

LetA be an alignment of S on t columns where t ≥ 3. Let the rows ofA be permuted

so that those aligned sequences, where the indices of the two non-gap characters are

the same, are placed under each other, forming a block of sequences (by this operation,

the cost of A does not change). In every row of A, there are exactly two characters and
t − 2 gaps, so there can be

(
t
2

)
types of aligned sequences in A, considering only the

positions of the characters in a row. This implies that there will be
(
t
2

)
(not necessarily

non-empty) blocks after permuting the rows of A. (E.g., if t = 4, then there are
(
4
2

)
= 6

blocks after row permuting, see Figure 4.)

After making this block setting, it is clear that there are six types of aligned char-

acter pairs in A:
i) �rst characters of some sequences aligned with other sequences' �rst characters;

ii) �rst characters of some sequences aligned with other sequences' second charac-

ters;

iii) �rst characters of some sequences aligned with gaps;

iv) second characters of some sequences aligned with other sequences' second char-

acters;

v) second characters of some sequences aligned with gaps;

vi) gaps aligned with gaps.
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* * − −
. . . . . . . . . . . .

* * − −
* − * −
. . . . . . . . . . . .

* − * −
* − − *

. . . . . . . . . . . .

* − − *

− * * −
. . . . . . . . . . . .

− * * −
− * − *

. . . . . . . . . . . .

− * − *

− − * *

. . . . . . . . . . . .

− − * *

Figure 4. The structure of A after permuting its rows and making its block setting if t = 4.

The red stars denote the sequences' �rst characters, while the blue ones denote their second

letters. During the proof, an upper bound is given for the cost of aligning letters with the

same color that are not aligned in A by using character-gap alignment costs that are included

in cost(A).

In the trivial alignment T , there are only pairs of type i) and iv), moreover, every

sequence's �rst character is aligned with each other in T (and it holds similiarly for

every second character of the sequences of S). Nevertheless, in a non-trivial alignment

A, there are aligned sequences whose �rst or second characters are not aligned with

each other in A. This implies that it is enough to give an upper bound for the cost of

these characters in T that are aligned with each other in T but are not aligned with

each other in A, using parts of cost(A) for this bound (see Figure 5). (Because every

part of cost(A) is nonnegative, if a bijection can be given between the letter-letter

12



alignments in T that are not aligned in A and some other alignments of characters of

A (not excluded character-gap alignments) so that the latter alignments have always

at least as much cost as the former ones, then it means that cost(A) ≥ cost(T ).)

Figure 5. The general structure of character-character alignments of T (above) and A, if
t = 4. An ellipse is symbolizing that every pair of characters that are contained by the same

ellipse are aligned with each other in the given alignment, moreover, in the �gure of A, two
edge-connected ellipses are also aligned with each other. It can be seen that in T , every pair

of the �rst characters of sequences are aligned with each other and this statement is true

for every pair of second characters of sequences, too. However, in A, any pairs of the form

(aij , ail) will not be aligned, where 1 ≤ ij ≤ p and p + 1 ≤ il ≤ k, implying that the cost of

d(aij , ail), which is a part of cost(T ) but not a part of cost(A), must be overestimated with

a part of cost(A).

If d denotes the unit metric, then the following inequality holds for every pair of

sets P,R on arbitrary alphabet (where P and R can contain a letter more than once):∑
aij∈P

∑
ail∈R

d(aij , ail) ≤ |P |
∑
ail∈R

d(ail ,−) = |P ||R|.

Using this inequality, a bijection mentioned above can be given: �rst, let be consid-

ered two sequences whose �rst characters (ai and aj) are not aligned in A. (It can be

assumed that aj has bigger column index.) This implies that the element that is in the

intersection of the row of aj and the column of ai must be a gap. d(ai, aj) ≤ d(ai,−),

so the cost of the alignment of ai and aj in T can be estimated by the cost of the

alignment of two characters in A.
Similiarly, if two sequences are considered whose second characters (ai and aj) are

not aligned in A, then (assuming that aj has bigger column index) the element in the
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intersection of the row of ai and the column of aj must be a gap. The same estimation

can be given like before, meaning that the cost of the alignment of ai and aj in T is

less or equal to the cost of a character-gap alignment in A.
Considering the block setting of A, let Bi and Bj two blocks whose sequences' �rst

characters are not aligned in A. Assuming that the �rst characters of sequences in Bj

have bigger column index, there must be |Bj| gaps in the intersection of the column of

the �rst characters of sequences in Bi and the rows of Bj. If we denote the �rst letters

of the sequences of Bi (Bj) by abi (abj), then (because of the statements of the latter

two paragraphs) the following holds:∑
bi∈Bi

∑
bj∈Bj

d(abi , abj) ≤ |Bj|
∑
bi∈Bi

d(abi ,−) = |Bi||Bj|

1 2 − −
1 − 2 −
1 − − 2

− 1 2 −
− 1 − 2

− − 1 2

Figure 6. The block setting of A if t = 4, denoting only that an element is the �rst/second

character of its aligned sequence or a gap. E.g., the �rst element of the �rst row in the block

setting and the second element of the fourth row (which are denoting the �rst characters of

some sequences) are not aligned in A, so the cost of their alignment with each other, which

is a part of cost(T ) but not a part of cost(A), must be overestimated with a part of cost(A),
namely, with the cost of aligning the block setting's �rst element of the �rst row with the

gaps in the �rst element of the fourth row.

Besides that, a similiar result can be established if we consider two blocks whose

sequences' second characters are not aligned, using the gaps of the block that has the

column with smaller column index (see Figure 6). By these estimations, it is clear that

this assignment between the character-character alignments in T that are not present

in A and character-gap alignments in A implies that the latter costs in A can not be

less than the corresponding costs in T . It also must be examined that this assignment

is a bijection, i. e. there are no character-gap alignments that are used multiple times.
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A set of gaps in the block setting are considered in an estimation if and only if

some characters in the block that is containing these gaps and some characters from

another block that are aligned in the same column must be aligned in T but they are

not aligned in A. This is implying that these gaps are not used in estimations like

above more times than the alignment of this gap set with the rest of the given column,

therefore the former assignment is a bijection, implying that cost(A) ≥ cost(T ). �

Note. It is worthy of note that during the proof, the following special property of

unit metric has been used only: ∀ai, aj ∈ Σ : d(ai, aj) ≤ d(ai,−). It follows that no

alignment for a set of length-2 sequences may exist with less cost than their trivial

alignment, if a metric that has the same property is being used.

As the next example shows, trivial alignment will not always be optimal for length-2

sequences if an arbitrary metric can be used. Let Σ contain two characters (C and G)

with the same metric on Σ as in the Example ii) at the end of Section 2, moreover, let

S be also the same: S = {CG,GC,GG}. The trivial alignment of S has a cost of 8,

but as it has been shown, there is an alignment of S that has only cost of 6 (see Figure

7).

C G

G C

G G

− C G

G C −
G − G

Figure 7. The trivial and an optimal alignment of S.

Note. In Section 2, it was shown that we can easily determine the minimum cost

of a set to be aligned if it includes only length-1 sequences, moreover, we also can

construct an optimal alignment in the most trivial way using any metric. We have also

seen that for length-2 sequences, the trivial alignment is optimal if unit metric is used

but it is not optimal for arbitrary metric. Besides that, it is also known that trivial

alignment is not always optimal for length-3 sequences even using unit metric.
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As in Example i) at the end of Section 2, let S be the follow: S = {CCG,GCG,

CGC}. Using unit metric, the cost of the trivial alignment is 6, but it is not optimal:

as we have seen, there is a non-trivial alignment A of S so that cost(A) is only 5 (see

Figure 8).

C C G

G C G

C G C

C C G −
G C G −
− C G C

Figure 8. The trivial and an optimal alignment of S.
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4. General results in sequence

alignment problems for arbitrary

length sequences

In this chapter, some propositions about the structure of an optimal alignment for

a given set of sequences are examined, in order to construct a new heuristic algorithm

in some special cases of this problem (see Chapter 5). Some results with regard to

these propositions will be shown: some of them could be proven, but in many cases

(even for some of the most plausible ones) counterexamples could be given.

Note. If one is looking for some structure in the optimal alignments of a given set

of sequences, one might think that if we permute the columns of an optimal align-

ment, then the new alignment will be optimal for the new permuted sequences. This

conjecture is not true, as the following counterexample can justify this statement.

A B A −
− B A B

A A B −
− A B B

A A B

A B B

Figure 9. From left to right: an optimal alignment A of S; the new alignment of S′ after

permuting the columns of A; an optimal alignment of S′.
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Using unit metric, an optimal alignment with cost 2 for the set S = {ABA,BAB}
can be seen on the left side of Figure 9. If the second and third column of this alignment

are transposed, we get an alignment with the same cost 2 for the set S ′ = {AAB,ABB}.
This alignment is not optimal: on the right �gure, there is an alignment for S ′ with

cost 1.

Note. Looking for some structure in the MSA problem and considering only se-

quences of equal length, it can be a plausible idea to permute the columns of the

sequences written under each other without gaps in a predetermined (e.g., lexicograph-

ical) order. If the value of an optimal alignment for the permuted sequences would not

be changed by this operation, then it would be enough to examine the MSA problem

only for these special sequences of a "canonical" form.

The conjecture above is not true, since a counterexample can be given. Let S be the

same as in the previous note: S = {ABA,BAB}. As we have seen, S has an optimal

alignment with cost 2, using unit metric. If the �rst two columns are transposed in the

trivial alignment of S, then the new set S ′′ of sequences will be S ′′ = {BAA,ABB}.
It can be shown that any optimal alignment for S ′′ has a cost of 3. (see Figure 10)

A B A −
− B A B

B A A

A B B

Figure 10. An optimal alignment of S with cost 2 and an optimal alignment of S′′ with

cost 3.

Note. One might think that if a set of sequences with equal length have the same

subsequences on the same positions, then these subsequences must be aligned the same

way in an optimal alignment. This heuristic idea is also false, it can be seen from the

next counterexample.

Let S be the next set of sequences: S = {AAAAABBBAACCC,

BBBAACCCDDDDD,CCCAABBBAACCC}. In every sequence in S, the fourth

and �fth character is "AA". If only those alignments are considered where these sub-

sequences are aligned under each other, then we have to align the pre�xes and su�xes

optimally. This yields the trivial alignment of the sequences with cost 25, but this is
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not an optimal alignment of S: there can be shown an alignment for this set with cost

23 (see Figure 11).

A A A A A B B B A A C C C

B B B A A C C C D D D D D

C C C A A B B B A A C C C

A A A A A B B B A A C C C − − − − −
− − − − − B B B A A C C C D D D D D

C C C A A B B B A A C C C − − − − −

Figure 11. The trivial alignment of S with cost 25 which is optimal if we consider only

alignments where the identical subsequences in the fourth an �fth position are under each

other; and an optimal alignment of S with cost 23.

The counterexamples above show that many plausible ideas are not true for the

MSA problem. In the next theorem, one of these propositions is shown to be true in a

special case.

Theorem 5 Using unit metric, if we align two sequences with identical pre�xes, then

there exists an optimal alignment in which these pre�xes are aligned under each other.

Proof. It is enough to show that if the �rst character of the sequences are identical

but their second character is di�erent, then there is an optimal alignment where the

�rst characters are aligned under each other.

Let S be the following two sequences: s1 = ABs1(3) . . . s1(n),

s2 = ACs2(3) . . . s2(m) and denote s′1 = Bs1(3) . . . s1(n), s′2 = Cs2(3) . . . s2(m). We

can construct every optimal alignment of S ′ = {s′1, s′2} by Needleman-Wunsch algo-

rithm. Let T ′ denote the matrix that is created by removing the �rst row and the �rst

column from the Needleman-Wunsch table A′ of S ′. With this notation, the structure

of this table can be seen on Figure 12. Every optimal alignment of S ′ can be corre-

sponded to a path in this table that starts from the lower right corner of A′ and ends

on the 0 cell in the upper left corner.

To prove the proposition, it is enough to show that for the second row and the second

column of the Needleman-Wunsch table A of S the following holds: A[2, j] = j−2 (j =

2, . . . , n = |s1|) and A[j, 2] = j − 2 (j = 2, . . . ,m = |s2|). To see this, we can note that
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∗ B s1(3) . . . s1(n)

∗ 0 1 2 . . . n− 1

C 1

s2(3) 2

. . . . . . T ′

s2(m) m− 1

Figure 12. Structure of the Needleman-Wunsch table of S′.

A[2, 2] = 0 because A[1, 1] = 0 and A[1, 2] = A[2, 1] = 1 by de�nition and there is a

match in the �rst positions of sequences. Using induction, the dynamic programming

rule yields: A[2, j] =min{A[1, j−1](+1), A[1, j]+1, A[2, j−1]+1} =min{j−2(+1), j, j−
2} = j − 2. (The (+1) denotes that if there is a mismatch for these characters, then

this value must be increased by 1, otherwise not.)

Similiarly, A[j, 2] = j−2 also holds for the elements of the second column, therefore

the structure of A can be seen on Figure 13.

∗ A B s1(3) . . . s1(n)

∗ 0 1 2 3 . . . n

A 1 0 1 2 . . . n− 1

C 2 1

s2(3) 3 2

. . . . . . . . . T ′

s2(m) m m− 1

Figure 13. Structure of the Needleman-Wunsch table of S.

It is clear that if we remove the �rst row and the �rst column of A, then A′ is

remained. As a part of A, A′ contains every pointer that it had in the separate align-

ment for S ′, hence there exists an optimal alignment of S in A that has A[2, 2] as its

penultimate cell. This alignment ends with a match on the cell A[1, 1], therefore the

�rst characters are aligned under each other in this alignment.

Note. It is worth to note that only the following properties of the unit metric were

used: ∀ ai ∈ Σ d(ai,−) = c for some constant c and d(ai, aj) = 0⇔ ai = aj. It implies

that for every cost function that has these properties, Theorem 5 holds.
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5. A new heuristic algorithm for the

multiple sequence alignment problem

In this section, a new heuristic algorithm is presented, regarding the multiple se-

quence alignment problem. This heuristic is based on the dynamic programming al-

gorithm solution for the pairwise alignment problem: the aligned sequences from the

output of Needleman-Wunsch algorithm are directly used in the construction of the

multiple alignment for the given sequences.

In the �rst subsection, a basic version of this heuristic are described, and after that,

two modi�ed versions of this basic algorithm are also featured. After the exposition of

these three heuristics, their results for some test sequence sets are compared with the

results given by Clustal, one of the most widely used MSA software.

5.1. A basic heuristic version

Let S be the set of n input sequences: S = {s1, s2, . . . , sk}. The general method of

this heuristic for the MSA problem can be partitioned to the following four steps:

(1) Needleman-Wunsch algorithm is performed on every pair of sequences from S

and ∀ 1 ≤ i ≤ k : k − 1 output aligned sequences are stored for si in the list S∗i .

(2) Let s∗i denote the most common element of S∗i (if this element is not unique,

then the algorithm works over with a random chosen element among the most common

ones). The set S∗ consisting of s∗i 's (∀1 ≤ i ≤ k) is used for the initiate step of

constructing a heuristic multiple alignment A.
(3) Let lmax denote the length of a maximum length element of S∗. ∀ 1 ≤ i ≤ k :

if the length of s∗i is less than lmax, then s∗i is expanded with inserted gaps at its end

until its length is equal with lmax. Let s
′
i denote this sequence expanded from s∗i .

(4) The multiple alignment of S given by this heuristic: A = {s′1, s′2, . . . , s′k}.
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Example. Let S be the the following set: S = {BBA,BABA,ABBAB}. The

Needleman-Wunsch algorithm for BBA and BABA has these aligned output sequences

as an optimal alignment: {B − BA,BABA}, so B − BA will be an element in S∗1

and BABA ∈ S∗2 . After every optimal pairwise alignment is computed, the follow-

ing sets are resulted: S∗1 = {B − BA,−BBA−}, S∗2 = {BABA,− − BABA}, S∗3 =

{ABBAB,ABBAB−}. The frequencies are equal in every list, meaning that the a ran-

dom element from every S∗i is chosen to S
∗, therefore S∗ = {B−BA,BABA,ABBAB}.

lmax = 5, but the length of s∗1 and s∗2 is smaller than lmax, hence inserting gaps is re-

quired for these sequences. From the modi�ed aligned sequences, the multiple aligment

given by this heuristic will be the following: A = {B −BA−, BABA−, ABBAB}.

Note. As it can be established from the algorithm description (and it is supported

by the results of the practical testing of this heuristic), an alignment close to optimal

can be computed by this approach, if the multiple alignment that can be mechanically

combined from the optimal pairwise dynamic programming solutions is "close" to an

optimal MSA, and it follows that the sum of the pairwise optimal costs for the sequences

is relatively close to the cost of an optimal alignment.

For example, this heuristic could not �nd an optimal alignment with cost 5 for the

set {AAB,BAB,ABA} because S∗3 = {ABA,ABA−}, and in an optimal alignment,

s′3 = −ABA should be required. s′3 can not be prepared from any element of S∗3 by

this algorithm, so the output MSA is not optimal (in fact, its cost 8 is even worse than

the cost of the trivial alignment which is equal to 6).

Considering another example, if the input sequence set is S = {BABA, AAAA,

BBBA}, then the output of the Needleman-Wunsch algorithm for every pair is the

pair of sequences without gaps, meaning that S∗ = S and from this, A = S. In this

case, an optimal alignment for S is easily computed from the input sequences, since it

is corresponded with the trivial alignment, and the heuristic also could �nd it because

it was close enough to the multiple alignment combined from the pairwise optimums.
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5.2. Two modi�ed versions of the basic heuristic

Based on the basic version presented in the previous subsection, two modi�ed heuris-

tic versions has also been processed.

In the �rst modi�cation, before the �rst step of the original algorithm, input se-

quences are sorted in descending order by their length as a preprocessing step. By

this supplement in the heuristic, an unfavourable attribute of basic algorithm could

be eliminated: the aligned sequences of the output alignment will not depend on the

order of input sequences, in spite of that output of basic heuristic can be depended by

the order of input set. Therefore, this ordered heuristic can yield a unique solution for

any input sequence set.

In the second modi�ed heuristic version, a randomization approach has been ap-

plied. In the third step of the original heuristic, it was strictly assigned that the inserted

gaps could be located only at the end of a given aligned sequence. In this modi�cation,

a gap to be inserted can be located with probability 1
2
− 1

2
at either end of the actual

sequence. By this change in the algorithm, M is not previously determined by the

elements of S∗: many di�erent multiple alignments can be derived from the same S∗

by the randomized heuristic.

5.3. Results of the basic heuristic and its two modi�ed

versions

In this section, the results of this basic heuristic on some randomly generated test

sequence sets (k = 3) using unit metric are presented, compared with the alignments

provided by the Clustal software. For Clustal results, I have used a webserver of

Bielefeld University [9] with the following parameters:

- type of alignment: slow;

- DNA weight matrix: IUB;

- gap open = 1;

- gap extension = 0.001;

- gap distance = 1;

- end gap penalty: disabled;
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- type of iteration: alignment;

- number of iterations: 10;

- clustering type: neighbour joining.

IUB matrix is corresponding practically to unit metric. "Gap open", "gap ex-

tension" and "end gap penalty" denote extra costs for opening a sequence of gaps,

extending one or closing one, respectively. As these kind of costs are not considered by

this heuristic, their values has been adjusted to available minimum. "Gap distance"

denotes the cost of a letter and a gap. By setting type of iteration and clustering

as above, classic Clustal method for sequence alignment with neighbour joining and

guide trees has been applied. Test sequences contained only two kinds of letters (A

and B) and their length was restricted for the integer values with a minimum 4 and a

maximum 7.

For 50 test sequence sets, results of these two algorithms have been compared

(detailed results are contained by Table 1). In these cases, the cost provided by basic

heuristic was less with 2
25

on the average than the cost from Clustal. In the 68 % of

all test cases, the alignment of basic heuristic was at least as good as the Clustal one.

Moreover, in the 40 % of tests, output of basic heuristic had strictly lower cost than

Clustal's.

The two modi�ed versions of the basic heuristic have also tested for the same

sequence sets as the basic version. The sorted heuristic (see Table 2) had the same

average e�ciency compared to Clustal as the basic heuristic with 2
25
lower average costs.

For �ve test sets, output of sorted heuristic had a lower cost than basic heuristic, but

in three cases, the original algorithm had a better MSA output.

The randomized algorithm version had a worse average result than basic heuristic

for these 50 test cases, moreover, its outputs had a 3
25
higher average cost than Clustal's.

Compared to basic heuristic, the algorithm could �nd a better alignment for six test

sets by randomization, but its e�ciency in these cases could not neutralize that for

eight sets, its output had a higher cost than the original algorithm (see Table 3).
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Sequences Clustal Basic heuristic Lower cost Di�erence

result result

BABBBAA,ABBBAAA,ABABAB 8 15 C +7

ABBB,ABABABB,ABAAB 8 13 C +5

BBBBA,BBBAAAA,ABBA 10 14 C +4

AAAABA,ABABBBB,AAABB 9 12 C +3

BABBA,BABB,BAAAAB 8 11 C +3

ABAAAB,ABABB,ABBAAAB 6 9 C +3

ABAABBB,AABA,ABBAA 12 14 C +2

BABBBAA,ABBAAAB,BAABBB 12 14 C +2

BBABA,BAABBA,ABBAAB 11 13 C +2

AABBABB,BABAAB,ABBBB 9 11 C +2

BAAA,BBAABAB,ABBABAA 10 11 C +1

BABAAA,ABBBA,BABB 9 10 C +1

AAAABB,BAAAABB,AAABBBA 8 9 C +1

BABBBAB,BBABAB,BABB 8 9 C +1

AABBB,BBAAB,BBAB 8 9 C +1

ABBBBA,BABBBA,BBBAB 8 9 C +1

AABBAAB,BABA,BBBBBB 13 13 T 0

ABBBABB,AAABBBB,BBBAA 12 12 T 0

BAABAAB,ABABBAA,ABABBB 10 10 T 0

AABBA,BBABA,ABABBBA 10 10 T 0

BBBBABA,BABA,BBAAB 10 10 T 0

BAABAAB,ABABBAA,ABABBB 10 10 T 0

ABBABAA,BBAAA,AABA 10 10 T 0

BAAAA,AABBAB,AABBB 10 10 T 0

AABABAA,BBABA,BBBABB 9 9 T 0

BAABAA,BBAA,ABABA 8 8 T 0

BAAA,AAAABAA,AAAA 8 8 T 0

BABBAB,BBBBBAB,BBABBA 6 6 T 0

BBAAB,BBBAAB,BABAAA 6 6 T 0

BBBABA,BBABA,ABBAA 5 5 T 0

AABA,BBBBBAA,BBABBB 14 13 H -1

AABAA,BABABBB,BAAA 13 12 H -1

BBBAABB,BABBBA,ABAAAA 13 12 H -1

BBABB,ABAAAA,AABB 13 12 H -1

BABA,AAABAA,ABBBB 12 11 H -1

AABABBA,BAAABB,BAABAA 10 9 H -1

BBBB,BBAA,ABBBB 10 9 H -1

BAABA,AABBBBA,AABBABA 9 8 H -1

BAAABAA,BBBAA,BBAA 8 7 H -1

AAABBA,BBABBBB,BBAA 15 13 H -2

BBABBA,AABAB,BAABBBA 12 10 H -2

BBABBBA,ABBBA,AABBBBB 12 10 H -2

BABA,AAAA,BBBA 8 6 H -2

BBAAA,BBAABAB,AAABAA 14 11 H -3

AABBBBB,BABBAAB,AAAABB 14 11 H -3

ABBAAA,BAABB,BBBBB 13 10 H -3

BBBAAAB,ABBBBAB,ABBABA 11 8 H -3

AABA,BABBBBB,ABAAAA 17 13 H -4

BABA,BBABBB,BBBBAAB 14 10 H -4

BBBBBB,BAAA,BBBBB 16 10 H -6

Table 1. Comparison between the results of Clustal and basic heuristic for 50 test sequence sets.

In the columns, from left to the right: test set; alignment cost provided by Clustal; alignment

cost provided by basic heuristic; abbreviation of the algorithm providing lower cost (T: the costs

are equal); di�erence between costs of alignment from heuristic and from Clustal.



Sequences Clustal Basic Di�erence Sorted Di�erence Lower

results heuristic between heuristic between cost

result heuristic result sorted

and Clustal heuristic

and Clustal

BABBBAA,ABBBAAA,ABABAB 8 15 +7 15 +7 C

ABBB,ABABABB,ABAAB 8 13 +5 10 +2 C

BBBBA,BBBAAAA,ABBA 10 14 +4 14 +4 C

AAAABA,ABABBBB,AAABB 9 12 +3 9 0 T

BABBA,BABB,BAAAAB 8 11 +3 11 +3 C

ABAAAB,ABABB,ABBAAAB 6 9 +3 6 0 T

ABAABBB,AABA,ABBAA 12 14 +2 14 +2 C

BABBBAA,ABBAAAB,BAABBB 12 14 +2 14 +2 C

BBABA,BAABBA,ABBAAB 11 13 +2 13 +2 C

AABBABB,BABAAB,ABBBB 9 11 +2 11 +2 C

BAAA,BBAABAB,ABBABAA 10 11 +1 11 +1 C

BABAAA,ABBBA,BABB 9 10 +1 10 +1 C

AAAABB,BAAAABB,AAABBBA 8 9 +1 9 +1 C

BABBBAB,BBABAB,BABB 8 9 +1 9 +1 C

AABBB,BBAAB,BBAB 8 9 +1 9 +1 C

ABBBBA,BABBBA,BBBAB 8 9 +1 9 +1 C

AABBAAB,BABA,BBBBBB 13 13 0 13 0 T

ABBBABB,AAABBBB,BBBAA 12 12 0 12 0 T

BAABAAB,ABABBAA,ABABBB 10 10 0 10 0 T

AABBA,BBABA,ABABBBA 10 10 0 13 +3 C

BBBBABA,BABA,BBAAB 10 10 0 10 0 T

BAABAAB,ABABBAA,ABABBB 10 10 0 10 0 T

ABBABAA,BBAAA,AABA 10 10 0 10 0 T

BAAAA,AABBAB,AABBB 10 10 0 10 0 T

AABABAA,BBABA,BBBABB 9 9 0 9 0 T

BAABAA,BBAA,ABABA 8 8 0 8 0 T

BAAA,AAAABAA,AAAA 8 8 0 11 +3 C

BABBAB,BBBBBAB,BBABBA 6 6 0 6 0 T

BBAAB,BBBAAB,BABAAA 6 6 0 6 0 T

BBBABA,BBABA,ABBAA 5 5 0 5 0 T

AABA,BBBBBAA,BBABBB 14 13 -1 12 -2 S

AABAA,BABABBB,BAAA 13 12 -1 12 -1 S

BBBAABB,BABBBA,ABAAAA 13 12 -1 12 -1 S

BBABB,ABAAAA,AABB 13 12 -1 11 -2 S

BABA,AAABAA,ABBBB 12 11 -1 11 -1 S

AABABBA,BAAABB,BAABAA 10 9 -1 9 -1 S

BBBB,BBAA,ABBBB 10 9 -1 9 -1 S

BAABA,AABBBBA,AABBABA 9 8 -1 8 -1 S

BAAABAA,BBBAA,BBAA 8 7 -1 7 -1 S

AAABBA,BBABBBB,BBAA 15 13 -2 13 -2 S

BBABBA,AABAB,BAABBBA 12 10 -2 10 -2 S

BBABBBA,ABBBA,AABBBBB 12 10 -2 10 -2 S

BABA,AAAA,BBBA 8 6 -2 6 -2 S

BBAAA,BBAABAB,AAABAA 14 11 -3 11 -3 S

AABBBBB,BABBAAB,AAAABB 14 11 -3 11 -3 S

ABBAAA,BAABB,BBBBB 13 10 -3 10 -3 S

BBBAAAB,ABBBBAB,ABBABA 11 8 -3 8 -3 S

AABA,BABBBBB,ABAAAA 17 13 -4 18 +1 C

BABA,BBABBB,BBBBAAB 14 10 -4 10 -4 S

BBBBBB,BAAA,BBBBB 16 10 -6 10 -6 S

Table 2. Comparison between the results of Clustal, basic heuristic and sorted heuristic for 50

test sequence sets. In the columns, from left to the right: test set; alignment cost provided

by Clustal; alignment cost provided by basic heuristic; di�erence between costs of alignment

from basic heuristic and from Clustal; alignment cost provided by sorted heuristic; di�erence

between costs of alignment from sorted heuristic and from Clustal; abbreviation of the algorithm

providing lower cost (C: Clustal, S: sorted heuristic, T: costs are equal).



Sequences Clustal Basic Di�erence Randomized Di�erence Lower

results heuristic between heuristic between cost

result heuristic result randomized

and Clustal heuristic

and Clustal

BABBBAA,ABBBAAA,ABABAB 8 15 +7 10 +2 C

ABBB,ABABABB,ABAAB 8 13 +5 13 +5 C

BBBBA,BBBAAAA,ABBA 10 14 +4 14 +4 C

AAAABA,ABABBBB,AAABB 9 12 +3 10 +1 C

BABBA,BABB,BAAAAB 8 11 +3 11 +3 C

ABAAAB,ABABB,ABBAAAB 6 9 +3 12 +6 C

ABAABBB,AABA,ABBAA 12 14 +2 14 +2 C

BABBBAA,ABBAAAB,BAABBB 12 16 +2 14 +4 C

BBABA,BAABBA,ABBAAB 11 13 +2 13 +2 C

AABBABB,BABAAB,ABBBB 9 11 +2 12 +3 C

BAAA,BBAABAB,ABBABAA 10 11 +1 11 +1 C

BABAAA,ABBBA,BABB 9 10 +1 10 +1 C

AAAABB,BAAAABB,AAABBBA 8 9 +1 6 -2 R

BABBBAB,BBABAB,BABB 8 9 +1 9 +1 C

AABBB,BBAAB,BBAB 8 9 +1 9 +1 C

ABBBBA,BABBBA,BBBAB 8 9 +1 9 +1 C

AABBAAB,BABA,BBBBBB 13 13 0 13 0 T

ABBBABB,AAABBBB,BBBAA 12 12 0 12 0 T

BAABAAB,ABABBAA,ABABBB 10 10 0 10 0 T

AABBA,BBABA,ABABBBA 10 10 0 10 0 T

BBBBABA,BABA,BBAAB 10 10 0 10 0 T

BAABAAB,ABABBAA,ABABBB 10 10 0 10 0 T

ABBABAA,BBAAA,AABA 10 10 0 10 0 T

BAAAA,AABBAB,AABBB 10 10 0 10 0 T

AABABAA,BBABA,BBBABB 9 9 0 9 0 T

BAABAA,BBAA,ABABA 8 8 0 13 +5 C

BAAA,AAAABAA,AAAA 8 8 0 10 +2 C

BABBAB,BBBBBAB,BBABBA 6 6 0 6 0 T

BBAAB,BBBAAB,BABAAA 6 6 0 6 0 T

BBBABA,BBABA,ABBAA 5 5 0 5 0 T

AABA,BBBBBAA,BBABBB 14 13 -1 13 -1 R

AABAA,BABABBB,BAAA 13 12 -1 16 +3 C

BBBAABB,BABBBA,ABAAAA 13 12 -1 12 -1 R

BBABB,ABAAAA,AABB 13 12 -1 10 -3 R

BABA,AAABAA,ABBBB 12 11 -1 11 -1 R

AABABBA,BAAABB,BAABAA 10 9 -1 14 +4 C

BBBB,BBAA,ABBBB 10 9 -1 6 -4 R

BAABA,AABBBBA,AABBABA 9 8 -1 8 -1 R

BAAABAA,BBBAA,BBAA 8 7 -1 7 -1 R

AAABBA,BBABBBB,BBAA 15 13 -2 13 -2 R

BBABBA,AABAB,BAABBBA 12 10 -2 12 0 T

BBABBBA,ABBBA,AABBBBB 12 10 -2 10 -2 R

BABA,AAAA,BBBA 8 6 -2 6 -2 R

BBAAA,BBAABAB,AAABAA 14 11 -3 10 -4 R

AABBBBB,BABBAAB,AAAABB 14 11 -3 11 -3 R

ABBAAA,BAABB,BBBBB 13 10 -3 10 -3 R

BBBAAAB,ABBBBAB,ABBABA 11 8 -3 8 -3 R

AABA,BABBBBB,ABAAAA 17 13 -4 13 -4 R

BABA,BBABBB,BBBBAAB 14 10 -4 10 -4 R

BBBBBB,BAAA,BBBBB 16 10 -6 10 -6 R

Table 3. Comparison between the results of Clustal, basic heuristic and randomized insertion

heuristic for 50 test sequence sets. In the columns, from left to the right: test set; alignment

cost provided by Clustal; alignment cost provided by basic heuristic; di�erence between costs

of alignment from basic heuristic and from Clustal; alignment cost provided by randomized

insertion heuristic; di�erence between costs of alignment from randomized insertion heuristic

and from Clustal; abbreviation of the algorithm providing lower cost (C: Clustal, R: randomized

insertion heuristic, T: costs are equal).



6. Open questions

In this thesis, it was shown that the multiple sequence alignment problem is "easy"

for length-1 sequences and also for length-2 sequences in special cases. Since we know

that the general problem is NP-complete, it is still an interesting question that for how

long sequences MSA starts to become a real hard problem? It is probably another open

problem that in case of length-2 sequences, how can those metrics be characterized for

which trivial alignment is always optimal for arbitrary alphabet?

Regarding the presented heuristic algorithm, many questions can be raised: e.g.,

could this approach be this e�ective for more sequences than three, or for an alphabet

containing more letters? It can be another interesting further question that how this

heuristic could be improved: as it could be seen in former test results, its e�ciency

could not be raised by simple randomization, but there could be other useful methods

(perhaps some more sophisticated preprocessing steps).
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Appendix

Source code for the basic heuristic presented in Chapter 51:

1 from collections import Counter

2 from random import randint

3

4 def Most_Common(lst):

5 data = Counter(lst)

6 return data.most_common(1)[0][0]

7

8 def zeros(shape):

9 retval = []

10 for x in range(shape[0]):

11 retval.append([])

12 for y in range(shape[1]):

13 retval[−1].append(0)
14 return retval

15

16 match_award = 0

17 mismatch_penalty = −1
18 gap_penalty = −1
19

20 def match_score(alpha, beta):

21 if alpha == beta:

22 return match_award

23

1Source code of Needleman-Wunsch algorithm, which is used in this heuristic as a subroutine, was

constructed by Aleksandr Levchuk [5].
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24 elif alpha == '−' or beta == '−':
25 return gap_penalty

26 else:

27 return mismatch_penalty

28

29

30 L=['BBBA', 'BABA', 'ABABBB'] #input sequences

31

32 Aligned1=[]

33 Aligned2=[]

34 Aligned3=[]

35

36 for k in range(0,2):

37 for l in range(k+1,3):

38 seq1=L[k]

39 seq2=L[l]

40 m, n = len(seq1), len(seq2)

41 score = zeros((m+1, n+1)) # DP table

42

43 for i in range(0, m + 1): # Calculate DP table

44 score[i][0] = gap_penalty ∗ i
45 for j in range(0, n + 1):

46 score[0][j] = gap_penalty ∗ j
47 for i in range(1, m + 1):

48 for j in range(1, n + 1):

49 match = score[i − 1][j − 1] + match_score(seq1[i−1], seq2[j−1])
50 delete = score[i − 1][j] + gap_penalty

51 insert = score[i][j − 1] + gap_penalty

52 score[i][j] = max(match, delete, insert)

53

54

55 align1, align2 = '', ''

56 i,j = m,n

57 while i > 0 and j > 0:

58 score_current = score[i][j]

59 score_diagonal = score[i−1][j−1]
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60 score_up = score[i][j−1]
61 score_left = score[i−1][j]
62

63 if score_current == score_diagonal + match_score(seq1[i−1], seq2[j−1]):
64 align1 += seq1[i−1]
65 align2 += seq2[j−1]
66 i −= 1

67 j −= 1

68 elif score_current == score_left + gap_penalty:

69 align1 += seq1[i−1]
70 align2 += '−'
71 i −= 1

72 elif score_current == score_up + gap_penalty:

73 align1 += '−'
74 align2 += seq2[j−1]
75 j −= 1

76

77

78 while i > 0:

79 align1 += seq1[i−1]
80 align2 += '−'
81 i −= 1

82 while j > 0:

83 align1 += '−'
84 align2 += seq2[j−1]
85 j −= 1

86

87 align1 = align1[::−1]
88 align2 = align2[::−1]
89

90 i,j = 0,0

91

92

93 symbol = ''

94 found = 0

95 score = 0
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96

97 for i in range(0,len(align1)):

98 if align1[i] == align2[i]:

99 symbol = symbol + align1[i]

100 score += match_score(align1[i], align2[i])

101 elif align1[i] != align2[i] and align1[i] != '−' and align2[i] != '−':
102 score += match_score(align1[i], align2[i])

103 symbol += ' '

104 found = 0

105 elif align1[i] == '−' or align2[i] == '−':
106 symbol += ' '

107 score += gap_penalty

108

109 if k==0:

110 Aligned1.append(align1)

111 else:

112 Aligned2.append(align1)

113 if l==1:

114 Aligned2.append(align2)

115 else:

116 Aligned3.append(align2)

117

118 msa=[]

119

120 msa.append(Most_Common(Aligned1))

121 msa.append(Most_Common(Aligned2))

122 msa.append(Most_Common(Aligned3))

123

124 lengths=[]

125 for i in range(0,len(msa)):

126 lengths.append(len(msa[i]))

127

128

129 maxl=max(lengths)

130 MSA=[]

131
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132 for i in range(0,len(msa)):

133 if len(msa[i])==maxl:

134 MSA.append(msa[i])

135 else:

136 c=maxl−len(msa[i])

137 gaps=''

138 for j in range(0,c):

139 gaps=gaps+'−'
140 MSA.append(msa[i]+gaps)

141 print MSA

142

143 MSA_score=0

144

145 for k in range(0,2):

146 for l in range(k+1,3):

147 align1=MSA[k]

148 align2=MSA[l]

149 m, n = len(seq1), len(seq2)

150 symbol = ''

151 found = 0

152 score = 0

153 for i in range(0,len(align1)):

154 if align1[i] == align2[i]:

155 symbol = symbol + align1[i]

156 score += match_score(align1[i], align2[i])

157 elif align1[i] != align2[i] and align1[i] != '−' and align2[i] != '−':
158 score += match_score(align1[i], align2[i])

159 symbol += ' '

160 found = 0

161 elif align1[i] == '−' or align2[i] == '−':
162 symbol += ' '

163 score += gap_penalty

164 MSA_score=MSA_score+score

165

166 print MSA_score
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