
The graph isomorphism
problem and the structure of

walks

Péter Madarasi
Applied Mathematics MSc

Thesis

Supervisor:
Alpár Jüttner

senior research fellow
ELTE Institute of Mathematics,

Department of Operations Research

Eötvös Loránd University
Faculty of Science

Budapest, 2018

Contents

1 Introduction 4

2 Preliminaries 8

2.1 Notation . 8

2.2 Linear algebra . 9

2.3 Hashing . 10

3 Artificial labels 11

3.1 Walk-labeling . 12

3.1.1 Getting rid of infinite labels 13

3.1.2 Walk labels in practice 15

3.2 Strong walk-labeling . 17

3.2.1 Strong walk labels in practice 19

4 Some theoretical results 20

4.1 Walk-labeling . 21

4.2 Strong walk-labeling . 28

4.3 Polynomial time graph isomorphism algorithm for certain graph
classes . 30

5 Applications 32

5.1 Node-labeling . 32

5.1.1 Biological graphs . 33

5.1.2 Regular graphs . 36

5.2 A sophisticated backtracking algorithm 39

5.3 The (induced) subgraph isomorphism problem 40

1

5.4 Graph fingerprints . 41

5.4.1 Strong walk fingerprint 42

5.4.2 Walk fingerprint . 43

5.4.3 Generalization of strong walk fingerprint 44

6 Conclusion and future work 44

7 Acknowledgement 45

2

Abstract

This thesis presents the concept of walk-labeling that can be used to
solve the graph isomorphism problem in polynomial time combinatorially
under certain conditions — which hold for a wide range of the graph pairs.
It turns out that all non-cospectral graph pairs can be differentiated with a
combinatorial method, furthermore, even non-isomorphic co-spectral graphs
might be distinguished by combinatorially verifying certain properties of their
eigenspaces. New polynomial time graph isomorphism algorithms are given
under certain spectral conditions and in the case of large graph diameter.

The concept of strong walk-labeling is a refinement of the aforemen-
tioned labeling, which has important theoretical and practical applications.
Its applications include speeding up any backtracking graph matching al-
gorithm, and the generation of graph fingerprints, which uniquely identify
all the graphs in the considered databases — including all strongly regular
graphs on at most 64 vertices. They are also proved to identify all trees up to
isomorphism, which — as a byproduct — gives a new isomorphism algorithm
for trees. The practical importance of this fingerprint lies in significantly
speeding up searching in graph databases and graph matching algorithms,
which are commonly required in biological and chemical applications.

In addition to the theoretical results, computational tests have been
carried out on biological, strongly regular and random graphs to practically
evaluate the proposed methods.

3

1 Introduction

In the last decades, combinatorial structures and especially graphs have
been considered with ever increasing interest, and applied to the solution of
several new and revised questions. The expressiveness, the simplicity and
the deep theoretical background of graphs make it one of the most useful
modeling tool, which appears constantly in several seemingly independent
fields, such as bioinformatics and chemistry.

Getting acquainted with the structure of complex biological systems at
the molecular level is of primary importance, since protein-protein inter-
action, DNA-protein interaction, metabolic interaction, transcription factor
binding, neuronal networks, and hormone singling networks may be better
understood this way.

Many chemical and biological structures can easily be modeled this way,
for instance, a molecular structure can be considered as a graph, whose nodes
and edges correspond to atoms and chemical bonds, respectively. The sim-
ilarity and dissimilarity of objects corresponding to nodes may be incorpo-
rated to the model by node labels. Understanding such networks basically
requires finding specific subgraphs, thus it calls for efficient graph matching
algorithms.

Other real-world fields related to some variants of graph matching in-
clude pattern recognition and machine vision [7], symbol recognition [12],
and face identification [20].

While this work focuses on the graph isomorphism problem in the first
place, some of the proposed methods can be applied in the case of subgraph
and induces subgraph matching problems, as well.

Subgraph and induced subgraph matching problems are known to be
NP-Complete [9], while the graph isomorphism problem is one of the prob-
lems in NP neither known to be in P nor NP-Complete. At the same
time, polynomial-time isomorphism algorithms are known for various graph
classes, like trees and planar graphs [17], bounded valence graphs [22], inter-
val graphs [21] or permutation graphs [8]. Furthermore, an FPT algorithm
has also been recently presented for the colored hypergraph isomorphism
problem in [2].

4

Some algorithms which do not need any restrictions on the graphs are
summarized below. Even though, an overall polynomial behavior may not
be expected from such an alternative, they may often have good practical
performance. In fact, they might be the best choice in practice even on a
graph class for which polynomial algorithm is known.

The first practically efficient approach was due to Ullmann [33], which
is a commonly used algorithm based on depth-first search with a complex
heuristic for reducing the number of visited states. A major problem is its
Θ(n3) space complexity, which makes it impractical for big sparse graphs. In
a recent paper, Ullmann [18] presents an improved version of this algorithm
based on a bit-vector solution for the binary Constraint Satisfaction Problem.

The Nauty algorithm [25] transforms the two graphs to a canonical form
before starting to look for an isomorphism. It has been considered as one
of the fastest graph isomorphism algorithms, although graph categories were
shown in which it takes exponentially many steps. This algorithm handles
only the graph isomorphism problem.

The LAD algorithm [31] uses a depth-first search strategy and formulates
the matching as a Constraint Satisfaction Problem to prune the search tree.
The constraints are that the mapping has to be injective and edge-preserving,
hence it is possible to handle new matching types as well.

The RI algorithm [5] and its variations are based on a state space rep-
resentation. After reordering the nodes of the graphs, it uses some fast to
execute heuristic checks without using any complex pruning rules. It seems
to run really efficiently on graphs coming from biology, and won the Inter-
national Contest on Pattern Search in Biological Databases [35].

Currently, one of the most commonly used algorithm is VF2 [11], an im-
proved version of VF [10], which was designed for solving pattern matching
and computer vision problems, and has been one of the best overall algo-
rithms for more than a decade. Although, it is not as fast as some of the
new specialized algorithms, it is still widely used due to its simplicity and
space efficiency. VF2 uses a state space representation and checks specific
conditions in each state to prune the search tree.

Another variant called VF2++ [19],[23] has recently been published.
It is one of the most efficient graph matching algorithms on biological and

5

chemical graph. This method is at least as efficient as the RI or other VF2-
like methods, and it has strictly better behavior on large graphs. The main
idea of VF2++ is to precompute a heuristic node order of the graph to be
embedded, on which VF2 works more efficiently, and apply stronger cutting
rules - which are easier to verify at the same time.

In addition to checking whether two given graphs are (sub)graph iso-
morphic, in many cases a given graph G is searched in a database. Instead
of solving the graph isomorphism problem for G and for each graphs in the
database, one might generate so called fingerprints for all graphs s.t. if two
fingerprints are different, then the corresponding graphs can not be isomor-
phic. Now, one has to solve the graph isomorphism problem only for graphs
having the same fingerprint as G does.

Graph fingerprints are widely used, and several schemes have been pro-
posed to generate them. In [30], graph fingerprints were generated by consid-
ering the node labels of short paths. This type of fingerprints is also useful
in the case of subgraph matching.

Fingerprints constructed by combining the Laplacian spectrum and the
heat kernels associated to the graph Laplacian is described in [27]. In general,
the strength of graph spectrum as signature is theoretically studied in [34]
and [36]. The developed tool apparently works only for graph having special
structures, such as distance-regular graphs. They conclude that it seems to
be out of reach to answer which graphs are determined by their adjacency
and Laplacian spectrum. However, the number of graphs determined by their
spectrum was numerically examined up to 12 nodes in [15], and around 80%
of the graphs were found to be determined by their spectrum. Note that it
is conjectured that almost all graphs are determined by their spectrum.

Recently, various algorithms have been developed based on discrete time
quantum walks (DTQW) or continuous time quantum walks (CTQW), aim-
ing at distinguishing non-isomorphic graph pairs. It is well known that
neither standard single-particle DTQW nor CTQW can distinguish a pair
of Strongly regular graphs (SRG) of the same parameters, furthermore a
constant-particle CTQW without interaction can distinguish no SRG pairs
of the same parameters, see [14] and [28]. However, the distinguishing

6

power of a variant of single-particle DTQW presented in [14] turned out to
be larger than that of a standard DTQW. Namely, it generates different sig-
natures for certain non-isomorphic SRG pairs of the same parameters, but
there are SRG pairs that it fails to distinguish. In [24], CTQW were shown to
be less powerful than DTQW as far as the graph isomorphism is concerned.

On the other hand, a state-of-the-art quantum walk method using in-
teracting bosons turned out to distinguish all SRG’s on at most 64 vertices
[16]. In this light, it is especially precious that the fingerprint introduced in
Section 5 distinguishes all the mentioned SRG’s, in addition, it provides a
compact description of the graphs.

This work presents the concept of walk-labeling, which can be used to
solve the graph isomorphism problem combinatorially in polynomial time un-
der certain conditions - which hold for a wide range of the graph pairs. All
non-cospectral graph pairs are proved to be distinguished by the proposed
combinatorial method (without computing the graph spectra). Furthermore,
even if the graphs are cospectral and non-isomorphic, various conditions are
shown to ensure that the graphs are distinguished. Polynomial time isomor-
phism algorithm will be given for graphs of large diameter.

For practical purposes, a refinement of the aforementioned labeling called
strong walk-labeling is also introduced. Its applications include speeding
up any backtracking-based graph matching algorithm, which will be tested
by counting the number of backtracks the VF2 algorithm takes on differ-
ent graph classes. Another important application is a fingerprint generation
method based on strong walk-labeling, which was able to uniquely identify
all the graphs in the considered graph databases — including all the known
strongly regular graphs. Therefore, it is competitive with the state-of-the-art
quantum walk algorithms and compress all information about the graph in
a short fingerprint, as well. Note that the strongly regular graphs are well
known as possibly the hardest instances of the graph isomorphism problem.

The rest of the thesis is structured as follows. Section 2 introduces
the most important notations and results that will be used throughout this
work. Section 3 defines the artificial labels, the fundamental concept of this
work. Theoretical results demonstrating the strength of the proposed artifi-

7

cial labels are described in Section 4. The most important applications are
presented in Section 5, including the generation of unique graph identifiers.
The thesis is concluded by a brief summary of the open questions.

2 Preliminaries

This section introduces the notations, and some of the main results that
will be used throughout this thesis.

2.1 Notation

As usual, sets are described in curly brackets, and multisets are described
in curly brackets followed by a superscript hash character. For example,
{1, 2, 3} denotes the set consisting of the numbers 1,2,3, and {1, 1, 2, 3}#

denotes the multiset consisting of numbers 1,1,2,3.

Let N denote the non-negative integer numbers.

For a positive integer n, let [n] denote the set {i ∈ N : 1 ≤ i ≤ n}.

Throughout the thesis G = (V,E), G1 = (V1, E1) and G2 = (V2, E2)
denote three arbitrary loop-free undirected graphs with n > 1 nodes, where
V, V1, V2 denotes the node sets and E,E1, E2 the edge sets, respectively. For
the sake of simplicity, the node sets are assumed to be [n], that is V = V1 =
V2 = [n]. The adjacency matrices of these graphs are A,A1, A2 ∈ {0, 1}n×n,
respectively.

Unless stated otherwise, the presented results apply to graphs having
loops, as well. Note that node labeled graphs can be modeled by adding
loops, and clearly, even if the graph has both loops and node labels, there is
a compact way to encode them using loops only. Therefore node labels can
be omitted likewise.

Let ΓG(i) denote the set of the neighbors of node i in graph G.

Finally, let δij =

1, if i = j

0, otherwise
denote the Kronecker delta.

8

2.2 Linear algebra

For later reference, some of the well-known results in linear algebra are
summarized here.

Theorem 2.2.1. The adjacency matrix of a graph has n eigenvalues over R.

Theorem 2.2.2. Let G be a simple graph with adjacency matrix A, and let
λ1 ≥ λ2 ≥ .. ≥ λn denote the eigenvalues of A. There are u1, .., un ∈ Rn

orthonormal eigenvectors s.t. Aui = λiui for all i ∈ [n].

The adjacency matrices of G1 and G2 are denoted by A1 and A2, respec-
tively. Let λ1 ≥ λ2 ≥ .. ≥ λn and µ1 ≥ µ2 ≥ .. ≥ µn denote their eigenvalues.
G1 and G2 are cospectral if the multisets of the eigenvalues of A1 and A2 are
the same, that is {λi : i ∈ [n]}# = {µi : i ∈ [n]}#. Let U, V ∈ Rn×n orthog-
onal matrices (i.e. UTU = I and V TV = I) s.t. A1U = U diag(λ1, λ2, .., λn)
and A2V = V diag(µ1, µ2, .., µn). U and V are called the eigenmatrices of
G1 and G2, respectively. Let u1, u2, ..un and v1, v2, ..vn denote the column
vectors of U and V , respectively.

Note that V denotes both the eigenmatrix of G2 and the node set of G,
but this will not cause ambiguity.

Please note that uij denotes the jth entry of eigenvector ui, i.e. it is the
entry of U in the jth row and ith column, where i, j ∈ [n]. Similarly, vij = Vji
for i, j ∈ [n].

Theorem 2.2.3. The minimal polynomial of a real symmetric matrix A is
mA(x) =

p∏
i=1

(x− λ̃i), where λ̃1, λ̃2, ..λ̃p are the distinct eigenvalues of A.

Theorem 2.2.4 (Perron-Frobenius). If a real square matrix has nonnegative
entries, then it has a nonnegative real eigenvalue λ which has maximum
absolute value among all eigenvalues. This eigenvalue has a nonnegative real
eigenvector. If, in addition, the matrix does not contain a k×(n−k) block of
0-s disjoint from the diagonal, then λ has multiplicity 1 and the corresponding
eigenvector can be chosen positive.

The following theorem is an immediate consequence of Theorem 2.2.4.

9

Theorem 2.2.5. Graph G is connected and has at least two nodes. The
largest eigenvalue of the adjacency matrix of G is positive and has multiplicity
one.

The positive normalized eigenvector corresponding to the largest positive
eigenvalue in Theorem 2.2.5 will be referred to as the Perron-Frobenius
eigenvector of G.

The following lemma and its corollary will play fundamental role in the
proofs of the theoretical results presented in Section 4.

Lemma 2.2.6. For all i, j ∈ [n] and for all l ≥ 1, (Al)ij =
n∑
k=1

ukiukjλ
l
k

holds, where λ1, λ2, ..λn are the eigenvalues of G. The right-hand side of this
equation will be referred to as the eigen decomposition.

Proof: U ∈ Rn×n is an orthonormal matrix s.t. AU = U diag(λ1, λ2, ..λn).
Clearly, U−1AlU = diag(λl1, λl2, ..λln) holds, henceAl = U diag(λl1, λl2, ..λln)U−1.
Therefore, (Al)ij =

n∑
k=1

ukiukjλ
l
k for any node pair i, j ∈ [n].

The following observation is an immediate consequence of Lemma 2.2.6.

Corollary 2.2.7. For all i, j ∈ [n] and l ≥ 1, there exist βij1 , βij2 , ..βijp ∈ R s.t.
(Al)ij =

p∑
m=1

βijmλ̃
l
m, where λ̃1, λ̃2, ..λ̃p are the distinct non-zero eigenvalues

of G. The the right-hand side of this equation will be referred to as the
aggregated eigen decomposition.

Proof: By Lemma 2.2.6, (Al)ij =
n∑
k=1

ukiukjλ
l
k for l ≥ 1 and i, j ∈ [n].

Clearly, βijm := ∑
k:λk=λ̃m

ukiukj is a proper choice, where i, j ∈ [n] and m ∈

[p].

2.3 Hashing

A functionH mapping bitsequences to a set UH is called hash function.
By definition, if H(b1) 6= H(b2), then b1 6= b2 for all bitsequences b1, b2. The
point is that there are hash functions that (practically) satisfy the other

10

direction, and at the same time, UH is efficient to work with — even if then
the original bitsequences are exponentially long.

Assume that UH is the set of all bitsequences of length c for a given
constant c ∈ N, unless otherwise stated.

For a multiset S ⊆ UH, let H(S) denote the bitsequence H(bS), where
bS denotes the bitsequence gained by concatenating the bitsequences of set
S in non-decreasing order (bS is of length c|S|). Let H(a1, a2) denote H(b12),
where a1 and a2 are s.t. H(a1) and H(a2) are defined, and b12 is the concate-
nation of H(a1) and H(a2) in this order.

Note that long bitsequences are mapped to short bitsequences, yet the
injectivity of the function is required. However contradictory this seems, huge
practical experience shows that the SHA512 function fulfills this requirement.
On one hand, the incidental hashing errors will not influence the exactness
of the proposed methods, on the other hand, a perfect hash function will be
developed later for the specific applications.

3 Artificial labels

This section introduces a concept to classify the nodes of graphs by
assigning different labels to them such that if two nodes can be assigned to
each other in an isomorphism, then the assigned labels are equal. The aim is
to find node-labelings for which the reverse direction (practically) holds, as
well, i.e. if the labels of two nodes are equal, then there is an isomorphism
assigning them to each other.

Definition 3.0.1. A function lG : VG −→ L is called node-labeling, where
G is a graph and L denotes the set of labels.

Definition 3.0.2. A family {lG : G graph} of node-labelings is called ar-
tificial labeling if the following holds for all G1, G2 graphs. If there ex-
ist an isomorphism mapping node i to node i′, then lG1(i) = lG2(i′) for all
i ∈ V1, i

′ ∈ V2.

Three simple examples are shown to demonstrate the concept of artificial

11

labeling. The first example shows that assigning to each node its degree is
an artificial labeling.

Example 3.0.1. Let L1 = {l1G : VG −→ N | G graph} a family of node-
labelings, where l1G(v) = degG(v), (v ∈ VG).

The following examples strengthen the previous one.

Example 3.0.2. Let L2 = {l2G : VG −→ N | G graph} a family of node-
labelings, where l2G(v) = deg(v) + ∑

w∈Γ(v)
degG(v), (v ∈ VG).

Example 3.0.3. Let L3 = {l3G : VG −→ (N × 2N) | G graph} a family of
node labels, where l3G(v) = (deg(v), {deg(w) : w ∈ Γ(v)}), (v ∈ VG).

Observe that the artificial labelings given in the previous examples are
not very strong in the sense that they assign the same label to any two nodes
of a d-regular graph.

The following two sections describe two efficient artificial labelings, the
main concepts of this work.

3.1 Walk-labeling

This section introduces a special artificial labeling called walk-labeling.

Let Lw = {Q : Q ∈ Nn×N} be the set of labels, i.e. Lw consists of
matrices having n rows and infinitely many columns. Two such labels, Q1

andQ2 ∈ Lw are said to be permutation-equal if there exists a permutation
matrix P for which PQ1 = Q2. This relation is denoted by Q1

p= Q2.

Claim 3.1.1. p= is an equivalence relation.

The following artificial labeling, besides its practical relevance, plays
a primary role when analysing the so-called strong walk-labeling, see Sec-
tion 3.2.

Notation 3.1.1. Let `G : VG −→ Nn×N be s.t. `G(i)jl denotes the number
of walks of length l between node i and node j for l ≥ 0. In other words,
the lth column of matrix `G(i) is Al−1ei, where ei is the incidence vector of
node i ∈ VG and l ≥ 1. The function `G will be referred to as (infinite)
walk-labeling.

12

The following claim easily follows from the definition of the walk-labeling.

Claim 3.1.2. The family {`G | G graph} is an artificial labeling if labels are
compared using p=.

The definition of walk-isomorphism follows, which plays an important
role in the studies of Section 4.

Definition 3.1.1. G1 and G2 are walk-isomorphic if the nodes can be
relabeled s.t. `G1(i) p= `G2(i) for all node i.

Claim 3.1.3. If two graphs are isomorphic, then they are walk-isomorphic.

Later on, it will be shown in important special cases, that the reverse
direction holds as well. Observe that it can be checked in polynomial time
whether to graphs are walk-isomorphic.

3.1.1 Getting rid of infinite labels

With the matrices in Lw being infinite long, there is no straightforward
way of checking whether two such labels are permutation-equal or not. This
section reveals that it is sufficient to consider the first n + 1 column of the
label matrices.

Definition 3.1.2. For given column vectors q0, q1, .. over a field, let span(q0, q1, ..)
denote the linear subspace spanned by the column vectors q0, q1, ...

The following lemma will be useful in the proof of Theorem 3.1.6.

Lemma 3.1.4. For an arbitrary real square matrix M ∈ Rn×n and q0 ∈ Rn

column vector, span(q0, q1, q2, ..) = span(q0, q1, .., qn−1), where qi := M iq0 for
all i ≥ 0.

Proof:

Claim 3.1.5. span(q0, q1, ..qi) = span(q0, q1, ..qi+1) =⇒ span(q0, q1, ..qi) =
span(q0, q1, q2, ..) for all i.

13

Proof: By induction, it is sufficient to show that qi+2 ∈ span(q0, q1, ..qi).
There exist α0..αi coefficients s.t. qi+1 =

i∑
j=0

αjqj, thus qi+2 = Mqi+1 =

M(
i∑

j=0
αjqj) =

i∑
j=0

αjMqj =
i∑

j=0
αjqj+1 ∈ span(q0, q1, ..qi+1) = span(q0, q1, ..qi).

By the previous claim, the first few columns of the sequence q0, q1, q2, ..

form a basis Bk of span(q0, q1, q2, ..). Since the columns of Bk are all present
in q0, q1, ..qn−1, indeed span(q0, q1, q2, ..) = span(q0, q1, ..qn−1).

The following theorem shows that it is sufficient to consider the first few
columns of the labels, i.e. only the number of short walks matters.

Notation 3.1.2. Let `G|k (i) denote the first k columns of matrix `G(i).

Theorem 3.1.6. For every graph pair G1, G2 and for all i1 ∈ V1, i2 ∈ V2

`G1(i1) p= `G2(i2)⇐⇒ `G1|n+1 (i1) p= `G2 |n+1 (i2),

where n = |V1| = |V2|.

Proof: LetQ1, Q2, Q
′
1 andQ′2 denote the matrices `G1(v1), `G2(v2), `G1|n+1 (v1)

and `G2 |n+1 (v2), respectively.

If Q1
p= Q2, then, by definition, there exists a permutation matrix P for

which PQ1 = Q2. Clearly, PQ1 = Q2 ⇒ PQ′1 = Q′2.

To show the other direction, suppose that Q′1
p= Q′2, and the columns of

Q1 and Q2 are q0, q1, q2.. and q′0, q
′
1, q
′
2.., respectively.

Let A1, A2 denote the adjacency matrices of G1 and G2, respectively.

Since Q′1
p= Q′2, there exists a permutation matrix P s.t. PQ′1 = Q′2,

thus it is sufficient to prove that Pqi = q′i hols for all i ≥ n+ 1.
By induction, suppose that k < i =⇒ Pqk = q′k for all k. The existence of
coefficients α0, ..αn−1 s.t. qi−1 =

n−1∑
j=0

αjqj and q′i−1 =
n−1∑
j=0

αjq
′
j is an immediate

consequence of Lemma 3.1.4. Therefore,

14

Pqi = PA1qi−1 = P
n−1∑
j=0

αjA1qj =
n−1∑
j=0

αjPqj+1 =
n−1∑
j=0

αjq
′
j+1 =

=
n−1∑
j=0

αjA2q
′
j = A2q

′
i−1 = q′i

(1)

holds for all i ≥ n+ 1, which had to be shown.

The following example shows that the previous theorem is tight in the
sense that it is not always sufficient to consider the first n columns of the
walk labels.

Example 3.1.1. Let Pn denote the path of n nodes, and let P ′n denote the
path of n nodes with a loop on one of its endpoints. To distinguish two loop-
free endpoints of the two graphs, indeed n + 1 columns are necessary, since
their labels do not turn out to be different earlier.

In the rest of the thesis, `G might refer to `G|n+1 or the infinite walk
label.

Note that the walk label `G|n+1 (i) of a given node i can be computed
in O(nm) operations using a simple dynamic programming method. Fur-
thermore, one might prove that the occurring numbers consist of polynomial
many bits. Therefore it takes O(n2m + n3log(n)) steps to decide whether
two graphs are walk-isomorphic by sorting the labels of both graphs.

3.1.2 Walk labels in practice

In the previous section, it has been shown that the first n + 1 columns
already provide the distinguishing power of the infinite walk-labels – and that
they are necessary in some sense. This section revises the number of columns
to be generated, since in a particular node, it might be sufficient to consider
significantly less columns than n + 1. Firstly, observe that Theorem 3.1.6
holds even in the following stronger form, which informally states that instead
of the first n + 1 columns of the walk label of node i, it suffices to generate
the first r(`G(i)) + 1 columns.

15

Theorem 3.1.7. For every graph pair G1, G2 and for all i1 ∈ V1, i2 ∈ V2

`G1(i1) p= `G2(i2)⇐⇒ `G1|s(i1) (i1) p= `G2|s(i2) (i2),

where s(i1) = r(`G1(i1)) + 1 and s(i2) = r(`G2(i2)) + 1.

The proof is similar to that of Theorem 3.1.6, therefore it is omitted.
Note that the permutation equality of two matrices implies that they are of
the same dimension, thus if two labels are the same in the previous theorem,
then their ranks are the same, as well.

The hardest instances of the graph isomorphism problem typically only
have a few distinct adjacency eigenvalues. For example, strongly regular
graphs only have three distinct eigenvalues only. Intuition suggests that if
a walk-label have low rank, then it has low distinguishing power, as well.
Therefore it is natural to investigate the connection between the number
of distinct eigenvalues and the rank of the labels. To this end, a few more
notations are necessary. First of all, let diam(G, i) denote the longest shortest
path starting from node i, i.e. diam(G, i) := max{dist(i, j) : j ∈ VG}, where
dist(i, j) is the distance of nodes i and j in G. Let D, p, diam(G) denote the
largest rank of the node labels, the number of distinct eigenvalues and the
diameter of graph G (i.e. max{diam(G, i) : i ∈ VG}), respectively.

The following theorem states that the number of distinct eigenvalues is
an upper bound on the rank of the walk labels.

Theorem 3.1.8. p ≥ D ≥ diam(G) + 1

Proof: Let Q denote a node label having the largest rank, i.e. r(Q) = D.
By Claim 3.1.5, the first D columns of Q are linearly independent, which
implies that I, A,A2, .., AD−1 are linearly independent.

By Theorem 2.2.3, p = deg(mA), hence I, A,A2, .., Ap are linearly de-
pendent, thus indeed p ≥ D.

To prove that D ≥ diam(G) + 1, observe that r(`G(i)) > diam(G, i)
at any node i, that is, the rank of `G(i) is larger than the length of the
longest shortest path from node i. Applying this to a node i that realizes
the diameter (i.e. diam(G) = diam(G, i)), one gets that D ≥ r(`G(i)) >
diam(G, i) = diam(G).

16

Theorem 3.1.7 and Theorem 3.1.8 together give that in general, it is
sufficient to calculate the first p+1 columns of the walk labels, but the proof
of Theorem 3.1.8 also implies that at a given node i, at least diam(G, i) + 2
columns are necessary to obtain the power of infinite walk labels.

Even when no upper bound on the rank of a certain walk label is avail-
able, one can generate the columns one by one and stop as soon as the current
column is linearly dependent form the previous ones. The correctness of this
method easily follows from Theorem 3.1.7 and Claim 3.1.5.

As it has already been pointed out, the logarithm of numbers occurring
in the label matrices is polynomial in the size of the graph, which ensures
that the walk labels are polynomially large in the size of the graph and can
be calculated in polynomial time. In practice, the entries of these matrices
might be calculated modulo M , where M is a reasonably large number. This
simplification reduces both the running time and the memory usage, yet it
does not reduce the practical efficiency of the node labels - provided that M
is large enough.

3.2 Strong walk-labeling

This section introduces an improved version of the walk-labeling, which
has a significant practical importance, and it is the basis of the graph finger-
prints described in Section 5.4.

Notation 3.2.1. Let sG(i) be an n×N matrix consisting of multisets for all
i ∈ [n]. Informally, the multiset in the (j, l) position of sG(i) describes the
structure of the walks of length l between nodes i and j. Formally, let

sG(i)jl :=

δij, if l = 0
{sG(i)i′l−1 : i′ ∈ ΓG(j)}#, otherwise

(2)

for all i, j ∈ [n] and for all l ≥ 0.

sG(i) will be referred to as the (infinite) strong walk label of node i.

By the definition of sG, the following claim easily follows.

Claim 3.2.1. The family {sG | G graph} is an artificial labeling.

17

Definition 3.2.1. G1 and G2 are strongly walk-isomorphic if the nodes
can be relabeled s.t. sG1(i) p= sG2(i) for all node i.

Claim 3.2.2. If G1 and G2 are strongly walk-isomorphic, then they are walk-
isomorphic.

If the number of columns were set to n + 1, it would be ensured that
strong walk-labeling is at least as strong as walk-labeling. The question arises
naturally whether generating more than n + 1 columns gives a finer node-
labeling. At first sight, the conjecture seems to be hard to prove, because
linear algebra tools are out of reach - unlike in the case of walk-labels. Luckily,
an elementary proof can be given to the following claim, which states that it is
sufficient to consider the first n+1 columns in the case of strong walk-labels,
as well.

Claim 3.2.3. For every graph pair G1, G2 and for all i1 ∈ V1, i2 ∈ V2

sG1(i1) p= sG2(i2)⇐⇒ sG1|n+1 (i1) p= sG2 |n+1 (i2),

where n = |V1| = |V2|.

Proof: Let i1 ∈ V1 and i2 ∈ V2 be two nodes. Clearly, if their infinite strong
walk labels are permutation equal, then the first n+ 1 columns are too.

To prove the other direction, assume that sG1|n+1 (i1) p= sG2|n+1 (i2).
Observe that as the number of the considered columns increases, one gets
finer and finer node partitions, where two nodes are in the same class, iff
their rows are the same (considering the first few columns).

Observe that if the node partition determined by the first k ≥ 0 columns
is not strictly finer (that is the number of classes is not larger) than in the
partition given by the first k − 1 columns, then the partition remains the
same forever. On the other hand, the number of classes of a node partition is
at most n, therefore there are two consecutive columns among the first n+ 1
columns which give the same node partition. Consequently, the partition
given by the first n columns is final.

Let k1 ≤ n+1 and k2 ≤ n+1 the first column indeces s.t. the partitions
do not get finer in sG1(i1) and sG2(i2), respectively. Observe that k1 = k2,
otherwise sG1|n+1 (i1) and sG2|n+1 (i2) would not be permutation equal. Let

18

k denote this value. It is easy to see, that the multisets of the labels of the
neighbors are the same, otherwise the partition would get finer if the (k+1)th
column is considered too (see recursion (2)). Therefore, if the first k columns
of sG1(i1) and sG2(i2) are permutation equal, then the first k+ 1 columns are
permutation equal, as well. By induction, it easily follows that any column
prefixes are permutation equal, as well.

Consequently, if sG1|n+1 (i1) p= sG2|n+1 (i2), then sG1(i1) p= sG2(i2).

In the rest of the work, sG might refer both to sG|n+1 and the infinite
strong walk label.

Example 3.1.1 shows that the previous claim is tight in the sense that
considering the first n columns would not be sufficient.

Note that the size of multiset sG(i)jl may be exponentially large in n.
The next section addresses this issue.

3.2.1 Strong walk labels in practice

To reduce the time and space complexity of the computation of matrix
sG(i), a hash function H is used which maps any bit sequence to a constant
long bitsequence. In the implementations, the SHA512 hash function was
used, which maps to bitsequences of length 512.

Suppose that H is a practically perfect hash function, i.e. if the hash
values of two arbitrarily long bitsequence are the same, then the sequences
are practically the same, as well.

With such a hash function H, for all i, j ∈ [n] and for l = 0..n, let

sG(i)jl :=

H(δij), if l = 0
H(sG(i)jl−1,H({sG(i)i′l−1 : i′ ∈ ΓG(j)}#)), otherwise

(3)

Informally, the dynamic program counting the number of walks is hashed, so
that a description of the structure of the walks is gained.

Observe that using this definition, sG(i)jn describes the whole jth row
of sG(i), therefore to compare two rows of strong walk labels, it is sufficient
to compare (and store) the last elements of the rows only.

19

In Section 3.1.2, it has been remarked that if a column of a walk-label
linearly depends on the previous columns, then considering more columns
does no increase the distinguishing power of the labels. Likewise, one can
stop generating the columns of a strong walk-label as soon as the current
column does not refine the current partition. The correctness of this method
easily follows from the proof of Theorem 3.2.3. Note that the running time
also can be reduced by calculating uniformly fewer columns possibly at the
expense of the distinguishing power of the labels.

Also note that sG(i) denotes a matrix consisting of multisets, and a ma-
trix consisting of bitsequences, as well. Keeping in mind that H is practically
perfect, this should cause no misunderstanding.

Note that SHA512 is — in theory — not a perfect hash function. How-
ever, one can easily develop a real perfect hash function for strong walk labels
by storing and gradually extending the set of the current label-key pairs. Let
the key of the empty set be 0, and the key of a new occurring label (while
computing recursion (3)) is the smallest free natural number. Observe that
the number and the size of label-key pairs to be stored is polynomial in the
size of the graphs if each occurrence of known labels are replaced by their
keys. The label-key set can be stored in a binary search tree, since a total
order can be defined on the labels which allows easy-to-compute comparison.
An other option is to store them in a hash table.

4 Some theoretical results

The results presented in this section show the strength of the walk la-
bels and that of the strong walk labels. It will be shown that if two graphs
have different spectra, then they are not walk-isomorphic. In spectral graph
theory it is conjectured that most non-isomorphic graph pairs are not cospec-
tral, therefore, if the conjecture holds, most non-isomorphic graph pairs can
be distinguished by verifying whether they are walk-isomorphic - without
computing their spectra.

To investigate the case of cospectral but non-isomorphic graphs, the
walk-isomorphism will be proved to be capable of recognizing certain differ-

20

ences between the eigenmatrices of the graphs.

In addition, graph classes will be shown in which the graph isomorphism
is equivalent to the walk-isomorphism.

The strong walk-isomorphism will turn out to be equivalent to the graph
isomorphism in case of trees.

Finally, polynomial time graph isomorphism algorithms will be described
for graph classes fulfilling certain spectral conditions, for trees and for graphs
having large diameter.

4.1 Walk-labeling

A simple observation follows for later reference.

Claim 4.1.1. If `G1(i) p= `G2(i′), then the number of closed walks of length l
starting from i ∈ V1 and i′ ∈ V2 are the same for all l ≥ 0.

Proof: By definition, there exists a permutation matrix P s.t. P`G1(i) =
`G2(i′). Notice that the first column of `G1(i) and `G2(i′) enforces that P
maps the ith row of `G1(i) to the i′th row of `G2(i′), which means that the
number of closed walks from i ∈ V1 and i′ ∈ V2 are the same for all l ≥ 0.

The following theorem shows that any two non-cospectral graphs are
not walk-isomorphic.

Theorem 4.1.2. If G1 and G2 are walk-isomorphic, then the spectra of G1

and G2 are the same.

Proof: The proof consists of two steps.

Step 1: We prove that the set of non-zero eigenvalues of G1 and G2 are
the same.

Lemma 4.1.3. If λ̃k is an eigenvalue of exactly one of G1 and G2, then the
coefficient βiik in the aggregated eigen decomposition is zero for all i, k ∈ [n].

Proof: Let λ̃1, λ̃2, .., λ̃r, θ̃r+1, ..θ̃p be the distinct non-zero eigenvalues of G1,
and let λ̃1, λ̃2, .., λ̃r, µ̃r+1, ..µ̃q be the distinct non-zero eigenvalues of G2. Note

21

that λ̃1, λ̃2, .., λ̃r are the mutual non-zero eigenvalues and θ̃r+1, ..θ̃p, µ̃r+1, ..µ̃q
are pairwise distinct.

For the sake of simplicity, the nodes are reindexed s.t. the identity map-
ping is a walk-isomorphism, i.e. `G1(i) p= `G2(i) for all node i.

By Corollary 2.2.7, for a given pair i, j there exist coefficients α1, α2, .., αp,

β1, β2, ..βq s.t.

(Al1)ij =
r∑

k=1
αkλ̃

l
k +

p∑
k=r+1

αkθ̃
l
k (4)

and
(Al2)ij =

r∑
k=1

βkλ̃
l
k +

q∑
k=r+1

βkµ̃
l
k (5)

for all l ≥ 1.

The two graphs being walk-isomorphic, one gets that
r∑

k=1
αkλ̃

l
k +

p∑
k=r+1

αkθ̃
l
k = (Al1)ii = (Al2)ii =

r∑
k=1

βkλ̃
l
k +

q∑
k=r+1

βkµ̃
l
k (6)

holds for all i ∈ [n] and l ≥ 1, where the second equality follows from
Claim 4.1.1.

Subtracting the right-hand side, the following equations are gained for
all l ≥ 1.

r∑
k=1

(αk − βk)λ̃lk +
p∑

k=r+1
αkθ̃

l
k −

q∑
k=r+1

βkµ̃
l
k = 0 (7)

The following linear equations will be examined for all l ∈ [m], where
m := p+ q − r.

r∑
k=1

xkλ̃
l
k +

p∑
k=r+1

xkθ̃
l
k +

q∑
k=r+1

xp+k−rµ̃
l
k = 0, (8)

where for all s ∈ [m]

xs :=


αs − βs, if 1 ≤ s ≤ r

αs, if r + 1 ≤ s ≤ p

−βr+s−p, if p+ 1 ≤ s ≤ p+ q − r
(9)

22

The matrix of this equality system is

M :=



λ̃1
1 . . . λ̃1

r θ̃1
r+1 . . . θ̃1

p µ̃1
r+1 . . . µ̃1

q

λ̃2
1 . . . λ̃2

r θ̃2
r+1 . . . θ̃2

p µ̃2
r+1 . . . µ̃2

q

λ̃3
1 . . . λ̃3

r θ̃3
r+1 . . . θ̃3

p µ̃3
r+1 . . . µ̃3

q
...
λ̃m1 . . . λ̃mr θ̃mr+1 . . . θ̃mp µ̃mr+1 . . . µ̃mq


. (10)

Observe that M = M ′ diag(λ̃1
1, . . . , λ̃

1
r, θ̃

1
r+1, . . . , θ̃

1
p, µ̃

1
r+1, . . . , µ̃

1
q), where

M ′ denotes the following Vandermonde matrix.

M ′ :=



1 . . . 1 1 . . . 1 1 . . . 1
λ̃1

1 . . . λ̃1
r θ̃1

r+1 . . . θ̃1
p µ̃1

r+1 . . . µ̃1
q

λ̃2
1 . . . λ̃2

r θ̃2
r+1 . . . θ̃2

p µ̃2
r+1 . . . µ̃2

q
...
λ̃m1 . . . λ̃mr θ̃mr+1 . . . θ̃mp µ̃mr+1 . . . µ̃mq


(11)

Therefore det(M) = det(M ′)
r∏

k=1
λ̃k

p∏
k=r+1

θ̃k
q∏

k=r+1
µ̃k 6= 0, thus the only solu-

tion is x ≡ 0, that is for all s ∈ [m]
αs = βs, if 1 ≤ s ≤ r

αs = 0, if r + 1 ≤ s ≤ p

βr+s−p = 0, if p+ 1 ≤ s ≤ p+ q − r
(12)

Let λ∗ 6= 0 denote an eigenvalue which corresponds to one of the graphs
only, say to G1.

Claim 4.1.4. There is a node i ∈ V1 s.t. λ∗ has non-zero coefficient in the
decomposition given by Corollary 2.2.7 for (Al1)ii.

Proof: Let m̃ denote the unique index for which λ̃m̃ = λ∗. By Corol-
lary 2.2.7, the coefficient of λ̃m̃ in the case of the number of closed walks from
node i is βiim̃ := ∑

k:λk=λ̃m̃

ukiuki. Let m be an index s.t. λm = λ̃m̃. Let index i

be s.t. umiumi > 0. It exists , since umum = 1. In addition, βiim̃ ≥ umiumi > 0
holds, therefore node i meets the requirements.

23

Let i ∈ V1 be a node provided by Claim 4.1.4 to λ∗. If λ∗ would indeed
correspond to exactly one of the graphs, then, by Lemma 4.1.3, the coeffi-
cient of λ∗ in the decomposition of closed walks would be 0 contradicting to
Claim 4.1.4.

Step 2: We show that the multiplicities of the eigenvalues are the same
in G1 and G2. It is sufficient to show that the multiplicities of the non-
zero eigenvalues are the same. Let τ (k)

i denote the multiplicity of λ̃i in Gk

(k = 1, 2), where λ̃1, .., λ̃p are the mutual eigenvalues of G1 and G2.

As a consequence of Lemma 2.2.6, the sum of the numbers of closed
walks of Gk of length l is

p∑
j=1

τ
(k)
j λ̃lj, (l ≥ 1). Since G1 and G2 are walk-

isomorphic, Claim 4.1.1 applies, thus the sum of the numbers of closed walks
of length l in the two graphs are the same for all l, i.e.

p∑
j=1

τ
(1)
j λ̃lj =

p∑
j=1

τ
(2)
j λ̃lj

for all l ≥ 1. Subtracting the right-hand side provides for all l ≥ 1 that

p∑
j=1

(τ (1)
j − τ

(2)
j)λ̃lj = 0 (13)

Consider these equations for l ∈ [p], and let xj := τ
(1)
j − τ

(2)
j for all

j ∈ [p]. Similarly to step 1, the matrix of this equation system has non-zero
determinant, thus the only solution is x ≡ 0, i.e. τ (1)

j = τ
(2)
j for all j ∈ [p].

Therefore each non-zero eigenvalue has the same multiplicities in the two
graphs, which implies that the multiplicities of eigenvalue 0 is the same, as
well. This means that the multisets of the eigenvalues are indeed equal.

An immediate consequence follows.

Corollary 4.1.5. If G1 is bipartite and G2 is not, then they are not walk-
isomorphic.

Proof: Recall that a graph is bipartite if and only if its spectrum is sym-
metric about the origin, see [4, p. 53], therefore the spectra of G1 and G2 are
different.

Note that an alternative proof could refer to Claim 4.1.1.

24

The following example shows that using walk-isomorphism, strictly more
non-isomorphic graph pairs can be differentiated than by comparing their
spectrum.

Example 4.1.1. One may show that the following non-isomorphic graphs
are cospectral, yet they are clearly not walk-isomorphic.

G1 G2

The following theorems examine different properties of the eigenmatrices
that can be verified by comparing solely the walk labels of the graphs.

Theorem 4.1.6. If G1 and G2 are walk-isomorphic graphs and the nodes
of G2 are reindexed s.t. `G1(i) p= `G2(i) for all i ∈ [n], then for any single
eigenvalue, the corresponding normalized eigenvectors in the two graphs are
element-wise the same up to sign.

Proof: By definition, `G1|n+1 (i) p= `G2|n+1 (i) implies that

n∑
k=1

uikuikλ
l
k = (Al1)ii = (Al2)ii =

n∑
k=1

vikvikλ
l
k, (14)

thus ∀i ∈ [n] : uikuik = vikvik. That is, |uik| = |vik| for all i, k ∈ [n]. Notice
that this proof works even if 0 is an eigenvalue.

An immediate consequence follows.

Corollary 4.1.7. If G1 and G2 are walk-isomorphic graphs and the nodes of
G2 are reindexed s.t. `G1(i) p= `G2(i) for all i ∈ [n], and every eigenvalue is
single, then the eigenmatrices are element-wise the same up to sign.

The following perspective of the previous theorem will be useful later
on.

25

Theorem 4.1.8. If G1 and G2 are walk-isomorphic, then {ũi : i ∈ [n]}# =
{ṽi : i ∈ [n]}# or {ũi : i ∈ [n]}# = {−ṽi : i ∈ [n]}#, where ũ and ṽ denote
two normalized eigenvectors of G1 and G2, respectively, corresponding to the
same single eigenvalue.

Proof: By the definition of walk-isomorphism, the nodes of G2 can be rein-
dexed s.t. `G1 |n+1 (i) p= `G2|n+1 (i) for all i ∈ [n]. That is, for all i∗ ∈ [n] there
exists permutation π∗ : V1 −→ V2 s.t. π∗(i∗) = i∗ and (Al1)i∗j = (Al2)i∗π∗(j)
for all j ∈ [n] and l ≥ 1. Let i∗ be chosen s.t. ũi∗ 6= 0. Now,

n∑
k=1

uki∗ukjλ
l
k =

n∑
k=1

vki∗vkπ∗(j)λ
l
k for all j ∈ [n], thus ũi∗ũj = ṽi∗ ṽπ∗(j) for all j ∈ [n], regardless

of whether 0 is an eigenvalue or not.

Clearly, |ũi∗| = |ṽi∗| holds, which implies that ṽi∗ 6= 0.
Let σ := sgn(ũi∗) sgn(ṽi∗) ∈ {−1, 1}. Since ũi∗ũj = ṽi∗ ṽπ∗(j) holds for all j ∈
[n], it follows that ũj = σṽπ∗(j) for all j ∈ [n], which implies the theorem.

Theorem 4.1.9. Let G1 and G2 be cospectral with single eigenvalues. If one
of the eigenmatrices has a row which contains non-zero elements only, then
the walk-isomorphism is equivalent to the graph isomorphism.

Proof: Clearly, it suffices to show that if G1 and G2 are walk-isomorphic,
then they are isomorphic.

Finding an isomorphism consists in finding a permutation matrix Π s.t.
ΠA1ΠT = A2. Recall that U = (u1, u2, .., un) and V = (v1, v2, .., vn) denote
the eigenmatrices of G1 and G2, respectively, i.e. A1 = Udiag(λ1, .., λn)UT

and A2 = V diag(λ1, .., λn)V T . A permutation matrix Π corresponds to a
proper bijection between the nodes if and only if ΠUdiag(λ1, .., λn)UTΠT =
V diag(λ1, .., λn)V T , which holds if and only if ΠU = V S for some matrix
S = diag(σ1, .., σn), where σi ∈ {−1, 1}. Therefore it is sufficient to show
such matrices Π and S.

Without loss of generality, assume that the i∗ th row of U consists of
non-zero elements.

By the definition of walk-isomorphism, there is a permutation π s.t.
(Al1)i∗j = (Al2)π(i∗)π(j), thus uki∗ukj = vkπ(i∗)vkπ(j) for all j ∈ [n]. Clearly,
the π(i∗)th row of V consists of non-zero elements. Let S := diag(σ1, .., σn),

26

where σk := sgn(uki∗) sgn(vkπ(i∗)) ∈ {−1, 1}, and let

Π =

1, if π(j) = i

0, otherwise
. (15)

Having said that, the following claim implies the theorem.

Claim 4.1.10. ΠU = V S

Proof: The values in position (j, k) of the left and the right side are ukπ−1(j)

and σkvkj, respectively. ∀j, k ∈ [n] : ukπ−1(j) = σkvkj ⇐⇒ ∀j, k ∈ [n] : ukj =
σkvkπ(j) ⇐⇒ ∀j, k ∈ [n] : uki∗ukj = vkπ(i∗)vkπ(j), where the last equivalence
holds because uki∗ = σkvkπ(i∗) and σ2

k = 1, and indeed, π was chosen s.t.
uki∗ukj = vkπ(i∗)vkπ(j) for all j, k ∈ [n].

Theorem 4.1.11. Let G1 and G2 be cospectral with single eigenvalues. If
{uik : k ∈ [n]}# 6= {−uik : k ∈ [n]}# and {vik : k ∈ [n]}# 6= {−vik : k ∈
[n]}# for all i ∈ [n], then the walk-isomorphism is equivalent to the graph
isomorphism.

Proof: If G1 and G2 are isomorphic, then they are clearly walk-isomorphic.

On the other hand, let w1, w2 ∈ Rn be arbitrary vectors, s.t. {w1k : k ∈
[n]}# 6= {w2k : k ∈ [n]}#. Let w1

L
� w2 mean that after non-increasingly

ordering their coordinates, w1 is lexicographically strictly larger than w2.

Without loss of generality, it can be assumed that ui
L
� −ui and vi

L
� −vi

holds for all i ∈ [n].

Assume that there is a walk-isomorphism realized by π : V1 −→ V2.
By Theorem 4.1.6, |uki| = |vkπ(i)| holds for all k ∈ [n] and i ∈ [n]. By
contradiction, suppose that there is an index k∗ and i∗ s.t. uk∗i∗ 6= vk∗π(i∗).
Clearly, uk∗i∗ = −vk∗π(i∗). Let π∗ denote the bijection of i∗, i.e. uki∗ukj =
vkπ∗(i∗)vkπ∗(j) holds for all j, k ∈ [n], even if 0 is an eigenvalue. π∗ can
be prescribed to satisfy π∗(i∗) = π(i∗). Thus one gets that uk∗i∗uk∗j =
vk∗π∗(i∗)vk∗π∗(j) for all j ∈ [n], which implies −uk∗ = πvk∗ . But uk∗

L
� −uk∗ =

π∗vk∗
L
� −vk∗ = π∗−1uk∗ . Therefore G1 and G2 are indeed isomorphic.

27

Definition 4.1.1. A graph is friendly if it has single eigenvalues and 1U has
no zero coordinates, where U is the eigenmatrix of the graph.
Corollary 4.1.12. If G1 and G2 are friendly, then the walk-isomorphism is
equivalent to the graph isomorphism.

Proof: For all i ∈ [n] : 1ui 6= 0 and 1vi 6= 0 implies that {uik : k ∈
[n]}# 6= {−uik : k ∈ [n]}# and {vik : k ∈ [n]}# 6= {−vik : k ∈ [n]}#, thus
Theorem 4.1.11 can be applied.
Theorem 4.1.13. Let G1 and G2 be connected cospectral graphs on at least
two nodes. If the Perron-Frobenius eigenvectors of G1 and G2 are different,
then G1 and G2 are not walk-isomorphic.

Proof: Let λ1 denote the unique largest eigenvalue, and let u1, v1 denote
the corresponding Perron-Frobenius eigenvectors in G1 and G2, respectively.
Theorem 2.2.5 implies u1 and v1 are strictly positive.

Clearly, λ1 > 0, since the sum of the eigenvalues is the number of closed
walks of length one, thus it is non-negative, therefore λ1 ≤ 0 would imply that
each eigenvalue is zero. It is easy to see that a graph having zero eigenvalues
only must be the empty graph, which contradicts the assumption of the
theorem.

In any walk-isomorphism,
n∑
k=1

ukiukiλ
l
k =

n∑
k=1

vkivkiλ
l
k holds for all l ≥ 1

after reindexing the nodes. With the multiplicity of λ1 being one, u1iu1i =
v1iv1i for all i ∈ [n]. Since both u1 and v1 are strictly positive, indeed
u1 = v1.

Based on computational tests, the following conjecture holds for trees
with at most 22 nodes.
Conjecture 4.1.1. The walk-isomorphism is equivalent to the graph isomor-
phism on trees.

4.2 Strong walk-labeling

First notice that since the strong walk labels are stronger than the walk
labels, the results described in the previous section apply to strong walk
labels, as well.

28

The following theorem suggests that the strength of strong walk labels
do not confine to spectral properties, since it was shown in [29] that almost
all trees are cospectral.

Theorem 4.2.1. The strong walk-isomorphism is equivalent to the graph
isomorphism on trees.

Proof: Given are two strongly walk-isomorphic trees G1 = (V,E1) and G2 =
(V,E2). For an edge (r, p) ∈ Ei, let Ti(r, p) = (Vi(r, p), Ei(r, p)) denote
the subtree of Gi obtained as the connected component of (V,Ei \ {(r, p)})
containing node r.

By induction, we prove that for any edges (r1, p1) ∈ E1 and (r2, p2) ∈ E2

if sG1(r1)|k
p= sG2(r2)|k and sG1(p1)|k

p= sG2(p2)|k for k = |V1(r1, p1)|, then
T1(r1, p1) and T2(r2, p2) are isomorphic. Clearly, if k = 1 — i.e. r1 is a leaf
node in G1 — then r2 must also be a leaf node in G2.

Otherwise, one gets that {sG1(i)|k−1 : i ∈ ΓG1(r1)}# = {sG2(i)|k−1 : i ∈
ΓG2(r2)}#. Thus r1 and r2 have the same number of neighbors and there is
a one-to-one mapping φ : ΓG1(r1) −→ ΓG2(r2) so that v and φ(v) have same
label up to the first k− 1 columns for each v ∈ ΓG1(r1). Therefore, from the
induction hypothesis, T1(v, r1) and T1(φ(v), r2) are isomorphic subtrees for
all v ∈ ΓG1(r1) \ p. The isomorphism of T1(r1, p1) and T2(r2, p2) follows from
this immediately.

In order to complete the proof of the theorem, let us choose an arbitrary
leaf node r1 ∈ V1 and a node r2 ∈ V2 with sG1(r1) p= sG2(r2). Node r2 is also
a leaf node and sG1(p1)||V1|−1

p= sG2(p2)||V1|−1 for their neighbors p1 ∈ V1 and
p2 ∈ V2. Applying the above claim to r1, p1, r2, p2 proves the isomorphism of
G1 and G2.

Note that the proof above also provides a polynomial time algorithm
for finding the isomorphism between trees. In fact, there exists a linear time
algorithm to decide whether two trees are isomorphic or not, see [17].

Theorem 4.2.2. The walk-isomorphism is equivalent to the graph isomor-
phism on cacti graphs that contain no intersecting cycles.

29

If there is only one cycle, then the poof is similar to the case of trees -
but technically more difficult. If there are at least two disjoint cycles, a fairly
simple induction works. The details are omitted.

Finally, a conjecture follows which generalizes the previous two theo-
rems.

Conjecture 4.2.1. Two cacti graphs are isomorphic if and only if they are
walk-isomorphic.

4.3 Polynomial time graph isomorphism algorithm for
certain graph classes

In this section, different graph classes are considered in which the graph
isomorphism problem can be solved in polynomial time. Note that non of
the described methods involves the calculation of eigenvalues or eigenvectors.

Theorem 4.3.1. The graph isomorphism problem can be solved in O(n2m+
n3log(n) + nc+1m) steps, where c := n− diam(G1)− 1.

Proof: First, generate the walk labels of the two graphs in O(n2m) steps
and sort the rows of each label in lexicographical order in O(n3log(n)) steps.
Find a node i1 ∈ V1 for which `G1(i1) has at least diam(G1) + 1 different
rows. Such i1 exists based on Theorem 3.1.8, in addition, it is easy to find
in O(n3) steps by finding a node having walk label with as many different
rows as possible. For the sake of simplicity, reorder the rows of `G1(i1) s.t.
the last n− c rows are different. This can be done in O(n2) steps.

For each node i2 ∈ V2, if `G1(i1) p= `G2(i2), then try every permuta-
tion matrix P for which `G1(i1) = P`G2(i2). Observe that there are at
most

c−1∏
k=0

(n − k) = O(nc) different proper permutations, since if P ′ is s.t.

`G1(i1)T
∣∣∣
c

= P ′ `G2(i2)T
∣∣∣
c
, then there is a unique P permutation matrix for

which P T
∣∣∣
c

= P ′T
∣∣∣
c

and `G1(i1) = P`G2(i2).

All these permutations can be enumerated in amortized constant time,
in addition, to decide whether `G1(i1) = P`G2(i2) holds for a certain per-
mutation P takes amortized O(n) steps, since only amortized constant row

30

comparisons are needed. If P is s.t. `G1(i1) = P`G2(i2), then, represent-
ing each permutation with an array, it can be tested in O(m) time whether
A1 = PA2P

T , i.e. whether P corresponds to a graph isomorphism or not. To
sum up, generating and checking a permutation takes amortized O(n + m)
time and there are at most nnc of them altogether.

It is easy to see that this algorithm finds each and every isomorphism
between the two graphs.

The total number of steps taken = O(n2m+ n3log(n) + nc+1m).

Theorem 4.3.2. Let G1 and G2 be cospectral with single eigenvalues. If one
of the eigenmatrices has a row which contains non-zero elements only, then
the graph isomorphism problem can be solved is polynomial time.

Proof: Recall that because of Theorem 4.1.9, the graph isomorphism is
equivalent to the walk-isomorphism. The latter can be verified inO(n3log(n)+
n2m) steps.

The next theorem generalizes Theorem 4.1.9.

Theorem 4.3.3. Let G1 and G2 be cospectral with single eigenvalues. If
∃c ∈ N constant : ∃B ∈ Rc×n consisting of c rows of the eigenmatrix of
G1 s.t. each column of B has exactly one non-zero element, then the graph
isomorphism problem can be solved in polynomial time.

Proof: Without loss of generality, assume that B1 and B2 consists of the
first c rows of U and V , respectively, and that both contain exactly one
non-zero entry in each of their columns.

Observe that it can be verified whether there is an isomorphism mapping
node i ∈ V1 and i ∈ V2 together for all i ∈ [c]. To do so, it is sufficient to map
the rest of the nodes together s.t. for any pair (i1, i2) ∈ V1×V2, the number of
walks from node i =∈ [c] to i1 and to i2 are the same in G1 and G2 for length
l = 0..n. If such a mapping is found then it is an isomorphism, because one
can construct the matrices Π and S used in the proof of Theorem 4.1.9.

On the other hand, there are at most n2c different choices for B1 and
B2, therefore the described method for a given B1 and B2 can be applied for
all possible combinations.

31

It is easy to see that if there exists an isomorphism, then it will be
found.

5 Applications

This section describes and analyses various practical applications of the
(strong) walk labels. In the implementations, a cryptographic hash function
called SHA512 is used, which maps any bitsequence to a bitsequence of length
512 in linear time. The algorithms were implemented in C++ using the open-
source LEMON graph and optimization library [13].

Note that one can use the perfect hash function described is Section 3.2.1
instead of SHA, even in graph databases. However, if the size and the number
of the graphs are large, the set of label-key pairs to be stored –although
polynomial in the size and the number of graphs– might be practically too
large.

5.1 Node-labeling

Most of the state-of-the-art graph matching algorithms are backtracking
algorithms, i.e. they start with an empty mapping and gradually extend it
with respect to the definition of the graph isomorphism and the node labels.
Typically, they use different cutting rules to prune some of the unfruitful
branches. The idea is to strengthen these cutting rules using the proposed
artificial labels.

Recall that a node-labeling was artificial labeling if the labels of any two
nodes that can be mapped together in an isomorphism are equal. There-
fore, any branch of the search tree can be pruned that maps together two
nodes having different artificial labels. Any graph isomorphism algorithm
that handles node-labeled graphs can easily make use of such a label by sim-
ply generating a third label of pairs which consists of the original and the
(compressed) artificial label of v in a given node v.

This section analyses the practical efficiency of supporting a common
graph matching algorithm, called VF2 [11], with strong walk labels. Tests
have been executed on a recent biological dataset created for the Interna-

32

tional Contest on Pattern Search in Biological Datasets [35] and on random
regular graphs, as well.

Note that (strong) walk-labels can be compressed using hashing to a
short bitsequence s.t. two hash values are the same if and only if the cor-
responding matrices are permutation equal. Therefore, after preprocessing,
permutation equality can be tested by comparing two small numbers.

5.1.1 Biological graphs

In this test, the graph isomorphism problem was solved on biological
graphs using VF2, a common graph matching algorithm. First, all instances
were solved with VF2, and afterwards, the strong walk labels were generated
and given to the VF2 algorithm as additional node labels. The blue plot
shows the numbers of backtracks taken by VF2, and the red one shows that
when the strong walk labels were used too.

33

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 00010 00011 000

0

1

2

3

4

5

6

7

8
·104

number of nodes

nu
m

be
r

of
ba

ck
tr

ac
ks

Protein graphs

VF2
VF2 with SW

Figure 1: The average number of backtracks VF2 takes on protein graphs is
246352.6, while if it is given the strong walk labels, it never steps back. Note
that for the sake of perspicuity, the following blue points were not plotted:
(1312, 54910220),(3483, 1438982).

34

100 200 300 400 500 600 700 800

0

5

10

15

20

25

30

35

40

45

50

number of nodes

nu
m

be
r

of
ba

ck
tr

ac
ks

Contactmaps

VF2
VF2 with SW

Figure 2: Number of backtracks VF2 takes on contactmaps. If VF2 is given
the strong walk labels, it never steps back.

35

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

number of nodes

nu
m

be
r

of
ba

ck
tr

ac
ks

Molecule graphs

VF2
VF2 with SW

Figure 3: The average number of backtracks VF2 takes on molecule graphs
is 3433.1, while if it is given the strong walk labels, it never steps back. For
the sake of perspicuity, the following blue point was not plotted: (40, 95504).

5.1.2 Regular graphs

For a number d ∈ N and for each n = 100, 110, 120, ..500, generate
15 d-regular graphs on n nodes, and randomly permute the nodes of each
graph. For each of the 15 graphs, find an isomorphism between the mixed
and the original graphs. The plots show the average number of backtracks
while performing the 15 searches for each n. Figure 4, 5 and 6 show the
d = 5, 10, 20 cases, respectively.

36

100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

6

7

8
·107

number of nodes

nu
m

be
r

of
ba

ck
tr

ac
ks

Random graphs, d=5

VF2
VF2 with SW

Figure 4: The overall average of number of backtracks VF2 takes is 6497890.9,
while if it is given the strong walk labels, it never steps back.

37

100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

·106

number of nodes

nu
m

be
r

of
ba

ck
tr

ac
ks

Random graphs, d=10

VF2
VF2 with SW

Figure 5: The overall average of number of backtracks VF2 takes is 774635.6,
while if it is given the strong walk labels, it never steps back.

38

100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2

2.5

3

3.5

·106

number of nodes

nu
m

be
r

of
ba

ck
tr

ac
ks

Random graphs, d=20

VF2
VF2 with SW

Figure 6: The overall average of number of backtracks VF2 takes is 578315.1,
while if it is given the strong walk labels, it never steps back.

To sum up, VF2 never steps back if it uses the strong walk labels.

5.2 A sophisticated backtracking algorithm

Section 5.1 demonstrated that comparing the strong walk labels as an
extension of the cutting rule in a backtracking algorithm significantly reduces
the size of the search space on certain graph classes. However, only a small
fraction of the information stemming from strong walk labels is utilized.
This section introduces a refined backtracking graph isomorphism algorithm
exhaustively using the strong walk labels.

Assume that the algorithm has already made a few assignments, and it
is about to match node i1 ∈ V1 and node i2 ∈ V2. Based on Section 5.1, if

39

sG1(i1) 6 p= sG2(i2), then i1 and i2 can be never mapped together, therefore the
current branch can be pruned.

Observe that even if sG1(i1) p= sG2(i2), it might be the case that there
are nodes j1 ∈ V1 and j2 ∈ V2 s.t. node j1 ∈ V1 is already mapped to j2 ∈ V2

and the row of sG1(j1) corresponding to node i1 is different from the row of
sG2(j2) corresponding to i2. Clearly, the existence of such nodes j1 and j2

ensures that i1 can not be mapped to i2 in the current branch.

In other words, if the backtracking algorithm has already mapped certain
nodes, then in this branch the permutation-equality of two node labels can be
defined in a more strict way. By definition, sG1(i1) p= sG2(i2) means that there
exist a permutation matrix P s.t. P sG1(i1) = sG2(i2). Now, the permutation
matrix can be prescribed to satisfy Pj2j1 = 1 for all (j1, j2) ∈ {(j1, j2) ∈ V1×V2

: j1 is mapped to j2 in the current branch}.

It is an open question whether there exists a graph pair for which this
algorithm can be executed s.t. it steps back. Computational tests have
been carried out on various graph classes including distance regular graphs,
strongly regular graphs and other symmetric graph constructions, but the
algorithm has never stepped back. Investigating this question will be the
basis of a future research.

Note that if the algorithm never stepped back under depth O(logn), it
would solve the graph isomorphism problem in polynomial time. To prove
that it does not solve the graph isomorphism problem, a graph sequence
should be constructed s.t. the maximum number of backtracks the algorithm
might take tends to infinity asymptotically faster than logn.

The next section outlines an (induced) subgraph isomorphism algorithm
along the same idea.

5.3 The (induced) subgraph isomorphism problem

Observe that if G1 is searched in G2 and node i1 ∈ V1 can be mapped
to node i2 ∈ V2, then there exists a permutation matrix P s.t. P`G1(i1)
is element-wise not larger than `G2(i2). This immediately suggest a node-
labeling for the (induced) subgraph isomorphism problem.

40

In addition, the sophisticated backtracking algorithm described in Sec-
tion 5.2 is easy to adapt to this case.

Note that there is no straightforward way to use the strong walk la-
bels instead of the walk labels. However, it is possible to support subgraph
isomorphism algorithms similarly to the method developed for isomorphism
algorithms in Section 5.2. Based on preliminary computational tests, this
methods works well if the sizes (and the densities) of the two graphs are
comparable.

5.4 Graph fingerprints

Many practical graph matching algorithms are designed to solve the
graph isomorphism problem between two graphs as fast as possible, although
in typical applications, say in biology, this task is rarely needed. Instead, a
graph is searched in a graph database, which involves solving the graph iso-
morphism problem many times. Supposing that each graph occurs only once
in the database, most of the graph pairs to be compared are not isomorphic.
The idea is to define a graph-labeling s.t. for any two graphs their labels are
the same if the graphs are isomorphic, otherwise - apart from rare excep-
tions - the labels are different. Such graph-labelings are called fingerprints.
Graph fingerprints can be used to reduce the number of graph isomorphism
problems to be solved, since if the labels of the graphs are different, then
they can not be isomorphic. In addition, if the fingerprints in a data base
are precomputed, one can filter out efficiently all the graphs having the same
label as the graph to be searched does by using binary search tree or hash
table.

Sections 5.4.1 and 5.4.2 introduce two graph fingerprints using (strong)
walk-labeling, and study their practical efficiency on graph databases con-
taining biological, random and strongly regular graphs. Section 5.4.3 gener-
alizes the graph fingerprint using strong walk labels.

The biological and the strongly regular graphs graphs were extracted
from the Protein Data Bank [26] and from the homepage of Edward Spence
[32], respectively.

41

5.4.1 Strong walk fingerprint

In the spirit of strong walk-labeling, matrix skG(i) corresponding to node
i is defined such that

skG(i)jl :=

H(δij + 2δjk), if l = 0
H(skG(i)jl−1, {sG(i)i′l−1 : i′ ∈ ΓG(j)}#), otherwise

(16)

for all i, k, j ∈ [n] and for all l = 0..n. Note that skG(i) is a strangely initialized
version of sG(i).

Observe that the last column of skG(i) contains all information about the
previous ones, therefore it is sufficient to store the last element of each row.
Let s̃kG(i) denote the multiset of the values of the last column of skG(i).

To define the strong walk fingerprint, let

S(G) := H({H({H(s̃kG(i)) : i ∈ [n]}#) : k ∈ [n]}#) (17)

By definition, the following claim holds.

Claim 5.4.1. If G1 and G2 are isomorphic, then S(G1) = S(G2).

To test this graph-labeling, a graph database was considered, and the
fingerprint was generated to every graph. The graph database consists of
10.000 biological graphs, 10.000 random 10-regular graphs on 1000 nodes
and 43.753 strongly regular graphs.

It clearly shows the efficiency of fingerprint S that all generated S(G)
labels were unique, i.e. two tested graphs are isomorphic if and only if their
label are the same. These experiments suggest that in general, two graphs are
isomorphic if and only if their labels are the same. Note that this is unlikely
to hold, since, based on Section 3.2.1, this would imply a polynomial time
graph isomorphism algorithm.

It is easy to see that if an oracle can decide in polynomial time whether
two graphs are isomorphic, then an isomorphism can also be constructed be-
tween any to isomorphic graphs in polynomial time.

In the light of the following claim, the distinguishing power of strong
walk fingerprint is especially precious.

42

Claim 5.4.2. Any two strongly regular graphs with the same parameters are
strongly walk-isomorphic.

The relatively long yet straightforward proof is omitted.

To make sure of the correctness of the implementation, the following
tests were carried out. For each graph of the database, generate 10 isomor-
phic graphs by permuting the nodes, and verify whether the 11 isomorphic
instances have the same graph fingerprint.

Finally, observe that the following claim follows from Theorem 4.2.1.

Claim 5.4.3. Two trees are isomorphic if and only if their strong walk fin-
gerprints are equal.

Note that the computation time of S(G) labels can be reduced by con-
sidering shorter walks only – possibly at the expense of the distinguishing
power. In addition, it is also easy to see that the length of considered walks
can be also chosen depending on the number of vertices (or edges).

5.4.2 Walk fingerprint

To define a weaker - but easier to compute - analogue of strong walk
fingerprint, let the walk fingerprint be defined as follows.

L(G) := {`Gij
: i, j ∈ [n], Gij = (V,E ∪ {(i, i), (j, j)})} (18)

The following claim is a direct consequence of the definition of the walk
fingerprint.

Claim 5.4.4. If G1 and G2 are isomorphic, then L(G1) = L(G2).

These fingerprints were calculated for each graph in the database de-
scribed in Section 5.4.1, as well. All of the biological and regular graphs had
unique fingerprints, but among the SRG’s there were 120 non-isomorphic
graph pairs having the same label.

43

5.4.3 Generalization of strong walk fingerprint

The equality of fingerprints given by S(G) seems to be equivalent to the
graph isomorphism – based on computational tests. Should it turn out to
fail to distinguish two non-isomorphic graphs, a more general and stronger
graph-labeling have been already developed. To describe this, first consider
the following notation.

s
k1,..,kq

G (i)jl :=


H(δij +

q∑
r=1

(r + 1)δjkr), if l = 0

H(skG(i)jl−1, {sG(i)i′l−1 : i′ ∈ ΓG(j)}#), otherwise
(19)

where q ∈ N is a constant, j, k1, k2, .., kq ∈ [n] and l = 0..n are such that
k1 ≤ k2 ≤ .. ≤ kq.

Observe that the last column of sk1,..,kq

G (i) contains all information about
the previous ones, therefore it is sufficient to store the last element of each
row. Let s̃

k1,..,kq

G (i) denote the multiset of the values of the last column of
s
k1,..,kq

G (i).

Finally, the new, improved graph fingerprint is defined as follows.

Sq(G) := H({H({H(s̃k1,..,kq

G (i)) : i ∈ [n]}#) : k1 ≤ ... ≤ kq ∈ [n]}#) (20)

Claim 5.4.5. If G1 and G2 are isomorphic, then Sq(G1) = Sq(G2).

6 Conclusion and future work

This thesis introduced the concepts of walk-labeling and strong walk-
labeling. After working out their theoretical background, various theoretical
and practical applications were presented. However, many interesting and
important questions remain open. We conclude this work by presenting some
of these questions and further ideas, which show the directions of the future
work, as well.

• Is walk-isomorphism equivalent to graph isomorphism on graphs having
single eigenvalues only?
• Is walk-isomorphism equivalent to graph isomorphism on trees?

44

• Does walk-isomorphism distinguish graphs having different combinato-
rial invariants, for instance k-connectivity?
• Which of the results hold for the Laplacian eigenvalues as well?
• There is no straightforward connection between quantum walks and the

strong labeling. Does one of the two approaches dominate the other?
Is there a way to combine them?
• The proposed sophisticated backtracking algorithm involves storing n2

node labels for each graph in the data base. Is there a way to reduce
the necessary space?
• Does there exist a graph sequence s.t. the proposed sophisticated back-

tracking algorithm might step back deeper that depth O(logn)?
• To test the distinguishing power of the fingerprints on graphs of even

more graph classes.
• Disprove (or prove) that the generalized strong walk fingerprint solves

the graph isomorphism problem.
• Develop sufficient conditions under which the generalized strong walk

fingerprint solves the graph isomorphism problem. For example, one
could consider node labeled graphs s.t. the given labels determine a
“fine” partition on the node set.
• Is walk-isomorphism equivalent to graph isomorphism on cacti graphs?
• Is walk-isomorphism equivalent to graph isomorphism on planer graphs?
• Extend the methods to hypergraphs.
• The graph isomorphism problem can be modeled as an IP by searching

a permutation matrix P s.t. PA1 = A2P . Using the proposed labels,
one can strengthen the LP relaxation, in addition, cutting planes can
be generated during a Branch & Bound method. It would be interesting
to characterize the graphs for which the relaxed polytope is integer (or
to develop sufficient conditions).

7 Acknowledgement

The project was supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

45

References

[1] QuantumBio Inc., http://www.quantumbioinc.com.

[2] V. Arvind, B. Das, J. Köbler, and S. Toda. Colored hypergraph iso-
morphism is fixed parameter tractable. Algorithmica Volume 71, Pages
120-138, January 2015.

[3] László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism
of graphs with bounded eigenvalue multiplicity. In Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, pages 310–324, New York, NY, USA, 1982. ACM.

[4] Norman Biggs. Algebraic Graph Theory. Cambridge University Press, 2
edition, 1994.

[5] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha,
and Alfredo Ferro. A subgraph isomorphism algorithm and its appli-
cation to biochemical data. BMC Bioinformatics. 14(Suppl 7): S13.,
April 2013.

[6] Richard A. Brualdi and Dragos Cvetkovic. A Combinatorial Approach
to Matrix Theory and Its Applications. CRC Press, 2009.

[7] Horst Bunke. Graph matching: Theoretical foundations, algorithms,
and applications. In International Conference on Vision Interface,
Pages 82-84,, May 2000.

[8] Charles J. Colbourn. On testing isomorphism of permutation graphs.
Networks, Volume 11, Issue 1, Pages 13-21, March 1981.

[9] S. A. Cook. The complexity of theorem-proving procedures. Proc. 3rd
ACM Symposium on Theory of Computing, Pages 151-158, 1971.

[10] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance eval-
uation of the VF graph matching algorithm. Proc. of the 10th ICIAP,
IEEE Computer Society Press, Pages 1172-1177, 1999.

[11] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Transactions
on Pattern Analysis and Machine Intelligence Volume 26 Issue 10, Page
1367-1372, 2004.

46

[12] L. P. Cordella and M. Vento. Symbol recognition in documents: a
collection of techniques? International Journal on Document Analysis
and Recognition Volume 3, Issue 2, Pages 73-88,, December 2000.

[13] Balázs Dezső, Alpár Jüttner, and Péter Kovács. LEMON - an open
source C++ graph template library. Electronic Notes in Theoretical
Computer Science, 264(5):23 – 45, jul 2011. Proceedings of the Second
Workshop on Generative Technologies (WGT) 2010.

[14] Brendan L Douglas and Jingbo B Wang. A classical approach to the
graph isomorphism problem using quantum walks. Journal of Physics
A: Mathematical and Theoretical, 41(7):075303, 2008.

[15] A E. Brouwer and Edward Spence. Cospectral graphs on 12 vertices.
Electr. J. Comb., 16, 06 2009.

[16] John King Gamble, Mark Friesen, Dong Zhou, Robert Joynt, and S. N.
Coppersmith. Two-particle quantum walks applied to the graph isomor-
phism problem. Physical Review A, 81:052313, May 2010.

[17] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism
of planar graphs. Proceeding STOC ’74 Proceedings of the sixth annual
ACM symposium on Theory of computing, Pages 172-184, April 1974.

[18] J. R. Ullmann. Bit-vector algorithms for binary constraint satisfac-
tion and subgraph isomorphism. Journal of Experimental Algorithmics
(JEA),Volume 15, Article No. 1.6, ACM New York, NY, USA, 2010.

[19] Alpár Jüttner and Péter Madarasi. Vf2++—an improved subgraph iso-
morphism algorithm. Discrete Applied Mathematics, 2018.

[20] Jianzhuang Liu and Yong Tsui Lee. A graph-based method for face iden-
tification from a single 2D line drawing. IEEE Transactions on Pattern
Analysis and Machine Intelligence - Graph Algorithms and Computer
Vision archive Volume 23 Issue 10, Pages 1106-1119, October 2001.

[21] George S. Lue and Kellogg S. Booth. A linear time algorithm for deciding
interval graph isomorphism. Journal of the ACM (JACM), Volume 26,
Issue 2, Pages 183-195, 1979, April 1979.

47

[22] Eugene M. Luks. Isomorphism of graphs of bounded valence can be
tested in polynomial time. Journal of Computer and System Sciences,
Volume 25, Issue 1, Pages 42-65, August 1982.

[23] Péter Madarasi. Részgráf megfeleltetések keresése biológiai gráfokban.
OTDK, 2017.

[24] A Mahasinghe, J A Izaac, J B Wang, and J K Wijerathna. Phase-
modified ctqw unable to distinguish strongly regular graphs efficiently.
Journal of Physics A: Mathematical and Theoretical, 48(26):265301,
2015.

[25] B. D. McKay. Practical graph isomorphism. Congressus Numerantium,
Volume 30, Pages 45-87, 1981.

[26] Protein Data Bank. http://www.rcsb.org/pdb.

[27] D. Raviv, R. Kimmel, and A. M. Bruckstein. Graph isomorphisms and
automorphisms via spectral signatures. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1985–1993, Aug 2013.

[28] Kenneth Rudinger, John King Gamble, Mark Wellons, Eric Bach, Mark
Friesen, Robert Joynt, and Susan Coppersmith. Noninteracting multi-
particle quantum random walks applied to the graph isomorphism prob-
lem for strongly regular graphs. Phys. Rev. A, 86, 08 2012.

[29] Allen Schwenk. Almost all trees are cospectral. In New Directions in the
Theory of Graphs, pages 275–307, New York, NY, USA, 1973. Academic
Press.

[30] Dennis Shasha, Jason T. L. Wang, and Rosalba Giugno. Algorithmics
and applications of tree and graph searching. In Proceedings of the
Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS ’02, pages 39–52, New York, NY, USA,
2002. ACM.

[31] Christine Solnon. Alldifferent-based filtering for subgraph isomorphism.
Artificial Intelligence 174, Pages 850-86, 2010.

[32] Edward Spence. Strongly regular graphs on at most 64 vertices. http:
//www.maths.gla.ac.uk/˜es/srgraphs.php/.

48

http://www.rcsb.org/pdb
http://www.maths.gla.ac.uk/~es/srgraphs.php/
http://www.maths.gla.ac.uk/~es/srgraphs.php/

[33] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM), Volume 23 Issue 1, Pages 31-42, January 1976.

[34] Edwin R. van Dam and Willem H. Haemers. Which graphs are deter-
mined by their spectrum? Linear Algebra and its Applications, 373(Sup-
plement C):241 – 272, 2003. Combinatorial Matrix Theory Conference
(Pohang, 2002).

[35] Mario Vento, Xiaoyi Jiang, and Pasquale Foggia. International contest
on pattern search in biological databases, http://biograph2014.unisa.it.
June 2015.

[36] Richard C. Wilson and Ping Zhu. A study of graph spectra for compar-
ing graphs and trees. Pattern Recognition, 41(9):2833 – 2841, 2008.

49

	Introduction
	Preliminaries
	Notation
	Linear algebra
	Hashing

	Artificial labels
	Walk-labeling
	Getting rid of infinite labels
	Walk labels in practice

	Strong walk-labeling
	Strong walk labels in practice

	Some theoretical results
	Walk-labeling
	Strong walk-labeling
	Polynomial time graph isomorphism algorithm for certain graph classes

	Applications
	Node-labeling
	Biological graphs
	Regular graphs

	A sophisticated backtracking algorithm
	The (induced) subgraph isomorphism problem
	Graph fingerprints
	Strong walk fingerprint
	Walk fingerprint
	Generalization of strong walk fingerprint

	Conclusion and future work
	Acknowledgement

